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thèse.

Comme je remercie Monsieur le Professeur Abdelghani Ouahab pour avoir accepté
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Differential equations on times scales

Abstract

In this thesis, we present some results of existence of solutions for systems of first order
nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for
systems of conformable fractional differential equations under some boundary conditions.
Also, we present existence of solutions for the nonlinear conformable fractional differ-
ential equations and for the conformable fractional dynamic equations on time scales,
with nonlinear functional boundary value conditions.

These results are obtained by using the notion of solution-tube adapted to these
systems. This notion generalizes the definition of lower and upper solution.

Key words and phrases: Conformable fractional derivative, conformable fractional
calculus on time scales, systems of nabla dynamic equations and inclusions, conformable
fractional dynamic equation, nonlinear boundary conditions, Green function, upper
and lower solutions, solution-tube, Schauder’s fixed-point theorem, fractional Sobolev’s
spaces.

AMS (MOS) Subject Classifications: 26A24, 26A33, 26E70, 34A08, 34A12, 34A34,
34A60, 34B15, 34N05, 47E05.
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Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary non-integer order. Fractional differential equations play an important role in
describing many phenomena and processes in various fields of science such as physics,
chemistry, control systems, population dynamics, aerodynamics and electrodynamics,
etc. For examples and details, the reader can see the references [10,39,71–73,78,82,89].
Many different forms of fractional differential operators like the Grunwald-Letnikow,
Riemann-Liouville, Hadamard, Caputo, Riesz, can be found in [21,23,38].

A time scale T is an arbitrary nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. The theory of time scales
was introduced by Stefan Hilger in his PhD thesis [62] in 1988, in order to unify and
generalize continuous and discrete analysis. The reader interested on the subject of time
scales is referred to [5, 6, 9, 32–34, 40, 59, 63]. In [7, 16, 30, 88, 90], the authors studied
fractional calculus on time scales and their important properties.

Recently, a new fractional derivative, called the conformable fractional derivative, was
introduced by Khalil et al. [70]. For recent results on conformable fractional derivatives
we refer the reader to [1–4, 8, 17, 19, 43, 55, 56, 66, 68–70, 86]. Furthermore, in [8, 17, 19],
the authors proved the existence and uniqueness of solutions of initial value problems
and boundary value problems for conformable fractional differential equations. In [55],
the authors proved existence and uniqueness theorems for sequential linear conformable
fractional differential equations. In [69], the authors proved the existence of solutions of
boundary value problem involving conformable derivative by the method of upper and
lower solutions. We point out that the method of lower and upper solutions has been
applied by several authors to obtain the existence of solutions of initial value problems
and boundary value problems for fractional differential equations, see [67,84,85,92].

In particular, Benkhettou et al. [31] introduced a conformable fractional calculus on
an arbitrary time scale, which provided a natural extension of the conformable frac-
tional calculus. Furthermore, in [76], the author proved mean value theorem for the
conformable fractional calculus on arbitrary time Scales. In [87] the authors develop
the fractional Sobolev’s spaces via conformable fractional calculus on time scales and
their important properties. In [58], the authors proved some basic theorems for the
conformable fractional Dirac system on time scales.

In this thesis, we present existence of solutions for systems of first order nonlinear
nabla dynamic equations and nabla dynamic inclusions on time scales and for systems
of conformable fractional differential equations. Also, we present existence of solutions
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for the nonlinear conformable fractional differential equations and for the conformable
fractional dynamic equations on time scales, with nonlinear functional boundary value
conditions. Existence results for these problems are obtained by using the method of
solution-tube. The purpose of this method is to prove that if a solution x ∈ W 1,1

∇ (T,Rn)
(resp., x ∈ Wα,1

0,b ([0, b],Rn)) exists, then it is included in a solution tube, i.e. we can find

functions v ∈ W 1,1
∇ (T,Rn) and M ∈ W 1,1

∇ (T, [0,∞)) (resp., v ∈ Wα,1
0,b ([0, b],Rn) and M ∈

Wα,1
0,b ([0, b], [0,∞))) such that

‖x(t)− v(t)‖ ≤M(t) for every t ∈ T (resp., t ∈ [0, b]).

We have organized this thesis as follows:

In Chapter 1, we present some definitions and results which are used throughout
this thesis.

In Chapter 2, we define and study the nabla conformable fractional derivative and
nabla conformable fractional integral on time scales. Many basic properties of the theory
are proved.

In Chapter 3, we prove existence of solutions to system of first-order ∇-dynamic
equation on time scale: x

∇(t) = f(t, x(t)), ∇-a.e. t ∈ T0,

x(a) = x(b).
(1)

Here T is an arbitrary compact time scale with a = minT, b = maxT, T0 = T\{a} and
f : T0 × Rn → Rn is a ∇-Carathéodory function. For this purpose, we use the method
of solution-tube and Schauder’s fixed-point theorem.

Existence results for system (1) were obtained in [18] with f is a continuous function.
In the particular case where n = 1, existence results for first-order ∇-dynamic equation
on time scales were obtained in [91] for the dynamic initial value problem:

x∇(t) = f(t, x (t)), t ∈ (0, b]T, and x(0) = 0,

with f is a left-Hilger-continuous function. Their results were established with the
method of lower and upper solutions. Existence results were obtained in [44,47,53], for
systems of ∆-dynamic equations on time scales. In [53], Gilbert introduced the notion
of solution-tube to systems of first order ∆-dynamic equations.

In Chapter 4, we establish an existence result for the following system of first-order
∇-dynamic inclusions on time scale:x

∇(t) ∈ F (t, x (ρ(t))), ∇-a.e. t ∈ T0,

x ∈ (BC),
(2)

where T is an arbitrary compact time scale, with a = minT, b = maxT, T0 = T\{a},
F : T0 × Rn → Rn is a multivalued map with compact and convex values, and (BC)
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denotes the terminal value or the periodic boundary value conditions:

x(b) = x0, (3)

x(a) = x(b). (4)

In the particular case where n = 1, existence results for first order ∇-dynamic inclu-
sion on time scales were obtained in [12] for the general boundary conditions:

x∇(t) ∈ F (t, x (t)), a.e. on Tκ, and L(x(a), x(b)) = 0,

with F : Tκ × R → 2R\∅ a multivalued map with compact and convex values and
L is a continuous single-valued map. Their results were established with the method
of lower and upper solutions. Existence results for systems of first order ∇-dynamic
inclusions were obtained in [54] for the initial value problem. Multiplicity results were
obtained in [50] for ∆-dynamic inclusions. In [81], the authors proved two variants of the
Filippov-Pliss lemma in the case of dynamical inclusions on a time scale. In [49], Frigon
and Gilbert introduced the notion of solution-tube to systems of first order ∆-dynamic
inclusions (with an initial or a periodic boundary value condition) which generalizes
the notions of lower and upper solutions given in [12]. A notion of solution-tube was
introduced for first order systems of differential inclusions by B. Mirandette [74]. In order
to obtain the existence results for problem (2), we introduce the notion of solution-tube
of (2).

In Chapter 5, we present existence of solutions for the nonlinear conformable frac-
tional differential equations, for the conformable fractional dynamic equations on time
scales and for systems of conformable fractional differential equations.

This chapter consists of three sections. In Section 5.1, we study the existence of
solutions for the nonlinear conformable fractional differential equations with nonlinear
functional boundary conditions:

x(α)(t) = f(t, x(t)), for a.e. t ∈ I = [0, b], b > 0, (5)

where 0 < α ≤ 1, f : I ×R→ R is a L1
α-Carathéodory function, and x(α)(t) denotes the

conformable fractional derivative of x at t of order α. We consider, depending on the
circumstances, nonlinear functional boundary conditions of the type

L1(x, x(b)) = 0 or L2(x(0), x) = 0,

with Li (i = 1, 2) a continuous function that satisfies suitable monotonicity assump-
tions. For this purpose, we use the method of upper and lower solutions together with
Schauder’s fixed point theorem.

In Section 5.2, we are concerned with the existence of solutions for the following con-
formable fractional dynamic equations:

x
(α)
∆ (t) = f(t, xσ(t)), for ∆-a.e. t ∈ I = [a, b]T, (6)
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coupled to nonlinear functional boundary conditions:

B(x(a), x) = 0, (7)

or
H(x, x(σ(b))) = 0. (8)

Here, T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 ≤ a < b and

f : I × R → R is a L1
α,∆-Carathéodory function, x

(α)
∆ (t) denotes the delta conformable

fractional derivative of x at t of order α ∈ (0, 1], B : R×C(J)→ R andH : C(J)×R→ R
are continuous functions. For this purpose, we use the method of upper and lower
solutions together with Schauder’s fixed point theorem. Existence of solutions were
obtained in Section 5.1 for the conformable fractional differential equation (6) with
T = R:

x(α)(t) = f(t, x(t)), for a.e. t ∈ [0, b], 0 < α ≤ 1,

coupled to the nonlinear functional boundary conditions B(x(0), x) = L2(x(0), x) = 0
or H(x, x(b)) = L1(x, x(b)) = 0.

In Section 5.3, we establish existence results for the following system of conformable
fractional differential equations:x

(α)(t) = f(t, x(t)), for a.e. t ∈ I = [0, b], b > 0,

x ∈ (B).
(9)

Where 0 < α ≤ 1, f : I × Rn → Rn is a L1
α-Carathéodory function, x(α)(t) denotes the

conformable fractional derivative of x at t of order α, and (B) denotes the initial value
or the periodic boundary value conditions:

x(0) = x0, (10)

x(0) = x(b). (11)

Existence results for problem (9), (10) were obtained in [79], by using the Banach
fixed point theorem with f a continuous function. In the particular case where n = 1,
existence results for problem (9) were obtained in Section 5.1 with nonlinear functional
boundary conditions L1(x, x(b)) = 0 or L2(x(0), x) = 0, their results were established, for
the scalar case, with the method of lower and upper solutions and cover, as a particular
case, the boundary conditions (10) and (11). In [19] the authors solved problem (9),(10)
(for n = 1), with f a continuous function by the help of the solution-tube method. As
we will see, the used definition is equivalent to the existence of a pair of lower and upper
solutions of the considered problem.

In order to obtain the existence results for problem (9), we introduce the notion of
solution-tube of (9) which generalizes the notions of lower and upper solutions given
in Section 5.1. It is inspired by a notion of solution tube for first-order systems of
differential equations introduced in [74], (see also [51,52] and [53] on time scales).
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Notations

/ a.e.: Almost everywhere.

/ 〈., .〉: The scalar product.

/ coA: The closure of the convex hull of the set A.

/ ‖.‖: The Euclidian norm in Rn.

/ B(x0, r) = {x ∈ Rn : ‖x− x0‖ < r}: The open ball of radius r and centre x0.

/ C(J,E): The Banach space of continuous functions from J into E with the norm
‖x‖∞ = supt∈J |x(t)|, such that J = [a, b] be an interval of R and (E, |.|) be a real
Banach space.

/ L1([a, b],Rn): The space of Lebesgue-integrable functions x : [a, b]→ Rn, with the
norm

‖x‖L1 =

∫ b

a

‖x(s)‖ds.

/ T: Time scale (is a closed subset of R).

/ T0 = T\{a}, with a = minT.

/ [a, b]T := {t ∈ T : a ≤ t ≤ b; a, b ∈ T}: The closed interval in T.

/ f∆ (resp., f∇): The delta (resp., nabla) derivative of f .

/ Crd (T) := Crd (T,R): The space of all right-dense continuous functions on T.

/ Cld (T) := Cld (T,R): The space of all left-dense continuous functions on T.

/ f (α)(t): The conformable fractional derivative of f of order α at t ≥ 0.

/ f
(α)
∆ (t): The delta conformable fractional derivative of f of order α at t ∈ Tκ.

/ f
(α)
∇ (t): The nabla conformable fractional derivative of f of order α at t ∈ Tκ.

/ Cα([a, b]) = Cα([a, b],R) = {f : [a, b]→ R, is conformal fractional differentiable
of order α on [a, b] and f (α) ∈ C([a, b],R)}.
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/ Cα
rd([a, b]T) = Cα

rd([a, b]T,R) = {f : [a, b]T → R is delta conformal fractional

differentiable of order α on [a, b]T and f
(α)
∆ ∈ Crd([a, b]T,R)}.

/ Cα
a,b;rd([a, b]T,R) = {f ∈ Cα

rd([a, b]T,R) : f(a) = f(b)}.

/ L1
α,∆ ([a, b]T,R) = {ϕ : T −→R :

∫
[a, b]T

|ϕ(t)|∆αt < +∞} is a Banach space

together with the norm

‖ϕ‖L1
α,∆([a, b]T,R) :=

∫
[a, b]T

|ϕ(t)|∆αt.

/ Wα,1
∆;a,b ([a, b]T,R) =

{
f ∈ L1

α,∆ ([a, b]T,R) : f
(α)
∆ ∈ L1

α,∆ ([a, b]T,R) and there exists

g : [a, b]κT → R such that g ∈ L1
α,∆ ([a, b]T,R) and∫

[a,b]T

f(t)φ
(α)
∆ (t)∆αt = −

∫
[a,b]T

g(t)φσ(t)∆αt, for all φ ∈ Cα
a,b;rd([a, b]T,R)

}
, with

‖ϕ‖Wα,1
∆;a,b([a,b]T,R) :=

∫
[a,b]T

|ϕσ(t)|∆αt+

∫
[a,b]T

|ϕ(α)
∆ (t)|∆αt, for ϕ ∈ Wα,1

∆;a,b ([a, b]T,R) .
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Chapter 1

Preliminaries

In this chapter, we present some definitions and results which we will use in this Thesis.

1.1 Elements of Functional Analysis

Definition 1.1.1. [80]. Let E, F be Banach spaces and T : E → F .

(i) The operator T is said to be bounded if it maps any bounded subset of E into a
bounded subset of F .

(ii) The operator T is called compact if T (E) is relatively compact (i.e., T (E) is com-
pact).

(iii) The operator T is said to be completely continuous if it is continuous and maps
any bounded subset of E into a relatively compact subset of F .

Lemma 1.1.1. [75]. Let E be a Banach space and u : [0, 1] → E be an absolutely
continuous function, then the measure of the set {t ∈ [0, 1] : u(t) = 0 and u′ (t) 6= 0} is
zero.

Theorem 1.1.1. (Arzela-Ascoli theorem [77]). A subset F of C([a, b],Rn) is relatively
compact (i.e. F is compact) if and only if the following conditions hold:

1. F is uniformly bounded i.e, there exists M > 0 such that

‖f(t)‖ < M for each t ∈ [a, b] and each f ∈ F .

2. F is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
t1, t2 ∈ [a, b], |t2 − t1| 6 δ implies ‖f(t2)− f(t1)‖ 6 ε, for every f ∈ F .

Theorem 1.1.2. (Schauder’s fixed point theorem [57]). Let C be a convex (not neces-
sarily closed) subset of a normed linear space E. Then each compact map N : C → C
has at least one fixed point.

Theorem 1.1.3. (Dunford-Pettis theorem [46]). Let {fn}n∈N be a sequence of functions
in L1([a, b]). If there exists a function g ∈ L1([a, b]) such that |fn(t)| ≤ |g(t)| a.e. t ∈ [a, b]
and for every n ∈ N, then {fn}n∈N has a weakly convergent subsequence in L1([a, b]).
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1.2 Multivalued Maps

we recall some definitions and classical results for multivalued maps. The reader is
referred to [14,15,22,35,45,46,48,57,64,65] for more details on multivalued maps.

Let X, Y be metric spaces and G : X → Y a multivalued map. The map G is
upper semi-continuous (u.s.c.) if {x ∈ X : G(x) ∩ C 6= ∅} is closed for every closed
set C ⊂ Y and it is compact if G(X) = ∪x∈XG(x) is relatively compact. Let Ω be
a measurable space, we say that a multivalued map G : Ω → X is measurable (resp.
weakly measurable) if {t ∈ Ω : G(t)∩C 6= ∅} is measurable for every closed (resp. open)
set C ⊂ X.

Proposition 1.2.1. Let G : Ω→ X be a multivalued map.

(a) If G is measurable then it is weakly measurable.

(b) If G is weakly measurable and has compact values, then it is measurable.

(c) The map G is weakly measurable if and only if the multivalued map G : Ω → X
defined by G(t) = G(t) is weakly measurable.

Proposition 1.2.2. For n ∈ N, let Gn : Ω→ X be measurable multivalued maps.

(a) The map G : Ω→ X defined by G(t) = ∪n∈NGn(t) is measurable.

(b) If X is separable, Gn has closed values, and for each t, at least one Gnt(t) is
compact, then G : Ω→ X defined by G(t) = ∩n∈NGn(t) is measurable.

Theorem 1.2.1. (Kuratowski-Ryll Nardzewski) Let X be a separable Banach space and
let G : Ω → X be a measurable multivalued map. Then G has a measurable selection,
i.e. there exists a single-valued measurable map g : Ω → X such that g(t) ∈ G(t) for
almost every t ∈ Ω.

Theorem 1.2.2. (Kakutani fixed point theorem ). Let C be a nonempty convex subset of
a normed space X. If T : C → C is a compact, upper semi-continuous multivalued map
with nonempty, compact, convex values. Then T has a fixed point (i.e. there exists x ∈
C such that x ∈ T (x)).

1.3 Preliminaries on Time Scales

1.3.1 Definitions and basic properties

Let T be a time scale, which is a closed subset of R. For t ∈ T, we define the forward
and backward jump operators σ, ρ : T→ T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

respectively. We say that t is right-scattered (resp., left-scattered) if σ (t) > t (resp., if
ρ (t) < t); that t is isolated if it is right-scattered and left-scattered. Also, if t < supT
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and t = σ (t), we say that t is right-dense. If t > inf T and t = ρ (t), we say that t is left
dense. Points that are right dense and left dense are called dense. The graininess function
µ : T→ [0,∞) is defined by µ(t) := σ(t)− t. If T has a left-scattered maximum M , then
Tκ = T\{M}, otherwise, Tκ = T. The backward graininess ν : T→ [0,∞) is defined by
ν(t) := t − ρ(t). If T has a right-scattered minimum m, then Tκ = T\{m}, otherwise,
Tκ = T. For a, b ∈ T we define the closed interval [a, b]T := {t ∈ T : a ≤ t ≤ b}.
If f : T→ R, is a function, then we define the function fρ (resp., fσ) by

fρ(t) = (foρ)(t) = f(ρ(t)) (resp., fσ(t) = (foσ)(t) = f(σ(t))) for all t ∈ T.
Definition 1.3.1. [33]. The function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T, write f ∈ Crd (T,R) .

Definition 1.3.2. [33](Delta derivative) Assume f : T → R is a function and let
t ∈ Tκ. Then we define f∆(t) to be the number (provided it exists) with the property that
given any ε > 0, there exists a neighborhood U of t such that∣∣f(σ(t))− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s| , for all s ∈ U.
We call f∆(t) the delta derivative (∆-derivative) of f at t and we say that f is delta
differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ.
The set of functions f : T → R which are ∆-differentiable and whose ∆-derivative is
rd-continuous is denoted by C1

rd (T,R) .

Definition 1.3.3. [33]. The function p : T→ R is µ-regressive if

1 + µ(t)p(t) 6= 0, for all t ∈ Tκ.
The set of all µ-regressive and rd-continuous functions p : T→ R will be denoted by Rµ.
We define the set R+

µ = {p ∈ Rµ : 1 + µ(t)p(t) > 0} for all t ∈ T.
Definition 1.3.4. [33]. If p ∈ Rµ, then we define the delta exponential function ep by:

ep(t, s) = exp
(∫ t

s

ξµ(τ)(p(τ))∆τ
)
,

for t, s ∈ T, where the µ-cylinder transformation is as in :

ξh(z) =


1

h
log(1 + zh); if h > 0;

z; if h = 0.

where log is the principal logarithm function.

Lemma 1.3.1. [33].

(1) If p ∈ Rµ and s, t, t0 ∈ T, then

ep(t, t) ≡ 1, e0(t, s) ≡ 1, ep(t, s) =
1

ep(s, t)
, and ep(t, t0)ep(t0, s) = ep(t, s).

(2) If p ∈ R+
µ and t0 ∈ T, then

ep(t, t0) > 0, for all t ∈ T.

11



1.3.2 Nabla calculus on time scales

Next, we introduce the nabla derivative on time scales for vector-valued functions and
study some of their important properties.

Definition 1.3.5. A function f : T→ Rn is called ld-continuous provided it is continu-
ous at left-dense points in T and its right-sided limits exist (finite) at right-dense points
in T, write f ∈ Cld (T,Rn) .

Definition 1.3.6. [91](Left-Hilger-continuous functions). A mapping f : (a, b]T×R→
R is called left-Hilger-continuous at a point (t, x) if f is continuous at each (t, x) where
t is left-dense and the limits

lim
(s,y)→(t+,x)

f(s, y) and lim
y→x

f(t, y),

both exist and are finite at each (t, x) where t is right-dense.

Definition 1.3.7. [83]. For f : T→ Rn and t ∈ Tκ, the ∇-derivative of f at t, denoted
by f∇(t) ∈ Rn, is defined to be the vector (provided it exists) with the property that given
any ε > 0, there is a neighborhood Ut of t such that∥∥fρ(t)− f(s)− f∇(t) (ρ(t)− s)

∥∥ ≤ ε |ρ (t)− s| , for all s ∈ Ut.

We say that f is ∇-differentiable if f∇(t) exists for every t ∈ Tκ. The function f∇ : T→
Rn is then called the ∇-derivative of f on Tκ. The set of functions f : T → Rn which
are ∇-differentiable and whose ∇-derivative is ld-continuous is denoted by C1

ld (T,Rn) .

The set of functions f : T → Rn which are ∇-differentiable and whose ∇-derivative
is ld-continuous is denoted by C1

ld (T,Rn) .

Theorem 1.3.1. [18]. Let W be an open set of Rn and t ∈ T be a left-dense point. If
g : T→ Rn is ∇-differentiable at t and if f : W → R is differentiable at g(t) ∈ W , then
f ◦ g is ∇-differentiable at t and (f ◦ g)∇(t) = 〈f ′(g(t)), g∇(t)〉.

Example 1.3.1. [18]. Assume x : T→ Rn is ∇-differentiable at t ∈ T. We know that
‖.‖ : Rn \ {0} → [0,∞) is differentiable. If t = ρ(t), by the previous theorem, we have

‖x(t)‖∇ =
< x(t), x∇(t) >

‖x(t)‖
.

Definition 1.3.8. [34]. The function p : T→ R is ν-regressive if

1− ν(t)p(t) 6= 0, for all t ∈ Tk.

The set of all ν-regressive and ld-continuous functions p : T → R will be denoted by
Rν = Rν(T,R). We define the set R+

ν = {p ∈ Rν : 1− ν(t)p(t) > 0} for all t ∈ T.

Definition 1.3.9. Let f : T→ R. A function F : T→ R will be a nabla anti-derivative
of f if F∇(t) = f(t), holds for all t ∈ Tκ. We define the Cauchy nabla integral of f by∫ t

t0

f(s)∇s = F (t)− F (t0), for all t0, t ∈ T

12



Definition 1.3.10. [34]. If p ∈ Rν, then we define the nabla exponential function êp
by:

êp(t, s) = exp
(∫ t

s

ξ̂ν(τ)(p(τ))∇τ
)
,

for t, s ∈ T, where the ν-cylinder transformation is as in :

ξ̂h(z) =

{
−1

h
log(1− zh); if h > 0;

z; if h = 0,

where log is the principal logarithm function.

Theorem 1.3.2. [34]. If p ∈ Rν, then the nabla exponential function êp(., t0) : T→ R
is a solution of the initial value problem

x∇(t) = px(t), x(t0) = 1.

1.3.3 Lebesgue ∇-measure and Lebesgue ∇-integral

We recall some notions and results related to the theory of ∇-measure and Lebesgue
∇-integration for an arbitrary bounded time scale T where a = minT < maxT = b
introduced in [13,34,59].

Definition 1.3.11. Let F denote the family of all right closed and left open intervals of
T of the form

(r, s] = {t ∈ T : r ≤ t < s},
with r, s ∈ T and r ≤ s. The interval (r, r] is understood as the empty set. We define an
additive measure m1 : F → [0,∞) by m1 ((r, s]) = s − r. Using m1, the outer measure
m∗1 : P (T)→ R, defined for each E ⊂ T as:

m∗1 (E) =


inf

{∑k=m
k=1 (sk − rk) : E ⊂

k=m⋃
k=1

(rk, sk] with (rk, sk] ∈ F

}
if a /∈ E,

+∞ if a ∈ E.

Definition 1.3.12. A set A ⊂ T is said to be ∇-measurable if, for every set E ⊂ T

m∗1 (E) = m∗1 (E ∩ A) +m∗1 (E ∩ (T\A)) .

The Lebesgue ∇-measure on M (m∗1) = {A ⊂ T : A is ∇-measurable} , denoted by
µ∇, is the restriction of m∗1 to M (m∗1). So, (T,M (m∗1) , µ∇) is a complete measurable
space.

Lemma 1.3.2. [34]. For each t0 in T0 the ∇-measure of the single-point set {t0} is
given by µ∇({t0}) = t0 − ρ(t0).

Lemma 1.3.3. [34]. 1. If r, s ∈ T and r ≤ s, then

µ∇((r, s]) = s− r, µ∇((r, s)) = ρ(s)− r.

2. If r, s ∈ T0 and r ≤ s, then µ∇([r, s)) = ρ(s)− ρ(r), µ∇([r, s]) = s− ρ(r).
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The following lemma can be proved analogously to Lemma 3.1 in [42].

