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Abstract

The present thesis is devoted to the study of Well-Posedness and asymptotic behaviour in time of solution
of Lamé system and coupled Lamé system.
This work consists of five chapters, will be devoted to the study of the Well-Posedness and asymptotic
behaviour of some evolution equation with linear, and viscoelastic terms. In chapter 1, we recall of some
fundamental inequalities. In chapter 2, we consider the Lamé system in 3-dimension bounded domain with
distributed delay term. We prove, under some appropriate assumptions, that this system is well-posed and
stable. Furthermore, the asymptotic stability is given by using an appropriate Lyapunov functional. In
chapter 3, we consider a coupled Lamé system with a viscoelastic damping in the first equation. We prove
well-posedness by using Faedo-Galerkin method and establish an exponential decay result by introducing a
suitable Lyaponov functional. In chapter 4, we consider a coupled Lamé system with a viscoelastic damping
and a strong constant delay in the first equation. We prove well-posedness by using Faedo-Galerkin method
and establish an exponential decay result by introducing a suitable Lyaponov functional. In chapter 5, we
consider a coupled Lamé system with a viscoelastic term and a strong damping. We prove well posedness by
using Faedo-Galerkin method and establish an exponential decay result by introducing a suitable Lyaponov
functional.

Key words : Well-Posedness, Coupled system, Exponential decay, Lyapunov method, Galerkin method,
Viscoelastic term, Delay term.

subjclass 2000: 35L55, 74D05, 37B25, 35B35, 93D20, 35L80, 35B40, 35L20, 58G16, 35L70.
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General introduction

The present thesis is devoted of the study of Well-Posedness , asymptotic behaviour in time
of solution to hyperbolic systems.
The problem of stabilization consists in determining the asymptotic behaviour of the energy
by E(t), to study its limits in order to determine if this limit is null or not and if this limit
is null, to give an estimate of the decay rate of the energy to zero, they are several type of
stabilization:

1. Strong stabilization: E(t)→ 0, as t→∞.

2. Uniform stabilization: E(t) 6 C exp (−δt), ∀t > 0, (c, δ > 0).

3. Polynomial stabilization: E(t) 6 Ct−δ, ∀t > 0, (c, δ > 0).

4. Logarithmic stabilization: E(t) 6 C(ln(t))−δ ∀t > 0, (c, δ > 0).

For wave equation with dissipation of the form u′′+ ∆xu+ g(u′) = 0, stabilization problems
have been investigated by many authors:
When g : R→ R is continuous and increasing function such that g(0) = 0, global existence
of solutions is known for all initial conditions (u0, u1) given in H1

0 (Ω) × L2(Ω). This result
is, for instance, a consequence of the general theory of nonlinear semi-groups of contractions
generated by a maximal monotone operator (see Brézis [7]).
Moreover, if we impose on g the condition ∀λ 6= 0, g(λ) 6= 0, then strong asymptotic stability
of solutions occurs in H1

0 (Ω)× L2(Ω).

i.e (u, u′)→ (0, 0) strongly in H1
0 (Ω)× L2(Ω)

without speed of convergence. These results follows, for instance, from the invariance prin-
ciple of Lasalle (see for example A. Haraux [11]). If we add the assymption that g has a
polynomial growth near zero, we obtain an explicit decay rate of solutions (see M. Nakao
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General introduction

[20]).
This work consists of five chapters:

• In the chapter 2: In this chapter, we consider the following Lamé system with a
distributed delay term

u′′(x, t)−∆eu(x, t) +
∫ τ2

τ1
µ2(s)u′(x, t− s)ds+ µ1u

′(x, t) = 0 in Ω× R+

u = 0 on ∂Ω× R+
(1)

Here ∆ denotes the Laplacian operator and ∆e denotes the elasticity operator, which
is the 3× 3 matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(divu), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ > 0. (2)

Moreover, µ2 : [τ1, τ2]→ R is a bounded function and τ1 < τ2 are two positive constants.

In the particular case λ + µ = 0, ∆e = µ∆ gives a vector Laplacian; that is (II.1)
describes the vector wave equation.

The purpose of this chapter is to prove the well-posedness of the problem (II.1). More-
over we show that we can always find initial data in the stable set for which the solution
of problem (II.1) decays exponentially, which is based on the construction of a suitable
Lyaponov functional.

• In the chapter 3: Let us consider the following a coupled Lamé system :

utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g(s)∆u(t− s)ds− µ1∆ut(x, t) = 0, in Ω× (0,+∞),

vtt(x, t) + αu−∆ev(x, t)− µ2∆vt(x, t) = 0, in Ω× (0,+∞),
u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.

(3)
The problem of stabilization of coupled systems has also been studied by several au-
thors see [2, 4, 6, 15, 23, 24]and the references therein.Under certain conditions imposed

10



General introduction

on the subset where the damping term is effective, Komornik [15] proves uniform sta-
bilization of the solutions of a pair of hyperbolic systems coupled in velocities. Alabau
and al.[2] studied the indirect internal stabilization of weakly coupled systems where
the damping is effective in the whole domain. They prove that the behavior of the
first equation is sufficient to stabilize the total system and to have polynomial decay
for sufficiently smooth solutions.

In this chapter we prove well-posedness of the problem by using the Faedo-Galerkin
method and we prove the exponential decay of the energy when time goes to infinity.

• In the chapter 4:

Let us consider the following problem

utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g(s)∆u(t− s)ds

−µ1∆ut(x, t)− λ1∆xut(x, t− τ) = 0, in Ω× (0,+∞),
vtt(x, t) + αu−∆ev(x, t)− µ2∆vt(x, t) = 0, in Ω× (0,+∞),
u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω,
ut(x, t− τ) = f0(x, t− τ), in Ω× [0, τ ].

(4)

The main purpose of this work is to prove the well-posedness in Sobolev spaces using
Faedo-Galerkin method and to allow a wider class of relaxation functions and improve
earlier results in the literature. The basic mechanism behind the decay rates is the
relation between the damping and the energy.

• In the chapter 5: In this chapter, we consider the following coupled Lamé system :


utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g1(t− s)∆u(x, s)ds− µ1∆ut(x, t) = 0, in Ω× (0,+∞),

vtt(x, t) + αu−∆ev(x, t) +
∫ t

0
g2(t− s)∆v(x, s)ds− µ2∆vt(x, t) = 0, in Ω× (0,+∞),

u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.

(5)
.
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The purpose of this paper is to prove the well-posedness of the problem and exponential
decay of the energy when time goes to infinity.
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I
Preliminaries

In this chapter, we present some materials which will be used in the following chapters.

1 Function Spaces

We consider the Euclidean space Rn, n > 1 endowed with standard Euclidean topology and
for Ω a subset of Rn we will define various spaces of functions Ω → Rm. If endowed by a
pointwise addition and multiplication the linear space structure of Rm is inherited by these
spaces. Besides, we will endow them by norms, which makes them normed linear (or, mostly
even Banach) spaces. Having two such spaces U ⊂ V , we say that the mapping

f : U → V, u 7→ u.

is a continuous embedding (or, that U is embedded continuously to V ) if the linear operator
f is continuous (hence bounded). This means that

‖u‖V 6 C‖u‖U

13



CHAPTER I. PRELIMINARIES

for C one can take the norm ‖f‖`(U,V ). If f is compact, we speak about a compact embedding
and use the notation U ⊂ V . If U is a dense subset in V , we will speak about a dense
embedding; this property obviously depends on the norm of V but not of U . It follows by a
general functional-analysis argument that the adjoint mapping

f ∗ : V ∗ → U∗.

is continuous and injective provided U ⊂ V continuously and densely, then we can identify V ∗

as a subset of U∗. Indeed, f ∗ is injective (because two different linear continuous functionals
on V must have also different traces on any dense subset, in particular on U).

1.1 The Lp(Ω) spaces

Let 1 6 p 6 ∞, and let Ω be an open domain in Rn, n ∈ N. Define the standard Lebesgue
space Lp(Ω), by

Lp(Ω) =
{
u : Ω→ R : u is measurable and

∫
Ω
|u(x)|pdx <∞

}
.

Notation 1.1 For p ∈ R and 1 6 p <∞, denote by

‖u‖p =
(∫

Ω
|u(x)|pdx

) 1
p

.

If p =∞, we have

L∞(Ω) =

u : Ω→ R

∣∣∣∣∣∣ u is measurable and there exists a constant Csuch that, |u(x)| 6 C a.e in Ω

 .
with

‖u‖∞ = inf{C; |u| 6 C a.e On Ω}.

Theorem 1.2 It is well known that Lp(Ω) supplied with the norm ‖.‖p is a Banach space,
for all 1 6 p 6∞.

Remark 1.3 In particularly, when p = 2, L2(Ω) equipped with the inner product

〈f, g〉L2(Ω) =
∫

Ω
f(x)g(x)dx,

is a Hilbert space.

14



I.1 Function Spaces

Theorem 1.4 For 1 < p <∞, Lp(Ω) is reflexive space.

1.2 The Lp(0, T, V ) spaces

Definition 1.5 Let V be a Banach space, denote by Lp(0, T, V ) the space of measurable
functions

u : ]0, T [→ V

t 7−→ u(t)

such that
(∫ T

0
‖u(t)‖pV dt

) 1
p

= ‖u‖Lp(0,T,X) <∞, for 1 6 p <∞.

If p =∞,

‖u‖L∞(0,T,V ) = sup
t∈]0,T [

ess ‖u(t)‖V .

Theorem 1.6 The space Lp(0, T, V ) is complete.

We denote by D′(0, T, V ) the space of distributions in ]0, T [ which take its values in V ,
and let us define

D′(0, T, V ) = (D ]0, T [ , V ) ,

where (φ, ϕ) is the space of the linear continuous applications of φ to ϕ. Since u ∈ D′(0, T, V ),
we define the distribution derivation as

∂u

∂t
(ϕ) = −u

(
dϕ

dt

)
,∀ϕ ∈ D (]0, T [) ,

and since u ∈ Lp(0, T, V ), we have

u(ϕ) =
∫ T

0
u(t)ϕ(t)dt,∀ϕ ∈ D (]0, T [) .

We will introduce some basic results on the Lp(0, T, V ) space. These results, will be very
useful in the other chapters of this thesis.

15



CHAPTER I. PRELIMINARIES

Lemma 1.7 Let u ∈ Lp(0, T, V ) and ∂u
∂t
∈ Lp(0, T, V ), (1 6 p 6 ∞), then, the function u

is continuous from [0, T ] to V .i.e. u ∈ C1(0, T, V ).

1.3 Sobolev spaces

Modern theory of differential equations is based on spaces of functions whose derivatives
exist in a generalized sense and enjoy a suitable integrability.

Proposition 1.8 Let Ω be an open domain in RN , Then the distribution T ∈ D′(Ω) is in
Lp(Ω) if there exists a function f ∈ Lp(Ω) such that

〈T, ϕ〉 =
∫

Ω
f(x)ϕ(x)dx, for all ϕ ∈ D(Ω),

where 1 6 p 6∞, and it’s well-known that f is unique.

Definition 1.9 Let m ∈ N and p ∈ [0,∞] . The Wm,p(Ω) is the space of all f ∈ Lp(Ω),
defined as

Wm,p(Ω) = {f ∈ Lp(Ω), such that ∂αf ∈ Lp(Ω) for all α ∈ Nm such that

|α| =
n∑
j=1

αj 6 m, where, ∂α = ∂α1
1 ∂α2

2 ..∂αn
n }.

Theorem 1.10 Wm,p(Ω) is a Banach space with their usual norm

‖f‖Wm,p(Ω) =
∑
|α|6m

‖∂αf‖Lp , 1 6 p <∞, for all f ∈ Wm,p(Ω).

Definition 1.11 Denote by Wm,p
0 (Ω) the closure of D(Ω) in Wm,p(Ω).

Definition 1.12 When p = 2, we prefer to denote by Wm,2(Ω) = Hm (Ω) and Wm,2
0 (Ω) =

Hm
0 (Ω) supplied with the norm

‖f‖Hm(Ω) =
 ∑
|α|6m

(‖∂αf‖L2)2

 1
2

,

which do at Hm(Ω) a real Hilbert space with their usual scalar product

〈u, v〉Hm(Ω) =
∑
|α|6m

∫
Ω
∂αu∂αvdx

16



I.1 Function Spaces

Theorem 1.13 1) Hm (Ω) supplied with inner product 〈., .〉Hm(Ω) is a Hilbert space.
2) If m > m′, Hm (Ω) ↪→ Hm′ (Ω), with continuous imbedding .

Lemma 1.14 Since D(Ω) is dense in Hm
0 (Ω) , we identify a dual H−m (Ω) of Hm

0 (Ω) in a
weak subspace on Ω, and we have

D(Ω) ↪→ Hm
0 (Ω) ↪→ L2 (Ω) ↪→ H−m (Ω) ↪→ D′(Ω),

The next results are fundamental in the study of partial differential equations

Theorem 1.15 Assume that Ω is an open domain in RN (N > 1), with smooth boundary
∂Ω. Then,

(i) if 1 6 p 6 n, we have W 1,p ⊂ Lq(Ω), for every q ∈ [p, p∗] , where p∗ = np
n−p .

(ii) if p = n we have W 1,p ⊂ Lq(Ω), for every q ∈ [p,∞) .
(iii) if p > n we have W 1,p ⊂ L∞(Ω) ∩ C0,α(Ω), where α = p−n

p
.

Theorem 1.16 If Ω is a bounded, the embedding (ii) and (iii) of Theorem II.18 are com-
pacts. The embedding (i) is compact for all q ∈ [p, p∗) .

Remark 1.17 For all ϕ ∈ H2(Ω), ∆ϕ ∈ L2(Ω) and for ∂Ω sufficiently smooth, we have

‖ϕ(t)‖H2(Ω) 6 C ‖∆ϕ(t)‖L2(Ω) .

