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Université Djillali Liabes
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diriger cette recherche. Il a su me guider avec un enthousiasme constant et com-
municatif, et m’encourager pendant ces années.

Je remercie Monsieur S.MOKEDDEM qui a honoré ce travail en acceptant de
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m’a aidé pour réaliser ce travail. Je le remercie de m’avoir supporté et encouragé
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Titre : Stabilisation de quelques problèmes d’évolution dégénérés par des contrôles
frontières de type fractionnaire.

Résumé

Dans cette thèse, nous considèrons l’équation des ondes dégénérée avec la présence des
termes dissipatifs de type fractionnaires. Sous quelques hypothèses sur les données initiales et aux
bords, nous avons concentré notre étude sur l’existence globale et le comportement asymptotique
des solutions où nous avons obtenu plusieurs résultats sur la vitesse de décroissance de l’énergie.

D’abords, nous considérons une équation des ondes dégénérée soumis à un contrôle frontière
de type fractionnaire. Nous montrons que le problème n’est pas uniformément stable par une
méthode spectrale et nous étudions la stabilité polynomiale à l’aide de la théorie des semi-
groupes.

Ensuite, nous nous intèressons à l’étude de la stabilisation d’équation des ondes unidimen-
sionnelle faiblement dégénérée utt − (xγux)x = 0 avec x ∈ (0, 1) et γ ∈ [0, 1), contrôlée par
un feedback frontière fractionnaire agissant à x = 0. On prouve divers type de stabilit: forte,
uniforme et polynomiale dans des espaces appropriés. Les résultats sont obtenus par une esti-
mation de la résolvante du générateur associé au semi-groupe. En plus, en utilisant une méthode
spectrale, nous établissons l’optimalité.

Enfin, nous nous intéressons à l’étude de la stabilisation d’équation des ondes unidimension-
nelles faiblement dégénérée utt−(xγux)x = 0 avec x ∈ (0, 1) et γ ∈ [0, 1), contrôlé par un feedback
dynamique frontière de type fractionnaire agissant à x = 0. Nous montrons la décroissance poly-
nomiale optimale dans des espaces appropriés. Les résultats sont obtenus par une estimation de
la résolvante du générateur associé au semi-groupe et le théorème de Borichev-Tomilov.

Mots Clés:

Équation des ondes dégénérée, Dérivée Fractionnaire, Stabilité polynomiale, la vitesse de
décroissance optimale, fonctions de Bessel, C0 -semi-groupe, Méthode Spectrale.
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Title : Stabilization of some degenerate evolution problems with fractional
boundary control

Abstract

In this thesis we consider degenerate wave equation problems with the presence of bound-
ary dissipation of fractional derivative type. Under assumptions on initial data and boundary
conditions, we focused our study on the global existence and asymptotic behavior of solutions
where we obtained several results on the decay rate.

First, we consider a degenerate wave equation with a boundary control condition of fractional
derivative type. We show that the problem is not uniformly stale by a spectrum method and we
study the polynomial stability using the semigroup theory of linear operators.

Next, we are concerned with the study of stabilization of one-dimensional weakly degenerate
wave equation utt−(xγux)x = 0 with x ∈ (0, 1) and γ ∈ [0, 1), controlled by a fractional boundary
feedback acting at x = 0. Strong, uniform, and nonuniform stabilization are obtained with
explicit decay estimates in appropriate spaces. The results are obtained through an estimate on
the resolvent of the generator associated with the semigroup. However, using a spectral method,
we establish the optimal polynomial decay rate of the energy of the system.

Finally, we are concerned with the study of stabilization of one-dimensional weakly degenerate
wave equation utt−(xγux)x = 0 with x ∈ (0, 1) and γ ∈ [0, 1), controlled by a dynamic fractional
boundary feedback acting at x = 0. We prove optimal polynomial decay estimates in appropriate
spaces. The results are obtained through an estimate on the resolvent of the generator associated
with the semigroup.

Keywords:

Degenerate wave equation, Fractional Derivative, Polynomial stability, Optimal decay rate,
Bessel functions, C0-semigroup, Spectral Method.
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0.1 Introduction

Control theory is the study of the process of controlling the behavior of an operator system
to achieve a certain target. Its application ranges widely from earthquake engineering and
seismology to fluid transfer, cooling water and noise reduction in cavities, vehicles, such as pipe
systems. Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where control
theory is applied.
Interest for fractional derivation is related to the mechanical modeling of gums and rubbers. In
short, all kinds of materials that preserve the memory of previous deformations in particular
viscoelastic. Indeed, the fractional derivation is introduced naturally.
The boundary feedback under the consideration in this thesis are of fractional type and are
described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

The order of our derivatives is between 0 and 1. Very little is known in the literature. In
addition to being nonlocal, fractional derivatives involve singular and non-integrable kernels
(tα, 0 < α < 1). This makes the problem more delicate. It has been shown (see [40]) that,
as ∂t, the fractional derivative ∂αt forces the system to become dissipative and the solution to
approach the equilibrium state. Therefore, when applied on the boundary, we can consider them
as controllers which help to reduce the vibrations.
In the recent years, fractional calculus has been applied successfully in various areas to modify
many existing models of physical processes such as heat conduction, diffusion, viscoelasticity,
wave propagation, electronics etc. Caputo and Mainardi [17] have established the relation be-
tween fractional derivative and theory of viscoelasticity. The generalization of the concept of
derivative and integral to a non-integer order has been subjected to several approaches and some
various alternative definition of fractional derivative appeared in [29, 30].

This thesis is divided into 4 Chapter.

CHAPTER 1: PRELIMINARIES

In this Chapter, firstly, we present some well known results on Sobolev spaces and some ba-
sic definitions and theorems . Secondly, we recall some results on a C0-semigroup, including
some theorems on strong, exponential and polynomial stability of a C0-semigroup. Next, we
display a brief historical introduction to fractional derivatives and we define the fractional deriva-
tive operator and we present some physical interpretations . After that, we present the Bessel
functions and their basic definitions . Finally, we present an appendix that contains almost all
the secondary calculations used in this Thesis.
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CHAPTER 2: ENERGY DECAY FOR A DEGENERATE WAVE
EQUATION UNDER FRACTIONAL DERIVATIVE CONTROLS

In this Chapter, we are concerned with the system

(P1)



utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

βu(1, t) + (aux)(1, t) = −%∂α,ηt u(1, t) in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).

where % > 0 and β ≥ 0.The notation ∂α,ηt stands for the generalized Caputo’s fractional derivative
of order α, (0 < α < 1), with respect to the time variable (see [10] and [20] ). It is defined as
follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

When we show that the problem is not uniformly stale by a spectrum method and we study the
polynomial stability using the semigroup theory of linear operators.
Unfortunately we are not able to prove this decay rate by frequency domain method based on
multiplier method as the problem (P1) is degenerate and the control is acting on the degenerate
boundary.
For η 6= 0, by an explicit representation of the resolvent of the generator on the imaginary axis
and the use of the theorem by Borichev and Tomilov, we prove an optimal decay rate.

CHAPTER 3: STABILIZATION OF DEGENERATE WAVE EQUA-
TION UNDER FRACTIONAL FEEDBACK ACTING ON THE DE-
GENERATE BOUNDARY:

In this Chapter, concerned with the boundary stabilization of fractional type for degenerate
wave equation of the form:

(P2)


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
(xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).

where γ ∈ [0, 1) and % > 0 . The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, (0 < α ≤ 1), with respect to the time variable . It is defined as follows

∂α,ηt w(t) =


wt for α = 1, η ≥ 0

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for α 6= 1, η ≥ 0.

Where Strong, uniform, and nonuniform stabilization are obtained with explicit decay estimates
in appropriate spaces. The results are obtained through an estimate on the resolvent of the
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generator associated with the semigroup.

CHAPTER 4: STABILIZATION OF DEGENERATE WAVE EQUA-
TION UNDER DYNAMIC FRACTIONAL FEEDBACK ACTING
ON THE DEGENERATE BOUNDARY

In this Chapter,we are concerned with the dynamic boundary stabilization of fractional type
for degenerate wave equation of the form

(P3)


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
−mutt(0, t) + (xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where (x, t) ∈ (0, 1) × (0,+∞), γ ∈ [0, 1),m > 0 and % > 0. The notation ∂α,ηt stands for the
generalized Caputo’s fractional derivative of order α, (0 < α ≤ 1), with respect to the time
variable (see [10] and [20]). It is defined as follows

∂α,ηt w(t) =


wt for α = 1, η ≥ 0

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for α 6= 1, η ≥ 0.

Where we discuss and establish the existence, the uniqueness of solution for the degenerate wave
equation with a dynamic boundary dissipation of fractional derivative type, and We proved op-
timal polynomial decay estimates in appropriate spaces. The results are obtained through an
estimate on the resolvent of the generator associated with the semigroup.



Chapter 1

PRELIMINARIES

In this chapter, we recall some basic definitions and theorems which will be used in the following
chapters.

1.1 Sobolev spaces

We denote by Ω an open domain in IRn, n ≥ 1, with a smooth boundary Γ = ∂Ω. In general,
some regularity of Ω will be assumed. We will suppose that either

Ω is Lipschitz,

i.e., the boundary Γ is locally the graph of a Lipschitz function, or

Ω is of class Cr, r ≥ 1,

i.e., the boundary Γ is a manifold of dimension n ≥ 1 of class Cr. In both cases we assume that
Ω is totally on one side of Γ. These definitions mean that locally the domain Ω is below the
graph of some function ψ, the boundary Γ is represented by the graph of ψ and its regularity is
determined by that of the function ψ. Moreover, it is necessary to note that a domain with a
continuous boundary is never on both sides of its boundary at any point of this boundary and
that a Lipschitz boundary has almost everywhere a unit normal vector ν.

We will also use the following multi-index notation for partial differential derivatives of a
function:

∂ki u =
∂ku

∂xki
for all k ∈ IN and i = 1, ..., n,

Dαu = ∂α1
1 ∂α2

2 . . . ∂αnn u =
∂α1+...+αnu

∂xα1
1 . . . ∂xαnn

,

α = (α1, α2, . . . , αn) ∈ INn, |α| = α1 + . . .+ αn.

We denote by C(D) (respectively Ck(D), k ∈ IN or k = +∞) the space of real continuous
functions on D (respectively the space of k times continuously differentiable functions on D),
where D plays the role of Ω or its closure Ω. The space of real C∞ functions on Ω with a

13
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compact support in Ω is denoted by C∞0 (Ω) orD(Ω) as in the distributions theory of Schwartz.The
distributions space on Ω is denoted by D′(Ω), i.e., the space of continuous linear form over D(Ω).

For 1 ≤ p ≤ ∞, we call Lp(Ω) the space of measurable functions f on Ω such that

‖f‖Lp(Ω) =
(∫

Ω
|f(x)|pdx

)1/p

< +∞ for p < +∞

‖f‖L∞(Ω) = sup
Ω
|f(x)| < +∞ for p = +∞

The space Lp(Ω) equipped with the norm f −→ ‖f‖Lp is a Banach space: it is reflexive and

separable for 1 < p < ∞ (its dual is L
p
p−1 (Ω)), separable but not reflexive for p = 1 (its dual

is L∞(Ω)), and not separable, not reflexive for p = ∞ (its dual contains strictly L1(Ω)). In
particular the space L2(Ω) is a Hilbert space equipped with the scalar product defined by

(f, g)L2(Ω) =
∫

Ω
f(x)g(x)dx.

We denote by Lploc(Ω) the space of functions which are Lp on any bounded sub-domain of Ω.
Similar space can be defined on any open set other than Ω, in particular, on the cylinder set

Ω× ]a, b[ or on the set Γ× ]a, b[, where a, b ∈ IR and a < b.
Let U be a Banach space, 1 < p < +∞ and −∞ ≤ a < b ≤ +∞, then Lp(a, b;U) is the

space of Lp functions f from (a, b) into U which is a Banach space for the norm

‖f‖Lp(a,b;U) =

(∫ b

a
‖f(x)‖pU dt

)1/p

< +∞ for p < +∞

and for the norm

‖f‖L∞(a,b;U) = sup
t∈(a,b)

‖f(x)‖U < +∞ for p = +∞

Similarly, for a Banach space U, k ∈ IN and −∞ < a < b < +∞, we denote by C([a, b];U)
(respectively Ck([a, b];U)) the space of continuous functions (respectively the space of k times
continuously differentiable functions) f from [a, b] into U , which are Banach spaces, respectively,
for the norms

‖f‖C(a,b;U) = sup
t∈(a,b)

‖f(x)‖U , ‖f‖Ck(a,b;U) =
k∑
i=0

∥∥∥∥∥∂if∂ti
∥∥∥∥∥
C(a,b;U)

1.1.1 Definition of Sobolev Spaces

Now, we will introduce the Sobolev spaces: The Sobolev space W k,p(Ω) is defined to be the
subset of Lp such that function f and its weak derivatives up to some order k have a finite Lp

norm, for given p ≥ 1.

W k,p(Ω) = {f ∈ Lp(Ω);Dαf ∈ Lp(Ω). ∀α; |α| ≤ k} ,
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With this definition, the Sobolev spaces admit a natural norm,

f −→ ‖f‖Wk,p(Ω) =

 ∑
|α|≤k
‖Dαf‖pLp(Ω)

1/p

, for p < +∞

and
f −→ ‖f‖Wk,∞(Ω) =

∑
|α|≤k
‖Dαf‖L∞(Ω) , for p = +∞

Space W k,p(Ω) equipped with the norm ‖ . ‖Wk,p is a Banach space. Moreover is a reflexive space
for 1 < p < ∞ and a separable space for 1 ≤ p < ∞. Sobolev spaces with p = 2 are especially
important because of their connection with Fourier series and because they form a Hilbert space.
A special notation has arisen to cover this case:

W k,2(Ω) = Hk(Ω)

the Hk inner product is defined in terms of the L2 inner product:

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω) .

The space Hm(Ω) and W k,p(Ω) contain C∞(Ω) and Cm(Ω). The closure of D(Ω) for the Hm(Ω)
norm (respectively Wm,p(Ω) norm) is denoted by Hm

0 (Ω) (respectively W k,p
0 (Ω)).

Now, we introduce a space of functions with values in a space X (a separable Hilbert space).
The space L2(a, b;X) is a Hilbert space for the inner product

(f, g)L2(a,b;X) =
∫ b

a
(f(t), g(t))X dt

We note that L∞(a, b;X) = (L1(a, b;X))′.
Now, we define the Sobolev spaces with values in a Hilbert space X
For k ∈ IN, p ∈ [1,∞], we set:

W k,p(a, b;X) =

{
v ∈ Lp(a, b;X);

∂v

∂xi
∈ Lp(a, b;X). ∀i ≤ k

}
,

The Sobolev space W k,p(a, b;X) is a Banach space with the norm

‖f‖Wk,p(a,b;X) =

 k∑
i=0

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥
p

Lp(a,b;X)

1/p

, for p < +∞

‖f‖Wk,∞(a,b;X) =
k∑
i=0

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥
L∞(a,b;X)

, for p = +∞

The spaces W k,2(a, b;X) form a Hilbert space and it is noted Hk(0, T ;X). The Hk(0, T ;X)
inner product is defined by:

(u, v)Hk(a,b;X) =
k∑
i=0

∫ b

a

(
∂u

∂xi
,
∂v

∂xi

)
X

dt .
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Theorem 1.1.1 Let 1 ≤ p ≤ n, then

W 1,p(IRn) ⊂ Lp
∗
(IRn)

where p∗ is given by
1

p∗
=

1

p
− 1

n
(where p = n, p∗ = ∞). Moreover there exists a constant

C = C(p, n) such that
‖u‖Lp∗ ≤ C‖∇u‖

Lp(IRn
)
∀u ∈ W 1,p(IRn).

Corollary 1.1.1 Let 1 ≤ p < n, then

W 1,p(IRn) ⊂ Lq(IRn) ∀q ∈ [p, p∗]

with continuous imbedding.

For the case p = n, we have

W 1,n(IRn) ⊂ Lq(IRn) ∀q ∈ [n,+∞[

Theorem 1.1.2 Let p > n, then

W 1,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.

Corollary 1.1.2 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if 1 ≤ p <∞, then W 1,p(Ω) ⊂ Lp
∗
(Ω) where

1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ L∞(Ω)

with continuous imbedding.
Moreover, if p > n, we have: ∀u ∈ W 1,p(Ω),

|u(x)− u(y)| ≤ C|x− y|α‖u‖W 1,p(Ω) a.e x, y ∈ Ω

with α = 1− n

p
> 0 and C is a constant which depend on p, n and Ω. In particular W 1,p(Ω) ⊂

C(Ω).

Corollary 1.1.3 Let Ω a bounded domain in IRn of C1 class with Γ = ∂Ω and 1 ≤ p ≤ ∞. We
have

if p < n, then W 1,p(Ω) ⊂ Lq(Ω)∀q ∈ [1, p∗[ where
1

p∗
=

1

p
− 1

n
.

if p = n, then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,+∞[.
if p > n, then W 1,p(Ω) ⊂ C(Ω)

with compact imbedding.
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Remark 1.1.1 We remark in particular that

W 1,p(Ω) ⊂ Lq(Ω)

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ q < p∗.

Corollary 1.1.4

if
1

p
− m

n
> 0, then Wm,p(IRn) ⊂ Lq(IRn) where

1

q
=

1

p
− m

n
.

if
1

p
− m

n
= 0, then Wm,p(IRn) ⊂ Lq(IRn), ∀q ∈ [p,+∞[.

if
1

p
− m

n
< 0, then Wm,p(IRn) ⊂ L∞(IRn)

with continuous imbedding.

1.2 Weak convergence

Let (E; ‖.‖E) a Banach space and E ′ its dual space, i.e., the Banach space of all continuous
linear forms on E endowed with the norm ‖.‖′E defined by

‖f‖E′ =: sup
x 6=0

|〈f, x〉|
‖x‖

; where 〈f, x〉; denotes the action of f onx, i.e.〈f, x〉 := f(x). In the same way, we can define the
dual space of E ′ that we denote by E ′′. (The Banach space E ′′ is also called the bi-dual space of
E.) An element x of E can be seen as a continuous linear form on E ′ by setting x(f) := 〈x, f〉,
which means that E ⊂ E ′′:

Definition 1.2.1 The Banach space E is said to be reflexive if E = E ′′.

Definition 1.2.2 The Banach space E is said to be separable if there exists a countable subset
D of E which is dense in E, i.e. D = E.

Theorem 1.2.1 (Riesz). If (H; 〈., .〉) is a Hilbert space, 〈., .〉 being a scalar product on H, then
H ′ = H in the following sense: to each f ∈ H ′ there corresponds a unique x ∈ H such that
f = 〈x, .〉 and ‖f‖′H = ‖x‖H

Remark : From this theorem we deduce that H ′′ = H. This means that a Hilbert space is
reflexive.

Proposition 1.2.1 If E is reflexive and if F is a closed vector subspace of E, then F is reflexive.

Corollary 1.2.1 The following two assertions are equivalent: (i) E is reflexive; (ii) E ′ is re-
flexive.
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1.2.1 Weak and strong convergence

Definition 1.2.3 (Weak convergence in E). Let x ∈ E and let {xn} ⊂ E. We say that {xn}
weakly converges to x in E, and we write xn ⇀ x in E, if

〈f, xn〉 → 〈f, x〉

for all f ∈ E ′.

Definition 1.2.4 (weak convergence in E ′). Let f ∈ E ′ and let {fn} ⊂ E ′. We say that {fn}
weakly converges to f in E ′, and we write fn ⇀ f in E ′, if

〈fn, x〉 → 〈f, x〉

for all x ∈ E ′′.

Definition 1.2.5 (strong convergence). Let x ∈ E(resp. f ∈ E ′) and let {xn} ⊂ E (resp
{fn} ⊂ E ′). We say that {xn} (resp. {fn}) strongly converges to x (resp. f), and we write
xn → x in E (resp. fn → f in E ′), if

lim
n
‖xn − x‖E = 0; (resp. lim

n
‖fn − f‖′E = 0)

Proposition 1.2.2 Let x ∈ E, let {xn} ⊂ E, let f ∈ E ′ and let {fn} ⊂ E ′.

i. If xn → x in E then xn ⇀ x in E.

ii. If xn ⇀ x in E then {xn} is bounded.

iii. If xn ⇀ x in E then lim inf
n→∞

‖xn‖E ≥ ‖x‖E

iv. If fn → f in E ′ then fn ⇀ f inE ′ (and so fn
∗
⇀ f in E ′).

v. If fn ⇀ f in E ′ then {fn} is bounded.

vi. If fn ⇀ f in E ′ then then lim inf
n→∞

‖fn‖′E ≥ ‖f‖′E

Proposition 1.2.3 (finite dimension). If dimE <∞ then strong, weak and weak star conver-
gence are equivalent.

1.2.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important
role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.2.2 ( Hölder’s inequality). Let 1 ≤ p ≤ ∞. Assume thatf ∈ Lp(Ω) and g ∈ Lq(Ω),
then fg ∈ LP (Ω) and ∫

Ω
|fg|dx ≤ ‖f‖p‖g‖q.
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Lemma 1.2.1 ( Young’s inequality). Let f ∈ Lp(IR) and g ∈ Lq(IR) with 1 < p < ∞ and
1
r

= 1
p

+ 1
q
− 1 ≥ 0 then f ∗ g ∈ Lr(IR) and

‖f ∗ g‖
Lr(IR)

≤ ‖f‖
Lp(IR)

‖g‖
Lq(IR)

.

Lemma 1.2.2 Let 1 ≤ p ≤ r ≤ q, 1
r

= α
p

+ 1−α
q

and 1 ≤ α ≤ 0. Then

‖u‖Lr ≤ ‖f‖αLp‖g‖1−α
Lq .

Lemma 1.2.3 If µ(Ω) <∞, 1 ≤ p ≤ q ≤ ∞, then Lq ↪→ Lp and

‖u‖Lp ≤ µ(Ω)
1
p

+ 1
q ‖u‖Lq .

1.2.3 Bounded and Unbounded linear operators

Let (E, ‖.‖E) and (F, ‖.‖F ) be two Banach spaces over IC, and H will always denote a Hilbert
space equipped with the scalar product < ., . >H and the corresponding norm ‖.‖H . A linear
operator T : E −→ F is a transformation which maps linearly E in F , that is

T (αu+ βv) = αT (u) + βT (v), ∀u, v ∈ E and α, β ∈ IC.

Definition 1.2.6 A linear operator T : E −→ F is said to be bounded if there exists C ≥ 0
such that

‖Tu‖F ≤ C‖u‖E ∀u ∈ E.

The set of all bounded linear operators from E into F is denoted by L(E,F ). Moreover, the set
of all bounded linear operators from E into E is denoted by L(E).

Definition 1.2.7 A bounded operator T ∈ L(E,F ) is said to be compact if for each sequence
(xn)

n∈IN ∈ E with ‖xn‖E = 1 for each n ∈ IN, the sequence (Txn)
n∈IN has a subsequence which

converges in F .
The set of all compact operators from E into F is denoted by K(E,F ). For simplicity one writes
K(E) = K(E,F ).

Definition 1.2.8 Let T ∈ L(E,F ) we define
• Range of T by

R(T ) = {Tu : u ∈ E} ⊂ F.