Lemma 1.3.4. The set of all left-scattered points of T is at most countable, that is,
there are J ⊆ N and {tj}j∈J ⊂ T such that LT := {t ∈ T, ρ(t) < t} = {tj}j∈J .

The following proposition can be proved analogously to Proposition 3.1 in [42].

Proposition 1.3.1. Let A ⊂ T. Then A is a ∇-measurable if and only if, A is Lebesgue
measurable. In this case the following properties hold for every ∇-measurable set A :
1. If a /∈ A, then µ∇ (A) = µL (A) +

∑
j∈JA ν(tj).

2. µ∇ (A) = µL (A) if and only if a /∈ A and A has no left-scattered point.

The notions of ∇-measurable and ∇-integrable functions f : T→ Rn can be defined
similarly to the theory of Lebesgue integral.

Definition 1.3.13. We say that f : T −→ R = [−∞,+∞] is ∇-measurable if for every
α ∈ R, the set f−1 ([−∞, α)) = {t ∈ T : f (t) < α} is ∇-measurable.

In order to compare the Lebesgue ∇-integral on T and the Lebesgue integral on
[a, b], given a function f : T −→Rn, we need an auxiliary function which extends f̃ to
the interval [a, b] defined as

f̃(t) :=

{
f(t), if t ∈ T,

f(tj), if t ∈ (ρ (tj) , tj)), for all j ∈ J.
(1.1)

Let E ⊂ T, we define JE := {j ∈ J : tj ∈ E ∩ LT} and

Ẽ := E ∪
⋃
j∈JE

(ρ (tj) , tj) . (1.2)

The following theorem can be proved analogously to Theorem 5.1 in [42].

Theorem 1.3.3. Let E ⊂ T be a ∇-measurable such that a /∈ E, let Ẽ be the set
defined in (1.2), let f : T −→Rn be a ∇-measurable function and f̃ : [a, b] −→ Rn be

the extension of f to [a, b] . Then, f is Lebesgue ∇-integrable on E if and only if f̃ is

Lebesgue integrable on Ẽ and we have∫
E

f (t)∇t =

∫
Ẽ

f̃ (t) dt =

∫
E

f (t) dt+
∑
j∈JE

ν (tj) f(tj). (1.3)

1.3.4 Sobolev’s spaces on time scales

In this section, we develop the Sobolev’s spaces on bounded time scale T where a =
minT < maxT = b, T0 = T\{a} and their important properties.

Definition 1.3.14. Let p ∈ [1,+∞), E ⊂ T be a ∇-measurable set and f : T → Rn

be a ∇-measurable function. We say that f ∈ Lp∇ (E,Rn) (respectively f ∈ Lp∇ (T,Rn))
provided ∫

E

‖f(s)‖p∇s < +∞ (respectively

∫
T0

‖f(s)‖p∇s < +∞).
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Proposition 1.3.2. Assume f ∈ L1
∇ (E,Rn) . Then,∥∥∥∥∫

E

f(s)∇s
∥∥∥∥ ≤ ∫

E

‖f(s)‖∇s.

Here is an analog of the Lebesgue dominated convergence theorem.

Theorem 1.3.4. Let {fk}k∈N be a sequence of functions in L1
∇(T0,Rn). If there exists

a function f : T0 → Rn such that fk(t) → f(t) ∇-a.e. t ∈ T0 and if there exists a
function g ∈ L1

∇(T0) such that ‖fk(t)‖ ≤ g(t) ∇-a.e. t ∈ T0 and for every k ∈ N. Then
fk → f in L1

∇(T0,Rn).

The following proposition can be proved analogously to Proposition 3.1 in [20].

Proposition 1.3.3. Let p ∈ [1,+∞), Lp∇(T,Rn) is a Banach space equipped with the
norm

‖f‖Lp∇(T,Rn) :=

(∫
T0

‖f(t)‖p∇t
)1
p

.

Using Theorem 1.3.3, we obtain the following result.

Theorem 1.3.5. Let {fk}k∈N be a sequence of functions in L1
∇(T0,Rn). If {f̃k} converges

weakly to γ in L1([a, b],Rn), then γ is the extension f̃ of a function f defined on T0 in
the sense of definition (1.1). Moreover, for every ∇-measurable set E ⊂ T0 and every
continuous function g : T→ R, we have

lim
k→∞

∫
E

g(s)fk(s)∇s =

∫
E

g(s)f(s)∇s.

Proof. Since {f̃k} converges weakly to γ in L1([a, b],Rn), we have for every contin-
uous function g : T→ R,∫
A
g̃(s)f̃k(s)ds→

∫
A
g̃(s)γ(s)ds for every measurable set A ⊂ [a, b].

Thus, for ti ∈ RT,∫
(ρ(ti),ti)

g̃(s)f̃k(s)ds =

∫
(ρ(ti),ti)

g(ti)fk(ti)ds = g(ti)fk(ti)ν(ti)

→
∫

(ρ(ti),ti)

g̃(s)γ(s)ds.

So, {fk(ti)}k∈N converges to some f(ti) ∈ Rn. Thus, {f̃k} converges strongly to
the constant function f(ti) in L1

∇((ρ(ti), ti),Rn), and we can assume that γ = f(ti) on
(ρ(ti), ti]. The first part of the proposition is proved if we define f = γ |T. Finally, by
Theorem 1.3.3,∫

E

g(s)fk(s)∇s =

∫
Ẽ

g̃(s)f̃k(s)ds

→
∫
Ẽ

g̃(s)γ(s)ds =

∫
Ẽ

g̃(s)f(s)ds =

∫
E

g(s)f(s)∇s.

�

Now we introduce the concept of absolutely continuous function on T.
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Definition 1.3.15. A function f : T → Rn is said to be absolutely continuous on T if
for every ε > 0, there exists a η > 0 such that if {(ak, bk], k = 1, ...,m}, with ak, bk ∈ T,
is a finite pairwise disjoint family of subintervals of T satisfying

k=m∑
k=1

(bk − ak) < η then

k=m∑
k=1

‖f(bk)− f(ak)‖ < ε.

The following theorem can be proved analogously to Theorem 4.1 in [40].

Theorem 1.3.6. A function f : T→ Rn is absolutely continuous on T if and only if f
is ∇-différentiable ∇-almost everywhere on T0, f∇ ∈ L1

∇ (T0,Rn) and∫
(t,b]∩T

f∇ (s)∇s = f(b)− f(t), for every t ∈ T.

The following two propositions can be proved analogously to Proposition 2.19 and
Proposition 2.20 in [53].

Proposition 1.3.4. Let f ∈ L1
∇ (T0,Rn), then F : T→ Rn defined by

F (t) =

∫
(t,b]∩T

f (s)∇s satisfies F∇(t) = f(t), ∇-a.e. on T0.

Proposition 1.3.5. Let u : T → R be an absolutely continuous function, then the
∇-measure of the set {t ∈ T0\LT0 : u(t) = 0 and u∇ (t) 6= 0} is zero.

The following theorem can be proved analogously to Theorem 3.2 in [20].

Theorem 1.3.7. Let p ∈ [1,∞), then C (T,Rn) is dense in Lp∇ (T,Rn) .

We now define a notion of Sobolev’s space.

Definition 1.3.16. Let p ∈ [1,∞), and f : T→ Rn. Say that f belongs to W 1,p
∇ (T,Rn)

if and only if f ∈ Lp∇(T0,Rn) and there exists g : Tk → Rn such that g ∈ Lp∇(T0,Rn)
and ∫

T0

(
f.φ∇

)
(s)∇s = −

∫
T0

(g.φρ) (s)∇s, for all φ ∈ C1
0,ld (T) , (1.4)

with

C1
0,ld (T) :=

{
φ ∈ C1

ld (T) : φ (a) = φ (b) = 0
}
.

The following theorem can be proved analogously to Theorem 3.4 in [6].

Theorem 1.3.8. Suppose that u ∈ W 1,1
∇ (T,Rn) and that (1.4) holds for a function

g ∈ L1
∇ (T,Rn). Then, there exists a unique function x : T −→ Rn absolutely continuous

such that ∇-almost everywhere on T0, one has x = u and x∇ = g. Moreover, if g is
ld-continuous on T0, then there exists a unique function x ∈ C1

ld (T,Rn) such that x = u
∇-almost everywhere on T0 and such x∇ = g on T0.
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Theorem 1.3.9. Let p ∈ [1,∞). The set W 1,p
∇ (T,Rn) is a Banach space together with

the norm defined for every f ∈ W 1,p
∇ (T,Rn) as

‖f‖W 1,p
∇ (T,Rn) = ‖f‖Lp∇(T,Rn) +

∥∥f∇∥∥
Lp∇(Tk,Rn)

.

The proof is analogous to that of Theorem 3.5 in [6].

Remark 1.3.1. If x ∈ W 1,1
∇ (T,Rn), then its components xi ∈ W 1,1

∇ (T,R). By Theorems
1.3.8 and 1.3.6, x is ∇-differentiable ∇-almost every on T. From Example 1.3.1, we
obtain

‖x(t)‖∇ =
< x(t), x∇(t) >

‖x(t)‖
∇-a.e. on {t ∈ T : t = ρ(t)}.

Next, we define a notion of ∇-Carathéodory functions (resp. multivalued maps) on
a compact time scale.

Definition 1.3.17. A function f : T0 × Rn → Rn is called a ∇-Carathéodory function
if the three following conditions hold.

(i) for every x ∈ Rn, the function t 7→ f(t, x) is ∇-measurable;

(ii) the function x 7→ f(t, x) is continuous ∇-almost every t ∈ T0;

(iii) for every r > 0, there exists a function hr ∈ L1
∇(T0, [0,∞)) such that ‖f(t, x)‖ ≤

hr(t) for ∇-almost every t ∈ T0 and for all x ∈ Rn such that ‖x‖ ≤ r.

Definition 1.3.18. A multivalued map F : T0 × Rn → Rn with compact and convex
values is said to be ∇-Carathéodory if the three following conditions hold.

(i) for every x ∈ Rn, the function t 7→ F (t, x) is ∇-measurable;

(ii) the function x 7→ F (t, x) is upper semi-continuous (u.s.c.) ∇-a.e. t ∈ T0;

(iii) for every q > 0, there exists a function hq ∈ L1
∇(T0, [0,∞)) such that

sup {‖y‖ : y ∈ F (t, x), ‖x‖ ≤ q} ≤ hq(t), ∇-a.e. t ∈ T0.

A single-valued mapping h : T0 ×Rn → Rn is a ∇-Carathéodory if and only if F = {h}
is ∇-Carathéodory in the sense of Definition 1.3.18.

1.4 Conformable Fractional Calculus

In this section, we introduce some necessary definitions and properties of the conformable
fractional calculus which are used in this thesis and can be found in [1, 66, 70, 79] and
in [87](If T is a real interval [0,∞)) are given:
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Definition 1.4.1. [70]. Given a function f : [0,∞)→ R and a real constant α ∈ (0, 1].
The conformable fractional derivative of f of order α is defined by,

f (α)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(1.5)

for all t > 0.
If f (α)(t) exists and is finite, we say that f is α-differentiable at t.
If f is α-differentiable in some interval (0, a), a > 0, and lim

t→0+
f (α)(t) exists, then

the conformable fractional derivative of f of order α at t = 0 is defined as

f (α)(0) = lim
t→0+

f (α)(t).

Example 1.4.1. Conformable fractional derivatives of certain functions as follow:

1. (tp)(α) = p tp−α, for all p ∈ R.

2. (λ)(α) = 0, for all λ ∈ R.

3. (ept)(α) = p t1−αept, and (e
p
α
tα)(α) = p e

p
α
tα, for all p ∈ R.

Definition 1.4.2. [87]. Assume f : [0,∞)→ Rn, f(t) := (f1(t), f2(t), ..., fn(t)) and let

α ∈ (0, 1] and t ≥ 0. Then one defines f (α)(t) = (f
(α)
1 (t), f

(α)
2 (t), · · · , f (α)

n (t)) (provided
it exists). One calls f (α)(t) the conformable fractional derivative of f of order α at t > 0.
Function f is conformal fractional differentiable of order α provided f (α)(t) exists for all
t > 0, in such a case, we say that f is α-differentiable at t. We define the conformable
fractional derivative at 0 as f (α)(0) = lim

t→0+
f (α)(t), provided it exists.

Definition 1.4.3. [87]. Let α ∈ (m, m + 1], m ∈ N, and f : [0,∞) → Rn, where
f (m)(t) exists at t > 0. We define the conformable fractional derivative of f of order α
as

f (α)(t) := (f (m))(α−m)(t).

Theorem 1.4.1. [87]. If a function f : [0,∞) → Rn is α-differentiable at t > 0,
α ∈ (0, 1], then f is continuous at t.

Remark 1.4.1. (i) The Riemann-liouville derivative Dα
a does not satisfy Dα

a (1) = 0,
if f is not a natural number. (Dα

a (1) = 0 for the Caupto derivative).

(ii) All fractional derivatives do not satisfy the Known product rule:

Dα
a (fg) = fDα

a (g) + gDα
a (f).

(iii) All fractional derivatives do not satisfy the known quotient rule:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.
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(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (fog) = fα(g)gα.

(v) All fractional derivatives don’t satisfy: DαDβf = Dα+βf in general.

(vi) The Caputo definition assumes that the function f is differentiable.

Theorem 1.4.2. [87]. Let α ∈ (0, 1] and assume f, g : [0,∞)→ Rn are α-differentiable
at t > 0. Then, by denoting (fg)(t) = (f1(t) g1(t), · · · , fn(t) gn(t)), we have the following
properties:

(i) (af + bg)(α) = af (α) + bg(α), for all a, b ∈ R;

(ii) (fg)(α) = fg(α) + gf (α);

(iii) (f/g)(α) =
gf (α) − fg(α)

g2
.

(iv) If, in addition, f is differentiable at a point t > 0, then

f (α)(t) = t1−αf ′(t).

Remark 1.4.2. It is not difficult to verify the following assertions:

(i) The function x : t 7→ e
p
α
tα, p ∈ R, is the unique solution to the conformable

fractional differential equation

x(α)(t) = p x(t), t ∈ [0,∞), x(0) = 1.

(ii) If f is differentiable at t, then f is α-differentiable at t.

We introduce the following spaces: we assume I = [0, b], b > 0.

Cα(I,Rn) = {f : I → Rn, is α-differentiable on I and f (α) ∈ C(I,Rn)}.
Cα

0 (I,Rn) = {f ∈ Cα(I,Rn) : f(0) = f(b) = 0}.
Cα

0,b(I,Rn) = {f ∈ Cα(I,Rn) : f(0) = f(b)}.

Definition 1.4.4. [70]. Let α ∈ (0, 1] and f : [0,∞)→ R. The conformable fractional
integral of f of order α from 0 to t, denoted by Iα(f)(t), is defined by

Iα(f)(t) := I1(tα−1f)(t) =

∫ t

0

f(s)dαs :=

∫ t

0

f(s)sα−1ds.

The considered integral is the usual improper Riemann one.
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Definition 1.4.5. [87]. Let f : [0,∞)→ Rn and α ∈ (0, 1]. The conformable fractional
integral of f of order α from 0 to t, denoted by Iα(f)(t), is defined by

Iα(f)(t) =

∫ t

0

f(s)dαs =
(
Iα(f1)(t), Iα(f2)(t), · · · , Iα(fn)(t)

)
,

where Iα(fi)(t) is the conformable fractional integral of fi of order α from 0 to t, for
i = 1, ..., n.

Lemma 1.4.1. [70, 79]. Let 0 < α ≤ 1 and f : [0,∞) → Rn be a continuous function
in the domain of Iα. Then for all t ≥ 0 we have

(Iα(f))(α)(t) = f(t).

Corollary 1.4.1. [1,87]. Let f : [0, b)→ Rn be such that Iα (fα)(t) exists for 0 < t < b.
Then, f is differentiable on (0, b).

Lemma 1.4.2. [1, 87]. Let f : (0, b)→ Rn be differentiable and 0 < α ≤ 1. Then, for
all t > 0 we have

Iα(fα)(t) = f(t)− f(0). (1.6)

The next result is an adaptation of Lemma 2 in [79]

Proposition 1.4.1. Let 0 < α ≤ 1, and W be an open set of Rn. If g : I → Rn is
α-differentiable at t > 0 and f : W → Rm is differentiable at g(t) ∈ W . Then f ◦ g is
α-differentiable at t and

(f ◦ g)(α)(t) = f ′(g(t))
(
g(α)(t)

)T
.

Here vT denotes the transpose vector of v.

Example 1.4.2. Let α ∈ (0, 1], and x : [0,∞) → Rn α-differentiable at t. It is not
difficult to verify that the Eucliden norm ‖ · ‖ : Rn \ {0} → [0,∞) defined as

‖x(t)‖ =< x(t), x(t) >1/2,

with < ·, · > the usual scalar product in Rn, is differentiable.
By the previous Proposition, we have

‖x(t)‖(α) =
< x(t), x(α)(t) >

‖x(t)‖
.

Next, we develop the fractional Sobolev’s spaces via conformable fractional calculus
and their important properties. The basic definitions and relations based on [87] (If T
is a real interval [0,∞)) are given:

Definition 1.4.6. Let B ⊂ I. B is called null set if the measure of B is zero. We say
that a property P holds almost everywhere (a.e.) on B, or for almost all (a.a.) t ∈ B if
there is a null set E0 ⊂ B such that P holds for all t ∈ B \ E0.
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Definition 1.4.7. Let A be a Lebesgue measurable subset of I. We say that function
f : I → R, is a function α-integrable on A if and only if tα−1f(t) is Lebesgue integrable
on A. In such a case, we denote∫

A

f(t) dαt =

∫
A

tα−1 f(t) dt.

Definition 1.4.8. [87]. Let E ⊂ R be a measurable set, and let ϕ : E → R be a
measurable function. We say that ϕ belongs to L1

α (E,R) is the following property is
fulfilled ∫

E

|ϕ(s)| dαs =

∫
E

|ϕ(s)| sα−1ds < +∞.

We say that a measurable function f : E → Rn is in the set L1
α (E,Rn) provided∫

E

‖f(s)‖ dαs =

∫
E

‖f(s)‖ sα−1ds < +∞.

i.e. fi ∈ L1
α (E,R) , for each of its components fi : E → R, i = 1, ..., n.

Theorem 1.4.3. [87]. The set L1
α (I,Rn) is a Banach space together with the norm

defined for ϕ ∈ L1
α (I,Rn) as

‖ϕ‖L1
α(I,Rn) :=

∫
I

‖ϕ(t)‖dαt.

Remark 1.4.3. It is not difficult to verify the following assertions for all α ∈ (0, 1]:

(i) L1
α(I,Rn) ⊂ L1(I,Rn).

(ii) For t ∈ I, t > 0 and ϕ : I → Rn, it is satisfied that ϕ(α) ∈ L1
α(I,Rn) if and only if

ϕ′ ∈ L1(I,Rn).

Theorem 1.4.4. [87]. Let f ∈ L1
α (I,Rn) . Then, a necessary and sufficient condition

for the validity of the equality:∫
I

f(t)h(α)(t)dαt = 0 for every h ∈ Cα
0,b(I,Rn),

is the existence of a constant C ∈ Rn such that f ≡ C a.e. on I.

Definition 1.4.9. A function f : I → Rn is said to be absolutely continuous on
I (i.e., f ∈ AC(I,Rn)) if for every ε > 0, there exists η > 0 such that if {[ak, bk[}mk=1,
is a finite pairwise disjoint family of subintervals of I satisfying

k=m∑
k=1

(bk − ak) < η, then
k=m∑
k=1

‖f(bk)− f((ak))‖ < ε.
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Theorem 1.4.5. [87]. Assume function f : I → Rn is absolutely continuous on I, then
f is conformable fractional differentiable of order α a.e. on I and the following equality
is valid:

f(t) = f(0) +

∫
[0,t]

f (α)(s)dαs, for all t ∈ I.

Definition 1.4.10. Let α ∈ (0, 1] and f : I → Rn. One says that f ∈ Wα,1
0,b (I,Rn) if

and only if f ∈ L1
α (I,Rn) and there exists g : I → Rn such that g ∈ L1

α (I,Rn) and∫
I

f(t)φ(α)(t)dαt = −
∫
I

g(t)φ(t)dαt, for all φ ∈ Cα
0,b(I,Rn). (1.7)

- We denote

V α,1
0,b (I,Rn) = {f ∈ AC(I,Rn) : f (α) ∈ L1

α (I,Rn) , f(0) = f(b)}.

Remark 1.4.4. We have V α,1
0,b (I,Rn) ⊂ Wα,1

0,b (I,Rn) .

Theorem 1.4.6. [87]. Assume that f ∈ Wα,1
0,b (I,Rn) and that (1.7) holds for some

g ∈ L1
α (I,Rn). Then, there exists a unique function x ∈ V α,p

a,b ([a, b],Rn) such that

x = f, x(α) = g a.e. on I.

Theorem 1.4.7. [87]. The set Wα,1
0,b (I,Rn) is a Banach space together with the norm

defined as

‖ϕ‖Wα,1
0,b (I,Rn) :=

∫
I

‖ϕ(t)‖dαt+

∫
I

‖ϕ(α)(t)‖dαt,

for every ϕ ∈ Wα,1
0,b (I,Rn) .

Proposition 1.4.2. Let x ∈ Wα,1
0,b (I,Rn). Then ‖x‖ ∈ Wα,1

0,b (I,R) and

‖x(t)‖(α) =
< x(t), xα(t) >

‖x(t)‖
, a.e. on {t ∈ I : ‖x(t)‖ > 0}.

Proof. If x ∈ Wα,1
0,b (I,Rn). By Theorems 1.5.9 and 1.4.5, x is α-differentiable

a.e. on I. From Example 1.4.2, we obtain

‖x(t)‖(α) =
< x(t), xα(t) >

‖x(t)‖
, a.e. on {t ∈ I : ‖x(t)‖ > 0}.

�

We now define a notion of L1
α-Carathéodory function.

Definition 1.4.11. A function f : I × Rn → Rn is called a L1
α-Carathéodory function

if the three following conditions hold.

(i) for every x ∈ Rn, the function t 7→ f(t, x) is Lebesgue measurable;

(ii) the function x 7→ f(t, x) is continuous almost every t ∈ I;

(iii) for every r > 0, there exists a function hr ∈ L1
α(I, [0,∞)) such that ‖f(t, x)‖ ≤

hr(t) for almost every t ∈ I and for all x ∈ Rn such that ‖x‖ ≤ r.
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1.5 Conformable Fractional Calculus on Time Scales

We begin by introducing the notion of delta conformable fractional derivative of order
α ∈]0, 1] for function defined on arbitrary time scale T.

Definition 1.5.1. [31]. Let f : T → R, t ∈ Tκ, and α ∈]0, 1]. For t > 0, we define

f
(α)
∆ (t) to be the number (provided it exists) with the property that, given any ε > 0, there

is a δ-neighborhood Vt ⊂ T (i.e.,Vt := ]t− δ, t+ δ[ ∩ T) of t, δ > 0, such that∣∣∣[f(σ(t))− f(s)] t1−α − f (α)
∆ (t) [σ(t)− s]

∣∣∣ ≤ ε |σ(t)− s| for all s ∈ Vt.

We call f
(α)
∆ (t) the delta conformable fractional derivative of f of order α at t, and we

define the delta conformable fractional derivative at 0 as f
(α)
∆ (0) = lim

t→0+
f

(α)
∆ (t). The

function f is delta conformal fractional differentiable of order α on Tκ provided f
(α)
∆ (t)

exists for all t in Tκ.

Remark 1.5.1. (i) If α = 1, we have f
(α)
∆ = f∆.

(ii) If α = 0, we denote f
(α)
∆ = f .

(iii) If T = R, then f
(α)
∆ = f (α) is the conformable fractional derivative of f of order α

(see Definition 1.4.1).

We introduce the following spaces:

Cα
rd([a, b]T,R) = {f is delta conformal fractional differentiable of order α on [a, b]T

and f
(α)
∆ ∈ Crd([a, b]T,R)}.

Cα
0;rd([a, b]T,R) = {f ∈ Cα

rd([a, b]T,R) : f(a) = f(b) = 0}.

Cα
a,b;rd([a, b]T,R) = {f ∈ Cα

rd([a, b]T,R) : f(a) = f(b)}.

Definition 1.5.2. [31]. Let T be a time scale, α ∈ (n, n + 1], n ∈ N, and let f
be n times delta differentiable at t ∈ Tκn. We define the delta conformable fractional
derivative of f of order α as

f
(α)
∆ (t) :=

(
f∆n)(α−n)

∆
(t).

Theorem 1.5.1. [31]. Let α ∈ (n, n+ 1], n ∈ N. The following relation holds:

f
(α)
∆ (t) = t1+n−αf∆1+n

(t). (1.8)

Theorem 1.5.2. [31]. Let α ∈]0, 1] and T be a time scale. Assume f : T→ R and let
t ∈ Tκ. The following properties hold.
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(i) If f is delta conformal fractional differentiable of order α at t > 0, then f is
continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta conformable fractional
differentiable of order α at t with

f
(α)
∆ (t) =

f(σ(t))− f(t)

µ(t)
t1−α = t1−αf∆(t).

(iii) If t is right-dense, then f is delta conformable fractional differentiable of order α

at t if and only if the limit lim
s→t

f(t)− f(s)

(t− s)
t1−α exists as a finite number. In this

case,
f

(α)
∆ (t) = t1−αf ′(t).

(iv) If f is delta conformable fractional differentiable of order α at t, then

f(σ(t)) = f(t) + (µ(t))tα−1f
(α)
∆ (t).