1.4 Weak convergence

Let (E; ‖.‖E) a Banach space and E ′ its dual space, i.e., the Banach space of all continuous
linear forms on E endowed with the norm ‖.‖E′ defined by

‖f‖E′ =: sup
x 6=0

| < f, x > |
‖x‖

where < f, x > denotes the action of f on x, i.e < f, x >= f(x). In the same way, we can
define the dual space of E ′ that we denote by E ′′. (The Banach space E ′′ is also called the
bi-dual space of E). An element x of E can be seen as a continuous linear form on E ′′ by
setting x(f) =:< x, f > , which means that E ⊂ E ′′.

17



CHAPTER I. PRELIMINARIES

Weak, weak star and strong convergence

Definition 1.18 (weak convergence in E). Let x ∈ E and let {xn} ⊂ E. We say that
{xn} weakly converges to x in E, and we write xn ⇀ x in E, if

< f, xn >→< f, x >

for all x ∈ E ′.

Definition 1.19 (weak convergence in E’). Let f ∈ E ′ and let {fn} ⊂ E ′ We say that
{fn} weakly converges to f in E ′, and we write fn ⇀ f in E ′, if

< fn, x >→< f, x >

for all x ∈ E ′′.

Definition 1.20 (weak star convergence). Let f ∈ E ′ and let {fn} ⊂ E ′ We say that
{fn} weakly star converges to f in E ′, and we write fn ∗

⇀ f in E ′ if

< fn, x >→< f, x >

for all x ∈ E.

Remark 1.21 As E ⊂ E ′′ we have fn ⇀ f in E ′ imply fn ∗
⇀ f in E ′. When E is reflexive,

the last definitions are the same, i.e, weak convergence in E ′ and weak star convergence
coincide.

Definition 1.22 (strong convergence). Let x ∈ E (resp.f ∈ E ′) and let {xn} ⊂ E

(resp.{fn} ⊂ E ′). We say that {xn} (resp.{fn}) strongly converges to x (resp.f ), and we
write xn → x in E (resp.fn → f in E ′), if

lim
n→∞

‖xn − x‖E = 0, (resp. lim
n→∞

‖fn − f‖E′ = 0).

Definition 1.23 ( weak convergence in Lp(Ω) with 1 6 p <∞ ). Let Ω an open subset
of Rn. We say that the sequence {fn} of Lp(Ω) weakly converges to f ∈ Lp(Ω), if

lim
n

∫
Ω
fn(x)g(x)dx =

∫
Ω
f(x)g(x)dx for all g ∈ Lq, 1

p
+ 1
q

= 1.

18



I.1 Function Spaces

Definition 1.24 (weak convergence in W 1,p(Ω) with 1 < p < ∞ )We say the {fn} ⊂
W 1,p(Ω) weakly converges to f ∈ W 1,p(Ω), and we write fn ⇀ f in W 1,p(Ω), if

fn ⇀ f in Lp(Ω) and ∇fn ⇀ ∇f in Lp(Ω;Rn)

Weak and weak star compactness

In finite dimension, i.e, dimE < ∞, we have Bolzano-Weierstrass’s theorem (which is a
strong compactness theorem).

Theorem 1.25 (Bolzano-Weierstrass). If dimE < ∞ and if {xn} ⊂ E is bounded,
then there exist x ∈ E and a subsequence {xnk

} of {xn} such that {xnk
} strongly converges

to x.

The following two theorems are generalizations, in infinite dimension, of Bolzano- Weier-
strass’s theorem.

Theorem 1.26 (weak star compactness, Banach-Alaoglu-Bourbaki). Assume that
E is separable and consider {fn} ⊂ E ′ . If {xn} is bounded, then there exist f ∈ E ′ and a
subsequence {fnk

} of {fn} such that {fnk
} weakly star converges to f in E ′.

Theorem 1.27 (weak compactness, Kakutani-Eberlein). Assume that E is reflexive
and consider {xn} ⊂ E. If {xn} is bounded, then there exist x ∈ E and a subsequence {xnk

}
of {xn} such that {xnk

} weakly converges to x in E.

Theorem 1.28 (weak compactness in Lp(Ω)) with 1 < p < ∞. Given {fn} ⊂ Lp(Ω) ,
if {fn} is bounded, then there exist f ∈ Lp(Ω) and a subsequence {fnk

} of {fn} such that
fn ⇀ f in Lp(Ω).

Theorem 1.29 (weak star compactness in L∞(Ω))
Given {fn} ⊂ L∞(Ω), if {fn} is bounded, then there exist f ∈ L∞(Ω) and a subsequence
{fnk
} of {fn} such that fn ∗

⇀ f in L∞(Ω).

1.5 Aubin -Lions Lemma

The Aubin-Lions Lemma is a result in the theory of Sobolev spaces of Banach space-valued
functions. More precisely, it is a compactness criterion that is very useful in the study of
nonlinear evolutionary partial differential equations. The result is named after the French
mathematicians Thierry Aubin and Jacques-Louis Lions.
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Lemma 1.30 Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Assume that
X0 is compactly embedded in X and that X is continuously embedded in X1; assume also
that X0 and X1 are reflexive spaces. For 1 < p, q < +∞, let

W = {u ∈ Lp([0, T ];X0)/ u̇ ∈ Lq([0, T ];X1)}

Then the embedding of W into Lp([0, T ];X) is also compact.

2 Inequalities

Notation 2.1 Let 1 6 p 6∞, we denote by q the conjugate exponent,

1
p

+ 1
q

= 1.

2.1 Hölder’s inequality

Assume that f ∈ Lp and g ∈ Lq with 1 6 p 6∞. Then (fg) ∈ L1 and

‖fg‖ 6 ‖f‖p‖g‖q.

Lemma 2.2 (Cauchy-Schwarz inequality) Every inner product satisfies the Cauchy-
Schwarz inequality

〈x1, x2〉 6 ‖x1‖‖x2‖.

The equality sign holds if and only if x1 and x2 are dependent.

We will give here some integral inequalities. These inequalities play an important role in
applied mathematics and also, it is very useful in our next chapters.

Lemma 2.3 Let 1 6 p 6 r 6 q, 1
r

= α
p

+ 1−α
q
, and 0 6 α 6 1. Then

‖u‖Lr 6 ‖u‖αLp‖u‖1−α
Lq .

Since our study based on some known algebraic inequalities, we want to recall few of them
here.
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2.2 Young’s inequality

For all a, b > 0, the following inequality holds

ab 6
ap

p
+ bq

q
,

where, 1
p

+ 1
q

= 1.

Lemma 2.4 For all a, b ∈ R+, we have

ab 6 δa2 + b2

4δ ,

where δ is any positive constant.

2.3 Poincaré’s inequality

Let Ω ⊂ Rn is a bounded open subset. Then there exists a constant c, depending on Ω such
that:

‖f‖L2(Ω) 6 c‖∇f‖L2(Ω), ∀f ∈ H1
0 (Ω).

3 Semigroups, Existence and uniqueness of solution

In this section, we start by introducing some basic concepts concerning the semigroups. The
vast majority of the evolution equations can be reduced to the form

Ut = AU, t > 0,

U(0) = U0

(I.1)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems. Let (X, ‖.‖X) be a Banach space, and H be a Hilbert
space equipped with the inner product < ., . >H and the induced norm ‖.‖H .

Definition 3.1 A family S(t)t>0 of bounded linear operators in X is called a strong conti-
nous semigroup (in short, a C0-semigroup) if

i) S(0) = Id.
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ii) S(s+ t) = S(s)S(t), ∀t > 0 ∀s > 0.

iii) For each u ∈ H, S(t)u is continous in t on [0,+∞[.

Sometimes we also denote S(t) by eAt.

Definition 3.2 For a semigroup S(t)t>0, we define an linear operator A with domain D(A)
consisting of points u such that the limit

Au = lim
t→0+

S(t)u− u
t

∀u ∈ D(A)

exists. Then A is called the infinitesimal generator of the semigroup S(t)t>0.

Proposition 3.3 Let S(t)t>0 be a C0-semigroup in X. Then there exist a constant M > 1
and ω > 0 such that

‖S(t)‖L(X) 6Meωt. ∀t > 0

If ω = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1 then
S(t)t>0 is said to be a C0-semigroup of contractions.

Definition 3.4 An unbounded linear operator (A,D(A)) on H, is said to be dissipative if

R < Au, u >6 0,∀u ∈ D(A).

Definition 3.5 An unbounded linear operator (A,D(A)) on X, is said to be m-dissipative
if

• A is a dissipative operator.

• ∃λO such that R(λ0I − A) = X

Theorem 3.6 Let A be a m-dissipative operator, then

• R(λ0I − A) = X, ∀λ > 0

• ]0,∞[⊆ ρ(A).

Theorem 3.7 ( Hille-Yosida )An unbounded linear operator (A,D(A)) on X, is the in-
finitesimal generator of a C0-semigroup of contractions S(t)t>0 if and only if

• A is closed and ¯D(A) = X.
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• The resolvent set ρ(A) of A contains R+, and for all λ > 0,

‖(λI − A)−1‖L(X) 6 λ−1

Theorem 3.8 (Lumer-Phillips) Let (A,D(A)) be an unbounded linear operator on X, with
dense domain D(A) in X. A is the infinitesimal generator of a C0-semigroup of contractions
if and only if it is a m-dissipative operator.

Theorem 3.9 Let (A,D(A)) be an unbounded linear operator on X. If A is dissipative with
R(I − A) = X, and X is reflexive then ¯D(A) = X.

Corrolary 3.10 Let (A,D(A)) be an unbounded linear operator on H. A is the infinitesimal
generator of a C0-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 3.11 Let A be a linear operator with dense domain D(A) in a Hilbert space H.
If A is dissipative and 0 ∈ ρ(A) then A is the infinitesimal generator of a C0-semigroup of
contractions on H.

Theorem 3.12 ( Hille-Yosida ) Let (A,D(A)) be an unbounded linear operator on H. As-
sume that A is the infinitesimal generator of a C0-semigroup of contractions S(t)t>0.

1. For U0 ∈ D(A), the problem (I.1) admits a unique strong solution

U(t) = S(t)U0 ∈ C1([0,∞[;H) ∩ C([0,∞[;D(A))

2. For U0 ∈ D(A), the problem (I.1) admits a unique weak solution

U(t) ∈ C0([0,∞[;H).
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II
Well-Posedness And Asymptotic Stability For
The Lamé System With Internal Distributed

Delay

1 Introduction and statement

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω . Let us consider the following
Lamé system with a distributed delay term:


u′′(x, t)−∆eu(x, t) +

∫ τ2

τ1
µ2(s)u′(x, t− s)ds+ µ1u

′(x, t) = 0 in Ω× R+

u = 0 on ∂Ω× R+
(II.1)

with initial conditions u(x) = u0(x) u′(x, 0) = u1(x), in Ω,
u′(x,−t) = f0(x,−t), in Ω× (0, τ2),

(II.2)
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Where (u0, u1, f0) are given history and initial data . Here ∆ denotes the Laplacian operator
and ∆e denotes the elasticity operator, which is the 3×3 matrix-valued differential operator
defined by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ > 0. (II.3)

Moreover, µ2 : [τ1, τ2]→ R is a bounded function and τ1 < τ2 are two positive constants.
In the particular case λ+µ = 0, ∆e = µ∆ gives a vector Laplacian; that is (II.1) describes

the vector wave equation.
In recent years, the control of partial differential equations with time delay effects has

become an active and attractive area of research see ([1, 5, 6, 9, 10, 12]and [17]),and the
references therein. Recently, S. A. Messaoudi and al.[17] considered the following problem
with a strong damping and a strong distributed delay:

utt −∆xu(x, t)− µ1∆ut(x, t)−
∫ τ2

τ1
µ2(s)∆ut(x, t− s)ds = 0 in Ω× (0,+∞),

u = 0 on Γ× [0,+∞),
u(x, 0) = u0(x) u′(x, 0) = u1(x) on Ω,
ut(x,−t) = f0(x,−t), 0 < t 6 τ2,

(II.4)

and under the assumption
µ1 >

∫ τ2

τ1
µ2(s)ds. (II.5)

The authors proved that the solution is exponentially stable.
In[3], the authors considered the Bresse system in bounded domain with internal dis-

tributed delay


ρ1ϕtt −Gh(ϕx + lw + ψ)x − Ehl(wx − lϕ) + µ1ϕt + µ2ϕt(x, t− τ1) = 0,
ρ2ψtt − Elψxx −Gh(ϕx − lw + ψ) +

∫ τ2

τ1
µ(s)ψt(x, t− s)ds = 0,

ρ1wtt − Eh(wx − lϕ)x + lGh(ϕx + lw + ψ) + µ̃1wt + µ̃2wt(x, t− τ2) = 0,

(II.6)

where (x, t) ∈]0, L[×R+ , the authors proved, under suitable conditions, that the system is
well-posed and its energy converges to zero when time goes to infinity. For Timoshenko-
type system with thermoelasticity of second sound,in the presence of a distributed delay
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Apalara[1] considered the following system:


ρ1ϕtt − k(ϕx + ψ)x + µϕt +
∫ τ2

τ1
µ2(s)ϕt(x, t− s)ds = 0 in (0, 1)× (0,+∞),

ρ2ψtt − bψxx+ k(ϕx + ψ) + γθx = 0 in (0, 1)× (0,∞),
ρ3θt + qx + δψtx = 0 in (0, 1)× (0,∞),
τqt +Bq + θx = 0, in (0, 1)× (0,∞),

(II.7)

and proved an exponential decay result under the assumption

µ >
∫ τ2

τ1
µ2(s)ds. (II.8)

In [4], Beniani and al. considered the following Lamé system with time varing delay term:

 u′′(x, t)−∆eu(x, t) + µ1g1(u′(x, t)) + µ2g2(u′(x, t− τ(s)) = 0 in Ω× R+

u = 0 on ∂Ω× R+ (II.9)

the authors proved, under suitable conditions, that energy converges to zero when time goes
to infinity.