• Kernel of T by
ker(T ) = {u ∈ E : Tu = 0} ⊂ E.

Theorem 1.2.3 (Fredholm alternative)
If T ∈ K(E), then
• ker(I − T ) is finite dimension, (I is the identity operator on E) .
• R(I − T ) is closed.
• ker(I − T ) = 0⇔ R(I − T ) = E.
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Definition 1.2.9 An unbounded linear operator T from E into F is a pair (T,D(T )), consisting
of a subspace D(T ) ⊂ E (called the domain of T ) and a linear transformation.

T : D(T ) ⊂ E 7→ F.

In the case when E = F then we say (T,D(T )) is an unbounded linear operator on E. If
D(T ) = E then T ∈ L(E,F ).

Definition 1.2.10 Let T : D(T ) ⊂ E 7→ F be an unbounded linear operator.
• The range of T is defined by

R(T ) = {Tu : u ∈ D(T )} ⊂ F.

• The Kernel of T is defined by

ker(T ) = {u ∈ D(T ) : Tu = 0} ⊂ E.

• The graph of T is defined by

G(T ) = {(u, Tu) : u ∈ D(T )} ⊂ E × F.

Definition 1.2.11 A map T is said to be closed if G(T ) is closed in E × F . The closedness of
an unbounded linear operator T can be characterize as following if un ∈ D(T ) such that un → u
in E and Tun → v in F , then u ∈ D(T ) and Tu = v.

Definition 1.2.12 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator.
• The resolvent set of T is defined by

ρ(T ) = {λ ∈ IC : λI − T is bijective fromD(T ) ontoF}.

• The resolvent of T is defined by

R(λ, T ) = {(λI − T )−1 : λ ∈ ρ(T )}

• The spectrum set of T is the complement of the resolvent set in IC , denoted by

σ(T ) = IC/ρ(T )

Definition 1.2.13 Let T : D(T ) ⊂ E 7→ F be a closed unbounded linear operator. we can split
the spectrum σ(T ) of T into three disjoint sets, given by
• The punctual spectrum of T is define by

σp(T ) = {λ ∈ IC : ker(λI − T ) 6= {0}}

in this case λ is called an eigenvalue of T .
• The continuous spectrum of T is define by

σc(T ) = {λ ∈ IC : ker (λI − T ) = 0, R(λI − T ) = F and (λI − T )−1 is not bounded }.

• The residual spectrum of T is define by

σr(T ) = {λ ∈ IC : ker (λI − T ) = 0, and R(λI − T ) is not dense in F}
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Definition 1.2.14 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator and let λ be
an eigevalue of A. non-zero element e ∈ E is called a generalized eigenvector of T associated
with the eigenvalue value λ, if there exists n ∈ IN∗ such that

(λI − T )ne = 0 and (λI − T )n−1e 6= 0.

if n = 1, then e is called an eigenvector.

Definition 1.2.15 Let T : D(T ) ⊂ E −→ F be a closed unbounded linear operator. We say
that T has compact resolvent, if there exist λ0 ∈ ρ(T ) such that (λ0I − T )−1 is compact.

Theorem 1.2.4 Let (T,D(T )) be a closed unbounded linear operator on H then the space
(D(T ), ‖.‖D(T )) where ‖u‖D(T ) = ‖Tu‖H + ‖u‖H ∀u ∈ D(T ) is Banach space .

Theorem 1.2.5 Let (T,D(T )) be a closed unbounded linear operator on H then, ρ(T ) is an
open set of IC.

1.3 Lax-Milgrame Theorem

Let H be a Hilbert space equipped with the inner product (., .)H and the induced norm ‖.‖H .

Definition 1.3.1 A bilinear form

a : H ×H → IR

is said to be

• (i) continuous if there is a constant C such that

|a(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ H

• (ii) coercive if there is a constant α > 0 such that

|a(u, u)| ≥ α‖u‖2, ∀u ∈ H

Theorem 1.3.1 (Lax-Milgrame Theorem) Assume that a(., .) is a continuous coercive bi-
linear form on H. Then, given any L ∈ L(H, IC), there exists a unique element u ∈ H such
that

a(u, v) = L(v), ∀v ∈ H
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1.4 Semigroups, Existence and uniqueness of solution

The vast majority of the evolution equations can be reduced to the form{
Ut(t) = AU(t), t > 0,
U(0) = U0,

(1.1)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets
start by basic definitions and theorems.
Let (X, ‖.‖X) be a Banach space, and H be a Hilbert space equipped with the inner product
< ., . >H and the induced norm ‖.‖H .

Definition 1.4.1 Let X be a Banach space and let I : X → X its identity operator.

1. A one parameter family (S(t))t≥0, of bounded linear operators from X into X is a semigroup
of bounded linear operators on X if

(i) S(0) = I;

(ii) S(t+ s) = S(t)S(s) for every s, t ≥ 0.

2. A semigroup of bounded linear operators, (S(t))t≥0, is uniformly continuous if

lim
t→0
‖S(t)− I‖ = 0.

3. A semigroup (S(t))t≥0 of bounded linear operators on X is a strongly continuous semigroup
of bounded linear operators or a C0-semigroup if

lim
t→0

S(t)x = x

4. The linear operator A defined by

Ax = lim
t→0

S(t)x− x
t

, ∀x ∈ D(A)

where

D(A) =
{
x ∈ X; lim

t→0

S(t)x− x
t

exists
}

is the infinitesimal generator of the semigroup (S(t))t≥0.

Some properties of semigroup and its generator operator A are given in the following theorems:

Theorem 1.4.1 (Pazy) Let A be the infinitesimal generator of a C0- semigroup of contractions
(S(t))t≥0. Then, the resolvent (λI −A)−1 of A contains the open right half-plane, i.e., ρ(A) ⊂
{λ : R(λ) > 0} and for such λ we have

‖(λI −A)−1‖L(H) ≤
1

R(λ)
.
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Theorem 1.4.2 (Kato) Let A be a closed operator in a Banach space X such that the resolvent
(I −A)−1 of A exists and is compact. Then the spectrum σ(A) of A consists entirely of isolated
eigenvalues with finite multiplicities.

Theorem 1.4.3 (Pazy) Let (S(t))t≥0 be a C0-semigroup on a Hilbert space H. Then there
exist two constants ω ≥ 0 and M ≥ 1 such that

‖S(t)‖L(H) ≤Meωt, ∀t ≥ 0.

If ω = 0, the semigroup (S(t))t≥0 is called uniformly bounded and if moreover M = 1, then
it is called a C0-semigroup of contractions. For the existence of solution of problem (1.1), we
typically use the following Lumer-Phillips and Hille-Yosida theorems :

Theorem 1.4.4 (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in a
Hilbert space H. If

(i) A is dissipative, i.e., < R(< Ax, x >H) ≤ 0, ∀x ∈ D(A)
and if

(ii) there exists a λ0 > 0 such that the range R(λ0I −A) = H,
then A generates a C0-semigroup of contractions on H.

Theorem 1.4.5 (Hille-Yosida) Let A be a linear operator on a Banach space X and let
ω ∈ IR, M ≥ 1 be two constants. Then the following properties are equivalent

(i) A generates a C0-semigroup (S(t))t≥0, satisfying

‖S(t)‖L(H) ≤Meωt, ∀t ≥ 0.

(ii) A is closed, densely defined, and for every λ > ω one has λ ∈ ρ(A) and

‖(λ− ω)n(λ−A)−n‖ ≤M, ∀n ∈ IN.

(iii) A is closed, densely defined, and for every λ ∈ IC with R > ω, one has λ ∈ ρ(A) and

‖(λ−A)−n‖ ≤ M

(R(λ)− ω)n
, ∀n ∈ IN.

Consequently, A is maximal dissipative operator on a Hilbert space H if and only if it generates
a C0-semigroup of contractions (S(t))t≥0 on H. Thus, the existence of solution is justified by the
following corollary which follows from Lumer-Phillips theorem.

Corollary 1.4.1 Let H be a Hilbert space and let A be a linear operator defined from D(A) ⊂ H
into H. If A is maximal dissipative operator then the initial value problem (1.1) has a unique
solution U(t) = SA(t)U0 such that U ∈ C([0,+1), H), for each initial datum U0 ∈ H. Moreover,
if U0 ∈ D(A), then

U ∈ C([0,+1), D(A)) ∩ C1([0,+1), H).

Finally, we also recall the following theorem concerning a perturbations by a bounded linear
operators
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Theorem 1.4.6 Let X be a Banach space and let A be the infinitesimal generator of a C0-
semigroup (S(t))t≥0 on X, satisfying ‖SA(t)‖L(H) ≤Meωt for all t ≥ 0. If B is a bounded linear
operator on X , then the operator A+ B becomes the infinitesimal generator of a C0-semigroup
(SA+B(t))t≥0 on X, satisfying ‖SA+B(t)‖L(H) ≤Me(ω+M‖B‖)t for all t ≥ 0 .

1.5 Stability of semigroup

In this section we start by introducing some definition about strong, exponential and polynomial
stability of a C0-semigroup. Then we collect some results about the stability of C0-semigroup. Let
(X, ‖.‖X) be a Banach space, and H be a Hilbert space equipped with the inner product < ., . >H

and the induced norm ‖.‖H .

Definition 1.5.1 Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S(t))t≥0 on X. We say that the C0-semigroup (S(t))t≥0 is

1. Strongly stable if
lim
t→+∞

‖S(t)u‖X = 0, ∀u ∈ X.

2. Uniformly stable if
lim
t→+∞

‖S(t)‖L(X) = 0.

3. Exponentially stable if there exist two positive constants M and ε such that

‖S(t)u‖X ≤Me−εt‖u‖X , ∀t > 0, ∀u ∈ X.

4. Polynomially stable if there exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X , ∀t > 0, ∀u ∈ X.

Proposition 1.5.1 Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S(t))t≥0 on X. The following statements are equivalent

• (S(t))t≥0 is uniformly stable.

• (S(t))t≥0 is exponentially stable.

First, we look for the necessary conditions of strong stability of a C0-semigroup. The result was
obtained by Arendt and Batty.

Theorem 1.5.1 (Arendt and Batty) Assume that A is the generator of a strongly continuous
semigroup of contractions (S(t))t≥0 on a reflexive Banach space X. If

(i) A has no pure imaginary eigenvalues.

(ii) σ(A) ∩ iIR is countable.
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Then S(t) is strongly stable.

Remark 1.5.1 If the resolvent (I − T )−1 of T is compact, then σ(T ) = σp(T ). Thus, the state
of Theorem (...) lessens to σp(A) ∩ iIR = ∅. Next, when the C0-semigroup is strongly stable,
we look for the necessary and sufficient conditions of exponential stability of a C0-semigroup. In
fact, exponential stability results are obtained using different methods like: multipliers method,
frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them .

Theorem 1.5.2 (Huang-Pruss)Assume that A is the generator of a strongly continuous semi-
group of contractions (S(t))t≥0 on H. S(t) is uniformly stable if and only if

1. iIR ⊂ ρ(A).

2. sup
β∈IR ‖(iβI −A)−1‖L(H) < +∞.

The second one, is a classical method based on the spectrum analysis of the operator A

In the case when the C0-semigroup is not exponentially stable we look for a polynomial one. In
general, polynomial stability results also are obtained using different methods like : multipliers
method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of
them .

Theorem 1.5.3 (Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao.)Assume that A is
the generator of a strongly continuous semigroup of contractions (S(t))t≥0 on H. If iIR ⊂ ρ(A),
then for a fixed l > 0 the following conditions are equivalent

1. lim|λ|→+∞ sup 1
λl
‖(λI −A)−1‖L(H) < +∞.

2. ‖S(t)U0‖H ≤ C
tl−1‖U0‖D(A) ∀t > 0, U0 ∈ D(A), for some C > 0.

1.6 Fractional Derivative Control

In this part, we introduce a brief reminder of the basic elements of the theory of fractional
computation. The concept of fractional computation is a generalization of ordinary derivation
and integration to an arbitrary order. Derivatives of non-integer order are now widely applied
in many domains, for example in economics, electronics, mechanics, biology, probability and
viscoelasticity. A particular interest for fractional derivation is related to the mechanical mod-
eling of gums and rubbers. In short, all kinds of materials that preserve the memory of previous
deformations in particular viscoelastic. Indeed, the fractional derivation is introduced naturally.
The fractional calculus is an important developing field in both pure and applied mathematics.
Many real world problems have been investigated within the fractional derivatives, particularly
Caputo fractional derivative is extensively and successfully used in many branches of sciences
and engineering.
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1.6.1 Some history of fractional calculus

We refer to [29].
In a letter dated September 30th, 1695 L’Hospital wrote to Leibniz asking him about the
meaning of dny/dxn if n = 1/2, that is ”what if n is fractional?”. Leibnizs response: An apparent
paradox, from which one day useful consequences will be drawn.
In 1819 S. F. Lacroix was the first to mention in some two pages a derivative of arbitrary
order.Thus for y = xa, a ∈ IR+, he showed that

d1/2y

dx1/2
=

Γ(a+ 1)

Γ(1 + 1/2)
xa−1/2.

In particular he had (d/dx)1/2x = 2
√
x/π.

In 1822 J. B. J. Fourier derived an integral representation for f(x),

f(x) =
1

2π

∫
IR
f(α)dα

∫
IR

cos p(x− α)dp,

obtained (formally) the derivative version

dν

dxν
f(x) =

1

2π

∫
IR
f(α)dα

∫
IR
pν cos[p(x− α) +

νπ

2
]dp

where ”the number v will be regarded as any quantity whatever, positive or negative”.
In 1823 Abel resolved the integral equation arising from the brachistochrone problem, namely

1

Γ(α)

∫ x

0

g(u)

(x− u)1−αdu = f(x), 0 < α < 1

with the solution

g(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(u)

(x− u)α
du

Abel never solved the problem by fractional calculus but, in 1832 Liouville , did solve this
integral equation.
Perhaps the first serious attempt to give a logical definition of a fractional derivative is due to
Liouville; he published nine papers on the subject between 1832 and 1837, the last in the field
in 1855. They grew out of Liouville’s early work on electromagnetism. There is further work of
George Peacock (1833), D. F. Gregory (1841), Augustus de Morgan (1842), P. Kelland (1846),
William Center (1848). Especially basic is Riemann’s student paper of 1847.
After the participation of Riemann and the work of Cayley in 1880 , among the mathematicians
spearheading research in the broad area of fractional calculus until 1941 were S.F. Lacroix, J.B.J.
Fourier, N.H. Abel, J. Liouville, A. De Morgan, B. Riemann, Hj. Holmgren, K. Griinwald, A.V.
Letnikov, N.Ya. Sonine, J. Hadamard, G.H. Hardy, H. Weyl, M. Riesz, H.T. Davis, A. Marchaud,
J.E. Littlewood, E.L. Post, E.R. Love, B.Sz.-Nagy, A. Erdelyi and H. Kober.
Fractional calculus has developed especially intensively since 1974 when the first international
conference in the field took place.It was organized by Bertram Ross.
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Samko et al in their encyclopedic volume state and we cite: ”We pay tribute to investigators
of recent decades by citing the names of mathematicians who have made a valuable scientific
contribution to fractional calculus development from 1941 until the present [1990]. These are
M.A. Al- Bassam, L.S. Bosanquet, P.L. Butzer, M.M. Dzherbashyan, A. Erdelyi, T.M. Flett,
Ch. Fox, S.G. Gindikin, S.L. Kalla, LA. Kipriyanov, H. Kober, P.I. Lizorkin, E.R. Love, A.C.
McBride, M. Mikolas, S.M. Nikol’skii, K. Nishimoto, LI. Ogievetskii, R.O. O’Neil, T.J. Osier, S.
Owa, B. Ross, M. Saigo, I.N. Sneddon, H.M. Srivastava, A.F. Timan, U. Westphal, A. Zygmund
and others”. To this list must of course be added the names of the authors of Samko et al
and many other mathematicians, particularly those of the younger generation. Books especially
devoted to fractional calculus include K.B. Oldham and J. Spanier, S.G. Samko, A.A. Kilbas and
O.I. Marichev, V.S. Kiryakova, K.S. Miller and B. Ross, B. Rubin. Books containing a chapter
or sections dealing with certain aspects of fractional calculus include H.T. Davis, A. Zygmund,
M.M.Dzherbashyan, I.N. Sneddon, P.L. Butzer and R.J. Nessel, P.L. Butzer and W. Trebels,
G.O. Okikiolu, S. Fenyo and H.W. Stolle, H.M. Srivastava and H.L. Manocha, R. Gorenfio and
S. Vessella.

1.6.2 Various approaches of fractional derivatives

There exists a many mathematical definitions of fractional order integration and derivation.
These definitions do not always lead to identical results but are equivalent for a wide large of
functions. We introduce the fractional integration operator as well as the two most definitions
of fractional derivatives, used, namely that Riemann-Liouville, Caputo and Hadamard.

From the classical fractional calculus, we recall

Definition 1.6.1 The left Riemann-Liouville fractional integral of order α > 0 starting from a
has the following form

(aI
αf)(n) =

1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt.

Definition 1.6.2 The right Riemann-Liouville fractional integral of order α > 0 ending at b > a
is defined by

(Iαb f)(n) =
1

Γ(α)

∫ b

x
(x− t)α−1f(t)dt.

Definition 1.6.3 The left Riemann-Liouville fractional derivative of order α > 0 starting at a
is given below

(aD
αf)(x) = (

d

dx
)n(aIn−αf)(x), n = [α] + 1.

Definition 1.6.4 The right Riemann-Liouville fractional derivative of order α > 0 ending at b
becomes

(Dα
b f)(x) = (− d

dx
)n(In−αb f)(x).
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Definition 1.6.5 The left Caputo fractional of order α > 0 starting from a has the following
form

(aD
αf)(x) = (aIn−αf (n))(x), n = [α] + 1.

Definition 1.6.6 The right Caputo fractional derivative of order α > 0 ending at b becomes

(Dα
b f)(x) = (In−αb (−1)nf (n))(x).

The Hadamard type fractional integrals and derivatives were introduced in [15] as:

Definition 1.6.7 The left Hadamard fractional integral of order α > 0 starting from a has the
following form

(aI
αf)(x) =

1

Γ(α)

∫ x

a
(lnx− ln t)α−1f(t)dt

Definition 1.6.8 The right Hadamard fractional integral of order α > 0 ending at b > a is
defined by

(Iαb f)(x) =
1

Γ(α)

∫ b

x
(ln t− lnx)α−1f(t)dt

Definition 1.6.9 The left Hadamard fractional derivative of order α > 0 starting at a is given
below

(aD
αf)(x) = (x

d

dx
)n(aIn−αf)(x), n = [α] + 1.

Definition 1.6.10 The right Hadamard fractional derivative of order α > 0 ending at b becomes

(Dα
b f)(x) = (−x d

dx
)n(In−αb f)(x).

Definition 1.6.11 The fractional derivative of order α, 0 < α < 1, in sense of Caputo, is
defined by

Dαf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−α df

ds
(s)ds.

Definition 1.6.12 The fractional integral of order α, 0 < α < 1, in sense Riemann-Liouville,
is defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds.

Remark 1.6.1 From the above definitions, clearly

Dαf = Iα−1Df, 0 < α < 1.

Lemma 1.6.1
IαDαf(t) = f(t)− f(0), 0 < α < 1.
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Lemma 1.6.2 If

Dβf(0) = 0.

then

DαDβf = Dα+βf, 0 < α < 1, 0 < β < 1.

Now, we give the definitions of the generalized Caputo’s fractional derivative and the gener-
alized fractional integral. These exponentially modified fractional integro-differential operators
were first proposed in [].

Definition 1.6.13 The generalized Caputo’s fractional derivative is given by

Dα,ηf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s) df

ds
(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.6.2 The operators Dα and Dα,η differ just by their kernels.

Definition 1.6.14 The generalized fractional integral is given by

Iα,ηf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1e−η(t−s)f(s) ds, 0 < α < 1, η ≥ 0.

Remark 1.6.3 We have

Dα,ηf = I1−α,ηDf, 0 < α < 1, η ≥ 0.

1.7 Bessel functions

We will discuss a class of functions known as Bessel functions. These are named after the German
mathematician and astronomer Friedrich Bessel. Bessel functions occur in many other physical
problems, usually in a cylindrical geometry.

Definition 1.7.1 Bessel’s equation can be written in the form

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0,(1.2)

with ν real and positive. note that (1.2) has a regular singular point at x = 0.
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1.7.1 The Gamma Function and Pockhammer Symbol

Definition 1.7.2 The gamma function is defined by

Γ(x) =
∫ ∞

0
e−qqx−1dq, for x > 0.(1.3)

Note that the integration is over the dummy variable q and x is treated as constant during the
integration

Definition 1.7.3 The pockhammer symbol is a simple way of writing down long products. It
is defined as

(α)r = α(α + 1)(α + 2)...(α + r − 1)

So that, for example, (α)1 = α and (α)2 = α(α + 1).
Note that (1)n = n!

The relationship between the gamma function and the pockhammer symbol is

Γ(x)(x)n = Γ(x+ n)

1.7.2 Series solutions of Bessel’s Equation

a.Fundamental solutions of Bessel’s equation when ν /∈ IN

We can now proceed to consider a Frobenius solution,

y(x) =
∞∑
m=0

amx
m+c

Where we have used the Pockhammer symbol to simplify the expression. So we have

y(x) = a0x
±ν

∞∑
m=0

(−1)m
x2m

22m(1± ν)mm!

With a suitable choice of a0 we can write this as

y(x) = A
x±ν

2±νΓ(1± ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1± ν)mm!
= AJ±ν(x).

These are the Bessel functions of order ±ν. The general solution of Bessel’s equation (1.2), is
therefore

y(x) = AJ+ν(x) +BJ−ν(x),
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for arbitrary constants A and B, with the first of the two series converges for all values of x and
defines the so-called Bessel function of order ν and of the first kind which is denoted by Jν

Jν(x) =
xν

2νΓ(1 + ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1 + ν)mm!
=

∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)
(
x

2
)2m+ν =

∞∑
m=0

c+
ν,mx

2m+ν , x ≥ 0.

(1.4)
The second series converges for all positive values of x and is evidently J−ν

J−ν(x) =
x−ν

2−νΓ(1− ν)

∞∑
m=0

(−1)m
(x

2

4
)m

(1− ν)mm!
=

∞∑
m=0

(−1)m

m!Γ(m− ν + 1)
(
x

2
)2m−ν =

∞∑
m=0

c−ν,mx
2m−ν , x > 0.

(1.5)

b.Fundamental solutions of Bessel’s equation when ν = n ∈ IN

Assume that ν = n ∈ IN. When looking for solutions of ( 1.2 )of the form of series of ascending
powers of x, one sees that Jn and J−n are still solutions of ( 1.2 ), where Jn is still by ( 1.4 ) and
J−n is given by ( 1.5 ); when ν = n ∈ IN, J−n can be written .