Theorem 1.5.3. [31]. Assume f, g : T→ R are delta conformable fractional differen-
tiable of order α. Then,

(i) the sum f +g is delta conformable fractional differentiable with (f +g)
(α)
∆ = f

(α)
∆ +

g
(α)
∆ ;

(ii) for any λ ∈ R, λf is delta conformable fractional differentiable with (λf)
(α)
∆ =

λf
(α)
∆ ;

(iii) if f and g are continuous, then the product fg is delta conformable fractional

differentiable with (fg)
(α)
∆ = f

(α)
∆ g + (f ◦ σ)g

(α)
∆ = f

(α)
∆ (g ◦ σ) + fg

(α)
∆ ;

(iv) if f is continuous, then 1/f is delta conformable fractional differentiable with(
1

f

)(α)

∆

= − f
(α)
∆

f(f ◦ σ)
,

valid at all points t ∈ Tκ for which f(t)f(σ(t)) 6= 0;

(v) if f and g are continuous, then f/g is delta conformable fractional differentiable
with (

f

g

)(α)

∆

=
f

(α)
∆ g − fg(α)

∆

g(g ◦ σ)
,

valid at all points t ∈ Tκ for which g(t)g(σ(t)) 6= 0.

Example 1.5.1. Let α ∈ (0, 1]. Functions f, g, h : T → R : f(t) = t, p ∈ R, g(t) ≡ λ,
λ ∈ R, and h(t) = ep(t, a), p ∈ Rµ, are delta conformable fractional derivatives of order

α with: f
(α)
∆ (t) = t1−α; g

(α)
∆ (t) = 0 and h

(α)
∆ (t) = t1−αp ep(t, a).
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Now we introduce the delta α-conformable fractional integral (or delta α-fractional
integral) on time scales.

Definition 1.5.3. [31]. Let f : T → R be a regulated function. Then the delta α-
fractional integral of f , 0 < α ≤ 1, is defined by

∫
f(t)∆αt :=

∫
f(t)tα−1∆t.

Definition 1.5.4. [31]. Suppose f : T → R is a regulated function. Denote the
indefinite delta α-fractional integral of f of order α, α ∈ (0, 1], as follows: F (t) =∫
f(t)∆αt. Then, for all a, b ∈ T, we define the Cauchy delta α-fractional integral by∫ b
a
f(t)∆αt = F (b)− F (a).

Theorem 1.5.4. [31]. Let α ∈ (0, 1]. Then, for any rd-continuous function f : T→ R,

there exist a function F : T→ R such that F
(α)
∆ (t) = f(t) for all t ∈ Tκ. Function F is

said to be an delta α-antiderivative of f .

The notions of ∆-measurable and ∆-integrable functions f : T→ R are defined the
same as those in [59].

Definition 1.5.5. [6]. Let B ⊂ T. B is called ∆-null set if the ∆-measure of B is zero.
We say that a property P holds ∆-almost everywhere (∆-a.e.) on B, or for ∆-almost all
(∆-a.a.) t ∈ B if there is a ∆-null set E0 ⊂ B such that P holds for all t ∈ B \ E0.

Definition 1.5.6. Assume f : T → R, is a function. Let A is a ∆-measurable sub-
set of T. f is delta α-integrable on A if and only if tα−1f(t) is integrable on A, and∫
A
f(t)∆αt =

∫
A
tα−1f(t)∆t.

Theorem 1.5.5. [31]. Let α ∈ (0, 1], a, b, c ∈ T, λ ∈ R, and f, g be two rd-continuous
functions. Then,

(i)

∫ b

a

[λf(t) + g(t)]∆αt = λ

∫ b

a

f(t)∆αt+

∫ b

a

g(t)∆αt;

(ii)

∫ b

a

f(t)∆αt = −
∫ a

b

f(t)∆αt;

(iii)

∫ b

a

f(t)∆αt =

∫ c

a

f(t)∆αt+

∫ b

c

f(t)∆αt;

(iv)

∫ a

a

f(t)∆αt = 0;

(v) if there exist g : T → R with |f(t)| ≤ g(t) for all t ∈ [a, b]T, then
∣∣∣∫ ba f(t)∆αt

∣∣∣ ≤∫ b
a
g(t)∆αt;

(vi) if f(t) > 0 for all t ∈ [a, b]T, then

∫ b

a

f(t)∆αt ≥ 0.
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Theorem 1.5.6. [31]. If f : Tκ → R is a rd-continuous function and t ∈ Tκ, then∫ σ(t)

t

f(s)∆αs = f(t)µ(t)tα−1.

Theorem 1.5.7. [31]. Let f : T → R be a function. If f
(α)
∆ (t) ≥ 0 for all t ∈ [a, b]T,

then f is an increasing function on [a, b]T.

Now we introduce the concept of absolutely continuous function.

Definition 1.5.7. [87]. A function f : T → R is said to be absolutely continuous on
[a, b]T (i.e., f ∈ AC([a, b]T,R)) if for every ε > 0, there exists a η > 0 such that if
{[ak, bk]T}nk=1, is a finite pairwise disjoint family of subintervals of [a, b]T satisfying

k=n∑
k=1

(bk − ak) < η then
k=n∑
k=1

|f(ρ(bk))− f(ak)| < ε.

Theorem 1.5.8. [87]. Assume function f : [a, b]T → R is absolutely continuous on
[a, b]T, then f is delta conformable fractional differentiable of order α ∆-a.e. on [a, b]T
and the following equality is valid:

f(t) = f(a) +

∫
[a,t]T

f
(α)
∆ (s)∆αs for all t ∈ [a, b]T.

Next, we develop the fractional Sobolev’s spaces via conformable fractional calculus
on time scales and their important properties. The basic definitions and relations based
on [87] are given:

Definition 1.5.8. [87]. Let E ⊂ T be a ∆-measurable set and let ϕ : T −→R be a
∆-measurable function. Say that ϕ belongs to L1

α,∆ (E,R) provided that either∫
E

|ϕ(s)|∆αs < +∞.

Proposition 1.5.1. [87]. The set L1
α,∆ ([a, b]T,R) is a Banach space together with the

norm defined for ϕ ∈ L1
α,∆ ([a, b]T,R) as

‖ϕ‖L1
α,∆([a, b]T,R) :=

∫
[a, b]T

|ϕ(t)|∆αt.

Definition 1.5.9. [87]. Let f : [a, b]T → R. One says that f ∈ Wα,1
∆;a,b ([a, b]T,R) if and

only if f ∈ L1
α,∆ ([a, b]T,R), f

(α)
∆ ∈ L1

α,∆ ([a, b]T,R) and there exists g : [a, b]κT → R such
that g ∈ L1

α,∆ ([a, b]T,R) and∫
[a,b]T

f(t)φ
(α)
∆ (t)∆αt = −

∫
[a,b]T

g(t)φσ(t)∆αt, for all φ ∈ Cα
a,b;rd([a, b]T,R). (1.9)

We denote

V α,1
∆;a,b ([a, b]T,R) = {u ∈ AC([a, b]T;R) : u

(α)
∆ ∈ L1

α,∆ ([a, b]T,R) , u(a) = u(b)}.
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Remark 1.5.2. It is not difficult to verify the following assertions for all α ∈ (0, 1]:

(i) L1
α,∆([a, b]T) ⊂ L1

∆([a, b]T).

(ii) For t ∈ [a, b]T, t > 0 and ϕ : [a, b]T → R, it is satisfied that ϕ
(α)
∆ ∈ L1

α,∆([a, b]T) if
and only if ϕ∆ ∈ L1

∆([a, b]T).

(iii) V α,1
∆;a,b ([a, b]T,R) ⊂ Wα,1

∆;a,b ([a, b]T,R) .

Theorem 1.5.9. [87]. Assume that f ∈ Wα,1
∆;a,b ([a, b]T,R) and that equality (1.9) holds

for g ∈ L1
α,∆ ([a, b]T,R). Then, there exists a unique function x ∈ V α,1

∆;a,b ([a, b]T,R) such
that

x = f, x
(α)
∆ = g ∆-a.e. on [a, b]T.

Theorem 1.5.10. [87]. The set Wα,1
∆;a,b ([a, b]T,R) is a Banach space together with the

norm defined as

‖ϕ‖Wα,1
∆;a,b([a,b]T,R) :=

∫
[a,b]T

|ϕσ(t)|∆αt+

∫
[a,b]T

|ϕ(α)
∆ (t)|∆αt,

for every ϕ ∈ Wα,1
∆;a,b ([a, b]T,R) .

We now define a notion of L1
α,∆-Carathéodory function.

Definition 1.5.10. A function f : [a, b]T×R→ R is called a L1
α,∆-Carathéodory function

if the three following conditions hold.

1. for every x ∈ R, the function t 7→ f(t, x) is ∆-measurable;

2. the function x 7→ f(t, x) is continuous ∆-almost every t ∈ [a, b]T;

3. for every r > 0, there exists a function hr ∈ L1
α,∆([a, b]T, [0,∞)) such that

‖f(t, x)‖ ≤ hr(t) for ∆-almost every t ∈ [a, b]T and for all x ∈ R such that
‖x‖ ≤ r.
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Chapter 2

A nabla conformable fractional
calculus on time scales

2.1 Introduction

In 2014, Khalil et al. [70] defined a new fractional derivative which is called the con-
formable fractional derivative (see Definition 1.4.1). In particular, Benkhettou et al. [31]
extended this definition to an arbitrary time scale, which is a natural extension of the
conformable fractional calculus (see Definition 1.5.1), then developed later in [76,87].

Motivated by results in [31,76,87], in this chapter, we introduce definitions of nabla
conformable fractional derivative and integral on time scales and study their important
properties.

The original results of this chapter are published in [26].

2.2 Nabla Conformable Fractional Derivative

We begin by introducing the notion of nabla conformable fractional derivative of order
α ∈]0, 1] for function defined on arbitrary time scale T.

Definition 2.2.1. Let f : T → R, t ∈ Tκ, and α ∈]0, 1]. For t > 0, we define f
(α)
∇ (t)

to be the number (provided it exists) with the property that, given any ε > 0, there is a
δ-neighborhood Vt ⊂ T (i.e., Vt = ]t− δ, t+ δ[ ∩ T) of t, δ > 0, such that∣∣∣(f(ρ(t))− f(s)) t1−α − f (α)

∇ (t) (ρ(t)− s)
∣∣∣ ≤ ε |ρ(t)− s| ,

for all s ∈ Vt. We call f
(α)
∇ (t) the nabla conformable fractional derivative of f of order

α at t, and we define the nabla conformable fractional derivative at 0 as f
(α)
∇ (0) =

lim
t→0+

f
(α)
∇ (t). The function f is nabla conformal fractional differentiable of order α on

Tκ provided f
(α)
∇ (t) exists for all t in Tκ.

Note that If α = 1, and f is nabla conformable fractional derivative of order α, then
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f
(α)
∇ (t) = f∇(t).

We denote:

(i) Cα([a, b]T,R) =
{
f : [a, b]T → R, f is nabla conformal fractional differentiable

of order α on [a, b]T and f
(α)
∇ ∈ C([a, b]T,R)

}
.

(ii) Cα
ld([a, b]T,R) =

{
f : [a, b]T → R, f is nabla conformal fractional differentiable

of order α on [a, b]T and f
(α)
∇ ∈ Cld([a, b]T,R)

}
.

Some useful properties of the nabla conformable fractional derivative of f of order α
are given in the following theorem.

Theorem 2.2.1. Let α ∈]0, 1] and T be a time scale. Assume f : T→ R and let t ∈ Tκ.
The following properties hold.

(i) If f is nabla conformal fractional differentiable of order α at t > 0, then f is
continuous at t.

(ii) If f is continuous at t and t is left-scattered, then f is nabla conformable fractional
differentiable of order α at t with

f
(α)
∇ (t) =

f(t)− f(ρ(t))

ν(t)
t1−α. (2.1)

(iii) If t is left-dense, then f is nabla conformable fractional differentiable of order α

at t if, and only if, the limit lim
s→t

f(t)− f(s)

(t− s)
t1−α exists as a finite number. In this

case,

f
(α)
∇ (t) = lim

s→t

f(t)− f(s)

t− s
t1−α. (2.2)

(iv) If f is nabla conformable fractional differentiable of order α at t, then

f(ρ(t)) = f(t)− (ν(t))tα−1f
(α)
∇ (t).

Proof. (i) Assume that f is nabla conformable fractional differentiable at t. Then,
there exists a neighborhood Vt of t such that∣∣∣(f(ρ(t))− f(s)) t1−α − f (α)

∇ (t) (ρ(t)− s)
∣∣∣ ≤ ε |ρ(t)− s|

for s ∈ Vt. Therefore,

|f (t)− f (s)| ≤
∣∣∣(f(ρ(t)− f(s))− f (α)

∇ (t) (ρ(t)− s) tα−1
∣∣∣+ |(f(ρ(t))− f(t))|

+
∣∣∣f (α)
∇ (t)

∣∣∣ |(ρ(t)− s)| |tα − 1| ,
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for all s ∈ Vt ∩ ]t− ε, t+ ε[ and, since t is a left-dense point,

|f (t)− f (s)| ≤
∣∣(fρ(t)− f(s))− f (α)(t) (ρ(t)− s)α

∣∣+
∣∣∣f (α)
∇ (t) (t− s)α

∣∣∣
≤ εδ +

∣∣tα−1
∣∣ ∣∣∣f (α)
∇ (t)

∣∣∣ δ.
Since δ → 0 when s→ t, and t > 0, it follows the continuity of f at t.

(ii) Assume that f is continuous at t and t is left-scattered. By continuity,

lim
s→t

f(ρ(t))− f(s)

ρ(t)− s
t1−α =

f(ρ(t))− f(t)

ρ(t)− t
t1−α =

f(t)− f(ρ(t))

ν(t)
t1−α.

Hence, given ε > 0 and α ∈]0, 1], there is a neighborhood Vt of t such that∣∣∣∣f(ρ(t))− f(s)

ρ(t)− s
t1−α − f(t)− f(ρ(t))

ν(t)
t1−α

∣∣∣∣ ≤ ε

for all s ∈ Vt. It follows that∣∣∣∣[f(ρ(t))− f(s)] t1−α − f(t)− f(ρ(t))

ν(t)
t1−α(ρ(t)− s)

∣∣∣∣ ≤ ε|ρ(t)− s|

for all s ∈ Vt. The desired equality (2.1) follows from Definition 2.2.1.
(iii) Assume that f is nabla conformable fractional differentiable of order α at t and t
is left-dense. Let ε > 0 be given. Since f is nabla conformable fractional differentiable
of order α at t, there is a neighborhood Vt of t such that∣∣∣[f(ρ(t))− f(s)]t1−α − f (α)

∇ (t)(ρ(t)− s)
∣∣∣ ≤ ε|ρ(t)− s|

for all s ∈ Vt. Because ρ(t) = t,∣∣∣∣f(t)− f(s)

t− s
t1−α − f (α)

∇ (t)

∣∣∣∣ ≤ ε

for all s ∈ Vt, s 6= t. Therefore, we get the desired result (2.2). Now, assume that the
limit on the right-hand side of (2.2) exists and is equal to L, and t is left-dense. Then,
there exists Vt such that |(f(t)− f(s))t1−α − L(t− s)| ≤ ε|t− s| for all s ∈ Vt. Because
t is left-dense, ∣∣(f(ρ(t))− f(s))t1−α − L(ρ(t)− s)

∣∣ ≤ ε|ρ(t)− s|,
which lead us to the conclusion that f is nabla conformable fractional differentiable of
order α at t and T∇,α(f)(t) = L.
(iv) If t is left-dense, i.e., ρ(t) = t, then ν(t) = 0 and f(ρ(t)) = f(t) = f(t) −
ν(t)f

(α)
∇ (t)t1−α. On the other hand, if t is left-scattered, i.e., ρ(t) < t, then by (iii)

f(ρ(t)) = f(t)− ν(t)tα−1 · f(t)− f(ρ(t))

ν(t)
t1−α = f(t)− (ν(t))tα−1f

(α)
∇ (t).

The proof is complete. �
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Example 2.2.1. (i) If f : T→ R is defined by f(t) = c for all t ∈ T, c ∈ R, then

f
(α)
∇ (t) = (c)

(α)
∇ = 0.

(ii) If f : T→ R is defined by f(t) = t for all t ∈ T, then

f
(α)
∇ (t) = (t)

(α)
∇ =

{
t1−α if α 6= 1,

1 if α = 1.

(iii) Let p ∈ Rν, fix t0 ∈ T and f(t) = êp(t, t0) for t ∈ T, the nabla exponential
function given in Definition 1.3.10, then

f
(α)
∇ (t) = t1−αpêp(t, t0).

Example 2.2.2. (i) Function f : R → R is nabla conformable fractional differen-

tiable of order α at point t ∈ R if, and only if, the limit lim
s→t

f(t)− f(s)

t− s
t1−α exists

as a finite number. In this case,

f
(α)
∇ (t) = lim

s→t

f(t)− f(s)

t− s
t1−α. (2.3)

If α = 1, then f
(α)
∇ = f∇(t) = f ′(t).

The identity (2.3) corresponds to the conformable fractional derivative given in
Definition 1.4.1.

(ii) Let h > 0. If f : hZ→ R, then f is nabla conformable fractional differentiable of
order α at t ∈ hZ with

f
(α)
∇ (t) =

f(t)− f(t− h)

h
t1−α.

If α = 1 and h = 1, then f
(α)
∇ = ∇f(t) = f(t)− f(t− 1), where ∇ is the backward

difference operator.

Next, we would like to be able to find the derivatives of sums, products, and quotients
of nabla conformable fractional differentiable functions. This is possible according to the
following theorem.

Theorem 2.2.2. Assume f, g : T → R are nabla conformable fractional differentiable
of order α. Then,

(i) the sum f + g : T→ R is nabla conformable fractional differentiable with

(f + g)
(α)
∇ = f

(α)
∇ + g

(α)
∇ ;

(ii) for any λ ∈ R, λf : T→ R is nabla conformable fractional differentiable with

(λf)
(α)
∇ = λf

(α)
∇ ;
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(iii) if f and g are continuous, then the product fg : T → R is nabla conformable
fractional differentiable with

(fg)
(α)
∇ = f

(α)
∇ g + fρg

(α)
∇ = f

(α)
∇ gρ + fg

(α)
∇ ;

(iv) if f is continuous, then 1/f is nabla conformable fractional differentiable with(
1

f

)(α)

∇
= −f

(α)
∇
ffρ

,

valid at all points t ∈ Tκ for which f(t)fρ(t) 6= 0;

(v) if f and g are continuous, then f/g is nabla conformable fractional differentiable
with (

f

g

)(α)

∇
=
f

(α)
∇ g − fg(α)

∇
ggρ

,

valid at all points t ∈ Tκ for which g(t)gρ(t) 6= 0.

Proof. Let us consider that α ∈]0, 1], and let us assume that f and g are nabla
conformable fractional differentiable at t ∈ Tκ.
(i) Let ε > 0. Then there exist neighborhoods Vt and Ut of t for which∣∣∣[f(ρ(t))− f(s)]t1−α − f (α)

∇ (t) (ρ(t)− s)
∣∣∣ ≤ ε

2
|ρ(t)− s| for all s ∈ Vt

and ∣∣∣[g(ρ(t))− g(s)]t1−α − g(α)
∇ (t)(ρ(t)− s)

∣∣∣ ≤ ε

2
|ρ(t)− s| for all s ∈ Ut.

Let Wt = Vt ∩ Ut. Then∣∣[(f + g)(ρ(t))− (f + g)(s)]t1−α −
[
f

(α)
∇ (t) + g

(α)
∇ (t)

]
(ρ(t)− s)

∣∣ ≤ ε|ρ(t)− s|

for all s ∈ Wt. Thus, f + g is nabla conformable differentiable at t and

(f + g)
(α)
∇ (t) = f

(α)
∇ (t) + g

(α)
∇ (t).

(ii) Let ε > 0. Then
∣∣∣[f(ρ(t))− f(s)]t1−α − f (α)

∇ (t)(ρ(t)− s)
∣∣∣ ≤ ε|ρ(t) − s| for all s

in a neighborhood Vt of t. It follows that∣∣∣[(λf)(ρ(t))− (λf)(s)]t1−α − λf (α)
∇ (t)(ρ(t)− s)

∣∣∣ ≤ ε|λ| |ρ(t)− s| for all s ∈ Vt.

Therefore, λf is nabla conformable fractional differentiable at t and (λf)
(α)
∇ = λf

(α)
∇

holds at t.
(iii) If t is left-scattered, then

(fg)
(α)
∇ (t) =

[
f(t)− f(ρ(t))

ν(t)
t1−α

]
g (ρ(t)) +

[
g(t)− g(ρ(t))

ν(t)
t1−α

]
f(t)

= f
(α)
∇ (t)g(ρ(t)) + f(t)g

(α)
∇ (t).
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If t is left-dense, then

(fg)
(α)
∇ (t) = lim

s→t

[
f(t)− f(s)

t− s
t1−α

]
g (t) + lim

s→t

[
g(t)− g(s)

t− s
t1−α

]
f (s)

= f
(α)
∇ (t)g(t) + g

(α)
∇ (t)f(t) = f

(α)
∇ (t)g(ρ(t)) + g

(α)
∇ (t)f(t).

The other product rule formula follows by interchanging the role of functions f and g.

(iv) From Example 2.2.1 (i), we know that
(
f · 1

f

)(α)

∇
(t) = (1)

(α)
∇ = 0. Therefore, by

(iii) (
1

f

)(α)

∇
(t)f(ρ(t)) + f

(α)
∇ (t)

1

f(t)
= 0.

Since we are assuming f(ρ(t)) 6= 0,
(

1
f

)(α)

∇
(t) = − f

(α)
∇ (t)

f(t)f(ρ(t))
.

(v) We use (ii) and (iv) to obtain(
f

g

)
f

(α)
∇ (t) =

(
f · 1

g

)(α)

∇
(t) = f(t)

(
1

g

)(α)

∇
(t) + f

(α)
∇ (t)

1

g(ρ(t))

=
f

(α)
∇ (t)g(t)− f(t)g

(α)
∇ (t)

g(t)g(ρ(t))
.

The proof is complete. �

Theorem 2.2.3. Let c be a constant, m ∈ N, α ∈ ]0, 1] and f(t) = (t− c)m. Then

f
(α)
∇ (t) = t1−α

m−1∑
i=0

(t− c)m−1−i (ρ(t)− c)i. (2.4)

If c = 0, then f
(α)
∇ (t) = (tm)

(α)
∇ = t1−α

∑m−1
i=0 (t)m−1−i(ρ(t))i.

Proof. We prove the first formula by induction. If m = 1, then f(t) = t − c and

f
(α)
∇ (t) = t1−α holds from Example 2.2.1 and Theorem 2.2.2 (i). Now assume that

f
(α)
∇ (t) = t1−α

m−1∑
i=0

(t− c)m−1−i(ρ(t)− c)i

holds for f(t) = (t− c)m and let F (t) = (t− c)m+1 = (t− c)f(t). We use Theorem 2.2.2
(iii) to obtain

(F (t))(α) = (t− c)f (α)
∇ f(ρ(t)) + f

(α)
∇ (t)(t− c) = t1−α

m∑
i=0

(t− c)m−p(ρ(t)− c)i.

Hence, by mathematical induction, (2.4) holds. If c = 0, then we have

f
(α)
∇ (t) = t1−α

m−1∑
i=0

(t)m−1−i(ρ(t))i.
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Note that if t is left-dense, then f
(α)
∇ (t) = mtm−α. �

Theorem 2.2.4 (Chain rule). Let α ∈ ]0, 1]. Assume g : T→ R is continuous and nabla
conformable fractional differentiable of order α at t ∈ Tκ, and f : R→ R is continuously
differentiable. Then there exists c in the real interval [ρ(t), t] with

(f ◦ g)
(α)
∇ (t) = f ′(g(c)) g

(α)
∇ (t). (2.5)

Proof. Let t ∈ Tκ. First we consider t to be left-scattered. In this case,

(f ◦ g)
(α)
∇ (t) =

f(g(t))− f(g(ρ(t)))

ν(t)
t1−α.

If g(ρ(t)) = g(t), then we get (f ◦ g)
(α)
∇ (t) = 0 and g

(α)
∇ (t) = 0. Therefore, (2.5) holds for

any c in the real interval [ρ(t), t]. Now assume that g(ρ(t)) 6= g(t). By the mean value
theorem we have

(f ◦ g)
(α)
∇ (t) =

f(g(ρ(t)))− f(g(t))

g(ρ(t))− g(t)
· g(t)− g(ρ(t))

ν(t)
t1−α = f ′(ξ)g

(α)
∇ (t),

where ξ between g(ρ(t)) and g(t). Since g : T→ R is continuous, there is a c ∈ [ρ(t), t]
such that g(c) = ξ, which gives the desired result. Now let us consider the case when t
is left-dense. In this case

(f ◦ g)
(α)
∇ (t) = lim

s→t

f(g(t))− f(g(s))

g(t)− g(s)
· g(t)− g(s)

t− s
t1−α.

By the mean value theorem, there exist ξs between g(ρ(t)) and g(t) such that

(f ◦ g)
(α)
∇ (t) = lim

s→t

{
f ′(ξs) ·

g(t)− g(s)

t− s
t1−α

}
.

By the continuity of g, we get that lim
s→t

ξs = g(t). Then (f ◦ g)
(α)
∇ (t) = f ′(g(t)) · g(α)

∇ (t).

Since t is left-dense, we conclude that c = t = ρ(t), which gives the desired result. �

We define the nabla conformable fractional derivative (.)
(α)
∇ for α ∈ (m, m+1], where

m is some natural number.