The paper is organized as follows: in Section 2, we prove the global existence and unique-
ness of solutions of (II.1)-(II.2). In Section 3, we prove the stability results.

2 Well-posedness

In this section, we prove the existence and uniqueness of solutions of (II.1)-(II.2) using
semigroup theory.

As in [21], we introduce the variable

z(x, ρ, t, s) = u′(x, t− ρs), (x, ρ, t, s) ∈ Ω× (0, 1)× (0,∞)× (τ1, τ2).

Then, it is easy to check that

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, (x, ρ, t, s) ∈ Ω× (0, 1)× (0,∞)× (τ1, τ2). (II.10)
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Thus, system (II.1) becomes


u′′(x, t)−∆eu(x, t) + µ1u
′(x, t) +

∫ τ2

τ1
µ2(s)z(x, 1, t, s)ds = 0 in Ω× R+

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0 in Ω× (0, 1)× (0,∞)× (τ1, τ2)
u = 0 on ∂Ω× R+

u(x, 0) = u0(x) u′(x, 0) = u1(x), in Ω× (0, 1)× (τ1, τ2),
z(x, ρ, 0, s) = f0(x,−ρs), in Ω× (0, 1)× (τ1, τ2),

(II.11)
Next, we will formulate the system (II.1)-(II.2) in the following abstract linear first-order

system:  Ut(t) = AU(t) ∀t > 0,
U(0) = U0,

(II.12)

where U = (u, ut, z)T , U0 = (u0, u1, f0)T ∈ H

H = H1
0 (Ω)3 × (L2(Ω))3 × L2((0, 1), H)

We define the inner product in H,

〈V, V̄ 〉H =
∫

Ω
vv̄ dx+ µ

∫
Ω
∇u∇ū dx+ (λ+ µ)

∫
Ω
div u.div ū dx

+
∫

Ω

∫ τ2

τ1
sµ2(s)

∫ 1

0
z(x, ρ, t, s)z̄(x, ρ, t, s) dρdsdx.

The operators A is linear and given by

A


u

v

z

 =


v

∆eu(x, t)− µ1v(x, t)−
∫ τ2

τ1
µ2(s)z(x, 1, t, s)ds

−1
s
zρ(x, ρ, t, s)

 (II.13)

The domain D(A) of A is given by

D(A) =
{
V = (u, v, z)T ∈ H,AV ∈ H, z(, 0) = v

}
.

The well-posedness of problem (II.12) is ensured by the following theorem.

Theorem 2.1 Assume that
µ1 >

∫ τ2

τ1
µ2(s)ds. (II.14)
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Then, for any U0 ∈ H , the system (II.12) has a unique weak solution

U ∈ C(R+,H).

Moreover, if U ∈ D(A), then the solution of (II.12) satisfies (classical solution)

U ∈ C1(R+,H) ∩ C(R+, D(A)).

Proof 2.2 we prove that A : D(A) → H is a maximal monotone operator; that is, A

is dissipative and Id − A is surjective. Indeed, a simple calculation implies that, for any
V = (u, v, z)T ∈ D(A),

〈AV, V 〉H = µ
∫

Ω
∇v(x, t)∇u(x, t) dx+ (λ+ µ)

∫
Ω
div v(x, t).div u(x, t) dx

+
∫

Ω

{
∆eu(x, t)− µ1v(x, t)−

∫ τ2

τ1
µ2(s)z(x, 1, t, s) ds

}
v(x, t) dx

−
∫

Ω

∫ τ2

τ1
µ2(s)

∫ 1

0
z(x, ρ, t, s)zρ(x, ρ, t, s) dρdsdx

= −µ1

∫
Ω
v2(x, t) dx−

∫
Ω
v(x, t)

( ∫ τ2

τ1
µ2(s)z(x, 1, t, s)ds

)
dx

−1
2

∫
Ω

∫ τ2

τ1
µ2(s)

∫ 1

0

∂

∂ρ
|z(x, ρ, t, s)|2 dρdsdx

(II.15)

Using Young’s inequality and taking into account that z(., 0, ., .) = v, we get

〈AV, V 〉H = −
(
µ1 −

∫ τ2

τ1
µ2(s)ds

) ∫
Ω
v2(x, t) dx (II.16)

by virtue of (II.14). Therefore, A is dissipative. On the other hand, we prove that Id−A

is surjective. Indeed, let F = (f, g, h)T ∈ H we show that there exists V = (u, v, z)T ∈ D(A)
satisfying

(Id−A)V = F (II.17)

which is equivalent to


u− v = f,

v −∆eu+ µ1v +
∫ τ2

τ1
µ2(s)z(x, 1, t, s)ds = g,

sz(x, ρ, t, s) + zρ(x, ρ, t, s) = hs,

(II.18)

Using the equation in (II.18), we obtain
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z(x, t, ρ, s) = (u− f)e−ρs + e−ρs
∫ ρ

0
sh(x, σ)eσsdσ.

Replacing v by u− f in the second equation of (II.18), we get

Ku−∆eu = G (II.19)

Where
K = 1 + µ1 +

∫ τ2

τ1
e−sµ2(s)ds > 0 (II.20)

and
G = g +

(
1− µ1 −

∫ τ2

τ1
e−sµ2(s)ds

)
f +

∫ τ2

τ1
se−sµ2(s)

∫ 1

0
h(x, σ)eσsdσds.

So we multiply (II.19) by a test function ϕ ∈ (H1
0 (Ω))3 and we integrate by using Green’s

equality , obtaining the following variational formulation of (II.19):

a(u, ϕ) = L(ϕ) ∀ϕ ∈ (H1
0 (Ω))3, (II.21)

where
a(u, ϕ) =

∫
Ω

(Ku.ϕ+ µ∇u.∇ϕ+ (λ+ µ)div u.div ϕ) dx (II.22)

and

L(ϕ) =
∫

Ω
Gϕdx (II.23)

It is clear that a is a bilinear and continuous form on (H1
0 (Ω))3 × (H1

0 (Ω))3, and L is a
linear and continuous form on (H1

0 (Ω))3. On the other hand, (V.2) and (II.20) imply that
there exists a positive constant a0 such that

a(u, u) > a0‖u‖(H1
0 (Ω))3 , ∀v1 ∈ (H1

0 (Ω))3,

which implies that a is coercive. Therefore, using the Lax-Milgram Theorem, we conclude
that (II.21) has a unique solution u ∈ (H1

0 (Ω))3 . By classical regularity arguments, we
conclude that the solution u of (II.21) belongs into (H2(Ω) ∩ H1

0 (Ω))3 . Consequently, we
deduce that (II.17) has a unique solution V ∈ D(A). This proves that Id− A is surjective.
Finally, (II.15) and (II.17) mean that −A is maximal monotone operator. Then, using
Lummer-Phillips theorem (see [22]), we deduce that A is an infinitesimal generator of a
linear C0-semigroup on H.
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3 Stability

In this section, we investigate the asymptotic behaviour of the solution of problem (II.12).
In fact, using the energy method to produce a suitable Lyapunov functional,

We define the energy associated with the solution of (II.1)-(II.2) by

Eu(t) = 1
2

∫
Ω

(
µ|∇u|2 + (λ+ µ)|div u|2 + |u′|2

)
dx

+1
2

∫
Ω

∫ 1

0

∫ τ2

τ1
s|µ2(s)|z2(x, t, ρ, s)dsdρdx

(II.24)

Theorem 3.1 Assume that (V.2) and (II.14) hold. Then, for any U0 ∈ H , there exist
positive constants δ1 and δ2, such that the solution of (II.12) satisfies

E(t) 6 δ2e
−δ1t ∀t ∈ R+. (II.25)

We carry out the proof of Theorem 3.1. Firstly, we will estimate several Lemmas.

Lemma 3.2 Suppose that µ1, µ2 satisfy (II.14).Then energy functional satisfies, along the
solution u of (II.1)-(II.2),

E ′(t) 6 −
(
µ1 −

∫ τ2

τ1
µ2(s)ds

) ∫
Ω
u′2(x, t) dx 6 0 (II.26)

Proof 3.3 A differentiation of E(t) gives

E ′(t) =
∫

Ω
(µ∇u∇u′ + (λ+ µ)div u div u′ + u′u′′) dx

+
∫

Ω

∫ 1

0

∫ τ2

τ1
s|µ2(s)|z′(x, t, ρ, s)z(x, t, ρ, s)dsdρdx

(II.27)

Using (II.11) and integrating by parts, we get

E ′(t) = −µ1

∫
Ω
u′2(x, t)dx−

∫
Ω

∫ τ2

τ1
|µ2(s)|z(x, t, 1, s)u′(x, t)dsdx

−1
2

∫
Ω

∫ 1

0

∫ τ2

τ1
|µ2(s)| ∂

∂ρ

(
z2(x, t, ρ, s)

)
dsdρdx

= −µ1

∫
Ω
u′2(x, t)dx−

∫
Ω

∫ τ2

τ1
|µ2(s)|z(x, t, 1, s)u′(x, t)dsdx

−1
2

∫
Ω

∫ τ2

τ1
|µ2(s)|z2(x, t, 1, s)dsdx+ 1

2

( ∫ τ2

τ1
|µ2(s) ds

) ∫
Ω
u′2(x, t)dx

(II.28)

Young’s inequality leads to the desired estimate.
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Lemma 3.4 The functional

φ(t) =
∫

Ω
u.u′dx ∀t ∈ R+ (II.29)

satisfies, along the solution u of (II.1)-(II.2)

φ′(t) 6 c
∫

Ω
|u′|2dx− (µ− c)

∫
Ω
|∇u|2dx

−(λ+ µ)
∫

Ω
|div u|2dx+ c

∫
Ω

∫ τ2

τ1
|µ2(s)|z2(x, t, 1, s) dsdx

(II.30)

for a positive constant c.

Proof 3.5 By differentiating (II.29) and using (II.11), yields

φ′(t) =
∫

Ω
|u′|2dx− µ

∫
Ω
|∇u|2dx− (λ+ µ)

∫
Ω
|div u|2dx

−µ1

∫
Ω
uu′dx−

∫
Ω

∫ τ2

τ1
|µ2(s)|uz(x, t, 1, s) dsdx

(II.31)

By using Young’s inequality, we obtain

φ′(t) 6 (µ
2
1

2 + 1)
∫

Ω
|u′|2dx− µ

∫
Ω
|∇u|2dx− (λ+ µ)

∫
Ω
|div u|2dx

+1
2

∫
Ω
u2(x, t)dx+ 1

2

( ∫ τ2

τ1
|µ2(s)| ds

) ∫
Ω
u2(x, t)dx

+1
2

∫
Ω

∫ τ2

τ1
|µ2(s)|z2(x, t, 1, s) dsdx

(II.32)

Then,Poincaré’s inequality leads to the desired estimate.

Lemma 3.6 The functional

I(t) =
∫

Ω

∫ 1

0

∫ τ2

τ1
se−sρ|µ2(s)|z2(x, t, ρ, s)dsdρdx, ∀t ∈ R+ (II.33)

satisfy

I ′(t) 6 −e−τ2

∫
Ω

∫ τ2

τ1
|µ2(s)|z2(x, t, 1, s) dsdx+

( ∫ τ2

τ1
|µ2(s)| ds

) ∫
Ω
u′2(x, t) dx

−e−τ2

∫
Ω

∫ τ2

τ1
s|µ2(s)|z2(x, t, ρ, s) dsdρdx.

(II.34)
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Proof 3.7 Using (II.10), the derivative of I entails

I ′(t) = 2
∫

Ω

∫ τ2

τ1
se−sρ|µ2(s)|z′(x, t, ρ, s)z(x, t, ρ, s) dsdρdx

= −
∫

Ω

∫ 1

0

∫ τ2

τ1
|µ2(s)|e−sρ ∂

∂ρ

(
z2(x, t, ρ, s)

)
dsdρdx

= −
∫

Ω

∫ τ2

τ1
se−s|µ2(s)|z2(x, t, 1, s) dsdx+

( ∫ τ2

τ1
|µ2(s)| ds

) ∫
Ω
u′2(x, t) dx

−
∫

Ω

∫ τ2

τ1
s|µ2(s)|

∫ 1

0
e−sρz2(x, t, ρ, s) dρdsdx

(II.35)

and the desired estimate follows immediately.

Now, we prove our main stability results (II.25).

Proof of Theorem 3.1 Let

L(t) = NE(t) + εφ(t) + I(t), (II.36)

where N and ε are positive constants that will be fixed later. Taking the derivative of L(t)
with respect to t and making use of (II.26), (II.29) and (II.34), we obtain

L′(t) 6 −
{(
µ1 −

∫ τ2

τ1
µ2(s)ds

)
N − cε−

∫ τ2

τ1
µ2(s)ds

} ∫
Ω
|u′|2dx

−(λ+ µ)
∫

Ω
|div u|2dx− (µ− c)ε

∫
Ω
|∇u|2dx

−(e−τ2 − cε)
∫

Ω

∫ τ2

τ1
|µ2(s)|z2(x, t, 1, s) dsdx− e−τ2

∫
Ω

∫ τ2

τ1
s|µ2(s)|z2(x, t, ρ, s) dsdρdx

(II.37)
At this point, we choose our constants in (II.37), carefully, such that all the coefficients in
(II.37) will be negative. It suffices to choose ε so small such that

e−τ2 − cε > 0

then pick N large enough such that(
µ1 −

∫ τ2

τ1
µ2(s)ds

)
N − cε−

∫ τ2

τ1
µ2(s)ds > 0

Consequently, recalling (II.24), we deduce that there exist also η2 > 0, such that

dL(t)
dt

6 −η2E(t), ∀t > 0. (II.38)
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On the other hand, it is not hard to see that from (II.36) and for N large enough, there exist
two positive constants β1 and β2 such that

β1 E(t) 6 L(t) 6 β2E(t), ∀t > 0. (II.39)

Combining (II.38) and (II.39), we deduce that there exists λ > 0 for which the estimate

dL(t)
dt

6 −λL(t), ∀t > 0, (II.40)

holds. Integrating (II.38) over (0, t) and using (II.38) once again, then (II.25) holds. Then,
the proof is complete.
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III
Well-posedness and exponential stability for

coupled Lamé system with a viscoelastic
damping

1 Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω . Let us consider the following
a coupled Lamé system :

utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g(s)∆u(t− s)ds− µ1∆ut(x, t) = 0, in Ω× (0,+∞),

vtt(x, t) + αu−∆ev(x, t)− µ2∆vt(x, t) = 0, in Ω× (0,+∞),
u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.