Jn(x) =
∑
m≥n

(−1)m

m!Γ(m− n+ 1)
(
x

2
)−n+2m.(1.6)

However now J−n(x) = (−1)nJn(y), hence Jn and J−n are linearly dependent. The determination
of a fundamental system of solutions in this case requires further investigation. In this purpose,
one introduces the Bessel’s functions of order ν and of the second kind: among the several
definitions of Bessel’s functions of second order, we recall here the definition by Weber. The
Bessel’s functions of order ν and of second kind are denoted by Yν and defined by{

∀ν /∈ IN, Yν(y) := Jν(x)cos(νπ)−J−ν(x)
sin(νπ)

,

∀n ∈ IN, Yn(y) := limν→n Yν(x),

For any ν ∈ IR+ , the two functions Jν and Yν always are linearly independent. In particular, in
the case ν = n ∈ IN, the pair ( Jn, Yn ) forms a fundamental system of solutions of the Bessels
equation for functions of order n.

1.7.3 Differential and Recurrence Relations Between Bessel func-
tions

It is often useful to find relationships between Bessel functions with different indices. We will
derive two such relationships. We start with (??),we multiply by xν and differentiate to obtain

d

dx
{xνJν(x)} = xνJν−1(x)(1.7)

and consequently
d

dx
{x−νJν(x)} = −x−νJν+1(x)(1.8)
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We can use these relationships to derive recurrence relations between the Bessel functions. We
expand the differentials in each expression to give the equations

J ′ν(x) +
ν

x
Jν(x) = Jν−1(x),(1.9)

where we have divided through by xν , and

J ′ν(x)− ν

x
Jν(x) = −Jν+1(x),(1.10)

where this time we have multiplied by xν . By adding these expressions we find that

J ′ν(x) =
1

2
{Jν−1(x)− Jν+1(x)},(1.11)

and by subtracting then
2ν

x
Jν(x) = Jν−1(x) + Jν+1(x),(1.12)

which is a pure recurrence relationship. These results can also be used when integrating Bessel
functions.

1.7.4 Inhomogeneous Terms in Bessel’s Equation

The Inhomogeneous version of Bessel’s equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = f(x),(1.13)

and the solution can be written as

y(x) = AJν(x) +BJ−ν(x) +
2ν

sinνπ

∫ x

0

f(s)

s

(
Jν(s)J−ν(x)− Jν(x)Y−ν(s)

)
ds.(1.14)

1.8 Appendix

Theorem 1.8.1 Let µ be the function:

µ(ξ) = |ξ|
2α−d

2 , ξ ∈ IRd and 0 < α < 1.(1.15)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tω(ξ, t) + (|ξ|2 + η)ω(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ IRd, t ∈ IR+ and η ≥ 0(1.16)

ω(ξ, 0) = 0,(1.17)

O(t) =
2 sin(απ)Γ(d

2
+ 1)

dπ
d
2

+1

∫
IRd µ(ξ)ω(ξ, t)dξ,(1.18)

is given by
O = I1−α,ηU = Dα,ηU.(1.19)
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Proof
Step 1. Take η = 0, the from equation (1.16) and (1.17),we have

ω(ξ, t) =
∫ t

0
µ(ξ)e−|ξ|

2(t−τ)U(τ)dτ(1.20)

Then from equations (1.18) and (1.20), we get

O(t) = δ
∫
IRd |ξ|2α−d[

∫ t

0
µ(ξ)e−|ξ|

2(t−τ)U(τ)dτ ]dξ(1.21)

where δ =
2 sin(απ)Γ( d

2
+1)

dπ
d
2+1

. Next, using the spherical coordinates defined by,



ξ1 = ρsin(φ1)sin(φ2)...sin(φd−3)sin(φd−2)sin(φd−1),
ξ2 = ρsin(φ1)sin(φ2)...sin(φd−3)sin(φd−2)cos(φd−1),
ξ3 = ρsin(φ1)sin(φ2)...sin(φd−3)cos(φd−2),
ξ4 = ρsin(φ1)sin(φ2)...cos(φd−3),
.
.
.
ξd−1 = ρsin(φ1)cos(φ2),
ξd = ρcos(φ1).

(1.22)

where,ρ = |ξ| =
√∑d

i=1 |ξi|2, φj ∈ [0, π] if 1 ≤ j ≤ d − 2 and φd−2 ∈ [0, 2π]. The jacobian J is
defined by

J = ρd−1
d−2∏
j=1

sind−1−j(φj)(1.23)

Since the integrating is a function which depends only on |ξ| = ρ, thus we can integrate on all
the angles and the calculation reduces that of a simple integral on the positive real axis. Then,
from equations (1.21)-(1.23) we get

O(t) = δ
∫ +∞

0
ρ2α−1

d−2∏
j=1

(
∫ π

0
sind−1−j(φj)dφj)

∫ 2π

0
dφd−1[

∫ t

0
e−ρ

2(t−τ)U(τ)dτ ]dρ(1.24)

By induction, it easy to see that

d−2∏
j=1

(
∫ π

0
sind−1−j(φj)dφj)

∫ 2π

0
dφd−1 =

dΠ
d
2

Γ(d
2

+ 1)
(1.25)

Inserting equation (1.25) in equation (1.24), we get

O(t) =
sin(απ)

π

∫ t

0
2[
∫ +∞

0
ρ2α−1e−ρ

2(t−τ)dρ]U(τ)dτ.(1.26)

Thus,

O(t) =
sin(απ)

π

∫ t

0
[(t− τ)−αΓ(α)]U(τ)dτ.(1.27)
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Using the fact that sin(απ)
π

= 1
Γ(α)Γ(1−α)

in equation, we obtain

O(t) =
∫ t

0

(t− τ)−α

Γ(1− α)
U(τ)dτ.(1.28)

It follows that, from equation (1.28) we have

O = I1−αU(1.29)

Step 2. By simply effecting the following change of function

ω(ξ, t) := e−ηtϕ(ξ, t)

in equations (1.16) and (1.18), we directly obtain

∂tω(ξ, t) + (|ξ|2 + η)ω(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ IRN , t ∈ IR+ and η ≥ 0,(1.30)

ω(ξ, 0) = 0,(1.31)

O(t) = δe−ηt
∫
IRd µ(ξ)ω(ξ, t)dξ(1.32)

Hence, from Step 1, (1.30)-(1.32) yield the desired result

O(t) = e−ηt
∫ t

0

(t− τ)−α

Γ(1− α)
eητU(τ)dτ

The proof has been completed.

Lemma 1.8.1 If λ ∈ D = {λ ∈ IC : Reλ+ η > 0} ∪ {λ ∈ IC : Imλ 6= 0} then

F1(λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1

and

F2(λ) =
∫ +∞

−∞

µ2(ξ)

(λ+ η + ξ2)2
dξ = (1− α)

π

sinαπ
(λ+ η)α−2.

Proof Let us set

fλ(ξ) =
µ2(ξ)

λ+ η + ξ2
.

We have ∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤ µ2(ξ)

Reλ+ η + ξ2
.

Then the function fλ is integrable. Moreover

∣∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣∣ ≤


µ2(ξ)

η0 + η + ξ2
for all Reλ ≥ η0 > −η

µ2(ξ)

η̃0 + ξ2
for all |Imλ| ≥ η̃0 > 0
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From theorem 1.16.1 in [44], the function

fλ : D → IC is holomorphe.

For a real number λ > −η, we have∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ+ η + ξ2
dξ =

∫ +∞

0

xα−1

λ+ η + x
dx ( with ξ2 = x)

= (λ+ η)α−1
∫ +∞

1
y−1(y − 1)α−1 dy ( with y = x/(λ+ η) + 1)

= (λ+ η)α−1
∫ 1

0
z−α(1− z)α−1 dz ( with z = 1/y)

= (λ+ η)α−1B(1− α, α) = (λ+ η)α−1Γ(1− α)Γ(α) = (λ+ η)α−1 π

sin πα
.

Both holomorphic functions fλ and λ 7→ (λ + η)α−1 π

sinπα
coincide on the half line ] −∞,−η[,

hence on D following the principle of isolated zeroes.
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Chapter 2

ENERGY DECAY FOR A
DEGENERATE WAVE EQUATION
UNDER FRACTIONAL DERIVATIVE
CONTROLS

2.1 Introduction

In this Chapter, we are concerned with the boundary stabilization of convolution type for de-
generate wave equation of the form

utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,∞),(2.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(2.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

.(2.2)

We distinguish the two following cases:

-The weakly degenerate case at 0. When µa ∈ [0, 1[, then the problem is called weakly
degenerate at 0 and the natural boundary condition associated to (2.1) is the Dirichlet
boundary condition u(0) = 0.

-The strongly degenerate case at 0. When µa > 1, then the problem is called strongly
degenerate at 0 and the natural boundary condition associated to (2.1) is the Neumann
boundary condition (aux)(0) = 0.

These type of conditions on diffusion coefficient and on the boundary were used before in the
context of study of null controlability of degenerate parabolic equation.

37
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Up to now, there are many works concerning the stabilization and controllability of non-
degenerate wave equation with different types of damping (see e.g. [21], [22], [19], [24] and
the references therein). In [22], for a(x) = a1x + a0 : the authors have established asymptotic
stabilization with the following boundary damping{

(aux)(0, t) = 0,
(aux)(1, t) = −ku(1, t)− ut(1, t), k > 0.

In [19], the authors considered the following modelization of a flexible torque arm controlled by
two feedbacks depending only on the boundary velocities:

utt(x, t)− (a(x)ux)x + αut(x, t) + βy(x, t) = 0, 0 < x < 1, t > 0,
(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,

where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions.
On the contrary, when the coefficient a(x) is zero at some points, the equation will be

degenerate and few results are known in this case, even though many problems that are relevant
for applications are described by hyperbolic equations degenerating at the boundary of the
space domain (see [26], [46] and [2]). In [26], for any 0 < γ < 1, the null controllability of the
following degenerate wave equation was considered:

(PC)


utt(x, t)− (xγux(x, t))x = 0 on (0, 1)× (0, T ),
u(0, t) = θ(t), u(1, t) = 0 on (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where θ(t) is the control variable and it acts on the degenerate boundary. Recently, in [46] (see
also [2]), the authors studied the null controllability problems of one-dimensional degenerate
wave equations as in [26] but the control acts on the nondegenerate boundary. They proved that
any initial value in state space is controllable. Also, an explicit expression for the controllability
time is given.

In [2], Alabau has also considered the stabilization of the problem (2.1) together with bound-
ary control of the form

ut(1, t) + ux(1, t) + βu(1, t) = 0,(2.3)

where β > 0. Thanks to the dominant energy approach together with suitable elliptic estimates,
she proved that (2.3) stabilizes exponentially the corresponding solution of the degenerate wave
equation.

In this Chapter, we are concerned with the system

(P1)



utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

βu(1, t) + (aux)(1, t) = −%∂α,ηt u(1, t) in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).
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where % > 0 and β ≥ 0.The notation ∂α,ηt stands for the generalized Caputo’s fractional derivative
of order α, (0 < α < 1), with respect to the time variable (see [10] and [20] ). It is defined as
follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, η ≥ 0.

The degenerate wave equation (P1)1 can describe the vibration problem of an elastic string. In
a neighborhood of an endpoint x = 0 of this string, the elastic is sufficiently small or the linear
density is large enough. There are a few number of publications concerning the stabilization of
distributed systems with fractional damping. In [39], Mbodje studies the energy decay of the
wave equation with a boundary fractional derivative control. He used a new approach, when
the original model is transformed into an augmented system, and by using energy methods, he
proves strong asymptotic stability under the condition η = 0 and a polynomial type decay rate
E(t) ≤ C/t if η 6= 0. Very recently in [1], Benaissa and al. considered the Euler-Bernoulli beam
equation with boundary damping of fractional derivative type defined by

(PEF )



utt(x, t) + uxxxx(x, t) = 0 in (0, L)× (0,+∞),
u(0, t) = ux(0, t) = 0 on (0,+∞),
uxx(L, t) = 0 on (0,+∞),
uxxx(L, t)− γ∂α,ηt ut(L, t) = 0 on (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, L).

They proved, under the condition η = 0, by a spectral analysis, the non uniform stability. On
the other hand, for η > 0, they also proved that the energy of system (PEF ) decay as time goes
to infinity as t−1/(1−α).

Fractional calculus so often arise in many physical, chemical, biological, and economical
phenomena (see [4], [5], [6] and [38]). In recent years, the control of PDEs with boundary
damping of convolution type has become an active area of research because it improve the
performance of the systems.

This Chapter as organized as follows. In section 2, we give preliminaries results and we
reformulate the system (P1) into an augmented system by coupling the degenerate wave equation
with a suitable diffusion equation and we show the well-posedness of our problem by semigroup
theory. In section 3, uniqueness of strong and weak solutions of the system, when we used
Hille-Yosida Theorem. In section 4, we prove lack of exponential stability by spectral analysis
for particular case a(x) = xγ, 0 ≤ γ < 2 by using Bessel functions. In section 5, we study
asymptotic stability of above model and we establish a polynomial energy decay depending with
parameter α for smooth solution. In the last section, we prove an optimal decay rate for the
particular case a(x) = xγ. The proof heavily relies on multiplier method, Bessel equations and
Borichev-Tomilov Theorem.
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2.2 Preliminaries results

Let a ∈ C([0, 1] ∩ C1(]0, 1]) be a function satisfying the following assumptions:
(i) a(x) > 0 ∀x ∈]0, 1], a(0) = 0,

(ii) µa = sup
0<x≤1

x|a′(x)|
a(x)

< 2, and

(iii) a ∈ C [µa]([0, 1]),

(2.4)

where [·] stands for the integer part.
When µa > 1, we suppose β > 0 because if β = 0 and the feedback law only depends on

velocities, we may encounter the situation where the closed-loop system is not well-posed in
terms of the semigroups in the Hilbert space.

Examples: 1) Let $ ∈ (0, 2) be given. Define

a(x) = x$ ∀x ∈ [0, 1].

satisfies (2.4).
2) Let $ ∈ [0, 2) be given and let θ ∈ (0, 1−$/2). The function

a(x) = x$(1 + cos2(lnxθ)) ∀x ∈ [0, 1]

satisfies (2.4).
3) Let $ ∈ [0, 2) be given and let θ ∈ (0, $). The function

a(x) = x$e(θ−$)x ∀x ∈ [0, 1]

satisfies (2.4).
Now, we introduce, as in [14], [23] or [2], the following weighted spaces:

H1
0,a(0, 1) =

{
u is locally absolutely continuous in (0, 1] :

√
a(x)ux ∈ L2(0, 1)/ u(0) = 0

}
if µa ∈ [0, 1[,

H1
a(0, 1) =

{
u is locally absolutely continuous in (0, 1] :

√
a(x)ux ∈ L2(0, 1)

}
if µa ∈ [1, 2[.

It is easy to see that H1
a(0, 1) when β > 0 is a Hilbert space with the scalar product

(u, v)H1
a(0,1) =

∫ 1

0
a(x)u′(x)v′(x) dx+ βu(1)v(1).

Let us also set

|u|H1
0,a(0,1) =

(∫ 1

0
a(x)|u′(x)|2 dx

)1/2

∀u ∈ H1
a(0, 1).

Actually, | · |H1
0,a(0,1) is an equivalent norm on the closed subspace H1

0,a(0, 1) to the norm of

H1
a(0, 1) when µa ∈ [0, 1[. This fact is a simple consequence of the following version of Poincaré’s

inequality.
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Proposition 2.2.1 Assume (2.4) with µa ∈ [0, 1). Then there is a positive constant C∗ = C(a)
such that

‖u‖2
L2(Ω) ≤ C∗|u|21,a ∀u ∈ H1

0,a(0, 1).(2.5)

Proof. Let u ∈ H1
0,a(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ x

0
u′(s) ds

∣∣∣∣ ≤ |u|1,a
{∫ 1

0

1

a(s)
ds

}1/2

.

Therefore ∫ 1

0
|u(x)|2 dx ≤ |u|21,a

{∫ 1

0

1

a(s)
ds

}
.

Next, we define
H2
a(0, 1) = {u ∈ H1

a(0, 1) : au′ ∈ H1(0, 1)},

where H1(0, 1) denotes the classical Sobolev space.
Now, we state two propositions that will be needed later (see [14], [23] and [2]).

Proposition 2.2.2 Assume (2.4). Then the following properties hold.

(i) For every u ∈ H1
a(0, 1)

lim
x→0

xu2(x) = 0.(2.6)

(ii) For every u ∈ H2
a(0, 1)

lim
x→0

xa(x)u′(x)2 = 0.(2.7)

(iii) For every u ∈ H2
a(0, 1)

lim
x→0

xa(x)u(x)u′(x) = 0.(2.8)

Proposition 2.2.3 H1
a(0, 1) ↪→ L2(0, 1) with compact embedding.

2.3 Augmented model

This section is concerned with the reformulation of the model (P1) into an augmented system.
For that, we need the following claims.

Theorem 2.3.1 (see [39]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(2.9)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + ξ2φ(ξ, t) + ηφ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(2.10)

φ(ξ, 0) = 0,(2.11)
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O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ(2.12)

is given by
O = I1−α,ηU.(2.13)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ

Lemma 2.3.1 (see [1]) If λ ∈ D = {λ ∈ IC : Reλ+ η > 0} ∪ {λ ∈ IC : Imλ 6= 0} then

F1(λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1

and

F2(λ) =
∫ +∞

−∞

µ2(ξ)

(λ+ η + ξ2)2
dξ = (1− α)

π

sinαπ
(λ+ η)α−2.

2

We are now in a position to reformulate system (P1). Indeed, by using Theorem 2.3.1, system
(P1) may be recast into the augmented model:

(P ′1)



utt(x, t)− (a(x)ux(x, t))x = 0,
φt(ξ, t) + (ξ2 + η)φ(ξ, t)− ut(1, t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

βu(1, t) + (aux)(1, t) = −ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ, ζ = %(π)−1 sin(απ),

u(x, 0) = u0(x),
ut(x, 0) = u1(x).

We define the energy associated to the solution of the problem (P ′1) by the following formula:

E(t) =
1

2

∫ 1

0
(|ut|2 + a(x)|ux|2)dx+

β

2
|u(1, t)|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ.(2.14)

Lemma 2.3.2 Let (u, φ) be a regular solution of the problem (P ′1). Then, the energy functional
defined by (2.14) satisfies

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.(2.15)

Remark 2.3.1 For an initial datum in D(A) (see Theorem 2.4.1 below), we know that (u, φ)
is of class C1 in time, thus we can derive the energy E(t).
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Proof of Lemma 2.3.2. Multiplying the first equation in (P ′1) by ut, integrating over (0, 1)
and using integration by parts, we get∫ 1

0
utt(x, t)utdx−

∫ 1

0
(a(x)ux(x, t))xutdx = 0.

Then

d

dt

(
1

2

∫ 1

0
|ut(x, t)|2dx

)
+

1

2

d

dt

∫ 1

0
a(x)|ux(x, t)|2 dx−<

[
(a(x)ux)(x, t)ut

]1

0
= 0.

Then

d

dt

(
1

2

∫ 1

0

(
|ut(x, t)|2 + a(x)|ux(x, t)|2

)
dx+

β

2
|u(1, t)|2

)
+ ζ<ut(1, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0.(2.16)

Multiplying the second equation in (P ′1) by ζφ and integrating over (−∞,+∞), to obtain:

ζ
∫ +∞

−∞
φt(ξ, t)φ(ξ, t)dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζut(1, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.

Hence

ζ

2

d

dt

∫ +∞

−∞
|φ(ξ, t)|2dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζ<ut(1, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.(2.17)

From (2.14), (2.16) and (2.17) we get

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.

This completes the proof of the lemma.
2

2.4 Global existence

In this section, we give an existence and uniqueness result for problem (P ′1) using the semigroup
theory. Introducing the vector function U = (u, v, φ)T , where v = ut, system (P ′1) is equivalent
to {

U ′ = AU, t > 0,
U(0) = (u0, u1, φ0),

(2.18)

where the operator A is defined by

A

 uv
φ

 =

 v
(a(x)ux)x

−(ξ2 + η)φ+ v(1)µ(ξ)

 .(2.19)
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We introduce the following Hilbert space (the energy space):

H = H1
∗ (0, 1)× L2(0, 1)× L2(−∞,+∞),

where

H1
∗ (0, 1) =

{
H1

0,a(0, 1) if µa ∈ [0, 1),
H1
a(0, 1) if µa ∈ [1, 2).

For U = (u, v, φ)T , Ũ = (ũ, ṽ, φ̃)T we define the following inner product in H

〈U, Ũ〉H =
∫ 1

0
a(x)uxũxdx+

∫ 1

0
vṽdx+ ζ

∫ +∞

−∞
φφ̃ dξ + βu(1)ũ(1).

The domain of A is then

D(A) =



(u, v, φ)T in H : u ∈ H2
a(0, 1) ∩H1

∗ (0, 1), v ∈ H1
∗ (0, 1),

−(ξ2 + η)φ+ v(1)µ(ξ) ∈ L2(−∞,+∞),

βu(1) + (aux)(1) + ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)


.(2.20)

We have the following existence and uniqueness result.

Theorem 2.4.1 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (2.18) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (2.18) has a unique weak solution

U ∈ C0(IR+,H).

Proof
We use the semigroup approach. In what follows, we prove that A is monotone. For any
U ∈ D(A) and using (2.18), (2.15) and the fact that

E(t) =
1

2
‖U‖2

H,(2.21)

we have

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ.(2.22)

Hence, A is monotone. Next, we prove that the operator λI −A is surjective for λ > 0. Given
F = (f1, f2, f3)T ∈ H, we prove that there exists U ∈ D(A) satisfying

(λI −A)U = F.(2.23)
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Equation (2.23) is equivalent to
λu− v = f1,
λv − (a(x)ux)x = f2,
λφ+ (ξ2 + η)φ− v(1)µ(ξ) = f3.

(2.24)

Suppose u is found with the appropriate regularity. Then, (2.24)1 (2.24)2 yield

v = λu− f1 ∈ H1
∗ (0, 1)(2.25)

and

φ =
f3(ξ) + µ(ξ)v(1)

ξ2 + η + λ
.(2.26)

By using (2.24) and (2.25) it can easily be shown that u satisfies

λ2u− (a(x)ux)x = f2 + λf1.(2.27)

Solving equation (2.27) is equivalent to finding u ∈ H2
a(0, 1) ∩H1

∗ (0, 1) such that∫ 1

0
(λ2uw − (a(x)ux)xw) dx =

∫ 1

0
(f2 + λf1)w dx,(2.28)

for all w ∈ H1
∗ (0, 1). By using (2.28), the boundary condition (2.20)3 and (2.26) the function u

satisfying the following equation∫ 1

0
(λ2uw + (a(x)ux)wx) dx+ ζ̃v(1)w(1) + βu(1)w(1)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(1)

(2.29)

where ζ̃ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (2.25), we deduce that

v(1) = λu(1)− f1(1).(2.30)

Inserting (2.30) into (2.29), we get
∫ 1

0
(λ2uw + a(x)uxwx) dx+ (λζ̃ + β)u(1) w(1)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(1) + ζ̃f1(1)w(1).

(2.31)

Problem (2.31) is of the form
B(u,w) = L(w),(2.32)

where B : [H1
∗ (0, 1)×H1

∗ (0, 1)]→ IC is the bilinear form defined by

B(u,w) =
∫ 1

0
(λ2uw + a(x)uxwx) dx+ (λζ̃ + β)u(1) w(1)
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and L : H1
∗ (0, 1)→ IC is the linear functional given by

L(w) =
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(1) + ζ̃f1(1)w(1).