Definition 2.2.2. Let T be a time scale, α ∈ (m, m+ 1], m ∈ N, and let f be m times
nabla differentiable at t ∈ Tκm. We define the nabla conformable fractional derivative of

f of order α as f
(α)
∇ (t) =

(
f∇

m)(α−m)

∇ (t).

Theorem 2.2.5. Let α ∈ (m, m+ 1], m ∈ N. The following relation holds:

f
(α)
∇ (t) = t1+m−αf∇

1+m

(t). (2.6)
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Proof. Let f be a function m times nabla-differentiable. For α ∈ (m,m + 1], there

exist β ∈ (0, 1] such that α = m+ β. Using Definition 2.2.2, f
(α)
∇ =

(
f∇

m)(β)

∇ . From the
definition of (higher-order) nabla derivative and Theorem 2.2.1 (ii) and (iii), it follows

that f
(α)
∇ (t) = t1−β

(
f∇

m)∇
(t). �

Remark 2.2.1. In(2.6), when m = 0, we have f
(α)
∇ (t) := t1−αf∇(t), α ∈ (0, 1].

Next, we introduce the nabla conformable fractional derivative on time scales for
vector-valued functions and study some of their important properties.

Definition 2.2.3. Assume f : T → Rn is a function, f(t) = (f1(t), f2(t), ..., fn(t)) and
let t ∈ Tκ. Then one defines

f
(α)
∇ (t) =

(
(f1)

(α)
∇ (t), (f2)

(α)
∇ (t), ..., (fn)

(α)
∇ (t)

)
provided it exists. One calls f

(α)
∇ (t) the nabla conformable fractional derivative of f of

order α at t > 0. The function f is nabla conformal fractional differentiable of order
α on Tκ provided f

(α)
∇ (t) exists for all t in Tκ. The function f

(α)
∇ : Tκ → Rn is then

called the nabla conformable fractional derivative of f of order α, and we define the
nabla conformable fractional derivative at 0 as f

(α)
∇ (0) = lim

t→0+
f

(α)
∇ (t).

Definition 2.2.4. Let T be a time scale, α ∈ (m, m + 1], m ∈ N, and let f : T → Rn

be m times nabla differentiable at t ∈ Tκm. We define the nabla conformable fractional

derivative of f of order α as f
(α)
∇ (t) :=

(
f∇

m)(α−m)

∇ (t).

Combining Definition 2.2.3 and Theorems 2.2.1, 2.2.2 we have the following theorems.

Theorem 2.2.6. Let α ∈]0, 1]. Assume f : T → Rn and let t ∈ Tκ. The following
properties hold:

(i) If f is nabla conformal fractional differentiable of order α at t > 0, then f is
continuous at t.

(ii) If f is continuous at t and t is left-scattered, then f is nabla conformable fractional
differentiable of order α at t with

f
(α)
∇ (t) =

f(t)− f(ρ(t))

ν(t)
t1−α. (2.7)

(iii) If t is left-dense, then f is nabla conformable fractional differentiable of order α

at t if and only if the limit lim
s→t

f(t)− f(s)

(t− s)
t1−α exists as a finite number. In this

case,

f
(α)
∇ (t) = lim

s→t

f(t)− f(s)

(t− s)
t1−α. (2.8)
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(iv) If f is nabla conformable fractional differentiable of order α at t, then

f(ρ(t)) = f(t)− (ν(t))tα−1f
(α)
∇ (t).

Theorem 2.2.7. Assume f, g : T → Rn are nabla conformable fractional differentiable
of order α. Then,

(i) the sum f + g : T→ Rn is nabla conformable fractional differentiable with

(f + g)
(α)
∇ = f

(α)
∇ + g

(α)
∇ ;

(ii) for any λ ∈ R, λf : T → Rn is nabla conformable fractional differentiable with

(λf)
(α)
∇ = λf

(α)
∇ ;

(iii) if f and g are continuous, then the product fg : T → Rn is nabla conformable
fractional differentiable with

(fg)
(α)
∇ = f

(α)
∇ g + (f ◦ ρ)g

(α)
∇ = f

(α)
∇ (g ◦ ρ) + fg

(α)
∇ .

2.3 Nabla Conformable Fractional Integral

Now we introduce the nabla conformable fractional integral (or nabla α-fractional inte-
gral) on time scales.

Definition 2.3.1. Let f : T → R be a regulated function. Then the nabla α-fractional
integral of f , 0 < α ≤ 1, is defined by

∫
f(t)∇αt =

∫
f(t)tα−1∇t.

Note that If α = 1, then
∫
f(t)∇αt =

∫
f(t)∇t is the indefinite nabla integral. If T = R,

then
∫
f(t)∇αt =

∫
tα−1f(t)dt is the conformable fractional integral given in Definition

1.4.4.

Definition 2.3.2. Suppose f : T → R is a regulated function. Denote the indefinite
nabla α-fractional integral of f of order α, α ∈ (0, 1], as follows: F∇,α(t) =

∫
f(t)∇αt.

Then, for all a, b ∈ T, we define the Cauchy nabla α-fractional integral by:∫ b

a

f(t)∇αt = F∇,α(b)− F∇,α(a).

Definition 2.3.3. Assume f : T → R is a function. Let A is a ∇-measurable subset
of T. f is nabla α-integrable on A if and only if tα−1f(t) is integrable on A, and∫
A
f(t)∇αt =

∫
A
tα−1f(t)∇t

Theorem 2.3.1. Let α ∈ (0, 1]. Then, for any ld-continuous function f : T→ R, there

exist a function F∇,α : T → R such that (F∇,α)(α)
∇ (t) = f(t) for all t ∈ Tκ. Function

F∇,α is said to be an nabla α-antiderivative of f .
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Proof. The case α = 1 is proved in [33]. Let α ∈ (0, 1). Suppose f is ld-continuous.
By Theorem 1.16 of [34], f is regulated. Then, F∇,α(t) =

∫
f(t)∇αt is nabla conformable

fractional differentiable on Tκ. Using (2.6) and Definition 2.3.1, we obtain that

(F∇,α)(α)
∇ (t) = t1−α (F∇,α(t))∇ = f(t), t ∈ Tκ.

�

Theorem 2.3.2. Let α ∈ (0, 1], a, b, c ∈ T, λ, γ ∈ R, and f, g be two ld-continuous
functions. Then,

(i)

∫ b

a

[λf(t) + γg(t)]∇αt = λ

∫ b

a

f(t)∇αt+ γ

∫ b

a

g(t)∇αt;

(ii)

∫ b

a

f(t)∇αt = −
∫ a

b

f(t)∇αt;

(iii)

∫ b

a

f(t)∇αt =

∫ c

a

f(t)∇αt+

∫ b

c

f(t)∇αt;

(iv)

∫ a

a

f(t)∇αt = 0;

(v) if there exist g : T→ R with |f(t)| ≤ g(t) for all t ∈ [a, b], then∣∣∣∣∫ b

a

f(t)∇αt

∣∣∣∣ ≤ ∫ b

a

g(t)∇αt;

(vi) if f(t) > 0 for all t ∈ [a, b]T, then

∫ b

a

f(t)∇αt ≥ 0.

Proof. The relations follow from Definitions 2.3.1 and 2.3.2, analogous properties of
the nabla-integral, and the properties of Section 2.2 for the nabla conformable fractional
derivative on time scales. �

Theorem 2.3.3. If f : Tκ → R is a ld-continuous function and t ∈ Tκ, then∫ t

ρ(t)

f(s)∇αs = ν(t)f(t)tα−1.

Proof. Let f be a ld-continuous function on Tκ. Then f is a regulated function. By
Definition 2.3.2 and Theorem 2.3.1, there exist an antiderivative F∇,α of f satisfying∫ t

ρ(t)

f(s)∇αs = F∇,α(t)− F∇,α(ρ(t)) = (F∇,α)(α)
∇ (t)ν(t)t1−α = ν(t)f(t)t1−α.

This concludes the proof. �
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Theorem 2.3.4. Let a, b ∈ T, α ∈ (0, 1] and f : T → R be ld-continuous function.
Then we have the following.

(i) If T = R, then
∫ b
a
f(t)∇αt =

∫ b
a
f(t)tα−1dt where the integral on the right is the

conformable fractional integral (see Definition 1.4.4). If α = 1, then it reduces to
the usual Riemann integral.

(ii) If [a, b]T consists of only isolated points, then

∫ b

a

f(t)∇αt =


∑

t∈(a,b]T
ν(t)tα−1f(t) if a < b

0 if a = b

−
∑

t∈(b,a]T
ν(t)tα−1f(t) if a > b

(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)∇αt =



∑ b
h

k= a
h

+1 h(kh)α−1f(kh) if a < b

0 if a = b

−
∑ a

h

k= b
h

+1
h(kh)α−1f(kh) if a > b

(iv) If T = Z then

∫ b

a

f(t)∇αt =


∑b

t=a+1 t
α−1f(t) if a < b

0 if a = b

−
∑a

t=b+1 t
α−1f(t) if a > b

Proof. Part (i). It follows from Example 2.2.2 (i).
Part (ii). First, note that [a, b]T contains only finitely many points since each point in
[a, b]T is isolated. Assume that a < b and let [a, b] = {t0, t1, ..., tn}, where

a = t0 < t1 < t2 < ... < tn = b

By virtue of Theorem 2.3.2 (iii),∫ b

a

f(t)∇αt =
n−1∑
i=0

∫ ti+1

ti

f(t)∇αt =
n−1∑
i=0

∫ σ(ti+1)

ρ(ti+1)

f(t)∇αt =
n−1∑
i=0

ν(ti+1)f(ti+1)tα−1
i+1 .

Consequently, ∫ b

a

f(t)∇αt =
∑

t∈(a,b]T

ν(t)tα−1f(t).

If a > b, then the result follows from what we just proved and Theorem 2.3.2 (ii). If
a = b, then the result follows from Theorem 2.3.2 (vi). Part (iii) and (iv) are special
cases of Part (ii). The proof is complete. �
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Example 2.3.1. (i) If f : T→ R is defined by f(t) = ct1−α for all t ∈ T, c ∈ R, then∫ b

a

f(t)∇αt = c(b− a)

(ii) If f : R→ R is defined by f(t) = t for all t ∈ R, then∫ b

a

f(t)∇αt =

∫ b

a

tαdt =
1

α + 1
(bα+1 − aα+1)

(iii) If f : 1
2
N→ R is defined by f(t) = 2t and α = 1

2
, then

∫ 3

1

2t∇ 1
2
t =

1

2

∑
t∈(1,3] 1

2N

√
1

t
2t =

1

2

(√2

3
2

3
2 +

√
1

2
22 +

√
2

5
2

5
2 +

√
1

3
23
)

=
√

2 +
6√
3

+
4√
5
.

Lemma 2.3.1. Let T be a time scale, a, b ∈ T with a < b. If f
(α)
∇ (t) ≥ 0 for all

t ∈ [a, b]T, then f is an increasing function on [a, b]T.

Proof. Assume f
(α)
∇ exist on [a, b]T and f

(α)
∇ (t) ≥ 0 for all t ∈ [a, b]T. Then, by (i) of

Theorem 2.2.1, f
(α)
∇ is continuous on [a, b]T and, therefore, by Theorem 2.3.2 (vi),∫ t

s

f
(α)
∇ (ξ)∇αξ ≥ 0 for s, t such that a ≤ s ≤ t ≤ b.

From Definition 2.3.2, f(t) = f(s) +
∫ t
s
f

(α)
∇ (ξ)∇αξ ≥ f(s). �

Theorem 2.3.5. Let f : T → R be a continuous function on [a, b]T that is nabla
conformal fractional differentiable of order α on (a, b]T and satisfies f(a) = f(b). Then
there exist ξ, η ∈ [a, b]κ,T such that

f
(α)
∇ (ξ) ≤ 0 ≤ f

(α)
∇ (η).

Proof. Since the function f is continuous on the compact set [a, b]T, f assumes its
minimum m and its maximum M Therefore there exist ξ, η ∈ [a, b]T such that m = f(ξ)
and M = f(η). Since f(a) = f(b), we may assume that ξ, η ∈ [a, b]κ,T. By Lemma 2.3.1,
we have

f
(α)
∇ (ξ) ≤ 0 ≤ f

(α)
∇ (η).

�
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Theorem 2.3.6. (Mean value theorem). Let 0 < a < b and f be a continuous function
on [a, b]T which is nabla conformal fractional differentiable of order α on [a, b]κ,T. Then
there exist ξ, η ∈ [a, b]κ,T such that

ξα−1f
(α)
∇ (ξ) ≤ (f)(b)− (f)(a)

b− a
≤ ηα−1f

(α)
∇ (η).

Proof. It follows from Theorem 2.2.5 that

(t)
(α)
∇ =

{
t1−α if 0 < α < 1,

1 if α = 1.
(2.9)

Let h(t) = f(t) − f(b) − (f(b)− f(a))

(b− a)
(t − b). Then, the function h is continuous

function on [a, b]T which is nabla conformal fractional differentiable of order α on [a, b)T
and h(a) = h(b). Combining Theorem 2.2.2 and (2.9), we have

h
(α)
∇ (t) =

f
(α)
∇ (t)− (f(b)−f(a))

(b−a)
if α = 1,

f
(α)
∇ (t)− (f(b)−f(a))

(b−a)
t1−α if 0 < α < 1.

(2.10)

Applying Theorem 2.3.5 to h, there exist ξ, η ∈ (a, b]T such that h
(α)
∇ (ξ) ≤ 0 ≤ h

(α)
∇ (η).

That is

ξα−1f
(α)
∇ (ξ) ≤ (f)(b)− (f)(a)

b− a
≤ ηα−1f

(α)
∇ (η).

The proof is complete. �

In the next theorems we give a relationship between the nabla conformable frac-
tional differentiable and the delta conformable fractional differentiable given in Defini-
tion 1.5.1.

Theorem 2.3.7. Assume f : T → R is delta conformable fractional differentiable (

Definition 1.5.1) on Tκ and if f
(α)
∆ is continuous on Tκ, then f is nabla conformable

fractional differentiable on Tκ and

f
(α)
∇ (t) = f

(α)
∆ (ρ(t)) for all t ∈ Tκ.

Proof. Fix t ∈ Tk. First we consider the case where t is left-scattered. Since f is
delta conformable fractional differentiable, it will be continuous function. Therefore, f
will be nabla conformable fractional differentiable at t and

f
(α)
∇ (t) =

f(ρ(t))− f(t)

ρ(t)− t
t1−α.

On the other hand, since ρ(t) will be right-scattered, we have

f
(α)
∆ (ρ(t)) =

f(σ(ρ(t)))− f(ρ(t))

σ(ρ(t))− ρ(t)
t1−α =

f(t)− f(ρ(t))

t− ρ(t)
t1−α.
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Therefore f
(α)
∇ (t) = f

(α)
∆ (ρ(t)) which is the desired result.

Let now t be left-dense and right-dense, simultaneously. In this case from the existence
of f

(α)
∆ (t) it follows that the limit

lim
s→t

f(t)− f(s)

(t− s)
t1−α (2.11)

exists as a finite number and is equal to f
(α)
∆ (t). On the other hand since t is left-dense,

from the existence of the limit 2.11 it follows that f
(α)
∇ (t) exists and is equal to this limit.

Therefore f
(α)
∇ (t) = f

(α)
∆ (f)(t).

Finally, let t be left-dense and right-scattered. Applying mean value Theorem 15 of [87]
to f , we can write

ξα−1f
(α)
∆ (ξ) ≤ (f)(t)− (s)(a)

t− s
≤ ηα−1f

(α)
∆ (η), (2.12)

where ξ, η are between s and t. Since ξ → t, η → t as s→ t and since, by the condition,
f

(α)
∆ is continuous, it follows from 2.12 that

lim
s→t

f(t)− f(s)

(t− s)
= tα−1f

(α)
∆ . (2.13)

On the other hand since t is left-dense, the left-hand side of (2.13) is equal to tα−1f
(α)
∇ (t).

So, f
(α)
∇ (t) = f

(α)
∆ . The theorem is proved. �

The following theorem can be proved in a similar way using an analogous mean value
Theorem 2.3.6.

Theorem 2.3.8. Assume f : T → R is nabla conformable fractional differentiable on
Tκ and if f

(α)
∇ is continuous on Tκ, then f is delta conformable fractional differentiable

(Definition 1.5.1) on Tκ and

f
(α)
∆ (t) = f

(α)
∇ (σ(t)) for all t ∈ Tκ.

Similar to the Definition 1.5.7, we give the following definition of absolutely contin-
uous function.

Definition 2.3.4. A function f : [a, b]T → R is said to be absolutely continuous on
[a, b]T (i.e., f ∈ AC([a, b]T,R)) if for every ε > 0, there exists a η > 0 such that if
{(ak, bk]T}mk=1, is a finite pairwise disjoint family of subintervals of [a, b]T satisfying

k=m∑
k=1

(bk − ak) < η then

k=m∑
k=1

|f(bk)− f(σ(ak))| < ε.

The following analogue for nabla differentiable of Theorem 4.1 in [40] can be proved
in a similar way.
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Lemma 2.3.2. Assume function f : [a, b]T → R is absolutely continuous on [a, b]T, if
and only if f is nabla differentiable ∇-a.e. on [a, b]T and

f(t) = f(a) +

∫
[a,t]T

f∇(s)∇s, for all t ∈ [a, b]T.

The following analogue for nabla conformable fractional differentiable of Theorem 18
in [87] can be proved in a similar way.

Theorem 2.3.9. Assume function f : [a, b]T → R is absolutely continuous on [a, b]T,
then f is nabla conformable fractional differentiable of order α ∇-a.e. on [a, b]T and the
following equality is valid:

f(t) = f(a) +

∫
[a,t]T

f
(α)
∇ (s)∇αs for all t ∈ [a, b]T.

Next, we introduce the nabla conformable fractional integral (or nabla α-fractional
integral) on time scales for vector-valued functions.

Definition 2.3.5. Assume f : T→ Rn, is a function and f(t) = (f1(t), f2(t), ..., fn(t)).
Let A be a ∇-measurable subset of T. Then f is nabla α-integrable on A if and only if
fi(i = 1, 2, ..., n) are nabla α-integrable on A, and∫

A

f(t)∇αt =
(∫

A

f1(t)∇αt,

∫
A

f2(t)∇αt, ...,

∫
A

fn(t)∇αt
)
.

Combining Definition 2.3.5 and Theorem 2.3.2, we have the following theorem.

Theorem 2.3.10. Let α ∈ (0, 1], a, b, c ∈ T, λ, γ ∈ R, and f, g : T → Rn be two
ld-continuous functions. Then,

(i)

∫ b

a

[λf(t) + γg(t)]∇αt = λ

∫ b

a

f(t)∇αt+ γ

∫ b

a

g(t)∇αt;

(ii)

∫ b

a

f(t)∇αt = −
∫ a

b

f(t)∇αt;

(iii)

∫ b

a

f(t)∇αt =

∫ c

a

f(t)∇αt+

∫ b

c

f(t)∇αt;

(iv)

∫ a

a

f(t)∇αt = 0;

(v) if there exist g : T→ R with ‖f(t)‖ ≤ g(t) for all t ∈ [a, b], then∥∥∥∫ b

a

f(t)∇αt
∥∥∥ ≤ ∫ b

a

g(t)∇αt.

Similar to the Definition 37 in [87], we give the following definition of absolutely
continuous function.
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Definition 2.3.6. A function f : [a, b]T → Rn, f(t) = (f1(t), f2(t), ..., fn(t)). We say f
absolutely continuous on [a, b]T (i.e., f ∈ AC([a, b]T,Rn)), if for every ε > 0, there exists
a η > 0 such that if {(ak, bk]T}mk=1, is a finite pairwise disjoint family of subintervals of
[a, b]T satisfying

k=m∑
k=1

(bk − ak) < η then

k=m∑
k=1

‖f(bk)− f(σ(ak))‖ < ε.

Combining Definitions 2.2.3, 2.3.2 and Theorem 2.3.9, we have the following theorem.

Theorem 2.3.11. Assume function f : [a, b]T → Rn is absolutely continuous on [a, b]T,
then f is nabla conformable fractional differentiable of order α ∇-a.e. on [a, b]T and the
following equality is valid:

f(t) = f(a) +

∫
[a,t]T

f
(α)
∇ (s)∇αs for all t ∈ [a, b]T.
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Chapter 3

Systems of first-order nabla
dynamic equations on time scales

3.1 Introduction

In this chapter, we prove existence of solutions to system of first-order ∇-dynamic equa-
tions on time scale: x

∇(t) = f(t, x(t)), ∇-a.e. t ∈ T0,

x(a) = x(b),
(3.1)

where T is an arbitrary compact time scale, with a = minT, b = maxT, T0 = T\{a}
and f : T0 × Rn → Rn is a ∇-Carathéodory function. For this purpose, we use the
method of solution-tube and Schauder’s fixed-point theorem.

Existence results for system (3.1) were obtained in [18] with f is a continuous func-
tion. In the particular case where n = 1, existence results for first-order ∇-dynamic
equation on time scales were obtained in [91] for the dynamic initial value problem:

x∇(t) = f(t, x (t)), t ∈ (0, b]T, and x(0) = 0,

with f is a left-Hilger-continuous function, their results were established with the method
of lower and upper solutions. Existence results were obtained in [44,47,53], for systems
of ∆-dynamic equations on time scales. In [53] Gilbert introduced the notion of solution-
tube to systems of first order ∆-dynamic equations which generalizes the notions of lower
and upper solutions.

The original results of this chapter are published in [27].

3.2 Existence Theorem

In this section, we establish an existence result for the problem (3.1). A solution of this
problem will be a function x ∈ W 1,1

∇ (T,Rn) for which (3.1) is satisfied. We introduce
the notion of solution tube for the problem (3.1).
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Definition 3.2.1. Let (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)). We say that (v,M) is a
solution tube of (3.1) if

1. 〈x− v(t), f(t, x)− v∇(t)〉 ≤M(t)M∇(t) ∇-a.e. t ∈ T0 and for every x ∈ Rn such
that ‖x− v(t)‖ = M(t),

2. v∇(t) = f(t, v(t)) ∇-a.e. t ∈ T0 such that M(t) = 0,

3. ‖v(b)− v(a)‖ ≤M(a)−M(b).

If T is a real interval [a, b], our definition of solution tube is equivalent to the notion
of solution tube introduced in [74] for first order systems of ordinary differential equa-
tions.

We denote

T (v,M) = {x ∈ W 1,1
∇ (T,Rn) : ‖x(t)− v(t)‖ ≤M(t) for every t ∈ T}.

We consider the following problem.x
∇(t) + x(t) = f(t, x(t)) + x(t), ∇-.a.e. t ∈ T0,

x(a) = x(b).
(3.2)

where

x(t) =

{ M(t)
‖x−v(t)‖(x− v(t)) + v(t), if ‖x− v(t)‖ > M(t),

x(t), otherwise.
(3.3)

Lemma 3.2.1. For every g ∈ L1
∇(T0,Rn), the problemx

∇(t) + x(t) = g(t), ∇-a.e. t ∈ T0,

x(a) = x(b),
(3.4)

has a unique solution x ∈ W 1,1
∇ (T,Rn) given by:

x(t) = ê−1(t, b)

(
ê−1(a, b)

ê−1(a, b)− 1

∫
(a,b]∩T

g(s)

ê−1(ρ(s), b)
∇s−

∫
(t,b]∩T

g(s)

ê−1(ρ(s), b)
∇s
)
.

Proof. Let x be a solution to (3.4). By Theorem 3.3 in [34], consider[ x(t)

ê−1(t, b)

]∇
=
x∇(t)ê−1(t, b) + ê−1(t, b)x(t)

ê−1(t, b)ê−1(ρ (t) , b)
=

g(t)

ê−1(ρ (t) , b)
,

and hence integrating the above on (t, b] ∩ T obtain

x(t) = ê−1(t, b)

(
x(b)−

∫
(t,b]∩T

g(s)

ê−1(ρ (s) , b)
∇s
)
. (3.5)
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If follows from the boundary condition in (3.4) and (3.5) that

x(a) = x(b) =
ê−1(a, b)

ê−1(a, b)− 1

∫
(a,b]∩T

g(s)

ê−1(ρ(s), b)
∇s. (3.6)

So by substituting (3.6) into (3.5), the result follows.
�

The following lemma is similar to Lemma 2.11 in [18].

Lemma 3.2.2. Let r ∈ W 1,1
∇ (T) such that r∇(t) < 0 ∇-a.e. t ∈ {t ∈ T0 : r(t) > 0}. If

r(a) ≤ r(b), then r(t) ≤ 0, for every t ∈ T.
Let us define the operator T2 : C(T,Rn)→ C(T,Rn) by:

T2(x)(t) =ê−1(t, b)

(
ê−1(a, b)

ê−1(a, b)− 1

∫
(a,b]∩T

(f(s, x(s)) + x(s))

ê−1(ρ(s), b)
∇s

−
∫

(t,b]∩T

(f(s, x(s)) + x(s))

ê−1(ρ(s), b)
∇s
)
.

Proposition 3.2.1. If (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)) is a solution tube of (3.1)
then the operator T2 : C(T,Rn)→ C(T,Rn) is compact.