(III.1)
Where µ1, µ2 are positive constants and (u0, u1, v0, v1) are given history and initial data

. Here ∆ denotes the Laplacian operator and ∆e denotes the elasticity operator, which is
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the 3× 3 matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ > 0. (III.2)

.

The problem of stabilization of coupled systems has also been studied by several authors
see [2, 4, 6, 15, 19, 23, 24]and the references therein.Under certain conditions imposed on the
subset where the damping term is effective, Komornik [15] proves uniform stabilization of
the solutions of a pair of hyperbolic systems coupled in velocities. Alabau and al.[2] studied
the indirect internal stabilization of weakly coupled systems where the damping is effective
in the whole domain. They prove that the behavior of the first equation is sufficient to
stabilize the total system and to have polynomial decay for sufficiently smooth solutions.
For coupled systems in thermoelasticity, R.Racke [24] considered the following system:

 utt(x, t)− auxx(x, t− τ) + bθx(x, t) = 0, in (0, L)× (0,∞),
θt(x, t)− dθxx(x, t) + butx(x, t) = 0, in (0, L)× (0,∞),

He proved that the internal time delay leads to ill-posedness of the system. However, the
system without delay is exponentially stable.

In [18] M.I.Mustafa considered the following system:


utt(x, t)−∆u(x, t) +
∫ t

0
g1(t− τ)∆u(τ)dτ + f1(u, v) = 0, in Ω× (0,+∞),

vtt(x, t)−∆v(x, t) +
∫ t

0
g2(t− τ)∆v(τ)dτ + f2(u, v) = 0, in Ω× (0,+∞),

u = v = 0 on ∂Ω× (0,+∞),
(u(., 0) = u0, ut(., 0) = u1, v(.0) = v0, vt(., 0) = v1 in Ω.

(III.3)

The author proved the well-posedness and, for a wider class of relaxation functions, establish
a generalized stability result for this system.

Recently, Beniani and al. [4]considered the following Lamé system with time varying
delay term:
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 u′′(x, t)−∆eu(x, t) + µ1g1(u′(x, t)) + µ2g2(u′(x, t− τ(t))) = 0 in Ω× R+

u(x, t) = 0 on ∂Ω× R+ (III.4)

and under suitable conditions, they proved general decay of energy.
The paper is organized as follows. The well-posedness of the problem is analyzed in

Section 3 using the Faedo-Galerkin method. In Section 4, we prove the exponential decay
of the energy when time goes to infinity.

2 Preliminaries and statement of main results

In this section, we present some materials that shall be used for proving our main results.
For the relaxation function g, we have the folloing assumptions:

(A1) g : R+ → R+ is a C1 function satisfying

g ∈ L1(0,∞) g(0) > 0, 0 < β(t) := µ−
∫ t

0
g(s)ds and 0 < β0 := µ−

∫ ∞
0

g(s)ds.

(A2) There exist a non-increasing differentiable function ξ(t) : R+ → R+ such that

g′(t) 6 −ξ(t)g(t), ∀t > 0 and
∫ ∞

0
ξ(t)dt = +∞.

These hypotheses imply that
β0 6 β(t) 6 µ. (III.5)

Let us introduce the following notations:

(g ∗ h)(t) :=
∫ t

0
g(t− s)h(s)ds,

(g ◦ h)(t) :=
∫ t

0
g(t− s)|h(t)− h(s)|2ds.

Lemma 2.1 ([8]) For any g, h ∈ C1(R), the following equation holds

2[g ∗ h]h′ = g′ ◦ h− g(t)|h|2 − d

dt

{
g ◦ h−

( ∫ t

0
g(s)ds

)
|h|2

}
.

The existence and uniqueness result is stated as follows:
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Theorem 2.2 Assume that (A1) and (A2) hold. Then given u0, v0 ∈ H2(Ω) ∩ H1
0 (Ω),

u1, v1 ∈ (L2(Ω)), there exists a unique weak solution u, v of problem (III.1) such that

u, v ∈ C([0,+∞[, H2(Ω) ∩H1
0 (Ω)) ∩ C1([0,+∞[, L2(Ω)).

For any regular solution of (III.1), we define the energy as

E(t) = 1
2

∫
Ω
u2
t (x, t)dx+ β(t)

2

∫
Ω
|∇u|2(x, t)dx+ 1

2

∫
Ω

(g ◦ ∇u)dx+ (µ+ λ)
2

∫
Ω
|div u|2dx

+ 1
2

∫
Ω
v2
t (x, t)dx+ µ

2

∫
Ω
|∇v|2(x, t)dx+ (µ+ λ)

2

∫
Ω
|div v|2dx+ 2α

∫
Ω
u(x, t)v(x, t)dx.

(III.6)
Our decay result reads as follows:

Theorem 2.3 Let (u, v) be the solution of (III.1). Assume that (A1) and (A2) hold. Then
there exist two positives constants C and d, such that

E(t) 6 Ce−d
∫ t

0 ξ(s)ds, ∀t > 0. (III.7)

3 Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem (III.1) by using Faedo-
Galerkin method.

Proof 3.1 We divide the proof of Theorem2.2into two steps:the Faedo-Galerkin approxima-
tion and the energy estimates.

Step 1 :Faedo-Galerkin approximation.

We construct approximations of the solution (u, v) by the Faedo-Galerkin method as
follows. For n > 1, let Wn = span {w1, ....., wn} be a Hilbertian basis of the space H1

0

and the projection of the initial data on the finite dimensional subspace Wn is given by

un0 =
n∑
i=1

aiwi, vn0 =
n∑
i=1

biwi, un1 =
n∑
i=1

ciwi, vn1 =
n∑
i=1

diwi

where,(un0 , vn0 , un1 , vn1 ) → (u0, v0, u1, v1) strongly in H2(Ω) ∩ H1
0 (Ω) as n → ∞. We

search the approximate solutions
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un(x, t) =
n∑
i=1

fni (t)wi(x), vn(x, t) =
n∑
i=1

hni (t)wi(x)

to the finite dimensional Cauchy problem:



∫
Ω
unttwidx+ α

∫
Ω
vnwidx+ µ

∫
Ω
∇un∇widx+ (λ+ µ)

∫
Ω
div un.div widx

−
∫

Ω
(g(s) ∗ ∇un)∇widx+ µ1

∫
Ω
∇unt∇widx = 0,∫

Ω
vnttwidx+ α

∫
Ω
unwidx+ µ

∫
Ω
∇vn∇widx

+(λ+ µ)
∫

Ω
div vn.div widx+ µ2

∫
Ω
∇vnt ∇widx = 0,

(un(0), vn(0)) = (un0 , vn0 ) (unt (0), vnt (0)) = (un1 , vn1 ).

(III.8)

According to the standard theory of ordinary differential equations, the finite dimen-
sional problem (III.8) has solution fni (t), hni (t) defined on [0, t).The a priori estimates
that follow imply that in fact tn = T .

Step 2: Energy estimates. Multiplying the first and the second equation of (III.8) by
(
fni (t)

)′
and

(
hni (t)

)′
respectively, we obtain:

∫
Ω
unttu

n
t dx+ α

∫
Ω
vnunt dx+ µ

∫
Ω
∇un∇unt dx+ (λ+ µ)

∫
Ω
div un.div unt dx

−
∫

Ω
(g(s) ∗ ∇un)∇unt dx+ µ1

∫
Ω
|∇unt |2dx = 0.

(III.9)

and

∫
Ω
vnttv

n
t dx+ α

∫
Ω
unvnt dx+ µ

∫
Ω
∇vn∇vnt dx+ (λ+ µ)

∫
Ω
div vn.div vnt dx

+µ2

∫
Ω
|∇vnt |2dx = 0.

(III.10)

Integrating (III.9) and (III.10) over (0, t),and using Lemma (2.1), we obtain

En(t) + µ1

∫ t

0

∫
Ω
|∇unt |2dxds−

1
2

∫
Ω

(g′ ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g(t)|∇un|2dxds

+ µ2

∫ t

0

∫
Ω
|∇vnt |2dxds = En(0)

(III.11)
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where

En(t) = 1
2

∫
Ω

(unt )2(x, t)dx+ β(t)
2

∫
Ω
|∇un|2(x, t)dx+ 1

2

∫
Ω

(g ◦ ∇un)dx

+ (µ+ λ)
2

∫
Ω
|div un|2dx+ 1

2

∫
Ω

(vnt )2(x, t)dx+ µ

2

∫
Ω
|∇vn|2(x, t)dx

+ (µ+ λ)
2

∫
Ω
|div vn|2dx+ 2α

∫
Ω
un(x, t)vn(x, t)dx.

(III.12)

Consequently, fromIII.11, we have the following estimate:

En(t)− 1
2

∫
Ω

(g′ ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g(t)|∇un|2dxds 6 En(0). (III.13)

Now, since the sequences
(
un0
)
n∈N

,
(
un1
)
n∈N

,
(
vn0
)
n∈N

,
(
vn1
)
n∈N

converge and using
(A2), in the both cases we can find a positive constant c independent of n such that

En(t) 6 c. (III.14)

Therefore, using the fact that β(t) > β(0), the estimate III.14 together with III.13 give
us, for all n ∈ N,tn = T , we deduce

(
un
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

vn
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

unt
)
n∈N

is bounded in L∞(0, T ;L2(Ω)),(
vnt
)
n∈N

is bounded in L∞(0, T ;L2(Ω)).

(III.15)

Consequently, we conclude that

un ⇀ u weakly star in L∞(0, T ;H1
0 (Ω)),

vn ⇀ v weakly star in L∞(0, T ;H1
0 (Ω)),

unt ⇀ ut weakly star in L∞(0, T ;H1
0 (Ω)),

vnt ⇀ vt weakly star in L∞(0, T ;H1
0 (Ω)).

(III.16)

From III.15, we have
(
un
)
n∈N

and
(
vn
)
n∈N

are bounded in L∞(0, T ;H1
0 (Ω)).Then(

un
)
n∈N

and
(
vn
)
n∈N

are bounded in L2(0, T ;H1
0 (Ω)). Consequently,

(
un
)
n∈N

and
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(
vn
)
n∈N

are bounded in H1(0, T ;H1(Ω)). Since the embedding

H1(0, T ;H1(Ω)) ↪→ L2(0, T ;L2(Ω))

is compact,using Aubin-Lion’s theorem [16] ,we can extract subsequences
(
uk
)
k∈N

of(
un
)
n∈N

and
(
vk
)
k∈N

of
(
vn
)
n∈N

such that

uk → u strongly in L2(0, T ;L2(Ω))

and
vk → v strongly in L2(0, T ;L2(Ω))

Therefore,

uk → u strongly and a.e (0, T )× (Ω)

and
vk → v strongly and a.e (0, T )× (Ω)

The proof now can be completed arguing as in Theorem 3.1 of [16]

4 Exponential stability

In this section we study the asymptotic behavior of the system (III.1). For the proof of
Theorem 2.3 we use the following lemmas.

Lemma 4.1 Let (u, v) be the solution of (III.1), Then we have the inequality

dE(t)
dt

6 −µ1

∫
Ω
|∇ut(x, t)|2 dx− µ2

∫
Ω
|∇vt(x, t)|2 dx−

1
2g(t)

∫
Ω
|∇u(x, t)|2 dx

+1
2

∫
Ω

(g′ ◦ ∇u)dx
(III.17)

Proof 4.2 From (III.6) we have

1
2
d

dt

∫
Ω

(
u2
t + (λ+ µ)|div u|2 + v2

t + µ|∇v|2 + (λ+ µ)|div v|2 + 2αvu
)
dx

= −µ
∫

Ω
∇u∇utdx− µ1

∫
Ω
|∇ut|2dx− µ2

∫
Ω
|∇vt|2dx+

∫
Ω

∫ t

0
g(s)∇u(s)∇ut(t)dsdx

(III.18)
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From Lemma 2.1, the last term in the right-hand side of III.18 can be rewritten as

∫ t

0
g(s)

∫
Ω
∇u(s)∇ut(t)dsdx+ 1

2g(t)
∫

Ω
|∇u|2(x, t)dx

= 1
2
d

dt

{ ∫ t

0
g(s)

∫
Ω
|∇u|2(x, t)dxds−

∫
Ω

(g ◦ ∇u)(t)dx
}

+ 1
2

∫
Ω

(g′ ◦ ∇u)(t)dx
(III.19)

So dE

dt
becomes:

dE

dt
= −µ1

∫
Ω
|∇ut|2dx− µ2

∫
Ω
|∇vt|2dx−

1
2g(t)

∫
Ω
|∇u|2(x, t)dx

+1
2

∫
Ω

(g′ ◦ ∇u)(t)dx

6 0.

(III.20)

we show that (III.17) holds. The proof is complete.

Now, we define the functional D(t) as follows

D(t) =
∫

Ω
uutdx+

∫
Ω
vvtdx+ µ1

2

∫
Ω
|∇u|2dx+ µ2

2

∫
Ω
|∇v|2dx. (III.21)

Then, we have the following estimate.