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by the
Lax-Milgram Lemma, system (2.32) has a unique solution u ∈ H1

∗ (0, 1). By the regularity theory
for the linear elliptic equations, it follows that u ∈ H2

a(0, 1). Therefore, the operator λI −A is
surjective for any λ > 0. Consequently, using Hille-Yosida theorem, the result of Theorem 2.4.1
follows.

2

2.5 Lack of exponential stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (2.18). In order to state and prove our stability results, we need some lemmas.

Theorem 2.5.1 ([43]) Let S(t) be a C0-semigroup of contractions on Hilbert space with gener-
ator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR

and
lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Theorem 2.5.2 ([11]) Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator
A. If

iIR ⊂ ρ(A) and lim
|β|→∞

1

βl
‖(iβI −A)−1‖L(H) <∞

for some l, then there exist c such that

‖eAtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

Theorem 2.5.3 ([3]) Let A be the generator of a uniformly bounded C0-semigroup {S(t)}t≥0

on a Hilbert space H. If:

(i) A does not have eigenvalues on iIR.

(ii) The intersection of the spectrum σ(A) with iIR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t → ∞ for any
z ∈ H.
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Our main result is the following.

Theorem 2.5.4 The semigroup generated by the operator A is not exponentially stable.

Proof: We will examine two cases.
•Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (sinx, 0, 0)T ∈ H, and denoting by (u, v, φ)T the image of (sin x, 0, 0)T by A−1, we see

that φ(ξ) = −|ξ| 2α−5
2 sin 1. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. So (u, v, φ)T 6∈ D(A).

• Case 2 η 6= 0: A) a(x) = xγ: We aim to show that an infinite number of eigenvalues of A
approach the imaginary axis which prevents the system (P1) from being exponentially stable.
Indeed we first compute the characteristic equation that gives the eigenvalues of A. Here, we
consider only the case a(x) = xγ, 0 ≤ γ < 2 and in particular we treat the case 1 ≤ γ < 2. The
case 0 ≤ γ < 1 is similar. Let λ be an eigenvalue of A with associated eigenvector U = (u, v, φ)T .
Then AU = λU is equivalent to

λu− v = 0,
λv − (xγux)x = 0,
λφ+ (ξ2 + η)φ− v(1)µ(ξ) = 0.

(2.33)

It is well-known that Bessel functions play an important role in this type of problem. From
(2.33)1 − (2.33)2 for such λ, we find

λ2u− (xγux)x = 0.(2.34)

Using the boundary conditions and (2.33)3, we deduce that

λ2u− (xγux)x = 0
(xγux)(0) = 0

ux(1) + ζv(1)
∫ +∞

−∞

µ2(ξ)

ξ2 + λ+ η
dξ + βu(1)

= ux(1) + (%λ(λ+ η)α−1 + β)u(1) = 0.

(2.35)

Assume that u is a solution of (2.35) associated to eigenvalue −λ2, then one easily checks that
the function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
iλx

2−γ
2

)
is a solution of the following boundary problem:

y2Ψ′′(y) + yΨ′(y) + (y2 − (γ−1
2−γ )2)Ψ(y) = 0

(2− γ)y
1

2−γ Ψ′(y)− (γ − 1)y
γ−1
2−γ Ψ(y)→ 0 as y → 0(

1−γ
2

+ β + %λ(λ+ η)α−1
)

Ψ( 2
2−γ iλ) + iλΨ′( 2

2−γ iλ) = 0.

(2.36)

We have
u(x) = c+Φ+ + c−Φ−,(2.37)
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where Φ+ and Φ− are defined by

Φ+(x) := x
1−γ
2 Jνγ

(
2

2− γ
iλx

2−γ
2

)

and

Φ−(x) := x
1−γ
2 J−νγ

(
2

2− γ
iλx

2−γ
2

)
,

where

νγ =
γ − 1

2− γ
and Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. We suppose νγ 6∈ IN.
So Jνγ and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms
a fundamental system of solutions (2.36)1.

Using the series expansion of Jνα and J−να , we deduce that (see [15]) Φ+ ∈ H1
∗ (0, 1), while

Φ− 6∈ H1
∗ (0, 1), so

u(x) = c+Φ+(x).

Moreover, xγΦ′+(x)→ 0 as x→ 0, hence the boundary condition in 0 is automatically satisfied.
Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-

quence of eigenvalues for which their real part tends to 0.
In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues

λ of A in the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark
that Φ+ remains bounded.

Lemma 2.5.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A),(2.38)

where

λk = −2− γ
2

i
(
k +

νγ
2

+
1

4

)
π +

α̃

k1−α +
β

|k|1−α
+ o

(
1

k1−α

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0.

λk = λ−k if k ≤ −N.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof.The proof is decomposed in three steps:
Step 1. (

1− γ
2

+ β + %λ(λ+ η)α−1
)
Jνγ

(
2

2− γ
iλ

)
+ iλJ ′νγ

(
2

2− γ
iλ

)
= 0.(2.39)

We known that

xJ ′ν(x) = νJ(x)− xJν+1(x).(2.40)
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Then (2.39) is equivalent to

f(λ) =
(

1−γ
2

+ νγ
2−γ

2
+ β + %λ(λ+ η)α−1

)
Jνγ

(
2

2−γ iλ
)
− iλJνγ+1

(
2

2−γ iλ
)

= −iλ
(
Jνγ+1

(
2

2−γ iλ
)
− 1

iλ

(
1− γ

2
+ νγ

2− γ
2

+ β + %λ(λ+ η)α−1
)
Jνγ

(
2

2− γ
iλ

))
= 0.

(2.41)
We set

f̃(λ) = Jνγ+1

(
2

2− γ
iλ

)
− 1

iλ

(
1− γ

2
+ νγ

2− γ
2

+ β + %λ(λ+ η)α−1
)
Jνγ

(
2

2− γ
iλ

)
.(2.42)

We will use the following classical asymptotic development (see [36] p. 122, (5.11.6)): for all
δ > 0, the following development holds when |argz| ≤ π − δ:

Jν(z) =
(

2

πz

)1/2

cos
(
z − ν π

2
− π

4

)(
1 +O(

1

|z|2
)

)
−
(

2

πz

)1/2

sin
(
z − ν π

2
− π

4

)
O

(
1

|z|2

)
.(2.43)

Then

f̃(λ) =
(

2

πz̃

)1/2 e−iz

2i

˜̃
f(λ),(2.44)

where

z̃ =
2

2− γ
iλ, z =

2

2− γ
iλ− νγ

π

2
− π

4

and ˜̃
f(λ) = (e2iz − 1)− %

λ1−α (e2iz + 1) + o
(

1

λ1−α

)
= f0(λ) + f1(λ)

λ1−α
+ o

(
1

λ1−α

)
,

(2.45)

where

f0(λ) = e2iz − 1.(2.46)

f1(λ) = − %

λ1−α (e2iz + 1).(2.47)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.

Step 2. We look at the roots of f0. From (2.46), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2iz − 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= 2ikπ, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
1

4

)
π, k ∈ Z.
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Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those of
f0. Let us start with the first family. Changing in (2.41) the unknown λ by u = 2iz then (2.41)
becomes

f̃(u) = (eu − 1) +O
(

1

u(1−α)

)
= f0(u) +O

(
1

u(1−α)

)
The roots of f0 are uk = −2− γ

2
i
(
k +

νγ
2

+
1

4

)
π, k ∈ Z, and setting u = uk+reit, t ∈ [0, 2π], we

can easily check that there exists a constant C > 0 independent of k such that |eu+1| ≥ Cr for r
small enough. This allows to apply Rouché’s Theorem. Consequently, there exists a subsequence
of roots of f̃ which tends to the roots uk of f0. Equivalently, it means that there exists N ∈ IN
and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0

k + o(1) which tends to the roots

−2− γ
2

i
(
k +

νγ
2

+
1

4

)
π of f0. Finally for |k| ≥ N, λk is simple since λ0

k is.

Step 3. From Step 2, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
1

4

)
π + εk.(2.48)

Using (2.48), we get

e2iλk = e−
4

2−γ εk

= 1− 4
2−γ εk +O(ε2

k).
(2.49)

Substituting (2.49) into (2.45), using that
˜̃
f(λk) = 0, we get:

f̃(λk) = − 4

2− γ
εk −

2%

(−2−γ
2
ikπ)1−α + o(εk) + o

(
1

k1−α

)
= 0(2.50)

and hence

εk = − (2− γ)%

2(−2−γ
2
ikπ)1−α + o

(
1

k1−α

)

=


−
(

2− γ
2

)α %

(kπ)1−α

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

k1−α

)
for k � 0,

−
(

2− γ
2

)α %

(−kπ)1−α

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

k1−α

)
for k � 0.

(2.51)

From (2.51) we have in that case |k|1−α<λk ∼ β, with

β = −
(

2− γ
2

)α %

π1−α cos(1− α)
π

2
.

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof is com-
plete.

Remark 2.5.1 1) Similarly, we can prove Lack of exponential stability when νγ ∈ IN. In this
case we define Bessel’s functions of order νγ of the second kind as following

Yνγ (y) = lim
ν→νγ

Jν(y) cos νπ − J−ν(y)

sin νπ
.

Then, Jνγ and Yνγ forms a fundamental system of solutions (2.36)1.
2) Similarly, we can prove Lack of exponential stability when γ ∈ [0, 1[.
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B) General form of a(x): There exists only few works concerning explicit representation for
solutions of Sturm-Liouville equations (see [34] and [35]). We consider the following eigenvalues
problem 

λ2u− (a(x)ux)x = 0
(a(x)ux)(0) = 0
ux(1) + (%λ(λ+ η)α−1 + β)u(1) = 0.

(2.52)

Define the functions

l(x) =
∫ x

0

1√
a(s)

ds, ρ(x) = a(x)1/4

and

Q(x) =
a(x)

4

(a′(x)

a(x)

)′
+

3

4

(
a′(x)

a(x)

)2
 .

In [34], the authors have derive a Neumann series of Bessel functions (NSBF) representation for
solutions of Sturm-Liouville equation with variable coefficients as the following:

Let g be a solution of the equation

(a(x)g′)′ = 0, x ∈ [0, 1].

Then the following two families of auxiliary functions are well defined

Ỹ (0)(x) ≡ Y (0)(x) ≡ 1,

Y (n)(x) =

{
n
∫ x

0 Y
(n−1)(x) 1

g2(s)a(s)
ds, n odd ,

n
∫ x

0 Y
(n−1)(x)g2(s) ds, n even

Ỹ (n)(x) =

{
n
∫ x

0 Ỹ
(n−1)(x)g2(s) ds, n odd ,

n
∫ x

0 Ỹ
(n−1)(x) 1

g2(s)a(s)
ds, n even .

We define the formal powers associated to equation (2.52)

Φk(x) =
{
g(x)Y (k)(x), k odd,
g(x)Ỹ (k)(x), k even,

Ψk(x) =

{ 1
g(x)

Y (k)(x), k even,
1

g(x)
Ỹ (k)(x), k odd.

Then two linearly independent solutions v1 and v2 of equation (2.52) for λ 6= 0 can be written
in the form

v1(x) =
cos(iλl(x))

a(x)1/4
+ 2

∞∑
n=0

(−1)nσ2n(x)j2n(iλl(x)),

v2(x) =
sin(iλl(x))

a(x)1/4
+ 2

∞∑
n=0

(−1)nσ2n+1(x)j2n+1(iλl(x)),

the coefficients σn being defined by the equalities

σn(x) =
2n+ 1

2

(
n∑
k=0

lk,nΦk(x)

lk(x)
− 1

a(x)1/4

)
,
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where lk,n is the corresponding coefficient of xk in the Legendre polynomial of order n. Moreover,
we obtain

v′1(x) =
1√
a(x)

(
1

a(x)1/4
(G1(x) cos(iλl(x))− iλ sin(iλl(x))) + 2

∞∑
n=0

(−1)nµ2n(x)j2n(iλl(x))

)

−(a(x)1/4)′

a(x)1/4
v1(x),

v′2(x) =
1√
a(x)

(
1

a(x)1/4
(G2(x) sin(iλl(x)) + iλ cos(iλl(x))) + 2

∞∑
n=0

(−1)nµ2n+1(x)j2n+1(iλl(x))

)

−(a(x)1/4)′

a(x)1/4
v2(x),

where

G1(x) = h+
1

2

∫ l(x)

0
Q(s) ds, G2(x) =

1

2

∫ l(x)

0
Q(s) ds,

where

h = lim
x→0

√
a(x)

(
g′(x)

g(x)
+
ρ′(x)

ρ(x)

)
,

jn(x) =

√
π

2x
Jn+1/2(x)

and

µn(x) =
2n+ 1

2ρ(x)

(∑
k=0

n
lk,n
lk(x)

(
k

Ψk−1(x)

ρ(x)
+ ρ(x)

√
a(x)

(
g′(x)

g(x)
+

(ρ′(x)

ρ(x)

)
Φk(x)

)

−n(n+ 1)

2l(x)
−G2(x)− h

2
(1 + (−1)n)

)

Now using this explicit representation together with asymptotic behavior of the spherical Bessel
function jn, we can deduce lack of exponential stability of solutions.

Remark 2.5.2 We mention here the work of Baouendi and Goulaouic [7]. They studied a
degenerate elliptic problem in an open domain of IRn and they gave an estimate of the spectral
behavior.

2

2.6 Asymptotic stability

2.6.1 Strong stability of the system

In this part, we use a general criteria of Theorem 2.5.3 to show the strong stability of the C0-
semigroup etA associated to the wave system (P1) in the absence of the compactness of the
resolvent of A. Our main result is the following theorem:
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Theorem 2.6.1 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the solution
of (2.18) satisfies

lim
t→∞
‖etAU0‖H = 0.

For the proof of Theorem 2.6.1, we need the following two lemmas.

Lemma 2.6.1 A does not have eigenvalues on iIR.

Proof
We will argue by contraction. Let us suppose that there λ ∈ IR.
•Case 1: λ 6= 0 and U 6= 0, such that AU = iλU . Then, we get

iλu− v = 0,
iλv − (a(x)ux)x = 0,
iλφ+ (ξ2 + η)φ− v(1)µ(ξ) = 0,

(2.53)

Then, from (2.22) we have
φ ≡ 0.(2.54)

From (2.53)3, we have
v(1) = 0.(2.55)

Hence, from (2.53)1 we obtain
u(1) = 0 and ux(1) = 0.(2.56)

From (2.53)1 and (2.53)2, we have

−λ2u− (a(x)ux)x = 0.(2.57)

Hence 
λ2u+ (a(x)ux)x = 0,
u(1) = ux(1) = 0,{
u(0) = 0 if µa ∈ [0, 1),
(a(x)ux)(0) = 0 if µa ∈ [1, 2).

(2.58)

Multiplying equation (2.58)1 by u, using Green formula, Proposition 2.2.2-(iii) and the boundary
conditions, we get

λ2
∫ 1

0
|u|2 dx−

∫ 1

0
a(x)|ux|2 dx = 0.(2.59)

Multiplying equation (2.58)1 by xux, we get

λ2
∫ 1

0
xuux dx+

∫ 1

0
xux(a(x)ux)x dx = 0.(2.60)

U ∈ D(A), then the regularity is sufficiently for applying an integration on the second integral
in the left hand side in equation (2.60). Then we obtain

λ2

2

∫ 1

0
x
d

dx
|u|2 dx−

∫ 1

0
a(x)|ux|2 dx−

1

2

∫ 1

0
xa(x)

d

dx
|ux|2 dx = 0.(2.61)
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Using Green formula and the boundary conditions, we get

λ2
∫ 1

0
|u|2 dx+

∫ 1

0
(a(x)− xa′(x))|ux|2 dx = 0(2.62)

Multiplying equations (2.59) by −µa/2, and tacking the sum of this equation and (2.62), we get

2− µa
2

λ2
∫ 1

0
|u|2 dx+

∫ 1

0

(
a(x)− xa′(x) +

µa
2
a(x)

)
|ux|2 dx = 0.(2.63)

By definition of µa, we have

(2− µa)a(x) ≤ 2(a(x)− xa′(x)) + µaa(x).

This, together with (2.63), gives

2− µa
2

λ2
∫ 1

0
|u|2 dx+

2− µa
2

∫ 1

0
a(x)|ux|2 dx ≤ 0.(2.64)

we deduce that
u = 0.(2.65)

Using equation (2.53)1, we obtain
v = 0.(2.66)

Consequently, using equations (2.65), (2.66) and (2.54), we obtain U = 0, which contradict the
hypothesis U 6= 0. The proof has been completed.
•Case 2: λ = 0. The system (2.53) becomes

v = 0,
(a(x)ux)x = 0,
(ξ2 + η)φ− v(1)µ(ξ) = 0.

(2.67)

From (2.67)1 and (2.67)3 , we have
v ≡ 0, φ ≡ 0.(2.68)

Multiplying equation (2.67)2 by u, using Green formula, Proposition 2.2.2-(iii) and the boundary
conditions, we get ∫ 1

0
a(x)|ux|2 dx+ β|u(1)|2 = 0.(2.69)

Then
(a|ux|2)(x) = 0 ∀x ∈ (0, 1).(2.70)

Moreover, if µa ∈ [1, 2), then u(1) = 0. Hence (aux)(1) = 0 and consequently

ux(1) = 0.(2.71)

Moreover, from (2.70), we have
ux(x) = 0 on (0, 1).
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Hence u is constant in (0, 1). As u(1) = 0, then

u ≡ 0

Now, if µa ∈ [0, 1), we have u(0) = 0. Hence u ≡ 0. and consequently, we obtain U = 0, which
contradict the hypothesis U 6= 0. The proof has been completed.

We have Consequently, A does not have purely imaginary eigenvalues. So the condition (i)
of Theorem 2.5.3 holds. The condition (ii) of Theorem 2.5.3 will be satisfied if we show that
σ(A) ∩ {iIR} is at most a countable set. We have the following lemma.

Lemma 2.6.2 We have
iIR ⊂ ρ(A) if η 6= 0,
iIR∗ ⊂ ρ(A) if η = 0

where IR∗ = IR− {0}.
Proof
•Case 1: λ 6= 0.
We will prove that the operator iλI − A is surjective for λ 6= 0. For this purpose, let F =
(f1, f2, f3)T ∈ H, we seek X = (u, v, φ)T ∈ D(A) solution of the following equation

(iλI −A)X = F.(2.72)

Equivalently, we have 
iλu− v = f1,
iλv − (a(x)ux)x = f2,
iλφ+ (ξ2 + η)φ− v(1)µ(ξ) = f3.

(2.73)

From (2.73)1 and (2.73)2, we have

−λ2u− (a(x)ux)x = (f2 + iλf1).(2.74)

Solving system (2.74) is equivalent to finding u ∈ H2
a ∩H1

∗ (0, 1) such that

∫ 1

0
(−λ2uw − (a(x)ux)xw) dx =

∫ 1

0
(f2 + iλf1)w dx(2.75)

for all w ∈ H1
∗ (0, 1). Then, we get
∫ 1

0
(−λ2uw + (a(x)ux)wx) dx+ (iλζ̃ + β)u(1) w(1)

=
∫

Ω
(f2 + iλf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + iλ
f3(ξ)w dξ + ζ̃f1(1)w(1) .

(2.76)

We can rewrite (2.76) as

−(Lλu,w)H1
∗

+ (u,w)H1
∗

= l(w),(2.77)
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with the inner product defined by

(u,w)H1
∗

=
∫ 1

0
a(x)uxwx dx+ βu(1) w(1)

and
(Lλu,w)H1

∗
=
∫

Ω
λ2uw dx− iλζ̃u(1) w(1).

Using the compactness embedding from L2(0, 1) into H−1
∗ (0, 1) and from H1

∗ (0, 1) into L2(0, 1) we
deduce that the operator Lλ is compact from L2(0, 1) into L2(0, 1). Consequently, by Fredholm
alternative, proving the existence of u solution of (2.77) reduces to proving that 1 is not an
eigenvalue of Lλ. Indeed if 1 is an eigenvalue, then there exists u 6= 0, such that

(Lλu,w)H1
∗

= (u,w)H1
∗
∀w ∈ H1

∗ .(2.78)

In particular for w = u, it follows that

λ2‖u(x)‖2
L2(0,1) − iλζ̃|u(1)|2 = ‖

√
a(x)ux(x)‖2

L2(0,1) + β|u(1)|2.

Hence, we have
u(1) = 0.(2.79)

From (2.78), we obtain
(aux)(1) = 0(2.80)

Then 
λ2u+ (a(x)ux)x = 0 on (0, 1),{
u(0) = 0 if µa ∈ [0, 1)
(a(x)ux)(0) = 0 if µa ∈ [1, 2)

u(1) = 0 ux(1) = 0.

(2.81)

We deduce that U = 0.
•Case 2: λ = 0 and η 6= 0.
The system (2.73) is reduced to the following system

v = −f1,
−(a(x)ux)x = f2,
(ξ2 + η)φ− v(1)µ(ξ) = f3.

(2.82)

Solving system (2.82) is equivalent to finding u ∈ H1
∗ (0, 1) such that

−
∫ 1

0
(a(x)ux)xw dx =

∫ 1

0
f2w dx(2.83)

for all w ∈ H1
∗ (0, 1). Then, we get∫ 1

0
a(x)uxwx dx+ βu(1)w(1) =

∫ 1

0
f2w dx+ %ηα−1f1(1)w(1)

−ζ
∫ ∞
−∞

µ(ξ)f3(ξ)

ξ2 + η
dξw(1).

(2.84)
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Consequently, problem (2.84) is equivalent to the problem

B(u,w) = L(w),(2.85)

where the bilinear form B : H1
∗ (0, 1) × H1

∗ (0, 1) → IC and the linear form L : H1
∗ (0, 1) → IC are

defined by

B(u,w) =
∫ 1

0
(a(x)uxwx) dx+ βu(1)w(1)(2.86)

and

L(w) =
∫ 1

0
f2w dx+ %ηα−1f1(1)w(1)− ζ

∫ ∞
−∞

µ(ξ)f3(ξ)

ξ2 + η
dξw(1).

It is easy to verify that B is continuous and coercive, and L is continuous. So by applying the Lax-
Milgram theorem, we deduce that for all w ∈ H1

∗ (0, 1) problem (2.85) admits a unique solution
u ∈ H1

∗ (Ω). Applying the classical elliptic regularity, it follows from (2.84) that u ∈ H2
a(0, 1).

Therefore, the operator A is surjective.
2

2.6.2 Residual spectrum of A
Lemma 2.6.3 Let A be defined by (2.19). Then

A∗
 uv
φ

 =

 −v
−(a(x)ux)x

−(ξ2 + η)φ− v(1)µ(ξ)

(2.87)

with domain

D(A∗) =



(u, v, φ)T in H : u ∈ H2
a ∩H1

∗ (0, 1), v ∈ H1
∗ (0, 1),

−(ξ2 + η)φ− v(1)µ(ξ) ∈ L2(−∞,+∞),

(aux)(1) + βu(1) + ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0

|ξ|φ ∈ L2(−∞,+∞)


(2.88)

Proof
Let U = (u, v, φ)T and V = (ũ, ṽ, φ̃)T . We have
< AU, V >H=< U,A∗V >H.