Proof. We first observe that from Definitions 1.3.17 and 3.2.1, there exists a func-
tion h ∈ L1

∇(T0, [0,∞)) such that ‖f(t, x(t)) + x(t)‖ ≤ h(t),∇-a.e. t ∈ T0 for every
x ∈ C(T,Rn). Let {xn}n∈N be a sequence of C(T,Rn) converging to x ∈ C(T,Rn). By
Proposition 1.3.2,

‖T2(xn(t))− T2(x(t))‖

≤ K(C + 1)

m

∫
(a,b]∩T

∥∥∥ (f(s, xn(s)) + xn(s))− (f(s, x(s)) + x(s))
∥∥∥∇s,

where K := maxt∈T |ê−1(t, b)| , C =
∣∣∣ ê−1(a, b)

ê−1(a, b)− 1

∣∣∣ and m := mint∈T |ê−1(t, b)| . Then,

we must show that the sequence {gn}n∈N defined by gn(s) = f(s, xn(s))+xn(s) converges
to the function g(s) ∈ L1

∇(T0,Rn) where g(s) = f(s, x(s)) + x(s). We can easily check
that xn(t) → x(t) for every t ∈ T0 and, then, by (ii) of Definition 1.3.17, gn(s) → g(s)
∇-a.e. s ∈ T0. Using also the fact that ‖gn(s)‖ ≤ h(s),∇-a.e. s ∈ T0, we deduce that
gn(s) → g(s) in L1

∇(T0,Rn) by Theorem 1.3.4. This prove the continuity of T2. For
the second part of the proof, we have to show that the set T2(C(T,Rn)) is relatively
compact. Let y = T2(x) ∈ T2(C(T,Rn)). Therefore,

‖T2(x(t))‖ ≤ K(C + 1)

m

(
‖h(s)‖L1

∇(T0,Rn)

)
.

So, T2(C(T,Rn)) is uniformly bounded. This set is also equicontinuous since for every
t1 < t2 ∈ T,

‖T2 (x) (t2)− T2 (x) (t1)‖

≤
∣∣ê−1(b, t2)− ê−1(b, t1)

∣∣(C + 1)

m

∫
(a,b]∩T

h(s)∇s+K

∫
(t1,t2]∩T

h(s)∇s.
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By an analogous version of the Arzelà-Ascoli theorem adapted to our context, T2(C(T,Rn))
is relatively compact in C(T,Rn). Hence, T2 is compact. �

Here is the main existence theorem for problem (3.1).

Theorem 3.2.1. If (v,M) ∈ W 1,1
∇ (T,Rn) ×W 1,1

∇ (T, [0,∞)) is a solution tube of (3.1)
then the problem (3.1) has a solution x ∈ W 1,1

∇ (T,Rn) ∩ T (v,M).

Proof. By Proposition 3.2.1, T2 is compact. It has a fixed point by the Schauder
fixed-point theorem. Lemma 3.2.1 implies that this fixed point is a solution for the
problem (3.2). Then, it suffices to show that for every solution x of (3.2), x ∈ T (v,M).
Consider the set A = {t ∈ T0 : ‖x(t)− v(t)‖ > M(t)}. By Remark 1.3.1, ∇-a.e. on the
set Ã = {t ∈ A : t = ρ(t)}, we have

(‖x(t)− v(t)‖ −M(t))∇ =
〈x(t)− v(t), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t) (3.7)

If t ∈ A is left scattered, then ν (t) = t− ρ(t) > 0 and

(‖x(t)− v(t)‖ −M(t))∇

=
‖x(t)− v(t)‖2 − ‖x(ρ(t))− v(ρ(t))‖‖x(t)− v(t)‖

ν(t)‖x(t)− v(t)‖
−M∇(t)

≤ 〈x(t)− v(t), (x(t)− v(t))− (x(ρ(t))− v(ρ(t)))〉
ν(t)‖x(t)− v(t)‖

−M∇(t)

=
〈x(t)− v(t), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t).

Since (v,M) is a solution tube of (3.1), we have ∇-a.e. on {t ∈ A : M(t) > 0},

(‖x(t)− v(t)‖ −M(t))∇

≤ 〈x(t)− v(t), f(t, x(t)) + x(t)− x(t)− v∇(t)〉
‖x(t)− v(t)‖

−M∇(t)

=
〈x(t)− v(t), f(t, x(t))− v∇(t)〉

M(t)

+

〈x(t)− v(t),
(M(t)− ‖x(t)− v(t)‖)

‖x(t)− v(t)‖
(x(t)− v(t))〉

‖x(t)− v(t)‖
−M∇(t)

=
M(t)M∇(t)

M(t)
− (‖x(t)− v(t)‖ −M(t))−M∇(t) < 0.

On the other hand, we have ∇-a.e. on {t ∈ A : M(t) = 0}, that
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(‖x(t)− v(t)‖ −M(t))∇

≤ 〈x(t)− v(t), f(t, x(t)) + x̄(t)− x(t)− v∇(t)〉
‖x(t)− v(t)‖

−M∇(t)

=
〈x(t)− v(t), f(t, v(t))− v∇(t)〉

‖x(t)− v(t)‖
− ‖x(t)− v(t)‖ −M∇(t) < 0.

If we set r(t) = ‖x(t)− v(t)‖ −M(t), then r∇(t) < 0 ∇-a.e. t ∈ {t ∈ T0 : r(t) > 0}.
Moreover, since (v,M) is a solution tube of (3.1) and x(a) = x(b), then r(a) − r(b) ≤
‖v(a)− v(b)‖ − (M(a)−M(b)) ≤ 0. Lemma 3.2.2 implies that A = ∅. So, x ∈ T (v,M)
and the theorem is proved. �

Example 3.2.1. The following is a modified version, considering a periodic condition,
of Example 4.1 in [53]:{

x∇(t) = a1‖x(t)‖2x(t)− a2x(t) + a3ϕ(t), t ∈ T0,

x(a) = x(b).
(3.8)

where a1, a2, a3 ∈ R+ such that a2 ≥ a1 + a3 and ϕ : T0 → Rn is a continuous function
satisfying ‖ϕ(t)‖ = 1 for every t ∈ Tk. It is easy to check that v = 0 and M = 1, is
a tube solution. By Theorem 3.2.1, problem (3.8) has a solution x ∈ W 1,1

∇ (T,Rn) such
that ‖x(t)‖ ≤ 1 for every t ∈ T.

Remark 3.2.1. Definition 3.2.1 generalizes the notions of lower and upper solutions
α and β introduced in [91] in the particular case where the problem (3.1) is considered
with n = 1, and the periodic boundary condition replaced by x(0) = 0 and f is left-Hilger
continuous on (0, b]T × R. We recall these definitions.
Consider the problem:x

∇(t) = f(t, x(t)), for all t ∈ (0, b]T,

x(0) = x(b).
(3.9)

Definition 3.2.2. Let α, β be nabla differentiable functions on (0, b]T. We call α a
lower solution to (3.9) on [0, b]T if

(i) α∇(t) ≤ f(t, α(t)), for all t ∈ (0, b]T;

(ii) α(0) = α(b).

Similarly, we call β an upper solution to (3.9) on [0, b]T if

(i) β∇(t) ≥ f(t, β(t)), for all t ∈ (0, b]T;

(ii) β(0) = β(b).
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Remark If α, β ∈ R are, respectively, lower and upper solutions of (3.9) such that
α(t) ≤ β(t) for every t ∈ (0, b]T, then v = (α+β)/2 and M = (β−α)/2 is a solution tube
for this problem. Conversely, if (v,M) is a solution tube of (3.9) with v and M of class
C1,v(0) = v(b), and M(0) = M(b), then α = v −M and β = v + M are, respectively,
lower and upper solutions of (3.9).

Example 3.2.2. Consider the problem:x
∇(t) = −x3(t)− t, for all t ∈ (0, 1]T;

x(0) = x(1).
(3.10)

Verify that with v = 0 and M = 1, (v,M) is a solution-tube of (3.10). By Theorem
3.2.1, the problem (3.10) has a solution x such that |x(t)| ≤ 1 for every t ∈ (0, 1]T.
Observe that α = v −M and β = v +M are, respectively, lower and upper solutions of
(3.10) and −1 ≤ x(t) ≤ 1 for every t ∈ [0, 1]T.
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Chapter 4

Systems of first-order nabla
dynamic inclusions on time scales

4.1 Introduction

In this chapter, we establish an existence result for the following system of first-order
∇-dynamic inclusions on time scale:x

∇(t) ∈ F (t, x (ρ(t))), ∇-a.e. t ∈ T0,

x ∈ (BC),
(4.1)

where T to be an arbitrary compact time scale, with a = minT, b = maxT, T0 = T\{a},
F : T0 × Rn → Rn is a multivalued map with compact and convex values, and (BC)
denotes the terminal value or the periodic boundary value conditions:

x(b) = x0, (4.2)

x(a) = x(b). (4.3)

In the particular case where n = 1, existence results for first order ∇-dynamic inclu-
sion on time scales were obtained in [12] for the general boundary conditions:

x∇(t) ∈ F (t, x (t)), a.e. on Tκ, and L(x(a), x(b)) = 0,

with F : Tκ×R→ 2R\∅ a multivalued map with compact and convex values and L is a
continuous single-valued map. Their results were established with the method of lower
and upper solutions. Existence results for systems of first order ∇-dynamic inclusions
were obtained in [54] for the initial value problem. In [49] Frigon and Gilbert introduced
the notion of solution-tube to systems of first order ∆-dynamic inclusions (with an initial
or a periodic boundary value condition) which generalizes the notions of lower and upper
solutions given in [12]. In order to obtain the existence results for problem (4.1), we
introduce the notion of solution-tube of (4.1).

The original results of this chapter are published in [28].
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4.2 Existence Theorem

In this section, we are concerned with the existence of solutions for the problem (4.1).
A solution of this problem will be a function x ∈ W 1,1

∇ (T,Rn) for which (4.1) is satisfied,
we introduce the notion of solution-tube of this problem.

Definition 4.2.1. Let (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)). We say that (v,M) is a
solution tube of (4.1) if

1. ∇-a.e. t ∈ T0 and for every x ∈ Rn such that ‖x−v(ρ(t))‖ = M(ρ(t)), there exists
δ > 0 such that, for every u ∈ Rn such that ‖u − x‖ < δ, and ‖u − v(ρ(t))‖ ≥
M(ρ(t)), there exists y ∈ F (t, u) such that

〈u− v(ρ(t)), y − v∇(t)〉 ≥M∇(t)‖u− v(ρ(t))‖.

2. v∇(t) ∈ F (t, v(ρ(t))) ∇-a.e. t ∈ T0 such that M(ρ(t)) = 0,

3. M(t) = 0, for every t ∈ T0 such that M(ρ(t)) = 0,

4. - If (BC) denotes (4.2), then ‖x0 − v(b)‖ ≤M(b).
- If (BC) denotes (4.3), then ‖v(a)− v(b)‖ ≤M(b)−M(a).

We denote

T (v,M) = {x ∈ W 1,1
∇ (T,Rn) : ‖x(t)− v(t)‖ ≤M(t) for every t ∈ T}.

We need the following auxiliary lemmas.

Lemma 4.2.1. Let g ∈ L1
∇(T0,Rn). The function x : T→ Rn defined by

x(t) = ê−1(b, t)
(
x0 −

∫
(t,b]∩T

g(s)ê−1(s, b)∇s
)

(4.4)

is a unique solution of the problemx
∇(t)− x(ρ(t)) = g(t), ∇-a.e. t ∈ T0

x(b) = x0.
(4.5)

Proof. We check (4.5) for each pair (xi, gi), i ∈ {1, 2, ..., n}, by direct calculation.
From Theorem 3.3 in [34] and Proposition 1.3.4 we have that

x∇(t)− x(ρ (t)) = x0 (ê−1(b, t))∇ − (ê−1(b, t))∇
∫

(ρ(t),b]∩T
g(s)ê−1(s, b)∇s

−ê−1(b, t)

(∫
(t,b]∩T

g(s)ê−1(s, b)∇s
)∇
− ê−1(b, ρ (t))x0

+ê−1(b, ρ (t))

∫
(ρ(t),b]∩T

g(s)ê−1(s, b)∇s

= g(t),
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for all t ∈ T. It is easy to verify that x(b) = x0. �

Lemma 4.2.2. Let g ∈ L1
∇(T0,Rn). The function x : T→ Rn defined by

x(t) =
1

ê−1(t, b)

(
1

1− ê−1(a, b)

∫
(a,b]∩T

g(s)ê−1(s, b)∇s−
∫

(t,b]∩T
g(s)ê−1(s, b)∇s

)
is a unique solution of the problemx

∇(t)− x(ρ(t)) = g(t), ∇-a.e. t ∈ T0,

x(a) = x(b).
(4.6)

Proof. The result follows in a similar way to the proof of Lemma 4.2.1. �

The following lemma can be proved analogously to Lemma 2.24 in [53].

Lemma 4.2.3. Let r ∈ W 1,1
∇ (T) such that r∇(t) > 0 ∇-a.e. t ∈ {t ∈ T0 : r(ρ(t)) > 0}.

If one of the following conditions holds,

(i) r(b) ≤ 0;

(ii) r(b) ≤ r(a);

then r(t) ≤ 0, for every t ∈ T.

We assume the following hypothesis

(H1) F : T0×Rn → Rn is a ∇-Carathéodory multivalued map with compact and convex
values.

(H2) There exists (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)) a solution tube of (4.1).

To prove our existence theorem, we consider the following modified problem:x
∇(t)− x(ρ(t)) ∈ Fu(t, x(ρ(t)))− x(ρ(t)), ∇-a.e. t ∈ T0,

x ∈ (BC),
(4.7)

where Fu : T0 × Rn → Rn is defined by :

Fu(t, x) = F (t, x(ρ(t))) ∩G(t, x); (4.8)

with

G(t, x) =



v∇(t) if M(ρ(t)) = 0,

Rn if ‖x(ρ(t))− v(ρ(t))‖ ≤M(ρ(t)),

and M(ρ(t)) > 0,{
z ∈ Rn : 〈x− v(ρ(t)), z − v∇(t)〉

≥M∇(t)‖x− v(ρ(t))‖
}
, otherwise,
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and

x(t) =

{ M(t)
‖x−v(t)‖(x− v(t)) + v(t), if ‖x− v(t)‖ > M(t),

x(t), otherwise.

Remark 4.2.1. For every (t, x) such that ‖x− v(ρ(t))‖ > M(ρ(t)),

G(t, x) = G(t, xθ(ρ(t))) for all θ ∈ [0, 1[, (4.9)

where
xθ(ρ(t)) = θx(ρ(t)) + (1− θ)x.

Indeed, for θ ∈ [0, 1[,

xθ(ρ(t))− v(ρ(t)) =

(
1− θ +

θM(ρ(t))

‖x− v(ρ(t))‖

)
(x− v(ρ(t))).

Thus,

G(t, x) =
{
z ∈ Rn : 〈x− v(ρ(t)), z − v∇(t)〉 ≥M∇(t)‖x− v(ρ(t))‖

}
=
{
z ∈ Rn : 〈xθ(ρ(t))− v(ρ(t)), z − v∇(t)〉 ≥M∇(t)‖xθ(ρ(t))− v(ρ(t))‖

}
.

So, for θ ∈ [0, 1[, G(t, x) = G(t, xθ(ρ(t))) since ‖xθ(ρ(t))− v(ρ(t))‖ > M(ρ(t)).

Similar to the Propositions 3.3 and 3.4 in [49], we give the following propositions.

Proposition 4.2.1. The multivalued map G : T0 × Rn → Rn satisfies the following
properties:

(i) G(t, x) has nonempty, closed, convex values for all x ∈ Rn, and for ∇-almost every
t ∈ T0;

(ii) x 7→ G(t, x) has closed graph for ∇-almost every t ∈ T0;

(iii) t 7→ G(t, x) is ∇-measurable for every x ∈ Rn.

Proof. (i) It is obvious that G has nonempty, closed, convex values.
(ii) To show that

At =
{

(x, y) ∈ R2n : y ∈ G(t, x)
}

is closed for ∇-a.e. t ∈ T0, we just have to check the case where t ∈ T0 is such that
M(ρ(t)) 6= 0. Let {(xk, yk)} be in At such that xk → x and yk → y. If ‖x− v(ρ(t))‖ ≤
M(ρ(t)) then y ∈ G(t, x) = Rn. So, (x, y) ∈ At. Otherwise, ‖x − v(ρ(t))‖ > M(ρ(t))
and for k sufficiently large ‖xk − v(ρ(t))‖ > M(ρ(t)) and

〈xk − v(ρ(t)), yk − v∇(t)〉 ≥M∇(t)‖xk − v(ρ(t))‖.

Therefore,

〈x− v(ρ(t)), y − v∇(t)〉 ≥M∇(t)‖x− v(ρ(t))‖, and hence (x, y) ∈ At.

53



(iii) Let C be a nonempty, closed subset of Rn, and fix x ∈ Rn. Let {ym : m ∈ N} be a
countable, dense subset of C. Observe that

Bx =
{
t ∈ T0 : G(t, x) ∩ C 6= ∅

}
= B1 ∪ B2 ∪ (B3 ∩ B4),

where

B1 =
{
t ∈ T0 : v∇(t) ∈ C

}
∩
{
t ∈ T0 : M(ρ(t)) = 0

}
,

B2 =
{
t ∈ T0 : ‖x− v(ρ(t))‖ −M(ρ(t)) ≤ 0

}
∩
{
t ∈ T0 : M(ρ(t)) > 0

}
,

B3 =
{
t ∈ T0 : ‖x− v(ρ(t))‖ −M(ρ(t)) > 0

}
∩
{
t ∈ T0 : M(ρ(t)) > 0

}
,

B4 =
⋂
k∈N

⋃
m∈N

{
t ∈ T0 :

〈
x− v(ρ(t)), ym − v∇(t)

〉
≥M∇(t)‖x− v(ρ(t))‖ − 1

k

}
.

The ∇-measurability of the maps t 7→ v(ρ(t)), t 7→M(ρ(t)), t 7→ v∇(t), and t 7→M∇(t)
imply that Bx is ∇-measurable, and so is t 7→ G(t, x). �

We now define the multivalued map H : C(T,Rn)→ L1
∇(T0,Rn) by

H(x) =
{
w ∈ L1

∇(T0,Rn) : w(t) ∈ Fu(t, x(ρ(t))) ∇-a.e. t ∈ T0

}
.

Proposition 4.2.2. Assume (H1) and (H2). Then, H has nonempty, convex values,
and there exists h ∈ L1

∇(T0, [0,∞)) such that

‖w(t)‖ ≤ h(t) ∇-a.e. on T0 for all w ∈ H(x) and all x ∈ C(T,Rn). (4.10)

Proof. First of all, we want to show that H has nonempty values. Let x ∈ C(T,Rn).
There exists a sequence of simple functions {xm}m∈N such that

‖xm(ρ(t))− v(ρ(t))‖ > M(ρ(t))

∇-a.e. on
{
t : ‖x(ρ(t))− v(ρ(t))‖ > M(ρ(t))

}
,

and such that xm → x̄ in C(T,Rn). Since the multivalued maps t 7→ F (t, y) and
t 7→ G(t, y) are ∇-measurable for every y ∈ Rn, the maps t 7→ F (t, xm(ρ(t))) and
t 7→ G(t, xm(ρ(t))) are also ∇-measurable for every m ∈ N. Proposition 1.2.2 implies
that, for every m ∈ N,

t 7→ F (t, xm(ρ(t))) ∩G(t, xm(ρ(t)))

is ∇-measurable, and for every k ∈ N,

t 7→
⋃
m≥k

(
F (t, xm(ρ(t))) ∩G(t, xm(ρ(t)))

)
is ∇-measurable. Again, Propositions 1.2.2 and 1.2.1 imply that

t 7→
⋂
k∈N

⋃
m≥k

(
F (t, xm(ρ(t))) ∩G(t, xm(ρ(t)))

)
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is ∇-measurable. Definition 4.2.1 (1) guarantees that this map has nonempty values
∇-almost everywhere on {t : M(ρ(t)) 6= 0}. Indeed, ∇-almost everywhere on

{t : M(ρ(t)) 6= 0 and ‖x̄(ρ(t))− v(ρ(t))‖ < M(ρ(t))},

for m ≥ k sufficiently large, ‖xm(ρ(t))− v(ρ(t))‖ < M(ρ(t)) and

F (t, xm(ρ(t))) ∩G(t, xm(ρ(t))) = F (t, xm(ρ(t))) ∩ Rn 6= ∅.

On the other hand, for ∇-almost every

t ∈ {t : ‖x̄(ρ(t))− v(ρ(t))‖ = M(ρ(t)) > 0},

if there exists m ≥ k such that ‖xm(ρ(t)) − v(ρ(t))‖ ≤ M(ρ(t)), then as before,
F (t, xm(ρ(t))) ∩ G(t, xm(ρ(t))) 6= ∅. Otherwise, there exists a δ > 0 given by Defini-
tion 4.2.1 (1) and m ≥ k sufficiently large such that

‖xm(ρ(t))− x̄(ρ(t))‖ < δ, ‖xm(ρ(t))− v(ρ(t))‖ > M(ρ(t)),

and there exists z ∈ F (t, xm(ρ(t))) such that

〈xm(ρ(t))− v(ρ(t)), z − v∇(t)〉 ≥ ‖xm(ρ(t))− v(ρ(t))‖M∇(t),

i.e. z ∈ F (t, xm(ρ(t))) ∩G(t, xm(ρ(t))).

Thus, the multivalued map Φ : T0 → L1
∇(T0,Rn) defined by

Φ(t) =


⋂
k∈N
⋃
m≥k

(
F (t, xm(ρ(t))) ∩G(t, xm(ρ(t)))

)
, if t ∈ {t : M(ρ(t)) 6= 0},

v∇(t), if t ∈ {t : M(ρ(t)) = 0},

is ∇-measurable and has nonempty and compact values. Finally, Theorem 1.2.1 guar-
antees the existence of a ∇-measurable selection w of Φ.

We must show that w ∈ H(x). Since w(t) ∈ Φ(t) ∇-a.e., we have,

w(t) ∈
⋃
m≥k

(
F (t, xm(ρ(t))) ∩G(t, xm(ρ(t)))

)
∇-a.e. in{t : M(ρ(t)) 6= 0},

for every k ∈ N. So, for∇-almost every t ∈ {t : M(ρ(t)) 6= 0}, there exists a subsequence

uml(t) ∈ F (t, xml(ρ(t))) ∩G(t, xml(ρ(t)))

such that uml(t) → w(t). If ‖x(ρ(t)) − v(ρ(t))‖ ≤ M(ρ(t)), since y 7→ F (t, y) and
y 7→ G(t, y) have closed graph and since xml(ρ(t))→ x̄(ρ(t)) = x(ρ(t)), we deduce that

w(t) ∈ F (t, x(ρ(t))) ∩G(t, x(ρ(t))) = Fu(t, x(ρ(t))).

On the other hand, if ‖x(ρ(t)) − v(ρ(t))‖ > M(ρ(t)), since xml(ρ(t)) → x(ρ(t)), there
exists a sequence {yml} such that yml → x(ρ(t)) and

xml(ρ(t)) = θmlxml(ρ(t)) + (1− θml)yml = (yml)θml
(ρ(t)) for some θml ∈ [0, 1[.
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By (4.9),

uml(t) ∈ F (t, xml(ρ(t))) ∩G(t, xml(ρ(t))) = F (t, xml(ρ(t))) ∩G(t, yml).

Again, since y ∈ F (t, y) and y ∈ G(t, y) have closed graph and since xml(ρ(t))→ x̄(ρ(t))
and yml → x(ρ(t)), we can deduce that

w(t) ∈ F (t, x(ρ(t))) ∩G(t, x(ρ(t))) = Fu(t, x(ρ(t))).

Moreover, Definition 4.2.1 (2) implies that ∇-a.e. on {t : M(ρ(t)) = 0},

w(t) = v∇(t) ∈ F (t, x(ρ(t))) ∩G(t, x(ρ(t))) = Fu(t, x(ρ(t))).

Hence, we can conclude that w ∈ H(x) since by hypothesis (H1), w ∈ L1
∇(T0,Rn).

The convexity of H(x) follows from convexity of the values of F and G.

Finally, hypothesis (H1) guarantees the existence of h := hq ∈ L1
∇(T0, [0,∞)) with

q = max{‖v(t)‖+M(t) : t ∈ T}, such that for every x ∈ C(T,Rn) and every w ∈ H(x),

‖w(t)‖ ≤ h(t) ∇-a.e. t ∈ T0.

�

Let us define the multivalued operators NI ,Np : C(T,Rn)→ C(T,Rn) by

NI(x)(t) =
{
u : u(t) = ê−1(b, t)

(
x0 −

∫
(t,b]∩T

ê−1(s, b)
(
w(s)− x̄(ρ (s))

)
∇s
)
,

where w ∈ H(x)
}
.

and

Np(x)(t) =
{
u ∈ C(T,Rn) :

u(t) =
1

ê−1(t, b)

[ 1

1− ê−1(a, b)

∫
(a,b]∩T

(
w(s)− x(ρ (s))

)
ê−1(s, b)∇s

−
∫

(t,b]∩T

(
w(s)− x(ρ (s))

)
ê−1(s, b)∇s

]
, where w ∈ H(x)

}
.

Clearly, from Lemma 4.2.1 (resp. Lemma 4.2.2), the solutions of problem (4.7), (4.2)
(resp. problem (4.7), (4.3)) coincide with the fixed points of operator NI (resp. Np).

Proposition 4.2.3. Assume (H1) and (H2). The operator NI is compact, u.s.c., with
nonempty, convex and compact values.