Lemma 4.3 The functional D(t) satisfies

D ′(t) 6 C
∫

Ω
|∇ut|2dx+ C

∫
Ω
|∇vt|2dx+

(
δ + |α|C − β(t)

) ∫
Ω
|∇u|2dx− (λ+ µ)

∫
Ω
|div u|2dx

+
(
|α|C − µ

) ∫
Ω
|∇v|2dx− (λ+ µ)

∫
Ω
|div v|2dx+ µ− β(t)

4δ

∫
Ω

(g ◦ ∇u)(t)dx
(III.22)

Proof 4.4 Taking the derivative of D(t) with respect to t and using (III.1), we find that:

D ′(t) =
∫

Ω
u2
tdx+

∫
Ω
uuttdx+

∫
Ω
v2
t dx+

∫
Ω
vvttdx+ µ1

∫
Ω
∇ut∇udx+ µ2

∫
Ω
∇vt∇vdx

=
∫

Ω
u2
tdx+

∫
Ω
v2
t dx− β(t)

∫
Ω
|∇u|2(x, t)dx+

∫
Ω

∫ t

0
g(s)(∇u(s)−∇u(t))∇u(t)dsdx

−µ
∫

Ω
|∇v|2dx− (λ+ µ)

∫
Ω
|div u|2dx−

∫
Ω

(λ+ µ)|div v|2dx− 2α
∫

Ω
uv dx(III.23)
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Using the fact that

∫
Ω

∫ t

0
g(s)|∇u(s)−∇u(t)|∇u(t)dsdx 6 δ

∫
Ω
|∇u|2(x, t)dx+ 1

4δ

∫
Ω

( ∫ t

0
g(s)|∇u(s)−∇u(t)|ds

)2
dx

6 δ
∫

Ω
|∇u|2(x, t)dx+ µ− β(t)

4δ

∫
Ω

(g ◦ ∇u)(t)dx.
(III.24)

Inserting the estimate (III.24) into (III.23) and using Young’s, Poincaré’s inequalities
lead to the desired estimate. The proof is complete.

Proof 4.5 (Proof of Theorem 2.3) We define the Lyapunov functional

L (t) = NE(t) + εD(t), (III.25)

where N and ε are positive constants that will be fixed later.
Taking the derivative of (III.25) with respect to t and making use of (III.17), (III.22),

we obtain

d

dt
L (t) 6 −

{
Nµ1 − εC

} ∫
Ω
|∇ut(x, t)|2dx−

{
Nµ2 − εC

} ∫
Ω
|∇vt(x, t)|2dx

−
(
β(t)− δ − |α|C

)
ε
∫

Ω
|∇u|2dx−

(
µ− |α|C

)
ε
∫

Ω
|∇v|2dx

− (λ+ µ)ε
∫

Ω
|div u|2dx − (λ+ µ)ε

∫
Ω
|div v|2dx

+ N

2

∫
Ω

(g′ ◦ ∇u)(t)dx+ (µ− β(t))ε
4δ

∫
Ω

(g ◦ ∇u)(t)dx

− N

2 g(t)
∫

Ω
|∇u|2(x, t)dx.

(III.26)

At this point, we choose our constants in (III.26), carefully, such that all the coefficients in
(III.26) will be negative. It suffices to choose ε so small and N large enough such that

Nµ1 − εC > 0,

and
Nµ2 − εC > 0,

Further, we choose α small enough such that

β(t)− δ − |α|C > 0,
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and
µ− |α|C > 0.

Consequently, from the above, we deduce that there exist there exists two positive constants
η1 and η2such that (III.26) becomes

dL (t)
dt

6 −η1E(t) + η2

∫
Ω

(g ◦ ∇u)dx (III.27)

By multiplying (III.27) by ξ(t), we arrive at

ξ(t)L ′(t) 6 −η1ξ(t)E(t) + η2ξ(t)
∫

Ω
(g ◦ ∇u)dx (III.28)

Recalling (A2) and using (III.17),we get

ξ(t)L ′(t) 6 −η1ξ(t)E(t)− η2

∫
Ω

(g′ ◦ ∇u)dx

6 −η1ξ(t)E(t)− 2η2E
′(t)

(III.29)

That is (
ξ(t)L (t) + 2η2E(t)

)′
− ξ′(t)L 6 −η1ξ(t)E(t)

Using the fact that ξ′(t) 6 0, ∀t > 0 and letting

F (t) = ξ(t)L (t) + 2η2E(t) ∼ E(t) (III.30)

we obtain
F ′(t) 6 −η1ξ(t)E(t) 6 −η3ξ(t)F (t) (III.31)

A simple integration of (III.31) over (0, t) leads to

F (t) 6 F (0)e−η3
∫ t

0 ξ(s)ds, ∀t > 0 (III.32)

A combination of (III.30) and (III.32) leads to (III.7). Then, the proof is complete.
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IV
well-posedness and exponential stability for

coupled Lamé system with a viscoelastic term
and a strong delay

1 Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω . Let us consider the following
a coupled Lamé system :

utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g(s)∆u(t− s)ds

−µ1∆ut(x, t)− λ1∆xut(x, t− τ) = 0, in Ω× (0,+∞),
vtt(x, t) + αu−∆ev(x, t)− µ2∆vt(x, t) = 0, in Ω× (0,+∞),
u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω,
ut(x, t− τ) = f0(x, t− τ), in Ω× [0, τ ].

(IV.1)
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Where µ1, µ2 are positive constants and (u0, u1, v0, v1) are given history and initial data
. Here ∆ denotes the Laplacian operator and ∆e denotes the elasticity operator, which is
the 3× 3 matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ > 0. (IV.2)

.

The problem of stabilization of coupled systems has also been studied by several authors
see [2, 4, 6, 13, 15, 23, 24]and the references therein.Under certain conditions imposed on the
subset where the damping term is effective, Komornik [15] proves uniform stabilization of
the solutions of a pair of hyperbolic systems coupled in velocities. Alabau and al.[2] studied
the indirect internal stabilization of weakly coupled systems where the damping is effective
in the whole domain. They prove that the behavior of the first equation is sufficient to
stabilize the total system and to have polynomial decay for sufficiently smooth solutions.
For coupled systems in thermoelasticity, R.Racke [24] considered the following system:

 utt(x, t)− auxx(x, t− τ) + bθx(x, t) = 0, in (0, L)× (0,∞),
θt(x, t)− dθxx(x, t) + butx(x, t) = 0, in (0, L)× (0,∞),

He proved that the internal time delay leads to ill-posedness of the system. However, the
system without delay is exponentially stable.

In [25] the authors examined a transmission problem with a viscoelastic term and a delay:


utt(x, t)− auxx(x, t) +

∫ t

0
g(t− s)uxx(x, s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),
vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

under appropriate hypotheses on the relaxation function and the relationship between the
weight of the damping and the weight of the delay, they proved the well-posedness result
and exponential decay of the energy.
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IV.2 Preliminaries and statement of main results

In [18] M.I.Mustafa considered the following system:


utt(x, t)−∆u(x, t) +
∫ t

0
g1(t− τ)∆u(τ)dτ + f1(u, v) = 0, in Ω× (0,+∞),

vtt(x, t)−∆v(x, t) +
∫ t

0
g2(t− τ)∆v(τ)dτ + f2(u, v) = 0, in Ω× (0,+∞),

u = v = 0 on ∂Ω× (0,+∞),
(u(., 0) = u0, ut(., 0) = u1, v(.0) = v0, vt(., 0) = v1 in Ω.

The author proved the well-posedness and, for a wider class of relaxation functions, establish
a generalized stability result for this system.

Recently, Beniani and al. [4]considered the following Lamé system with time varying
delay term:

 u′′(x, t)−∆eu(x, t) + µ1g1(u′(x, t)) + µ2g2(u′(x, t− τ(t))) = 0 in Ω× R+

u(x, t) = 0 on ∂Ω× R+

and under suitable conditions, they proved general decay of energy.
The paper is organized as follows. The well-posedness of the problem is analyzed in

Section 3 using the Faedo-Galerkin method. In Section 4, we prove the exponential decay
of the energy when time goes to infinity.

2 Preliminaries and statement of main results

In this section, we present some materials that shall be used for proving our main results.
For the relaxation function g, we have the folloing assumptions:

(A1) g : R+ → R+ is a C1 function satisfying

g ∈ L1(0,∞) g(0) > 0, 0 < β(t) := µ−
∫ t

0
g(s)ds and 0 < β0 := µ−

∫ ∞
0

g(s)ds.

(A2) There exist a non-increasing differentiable function ξ(t) : R+ → R+ such that

g′(t) 6 −ξ(t)g(t), ∀t > 0 and
∫ ∞

0
ξ(t)dt = +∞.

These hypotheses imply that
β0 6 β(t) 6 µ. (IV.3)
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Let us introduce the following notations:

(g ∗ h)(t) :=
∫ t

0
g(t− s)h(s)ds,

(g ◦ h)(t) :=
∫ t

0
g(t− s)|h(t)− h(s)|2ds.

Lemma 2.1 ([8]) For any g, h ∈ C1(R), the following equation holds

2[g ∗ h]h′ = g′ ◦ h− g(t)|h|2 − d

dt

{
g ◦ h−

( ∫ t

0
g(s)ds

)
|h|2

}
.

As in [21], we introduce the following new variable:

z(x, ρ, t) = ut(x, t− τρ) in Ω× (0, 1)× (0,+∞). (IV.4)

Then, we obtain

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞). (IV.5)

Therefore, problem (IV.1) is equivalent to



utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g(s)∆u(t− s)ds

−µ1∆ut(x, t)− λ1∆xz(x, 1, t) = 0, in Ω× (0,+∞),
vtt(x, t) + αu−∆ev(x, t)− µ2∆vt(x, t) = 0, in Ω× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞),
u(x, t) = v(x, t) = 0, on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)), in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)), in Ω,
z(x, 1, t) = f0(x, t− τ), in Ω× [0, τ ].

(IV.6)

The existence and uniqueness result is stated as follows:

Theorem 2.2 Assume that |λ1| 6 µ1, (A1) and (A2) hold.
Then given u0, v0 ∈ H2(Ω)∩H1

0 (Ω),u1, v1 ∈ (L2(Ω))2, there exists a unique weak solution
u, v, z of problem (IV.6) such that

u, v ∈ C([0,+∞[, H2(Ω) ∩H1
0 (Ω)) ∩ C1([0,+∞[, (L2(Ω))2),
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IV.3 Well-posedness of the problem

z ∈ C([0,+∞[;L2((0, 1),Ω)).

For any regular solution of (IV.1), we define the energy as

E(t) = 1
2

∫
Ω
u2
t (x, t)dx+ β(t)

2

∫
Ω
|∇u|2(x, t)dx+ 1

2

∫
Ω

(g ◦ ∇u)dx+ (µ+ λ)
2

∫
Ω
|div u|2dx

+ 1
2

∫
Ω
v2
t (x, t)dx+ µ

2

∫
Ω
|∇v|2(x, t)dx+ (µ+ λ)

2

∫
Ω
|div v|2dx+ 2α

∫
Ω
u(x, t)v(x, t)dx

+ τλ1

2

∫
Ω

∫ 1

0
|∇z(x, ρ, t)|2 dρ dx.

(IV.7)
Our decay result reads as follows:

Theorem 2.3 Let (u, v, z) be the solution of (IV.6). Assume that |λ1| 6 µ1, (A1) and (A2)
hold. Then there exist two positive constants C and d, such that

E(t) 6 Ce−d
∫ t

0 ξ(s)ds, ∀t > 0. (IV.8)

3 Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem (IV.1) by using Faedo-
Galerkin method.

Proof 3.1 We divide the proof of Theorem2.2into two steps:the Faedo-Galerkin approxima-
tion and the energy estimates.

Step 1 :Faedo-Galerkin approximation.

We construct approximations of the solution (u, v, z) by the Faedo-Galerkin method as
follows. For n > 1, let Wn = span {w1, ....., wn} be a Hilbertian basis of the space
H1

0 . Now, we we define for 1 6 i 6 n the sequence ϕi(x, ρ) as follows:

ϕi(x, 0) = wi(x)

Then we may extend ϕi(x, ρ) over L2((0, 1),Ω) and denote Vn = span {ϕ1, ....., ϕn}.
We choose sequences (un0 ), (un1 ), (vn0 ), (vn1 ) in Wn and (zn0 ) in Vn such that

(un0 , vn0 , un1 , vn1 ) → (u0, v0, u1, v1) strongly in H2(Ω) ∩ H1
0 (Ω) and zn0 → f0 strongly in

L2((0, 1),Ω) as n→∞.

We search the approximate solutions
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Chapter IV. well-posedness and exponential stability for coupled Lamé system
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un(x, t) =
n∑
i=1

fni (t)wi(x), vn(x, t) =
n∑
i=1

hni (t)wi(x) and zn(x, ρ, t) =
n∑
i=1

kni (t)ϕi(x, ρ)

to the finite dimensional Cauchy problem:



∫
Ω
unttwidx+ α

∫
Ω
vnwidx+ µ

∫
Ω
∇un∇widx+ (λ+ µ)

∫
Ω
div un.div widx

−
∫

Ω
(g(s) ∗ ∇un)∇widx+ µ1

∫
Ω
∇unt∇widx+ λ1

∫
Ω
∇zn(x, 1, t)∇widx = 0,∫

Ω
vnttwidx+ α

∫
Ω
unwidx+ µ

∫
Ω
∇vn∇widx

+(λ+ µ)
∫

Ω
div vn.div widx+ µ2

∫
Ω
∇vnt ∇widx = 0,

(un(0), vn(0)) = (un0 , vn0 ) (unt (0), vnt (0)) = (un1 , vn1 ),
(IV.9)

and 
∫

Ω
(τznt (x, ρ, t) + znρ (x, ρ, t))ϕidx = 0,

zn(x, ρ, 0) = zn0 .
(IV.10)

According to the standard theory of ordinary differential equations , the finite dimen-
sional problem (IV.9)-(IV.10) has solution fni (t), hni (t), kni (t) defined on [0, t).The a
priori estimates that follow imply that in fact tn = T .