< AU, V >H=
∫ 1

0
a(x)vxũx dx+

∫ 1

0
(a(x)ux)xṽ dx+ ζ

∫ +∞

−∞
[−(ξ2 + η)φ+ v(1)µ(ξ)]φ̃ dξ + βv(1)ũ(1)

= −
∫ 1

0
(a(x)ũx)xv dx−

∫ 1

0
(a(x)ux)ṽx dx+ [(a(x)ũx)v]10 + [(a(x)ux)ṽ]10 − ζ

∫ +∞

−∞
(ξ2 + η)φφ̃ dξ

+ζv(1)
∫ +∞

−∞
µ(ξ)φ̃ dξ + βv(1)ũ(1)

= −
∫ 1

0
(a(x)ũx)xv dx−

∫ 1

0
(a(x)ux)ṽx dx+ (a(x)ũx)(1)v(1)− βu(1)ṽ(1)− ζṽ(1)

∫ +∞

−∞
µ(ξ)φ(ξ) dξ

−ζ
∫ +∞

−∞
(ξ2 + η)φφ̃ dξ + ζv(1)

∫ +∞

−∞
µ(ξ)φ̃ dξ + βv(1)ũ(1).
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If we set

(a(x)ũx)(1) + βũx(1) + ζ
∫ +∞

−∞
µ(ξ)φ̃ dξ = 0,

we get

< AU, V >H= −
∫ 1

0
(a(x)ũx)xv dx−

∫ 1

0
(a(x)ux)ṽx dx−ζ

∫ +∞

−∞
[(ξ2 + η)φ̃+ ṽ(1)µ(ξ)]φ dξ−βu(1)ṽ(1).

Theorem 2.6.2 σr(A) = ∅, where σr(A) denotes the set of residual spectrum of A. It is defined
as

σr(A) = {λ ∈ IC : ker(λI −A) = 0 and Im(λI −A) is not dense in H}.

Proof. Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can show that
σp(A) = σp(A∗). obviously this is because the eigenvalues of A are symmetric on the real axis.
From (2.87), the eigenvalue problem A∗Z = λZ for λ ∈ IC and 0 6= Z = (u, v, φ) ∈ D(A∗) we
have 

λu+ v = 0,
λv + (a(x)ux)x = 0,
λφ+ (ξ2 + η)φ+ v(1)µ(ξ) = 0.

(2.89)

From (2.89)1 and (2.89)2, we find

λ2u− (a(x)ux)x = 0.(2.90)

As (aux)(1) = −ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ − βu(1), we deduce from (2.89)3 and (2.88)3 that

(aux)(1) = ζv(1)
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ − βu(1) = −%λ(λ+ η)α−1u(1)− βu(1)(2.91)

with the following conditions

{
u(0) = 0 if µa ∈ [0, 1)
(a(x)ux)(0) = 0 if µa ∈ [1, 2)

(2.92)

Hence A∗ has the same eigenvalues with A. The proof is complete.

Remark 2.6.1 When η = 0, then λ = 0 is in the continuous spectrum.

2
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2.6.3 Polynomial Stability (for η 6= 0)

Theorem 2.6.3 The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2
H ≤

1

t
2

(1−α)+ ε2

‖U0‖2
D(A).

Proof
We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ IR, namely

iλu− v = f1,
iλv − (a(x)ux)x = f2,
iλφ+ (ξ2 + η)φ− v(1)µ(ξ) = f3,

(2.93)

where F = (f1, f2, f3)T ∈ H.
•Step 1 Taking inner product in H with U and using (2.22) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H.(2.94)

This implies that

ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ ‖U‖H‖F‖H(2.95)

and, applying (2.93)1, we obtain ∣∣∣∣|λ||u(1)| − |f1(1)|
∣∣∣∣2 ≤ |v(1)|2.

We deduce that
|λ|2|u(1)|2 ≤ c|f1(1)|2 + c|v(1)|2.(2.96)

Moreover, from (2.93)4, we have

(aux)(1) = −βu(1)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ.

Then

|(aux)(1)|2 ≤ 2β2|u(1)|2 + 2ζ2

∣∣∣∣∫ +∞

−∞
µ(ξ)φ(ξ) dξ

∣∣∣∣2
≤ 2β2|u(1)|2 + 2ζ2

(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

)(∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ

)
≤ 2β2|u(1)|2 + c‖U‖H‖F‖H.

(2.97)

From (2.93)3, we obtain
v(1)µ(ξ) = (iλ+ ξ2 + η)φ− f3(ξ).(2.98)

By multiplying (2.98) by (iλ+ ξ2 + η)−1|ξ| 1−ε2 (for ε > 0), we get

(iλ+ ξ2 + η)−1v(1)µ(ξ)|ξ|
1−ε
2 = |ξ|

1−ε
2 φ− (iλ+ ξ2 + η)−1|ξ|

1−ε
2 f3(ξ).(2.99)
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Hence, by taking absolute values of both sides of (2.99), integrating over the interval ]−∞,+∞[
with respect to the variable ξ and applying Cauchy-Schwartz inequality, we obtain

S|v(1)| ≤ U
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

) 1
2

+
√

2V
(∫ +∞

−∞
|f3(ξ)|2 dξ

) 1
2

,(2.100)

where

S =
∣∣∣∣∫ +∞

−∞
(iλ+ ξ2 + η)−1|ξ|

1−ε
2 µ(ξ) dξ

∣∣∣∣ =
π

sin(2(α+1)−ε
4

)π
|iλ+ η|

(α−1)
2
− ε

4 ,

U =
(∫ +∞

−∞
(ξ2 + η)−1|ξ|1−ε dξ

) 1
2

,

V =
(∫ +∞

−∞
(|λ|+ ξ2 + η)−2|ξ|1−ε dξ

) 1
2

=

(
ε

2

π

sin(2−ε
2

)π
(|λ|+ η)−(1+ ε

2
)

)1/2

.

Thus, by using the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, again, we get

S2|v(1)|2 ≤ 2U2
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

)
+ 4V2

(∫ +∞

−∞
|f3(ξ)|2 dξ

)
.(2.101)

We deduce that
|v(1)|2 ≤ c|λ|1−α+ ε

2‖U‖H‖F‖H + c‖F‖2
H.(2.102)

•Step 2 Now we use the classical multiplier method.
Let us introduce the following notation

Iu(α) = |
√
a(x)ux(α)|2 + |v(α)|2,

Eu =
∫ 1

0
Iu(s) ds.

Lemma 2.6.4 We have that∫ 1

0

[(
(a(x)− xa′(x)) +

µa
2
a(x)

)
|ux|2 +

(
1− µa

2

)
|v(x)|2

]
dx

= [xIu]10 + µa
2

[a(x)uxu]10 +R,
(2.103)

where R satisfies
|R| ≤ C‖U‖H‖F‖H.

for a positive constant C.

Proof
To get (2.103), let us multiply the equation (2.93)2 by xux Integrating on (0, 1) we obtain

iλ
∫ 1

0
vxux dx−

∫ 1

0
(a(x)ux)xxux dx =

∫ L

0
f2xux dx

or

−
∫ 1

0
vx(iλux) dx−

∫ 1

0
x(a(x)ux)xux dx =

∫ 1

0
f2xux dx.
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Since iλux = vx + f1x taking the real part in the above equality results in

−1

2

∫ 1

0
x
d

dx
|v|2 dx+

1

2

∫ 1

0
xa(x)

d

dx
|ux|2 dx− [xa(x)|ux|2]10 +

∫ 1

0
a(x)|ux|2 dx

= Re
∫ 1

0
vxf 1x dx+Re

∫ 1

0
f2xux dx.

Performing an integration by parts we get∫ 1

0
[|
√
a(x)ux|2 + |v(x)|2] dx−

∫ 1

0
xa′(x)|ux(x)|2 dx = [x(|

√
a(x)ux|2 + |v(x)|2)]10 +R1,(2.104)

where

R1 = 2Re
∫ 1

0
xf2ux dx+ 2Re

∫ 1

0
xvf 1x dx.

Multiplying (2.93)2 by u and integrating over (0, 1) and using integration by parts we get∫ 1

0
a(x)|ux|2dx−

∫ 1

0
|v|2dx− [a(x)uxu]10 =

∫ 1

0
vf1 dx+

∫ 1

0
f2udx.(2.105)

Multiplying (2.105) by µa/2 and summing with (2.104) we get

∫ 1

0
((a(x)− xa′(x)) +

µa
2
a(x))|ux|2 + (1− µa

2
)|v(x)|2] dx

= [xIu]10 + µa
2

[a(x)uxu]10 +R
(2.106)

with:
R = R1 +R2

and

R2 =
µa
2

∫ 1

0
vf1 dx+

µa
2

∫ 1

0
f2udx.

Moreover ∫ 1

0
x2|ux|2 dx ≤

∫ 1

0
xµa |ux|2 dx ≤

1

a(1)

∫ 1

0
a(x)|ux|2 dx.

Then ∣∣∣∣∫ 1

0
xf2ux dx

∣∣∣∣ ≤ C‖f2‖L2(0,1)‖xux‖L2(0,1) ≤ C‖F‖H‖U‖H,∣∣∣∣∫ 1

0
xvf 1x dx

∣∣∣∣ ≤ C‖v‖L2(0,1)‖xf1x‖L2(0,1) ≤ C‖F‖H‖U‖H,∣∣∣∣∫ 1

0
vf1 dx

∣∣∣∣ ≤ C‖F‖H‖U‖H

and ∣∣∣∣∫ 1

0
f2udx

∣∣∣∣ ≤ C‖F‖H‖U‖H.

Hence, We deduce that
|R| ≤ C‖U‖H‖F‖H.(2.107)
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•Step 3 We have

(a(x)uxu)x=0 = 0, (x|v(x)|2)x=0 = 0, (xa(x)|ux|2)x=0 = 0.

By definition of µa, we have

(2− µa)a ≤ 2(a− xa′) + µaa.

This, together with (2.106), gives

2− µa
2

∫ 1

0
(a(x)|ux|2 + |v|2) dx ≤ Iu(1) +

µa
2
a(1)|ux(1)u(1)|+ C‖U‖H‖F‖H.(2.108)

Then

Eu ≤ c|u(1)|2 + c′|ux(1)|2 + c′′|v(1)|2 + C‖U‖H‖F‖H.(2.109)

As

|f1(1)|2 ≤ 2
∫ 1

0
|f1|2 dx+ 2

∫ 1

0
|f1(x)− f1(1)|2 dx

≤ 2
∫ 1

0
|f1|2 dx+

2

a(1)(2− µa)

∫ 1

0
a(x)|f1x|2 dx

≤ C‖F‖2
H

Moreover, from (2.96) we deduce

|u(1)|2 ≤ c
1

λ2
‖F‖2 + c

1

λ2
|v(1)|2.

From (2.97) we deduce

|ux(1)|2 ≤ c
1

λ2
‖F‖2 + c

1

λ2
|v(1)|2 + c′‖U‖H‖F‖H.

Since that ∫ +∞

−∞
|φ(ξ)|2 dξ ≤ C

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ C‖U‖H‖F‖H.

Hence

‖U‖2
H ≤ c

1

λ2
‖F‖2 + c

1

λ2
|v(1)|2 + c|v(1)|2 + c′‖U‖H‖F‖H.(2.110)

Substitution of inequalities (2.102) into (2.110), we obtain that

‖U‖H ≤ c|λ|1−α+ ε
2‖F‖H.

The conclusion then follows by applying the Theorem 2.5.2.

2
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2.7 Optimality of energy decay when a(x) = xγ and η 6= 0

By Lemma 2.5.1, the spectrum of A is at the left of the imaginary axis, but approaches this
axis. Hence, the decay of the energy depends on the asymptotic behavior of the real part of
these eigenvalues, since Lemma 2.5.1 shows an expected optimal behavior of resolvent like

‖(λI −A)−1‖H ≡ |λ|1−α.

We can expect a decay rate (optimal) of the energy at t−2/(1−α). Unfortunately we were not able
to prove this optimal decay rate by frequency domain method based on multiplier method for
general function a. In Theorem 2.6.3, we obtain an upper estimate of resolvent like

‖(λI −A)−1‖H ≤ |λ|2(1−α) as |λ| → ∞

which is less better. In this section, for a(x) = xγ, 0 ≤ γ < 2, by an explicit representation of
the resolvent of the generator on the imaginary axis and the use of the theorem by Borichev and
Tomilov, we prove an optimal decay rate. We treat only the case γ ∈ [1, 2) and νγ 6∈ IN. The
cases γ ∈ [1, 2) and νγ ∈ IN and γ ∈ [0, 1) are similar with some modifications.

Let us consider the resolvent equation
iλu− v = f1,
iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− v(1)µ(ξ) = f3,

(2.111)

where F = (f1, f2, f3)T ∈ H. From (2.111)1 and (2.111)2, we have

λ2u+ (xγux)x = −(f2 + iλf1)(2.112)

with  (xγux)x=0 = 0

ux(1) + βu(1) + ζ
∫ ∞
−∞

µ(ξ)φ(ξ) dξ = 0.
(2.113)

The substitution of φ given by (2.111)3 into (2.113)2 give us

ux(1) + βu(1) + %(iλ+ η)α−1v(1) + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ = 0.(2.114)

Moreover, from (2.111)1, we have

v(1) = iλu(1)− f1(1).

Then, the condition (2.114) become

ux(1) + (β + %iλ(iλ+ η)α−1)u(1) = %(iλ+ η)α−1f1(1)− ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.(2.115)
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Assume that Φ is a solution of (2.112), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ
λx

2−γ
2

)
(2.116)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

y2 −
(
γ − 1

2− γ

)2
Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ
y)

2
2−γ
)

+ iλf1

(
(2−γ

2
1
λ
y)

2
2−γ
))
.

(2.117)

The solution can be written as

Ψ(y) = AJνγ (y) +BJ−νγ (y) +
2νγ

sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds.

Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γλx
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γλx
2−γ
2

)
− 2νγ

sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0
s

1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λs

2−γ
2

)
J−νγ

(
2

2− γ
λx

2−γ
2

)
−Jνγ

(
2

2−γλx
2−γ
2

)
J−νγ

(
2

2−γλs
2−γ
2

))
ds.

Therefore,

u(x) = AΦ+(x) +BΦ−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,

(2.118)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
.

From where it follows

ux(x) = AΦ′+(x) +BΦ′−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds

(2.119)

From (2.115), (2.119) and (2.118), we conclude that

A(Φ′+(1) + (β + %iλ(iλ+ η)α−1)Φ+(1)) = %(iλ+ η)α−1f1(1)− ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ

+
2νγ

sin νγπ

(
2

2− γ

)∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

+(β + %iλ(iλ+ η)α−1)
2νγ

sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds,

(2.120)
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where

Φ′+(1) =
1− γ

2
Jνγ

(
2

2− γ
λ

)
+ λJ ′νγ

(
2

2− γ
λ

)
,

Φ′−(1) =
1− γ

2
J−νγ

(
2

2− γ
λ

)
+ λJ ′−νγ

(
2

2− γ
λ

)
.

Let us set

D = Φ′+(1) + (β + %iλ(iλ+ η)α−1)Φ+(1)

= (
1− γ

2
+ β + %iλ(iλ+ η)α−1)Jνγ

(
2

2− γ
λ

)
+ λJ ′νγ

(
2

2− γ
λ

)
=

(
1− γ

2
+

2− γ
2

νγ + β + %iλ(iλ+ η)α−1
)
Jνγ

(
2

2−γλ
)
− λJνγ+1

(
2

2−γλ
)

=
iα
√

2− γ√
π

λα−1/2 cos

(
2

2− γ
λ− νγ

π

2
− π

4

)
− iγ
√

2− γ√
π

λ1/2 sin

(
2

2− γ
λ− νγ

π

2
− π

4

)
+O

(
1

λ1/2

)
.

It is clear that
|D| ≥ c|λ|α−1/2 for large λ.

The constant A in (2.120) satisfies

|A||D(λ)| ≤ o(1) + β
2νγ

sin νγπ
(

2

2− γ
)
∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣
+%|λ|α 2νγ

sin νγπ
(

2

2− γ
)
∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣
2νγ

sin νγπ
(

2

2− γ
)
∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

∣∣∣∣
≤ o(1) + c

(
‖f1‖H1

∗(0,1) + ‖f2‖L2(0,1)

)
,

(2.121)

where we have used the fact that f1 ∈ H1
∗ (0, 1) and∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ 1

|λ|
(
‖f1‖H1

∗(0,1) + ‖f2‖L2(0,1)

)
,

∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

∣∣∣∣ ≤ (‖f1‖H1
∗(0,1) + ‖f2‖L2(0,1)

)
.

Then, we conclude that
|A| ≤ c|λ|1/2−α.

Then
‖u‖L2(0,1) ≤ c|λ|−α

(
‖f1‖H1

∗(0,1) + ‖f2‖L2(0,1)

)
.

From (2.119), we deduce that

‖xγ/2ux‖L2(0,1) ≤ c|λ|1−α
(
‖f1‖H1

∗(0,1) + ‖f2‖L2(0,1)

)
.



66CHAPTER 2. DEGENERATE W.E. UNDER FRACTIONAL DERIVATIVE CONTROLS

From (2.111)1 and (2.118), we get

‖v‖L2(0,1) ≤ c|λ|1−α
(
‖f1‖H1(0,1) + ‖f2‖L2(0,1)

)
.

From (2.111)3, we get

‖φ‖L2(−∞,∞) ≤ |v(1)|
∥∥∥∥∥ µ(ξ)

iλ+ ξ2 + η

∥∥∥∥∥
L2(−∞,∞)

+

∥∥∥∥∥ f3(ξ)

iλ+ ξ2 + η

∥∥∥∥∥
L2(−∞,∞)

≤ c|λ|−1/2
(
‖f1‖H1(0,1) + ‖f2‖L2(0,1)

)
+ c

1

|λ|
‖f3‖L2(−∞,∞).

Thus, we conclude that

‖(iλI −A)−1‖H ≤ c|λ|1−α as |λ| → ∞.

The conclusion then follows by applying Theorem 2.5.2.



Chapter 3

STABILIZATION OF DEGENERATE
WAVE EQUATION UNDER
FRACTIONAL FEEDBACK ACTING
ON THE DEGENERATE
BOUNDARY

3.1 Introduction

In this Chapter, we are concerned with the boundary stabilization of fractional type for degen-
erate wave equation of the form

(P2)


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
(xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where γ ∈ [0, 1) and % > 0. The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, (0 < α ≤ 1), with respect to the time variable (see [20]). It is defined as
follows

∂α,ηt w(t) =


wt(t) for α = 1, η ≥ 0,

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for 0 < α < 1, η ≥ 0.

The degenerate wave equation (P2) (i.e γ 6= 0) can describe the vibration problem of an elastic
string. In a neighborhood of an endpoint x = 0 of this string, the elastic is sufficiently small or
the linear density is large enough.

The bibliography of works concerning the stabilization of nondegenerate wave equation with
different types of damping is truly long (see e.g. [21], [22], [19] and the references therein).

67



68 CHAPTER 3. DEGENERATE W.E. UNDER FRACTIONAL FEEDBACK

In [22], for a(x) = a1x + a0 : the authors have established asymptotic stabilization with the
following boundary damping{

(aux)(0, t) = 0,
(aux)(1, t) = −ku(1, t)− ut(1, t), k > 0.

In [19], the authors considered the following modelization of a flexible torque arm controlled by
two feedbacks depending only on the boundary velocities:

utt(x, t)− (a(x)ux)x + αut(x, t) + βy(x, t) = 0, 0 < x < 1, t > 0,
(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,

where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions.
On the contrary, when the coefficient a(x) is degenerate very little is known in the literature,

even though many problems that are relevant for applications are described by hyperbolic equa-
tions degenerating at the boundary of the space domain (see [26], [46] and [2]). In [26], for any
0 < γ < 1, the null controllability of the following degenerate wave equation was considered:

(PC)


utt(x, t)− (xγux(x, t))x = 0 on (0, 1)× (0, T ),
u(0, t) = θ(t), u(1, t) = 0 on (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where θ(t) is the control variable and it acts on the degenerate boundary. Recently, in [46] (see
also [2]), the authors studied the null controllability problems of one-dimensional degenerate
wave equations as in [26] but the control acts on the nondegenerate boundary. They proved that
any initial value in state space is controllable. Also, an explicit expression for the controllability
time is given.

Very recently, Alabau et al. [2] studied the degenerate wave equation of the type

utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),(3.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(3.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

(3.2)

and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x),(3.3)

followed by the boundary conditions

(P1)


{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

ux(1, t) + ut(1, t) + βu(1, t) = 0 in (0,+∞),
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they obtained exponential stability of the solutions.

Here we want to focus on the following remarks:

• System (3.1), (3.3) and (P2)1 under study is different from one studied on [2]. Indeed, the
control is located at x = 0.

• The fractional velocity feedbacks considered here provide a weaker damping than the ve-
locity feedbacks (see [39]).

• The explicit representation of the resolvent gives us a sharp polynomial decay rate, how-
ever in [2], stabilization is done under the classical energy method based on multiplier
techniques (see [33]). Unfortunately, this method does not seem to be applicable in the
case of damping acting at x = 0.

In this Chapter, we explain the influence of the relation between the degenerate coefficient
and the fractional feedback on decay estimates.

This Chapter is organized as follows. In section 2, we give preliminaries results and we
reformulate the system (P2) into an augmented system by coupling the degenerate wave equation
with a suitable diffusion equation and we show the well-posedness of our problem by semigroup
theory. In section 3, we prove lack of exponential stability by spectral analysis by using Bessel
functions. In the last section, we prove an optimal decay rate. The proof heavily relies on Bessel
equations and Borichev-Tomilov Theorem.

3.2 Preliminaries results

Now, we introduce, as in [16] or [2], the following weighted Sobolev spaces:

H1
0,γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)/ u(1) = 0

}
H1
γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)

}
.

We remark that H1
γ(0, 1) is a Hilbert space with the scalar product

(u, v)H1
γ(0,1) =

∫ 1

0
(uv + xγu′(x)v′(x)) dx, ∀u, v ∈ H1

γ(0, 1).

Let us also set

|u|H1
0,γ(0,1) =

(∫ 1

0
xγ|u′(x)|2 dx

)1/2

∀u ∈ H1
γ(0, 1).

Actually, | · |H1
0,γ(0,1) is an equivalent norm on the closed subspace H1

0,γ(0, 1) to the norm of

H1
γ(0, 1). This fact is a simple consequence of the following version of Poincaré’s inequality.

Proposition 3.2.1 There is a positive constant C∗ = C(γ) such that

‖u‖2
L2(Ω) ≤ C∗|u|21,γ ∀u ∈ H1

0,γ(0, 1).(3.4)
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Proof. Let u ∈ H1
0,γ(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ 1

x
u′(s) ds

∣∣∣∣ ≤ |u|1,γ {∫ 1

0

1

xγ
ds
}1/2

.

Therefore ∫ 1

0
|u(x)|2 dx ≤ 1

1− γ
|u|21,γ.

Next, we define
H2
γ(0, 1) = {u ∈ H1

γ(0, 1) : xγu′ ∈ H1(0, 1)},

where H1(0, 1) denotes the classical Sobolev space.

Remark 3.2.1 Notice that if u ∈ H2
γ(0, 1), γ ∈ [1, 2),we have (xγux)x=0 ≡ 0 since 1/xγ is

not integrable over neighbourhoods of 0. Hence the problem is not well-posed in terms of the
semigroups in the Hilbert space.