Proof. The previous proposition insures that NI has nonempty, convex values, and
guarantees the existence of h ∈ L1

∇(T0, [0,∞)) satisfying (4.10).
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Set K := max {|ê−1(t, s)| , s, t ∈ T} and q := max {‖v(t)‖+M(t) : t ∈ T} . To show that
NI(C(T,Rn)) is bounded, we just have to remark that for every u ∈ NI(C(T,Rn)),

‖u(t)‖ ≤ K
(
‖x0‖+

∫
(a,b]∩T

K ‖w(s)− x̄(ρ (s))‖∇s
)

≤ K
(
‖x0‖+

∫
(a,b]∩T

K (h(s) + q)∇s
)
for all t ∈ T.

On the other hand, for every t2 > t1 ∈ T,

‖u(t2)− u(t1)‖

≤ |ê−1(b, t2)− ê−1(b, t1)|
(
‖x0‖+

∫
(t2,b]∩T

|ê−1(s, b)|‖w(s)− x̄(ρ (s))‖∇s
)

+

∫
(t1,t2]∩T

|ê−1(s, t1)| ‖w(s)− x(ρ (s))‖∇s

≤ |ê−1(b, t2)− ê−1(b, t1)|
(
‖x0‖+

∫
(a,b]∩T

K(q + h(s))∇s
)

+K2

∫
(t1,t2]∩T

(q + h(s))∇s.

Thus, NI(C(T,Rn)) is equicontinuous since

t→ ê−1(b, t) and t→
∫

(t,b]∩T
(q + h(s))∇s

are continuous on T. By an analogous version of the Arzelà-Ascoli theorem adapted
to our context, we conclude that NI(C(T,Rn)) is relatively compact in C(T,Rn).

We now prove that NI has closed graph.
Let {xm} and {um} be convergent sequences in C(T,Rn) such that xm → x, um → u
and um ∈ NI(xm). Let wm ∈ H(xm) be such that

um(t) = ê−1(b, t)
(
x0 −

∫
(t,b]∩T

ê−1(s, b)
(
wm(s)− xm(ρ (s))

)
∇s
)
.

Let h be the function given in (4.10). Considering the extensions w̃m and h̃ in L1([a, b]),
we have

‖w̃m(t)‖ ≤ h̃(t) for almost every t ∈ [a, b].

By Dunford-Pettis theorem, there exists g ∈ L1([a, b],Rn) and a subsequence still de-
noted {w̃m} such that w̃m → g in L1([a, b],Rn). Since a closed convex set is weakly
closed, there exist z̃m ∈ co{w̃m, w̃m+1, ...} such that z̃m → g in L1([a, b],Rn).
Thus, there exists a subsequence again noted {z̃m} such that, z̃m(t) → g(t) for almost
every t ∈ [a, b]. Therefore, for almost every t ∈ [a, b],

z̃m(t) ∈ co
{ ⋃
l≥m

w̃l(t)
}
⊂ co

{ ⋃
l≥m

F̃ (t, xl(ρ(t))) ∩ G̃(t, xl(ρ(t)))
}
.
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where the multivalued maps F̃ and G̃ are respectively extensions of the multivalued
maps F and G in the sense of (1.1). Taking the limit, we get

g(t) ∈
⋂
m∈N

co
{ ⋃
l≥m

F̃ (t, xl(ρ(t))) ∩ G̃(t, xl(ρ(t)))
}

⊂ F̃ (t, x(ρ(t))) ∩ G̃(t, x(ρ(t))) = F̃u(t, x(ρ(t))),

since xm → x in C(T,Rn) and since y → F̃ (t, y) and y → G̃(t, y) have closed graph and
closed, convex values. By Theorem 1.3.5, there exists a function w : T0 → Rn such that
g = w̃. So,

w(t) ∈ F̃u(t, x(ρ(t))) = Fu(t, x(ρ(t))) ∇-a.e. t ∈ T0.

Thus, w ∈ H(x).
Finally, since w̃m → w̃ in L1([a, b],Rn) and xm → x in C(T,Rn), again by Theorem
1.3.5, we deduce that for every t ∈ T,∫

(t,b]∩T
ê−1(s, b)

(
wm(s)− xm(ρ (s))

)
∇s −→

∫
(t,b]∩T

ê−1(s, b)
(
w(s)− x(ρ (s))

)
∇s.

Moreover, since um → u in C(T,Rn), we get that for every t ∈ T,

u(t) = ê−1(b, t)
(
x0 −

∫
(t,b]∩T

ê−1(s, b)
(
w(s)− x(ρ (s))

)
∇s
)
.

Thus, u ∈ NI(x) and hence, NI has closed graph. Since NI is compact and has closed
graph, NI has compact values.

We now prove that NI is upper semi-continuous.
Let B ⊂ C(T,Rn) be a closed set and A = {x ∈ C(T,Rn) : NI(x) ∩ B 6= ∅}. Let {xm}
be a sequence in A converging to x in C(T,Rn). There exists um ∈ NI(xm) ∩ B.
The compacity of NI guarantees the existence of a subsequence still denoted {um}
converging to u in C(T,Rn). Since B is closed and NI has closed graph, we deduce
that u ∈ NI(x) ∩B. Thus x ∈ A. �

The following result can be proved as the previous one.

Proposition 4.2.4. Assume (H1) and (H2). The operator Np is compact, u.s.c., with
nonempty, convex and compact values.

Now, we can obtain our main theorem.

Theorem 4.2.1. Assume (H1) and (H2). The problem (4.1) has a solution x ∈ W 1,1
∇ (T,Rn)∩

T (v,M).

Proof. By Proposition 4.2.3 (resp. Proposition 4.2.4), the operator NI (resp. Np) is
compact and upper semi-continuous with nonempty, convex, and compact values. It has
a fixed point by the Kakutani fixed point theorem. If (BC) denotes (4.2) (resp. (4.3)),
Lemma 4.2.1 (resp. Lemma 4.2.2), implies that this fixed point of NI (resp. Np) is a
solution of Problem (4.7), (4.2) (resp. problem (4.7), (4.3). Then, it suffices to show that
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for every solution x of (4.7), x ∈ T(v,M).

Consider the set A = {t ∈ T0 : ‖x(ρ(t)) − v(ρ(t))‖ > M(ρ(t))}. By Remark 1.3.1,
∇-a.e. on the set {t ∈ A : t = ρ(t)}, we have

(‖x(t)− v(t)‖ −M(t))∇ =
< x(ρ(t))− v(ρ(t)), x∇(t)− v∇(t) >

‖x(ρ(t))− v(ρ(t))‖
−M∇(t). (4.11)

If t ∈ A is left scattered, then ν (t) = t− ρ(t) > 0 and

(‖x(t)− v(t)‖ −M(t))∇

=
‖x(ρ(t))− v(ρ(t))‖‖x(t)− v(t)‖ − ‖x(ρ(t))− v(ρ(t))‖2

ν(t)‖x(ρ(t))− v(ρ(t))‖
−M∇(t)

≥ 〈x(ρ(t))− v(ρ(t)), (x(t)− v(t))− (x(ρ(t))− v(ρ(t)))〉
ν(t)‖x(ρ(t))− v(ρ(t))‖

−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), x∇(t)− v∇(t)〉

‖x(ρ(t))− v(ρ(t))‖
−M∇(t).

(4.12)

Let us denote y(t) =
(
x∇(t)−x(ρ(t)) +x(ρ(t))

)
∈ Fu(t, x(ρ(t))) ∇-a.e. on T0. Since

(v,M) is a solution-tube of (4.1) and from (4.8), (4.11), (4.12) and Remark 4.2.1, we
deduce that ∇-a.e. on {t ∈ A : M(ρ(t)) > 0},

(‖x(t)− v(t)‖ −M(t))∇

≥
〈x(ρ(t))− v(ρ(t)), y(t)−

(
x(ρ(t)) + x(ρ(t))

)
− v∇(t)〉

‖x(ρ(t))− v(ρ(t))‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), y(t)− v∇(t)〉

M(ρ(t))

−
(
M(ρ(t))− ‖x(ρ(t))− v(ρ(t))‖

)
−M∇(t)

>
M(ρ(t))M∇(t)

M(ρ(t))
−M∇(t) = 0.

On the other hand, if M(ρ(t)) = 0, then Fu(t, x(ρ(t))) = {v∇(t)} and ∇-a.e. on {t ∈ A :
M(ρ(t)) = 0}, we have

(‖x(t)− v(t)‖ −M(t))∇

≥
〈x(ρ(t))− v(ρ(t)), y(t)−

(
x(ρ(t)) + x(ρ(t))

)
− v∇(t)〉

‖x(ρ(t))− v(ρ(t))‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), v∇(t)− v∇(t)〉

‖x(ρ(t))− v(ρ(t))‖
+ ‖x(ρ(t))− v(ρ(t))‖ −M∇(t)

> −M∇(t) = 0.
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This last equality follows from Definition 4.2.1 (3) and Proposition 1.3.5.
If we set r(t) = ‖x(t)−v(t)‖−M(t), then r∇(t) > 0 ∇-a.e. on A = {t ∈ T0 : r(ρ(t)) > 0}.
Moreover, since (v,M) is a solution tube of (4.1) and x satisfies (4.2) (resp. (4.3)), then
r(b) < 0 (resp. r(b)− r(a) ≤ ‖v(a)− v(b)‖− (M(b)−M(a)) ≤ 0), Lemma 4.2.3 implies
that A = ∅. So, x ∈ T (v,M) and the theorem is proved. �
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Chapter 5

Existence of solutions for
conformable fractional differential
equations and dynamic equations
and for systems of conformable
fractional differential equations

In this chapter, we present existence of solutions for the nonlinear conformable frac-
tional differential equations, for the nonlinear conformable fractional dynamic equations
on time scales with nonlinear functional boundary value conditions and for systems of
nonlinear conformable fractional differential equations with periodic boundary value or
initial value conditions.

5.1 Existence of solutions for conformable fractional

problems with nonlinear functional boundary con-

ditions

The results of this section are original and are submitted for publication [24].

5.1.1 Introduction

In this section, we study the existence of solutions for the nonlinear conformable frac-
tional differential equations with nonlinear functional boundary conditions:

x(α)(t) = f(t, x(t)), for a.e. t ∈ I = [0, b], b > 0, (5.1)

where 0 < α ≤ 1, f : I ×R→ R is a L1
α-Carathéodory function, and x(α)(t) denotes the

conformable fractional derivative of x at t of order α. We consider, depending on the
circumstances, nonlinear functional boundary conditions of the type

L1(x, x(b)) = 0 or L2(x(0), x) = 0,
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with Li (i = 1, 2) a continuous function that satisfies suitable monotonicity assump-
tions. For this purpose, we use the method of upper and lower solutions together with
Schauder’s fixed point theorem. Existence results for the conformable fractional differ-
ential equations with linear and nonlinear functional boundary conditions are obtained
with new comparison results and definitions of upper and lower solutions. For first order
ordinary differential equations with nonlinear boundary conditions, we refer the reader
to the papers [36,60].

5.1.2 Green’s Functions and Comparison Results

In this subsection, we study the expression of the solutions of a linear conformable
fractional differential equation of order α ∈ (0, 1] coupled to two-point linear conditions.
This study is mainly devoted to obtain the expression of the fractional Green’s function
related to the considered problem. Once we have such expression, we derive comparison
results for the considered problems.

To be concise, we look for x ∈ Wα,1
0,b (I), the solution of the following linear problem:

x(α)(t) + p(t)x(t) = g(t), a.e. t ∈ I, a0 x(0)− b0 x(b) = λ0, (5.2)

with p, g ∈ L1
α(I), and a0, b0, λ0 ∈ R.

Theorem 5.1.1. If a0 6= b0 e
−

∫ b
0 p(r) dαr, then problem (5.2) has a unique solution x ∈

Wα,1
0,b (I), and it is given by the following expression:

x(t) :=

∫ b

0

G(t, s)g(s)dαs+
λ0 e

−
∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

, (5.3)

where

G(t, s) =
e−

∫ t
s p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

a0, 0 ≤ s ≤ t ≤ b,

b0 e
−

∫ b
0 p(r) dαr, 0 ≤ t < s ≤ b.

(5.4)

Proof. Let x be a solution of problem (5.2). Since x ∈ Wα,1
0,b (I), from Remark 1.4.3,

we have that x is differentiable a.e. on I. Thus, Theorem 1.4.2 (iv), ensures that, it is
a solution of the following singular differential equation:

t1−α x′(t) + p(t)x(t) = g(t), a.e. t ∈ I, a0 x(0)− b0 x(b) = λ0,

or, which is the same,

x′(t) + tα−1 p(t)x(t) = tα−1 g(t), a.e. t ∈ I, a0 x(0)− b0 x(b) = λ0. (5.5)

Now, by using that p, g ∈ L1
α(I), we have that, for a.e. t ∈ I,

d

dt

(
x(t) e

∫ t
0 p(r) dαr

)
= e

∫ t
0 p(r) dαr

(
x′(t) + tα−1 p(t)x(t)

)
= e

∫ t
0 p(r) dαrtα−1 g(t).
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Thus, by direct integration, we have that

x(t) = e−
∫ t
0 p(r) dαrx(0) +

∫ t

0

e−
∫ t
s p(r) dαrg(s)dαs for all t ∈ I. (5.6)

If follows from (5.6) and the boundary condition in (5.2) that

x(0) =
b0

a0 − b0 e
−

∫ b
0 p(r) dαr

∫ b

0

e−
∫ b
s p(r) dαrg(s)dαs+

λ0

a0 − b0 e
−

∫ b
0 p(r) dαr

. (5.7)

Now, by substituting (5.7) into (5.6), we arrive to

x(t) =
b0 e

−
∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

∫ t

0

e−
∫ b
s p(r) dαrg(s)dαs+

∫ t

0

e−
∫ t
s p(r) dαrg(s)dαs

+
b0 e

−
∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

∫ b

t

e−
∫ b
s p(r) dαrg(s)dαs+

λ0 e
−

∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

=
e−

∫ t
s p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

(
a0

∫ t

0

g(s)dαs+ b0

∫ b

t

e−
∫ b
0 p(r) dαr g(s)dαs

)
+

λ0 e
−

∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

=

∫ b

0

G(t, s)g(s)dαs+
λ0 e

−
∫ t
0 p(r) dαr

a0 − b0 e
−

∫ b
0 p(r) dαr

.

�

As a direct consequence, we deduce the following result:

Lemma 5.1.1. The fractional Green’s function G, related to the linear problem (5.2),
and given by the expression (5.4), satisfies the following properties for every p ∈ L1

α(I):

(i) G > 0 on I × I if and only if

a0

a0 − b0 e
−

∫ b
0 p(r) dαr

> 0 and
b0

a0 − b0 e
−

∫ b
0 p(r) dαr

> 0. (5.8)

(ii) G < 0 on I × I if and only if

a0

a0 − b0 e
−

∫ b
0 p(r) dαr

< 0 and
b0

a0 − b0 e
−

∫ b
0 p(r) dαr

< 0. (5.9)

As a direct consequence of previous result, we deduce the following expressions for
the particular cases of the initial, terminal and periodic problems.

Corollary 5.1.1. The initial problemx
(α)(t) + p(t)x(t) = g(t), for a.e. t ∈ I,

x(0) = x0,
(5.10)
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with p, g ∈ L1
α(I), has a unique solution x ∈ Wα,1

0,b (I), and it is given by the following
expression

x(t) :=

∫ b

0

GI(t, s)g(s)dαs+ x0 e
−

∫ t
0 p(r) dαr, (5.11)

where

GI(t, s) = e−
∫ t
s p(r) dαr

1, 0 ≤ s ≤ t ≤ b,

0, 0 ≤ t < s ≤ b.
(5.12)

Corollary 5.1.2. The terminal problemx
(α)(t) + p(t)x(t) = g(t), for a.e. t ∈ I,

x(b) = x0,
(5.13)

with p, g ∈ L1
α(I), has a unique solution x ∈ Wα,1

0,b (I), and it is given by the following
expression

x(t) :=

∫ b

0

GT (t, s)g(s)dαs+ x0 e
−

∫ b
t p(r) dαr, (5.14)

where

GT (t, s) = −e−
∫ t
s p(r) dαr

0, 0 ≤ s ≤ t ≤ b,

1, 0 ≤ t < s ≤ b.
(5.15)

From expressions (5.12) and (5.15), it is obvious that GI ≥ 0 and GT ≤ 0 on I × I.
Thus, as a direct consequence of expressions (5.11) and (5.14), we deduce the following
comparison result:

Lemma 5.1.2. Let x ∈ Wα,1
0,b (I), then the following comparison principles hold for every

p ∈ L1
α(I):

(i) If x(α)(t) + p(t)x(t) ≥ 0 a.e. t ∈ I and x(0) ≥ 0 then x ≥ 0 on I.

(ii) If x(α)(t) + p(t)x(t) ≥ 0 a.e. t ∈ I and x(b) ≤ 0 then x ≤ 0 on I.

Concerning the non homogeneous periodic problem, which follows directly by the
choice of a0 = b0 = 1, as a corollary of Theorem 5.1.1, we deduce the following result.

Corollary 5.1.3. The non homogeneous periodic problemx
(α)(t) + p(t)x(t) = g(t), for a.e. t ∈ I,

x(0)− x(b) = λ0,
(5.16)

with p, g ∈ L1
α(I), has a unique solution x ∈ Wα,1

0,b (I), and it is given by the following
expression
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x(t) :=

∫ b

0

GP (t, s)g(s)dαs+ λ0
e−

∫ t
0 p(r) dαr

1− e−
∫ b
0 p(r) dαr

, (5.17)

where

GP (t, s) =
e−

∫ t
s p(r) dαr

1− e−
∫ b
0 p(r) dαr

1, 0 ≤ s ≤ t ≤ b,

e−
∫ b
0 p(r) dαr, 0 ≤ t < s ≤ b.

(5.18)

As a consequence, it is immediate to verify, from expression (5.18), that the periodic
problem has a unique solution if and only if∫ b

0

p(r) dαr 6= 0.

Moreover the fractional Green’s function GP has the same sign of the previous integral,
i.e.,

Corollary 5.1.4. Let p ∈ L1
α(I), then the following properties hold:

(i) GP > 0 on I × I if and only if
∫ b

0
p(r) dαr > 0.

(ii) GP < 0 on I × I if and only if
∫ b

0
p(r) dαr < 0.

As a direct consequence of previous result and equality (5.17), denoting y � 0 on I
as y ≥ 0 and y 6≡ 0 on I, we deduce the following comparison result.

Corollary 5.1.5. Let x ∈ Wα,1
0,b (I) be such that

x(α)(t) + p(t)x(t) � 0 on I; and x(0) ≥ x(b).

Then the following comparison principles are fulfilled:

(i) If
∫ b

0
p(r) dαr > 0 then x > 0 on I.

(ii) If
∫ b

0
p(r) dαr < 0 then x < 0 on I.

5.1.3 Nonlinear Functional Boundary Conditions

In this subsection, we prove the existence of solutions of the nonlinear conformable frac-
tional differential equation (5.1) coupled to nonlinear functional boundary conditions.
In particular, we will consider the two following kind of functional boundary conditions:

L1(x, x(b)) = 0 (5.19)

and
L2(x(0), x) = 0. (5.20)

Here L1 : C(I)×R→ R and L2 : R×C(I)→ R are continuous functions that satisfy
suitable monotonicity assumptions.
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The used tool will be the well known method of upper and lower solutions. A solution
of these problems will be a function x ∈ Wα,1

0,b (I) that satisfies equation (5.1) a.e. on I
coupled to the corresponding boundary conditions (either (5.19) or (5.20) in each case).

First, we consider the problem (5.1), (5.19). To this end, we introduce the following
definition of lower and upper solution related to such problem.

Definition 5.1.1. Let γ ∈ Wα,1
0,b (I). We say that γ is a lower solution of the boundary

value problem (5.1), (5.19) if

(i) γ(α)(t) ≥ f(t, γ(t)), a.e. t ∈ I;

(ii) L1(γ, γ(b)) ≥ 0.

Let δ ∈ Wα,1
0,b (I). We say that δ is an upper solution of the boundary value problem (5.1),

(5.19) if

(i) δ(α)(t) ≤ f(t, δ(t)), a.e. t ∈ I;

(ii) L1(δ, δ(b)) ≤ 0.

In order to obtain existence and location results for the considered nonlinear prob-
lems, we define the sector

[γ, δ] = {x ∈ C(I) : γ(t) ≤ x(t) ≤ δ(t), for all t ∈ I}.

Now we give the main result on the existence of solutions for the nonlinear problem
(5.1), (5.19). The proof is on the basis on the one given in [36, Theorem 3.1] for two-point
nonlinear boundary conditions.

Theorem 5.1.2. If there exist γ and δ in Wα,1
0,b (I), γ ≤ δ in I, a pair of well ordered

lower and upper solutions respectively for problem (5.1), (5.19), with L1 a continuous
function in [γ, δ] × [γ(b), δ(b)] and nondecreasing in the first variable on [γ, δ], then
problem (5.1), (5.19) has at least one solution x ∈ [γ, δ].

Proof.
We consider the following modified problem:x

(α)(t) = f(t, τ(t, x(t))), for a.e. t ∈ I,

x(b) = τ(b, x(b) + L1(τ(·, x(·)), τ(b, x(b)))),
(5.21)

where τ is the truncated function, defined for any x ∈ C(I), as follows:

τ(t, x(t)) = max
{
γ(t), min{x(t), δ(t)}

}
, for all t ∈ I.

By the definition of function τ , it is obvious that γ(b) ≤ x(b) ≤ δ(b).
Suppose now that x(0) < γ(0). From the continuity of both functions we know that

there exists t0 ∈ (0, b] such that γ(t0) = x(t0) with γ > x on [0, t0). In this case, due to
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the linearity of the conformable α-derivative and the definition of the truncated function
τ , we have that

(γ − x)(α)(t) ≥ 0, a.e. t ∈ [0, t0], (γ − x)(t0) = 0.

So, Lemma 5.1.2 (ii) implies that x ≥ γ on [0, t0], and we arrive to a contradiction.
Analogously, we can prove that x(0) ≤ δ(0).
If there exists c ∈ (0, b) with x(c) < γ(c), then there exists a subinterval (t1, t2) ⊂

(0, b), such that (γ − x)(t1) = (γ − x)(t2) = 0, with γ > x on (t1, t2).
But, arguing as before, we deduce that

(γ − x)(α)(t) ≥ 0, a.e. t ∈ [t1, t2].

Now, using Lemma 5.1.2, (ii) again, we deduce that γ ≤ x on [t1, t2] and we attain
a contradiction.

A similar argument is valid to show that x ≤ δ on I.
Therefore, every solution x of problem (5.21) belongs to the sector [γ, δ]. Let’s see

now that it satisfies the functional boundary condition (5.19).
Clearly, if x(b) + L1(τ(·, x(·)), τ(b, x(b))) < γ(b), we obtain that x(b) = γ(b) and, in

consequence, γ(b) > x(b) + L1(τ(·, x(·)), γ(b)).
The nondecreasing character of L1 with respect to the first variable on the sector

[γ, δ], and the definition of function τ , allow us to arrive at the following contradiction

γ(b) > x(b) + L1(γ, γ(b)) ≥ x(b) = γ(b).

Analogously, we can verify that x(b) +L1(τ(·, x(·)), τ(b, x(b))) ≤ δ(b), and, as conse-
quence, every solution x of the truncated problem (5.21) is a solution of (5.1), (5.19).

Now, to finalize the proof, we must ensure that the truncated problem (5.21) has a
solution.

To this end, let us define the operator F : C(I)→ C(I) as follows:

(F x)(t) = −
∫ b

t

(
f(s, τ(s, x(s)))

)
dαs+ τ(b, x(b) + L1(τ(·, x(·)), τ(b, x(b)))).

First, notice that the solutions of problem (5.21) coincide with the fixed points of
the operator F . This property holds from equation (5.14) and the expression of the
fractional Green’s function GT , related to the terminal problem (5.13), with p ≡ 0,
which is given in (5.15).

In order to ensure that operator F has a fixed point, we will prove that it is compact.
We first observe that, from Definition 1.3.17 of a L1

α-Carathéodory function and the
definition of τ , function f(·, τ(·, x(·))) is Lebesgue measurable on I for any continuous
function x [11, Theorem 1.1], and there exists h ∈ L1

α(I, [0,∞)) such that

|f(t, τ(t, x(t)))| ≤ h(t), for a.e. t ∈ I and all x ∈ C(I).

The continuity of operator F follows from the continuous dependence with respect to
x of function f , the definition of τ and the Lebesgue’s dominated convergence theorem.
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To see that F(C(I)) is a relatively compact set on C(I), consider x ∈ C(I). Therefore

|F(x)(t)| ≤ ‖h‖L1
α(I) + max{|γ(b)|, |δ(b)|}, for all t ∈ I,

and, as a consequence, F(C(I)) is uniformly bounded on C(I).
This set is also equicontinuous since for every t1 < t2 ∈ I,

|F (x) (t2)−F (x) (t1)| ≤
∫ t2

t1

|h(s)|dαs.

By Arzelà-Ascoli theorem, we conclude that the set F(C(I)) is relatively compact in
C(I). Hence, F is compact.

As a consequence, the Schauder fixed-point theorem ensures that operator F has a
fixed point.

From previous arguments, we conclude that such fixed point is a solution of problem
(5.1), (5.19), and lies on [γ, δ]. �

Concerning the problem (5.1), (5.20), we introduce the following definition of lower
and upper solution related to such problem.

Definition 5.1.2. Let γ ∈ Wα,1
0,b (I). We say that γ is a lower solution of the boundary

value problem (5.1), (5.20) if

(i) γ(α)(t) ≥ f(t, γ(t)), a.e. t ∈ I;

(ii) L2(γ(0), γ) ≥ 0.