Step 2: Energy estimates. Multiplying the first and the second equation of (IV.9) by
(
fni (t)

)′
and

(
hni (t)

)′
respectively, we obtain:

∫
Ω
unttu

n
t dx+ α

∫
Ω
vnunt dx+ µ

∫
Ω
∇un∇unt dx+ (λ+ µ)

∫
Ω
div un.div unt dx

+λ1

∫
Ω
∇zn(x, 1, t)∇unt dx−

∫
Ω

(g(s) ∗ ∇un)∇unt dx+ µ1

∫
Ω
|∇unt |2dx = 0.

(IV.11)

and

∫
Ω
vnttv

n
t dx+ α

∫
Ω
unvnt dx+ µ

∫
Ω
∇vn∇vnt dx+ (λ+ µ)

∫
Ω
div vn.div vnt dx

+µ2

∫
Ω
|∇vnt |2dx = 0.

(IV.12)

Multiplying the first equation of (IV.10) by λ1k
n
i (t) and integrating over (0, 1)× (0, t),
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IV.3 Well-posedness of the problem

we get

λ1τ

2

∫
Ω

∫ 1

0
(zn(x, ρ, t))2dρdx+λ1

∫ t

0

∫
Ω

∫ 1

0
znρ z

n(x, ρ, s)dρdxds = λ1τ

2

∫
Ω

∫ 1

0
(zn(x, ρ, 0))2dρdx,

(IV.13)
we remark that

λ1

∫ t

0

∫
Ω

∫ 1

0
znρ z

n(x, ρ, s)dρdxds = λ1

2

∫
Ω

∫ t

0

(
(zn(x, 1, s))2 − (zn(x, 0, s))2

)
dsdx,

(IV.14)

Integrating (IV.11) and (IV.12) over (0, t), taking into account (IV.13),(IV.14) up and
using Lemma (2.1), we obtain

En(t) + (µ1 −
λ1

2 )
∫ t

0

∫
Ω
|∇unt |2dxds+ λ1

∫ t

0

∫
Ω
∇zn(x, 1, s)∇unt dxds+ λ1

2

∫
Ω

∫ t

0
((zn(x, 1, s))2dsdx

− 1
2

∫
Ω

(g′ ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g(t)|∇un|2dxds+ µ2

∫ t

0

∫
Ω
|∇vnt |2dxds

= En(0),
(IV.15)

where

En(t) = 1
2

∫
Ω

(unt )2(x, t)dx+ β(t)
2

∫
Ω
|∇un|2(x, t)dx+ 1

2

∫
Ω

(g ◦ ∇un)dx+ (µ+ λ)
2

∫
Ω
|div un|2dx

+ 1
2

∫
Ω

(vnt )2(x, t)dx+ µ

2

∫
Ω
|∇vn|2(x, t)dx+ (µ+ λ)

2

∫
Ω
|div vn|2dx+ 2α

∫
Ω
un(x, t)vn(x, t)dx

+ λ1τ

2

∫
Ω

∫ 1

0
(zn(x, ρ, t))2dρdx.

(IV.16)
Young’s inequality gives us that

En(t) + (µ1 − λ1)
∫ t

0

∫
Ω
|∇unt |2dxds−

1
2

∫
Ω

(g′ ◦ ∇un)dx

+ 1
2

∫ t

0

∫
Ω
g(t)|∇un|2dxds+ µ2

∫ t

0

∫
Ω
|∇vnt |2dxds

6 En(0).

(IV.17)

Consequently, using that |λ1| 6 µ1, we have the following estimate:
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En(t)− 1
2

∫
Ω

(g′ ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g(t)|∇un|2dxds 6 En(0). (IV.18)

Now, since the sequences
(
un0
)
n∈N

,
(
un1
)
n∈N

,
(
vn0
)
n∈N

,
(
vn1
)
n∈N

,
(
zn0
)
n∈N

converge
and using (A2), in the both cases we can find a positive constant c independent of n
such that

En(t) 6 c. (IV.19)

Therefore, using the fact that β(t) > β(0), the estimate (IV.16) together with (IV.13)
give us, for all n ∈ N,tn = T , we deduce

(
un
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

vn
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

unt
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

vnt
)
n∈N

is bounded in L∞(0, T ;H1
0 (Ω)),(

zn
)
n∈N

is bounded in L∞(0, T ;L2((0, 1),Ω)).

(IV.20)

Consequently, we conclude that

un ⇀ u weakly star in L∞(0, T ;H1
0 (Ω)),

vn ⇀ v weakly star in L∞(0, T ;H1
0 (Ω)),

unt ⇀ ut weakly star in L∞(0, T ;H1
0 (Ω)),

vnt ⇀ vt weakly star in L∞(0, T ;H1
0 (Ω)),

zn ⇀ z weakly star in L∞(0, T ;L2((0, 1),Ω)).

(IV.21)

From IV.18, we have
(
un
)
n∈N

,
(
vn
)
n∈N

are bounded in L∞(0, T ;H1
0 (Ω)) and

(
zn
)
n∈N

is bounded in L∞(0, T ;L2((0, 1),Ω)). Then
(
un
)
n∈N

,
(
vn
)
n∈N

are bounded in L2(0, T ;H1
0 (Ω)),

and
(
zn
)
n∈N

is bounded in L2(0, T ;L2((0, 1),Ω)). Consequently,
(
un
)
n∈N

,
(
vn
)
n∈N

are
bounded in H1(0, T ;H1(Ω)) and

(
zn
)
n∈N

is bounded in H1(0, T ;L2((0, 1),Ω)). Since
the embedding

H1(0, T ;H1(Ω)) ↪→ L2(0, T ;L2(Ω))

is compact,using Aubin-Lion’s theorem [16] ,we can extract subsequences
(
uk
)
k∈N

of(
un
)
n∈N

,
(
vk
)
k∈N

of
(
vn
)
n∈N

and
(
zk
)
k∈N

of
(
zn
)
n∈N

such that

uk → u strongly in L2(0, T ;L2(Ω)),
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IV.4 Exponential stability

vk → v strongly in L2(0, T ;L2(Ω))

and
zk → z strongly in L2(0, T ;L2((0, 1),Ω))

Therefore,

uk → u strongly and a.e (0, T )× (Ω),

vk → v strongly and a.e (0, T )× (Ω)

and
zk → z strongly and a.e (0, T )× (0, 1)× (Ω)

The proof now can be completed arguing as in Theorem 3.1 of [16]

4 Exponential stability

In this section we study the asymptotic behavior of the system (IV.1). For the proof of
Theorem 2.3 we use the following lemmas.

Lemma 4.1 Let (u, v) be the solution of (IV.1), Then we have the inequality

dE(t)
dt

6 −(µ1 − λ1)
∫

Ω
|∇ut(x, t)|2 dx− µ2

∫
Ω
|∇vt(x, t)|2 dx−

1
2g(t)

∫
Ω
|∇u(x, t)|2 dx

+1
2

∫
Ω

(g′ ◦ ∇u)dx
(IV.22)

Proof 4.2 From (IV.7) we have

1
2
d

dt

∫
Ω

(
u2
t + (λ+ µ)|div u|2 + v2

t + µ|∇v|2 + (λ+ µ)|div v|2 + 2αvu
)
dx

= −µ
∫

Ω
∇u∇utdx− µ1

∫
Ω
|∇ut|2dx− λ1

∫
Ω
∇z(x, 1, t)∇utdx− µ2

∫
Ω
|∇vt|2dx

+
∫

Ω

∫ t

0
g(s)∇u(s)∇ut(t)dsdx

(IV.23)

From Lemma 2.1, the last term in the right-hand side of V.21 can be rewritten as
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∫ t

0
g(s)

∫
Ω
∇u(s)∇ut(t)dsdx+ 1

2g(t)
∫

Ω
|∇u|2(x, t)dx

= 1
2
d

dt

{ ∫ t

0
g(s)

∫
Ω
|∇u|2(x, t)dxds−

∫
Ω

(g ◦ ∇u)(t)dx
}

+ 1
2

∫
Ω

(g′ ◦ ∇u)(t)dx.
(IV.24)

Using the fact that

d

dt

λ1τ

2

∫
Ω

∫ 1

0
|∇z(x, ρ, t)|2 dρ dx = λ1τ

∫
Ω

∫ 1

0
∇z(x, ρ, t)∇zt(x, ρ, t) dρ dx

= −λ1

∫
Ω

∫ 1

0
∇zρ(x, ρ, t)∇z(x, ρ, t)dρ dx

= −λ1

2

∫
Ω

∫ 1

0

d

dρ
|∇z(x, ρ, t)|2 dρ dx

= −λ1

2

∫
Ω

(|∇z(x, 1, t)|2 − |∇z(x, 0, t)|2) dx ,

(IV.25)

So dE

dt
becomes:

dE

dt
= −(µ1 −

λ1

2 )
∫

Ω
|∇ut|2dx− µ2

∫
Ω
|∇vt|2dx−

1
2g(t)

∫
Ω
|∇u|2(x, t)dx

−λ1

∫
Ω
∇z(x, 1, t)∇utdx+ 1

2

∫
Ω

(g′ ◦ ∇u)(t)dx− λ1

2

∫
Ω
|∇z(x, 1, t)|2 dx.

(IV.26)

Applying Young’s inequality, we show that (IV.22) holds. The proof is complete.

Now, we define the functional D(t) as follows

D(t) =
∫

Ω
uutdx+

∫
Ω
vvtdx+ µ1

2

∫
Ω
|∇u|2dx+ µ2

2

∫
Ω
|∇v|2dx. (IV.27)

Then, we have the following estimate.

Lemma 4.3 The functional D(t) satisfies

D ′(t) 6 C
∫

Ω
|∇ut|2dx+ C

∫
Ω
|∇vt|2dx+

(
δ + |α|C + 1

2 − β(t)
) ∫

Ω
|∇u|2dx− (λ+ µ)

∫
Ω
|div u|2dx

+
(
|α|C − µ

) ∫
Ω
|∇v|2dx− (λ+ µ)

∫
Ω
|div v|2dx+ µ− β(t)

4δ

∫
Ω

(g ◦ ∇u)(t)dx

+ λ2
1

2

∫
Ω
|∇z(x, 1, t)|2dx

(IV.28)
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Proof 4.4 Taking the derivative of D(t) with respect to t and using (IV.6), we find that:

D ′(t) =
∫

Ω
u2
tdx+

∫
Ω
uuttdx+

∫
Ω
v2
t dx+

∫
Ω
vvttdx+ µ1

∫
Ω
∇ut∇udx+ µ2

∫
Ω
∇vt∇vdx

=
∫

Ω
u2
tdx+

∫
Ω
v2
t dx− β(t)

∫
Ω
|∇u|2(x, t)dx+

∫
Ω

∫ t

0
g(s)(∇u(s)−∇u(t))∇u(t)dsdx

−µ
∫

Ω
|∇v|2dx− (λ+ µ)

∫
Ω
|div u|2dx−

∫
Ω

(λ+ µ)|div v|2dx− 2α
∫

Ω
uv dx

−λ1

∫
Ω
∇z(x, 1, t)∇udx (IV.29)

Using the fact that

∫
Ω

∫ t

0
g(s)|∇u(s)−∇u(t)|∇u(t)dsdx 6 δ

∫
Ω
|∇u|2(x, t)dx+ 1

4δ

∫
Ω

( ∫ t

0
g(s)|∇u(s)−∇u(t)|ds

)2
dx

6 δ
∫

Ω
|∇u|2(x, t)dx+ µ− β(t)

4δ

∫
Ω

(g ◦ ∇u)(t)dx.
(IV.30)

Inserting the estimate (IV.30) into (IV.29) and using Young’s, Poincaré’s inequalities
lead to the desired estimate. The proof is complete.

We define the functionals

I(t) = τ
∫

Ω

∫ 1

0
e−τρ|∇z(x, ρ, t)|2dρdx,

and state the following lemma.

Lemma 4.5 Let (u, v, z) be the solution of (IV.6). Then

dI(t)
dt

6 −e−τ
( ∫

Ω
|∇z(x, 1, t)|2dx+ τ

∫
Ω

∫ 1

0
|∇z(x, ρ, t)|2dρdx

)
+
∫

Ω
|∇ut(x, t)|2dx. (IV.31)

Proof 4.6

d

dt
I(t) = 2τ

∫ 1

0

∫
Ω
e−τρ∇zt(x, ρ, t)∇z(x, ρ, t)dρdx

= −2
∫ 1

0

∫
Ω
e−τρ∇zρ(x, ρ, t)∇z(x, ρ, t)dρdx

= −
∫ 1

0

∫
Ω
e−τρ

∂

∂ρ

(
|∇z(x, ρ, t|2)

)
dρdx

= −τ
∫ 1

0

∫
Ω
e−τρ|∇z(x, ρ, t)|2dρdx+

∫
Ω
|∇ut(x, t)|2dx− e−τ

∫
Ω
|∇z(x, 1, t)|2dx

6 −e−τ
(
τ
∫ 1

0

∫
Ω
|∇z(x, ρ, t)|2dρdx+

∫
Ω
|∇z(x, 1, t)|2dx

)
+
∫

Ω
|∇ut(x, t)|2dx.
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Proof 4.7 (Proof of Theorem 2.3) We define the Lyapunov functional

L (t) = NE(t) + εD(t) + I(t), (IV.32)

where N and ε are positive constants that will be fixed later.
Taking the derivative of (IV.32) with respect to t and making use of (IV.22), (IV.28) and

(IV.31), we obtain

d

dt
L (t) 6 −

{
N(µ1 − λ1)− εC − 1

} ∫
Ω
|∇ut(x, t)|2dx−

{
Nµ2 − εC

} ∫
Ω
|∇vt(x, t)|2dx

−
(
β(t)− δ − |α|C − 1

2

)
ε
∫

Ω
|∇u|2dx−

(
µ− |α|C

)
ε
∫

Ω
|∇v|2dx− (λ+ µ)ε

∫
Ω
|div u|2dx

− (λ+ µ)ε
∫

Ω
|div v|2dx−

(
e−τ − λ2

1
2 ε
) ∫

Ω
|∇z(x, 1, t)|2dx− τe−τ

∫
Ω

∫ 1

0
|∇z(x, ρ, t)|2dρdx

+ N

2

∫
Ω

(g′ ◦ ∇u)(t)dx+ (µ− β(t))ε
4δ

∫
Ω

(g ◦ ∇u)(t)dx

− N

2 g(t)
∫

Ω
|∇u|2(x, t)dx.