3.3 Augmented model

In this section we reformulate (P2) into an augmented system. For that, we need the following
proposition.

Proposition 3.3.1 (see [39]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(3.5)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(3.6)

φ(ξ, 0) = 0,(3.7)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ(3.8)

is given by
O = I1−α,ηU.(3.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ

Lemma 3.3.1 (see [1]) If λ ∈ Dη = IC\]−∞,−η] then

F (λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.
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Using now Proposition 3.3.1 and relation (3.9), system (P2) may be recast into the following
augmented system

(P ′3)



utt(x, t)− (xγux(x, t))x = 0,
φt(ξ, t) + (ξ2 + η)φ(ξ, t)− ut(0, t)µ(ξ) = 0, −∞ < ξ < +∞, t > 0,

(xγux)(0, t) = ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ,

u(1, t) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

where ζ = %(π)−1 sin(απ).

3.4 Well-posedness

In this section, we are interested in showing that system (P ′2) is well posed in the sense of
semigroups.

We introduce the Hilbert space H = H1
0,γ(0, 1)×L2(0, 1)×L2(−∞,+∞) with inner product

〈 uv
φ

 ,
 ũṽ
φ̃

〉
H

=
∫ 1

0
xγuxũxdx+

∫ 1

0
vṽdx+ ζ

∫ +∞

−∞
φφ̃ dξ.

If we put U = (u, ut, φ)T it is clear that (P ′2) can be written as

U ′ = AU, U(0) = U0,(3.10)

where U0 = (u0, u1, 0)T and A : D(A) ⊂ H → H is defined by

A

 uv
φ

 =

 v
(xγux)x

−(ξ2 + η)φ+ v(0)µ(ξ)

 ,(3.11)

with domain

D(A) =



(u, v, φ) in H : u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1), v ∈ H1
0,γ(0, 1),

−(ξ2 + η)φ+ v(0)µ(ξ) ∈ L2(−∞,+∞),

(xγux)(0)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)


.(3.12)

Our main result is giving by the following theorem.

Theorem 3.4.1 The operator A defined by (3.11) and (3.12), generates a C0-semigroup of
contractions etA in the Hilbert space H.
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Proof.
To prove this result we shall use the Lumer-Phillips’ theorem. Since for every U = (u, v, φ) ∈
D(A) we have

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ.(3.13)

then the operator A is dissipative.
Let λ > 0. we prove that the operator (λI − A) is a surjection. In other words, we shall

demonstrate that given any triplet F = (f1, f2, f3) ∈ H, there is an other triplet U = (u, v, φ) ∈
D(A) such that

(λI −A)U = F.(3.14)

Equation (3.14) is equivalent to
λu− v = f1,
λv − (xγux)x = f2,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3.

(3.15)

Suppose u is found with the appropriate regularity. Then, (3.15)1 and (3.15)3 yield

v = λu− f1 ∈ H1
0,γ(0, 1),(3.16)

φ =
f3(ξ) + µ(ξ)v(0)

ξ2 + η + λ
.(3.17)

By using (3.15) and (3.16) it can easily be shown that u satisfies

λ2u− (xγux)x = f2 + λf1.(3.18)

Solving equation (3.18) is equivalent to finding u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1) such that∫ 1

0
(λ2uw − (xγux)xw) dx =

∫ 1

0
(f2 + λf1)w dx,(3.19)

for all w ∈ H1
0,γ(0, 1). By using (3.19), the boundary condition (3.12)3 and (3.17) the function u

satisfying the following equation∫ 1

0
(λ2uw + (xγux)wx) dx+ ζ̃v(0)w(0)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0)

(3.20)

where ζ̃ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (3.16), we deduce that

v(0) = λu(0)− f1(0).(3.21)

Inserting (3.21) into (3.20), we get
∫ 1

0
(λ2uw + xγuxwx) dx+ λζ̃u(0)w(0)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + ζ̃f1(0)w(0).

(3.22)
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Problem (3.22) is of the form
B(u,w) = L(w),(3.23)

where B : [H1
0,γ(0, 1)×H1

0,γ(0, 1)]→ IC is the bilinear form defined by

B(u,w) =
∫ 1

0
(λ2uw + xγuxwx) dx+ λζ̃u(0) w(0)

and L : H1
0,γ(0, 1)→ IC is the linear functional given by

L(w) =
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + ζ̃f1(0)w(0).

It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by
the Lax-Milgram Lemma, system (3.23) has a unique solution u ∈ H1

0,γ(0, 1). By the regularity
theory for the linear elliptic equations, it follows that u ∈ H2

γ(0, 1). Therefore, the operator
λI −A is surjective for any λ > 0.

2

As a consequence of Theorem 3.4.1, the system (P ′2) is well-posed in the energy space H and
we have the following proposition.

Proposition 3.4.1 For (u0, u1, 0) ∈ H, the problem (P ′2) admits a unique weak solution

(u, ut, φ) ∈ C0(IR+,H).

and for (u0, u1, 0) ∈ D(A), the problem (P ′2) admits a unique strong solution

(u, ut, φ) ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

Moreover, from the density D(A) in H the energy of (u(t), φ(t)) at time t ≥ 0 by

E(t) =
1

2

∫ 1

0
(|ut|2 + xγ|ux|2)dx+

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ(3.24)

decays as follow

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.(3.25)

Proof of Proposition 3.4.1. Noting that the regularity of the solution of the problem (P ′2) is
consequence of the semigroup properties. We have just to prove (3.25).

Multiplying the first equation in (P ′2) by ut, integrating over (0, 1) and using integration by
parts, we get ∫ 1

0
utt(x, t)utdx−

∫ 1

0
(xγux(x, t))xutdx = 0.

Then
d

dt

(
1

2

∫ 1

0
|ut(x, t)|2dx

)
+

1

2

d

dt

∫ 1

0
xγ|ux(x, t)|2 dx−<

[
(xγux)(x, t)ut

]1

0
= 0.
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Then
1

2

d

dt

∫ 1

0

(
|ut(x, t)|2 + xγ|ux(x, t)|2

)
dx+ ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0.(3.26)

Multiplying the second equation in (P ′2) by ζφ and integrating over (−∞,+∞), to obtain:

ζ
∫ +∞

−∞
φt(ξ, t)φ(ξ, t)dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.

Hence

ζ

2

d

dt

∫ +∞

−∞
|φ(ξ, t)|2dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.(3.27)

From (3.24), (3.26) and (3.27) we get

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.

This completes the proof of the lemma.
2

3.5 Lack of exponential stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (3.10). In order to state and prove our stability results, we need some lemmas.

Theorem 3.5.1 ([43]) Let S(t) be a C0-semigroup of contractions on Hilbert space X with
generator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR

and
lim
|β|→∞

‖(iβI −A)−1‖L(X ) <∞.

Our main result is the following.

Theorem 3.5.2 The semigroup generated by the operator A is not exponentially stable if η = 0
or α 6= 2νγ.

Proof. We will examine two cases.
•Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (sin(x − 1), 0, 0)T ∈ H, and denoting by (u, v, φ)T the image of (sin(x − 1), 0, 0)T

by A−1, we see that φ(ξ) = |ξ| 2α−5
2 sin 1. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. So

(u, v, φ)T 6∈ D(A).
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• Case 2 η 6= 0:
We aim to show that an infinite number of eigenvalues of A approach the imaginary axis

which prevents the system (P2) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of A. Let λ be an eigenvalue of A with
associated eigenvector U = (u, v, φ)T . Then AU = λU is equivalent to

λu− v = 0,
λv − (xγux)x = 0,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = 0.

(3.28)

It is well-known that Bessel functions play an important role in this type of problem. From
(3.28)1 − (3.28)2 for such λ, we find

λ2u− (xγux)x = 0.(3.29)

Using the boundary conditions and (3.28)3, we deduce that

λ2u− (xγux)x = 0,

(xγux)(0)− ζv(0)
∫ +∞

−∞

µ2(ξ)

ξ2 + λ+ η
dξ

= (xγux)(0)− %λ(λ+ η)α−1u(0) = 0,
u(1) = 0.

(3.30)

Assume that u is a solution of (3.30) associated to eigenvalue −λ2, then one easily checks that
the function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
iλx

2−γ
2

)
is a solution of the following problem:

y2Ψ′′(y) + yΨ′(y) + (y2 − (
γ − 1

2− γ
)2)Ψ(y) = 0.(3.31)

We have
u(x) = c+Φ+ + c−Φ−,(3.32)

where Φ+ and Φ− are defined by

Φ+(x) := x
1−γ
2 Jνγ

(
2

2− γ
iλx

2−γ
2

)

and

Φ−(x) := x
1−γ
2 J−νγ

(
2

2− γ
iλx

2−γ
2

)
,

where

Jν(y) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
y

2

)2m+ν

=
∞∑
m=0

c+
ν,my

2m+ν ,(3.33)
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J−ν(y) =
∞∑
m=0

(−1)m

m!Γ(m− ν + 1)

(
y

2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν(3.34)

νγ =
1− γ
2− γ

and Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. As νγ 6∈ IN, so
Jνγ and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms
a fundamental system of solutions (3.31).

Then, using the series expansion of Jνα and J−να , one obtains

Φ+(x) =
∞∑
m=0

c̃+
νγ ,mx

1−γ+(2−γ)m, Φ−(x) =
∞∑
m=0

c̃−νγ ,mx
(2−γ)m,

with

c̃+
νγ ,m = c+

νγ ,m

(
2

2− α
iλ
)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− α
iλ
)2m−νγ

.

Next one easily verifies that Φ+,Φ− ∈ H1
0,γ(0, 1): indeed,

Φ+(x) ∼0 c̃
+
νγ ,0x

1−γ, xγ/2Φ′+(x) ∼0 (1− γ)c̃+
νγ ,0x

−γ/2,

Φ−(x) ∼0 c̃
−
νγ ,0, xγ/2Φ′−(x) ∼0 (2− γ)c̃−νγ ,0x

1−γ/2.

where we have used the following relation

xJ ′ν(x) = νJ(x)− xJν+1(x).(3.35)

Hence, given c+ and c−, u(x) = c+Φ+(x) + c−Φ−(x) ∈ H1
0,γ(0, 1) with the following boundary

condition {
(xγux)(0)− %λ(λ+ η)α−1u(0) = 0,
u(1) = 0.

Then

M(λ)C(λ) =

(
(1− γ)c̃+

νγ ,0 −%λ(λ+ η)α−1c̃−νγ ,0

Jνγ
(

2
2−γ iλ

)
J−νγ

(
2

2−γ iλ
) )(

c+

c−

)
=
(

0
0

)
.(3.36)

Hence, a non-trivial solution u exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ) thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-
quence of eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues
λ of A in the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark
that Φ+,Φ− remains bounded.

Lemma 3.5.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A),(3.37)

where



3.5. LACK OF EXPONENTIAL STABILITY 77

• If γ = 0 and α = 1

λk =


ln

√
%− 1

%+ 1
+ ikπ if ρ > 1

ln

√
1− %
%+ 1

+ i
(
k +

1

2

)
π if ρ < 1

 , k ∈ Z.

• If 0 < γ < 1 and α = 1

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π +

β

|k|1−2νγ
+ o

(
1

k1−2νγ

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0.

λk = λ−k if k ≤ −N,
where

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

π1−2νγ
.

• If α = 2νγ

λk = −i2− γ
4

(
2kπ + θ − π

2

)
− 2− γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

+O
(

1

k

)
, k ∈ Z,

λk = λ−k if k ≤ −N,
where

Ã =
1− γ
%

(
2

2− γ

)2νγ c+
νγ ,0

c−νγ ,0

and θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

• If α > 2νγ

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π +

α̃

kα−2νγ
+

β

|k|α−2νγ
+ o

(
1

kα−2νγ

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,

λk = λ−k if k ≤ −N,
where

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

(
2− γ

2

)1−α cos(1− α)π
2

sin νγπ

πα−2νγ
.

• If α < 2νγ

λk = −2− γ
2

i
(
k − νγ

2
+

3

4

)
π+

α̃

k2νγ−α
+

β

|k|2νγ−α
+ o

(
1

k2νγ−α

)
, k ≥ N, α̃ ∈ iIR, β ∈ IR, β < 0,
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λk = λ−k if k ≤ −N,

where

β = − %

1− γ
c−νγ ,0
c+
νγ ,0

(
2− γ

2

)1+α cos(1− α)π
2

sin νγπ

πα−2νγ
.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof.
• γ = 0 and α = 1.
System (3.29)-(3.30) becomes 

λ2u− uxx = 0,
ux(0) = %u(0),
u(1) = 0.

The solution u is given by
u = c1e

λx + c2e
−λx.

Thus, the boundary conditions give

e2λ =
%− 1

%+ 1
.

If % > 1 and if we set λ = x+ iy, then

e2x =
%− 1

%+ 1
and e2iy = 1.

Hence

x =
1

2
ln
%− 1

%+ 1
and y = kπ, k ∈ Z.

Then

λ =
1

2
ln
%− 1

%+ 1
+ ikπ, k ∈ Z.

Now if % < 1, we have

e2x =
1− %
%+ 1

and e2iy = −1.

Hence

x =
1

2
ln

1− %
%+ 1

and y = (k +
1

2
)π, k ∈ Z.

Then

λ =
1

2
ln

1− %
%+ 1

+ i(k +
1

2
)π, k ∈ Z.

• 0 < γ < 1 and α = 1.
Step 1. From (3.36), we have

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ %λc̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0
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We will use the following classical asymptotic development (see [36] p. 122, (5.11.6)): for all
δ > 0, the following development holds when |argz| ≤ π − δ:

Jν(z) =
(

2

πz

)1/2

cos
(
z − ν π

2
− π

4

)(
1 +O(

1

|z|2
)

)
−
(

2

πz

)1/2

sin
(
z − ν π

2
− π

4

)
O

(
1

|z|2

)
.(3.38)

Then

f(λ) =
(

2

πz̃

)1/2

%λ1−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(3.39)

where

z̃ =
2

2− γ
iλ

and

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

e2i(z̃−π
4

) + e−iνγπ

λ1−2νγ
+O

(
1

λ2

)
= f0(λ) + f1(λ)

λ1−2νγ +O
(

1
λ2

)
,

(3.40)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) + 1.(3.41)

f1(λ) =
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ).(3.42)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.
Step 2. We look at the roots of f0. From (3.41), f0 has one family of roots that we denote λ0

k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those of
f0. Let us start with the first family. Changing in (3.40) the unknown λ by u = 2iz then (3.40)
becomes

f̃(u) = (eu + 1) +O
(

1

u(1−2νγ)

)
= f0(u) +O

(
1

u(1−2νγ)

)

The roots of f0 are uk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z, and setting u = uk+reit, t ∈ [0, 2π], we

can easily check that there exists a constant C > 0 independent of k such that |eu+1| ≥ Cr for r
small enough. This allows to apply Rouché’s Theorem. Consequently, there exists a subsequence
of roots of f̃ which tends to the roots uk of f0. Equivalently, it means that there exists N ∈ IN
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and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0
k + o(1) which tends to the roots

−2− γ
2

i
(
k +

νγ
2

+
3

4

)
π of f0. Finally for |k| ≥ N, λk is simple since λ0

k is.

Step 3. From Step 2, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π + εk.(3.43)

Using (3.43), we get

e2iλk = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(3.44)

Substituting (3.44) into (3.41), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk −

1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)1−2νγ

+ o(εk) + o
(

1

k1−2νγ

)
= 0(3.45)

and hence

εk = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)1−2νγ
+ o

(
1

k1−2νγ

)
(3.46)

From (3.46) we have in that case |k|1−α<λk ∼ β, with

β = −1− γ
%

c+
νγ ,0

c−νγ ,0

sin νγπ

(π)1−2νγ
.

• α = 2νγ.
From (3.36), we have

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ %λ(λ+ η)α−1c̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0

Then

f(λ) =
(

2

πz̃

)1/2

%λ1−νγ (λ+ η)α−1c−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(3.47)

where

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ) +O

(
1

λ

)
= f0(λ) +O

(
1
λ

)
.

(3.48)

We look at the roots of f0. From (3.41), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2iz̃ = −i 1 + Ã

e−iνγπ + Ãe−iνγπ
,
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where

Ã =
1− γ
%

(
2

2− γ

)2νγ c+
νγ ,0

c−νγ ,0
.

If we set λ = x+ iy. Then 
e−

4
2−γ x =

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

− 4
2−γy = 2kπ − π

2
+ θ, k ∈ Z,

where θ is such that 
cos θ =

(1 + Ã) cos νγπ√
1 + Ã2 + 2Ã cos 2νγπ

,

sin θ =
(1− Ã) sin νγπ√

1 + Ã2 + 2Ã cos 2νγπ
.

Hence 
x = −2−γ

4
ln

1 + Ã√
1 + Ã2 + 2Ã cos 2νγπ

,

y = −2−γ
4

(2kπ − π

2
+ θ), k ∈ Z.

Now with the help of Rouché’s Theorem, we conclude.
• α > 2νγ.
Step 1. From (3.36), we have

f(λ) =
(

2

πz̃

)1/2

%λ1−νγ (λ+ η)α−1c−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(3.49)

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

e2i(z̃−π
4

) + e−iνγπ

λα−2νγ
+O

(
1

λ2

)
= f0(λ) + f1(λ)

λα−2νγ +O
(

1
λ2

)
,

(3.50)

where
f0(λ) = e2i(z̃−νγ π2−

π
4

) + 1.(3.51)

f1(λ) =
1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0
(e2i(z̃−π

4
) + e−iνγπ).(3.52)

We look at the roots of f0. From (3.51), f0 has one family of roots that we denote λ0
k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0.

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,
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i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π + εk.(3.53)

Using (3.53), we get

e2iλk = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(3.54)

Substituting (3.54) into (3.50), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk −

1− γ
%

(
2

2− γ
i

)2νγ c+
νγ ,0

c−νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)α−2νγ

+ o(εk) + o
(

1

kα−2νγ

)
= 0(3.55)

and hence

εk = −1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)α−2νγ
(−i)1−α + o

(
1

kα−2νγ

)

=



−1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)α−2νγ

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

kα−2νγ

)
for k � 0,

−1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

sin νγπ

(−kπ)α−2νγ

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

kα−2νγ

)
for k � 0.

(3.56)
From (3.56) we have in that case |k|α−2νγ<λk ∼ β, with

β = −1− γ
%

(
2− γ

2

)1−α c+
νγ ,0

c−νγ ,0

1

πα−2νγ
sin νγπ cos(1− α)

π

2
.

• α < 2νγ.
step 1.

f(λ) =
(

2

πz̃

)1/2

(1− γ)λνγc+
νγ ,0

(
2

2− γ
i

)νγ e−i(z̃+νγ π2−π4 )

2
f̃(λ),(3.57)

f̃(λ) = (e2i(z̃+νγ
π
2
−π

4
) + 1) +

%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0
c+
νγ ,0

e2i(z̃−π
4

) + eiνγπ

λ2νγ−α
+O

(
1

λ2

)
= f0(λ) + f1(λ)

λα−2νγ +O
(

1
λ2

)
,

(3.58)

where
f0(λ) = e2i(z̃+νγ

π
2
−π

4
) + 1.(3.59)

f1(λ) =
%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0
c+
νγ ,0

(e2i(z̃−π
4

) + eiνγπ).(3.60)
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We look at the roots of f0. From (3.59), f0 has one family of roots that we denote λ0
k.

2i

(
2

2− γ
iλ+ νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k − νγ

2
+

3

4

)
π, k ∈ Z.

Step 2. From Step 1, we can write

λk = −2− γ
2

i
(
k − νγ

2
+

3

4

)
π + εk.(3.61)

Using (3.61), we get

e2iλk = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(3.62)

Substituting (3.62) into (3.58), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk +

%

1− γ

(
2

2− γ
i

)−2νγ c−νγ ,0
c+
νγ ,0

2i sin νγπ

(−2−γ
2
ikπ)2νγ−α

+ o(εk) + o
(

1

kα−2νγ

)
= 0(3.63)

and hence

εk = − %

1− γ

(
2− γ

2

)1+α c−νγ ,0
c+
νγ ,0

sin νγπ

(kπ)2νγ−α
(−i)α−1 + o

(
1

k2νγ−α

)

=



− %

1− γ

(
2− γ

2

)1+α c−νγ ,0
c+
νγ ,0

sin νγπ

(kπ)2νγ−α

(
cos(1− α)

π

2
+ i sin(1− α)

π

2

)
+ o

(
1

k2νγ−α

)
for k � 0,

− %

1− γ

(
2− γ

2

)1+α c−νγ ,0
c+
νγ ,0

sin νγπ

(−kπ)2νγ−α

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

k2νγ−α

)
for k � 0.

(3.64)
From (3.64) we have in that case |k|2νγ−α<λk ∼ β, with

β = − %

1− γ

(
2− γ

2

)1+α c−νγ ,0
c+
νγ ,0

1

π2νγ−α
sin νγπ cos(1− α)

π

2
.

The operator A has a non exponential decaying branch of eigenvalues for α 6= 2νγ. Thus the
proof is complete.

Remark 3.5.1 From Lemma 3.5.1, the operator A does not have eigenvalues on imaginary axis
iIR.
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3.6 Optimality of energy decay when η 6= 0

By Lemma 3.5.1, the spectrum of A is at the left of the imaginary axis, but approaches this axis
for α 6= 2νγ. Hence, the decay of the energy depends on the asymptotic behavior of the real part
of these eigenvalues.

Unfortunately we were not able to prove this decay rate by frequency domain method based on
multiplier method as the problem (P2) is degenerate and the control is acting on the degenerate
boundary.

To state and prove our stability results, we need some results from semigroup theory.

Theorem 3.6.1 ([11]) Let S(t) be a bounded C0-semigroup on a Hilbert space X with generator
A. If

iIR ⊂ ρ(A) and lim
|β|→∞

1

βl
‖(iβI −A)−1‖L(X ) <∞

for some l, then there exist c such that

‖eAtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

Theorem 3.6.2 ([3]) Let A be the generator of a uniformly bounded C0-semigroup {S(t)}t≥0

on a Hilbert space X . If:

(i) A does not have eigenvalues on iIR.

(ii) The intersection of the spectrum σ(A) with iIR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖X → 0 as t → ∞ for any
z ∈ X .

In this section, by an explicit representation of the resolvent of the generator on the imaginary
axis and the use of the Theorem by Borichev and Tomilov, we prove an optimal decay rate. Our
main result is the following.

Theorem 3.6.3 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H, the solution
of (3.10) satisfies

lim
t→∞
‖etAU0‖H = 0.

If η 6= 0, then the global solution of the problem (P2) has the following energy decay property

E(t) = ‖SA(t)U0‖2
H ≤



c

t
2

α−2νγ

‖U0‖2
D(A) if α > 2νγ,

c

t
2

2νγ−α
‖U0‖2

D(A) if α < 2νγ,

ce−ωt‖U0‖2
D(A) if α = 2νγ.

Moreover, the rate of energy decay is optimal for any initial data in D(A).
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Proof.
Let us consider the resolvent equation

iλu− v = f1,
iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3,

(3.65)

where F = (f1, f2, f3)T ∈ H. From (3.65)1 and (3.65)2, we have

λ2u+ (xγux)x = −(f2 + iλf1)(3.66)

with  (xγux)x=0 = ζ
∫ ∞
−∞

µ(ξ)φ(ξ) dξ

u(1) = 0.
(3.67)

The substitution of φ given by (3.65)3 into (3.67)1 give us

(xγux)x=0 = %(iλ+ η)α−1v(0) + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.(3.68)

Moreover, from (3.65)1, we have

v(0) = iλu(0)− f1(0).