Let δ ∈ Wα,1
0,b (I). We say that δ is an upper solution of the boundary value problem (5.1),

(5.20) if

(i) δ(α)(t) ≤ f(t, δ(t)), a.e. t ∈ I;

(ii) L2(δ(0), δ) ≤ 0.

Analogously to Theorem 5.1.2, one can prove the following result.

Theorem 5.1.3. If there exist γ and δ in Wα,1
0,b (I), a pair of reversed ordered lower and

upper solutions respectively for problem (5.1), (5.20), such that γ ≥ δ on I, and L2 is a
continuous function in [δ(0), γ(0)]× [δ, γ], nonincreasing in the second variable on [δ, γ],
then problem (5.1), (5.20), has at least one solution x ∈ [δ, γ].

Proof. The proof follows the same steps as Theorem 5.1.2. In this case, we consider
the following modified problemx

(α)(t) = f(t, τ(t, x(t))), for a.e. t ∈ I,

x(0) = τ(0, x(0)− L2(τ(0, x(0)), τ(·, x(·)))),
(5.22)

where, for any x ∈ C(I), the function τ is defined as

τ(t, x(t)) = max
{
δ(t), min{x(t), γ(t)}

}
.
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In the particular case in which the boundary conditions are defined only at the
extremes of the interval, we can deduce as a direct corollary, the following result.

Corollary 5.1.6. Assume that there exist γ and δ ∈ Wα,1
0,b (I), a pair of lower and upper

solutions (either γ ≥ δ or γ ≤ δ) for problem

x(α)(t) = f(t, x(t)), for a.e. t ∈ I, L(x(0), x(b)) = 0,

with L a continuous function nondecreasing in the first variable and nonincreasing in
the second one on its domain of definition. Then this problem has at least one solution
x ∈ Wα,1

0,b (I) lying between γ and δ.

We note that previous result can be automatically applied to the linear boundary
conditions L(x, y) = a0x− b0y − λ0, with a0, b0 and λ0 ∈ R, a0, b0 ≥ 0 and a0 + b0 > 0,
which includes the periodic case (a0 = b0 = 1, λ0 = 0) and the initial (a0 = 1, b0 = 0)
and terminal (a0 = 0, b0 = 1) problems.

5.1.4 Examples

In this subsection, we present three examples where we apply Theorems 5.1.2 and 5.1.3
to some particular cases.

Example 5.1.1. Consider the linear boundary value problem:

x( 1
3

)(t) =
x2(t)

2
− t(1− t), a.e. t ∈ [0, 1], x(1) =

√
|x(1/2)|. (5.23)

This problem is a particular case of (5.1), (5.19), with α = 1
3
, f(t, x) = x2/2− t (1− t)

and
L1(x, y) =

√
|x(1/2)| − y.

Obviously, function f is a L1
1/3-Carathéodory function, and δ(t) = 2, γ(t) = 0 are

upper and lower solutions of the boundary-value problem (5.23), respectively with γ(t) ≤
δ(t) for t ∈ [0, 1]. To see this, it is enough to verify the following inequalities

δ( 1
3

)(t) = 0 ≤ f(t, δ(t)) = 2− t(1− t),
√
|δ(1/2)| − δ(1) ≤ 0,

and
γ( 1

3
)(t) = 0 ≥ f(t, γ(t)) = −t(1− t),

√
|γ(1/2)| − γ(1) = 0.

By Theorem 5.1.2, problem (5.23) has a least one solution x ∈ W
1
3
,1

0,1 ([0, 1]), such that
0 ≤ x(t) ≤ 2, for all t ∈ [0, 1].

Example 5.1.2. Consider the nonlinear boundary value problem with functional bound-
ary conditions: x

( 1
2

)(t) = t et sin2(x(t)) a.e. t ∈ [0, 2],

x(0)− sin2(x(0)) = 1
3

maxt∈[0,1] {x(t)}.
(5.24)
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This problem is a particular case of (5.1), (5.20), with α = 1
2
, f(t, x) = t et sin2(x) and

L2(x, y) = x− sin2(x)− 1

3
max
t∈[0,1]

{y(t)}.

It is clear that f is a L1
1/2-Carathéodory function, L2 is a continuous function in

(x, y) ∈ [δ(0), γ(0)] × [δ, γ], and nonincreasing in y ∈ [δ, γ], with δ(t) = 0 ≤ γ(t) =
et+1 for t ∈ [0, 2].

The fact that δ and γ are upper and lower solutions of problem (5.24) follows from
the fact that

δ( 1
2

)(t) = 0 ≤ f(t, δ(t)) = t, a.e. t ∈ [0, 2], δ(0)− sin2(δ(0))− 1

3
max
t∈[0,1]

{δ(t)} = 0

and
γ( 1

2
)(t) =

√
tet+1 ≥ f(t, γ(t)) = t et sin2(et+1), a.e. t ∈ [0, 2],

γ(0)− sin2(γ(0))− 1

3
max
t∈[0,1]

{γ(t)} ≥ 0.

Theorem 5.1.3, implies that problem (5.24) has a least one solution x ∈ W
1
2
,1

0,1 ([0, 2]),
such that 0 ≤ x(t) ≤ et+1, for all t ∈ [0, 2].

Example 5.1.3. Consider the nonlinear boundary value problem with functional bound-
ary conditions: 

x′(t) =
x3(t) + 1− 2t√

t
a.e. t ∈ [0, 1],

x(1)− cos(π
2
x(1)) =

∫ 1
1
2
x(s)ds.

(5.25)

This problem is a particular case of (5.1), (5.19), with α = 1, f(t, x) =
x3 + 1− 2t√

t
and

L1(x, y) =

∫ 1

1
2

x(s)ds− y + cos(
π

2
y).

It is clear that f is a L1-Carathéodory function, L1 is a continuous function in
(x, y) ∈ [γ, δ] × [γ(1), δ(1)], and nondecreasing in x ∈ [γ, δ], with γ(t) = −1 ≤ δ(t) =
1 for t ∈ [0, 1].

The fact that γ and δ are lower and upper solutions of problem (5.25) follows from
the fact that

γ′(t) = 0 ≥ f(t, γ(t)) = −2
√
t, a.e. t ∈ [0, 1],

∫ 1

1
2

γ(s)ds− γ(1) + cos(
π

2
γ(1)) ≥ 0

and

δ′(t) = 0 ≤ f(t, δ(t)) =
2(1− t)√

t
, a.e. t ∈ [0, 1],∫ 1

1
2

δ(s)ds− δ(1) + cos(
π

2
δ(1)) ≤ 0.

Theorem 5.1.2, implies that problem (5.25) has a least one solution x ∈ W 1,1
0,1 ([0, 1]),

such that −1 ≤ x(t) ≤ 1, for all t ∈ [0, 1].
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5.2 Nonlinear functional boundary value problems

for conformable fractional dynamic equations on

time scales

The original results of this section are published in [29].

5.2.1 Introduction

This section is devoted to the study of the existence of solutions of the following con-
formable fractional dynamic equation on time scales with nonlinear functional boundary
value conditions:

x
(α)
∆ (t) = f(t, xσ(t)), for ∆-a.e. t ∈ I = [a, b]T, (5.26)

coupled to nonlinear functional boundary conditions:

B(x(a), x) = 0, (5.27)

or
H(x, x(σ(b))) = 0. (5.28)

Here T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 ≤ a < b

and f : I × R → R is a L1
α,∆-Carathéodory function, x

(α)
∆ (t) denotes the delta con-

formable fractional derivative of x at t of order α ∈ (0, 1], B : R × C(J) → R and
H : C(J)× R→ R are continuous functions.

If B(x, y) = a0 x − b0 y(σ(b)) − λ0, with a0; b0;λ0 ∈ R, then (5.26), (5.27) is the
boundary value problem,

x
(α)
∆ (t) = f(t, xσ(t)) for ∆-a.e.t ∈ I, a0 x(a)− b0 x(σ(b)) = λ0, (5.29)

if B(x, y) = x− λ0, then (5.26), (5.27) is the initial value problem,

x
(α)
∆ (t) = f(t, xσ(t)) for ∆-a.e.t ∈ I, x(a) = λ0, (5.30)

and, if B(x, y) = x− y(σ(b)), then (5.26), (5.27) is the periodic value problem,

x
(α)
∆ (t) = f(t, xσ(t)) for ∆-a.e.t ∈ I, x(a) = x(σ(b)). (5.31)

Finally, the anti-periodic value problem,

x
(α)
∆ (t) = f(t, xσ(t)) for ∆-a.e. t ∈ I, x(a) = −x(σ(b)), (5.32)

corresponds to the particular case B(x, y) = x+ y(σ(b)).

Existence of solutions was obtained in Section 5.1 for the conformable fractional
differential equation (5.26) with T = R:

x(α)(t) = f(t, x(t)), for a.e. t ∈ [0, b], 0 < α ≤ 1,
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coupled to the nonlinear functional boundary conditions B(x(0), x) = L2(x(0), x) = 0
or H(x, x(b)) = L1(x, x(b)) = 0.

Cabada in [36], used the monotone method for nonlinear boundary problem (5.26), (5.27)
with T = R and α = 1:

x′(t) = f(t, x(t)), for a.e. t ∈ [a, b], B(x(a), x(b)) = 0,

where f is a Carathéodory function, x ∈ W 1,1 ([a, b],R) and B : R × R → R is a
continuous function which satisfies some properties of monotony.

In [41], Cabada et al. present an existence theorem for the problem (5.26), (5.27)
with α = 1:

x∆(t) = f(t, xσ(t)), for ∆-a.e. t ∈ [a, b]T, a, b ∈ R, B(x(a), x) = 0,

where f : [a, b]T × R → R is a L1
∆-Carathéodory function and B : R × C(T) → R is a

continuous function.

Motivated by the previously mentioned papers, in this section, we establish the
existence of solutions for the conformable fractional dynamic equations (5.26) on time
scales with nonlinear functional boundary value conditions. For this purpose, we use
the upper and lower solutions method together with Schauder’s fixed-point theorem.

5.2.2 Linear Conformable Fractional Dynamic Problems

In this subsection, we study the expression of the solutions of a linear conformable
fractional dynamic equation of order α ∈ (0, 1], with linear boundary conditions:x

(α)
∆ (t)− t1−αp(t) x(σ(t)) = g(t), ∆-a.e. t ∈ I,

a0x(a)− b0x(σ(b)) = λ0,
(5.33)

with −p ∈ Rµ, g ∈ L1
α,∆(I,R) and a0, b0, λ0 ∈ R.

We obtain the expression of the fractional Green’s function for this linear problem.

Theorem 5.2.1. Let −p ∈ Rµ and a0e−p(σ(b), a) 6= b0. For every g ∈ L1
α,∆(I,R), the

problem (5.33) has a unique solution x ∈ Wα,1
∆;a,σ(b)(J,R) given by:

x(t) =

∫
[a,σ(b)]T

G(t, s)g(s)∆αs+
λ0e−p(σ(b), t)

a0e−p(σ(b), a)− b0

, t ∈ J, (5.34)

where the fractional Green’s function is

G(t, s) =
e−p(s, t)

a0e−p(σ(b), a)− b0

a0e−p(σ(b), a), a ≤ s ≤ t ≤ σ(b),

b0, a ≤ t ≤ s ≤ σ(b),
(5.35)
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Proof. Let x be a solution to (5.33). By Theorem 1.5.3, consider[
x(t)e−p(t, a)

](α)

∆
= x

(α)
∆ (t)e−p(t, a)− p(t)t1−αe−p(t, a)x(σ(t)),

= e−p(t, a)g(t).

and hence integrating the above on [a, t]T obtain

x(t)e−p(t, a)− x(a) =

∫
[a,t]T

e−p(s, a)g(s)∆αs. (5.36)

So,

x(t) = e−p(a, t)

(
x(a) +

∫
[a,t]T

e−p(s, a)g(s)∆αs

)
(5.37)

If follows from the boundary condition in (5.33) and (5.37) that

x(a) =
b0

a0e−p(σ(b), a)− b0

∫
[a,σ(b)]T

e−p(s, a)g(s)∆αs+
λ0e−p(σ(b), a)

a0e−p(σ(b), a)− b0

. (5.38)

Now, by substituting (5.38) into (5.37), we get

x(t) =
b0e−p(a, t)

a0e−p(σ(b), a)− b0

∫
[a,t]T

e−p(s, a)g(s)∆αs+ e−p(a, t)

∫
[a,t]T

e−p(s, a)g(s)∆αs

+
b0e−p(a, t)

a0e−p(σ(b), a)− b0

∫
[t,σ(b)]T

e−p(s, a)g(s)∆αs+
λ0e−p(σ(b), t)

a0e−p(σ(b), a)− b0

=
λ0e−p(σ(b), t)

a0e−p(σ(b), a)− b0

+
1

a0e−p(σ(b), a)− b0

(
a0

∫
[a,t]T

e−p(σ(b), a)e−p(s, t)g(s)∆αs

+ b0

∫
[t,σ(b)]T

e−p(s, t)g(s)∆αs
)

=

∫
[a,σ(b)]T

G(t, s)g(s)∆αs+
λ0e−p(σ(b), t)

a0e−p(σ(b), a)− b0

.

�
As a direct consequence of previous result, we deduce the following expressions for the
particular cases of the initial, terminal and periodic problems.

Corollary 5.2.1. The initial problemx
(α)
∆ (t)− t1−αp(t) x(σ(t)) = g(t), ∆-a.e. t ∈ I;

x(a) = x0.
(5.39)

with −p ∈ Rµ, x0 ∈ R, and g ∈ L1
α,∆(I,R), has a unique solution x ∈ Wα,1

∆;a,σ(b)(J,R),
given by the following expression

x(t) :=

∫
[a,σ(b)]T

GI(t, s)g(s)∆αs+ x0e−p(a, t), t ∈ J, (5.40)
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where

GI(t, s) = e−p(s, t)

1, a ≤ s ≤ t ≤ σ(b),

0, a ≤ t ≤ s ≤ σ(b).
(5.41)

Corollary 5.2.2. The terminal problemx
(α)
∆ (t)− t1−αp x(σ(t)) = g(t), ∆-a.e. t ∈ I;

x(σ(b)) = x1.
(5.42)

with −p ∈ Rµ, x1 ∈ R, and g ∈ L1
α,∆(I,R), has a unique solution x ∈ Wα,1

∆;a,σ(b)(J,R),
given by the following expression

x(t) :=

∫
[a,σ(b)]T

GT (t, s)g(s)∆αs+ x1e−p(σ(b), t), t ∈ J, (5.43)

where

GT (t, s) = −e−p(s, t)

0, a ≤ s ≤ t ≤ σ(b),

1, a ≤ t ≤ s ≤ σ(b),
(5.44)

Corollary 5.2.3. The periodic problemx
(α)
∆ (t)− t1−αp(t) x(σ(t)) = g(t), ∆-a.e. t ∈ T0;

x(a) = x(σ(b)).
(5.45)

with −p ∈ Rµ, e−p(σ(b), a) 6= 1 and g ∈ L1
α,∆(I,R), has a unique solution x ∈

Wα,1
∆;a,σ(b)(J,R), given by the following expression

x(t) :=

∫
[a,σ(b)]T

GP (t, s)g(s)∆αs, t ∈ J, (5.46)

where

GP (t, s) =
e−p(s, t)

e−p(σ(b), a)− 1

e−p(σ(b), a), a ≤ s ≤ t ≤ σ(b),

1, a ≤ t ≤ s ≤ σ(b),
(5.47)

If −p ∈ R+
µ , from expressions (5.41) and (5.44), it is obvious that GI ≥ 0 and GT ≤ 0

on J × J .

5.2.3 Conformable Problems with Nonlinear Functional Bound-
ary Conditions.

In this subsection, we will prove the existence of at least one solution between a pair
of coupled lower and upper solutions of the problem (5.26), (5.27), and of the problem
(5.26), (5.28).
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A solution of these problems will be a function x ∈ Wα,1
∆;a,σ(b)(J) that satisfies equation

(5.26) a.e. on I coupled to the corresponding boundary conditions (either (5.27) or (5.28)
in each case).

5.2.3.1 Existence of Solutions of the Problem (5.26),(5.27).
We introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 5.2.1. We say that γ, δ ∈ Wα,1
∆;a,σ(b)(J) is a pair of coupled lower and upper

solutions of the conformable fractional problem (5.26), (5.27), if γ ≤ δ in J and the
following inequalities hold:γ

(α)
∆ (t)− f(t, γσ(t)) ≤ 0 ≤ δ

(α)
∆ (t)− f(t, δσ(t)) for ∆-a.e. t ∈ I,

B(γ(a), x) ≤ 0 ≤ B(δ(a), x) for all x ∈ [γ, δ],
(5.48)

we define the sector

[γ, δ] = {x ∈ C(J), γ(t) ≤ x(t) ≤ δ(t) for all t ∈ J}.

We assume the following hypothesis

(H1) B ∈ C(R× C(J)) and f : I × R→ R is a L1
α,∆-Carathéodory function.

(H2) There exists γ, δ ∈ Wα,1
∆;a,σ(b)(J), a pair of coupled lower and upper solutions of the

problem (5.26), (5.27).

Now we consider the following modified problem:x
(α)
∆ (t) = F (t, xσ(t)) for ∆-a.e. t ∈ I,

x(a) = τ(a, x(a)−B(x(a), x)),
(5.49)

where, for all t ∈ I fixed,

F (t, z) = f(t, τ(σ(t), z))− z

and

z =
z − τ(σ(t), z)

1 + |z|
, τ(t, z) = max{γ(t),min{z, δ(t)}}, z ∈ R.

We need the following auxiliary lemmas.

Lemma 5.2.1. Assume that G : I × R → R is a L1
α,∆-Carathéodory function. If

x ∈ C(J), then function Gx : I → R defined for every s ∈ I as

Gx(s) := G(s, xσ(s))

belongs to L1
α,∆(I).
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Proof. If x ∈ C(J), then xσ ∈ Crd(J) [33, Theorem 1.60] and, using [34, Theorems
5.81 and 5.82] we have that xσ is ∆-measurable in I. It follows from [61, Theorem 1.4.3]
that Gx is ∆-measurable in I. Since xσ is bounded [33, Theorem 1.65], from condition
3 on definition of L1

α,∆-Carathéodory function, we obtain the result. �

From previous lemma, we obtain the following lemma.

Lemma 5.2.2. Suppose that hypotheses (H1) and (H2) hold, then the following condi-
tions are satisfied:

1. For every x ∈ R, function τ(·, x) is continuous in J .

2. Function τ(t, ·) is continuous in R, uniformly at t ∈ J , i.e.:

∀ ε > 0, ∃ δ(ε) > 0/ |x− y| < δ =⇒ |τ(t, x)− τ(t, y)| < ε, for all t ∈ J.

3. There exists Kτ ≥ 0 such that |τ(t, x)| ≤ Kτ for every (t, x) ∈ J × R.

4. For every x ∈ R, function F (·, x) is measurable.

5. F (t, ·) ∈ C(R) for ∆-a.e. t ∈ I.

6. There exists mF ∈ L1
α,∆(I) such that

|F (t, x)| ≤ mF (t) for ∆-a.e. t ∈ I and all x ∈ R.

To deduce the existence of solutions of problem (5.26), (5.27) in the sector [γ, δ], we
define operator A : C(J)→ C(J), as

Ax(t) := τ(a, x(a)−B(x(a), x)) +

∫
[a,t]T

F (s, xσ(s)) ∆αs, t ∈ J. (5.50)

Clearly, from Corollary 5.2.1 with p ≡ 0, the fixed point of the operator A is a
solution of the problem (5.49).

Proposition 5.2.1. Suppose that hypotheses (H1) and (H2) are fulfilled. Then, the
operator

A : C(J)→ C(J) is compact.

Proof. We first observe that, from Lemma 5.2.2, there exists a function mF ∈
L1
α,∆(I) such that

|F (t, x(σ(t))| =
∣∣∣f(t, τ(σ(t), x(σ(t))))− x(σ(s))

∣∣∣ ≤ mF (t),

for ∆-a.e. t ∈ I and all x ∈ C(J).
Let {xn}n∈N be a sequence of C(J) converging to x ∈ C(J). Then∣∣∣A(xn(t))−A(x(t))

∣∣∣ ≤ ∫
[a,σ(b)]T

sα−1
∣∣∣(f(s, τ(σ(s), xn(σ(s))))− xn(σ(s))

)
−
(
f(s, τ(σ(s), x(σ(s))))− x(σ(s))

)∣∣∣∆s.
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We can easily check that xn(t)→ x(t) for every t ∈ J.
Since

|f(s, τ(σ(s), xn(σ(s))))− xn(σ(s))| ≤ mF (s) ∆-a.e. s ∈ I for all n ∈ N,

the continuity of operator A follows from the continuous dependence with respect to x
of function f , the definition of τ and the Lebesgue’s dominated convergence theorem.

To see that the set A(C(J)) is relatively compact on C(J), consider x ∈ C(J).
Therefore,

|A(x)(t)| ≤ |τ(a, x(a)−B(x(a), x))|+
∫

[a,b]T

∣∣∣F (s, xσ(s))
∣∣∣∆αs

≤ Kτ +KF = K,

where
Kτ := sup{|τ(t, x)| : (t, x) ∈ J×R}, and KF := ||MF ||, MF (t) =

∫
[a,t]T

mF (s) ∆αs, t ∈ J.
So, A(C(J)) is uniformly bounded on C(J). This set is also equicontinuous since for

every t1 < t2 ∈ J,

‖A (x) (t2)−A (x) (t1)‖ ≤
∫

[t1,t2]T

mF (s)∆αs.

By Arzelà–Ascoli theorem, we conclude that the set A(C(J)) is relatively compact
in C(J). Hence, A is compact. �

Lemma 5.2.3. Suppose that hypotheses (H1) and (H2) are fulfilled. Then, all the solu-
tions of problem (5.49) belong to the sector [γ, δ] and are solutions of problem (5.26), (5.27).

Proof. Let x ∈ Wα,1
∆;a,σ(b)(J) be a solution of the problem (5.49). Suppose it is false

that z := x− δ ≤ 0 in J . From the definition of τ , we know that z(a) ≤ 0, then there is
c ∈ J\{a} such that z(c) = max{z(t) : t ∈ J} > 0.

If ρ(c) = c, then, there exists ε > 0 such that z(t) > 0 for all t ∈ [ρ(c − ε), c] ∩ J .

For ∆-almost every t ∈ [c − ε, c] ∩ J , we have that there exists z
(α)
∆ (ρ(t)) and, in such

points, it is satisfied that

z
(α)
∆ (ρ(t)) ≤ F (t, x(t))− f(t, δ(t)) =

x(t)− δ(t)
1 + |x(t)|

< 0.

Since z ∈ Wα,1
∆;a,σ(b)(J), for every t ∈ [ρ(c− ε), c) ∩ J , we arrive at

z(c)− z(t) =

∫
[t,c]T

z
(α)
∆ (s) ∆αs < 0,

which is a contradiction with the definition of c.
If ρ(c) < c, then

z
(α)
∆ (ρ(c)) =

z(c)− z(ρ(c))

c− ρ(c)
(ρ(c))1−α ≥ 0,
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but we know that

x
(α)
∆ (ρ(c)) = F (ρ(c), x(c)) = f(ρ(c), δ(c))− x(c)− δ(c)

1 + |x(c)|
< f(ρ(c), δ(c)) ≤ δ

(α)
∆ (ρ(c)),

that is, z
(α)
∆ (ρ(c)) < 0, and so we obtain a contradiction with the previous inequality.

As a consequence, x ≤ δ in J .
Analogously, we can prove that γ ≤ x in J .
Now, let us see that x(a)−B(x(a), x) ∈ [γ(a), δ(a)].
If x(a) − B(x(a), x) < γ(a), then x(a) = γ(a), and therefore B(γ(a), x) > 0, which

contradicts the definition of γ.
Analogously, we can prove that x(a)−B(x(a), x) ≤ δ(a).
Thus, every solution x of (5.49) is a solution of (5.26), (5.27) that belongs to [γ, δ]

and the proof is complete. �

Now, we prove an existence result for problem (5.26), (5.27).

Theorem 5.2.2. Suppose that hypotheses (H1) and (H2) hold, then problem (5.26), (5.27)
has at least one solution x ∈ Wα,1

∆;a,σ(b)(J) such that γ(t) ≤ x(t) ≤ δ(t) for every t ∈ J .

Proof. From Lemma 5.2.3, we know that if problem (5.49) is solvable, then the same
holds for problem (5.26), (5.27). By Proposition 5.2.1, A is compact. It has a fixed point
by the Schauder fixed-point theorem. As a consequence, problem (5.49) has at least one
solution x ∈ Wα,1

∆;a,σ(b)(J) which, by Lemma 5.2.3, is a solution of problem (5.26), (5.27)

and belongs to [γ, δ]. �

From previous theorem, we obtain the following existence results for the linear bound-
ary value problem (5.29), the periodic problem (5.31), and the anti-periodic value prob-
lem (5.32).

Corollary 5.2.4. If f : I × R → R is a L1
α,∆-Carathéodory function and γ, δ ∈

Wα,1
∆;a,σ(b)(J) is a pair of coupled lower and upper solutions of problem (5.29). Then

problem (5.29) has at least one solution x ∈ Wα,1
∆;a,σ(b)(J) such that γ(t) ≤ x(t) ≤ δ(t) for

every t ∈ J .

Corollary 5.2.5. If f : I × R → R is a L1
α,∆-Carathéodory function and γ, δ ∈

Wα,1
∆;a,σ(b)(J) is a pair of coupled lower and upper solutions of problem (5.31). Then

problem (5.31) has at least one solution x ∈ Wα,1
∆;a,σ(b)(J) such that γ(t) ≤ x(t) ≤ δ(t) for

every t ∈ J .