(IV.33)
At this point, we choose our constants in (IV.33), carefully, such that all the coefficients in
(IV.33) will be negative. It suffices to choose ε so small and N large enough such that

N(µ1 − λ1)− εC − 1 > 0,

Nµ2 − εC > 0,

and
e−τ − λ2

1
2 ε > 0.

Further, we choose α small enough such that

β(t)− δ − |α|C − 1
2 > 0,

and
µ− |α|C > 0.

Consequently, from the above, we deduce that there exist there exists two positive constants
η1 and η2such that (IV.33) becomes

dL (t)
dt

6 −η1E(t) + η2

∫
Ω

(g ◦ ∇u)dx (IV.34)
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IV.4 Exponential stability

By multiplying (IV.34) by ξ(t), we arrive at

ξ(t)L ′(t) 6 −η1ξ(t)E(t) + η2ξ(t)
∫

Ω
(g ◦ ∇u)dx (IV.35)

Recalling (A2) and using (IV.35),we get

ξ(t)L ′(t) 6 −η1ξ(t)E(t)− η2

∫
Ω

(g′ ◦ ∇u)dx

6 −η1ξ(t)E(t)− 2η2E
′(t)

That is (
ξ(t)L (t) + 2η2E(t)

)′
− ξ′(t)L 6 −η1ξ(t)E(t)

Using the fact that ξ′(t) 6 0, ∀t > 0 and letting

F (t) = ξ(t)L (t) + 2η2E(t) ∼ E(t) (IV.36)

we obtain
F ′(t) 6 −η1ξ(t)E(t) 6 −η3ξ(t)F (t) (IV.37)

A simple integration of (IV.37) over (0, t) leads to

F (t) 6 F (0)e
−η3

∫ t

0
ξ(s)ds

, ∀t > 0 (IV.38)

A combination of (IV.36) and (IV.38) leads to (IV.8). Then, the proof is complete.
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Chapter IV. well-posedness and exponential stability for coupled Lamé system
with a viscoelastic term and a strong delay

58



V
well-posedness and exponential stability for

coupled Lamé system with a viscoelastic term
and strong damping

1 Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω . Let us consider the following
a coupled Lamé system :


utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g1(t− s)∆u(x, s)ds− µ1∆ut(x, t) = 0, in Ω× (0,+∞),

vtt(x, t) + αu−∆ev(x, t) +
∫ t

0
g2(t− s)∆v(x, s)ds− µ2∆vt(x, t) = 0, in Ω× (0,+∞),

u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.

(V.1)
Where µ1, µ2 are positive constants and (u0, u1, v0, v1) are given history and initial data
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. Here ∆ denotes the Laplacian operator and ∆e denotes the elasticity operator, which is
the 3× 3 matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ+ µ > 0. (V.2)

.
The problem of stabilization of coupled systems has also been studied by several authors

see [2, 4, 6, 15, 23, 24]and the references therein.Under certain conditions imposed on the
subset where the damping term is effective, Komornik [15] proves uniform stabilization of
the solutions of a pair of hyperbolic systems coupled in velocities. Alabau and al.[2] studied
the indirect internal stabilization of weakly coupled systems where the damping is effective
in the whole domain. They prove that the behavior of the first equation is sufficient to
stabilize the total system and to have polynomial decay for sufficiently smooth solutions.
For coupled systems in thermoelasticity, R.Racke [24] considered the following system:

 utt(x, t)− auxx(x, t− τ) + bθx(x, t) = 0, in (0, L)× (0,∞),
θt(x, t)− dθxx(x, t) + butx(x, t) = 0, in (0, L)× (0,∞),

He proved that the internal time delay leads to ill-posedness of the system. However, the
system without delay is exponentially stable.

In[4],beniani and al. considered the following Lamé system with time varying delay term:

 u′′(x, t)−∆eu(x, t) + µ1g1(u′(x, t)) + µ2g2(u′(x, t− τ(t))) = 0 in Ω× R+

u(x, t) = 0 on ∂Ω× R+ (V.3)

and under suitable conditions, they proved general decay of energy.
In [17], authors considered the following problem:



utt −∆xu(x, t)− µ1∆ut(x, t)−
∫ τ2

τ1
µ2(s)∆ut(x, t− s)ds = 0 in Ω× (0,+∞),

u = 0 on Γ× [0,+∞),
u(x, 0) = u0(x) u′(x, 0) = u1(x) on Ω,
ut(x,−t) = f0(x,−t), 0 < t ≤ τ2,

(V.4)

60
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and under the assumption
µ1 >

∫ τ2

τ1
|µ2|ds (V.5)

they proved that the solution is exponentially stable.
Recently, Bouzettouta and al. [3] considered the Bresse system in bounded domain with

internal distributed delay:


ρ1ϕtt −Gh(ϕx + lw + ψ)x − Ehl(wx − lϕ) + µ1ϕt + µ2ϕt(x, t− τ1) = 0 ,

ρ2ψtt − Elψxx −Gh(ϕx − lw + ψ) +
∫ τ2

τ1
µ(s)ψt(x, t− s)ds = 0 ,

ρ1wtt − Eh(wx − lϕ)x + lGh(ϕx + lw + ψ) + µ̃1wt + µ̃2wt(x, t− τ2) = 0.

(V.6)

where (x, t) ∈]0, L[×R+ , the authors proved, under suitable conditions, that the system is
well-posed and its energy converges to zero when time goes to infinity.

The paper is organized as follows.In Section 2, we give some materials needed for our
work and state our main results. The well-posedness of the problem is analyzed in Section
3, by using Faedo-Galerkin method. In Section 4, we prove the exponential decay of the
energy when time goes to infinity.

2 Preliminaries and statement of main results

In this section, we present some materials that shall be used for proving our main results.
For the relaxation functions g1, g2, we have the folloing assumptions:

(A1) gi : R+ → R+ (for i = 1, 2) are C1 functions satisfying

gi(0) > 0, 0 < βi(t) := µ−
∫ t

0
gi(s)ds and 0 < β0

i := µ−
∫ ∞

0
gi(s)ds.

(A2) There exist non-increasing differentiable functions ξ1(t), ξ2(t) : R+ → R+ such that

g′i(t) ≤ −ξi(t)gi(t), ∀t > 0 and
∫ ∞

0
ξi(t)dt = +∞, for i = 1, 2.

These hypotheses imply that

β0
i ≤ βi(t) ≤ µ, for i = 1, 2. (V.7)
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Let us introduce the following notations:

(g ∗ h)(t) :=
∫ t

0
g(t− s)h(s)ds,

(g ◦ h)(t) :=
∫ t

0
g(t− s)|h(t)− h(s)|2ds,

Lemma 2.1 ([8]) For any g, h ∈ C1(R), the following equation holds

2[g ∗ h]h′ = g′ ◦ h− g(t)|h|2 − d

dt

{
g ◦ h−

( ∫ t

0
g(s)ds

)
|h|2

}
.

The existence and uniqueness result is stated as follows:

Theorem 2.2 Assume that (A1) and (A2) hold. Then given u0, v0 ∈ (H2(Ω) ∩ H1
0 (Ω))2,

u1, v1 ∈ (L2(Ω))2, there exists a unique weak solution u, v of problem (V.1) such that

u, v ∈ C([0,+∞[, H2(Ω) ∩H1
0 (Ω)) ∩ C1([0,+∞[, (L2(Ω))2).

For any regular solution of (V.1), we define the energy as

E(t) = 1
2

∫
Ω
u2
t (x, t)dx+ β1(t)

2

∫
Ω
|∇u|2(x, t)dx+ 1

2

∫
Ω

(g1 ◦ ∇u)dx+ (µ+ λ)
2

∫
Ω
|div u|2dx

+ 1
2

∫
Ω
v2
t (x, t)dx+ β2(t)

2

∫
Ω
|∇v|2(x, t)dx+ (µ+ λ)

2

∫
Ω
|div v|2dx+ 1

2

∫
Ω

(g2 ◦ ∇v)dx

+ 2α
∫

Ω
u(x, t)v(x, t)dx.

(V.8)
Our decay result reads as follows:

Theorem 2.3 Let (u, v) be the solution of (V.1). Assume that (A1) and (A2) hold. Then
there exist two positive constants C and d, such that

E(t) 6 Ce−d
∫ t

0 ξ(s)ds, ∀t > 0. (V.9)

3 Well-posedness

In this section, we will prove the existence and uniqueness of problem (V.1) by using Faedo-
Galerkin method.
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Proof 3.1 We divide the proof of Theorem2.2 into two steps: the Faedo-Galerkin approxi-
mation and the energy estimates.

Step 1 :Faedo-Galerkin approximation.

We construct approximations of the solution (u, v) by the Faedo-Galerkin method as
follows. For n > 1, let Wn = span {w1, ....., wn} be a Hilbertian basis of the space
H2(Ω)∩H1

0 (Ω) and the projection of the initial data on the finite dimensional subspace
Wn is given by

un0 =
n∑
i=1

aiwi, vn0 =
n∑
i=1

biwi, un1 =
n∑
i=1

ciwi, vn1 =
n∑
i=1

diwi

where,(un0 , vn0 , un1 , vn1 ) → (u0, v0, u1, v1) strongly in H2(Ω) ∩ H1
0 (Ω) as n → ∞. We

search the approximate solutions

un(x, t) =
n∑
i=1

fni (t)wi(x), vn(x, t) =
n∑
i=1

hni (t)wi(x)

to the finite dimensional Cauchy problem:



∫
Ω
unttwidx+ α

∫
Ω
vnwidx+ µ

∫
Ω
∇un∇widx+ (λ+ µ)

∫
Ω
div un.div widx

−
∫

Ω
(g1(s) ∗ ∇un)∇widx+ µ1

∫
Ω
∇unt∇widx = 0,∫

Ω
vnttwidx+ α

∫
Ω
unwidx+ µ

∫
Ω
∇vn∇widx+ (λ+ µ)

∫
Ω
div vn.div widx

−
∫

Ω
(g2(s) ∗ ∇vn)∇widx+ µ2

∫
Ω
∇vnt ∇widx = 0,

(un(0), vn(0)) = (un0 , vn0 ) (unt (0), vnt (0)) = (un1 , vn1 ).

(V.10)

According to the standard theory of ordinary differential equations , the finite dimen-
sional problem (V.10) has solution fni (t), hni (t) defined on [0, t).The a priori estimates
that follow imply that in fact tn = T .

Step 2: Energy estimates. Multiplying the first and the second equation of (V.10) by
(
fni (t)

)′
and

(
hni (t)

)′
respectively, we obtain:

∫
Ω
unttu

n
t dx+ α

∫
Ω
vnunt dx+ µ

∫
Ω
∇un∇unt dx+ (λ+ µ)

∫
Ω
div un.div unt dx

−
∫

Ω
(g1(s) ∗ ∇un)∇unt dx+ µ1

∫
Ω
|∇unt |2dx = 0.

(V.11)
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and

∫
Ω
vnttv

n
t dx+ α

∫
Ω
unvnt dx+ µ

∫
Ω
∇vn∇vnt dx+ (λ+ µ)

∫
Ω
div vn.div vnt dx

−
∫

Ω
(g2(s) ∗ ∇vn)∇vnt dx+ µ2

∫
Ω
|∇vnt |2dx = 0.

(V.12)

Integrating (V.11) and (V.12) over (0, t),and using Lemma (2.1), we obtain

En(t) + µ1

∫ t

0

∫
Ω
|∇unt |2dxds−

1
2

∫
Ω

(g′1 ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g1(t)|∇un|2dxds

+ µ2

∫ t

0

∫
Ω
|∇vnt |2dxds−

1
2

∫
Ω

(g′2 ◦ ∇vn)dx+ 1
2

∫ t

0

∫
Ω
g2(t)|∇vn|2dxds = En(0)

(V.13)
where

En(t) = 1
2

∫
Ω

(unt )2(x, t)dx+ β1(t)
2

∫
Ω
|∇un|2(x, t)dx+ 1

2

∫
Ω

(g1 ◦ ∇un)dx+ (µ+ λ)
2

∫
Ω
|div un|2dx

+ 1
2

∫
Ω

(vnt )2(x, t)dx+ β1(t)
2

∫
Ω
|∇vn|2(x, t)dx+ (µ+ λ)

2

∫
Ω
|div vn|2dx

+ 1
2

∫
Ω

(g2 ◦ ∇vn)dx+ 2α
∫

Ω
un(x, t)vn(x, t)dx.