Then, the condition (3.68) become

(xγux)x=0 − %iλ(iλ+ η)α−1u(0) = −%(iλ+ η)α−1f1(0) + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.(3.69)

Assume that Φ is a solution of (3.66), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ
λx

2−γ
2

)
(3.70)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

y2 −
(
γ − 1

2− γ

)2
Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ
y)

2
2−γ
)

+ iλf1

(
(2−γ

2
1
λ
y)

2
2−γ
))
.

(3.71)

The solution can be written as

Ψ(y) = AJνγ (y) +BJ−νγ (y) +
2νγ

sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds.

Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γλx
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γλx
2−γ
2

)
− 2νγ

sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0
s

1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λs

2−γ
2

)
J−νγ

(
2

2− γ
λx

2−γ
2

)
−Jνγ

(
2

2−γλx
2−γ
2

)
J−νγ

(
2

2−γλs
2−γ
2

))
ds.
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Therefore,

u(x) = AΦ+(x) +BΦ−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,

(3.72)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
.(3.73)

From where it follows

ux(x) = AΦ′+(x) +BΦ′−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds

(3.74)

From (3.69), (3.74) and (3.72), we conclude that

(1− γ)c̃+
νγ ,0A− %iλ(iλ+ η)α−1c̃−νγ ,0B = −%(iλ+ η)α−1f1(0) + ζ

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ(3.75)

AΦ+(1) +BΦ−(1) =
2νγ

sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds(3.76)

where

c̃+
νγ ,m = c+

νγ ,m

(
2

2− α
λ
)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− α
λ
)2m−νγ

and

Φ+(1) = Jνγ

(
2

2− γ
λ

)
, Φ−(1) = J−νγ

(
2

2− γ
λ

)
.

Using (3.75) and (3.76), a linear system in A and B is obtained(
r11 r12

r21 r22

)(
A
B

)
=
(
C
C̃

)
,(3.77)

where
r11 = (1− γ)c̃+

νγ ,0,

r12 = −%iλ(iλ+ η)α−1c̃−νγ ,0,

r21 = Jνγ
(

2
2−γλ

)
,

r22 = J−νγ
(

2
2−γλ

)
,

C = −%(iλ+ η)α−1f1(0) + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ,

C̃ =
2νγ

sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds.
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Let the determinant of the linear system given in (3.77) be denoted by D. Then

D = (1− γ)c̃+
νγ ,0J−νγ

(
2

2−γλ
)

+ %iλ(iλ+ η)α−1c̃−νγ ,0Jνγ
(

2
2−γλ

)
= (1− γ)c+

νγ ,0

(
2

2−γ

)νγ
λνγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ+ νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

+%iλ(iλ+ η)α−1c−νγ ,0
(

2
2−γ

)−νγ
λ−νγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ− νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ (2− γ
π

)1/2

λνγ−
1
2 cos

(
2

2−γλ+ νγ
π
2
− π

4

)
+%iαc−νγ ,0

(
2

2−γ

)−νγ (2− γ
π

)1/2

λα−νγ−
1
2 cos

(
2

2−γλ− νγ
π
2
− π

4

)
+O(

1

λ3/2+νγ−α
).

As D 6= 0 for all λ 6= 0, then A and B are uniquely determined by (3.77). Hence the operator
(iλI − A) is surjective for all λ 6= 0. Moreover for λ = 0 and η 6= 0, using Lax-Milgram
Theorem, we can deduce that the operator A is surjective. Taking account of Remark 3.5.1 and
from Theorem 3.6.2 The C0-semigroup etA is strongly stable in H.

Now, it is easy to prove that

|D| ≥
{
c|λ|νγ−1/2 for large λ if α ≥ 2νγ,
c|λ|α−νγ−1/2 for large λ if α ≤ 2νγ.

Now

A =
1

D
(Cr22 − C̃r12)

B =
1

D
(−Cr21 + C̃r11)

Considering only the dominant terms of λ, the following is obtained:

|D||A| ≤ c1|λ|α−
3
2 + c2|λ|α−νγ−1 ≤ c3|λ|α−νγ−1,

|D||B| ≤ c1|λ|α−
3
2 + c2|λ|νγ−1 ≤

{
c3|λ|α−νγ−1 if α > 2νγ,
c̃3|λ|νγ−1 if α < 2νγ,

where we have used the fact that f1 ∈ H1
0,γ(0, 1) and

∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ 1

|λ|
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
,

∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

∣∣∣∣ ≤ (‖f1‖H1
0,γ(0,1) + ‖f2‖L2(0,1)

)
.

Then, we conclude that

|A| ≤
{
c|λ|α−2νγ− 1

2 if if α > 2νγ,
c|λ|−1/2 if if α < 2νγ,

|B| ≤
{
c|λ|α−2νγ− 1

2 if if α > 2νγ,

c|λ|2νγ−α− 1
2 if if α < 2νγ.



88 CHAPTER 3. DEGENERATE W.E. UNDER FRACTIONAL FEEDBACK

Then

‖u‖L2(0,1) ≤

 c|λ|
α−2νγ−1

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α−1
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if if α < 2νγ.

Using (3.65)1 and (3.72), we get

‖v‖L2(0,1) ≤

 c|λ|
α−2νγ

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if if α < 2νγ.

From (3.73) and (3.35), we havex
γ/2Φ′+(x) = (1−γ

2
+ 2νγ

2−γ )x−1/2Jνγ
(

2
2−γλ

)
− λx 1−γ

2 J1+νγ

(
2

2−γλ
)
,

xγ/2Φ′−(x) = (1−γ
2
− 2νγ

2−γ )x−1/2J−νγ
(

2
2−γλ

)
− λx 1−γ

2 J1−νγ

(
2

2−γλ
)
.

Then from (3.74), we can get

‖xγ/2ux‖L2(0,1) ≤

 c|λ|
α−2νγ

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α > 2νγ,

c|λ|2νγ−α
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
if α < 2νγ.

Moreover from (3.65)3, we have

‖φ‖2
L2(−∞,∞) ≤

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI −A)−1‖H ≤


c|λ|α−2νγ as |λ| → ∞ if α > 2νγ
c|λ|2νγ−α as |λ| → ∞ if α < 2νγ

c as |λ| → ∞ if α = 2νγ

The conclusion then follows by applying Theorem 3.6.1 for α 6= 2νγ and Theorem 3.5.1 for
α = 2νγ.

Besides, we prove that the decay rate is optimal. Indeed, the decay rate is consistent with
the asymptotic expansion of eigenvalues.

2

3.7 Future works

1) It seems to be interesting to develop some multipliers method to treat the following problem
(also in the case a(x) = xγ)

(P )


utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),
(a(x)ux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1).



3.7. FUTURE WORKS 89

Here a is weakly degenerate at x = 0 in the sense that∫ 1

0

1

a(s)
ds < +∞.

Moreover, an explicit representation need to develop some tools similar to Bessel equations. This
is an interesting problem.

2) More general problem is the following
utt(x, t)−M(‖

√
a(x)ux‖2

L2(0,L))(a(x)ux)x(x, t) = 0 in (0, 1)× (0,+∞)

M(‖
√
a(x)ux‖2

L2(0,1))(a(x)ux)(0, t) = %∂α,ηt u(0, t) in (0,+∞)

u(1, t) = 0 in (0,+∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1).

The problem of global existence and energy decay is open. It is clear that the energy decay rate
depends on the order of degeneracy of M,a and the parameter α.
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Chapter 4

STABILIZATION OF DEGENERATE
WAVE EQUATION UNDER
DYNAMIC FRACTIONAL
FEEDBACK ACTING ON THE
DEGENERATE BOUNDARY

4.1 Introduction

In this chapter, we are concerned with the dynamic boundary stabilization of fractional type for
degenerate wave equation of the form

(P3)


utt(x, t)− (xγux(x, t))x = 0 in (0, 1)× (0,+∞),
−mutt(0, t) + (xγux)(0, t) = %∂α,ηt u(0, t) in (0,+∞),
u(1, t) = 0 in (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on (0, 1),

where (x, t) ∈ (0, 1) × (0,+∞), γ ∈ [0, 1),m > 0 and % > 0. The notation ∂α,ηt stands for the
generalized Caputo’s fractional derivative of order α, (0 < α ≤ 1), with respect to the time
variable (see [20]). It is defined as follows

∂α,ηt w(t) =


wt(t) for α = 1, η ≥ 0,

1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s) ds, for 0 < α < 1, η ≥ 0.

The problem (P3) describes the motion of a pinched vibration cable with tip mass m > 0 (see
[41] and [27]), where, for simplicity, the wave speed is chosen to be unity and a subscript letter
denotes a partial differential with respect to the corresponding variable.

The bibliography of works concerning the stabilization of nondegenerate wave equation with
different types of damping is truly long (see e.g. [21], [22], [19] and the references therein).
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In [22], for a(x) = a1x + a0 : the authors have established asymptotic stabilization with the
following boundary damping{

(aux)(0, t) = 0,
(aux)(1, t) = −ku(1, t)− ut(1, t), k > 0.

In [19], the authors considered the following modelization of a flexible torque arm controlled by
two feedbacks depending only on the boundary velocities:

utt(x, t)− (a(x)ux)x + αut(x, t) + βy(x, t) = 0, 0 < x < 1, t > 0,
(a(x)ux)(0) = k1ut(0, t), t > 0,
(a(x)ux)(1) = −k2ut(1, t), t > 0,

where {
α ≥ 0, β > 0, k1, k2 ≥ 0, k1 + k2 6= 0,
a ∈ W 1,∞(0, 1), a(x) ≥ a0 for all x ∈ [0, 1].

They proved the exponential decay of the solutions.
Let us mention here that the case α = 1 in (CF ) corresponds to a boundary damping and

it has been extensively studied by many authors (see, for instance, [37], [25], and references
therein). It has been proved, in particular that solutions exist globally with an optimal decay
rate that is E(t) ∼ c/t by using Riesz basis property of the generalized eigenvector of the system.

Recently in [9], Benaissa and Benkhedda considered the stabilization for the following wave
equation with dynamic boundary control of fractional derivative type (CF ):

(PF )


ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞)
y(0, t) = 0 in (0,+∞)
mytt(L, t) + yx(L, t) = −γ∂α,ηt y(L, t) in (0,+∞)
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L)

They proved that the decay of the energy is not exponential but polynomial that is E(t) ≤
C1/t(2−α).

Very recently in [18], Benaissa and Benkhedda considered the stabilization for the following
wave equation with a general dynamic boundary control of diffusive type (CF ):

(P )



ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞)
y(0, t) = 0 in (0,+∞)

mytt(L, t) + yx(L, t) = −ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ in (0,+∞)

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− yt(L, t)µ(ξ) = 0 in (−∞,∞)× (0,+∞)
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L)
φ(ξ, 0) = φ0 in (−∞,∞)

They proved that the decay of the energy is not exponential. Moreover, they obtained a precise
and optimal energy decay estimate for a general control of diffusive type, from which the usual
control of fractional derivative type is a special case.
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On the contrary, when the coefficient a(x) is degenerate very little is known in the literature,
even though many problems that are relevant for applications are described by hyperbolic equa-
tions degenerating at the boundary of the space domain (see [8] and [2]). In [2], Alabau et al.
[2] studied the degenerate wave equation of the type

utt(x, t)− (a(x)ux(x, t))x = 0 in (0, 1)× (0,+∞),(4.1)

where the coefficient a is a positive function on ]0, 1] but vanishes at zero. The degeneracy of
(4.1) at x = 0 is measured by the parameter µa defined by

µa = sup
0<x≤1

x|a′(x)|
a(x)

(4.2)

and the initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x),(4.3)

followed by the boundary conditions

(P1)


{
u(0, t) = 0 if 0 ≤ µa < 1
(aux)(0, t) = 0 if 1 ≤ µa < 2

in (0,+∞),

ux(1, t) + ut(1, t) + βu(1, t) = 0 in (0,+∞),

they obtained exponential stability of the solutions.

Very recently in [8], Benaissa and Aichi considered the stabilization of the problem (4.1)-(P1)
but with a feed back of fractional time derivative type instead of the feedback of the usual time
derivative type. They proved an optimal polynomial decay rate. It is proved that the presence
of a degenerate coefficient has no effect on the stabilization results in [2]) and [8].

Here we want to focus on the following remarks:

• System (4.1), (4.3) and (P1) under study is different from one studied on [2]. Indeed, the
control is located at x = 0.

• The fractional velocity feedbacks considered here provide a weaker damping than the ve-
locity feedbacks (see [39]).

• The explicit representation of the resolvent gives us a sharp polynomial decay rate, how-
ever in [2], stabilization is done under the classical energy method based on multiplier
techniques (see [33]). Unfortunately, this method does not seem to be applicable in the
case of damping acting at x = 0.

In this work, we explain the influence of the relation between the degenerate coefficient and
the fractional feedback on decay estimates.

This chapter is organized as follows. In section 2, we give preliminaries results and we
reformulate the system (P3) into an augmented system by coupling the degenerate wave equation
with a suitable diffusion equation and we show the well-posedness of our problem by semigroup
theory. In section 3, we prove lack of exponential stability by spectral analysis by using Bessel
functions. In the last section, we prove an optimal decay rate. The proof heavily relies on Bessel
equations and Borichev-Tomilov Theorem.
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4.2 Preliminaries results

Now, we introduce, as in [15] or [2], the following weighted Sobolev spaces:

H1
0,γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)/ u(1) = 0

}
H1
γ(0, 1) =

{
u is locally absolutely continuous in (0, 1] : xγ/2ux ∈ L2(0, 1)

}
.

We remark that H1
γ(0, 1) is a Hilbert space with the scalar product

(u, v)H1
γ(0,1) =

∫ 1

0
(uv + xγu′(x)v′(x)) dx, ∀u, v ∈ H1

γ(0, 1).

Let us also set

|u|H1
0,γ(0,1) =

(∫ 1

0
xγ|u′(x)|2 dx

)1/2

∀u ∈ H1
γ(0, 1).

Actually, | · |H1
0,γ(0,1) is an equivalent norm on the closed subspace H1

0,γ(0, 1) to the norm of

H1
γ(0, 1). This fact is a simple consequence of the following version of Poincaré’s inequality.

Proposition 4.2.1 There is a positive constant C∗ = C(γ) such that

‖u‖2
L2(Ω) ≤ C∗|u|21,γ ∀u ∈ H1

0,γ(0, 1).(4.4)

Proof. Let u ∈ H1
0,γ(0, 1). For any x ∈]0, 1] we have that

|u(x)| =
∣∣∣∣∫ 1

x
u′(s) ds

∣∣∣∣ ≤ |u|1,γ {∫ 1

0

1

xγ
dx
}1/2

.

Therefore ∫ 1

0
|u(x)|2 dx ≤ 1

1− γ
|u|21,γ.

Next, we define

H2
γ(0, 1) = {u ∈ H1

γ(0, 1) : xγu′ ∈ H1(0, 1)},

where H1(0, 1) denotes the classical Sobolev space.

Remark 4.2.1 Notice that if u ∈ H2
γ(0, 1), γ ∈ [1, 2),we have (xγux)x=0 ≡ 0 since 1/xγ is

not integrable over neighborhoods of 0. Hence the problem is not well-posed in terms of the
semigroups in the Hilbert space.

4.2.1 Augmented model

In this section we reformulate (P3) into an augmented system. For that, we need the following
proposition.
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Proposition 4.2.2 (see [39]) Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1.(4.5)

Then the relationship between the ‘input’ U and the ‘output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0,(4.6)

φ(ξ, 0) = 0,(4.7)

O(t) = (π)−1 sin(απ)
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ(4.8)

is given by
O = I1−α,ηU.(4.9)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0
(t− τ)α−1e−η(t−τ)f(τ) dτ

Lemma 4.2.1 (see [1]) If λ ∈ Dη = IC\]−∞,−η] then

F (λ) =
∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

Using now Proposition 4.2.2 and relation (4.9), system (P3) may be recast into the following
augmented system

(P ′)



utt(x, t)− (xγux(x, t))x = 0,
φt(ξ, t) + (ξ2 + η)φ(ξ, t)− ut(0, t)µ(ξ) = 0, −∞ < ξ < +∞, t > 0,

−mutt(0, t) + (xγux)(0, t) = ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ,

u(1, t) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

where ζ = %(π)−1 sin(απ).

4.3 Well-posedness

In this section, we give an existence and uniqueness result for problem (P3) using the semigroup
theory. To define the semigroup associated with (P3), we consider the right-end boundary
condition

ut(0, t) = θ(t), t > 0,

where v solve the equation

−mθt(t) + (xγux)(0, t)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0.(4.10)
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with the initial condition
θ(0) = u1(0) = θ0.(4.11)

Let us denote U := (u, ut, φ, θ)
T , then U satisfies the following Cauchy problem:

∂tU = AU, U(0) = U0,(4.12)

where U0 = (u0, u1, 0, θ0)T and A : D(A) ⊂ H → H is given by

A


u
v
φ
θ

 =


v

(xγux)x
−(ξ2 + η)φ+ v(0)µ(ξ)

1

m
(xγux)(0)− ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ

 ,(4.13)

We introduce the Hilbert space H = H1
0,γ(0, 1)×L2(0, 1)×L2(−∞,+∞)× IC with inner product

〈
u
v
φ
θ

 ,

ũ
ṽ
φ̃
θ̃


〉
H

=
∫ 1

0
xγuxũxdx+

∫ 1

0
vṽdx+ ζ

∫ +∞

−∞
φφ̃ dξ +mθθ̃.

The domain of the operator A is given by

D(A) =


(u, v, φ) in H : u ∈ H2

γ(0, 1) ∩H1
0,γ(0, 1), v ∈ H1

0,γ(0, 1), θ ∈ IC
−(ξ2 + η)φ+ v(0)µ(ξ) ∈ L2(−∞,+∞), v(0) = θ
|ξ|φ ∈ L2(−∞,+∞)

 .(4.14)

Our main result is giving by the following theorem.

Theorem 4.3.1 The operator A defined by (4.13) and (4.14), generates a C0-semigroup of con-
tractions etA in the Hilbert space H.

Proof.
To prove this result we shall use the Lumer-Phillips’ theorem. Since for every U = (u, v, φ) ∈
D(A) we have

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ.(4.15)

then the operator A is dissipative.
Let λ > 0. we prove that the operator (λI − A) is a surjection. In other words, we shall

demonstrate that given any triplet F = (f1, f2, f3) ∈ H, there is an other triplet U = (u, v, φ) ∈
D(A) such that

(λI −A)U = F.(4.16)

Equation (4.16) is equivalent to

λu− v = f1,
λv − (xγux)x = f2,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3.

λθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(4.17)



4.3. WELL-POSEDNESS 97

Suppose u is found with the appropriate regularity. Then, (4.17)1 and (4.17)3 yield

v = λu− f1 ∈ H1
0,γ(0, 1),(4.18)

Using equations (4.17)3, (4.17)1 and the fact that η ≥ 0, we get

φ(ξ) =
f3(ξ)

ξ2 + η + λ
+
λu(0)µ(ξ)

ξ2 + η + λ
− f1(0)µ(ξ)

ξ2 + η + λ
.(4.19)

By using (4.17) and (4.18) it can easily be shown that u satisfies

λ2u− (xγux)x = f2 + λf1.(4.20)

Solving equation (4.20) is equivalent to finding u ∈ H2
γ(0, 1) ∩H1

0,γ(0, 1) such that∫ 1

0
(λ2uw − (xγux)xw) dx =

∫ 1

0
(f2 + λf1)w dx,(4.21)

for all w ∈ H1
0,γ(0, 1). By using (4.21), the boundary condition (4.14)3 and (4.19) the function u

satisfying the following equation∫ 1

0
(λ2uw + (xγux)wx) dx+ (ζ̃ +mλ)v(0)w(0)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0)−mf4w(0)

(4.22)

where ζ̃ = ζ
∫ +∞

−∞

µ2(ξ)

ξ2 + η + λ
dξ. Using again (4.18), we deduce that

v(0) = λu(0)− f1(0).(4.23)

Inserting (4.23) into (4.22), we get
∫ 1

0
(λ2uw + xγuxwx) dx+ λ(mλ+ ζ̃)u(0)w(0)

=
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + (mλ+ ζ̃)f1(0)w(0)−mf4w(0).

(4.24)

Problem (4.24) is of the form
B(u,w) = L(w),(4.25)

where B : [H1
0,γ(0, 1)×H1

0,γ(0, 1)]→ IC is the bilinear form defined by

B(u,w) =
∫ 1

0
(λ2uw + xγuxwx) dx+ λ(mλ+ ζ̃)u(0) w(0)

and L : H1
0,γ(0, 1)→ IC is the linear functional given by

L(w) =
∫ 1

0
(f2 + λf1)w dx− ζ

∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξw(0) + (mλ+ ζ̃)f1(0)w(0)−mf4w(0).
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It is easy to verify that B is continuous and coercive, and L is continuous. Consequently, by
the Lax-Milgram Lemma, system (4.25) has a unique solution u ∈ H1

0,γ(0, 1). By the regularity
theory for the linear elliptic equations, it follows that u ∈ H2

γ(0, 1). Therefore, the operator
λI −A is surjective for any λ > 0.

2

As a consequence of Theorem 4.3.1, the system (P ′3) is well-posed in the energy space H and
we have the following proposition.

Proposition 4.3.1 For (u0, u1, 0, θ0) ∈ H, the problem (P ′3) admits a unique weak solution

(u, ut, φ, θ) ∈ C0(IR+,H).

and for (u0, u1, 0, φ0) ∈ D(A), the problem (P ′3) admits a unique strong solution

(u, ut, φ, θ) ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

Moreover, from the density D(A) in H the energy of (u(t), φ(t)) at time t ≥ 0 by

E(t) =
1

2

∫ 1

0
(|ut|2 + xγ|ux|2)dx+

m

2
|ut(L, t)|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ(4.26)

decays as follow

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.(4.27)

Proof of Proposition 4.3.1. Noting that the regularity of the solution of the problem (P ′3) is
consequence of the semigroup properties. We have just to prove (4.27).

Multiplying the first equation in (P ′3) by ut, integrating over (0, 1) and using integration by
parts, we get ∫ 1

0
utt(x, t)utdx−

∫ 1

0
(xγux(x, t))xutdx = 0.

Then
d

dt

(
1

2

∫ 1

0
|ut(x, t)|2dx

)
+

1

2

d

dt

∫ 1

0
xγ|ux(x, t)|2 dx−<

[
(xγux)(x, t)ut

]1

0
= 0.

Then

1

2

d

dt

∫ 1

0

(
|ut(x, t)|2 + xγ|ux(x, t)|2

)
dx+

m

2
|ut(0, t)|2 + ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0.(4.28)

Multiplying the second equation in (P ′3) by ζφ and integrating over (−∞,+∞), to obtain:

ζ
∫ +∞

−∞
φt(ξ, t)φ(ξ, t)dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.

Hence

ζ

2

d

dt

∫ +∞

−∞
|φ(ξ, t)|2dξ + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2dξ − ζ<ut(0, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t)dξ = 0.(4.29)
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From (4.26), (4.28) and (4.29) we get

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0.

This completes the proof of the lemma.
2

4.4 Lack of exponential stability

This section will be devoted to the study of the lack of exponential decay of solutions associated
with the system (4.12). In order to state and prove our stability results, we need some lemmas.

Theorem 4.4.1 ([43]) Let S(t) be a C0-semigroup of contractions on Hilbert space X with
generator A. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR

and
lim
|β|→∞

‖(iβI −A)−1‖L(X ) <∞.

Our main result is the following.

Theorem 4.4.2 The semigroup generated by the operator A is not exponentially stable.

Proof. We will examine two cases.
•Case 1 η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator A. Indeed,
noting that (sin(x−1), 0, 0, 0)T ∈ H, and denoting by (u, v, φ, θ)T the image of (sin(x−1), 0, 0, 0)T

by A−1, we see that φ(ξ) = |ξ| 2α−5
2 sin 1. But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. So

(u, v, φ, θ)T 6∈ D(A).
• Case 2 η 6= 0:

We aim to show that an infinite number of eigenvalues of A approach the imaginary axis
which prevents the system (P ) from being exponentially stable. Indeed we first compute the
characteristic equation that gives the eigenvalues of A. Let λ be an eigenvalue of A with
associated eigenvector U = (u, v, φ, θ)T . Then AU = λU is equivalent to

λu− v = 0,
λv − (xγux)x = 0,
λφ+ (ξ2 + η)φ− v(0)µ(ξ) = 0.

λθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0

(4.30)

It is well-known that Bessel functions play an important role in this type of problem. From
(4.30)1 − (4.30)2 for such λ, we find

λ2u− (xγux)x = 0.(4.31)
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Using the boundary conditions and (4.30)3, we deduce that
λ2u− (xγux)x = 0,
(xγux)(0)− (mλ2 + %λ(λ+ η)α−1)u(0) = 0,
u(1) = 0.

(4.32)

Assume that u is a solution of (4.57) associated to eigenvalue −λ2, then one easily checks that
the function

u(x) = x
1−γ
2 Ψ

(
2

2− γ
iλx

2−γ
2

)
is a solution of the following problem:

y2Ψ′′(y) + yΨ′(y) + (y2 − (
γ − 1

2− γ
)2)Ψ(y) = 0.(4.33)

We have
u(x) = c+Φ+ + c−Φ−,(4.34)

where Φ+ and Φ− are defined by

Φ+(x) := x
1−γ
2 Jνγ

(
2

2− γ
iλx

2−γ
2

)

and

Φ−(x) := x
1−γ
2 J−νγ

(
2

2− γ
iλx

2−γ
2

)
,

where

Jν(y) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
y

2

)2m+ν

=
∞∑
m=0

c+
ν,my

2m+ν ,(4.35)

J−ν(y) =
∞∑
m=0

(−1)m

m!Γ(m− ν + 1)

(
y

2

)2m−ν
=

∞∑
m=0

c−ν,my
2m−ν(4.36)

νγ =
1− γ
2− γ

and Jνγ and J−νγ are Bessel functions of the first kind of order νγ and −νγ. As νγ 6∈ IN, so
Jνγ and J−νγ are linearly independent and therefore the pair (Jνγ , J−νγ ) (classical result) forms
a fundamental system of solutions (4.33).

Then, using the series expansion of Jνα and J−να , one obtains

Φ+(x) =
∞∑
m=0

c̃+
νγ ,mx

1−γ+(2−γ)m, Φ−(x) =
∞∑
m=0

c̃−νγ ,mx
(2−γ)m,

with

c̃+
νγ ,m = c+

νγ ,m

(
2

2− α
iλ
)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− α
iλ
)2m−νγ

.
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Next one easily verifies that Φ+,Φ− ∈ H1
0,γ(0, 1): indeed,

Φ+(x) ∼0 c̃
+
νγ ,0x

1−γ, xγ/2Φ′+(x) ∼0 (1− γ)c̃+
νγ ,0x

−γ/2,

Φ−(x) ∼0 c̃
−
νγ ,0, xγ/2Φ′−(x) ∼0 (2− γ)c̃−νγ ,0x

1−γ/2.

where we have used the following relation

xJ ′ν(x) = νJ(x)− xJν+1(x).(4.37)

Hence, given c+ and c−, u(x) = c+Φ+(x) + c−Φ−(x) ∈ H1
0,γ(0, 1) with the following boundary

condition {
(xγux)(0)− (mλ2 + %λ(λ+ η)α−1)u(0) = 0,
u(1) = 0.

Then

M(λ)C(λ) =

(
(1− γ)c̃+

νγ ,0 −(mλ2 + %λ(λ+ η)α−1)c̃−νγ ,0

Jνγ
(

2
2−γ iλ

)
J−νγ

(
2

2−γ iλ
) )(

c+

c−

)
=
(

0
0

)
.(4.38)

Hence, a non-trivial solution u exists if and only if the determinant of M(λ) vanishes. Set
f(λ) = detM(λ) thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that there is a subse-
quence of eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of the large eigenvalues
λ of A in the strip −α0 ≤ <(λ) ≤ 0, for some α0 > 0 large enough and for such λ, we remark
that Φ+,Φ− remains bounded.

Lemma 4.4.1 There exists N ∈ IN such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A),(4.39)

where

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ

−(
1− γ
m

)2(
c+
νγ ,0

c−νγ ,0
)2 8

(2− γ)3

sin νγ cos νγ
(πk)4−4νγ

i

−i( 2

2− γ
)3−α%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ sin(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ

−(
2

2− γ
)3−α%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ cos(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ
+O

(
1

kω

)
λk = λ−k if k ≤ −N,

where ω = max{4−α− 2νγ, 4− 4νγ}. Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof.
From (4.38), we have

f(λ) = (1− γ)c̃+
νγ ,0J−νγ

(
2

2− γ
iλ

)
+ (mλ2 + %λ(λ+ η)α−1))c̃−νγ ,0Jνγ

(
2

2− γ
iλ

)
= 0
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We will use the following classical asymptotic development (see [36] p. 122, (5.11.6)): for all
δ > 0, the following development holds when |argz| ≤ π − δ:

Jν(z) =
(

2

πz

)1/2

cos
(
z − ν π

2
− π

4

)(
1 +O(

1

|z|2
)

)
−
(

2

πz

)1/2

sin
(
z − ν π

2
− π

4

)
O

(
1

|z|2

)
.(4.40)

step 1.

f(λ) = m
(

2

πz̃

)1/2

λ2−νγc−νγ ,0

(
2

2− γ
i

)−νγ e−i(z̃−νγ π2−π4 )

2
f̃(λ),(4.41)

f̃(λ) = (e2i(z̃−νγ π2−
π
4

) + 1) +
1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ
i

)2νγ e2i(z̃−π
4

) + e−iνγπ

λ2−2νγ
+
%

m

e2i(z̃−νγ π2−
π
4

) + 1

λ2−α +O
(

1

λ2

)
= f0(λ) + f1(λ)

λ2−2νγ + f2(λ)
λ2−α

+O
(

1
λ2

)
,

(4.42)
where

f0(λ) = e2i(z̃−νγ π2−
π
4

) + 1.(4.43)

f1(λ) =
1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ
i

)2νγ

(e2i(z̃−π
4

) + e−iνγπ)(4.44)

f2(λ) =
%

m
(e2i(z̃−νγ π2−

π
4

) + 1)(4.45)

Note that f0 and f1 remain bounded in the strip −α0 ≤ <(λ) ≤ 0.
Step 2. We look at the roots of f0. From (4.43), f0 has one family of roots that we denote λ0

k.

f0(λ) = 0⇔ e2i(z̃−νγ π2−
π
4

) + 1 = 0

Hence

2i

(
2

2− γ
iλ− νγ

π

2
− π

4

)
= i(2k + 1)π, k ∈ Z,

i.e.,

λ0
k = −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close to those of
f0. Let us start with the first family. Changing in (4.42) the unknown λ by u = 2iz then (4.42)
becomes

f̃(u) = (eu + 1) +O
(

1

u(1−2νγ)

)
= f0(u) +O

(
1

u(1−2νγ)

)
The roots of f0 are uk = −2− γ

2
i
(
k +

νγ
2

+
3

4

)
π, k ∈ Z, and setting u = uk+reit, t ∈ [0, 2π], we

can easily check that there exists a constant C > 0 independent of k such that |eu+1| ≥ Cr for r
small enough. This allows to apply Rouché’s Theorem. Consequently, there exists a subsequence
of roots of f̃ which tends to the roots uk of f0. Equivalently, it means that there exists N ∈ IN
and a subsequence {λk}|k|≥N of roots of f(λ), such that λk = λ0

k + o(1) which tends to the roots

−2− γ
2

i
(
k +

νγ
2

+
3

4

)
π of f0. Finally for |k| ≥ N, λk is simple since λ0

k is.
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Step 3. From Step 2, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π + εk.(4.46)

Using (4.46), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk

= −1 + 4
2−γ εk +O(ε2

k).
(4.47)

Substituting (4.47) into (4.42), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk +

1− γ
m

c+
νγ ,0

c−νγ ,0

(
2

2− γ

)2
2i sin νγπ

(kπ)2−2νγ
+ o(εk) + o

(
1

kα−2νγ

)
= 0(4.48)

and hence

εk = −1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0
i

sin νγπ

(kπ)2−2νγ

From Step 3, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ
+ εk.(4.49)

Using (4.46), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk+ 4c
2−γ

1

k2−2νγ

= −1 + 4
2−γ εk −

4c
2−γ

1
k2−2νγ +O(ε2

k).
(4.50)

where

c =
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

π2−2νγ
i

Substituting (4.50) into (4.42), using that f̃(λk) = 0, we get:

f̃(λk) =
4

2− γ
εk − i

1− γ
m

(
8

(2− γ)2

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ(4.51)

and hence

εk = i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ

From Step 3, we can write

λk = −2− γ
2

i
(
k +

νγ
2

+
3

4

)
π − i1− γ

m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

(kπ)2−2νγ

+i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ + εk.

(4.52)
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Using (4.46), we get

e2i(( 2
2−γ iλk)−νγ π2−

π
4

) = −e−
4

2−γ εk+ 4c
2−γ

1

k2−2νγ
− 4c̃

2−γ
1

k3−2νγ

= −1 + 4
2−γ εk −

4c
2−γ

1
k2−2νγ + 4c̃

2−γ
1

k3−2νγ − 1
2
( 4c

2−γ )2 1
k4−4νγ +O(ε2

k).
(4.53)

where

c =
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

sin νγπ

π2−2νγ
i

c̃ = i
1− γ
m

(
2

2− γ

)
c+
νγ ,0

c−νγ ,0

(2− 2νγ)(
νγ
2

+ 3
4
)

π2−2νγk3−2νγ
sin νγπ

Substituting (4.53) into (4.42), using that f̃(λk) = 0, we get:

f̃(λk) = 4
2−γ εk −

4c
2−γ

1
k2−2νγ + 4c̃

2−γ
1

k3−2νγ

−1
2
( 4c

2−γ )2 1
k4−4νγ − 2i

˜̃c
δ2−2νγ

sin νγπ

k2−2νγ

+2i(2− 2νγ)(
νγ
2

+ 3
4
)

˜̃c
δ2−2νγ

sin νγπ

k3−2νγ
−

˜̃cc
δ2−2νγ

4

2− γ
eiνγπ

k4−4νγ
− %

m

4

2− γ
c

δ2−α
1

k4−α−2νγ

= 4
2−γ εk + (

1− γ
m

)2(
c+
νγ ,0

c−νγ ,0
)2 32

(2− γ)4

sin νγ cos νγ
(πk)4−4νγ

i− %

m

4

2− γ
c

δ2−α
1

k4−α−2νγ
= 0

(4.54)
where

δ = −2− γ
2

iπ, ˜̃c =
1− γ
m

c+
νγ ,0

c−νγ ,0
(

2

2− γ
i)2νγ .

and hence

εk = −(
1− γ
m

)2(
c+
νγ ,0

c−νγ ,0
)2 8

(2− γ)3

sin νγ cos νγ
(πk)4−4νγ

i

−i( 2

2− γ
)3−α%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ sin(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ

−(
2

2− γ
)3−α%(1− γ)

m2

c+
νγ ,0

c−νγ ,0

sin νγπ cos(1− α)π
2

π4−α−2νγ

1

k4−α−2νγ

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof is
complete.

Remark 4.4.1 From Lemma 4.4.1, the operator A does not have eigenvalues on imaginary axis
iIR.

4.4.1 Polynomial Stability (for η 6= 0)

To state and prove our stability results, we need some results from semigroup theory.

Theorem 4.4.3 ([11]) Let S(t) be a bounded C0-semigroup on a Hilbert space X with generator
A. If

iIR ⊂ ρ(A) and lim
|β|→∞

1

βl
‖(iβI −A)−1‖L(X ) <∞
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for some l, then there exist c such that

‖eAtU0‖2 ≤ c

t
2
l

‖U0‖2
D(A).

Our main result is the following.

Theorem 4.4.4 The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2
H ≤

1

t
2

(4−α−2νγ )

‖U0‖2
D(A).

Proof
We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ IR, namely

iλu− v = f1,
iλv − (xγux)x = f2,
iλφ+ (ξ2 + η)φ− v(0)µ(ξ) = f3.

iλθ − 1
m

(xγux)(0) + ζ
m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(4.55)

where F = (f1, f2, f3, f4)T ∈ H. From (4.55)1 and (4.55)2, we have

λ2u+ (xγux)x = −(f2 + iλf1)(4.56)

with 

λ2u− (xγux)x = 0,
−(xγux)(0) + (−mλ2 + i%λ(iλ+ η)α−1)u(0)

= mf4 − ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ η + ξ2
dξ + (miλ+ %(iλ+ η)α−1)f1(0),

u(1) = 0.

(4.57)

Assume that Φ is a solution of (4.56), then one easily checks that the function Ψ defined by

Φ(x) = x
1−γ
2 Ψ

(
2

2− γ
λx

2−γ
2

)
(4.58)

is solution of the following inhomogeneous Bessel equation:

y2Ψ′′(y) + yΨ′(y) +

y2 −
(
γ − 1

2− γ

)2
Ψ(y) =

−( 2
2−γ )2(2−γ

2
1
λ
y)

3−γ
2−γ

(
f2

(
(2−γ

2
1
λ
y)

2
2−γ
)

+ iλf1

(
(2−γ

2
1
λ
y)

2
2−γ
))
.

(4.59)

The solution can be written as

Ψ(y) = AJνγ (y) +BJ−νγ (y) +
2νγ

sin νγπ

∫ y

0

f(s)

s

(
Jνγ (s)J−νγ (y)− Jνγ (y)J−νγ (s)

)
ds.
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Thus,

u(x) = Ax
1−γ
2 Jνγ

(
2

2−γλx
2−γ
2

)
+Bx

1−γ
2 J−νγ

(
2

2−γλx
2−γ
2

)
− 2νγ

sin νγπ

(
2

2− γ

)
x

1−γ
2

∫ x

0
s

1−γ
2 (f2(s) + iλf1(s))

(
Jνγ

(
2

2− γ
λs

2−γ
2

)
J−νγ

(
2

2− γ
λx

2−γ
2

)
−Jνγ

(
2

2−γλx
2−γ
2

)
J−νγ

(
2

2−γλs
2−γ
2

))
ds.

Therefore,

u(x) = AΦ+(x) +BΦ−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(x)− Φ+(x)Φ−(s)) ds,

(4.60)

where Φ+ and Φ− are defined by

Φ+(x) = x
1−γ
2 Jνγ

(
2

2− γ
λx

2−γ
2

)
, Φ−(x) = x

1−γ
2 J−νγ

(
2

2− γ
λx

2−γ
2

)
.(4.61)

From where it follows

ux(x) = AΦ′+(x) +BΦ′−(x)

− 2νγ
sin νγπ

(
2

2− γ

)∫ x

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(x)− Φ′+(x)Φ−(s)) ds

(4.62)

From (4.57)2, (4.62) and (4.60), we conclude that

(1− γ)c̃+
νγ ,0A− (−mλ2 + %iλ(iλ+ η)α−1)c̃−νγ ,0B

= −mf4 + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ η + ξ2
dξ − (miλ+ %(iλ+ η)α−1)f1(0)

(4.63)

AΦ+(1) +BΦ−(1) =
2νγ

sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds(4.64)

where

c̃+
νγ ,m = c+

νγ ,m

(
2

2− γ
λ

)2m+νγ

, c̃+
νγ ,m = c−νγ ,m

(
2

2− γ
λ

)2m−νγ

and

Φ+(1) = Jνγ

(
2

2− γ
λ

)
, Φ−(1) = J−νγ

(
2

2− γ
λ

)
.

Using (4.63) and (4.64), a linear system in A and B is obtained(
r11 r12

r21 r22

)(
A
B

)
=
(
C
C̃

)
,(4.65)

where
r11 = (1− γ)c̃+

νγ ,0,

r12 = (mλ2 − %iλ(iλ+ η)α−1)c̃−νγ ,0,

r21 = Jνγ
(

2
2−γλ

)
,

r22 = J−νγ
(

2
2−γλ

)
,
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C = −mf4 + ζ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ η + ξ2
dξ − (miλ+ %(iλ+ η)α−1)f1(0),

C̃ =
2νγ

sin νγπ
(

2

2− γ
)
∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds.

Let the determinant of the linear system given in (4.65) be denoted by D. Then

D = (1− γ)c̃+
νγ ,0J−νγ

(
2

2−γλ
)
− (mλ2 − %iλ(iλ+ η)α−1)c̃−νγ ,0Jνγ

(
2

2−γλ
)

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ
λνγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ+ νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

−(mλ2 − %iλ(iλ+ η)α−1)c−νγ ,0
(

2
2−γ

)−νγ
λ−νγ

[(
2− γ
πλ

)1/2

cos
(

2
2−γλ− νγ

π
2
− π

4

)
+O(

1

λ5/2
)

]

= (1− γ)c+
νγ ,0

(
2

2−γ

)νγ (2− γ
π

)1/2

λνγ−
1
2 cos

(
2

2−γλ+ νγ
π
2
− π

4

)
+%iαc−νγ ,0

(
2

2−γ

)−νγ (2− γ
π

)1/2

λα−νγ−
1
2 cos

(
2

2−γλ− νγ
π
2
− π

4

)
+O(

1

λ3/2+νγ−α
).

As D 6= 0 for all λ 6= 0, then A and B are uniqueley determined by (4.65). Hence the operator
(iλI − A) is surjective for all λ 6= 0. Moreover for λ = 0 and η 6= 0, using Lax-Milgram
Theorem, we can deduce that the operator A is surjective. Taking account of Remark 4.4.1 and
from Theorem 2.5.3 The C0-semigroup etA is strongly stable in H.

Now, it is easy to prove that

|D| ≥ c|λ|−5/2+νγ+α for large λ,

Now

A =
1

D
(Cr22 − C̃r12)

B =
1

D
(−Cr21 + C̃r11)

Considering only the dominant terms of λ, the following is obtained:

|D||A| ≤ c1|λ|
1
2 + c2|λ|1−νγ ≤ c3|λ|1−νγ ,

|D||B| ≤ c1|λ|
1
2 + c2|λ|νγ−1 ≤ c|λ| 12 ,

where we have used the fact that f1 ∈ H1
0,γ(0, 1) and∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ−(1)− Φ+(1)Φ−(s)) ds

∣∣∣∣ ≤ 1

|λ|
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
,

∣∣∣∣∫ 1

0
(f2(s) + iλf1(s))(Φ+(s)Φ′−(1)− Φ′+(1)Φ−(s)) ds

∣∣∣∣ ≤ (‖f1‖H1
0,γ(0,1) + ‖f2‖L2(0,1)

)
.

Then, we conclude that
|A| ≤ c|λ|

7
2
−α−2νγ

|B| ≤ c|λ|3−α−νγ ,
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Then
‖u‖L2(0,1) ≤ c|λ|3−α−2νγ

(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
,

Using (4.55)1 and (4.60), we get

‖v‖L2(0,1) ≤ c|λ|4−α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
From (4.61) and (4.37), we havex

γ/2Φ′+(x) = (1−γ
2

+ 2−γ
2
νγ)x

−1/2Jνγ
(

2
2−γλx

2−γ
2

)
− λx 1−γ

2 J1+νγ

(
2

2−γλx
2−γ
2

)
,

xγ/2Φ′−(x) = (1−γ
2
− 2−γ

2
νγ)x

−1/2J−νγ
(

2
2−γλx

2−γ
2

)
− λx 1−γ

2 J1−νγ

(
2

2−γλx
2−γ
2

)
.

Then from (4.62), we can get

‖xγ/2ux‖L2(0,1) ≤ c|λ|4−α−2νγ
(
‖f1‖H1

0,γ(0,1) + ‖f2‖L2(0,1)

)
Moreover from (4.55)3, we have

‖φ‖2
L2(−∞,∞) ≤

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI −A)−1‖H ≤ c|λ|4−α−2νγ as |λ| → ∞

The conclusion then follows by applying Theorem 4.4.3.
Besides, we prove that the decay rate is optimal. Indeed, the decay rate is consistent with

the asymptotic expansion of eigenvalues.
2
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 : )بالعربية( الملخص

 
 

أشكال ذات    تبديدآليات لل بوجود منحلة تطوريةمعادلات لمعادلات و جمل  الرياضية المسائل بعضاقترحنا  الأطروحةهذه  في     

 ركزناشروط الحدية، و ال الشروط الابتدائية .  تحت بعض الفرضيات علىمعادلات الموجة خاصة من زوايا مختلفة. ندرس كسرية

نتائج حول طريقة  عدةللحلول الموجودة عند اللانهاية الزمنية أين توصلنا لإيجاد  مقاربال ودراسة السلوك الحلول على وجود دراستنا

 .تناقص الطاقة

: الكلمات المفتاحية  
شبه الزمرة، الطريقة دوال باسل،  ، الأمثل الانحلال سرعة ، الحدود كثير استقرار ، الكسرية المشتقة ، الموجة معادلة انحطاط
  الطيفية.

 

 

Résumé (en Français) : 

 
     Dans cette thèse, nous avons considéré quelques problèmes d’évolution hyperbolique dégénérés 

avec la présence des termes dissipatifs de type fractionnaires. En particulier on considère l’équation des 

ondes dégénérée. Sous quelques hypothèses sur les données initiales et aux bords,  nous avons 

concentré notre étude sur l'existence globale et le comportement asymptotique des solutions où nous 

avons obtenu plusieurs résultats sur la vitesse de décroissance de l’énergie. 

 

Les mots clés : équation des ondes dégénérée, dérivée fractionnaire, stabilité polynomiale, vitesse de 
décroissance optimale, fonctions de Bessel, C_0-semi-groupe, Méthode spectrale. 

 

 

Abstract (en Anglais) : 

 
       In this thesis we considered some degenerate evolution problems with the presence of boundary 

dissipation of fractional derivative type. In particular, we consider degenerate wave equation. Under 

assumptions on initial data and boundary conditions, we focused our study on the global existence and 

.asymptotic behavior of solutions where we obtained several results on the decay rate 

 

Keywords: degenerate wave equation, fractional derivative, polynomial stability, optimal decay rate, 
., spectral methodgroupsemi-C_0Bessel functions,  

 

 

 