(V.14)
Consequently, fromV.13, we have the following estimate:

En(t)− 1
2

∫
Ω

(g′1 ◦ ∇un)dx+ 1
2

∫ t

0

∫
Ω
g1(t)|∇un|2dxds

− 1
2

∫
Ω

(g′2 ◦ ∇vn)dx+ 1
2

∫ t

0

∫
Ω
g2(t)|∇vn|2dxds

6 En(0).

(V.15)

Now, since the sequences
(
un0
)
n∈N

,
(
un1
)
n∈N

,
(
vn0
)
n∈N

,
(
vn1
)
n∈N

converge and using
(A2),in the both cases we can find a positive constant c independent of n such that

En(t) 6 c. (V.16)

Therefore, using the fact that βi(t) > β0
i , the estimate V.16 together with V.14 give us,
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for all n ∈ N,tn = T , we deduce
(
un
)
n∈N

is bounded in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),(

vn
)
n∈N

is bounded in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),(

unt
)
n∈N

is bounded in L∞(0, T ;L2(Ω)),(
vnt
)
n∈N

is bounded in L∞(0, T ;L2(Ω)).

(V.17)

Consequently, we conclude that

un ⇀ u weakly star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

vn ⇀ v weakly star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

unt ⇀ ut weakly star in L∞(0, T ;L2(Ω)),
vnt ⇀ vt weakly star in L∞(0, T ;L2(Ω)).

(V.18)

From V.17, we have
(
un
)
n∈N

and
(
vn
)
n∈N

are bounded in L∞(0, T ;H2(Ω)∩H1
0 (Ω)).Then(

un
)
n∈N

and
(
vn
)
n∈N

are bounded in L2(0, T ;H1
0 (Ω)). Consequently,

(
un
)
n∈N

and
(
vn
)
n∈N

are bounded in H1(0, T ;H2(Ω) ∩ H1
0 (Ω)). Using AubinŰLion’s theorem [16], we can

extract subsequences
(
uk
)
k∈N

of
(
un
)
n∈N

and
(
vk
)
k∈N

of
(
vn
)
n∈N

such that

uk → u strongly in L2(0, T ;L2(Ω))

and
vk → v strongly in L2(0, T ;L2(Ω))

Therefore,

uk → u strongly and a.e (0, T )× (Ω)

and
vk → v strongly and a.e (0, T )× (Ω)

The proof now can be completed arguing as in Theorem 2.2 of [16]
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Uniqueness.

Let (u1, v1) and (u2, v2) be two solutions of problem (V.1) Then (u, v) = (u1 − u2, v1 − v2)
satisfies


utt(x, t) + αv −∆eu(x, t) +
∫ t

0
g1(t− s)∆u(x, s)ds− µ1∆ut(x, t) = 0, in Ω× (0,+∞),

vtt(x, t) + αu−∆ev(x, t) +
∫ t

0
g2(t− s)∆v(x, s)ds− µ2∆vt(x, t) = 0, in Ω× (0,+∞),

u(x, t) = v(x, t) = 0 on ∂Ω× (0,+∞),
(u(x, 0), v(x, 0)) = (0, 0) in Ω,
(ut(x, 0), vt(x, 0)) = (0, 0) in Ω.

(V.19)
Following Lemma 4.1, the energy function associated to the problem (V.19) satisfies E ′(t) 6
0. Then E(t) = E(0) = 0. As u(x, t) = v(x, t) = 0 on ∂Ω × (0,+∞), we deduce that
u = v = 0. The proof is complete.

4 Exponential stability

In this section we study the asymptotic behavior of the system (V.1). For the proof of
Theorem 2.3 we use the following lemmas.

Lemma 4.1 Let (u, v) be the solution of (V.1), Then we have the inequality

dE(t)
dt

6 −µ1

∫
Ω
|∇ut(x, t)|2 dx− µ2

∫
Ω
|∇vt(x, t)|2 dx−

1
2g1(t)

∫
Ω
|∇u(x, t)|2 dx

+1
2

∫
Ω

(g′1 ◦ ∇u)dx− 1
2g2(t)

∫
Ω
|∇v(x, t)|2 dx+ 1

2

∫
Ω

(g′2 ◦ ∇v)dx
(V.20)

Proof 4.2 From (V.8) we have

1
2
d

dt

∫
Ω

(
u2
t + (λ+ µ)|div u|2 + v2

t + (λ+ µ)|div v|2 + 2αvu
)
dx

= −µ
∫

Ω
∇u∇utdx− µ

∫
Ω
∇v∇vtdx− µ1

∫
Ω
|∇ut|2dx− µ2

∫
Ω
|∇vt|2dx

+
∫

Ω

∫ t

0
g1(s)∇u(s)∇ut(t)dsdx+

∫
Ω

∫ t

0
g2(s)∇v(s)∇vt(t)dsdx.

(V.21)

From Lemma 2.1,the last terms in the right-hand side of V.21 can be rewritten as
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∫ t

0
g1(s)

∫
Ω
∇u(s)∇ut(t)dsdx+ 1

2g1(t)
∫

Ω
|∇u|2(x, t)dx

= 1
2
d

dt

{ ∫ t

0
g1(s)

∫
Ω
|∇u|2(x, t)dxds−

∫
Ω

(g1 ◦ ∇u)(t)dx
}

+ 1
2

∫
Ω

(g′1 ◦ ∇u)(t)dx
(V.22)

and ∫ t

0
g2(s)

∫
Ω
∇v(s)∇vt(t)dsdx+ 1

2g2(t)
∫

Ω
|∇v|2(x, t)dx

= 1
2
d

dt

{ ∫ t

0
g2(s)

∫
Ω
|∇v|2(x, t)dxds−

∫
Ω

(g2 ◦ ∇v)(t)dx
}

+ 1
2

∫
Ω

(g′2 ◦ ∇v)(t)dx
(V.23)

So dE

dt
becomes:

dE

dt
= −µ1

∫
Ω
|∇ut|2dx− µ2

∫
Ω
|∇vt|2dx−

1
2g1(t)

∫
Ω
|∇u|2(x, t)dx

+1
2

∫
Ω

(g′1 ◦ ∇u)(t)dx− 1
2g2(t)

∫
Ω
|∇v|2(x, t)dx+ 1

2

∫
Ω

(g′2 ◦ ∇v)(t)dx

6 0.

(V.24)

we show that (V.20) holds. The proof is complete.

Now, we define the functional D(t) as follows

D(t) =
∫

Ω
uutdx+

∫
Ω
vvtdx+ µ1

2

∫
Ω
|∇u|2dx+ µ2

2

∫
Ω
|∇v|2dx. (V.25)

Then, we have the following estimate.

Lemma 4.3 The functional D(t) satisfies

D ′(t) 6 C
∫

Ω
|∇ut|2dx+ C

∫
Ω
|∇vt|2dx+

(
δ + |α|C − β1(t)

) ∫
Ω
|∇u|2dx

− (λ+ µ)
∫

Ω
|div u|2dx+

(
δ + |α|C − β2(t)

) ∫
Ω
|∇v|2dx− (λ+ µ)

∫
Ω
|div v|2dx

+ µ− β1(t)
4δ

∫
Ω

(g1 ◦ ∇u)(t)dx+ µ− β2(t)
4δ

∫
Ω

(g2 ◦ ∇v)(t)dx.
(V.26)
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Proof 4.4 Taking the derivative of D(t) with respect to t and using (V.1), we find that:

D ′(t) =
∫

Ω
u2
tdx+

∫
Ω
uuttdx+

∫
Ω
v2
t dx+

∫
Ω
vvttdx+ µ1

∫
Ω
∇ut∇udx+ µ2

∫
Ω
∇vt∇vdx

=
∫

Ω
u2
tdx+

∫
Ω
v2
t dx− β1(t)

∫
Ω
|∇u|2(x, t)dx+

∫
Ω

∫ t

0
g1(s)(∇u(s)−∇u(t))∇u(t)dsdx

−β1(t)
∫

Ω
|∇v|2dx+

∫
Ω

∫ t

0
g2(s)(∇v(s)−∇v(t))∇v(t)dsdx− (λ+ µ)

∫
Ω
|div u|2dx

−(λ+ µ)
∫

Ω
|div v|2dx− 2α

∫
Ω
uv dx. (V.27)

Using the fact that

∫
Ω

∫ t

0
g1(s)|∇u(s)−∇u(t)|∇u(t)dsdx 6 δ

∫
Ω
|∇u|2(x, t)dx+ 1

4δ

∫
Ω

( ∫ t

0
g1(s)|∇u(s)−∇u(t)|ds

)2
dx

6 δ
∫

Ω
|∇u|2(x, t)dx+ µ− β1(t)

4δ

∫
Ω

(g1 ◦ ∇u)(t)dx.
(V.28)

By the same, we have

∫
Ω

∫ t

0
g2(s)|∇v(s)−∇v(t)|∇v(t)dsdx 6 δ

∫
Ω
|∇v|2(x, t)dx+ 1

4δ

∫
Ω

( ∫ t

0
g2(s)|∇v(s)−∇v(t)|ds

)2
dx

6 δ
∫

Ω
|∇v|2(x, t)dx+ µ− β2(t)

4δ

∫
Ω

(g2 ◦ ∇v)(t)dx.
(V.29)

Inserting the estimates (V.28), (V.28) into (V.27) and using Young’s, Poincaré’s inequal-
ities lead to the desired estimate. The proof is complete.

Proof 4.5 (Proof of Theorem 2.3) We define the Lyapunov functional

L (t) = NE(t) + εD(t), (V.30)

where N and ε are positive constants that will be fixed later.

Taking the derivative of (V.30) with respect to t and making use of (V.20), (V.26), we
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obtain

d

dt
L (t) 6 −

{
Nµ1 − εC

} ∫
Ω
|∇ut(x, t)|2dx−

{
Nµ2 − εC

} ∫
Ω
|∇vt(x, t)|2dx

−
(
β1(t)− δ − |α|C

)
ε
∫

Ω
|∇u|2dx−

(
β2(t)− δ − |α|C

)
ε
∫

Ω
|∇v|2dx

− (λ+ µ)
∫

Ω
|div u|2dx − (λ+ µ)

∫
Ω
|div v|2dx

+ N

2

∫
Ω

(g′1 ◦ ∇u)(t)dx+ N

2

∫
Ω

(g′2 ◦ ∇v)(t)dx

+ (µ− β1(t))ε
4δ

∫
Ω

(g1 ◦ ∇u)(t)dx+ (µ− β2(t))ε
4δ

∫
Ω

(g2 ◦ ∇v)(t)dx

− N

2 g1(t)
∫

Ω
|∇u|2(x, t)dx− N

2 g2(t)
∫

Ω
|∇v|2(x, t)dx.

(V.31)

At this point, we choose our constants in (V.31), carefully, such that all the coefficients in
(V.31) will be negative. It suffices to choose ε so small and N large enough such that

Nµ1 − εC > 0,

and
Nµ2 − εC > 0,

Further, we choose α small enough such that

β1(t)− δ − |α|C > 0,

and
β2(t)− δ − |α|C > 0.

Consequently, from the above, we deduce that there exist there exists two positive constants
η1, η2 and η3such that (V.31) becomes

dL (t)
dt

6 −η1E(t) + η2

∫
Ω

(g1 ◦ ∇u)dx+ η3

∫
Ω

(g2 ◦ ∇v)dx. (V.32)

Therefore, if ξ(t) = minξ1(t), ξ2(t), ∀t > 0, then using (A2) and (V.20), we get
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ξ(t)L ′(t) 6 −η1ξ(t)E(t) + η2ξ(t)
∫

Ω
(g1 ◦ ∇u)dx+ η3ξ(t)

∫
Ω

(g2 ◦ ∇v)dx

6 −η1ξ(t)E(t) + η2ξ1(t)
∫

Ω
(g1 ◦ ∇u)dx+ η3ξ2(t)

∫
Ω

(g2 ◦ ∇v)dx

6 −η1ξ(t)E(t) + η2

∫
Ω

∫ t

0
ξ1(t− s)g1(t− s)|∇u(t)−∇u(s)|2dsdx

+ η3

∫
Ω

∫ t

0
ξ2(t− s)g2(t− s)|∇v(t)−∇v(s)|2dsdx

6 −η1ξ(t)E(t)− η2

∫
Ω

∫ t

0
g′1(t− s)|∇u(t)−∇u(s)|2dsdx

− η3

∫
Ω

∫ t

0
g′2(t− s)|∇v(t)−∇v(s)|2dsdx

6 −η1ξ(t)E(t)− cE ′(t), ∀t > 0.

(V.33)

Which gives (
ξ(t)L (t) + cE(t)

)′
− ξ′(t)L (t) 6 −η1ξ(t)E(t).

Using the fact that ξ′(t) 6 0, ∀t > 0 and letting

F (t) = ξ(t)L (t) + cE(t) ∼ E(t) (V.34)

we obtain
F ′(t) 6 −η1ξ(t)E(t) 6 −η3ξ(t)F (t). (V.35)

A simple integration of (V.35) over (0, t) leads to

F (t) 6 F (0)e
−η3

∫ t

0
ξ(s)ds

∀t > 0. (V.36)

A combination of (V.34) and (V.36) leads to (V.9). Then, the proof is complete.
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Abstract 

The present thesis is devoted to the study of Well-Posedness and 

asymptotic behaviour in time of solution of Lamé system and coupled Lamé 

system. This work consists of five chapters, will be devoted to the study of 

the Well-Posedness and asymptotic behaviour of some evolution equation 

with linear, and viscoelastic terms. We recall of some fundamental 

inequalities.  

Résumé 

La présente thèse est consacrée à l’étude de la position bien posée et du 

comportement asymptotique dans le temps de résolution du système de 

Lamé et du système de Lamé couplé. Ce travail, composé de cinq chapitres, 

sera consacré à du comportement asymptotique d’une équation d’évolution 

avec des termes linéaires et viscoélastiques. Nous rappelons quelques 

inégalités fondamentales.  

 ملخص

 ونظام Lamé تخُصّص الرسالة الحالية لدراسة الموقف الجيد والسلوك التقاربي في وقت حل نظام 

Lamé سيتم تكريس هذا العمل ، الذي يتكون من خمسة فصول ، للسلوك التقاربي لمعادلة  .المقترن

 .الأساسية نتذكر بعض أوجه عدم المساواة .تطور مع المصطلحات الخطية والمرونة

 