Corollary 5.2.6. If f : I × R → R is a L1
α,∆-Carathéodory function and γ, δ ∈

Wα,1
∆;a,σ(b)(J) is a pair of coupled lower and upper solutions of problem (5.32). Then

problem (5.32) has at least one solution x ∈ Wα,1
∆;a,σ(b)(J) such that γ(t) ≤ x(t) ≤ δ(t) for

every t ∈ J .
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5.2.3.2 Existence of solutions of the problem (5.26),(5.28).
We introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 5.2.2. We say that γ, δ ∈ Wα,1
∆;a,σ(b)(J) is a pair of coupled lower and upper

solutions of the conformable fractional problem (5.26), (5.28), if δ ≤ γ in J and the
following inequalities hold:γ

(α)
∆ (t)− f(t, γσ(t)) ≤ 0 ≤ δ

(α)
∆ (t)− f(t, δσ(t)) for ∆-a.e. t ∈ I,

H(x, γ(σ(b))) ≤ 0 ≤ H(x, δ(σ(b))) for all x ∈ [δ, γ],
(5.51)

we define the sector

[δ, γ] = {x ∈ C(J), δ(t) ≤ x(t) ≤ γ(t) for all t ∈ J}.

We assume the following hypothesis

(F1) H ∈ C(C(J)× R) and f : I × R→ R is a L1
α,∆-Carathéodory function.

(F2) There exists γ, δ ∈ Wα,1
∆;a,σ(b)(J), a pair of coupled lower and upper solutions of the

problem (5.26), (5.28).

Now we consider the following modified problem:x
(α)
∆ (t) = F (t, xσ(t)) for ∆-a.e. t ∈ I,

x(σ(b)) = τ(σ(b), x(σ(b)) +H(x, x(σ(b)))),
(5.52)

where, for all t ∈ I fixed,

F (t, z) = f(t, τ(σ(t), z))− z

and

z =
z − τ(σ(t), z)

1 + |z|
, τ(t, z) = max{δ(t),min{z, γ(t)}}, z ∈ R.

To deduce the existence of solutions of problem (5.26), (5.28) in the sector [δ, γ], we
define operator T : C(J)→ C(J), as

T x(t) := τ (σ(b), x(σ(b)) +H(x, x(σ(b))))−
∫

[t,σ(b)]T

F (s, xσ(s)) ∆αs, t ∈ J. (5.53)

Clearly, from Corollary 5.2.2 with p ≡ 0, the fixed point of the operator T is a solu-
tion of the problem (5.52).

Following the technique used in the previous subsection, it is easy to prove the
following results:
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Proposition 5.2.2. Suppose that hypotheses (F1) and (F2) are fulfilled. Then the op-
erator

T : C(J)→ C(J) is compact.

Lemma 5.2.4. Suppose that hypotheses (F1) and (F2) are fulfilled. Then, all the solu-
tions of problem (5.52) belong to the sector [δ, γ] and are solutions of problem (5.26), (5.28).

Theorem 5.2.3. Suppose that hypotheses (F1) and (F2) hold, then problem (5.26), (5.28)
has at least one solution x ∈ Wα,1

∆;a,σ(b)(J) such that δ(t) ≤ x(t) ≤ γ(t) for every t ∈ J .

Remark 5.2.1. The results (Theorems 5.2.2 and 5.2.3) in this Subsection 5.2.3 gen-
eralize the previous ones (Theorems 5.1.3 and 5.1.2) given in Subsection 5.1.3 for the
nonlinear conformable fractional differential equation (5.1).

5.2.4 Examples

In this subsection, we present two examples where we apply Theorems 5.2.2 and 5.2.3
to some particular cases.

Example 5.2.1. Consider the nonlinear boundary value problem with functional bound-
ary conditions:

x
( 1

3
)

∆ (t) =
2t− 1− x5(σ(t))√

t
, ∆-a.e. t ∈ I = [0, 1]T,

x(0)− cos(πx(0)) =
1

5
maxt∈[0,1]T {x(t)}.

(5.54)

This problem is a particular case of (5.26), (5.27) with α = 1
3
, f(t, xσ(t)) =

2t− 1− x5(σ(t))√
t

and

B(x, y) = x− cos(πx)− 1

5
max
t∈[0,1]T

{y(t)}.

It is clear that f is a L1
1
3
,∆

-Carathéodory function, B is a continuous function in

(x, y) ∈ [γ(0), δ(0)]× [γ, δ], with γ(t) = −1 ≤ δ(t) = 1 for t ∈ [0, σ(1)]T. The fact that
γ and δ are lower and upper solutions of problem (5.54) follows from the fact that


γ

( 1
3

)

∆ (t)− f(t, γσ(t)) = −2
√
t ≤ 0 ≤ δ

( 1
3

)

∆ (t)− f(t, δσ(t)) =
2(1− t)√

t
for ∆-a.e. t ∈ I,

B(γ(0), x) =
−1

5
≤ 0 ≤ B(δ(0), x) =

9

5
for all x ∈ [γ, δ],

Theorem 5.2.2, implies that problem (5.54) has a least one solution x ∈ W
1
3
,1

∆;0,σ(1)([0, σ(1)]T),

such that −1 ≤ x(t) ≤ 1, for all t ∈ [0, σ(1)]T.
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Example 5.2.2. Consider the nonlinear boundary value problem with functional bound-
ary conditions: 

x
( 1

2
)

∆ (t) =
2 sin(xσ(t))√
t(π − t)

, ∆-a.e. t ∈ I = [0, π]T,

xσ(π) + 3 sin(xσ(π)) =
∫ π
π
2

√
s x(s)∆

1
2 s.

(5.55)

This problem is a particular case of (5.26), (5.28) with α = 1
2
, f(t, xσ(t)) =

2 sin(xσ(t))√
t(π − t)

and

H(x, y) =

∫ π

π
2

√
s x(s)∆

1
2 s− y − 3 sin(y).

It is clear that f is a L1
1
2
,∆

-Carathéodory function, H is a continuous function in

(x, y) ∈ [δ, γ]× [δ(σ(π)), γ(σ(π))], with δ(t) =
−π
2
≤ γ(t) =

π

2
for t ∈ [0, σ(π)]T.

The fact that γ and δ are lower and upper solutions of problem (5.55) follows from
the fact that


γ

( 1
2

)

∆ (t)− f(t, γσ(t)) =
−2√
t(π − t)

≤ 0 ≤ δ
( 1

2
)

∆ (t)− f(t, δσ(t)) =
2√

t(π − t)
for ∆-a.e. t ∈ I,

H(x, γσ(π)) ≤ π2

4
− π

2
− 3 ≤ 0 ≤ −π

2

4
+
π

2
+ 3 ≤ H(x, δσ(π)) for all x ∈ [δ, γ],

Theorem 5.2.3, implies that problem (5.55) has a least one solution x ∈ W
1
2
,1

∆;0,σ(π)([0, σ(π)]T),

such that
−π
2
≤ x(t) ≤ π

2
, for all t ∈ [0, σ(π)]T.

Example 5.2.3. Consider the periodic problem:
x

( 1
2

)

∆ (t) = −2 sin(π x(t+ 1)) +
et√
t
x(t+ 1), ∆-a.e. t ∈ I = [0, b]Z, b ∈ Z,

x(0) = x(b+ 1).

(5.56)

This problem is a particular case of (5.26), (5.28) with α = 1
2
, T = Z, f(t, xσ(t)) =

−2 sin(π xσ(t))+
et√
t
xσ(t) and H(x, y) = x−y. It is clear that f is a L1

1
2
,∆

-Carathéodory

function, H is a continuous function in (x, y) ∈ [δ, γ]× [δ(b+ 1), γ(b+ 1)], with

δ(t) = −1 ≤ γ(t) = 1 for t ∈ [0, b+ 1]Z.

The fact that γ and δ are lower and upper solutions of problem (5.56) follows from
the fact that
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γ

( 1
2

)

∆ (t) = 0 ≤ f(t, γσ(t)) = −2 sin(π) +
et√
t
, for ∆-a.e. t ∈ I = [0, b]Z, γ(0) ≤ γ(b+ 1),

δ
( 1

2
)

∆ (t) = 0 ≥ f(t, δσ(t)) = 2 sin(π)− et√
t
, for ∆-a.e. t ∈ I = [0, b]Z, δ(0) ≥ δ(b+ 1).

Theorem 5.2.3, implies that problem (5.56) has a solution x ∈ W
1
3
,1

∆;0,b+1([0, b + 1]Z),
such that −1 ≤ x(t) ≤ 1 for every t ∈ [0, b+ 1]Z.

5.3 Existence results for systems of conformable frac-

tional differential equations

The results of this chapter are original and are accepted for publication [25].

5.3.1 Introduction

In this section, we establish existence results for the following system of conformable
fractional differential equations:x

(α)(t) = f(t, x(t)), for a.e. t ∈ I = [0, b], b > 0,

x ∈ (B),
(5.57)

where 0 < α ≤ 1, f : I × Rn → Rn is a L1
α-Carathéodory function, x(α)(t) denotes the

conformable fractional derivative of x at t of order α, and (B) denotes the initial value
or the periodic boundary value conditions:

x(0) = x0, (5.58)

x(0) = x(b). (5.59)

Existence results for problem (5.57),(5.58) were obtained in [79], by using the Banach
fixed point theorem with f a continuous function. In the particular case where n = 1,
existence results for problem (5.57) were obtained in Section 5.1 with nonlinear functional
boundary conditions L1(x, x(b)) = 0 or L2(x(0), x) = 0, their results were established, for
the scalar case, with the method of lower and upper solutions and cover, as a particular
cases, the boundary conditions (5.58) and (5.59). In [19] the authors solved problem
(5.57),(5.58) (for n = 1), with f a continuous function by the help of the solution-tube
method. As we will see, the used definition is equivalent to the existence of a pair of
lower and upper solutions of the considered problem.

In order to obtain the existence results for problem (5.57), we introduce the notion
of solution-tube of (5.57) which generalizes the notions of lower and upper solutions
given in Section 5.1. It is inspired by a notion of solution tube for first-order systems of
differential equations introduced in [74], (see also [51,52] and [53] on time scales).

82



5.3.2 Existence Theorem

In this subsection, we establish an existence result for the problem (5.57). A solution
of problem (5.57) will be a function x ∈ Wα,1

0,b (I,Rn) for which (5.57) is satisfied. We
introduce the notion of solution-tube of this problem as follows.

Definition 5.3.1. Let (v,M) ∈ Wα,1
0,b (I,Rn)×Wα,1

0,b (I, [0,∞)). We say that (v,M) is a
solution tube to problem (5.57) if

(i) 〈x − v(t), f(t, x) − v(α)(t)〉 ≤ M(t)M (α)(t) for a.e. t ∈ I and every x ∈ Rn such
that ‖x− v(t)‖ = M(t),

(ii) v(α)(t) = f(t, v(t)) and M (α)(t) = 0 a.e. on {t ∈ I : M(t) = 0},

(iii) - if (B) denotes (5.58), then ‖x0 − v(0)‖ ≤M(0),
- if (B) denotes (5.59), then ‖v(b)− v(0)‖ ≤M(0)−M(b).

If α = 1, our definition of solution tube is equivalent to the notion of solution tube
introduced in [74] for first order systems of Ordinary Differential Equations.

Now, we introduce the following set

T(v,M) :=
{
x ∈ Wα,1

0,b (I,Rn) : ‖x(t)− v(t)‖ ≤M(t), for every t ∈ I
}
.

Remark 5.3.1. If n = 1, our definition of solution tube is equivalent to the notion of
solution tube introduced in [19]. We point out that in this case the solution-tube method
is equivalent of the lower and upper solutions one. To this end, we introduce the following
definition:

Definition 5.3.2. A function γ ∈ Wα,1
a,b (I) is called a lower solution of (5.57), if

(i) γ(α)(t) ≥ f(t, γ(t)), for a.e. t ∈ I;

(ii) - if (B) denotes (5.58), then γ(0) ≥ x0,
- if (B) denotes (5.59), then γ(0) ≥ γ(b).

A function δ ∈ Wα,1
0,b (I) is called an upper solution of (5.57) if it satisfies (i), (ii) with

the reversed inequalities.

Indeed, we consider the following assumptions:

(A) There exist δ ≤ γ respectively upper and lower solutions of (5.57), such that δ < γ
a.e. on I.

(B) There exists (v,M) a solution-tube of (5.57).

First, we prove the following assertion

If (B) is satisfied, then (A) is also fulfilled.
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Define δ = v −M and γ = v +M .
(
δ − δ+γ

2
(t)
) (

f(t, δ)− (γ+δ)(α)(t)
2

)
≤ (γ−δ)(t)

2
(γ−δ)(α)(t)

2
for a.e. t ∈ I(

γ − δ+γ
2

(t)
) (

f(t, γ)− (γ+δ)(α)(t)
2

)
≤ (γ−δ)(t)

2
(γ−δ)(α)(t)

2
for a.e. t ∈ I.

It is not difficult to verify that, since δ < γ a.e. on I, thatδ
(α)(t) ≤ f(t, δ(t)), for a.e. t ∈ I

γ(α)(t) ≥ f(t, γ(t)), for a.e. t ∈ I.

Moreover, from condition (iii) it is immediate to conclude that δ(0) ≤ x0 ≤ γ(0),
provided (5.58) is considered, and δ(0)− δ(b) ≤ 0 ≤ γ(0)− γ(b) for conditions (5.59).

Now, let’s prove the reverse implication, i.e.

If (A) holds, then (B) is satisfied.

To this end, take v = (γ + δ)/2 and M = (γ − δ)/2, we have δ = v − M and
γ = v +M .
For x ∈ R such that |x− v(t)| = M(t), then x = γ or x = δ, and we have for a.e. t ∈ I,

(x− v(t))
(
f(t, x)− v(α)(t)

)
=


(
δ − δ+γ

2
(t)
) (

f(t, δ)− (δ+γ)(α)

2
(t)
)
,(

γ − δ+γ
2

(t)
) (

f(t, γ)− (δ+γ)(α)

2
(t)
)
,

≤


(
δ−γ

2
(t)
) (

δ(α)(t)− (δ+γ)(α)

2
(t)
)
,(

γ−δ
2

(t)
) (

γ(α)(t)− (δ+γ)(α)

2
(t)
)
,

= M(t)M (α)(t) for a.e. t ∈ I.

We consider the following modified problem:x
(α)(t) + α x(t) = f(t, x(t)) + α x(t), for a.e. t ∈ I,

x ∈ (B).
(5.60)

where

x(t) =

{ M(t)
‖x−v(t)‖(x− v(t)) + v(t), if ‖x− v(t)‖ > M(t),

x(t), if ‖x− v(t)‖ ≤M(t).
(5.61)

We need the following auxiliary lemmas, which are direct generalizations of Corollary
5.1.1 and Corollary 5.1.3 in Section 5.1, and we omit the proofs.
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Lemma 5.3.1. For every g ∈ L1
α(I,Rn), x0 ∈ Rn, 0 < α ≤ 1 and p ∈ R, problem{

x(α)(t) + px(t) = g(t), a.e. t ∈ I,
x(0) = x0,

(5.62)

has a unique solution x ∈ Wα,1
0,b (I,Rn) given by the expression:

x(t) :=

∫ b

0

GIn(t, s)g(s)dαs+ x0e
− p
α
tα , (5.63)

where

GIn(t, s) = e
p
α

(sα−tα)

1, 0 ≤ s ≤ t ≤ b,

0, 0 ≤ t ≤ s ≤ b,
(5.64)

Lemma 5.3.2. For every g ∈ L1
α(I,Rn), λ ∈ Rn, 0 < α ≤ 1 and p ∈ R\{0}, problem{

x(α)(t) + px(t) = g(t), a.e. t ∈ I,
x(0)− x(b) = λ,

(5.65)

has a unique solution x ∈ Wα,1
0,b (I,Rn) given by the following expression:

x(t) :=

∫ b

0

GPe(t, s)g(s)dαs+ λ
e−

p
α
tα

1− e− p
α
bα
, (5.66)

where

GPe(t, s) =
e
p
α

(sα−tα)

1− e− p
α
bα

1, 0 ≤ s ≤ t ≤ b,

e−
p
α
bα , 0 ≤ t < s ≤ b,

(5.67)

The following lemma can be proved analogously to [19, Lemma 11].

Lemma 5.3.3. Let r ∈ Wα,1
0,b (I,R), such that r(α)(t) < 0 a.e. on {t ∈ I : r(t) > 0}. If

one of the two following conditions holds,

(i) r(0) ≤ 0,

(ii) r(0) ≤ r(b),

then r(t) ≤ 0 for every t ∈ I.

Let us define the operators A1,A2 : C(I,Rn)→ C(I,Rn) by

A1(x)(t) =

∫ b

0

GIn(t, s)
(
f(s, x(s)) + α x(s)

)
sα−1ds+ x0e

−tα

and

A2(x)(t) =

∫ b

0

GPe(t, s)
(
f(s, x(s)) + α x(s)

)
sα−1ds,
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where GIn (resp., GPe) is the Green’s function related to the initial problem (5.62)(resp.,
periodic problem (5.65)) and is given by expression (5.64)(resp.,(5.67)) with p = α.

Clearly, from Lemma 5.3.1 (resp. Lemma 5.3.2) with p = α, the solutions of problem
(5.60), (5.58) (resp. (5.60), (5.59)) coincide with the fixed points of operator A1 (resp.
A2).

Proposition 5.3.1. Let f : I×Rn → Rn be a L1
α-Carathéodory function. Assume there

exists (v,M) ∈ Wα,1
0,b (I,Rn) ×Wα,1

0,b (I, [0,∞)) a solution tube of problem (5.57),(5.59),
then operator A2 is compact.

Proof. We first observe that, from Definitions 1.3.17 and 5.3.1, there exists a function
h ∈ L1

α(I, [0,∞)) such that

‖f(t, x(t)) + α x(t)‖ ≤ h(t), for a.e. t ∈ I and all x ∈ C(I,Rn).

Let {xn}n∈N be a sequence of C(I,Rn) converging to x ∈ C(I,Rn). In this case, it is
clear that

∥∥∥A2(xn(t))−A2(x(t))
∥∥∥ ≤ ∫ b

0

sα−1|GPe(t, s)|
∥∥∥(f(s, xn(s)) + α xn(s)

)
−
(
f(s, x(s)) + α x(s)

)∥∥∥ds
≤M

∫ b

0

sα−1
∥∥∥(f(s, xn(s)) + α xn(s)

)
−
(
f(s, x(s)) + α x(s)

)∥∥∥ds.
where M := maxs,t∈I |GPe(t, s)|.

The continuity of operatorA2 follows from the continuous dependence with respect to
x of function f , the definition of x and the Lebesgue’s dominated convergence theorem.

To see thatA2(C(I,Rn)) is relatively compact set on C(I,Rn), consider x ∈ C(I,Rn).
Therefore, ∥∥∥A2(x)(t)

∥∥∥ ≤M ‖h‖L1
α(I,Rn).

So, A2(C(I,Rn)) is uniformly bounded.

86



This set is also equicontinuous since for every t1 < t2 ∈ I,∥∥∥A2 (x) (t2)−A2 (x) (t1)
∥∥∥

=
∥∥∥∫ t2

0

GPe(t2, s)
(
f(s, x(s)) + α x(s)

)
dαs+

∫ b

t2

GPe(t2, s)
(
f(s, x(s)) + α x(s)

)
dαs

−
∫ t1

0

GPe(t1, s)
(
f(s, x(s)) + α x(s)

)
dαs−

∫ b

t1

GPe(t1, s)
(
f(s, x(s)) + α x(s)

)
dαs
∥∥∥

≤ |e
−tα2 − e−tα1 |
1− e−bα

(∫ t1

0

es
α
∥∥∥f(s, x(s)) + α x(s)

∥∥∥dαs+

∫ b

t2

es
α−bα

∥∥∥f(s, x(s)) + α x(s)
∥∥∥dαs)

+

∫ t2

t1

|GPe(t2, s)−GPe(t1, s)|
∥∥∥f(s, x(s)) + α x(s)

∥∥∥dαs
≤ K|e−tα2 − e−tα1 |

(∫ t1

0

h(s)dαs+

∫ b

t2

h(s)dαs
)

+ 2M

∫ t2

t1

h(s)dαs,

where

K := max
s∈I
{ es

α

1− e−bα
,
es
α−bα

1− e−bα
} =

1

1− e−bα
.

By Arzelà-Ascoli theorem, we conclude that the set A2(C(I,Rn)) is relatively compact
in C(I,Rn). Hence, A2 is compact. �

The following result can be proved as the previous one.

Proposition 5.3.2. Let f : I × Rn → Rn be a L1
α-Carathéodory function. Assume

there exists (v,M) ∈ Wα,1
0,b (I,Rn)×Wα,1

0,b (I, [0,∞)) a solution tube of (5.57),(5.58), then
operator A1 is compact.

Now, we can obtain our main theorem. The proof is on the basis on the one given
in [53] for first order systems of ordinary differential equations.

Theorem 5.3.1. Let f : I × Rn → Rn be a L1
α-Carathéodory function. Assume there

exists (v,M) ∈ Wα,1
0,b (I,Rn) ×Wα,1

0,b (I, [0,∞)) a solution tube of (5.57). Then, problem

(5.57) has a solution x ∈ Wα,1
0,b (I,Rn) ∩ T(v,M).

Proof. We will do the proof for the initial case (5.58). As we will see the proof for
the periodic problem (5.59) is analogous.

By Proposition 5.3.2 the operator A1 is compact. It has a fixed point by the Schauder
fixed-point theorem. Lemma 5.3.1 implies that this fixed point is a solution for the
problem (5.60). Then, it suffices to show that for every solution x of (5.60), x ∈ T(v,M).
Consider the set B := {t ∈ I : ‖x(t)− v(t)‖ > M(t)}. By Proposition 1.4.2, a.e. on B
we have

(‖x(t)− v(t)‖ −M(t))(α) =
〈x(t)− v(t), x(α)(t)− v(α)(t)〉

‖x(t)− v(t)‖
−M (α)(t).
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Since (v,M) is a solution tube of problem (5.57), we have a.e. on {t ∈ B : M(t) > 0}
that

(‖x(t)− v(t)‖ −M(t))(α)

=
〈x(t)− v(t), x(α)(t)− v(α)(t)〉

‖x(t)− v(t)‖
−M (α)(t)

=
〈x(t)− v(t), f(t, x̄(t)) + αx̄(t)− αx(t)− v(α)(t)〉

‖x(t)− v(t)‖
−M (α)(t)

=
〈x̄(t)− v(t), f(t, x̄(t))− v(α)(t)〉

M(t)
+ α

〈x̄(t)− v(t), x̄(t)− x(t)〉
M(t)

−M (α)(t)

≤ M(t)M (α)(t)〉
M(t)

+ α
(
M(t)− ‖x(t)− v(t)‖

)
−M (α)(t)

< 0.

On the other hand, we have a.e. on {t ∈ B : M(t) = 0} that

(‖x(t)− v(t)‖ −M(t))(α) =
〈x(t)− v(t), f(t, x̄(t)) + αx̄(t)− αx(t)− v(α)(t)〉

‖x(t)− v(t)‖
−M (α)(t)

=
〈x(t)− v(t), f(t, v(t)) + αv(t)− αx(t)− v(α)(t)〉

‖x(t)− v(t)‖
−M (α)(t)

≤ 〈x(t)− v(t), f(t, v(t))− v(α)(t)〉
‖x(t)− v(t)‖

− α ‖x(t)− v(t)‖ −M (α)(t)

< 0.

If we set, r(t) := ‖x(t)− v(t)‖ −M(t), then r(α) < 0 a.e. on B := {t ∈ I : r(t) > 0}.
Moreover, since (v,M) is a solution tube to problem (5.57) and x satisfies (5.58), then
r(0) ≤ 0 and, as consequence, Lemma 5.3.3 (i) implies that B = ∅. So, x ∈ T (v,M) and
the result holds for this case.

When the periodic case is studied, we follow the same steps with operator A2 and
we arrive to the fact that

r(0)− r(b) ≤ ‖v(0)− v(b)‖ − (M(0)−M(b)) ≤ 0,

and the result is fulfilled from Lemma 5.3.3 (ii).

Remark 5.3.2. This result (Theorem 5.3.1) generalize the previous one (Corollary
5.1.6) given in Subsection 5.1.3 with L(x, y) = x− λ0 or L(x, y) = x− y.

5.3.3 Examples

The following example is a modified version, considering a periodic condition, of Example
4.6 in [53]:
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Example 5.3.1. Consider the periodic problem:x
( 1

3
)(t) = a1‖x(t)‖2x(t)− a2x(t) + a3ϕ(t), a.e. t ∈ I = [0, 1],

x(0) = x(1).
(5.68)

where α = 1/3, a1, a2, a3 ∈ R+ such that a1 − a2 + a3 = 0, ϕ : I → Rn is a continuous
function satisfying ‖ϕ(t)‖ = 1 for every t ∈ I. Take v(t) = 0 and M(t) = 1.

So, v ∈ W
1
3
,1

0,1 (I,Rn), M ∈ W
1
3
,1

0,1 (I, [0,∞[), v( 1
3

)(t) = 0, M ( 1
3

)(t) = 0, and

‖v(1)− v(0)‖ ≤M(0)−M(1).

For x ∈ Rn such that ‖x− v(t)‖ = M(t), then ‖x‖ = 1, and we have, for a.e. t ∈ I

〈x− v(t), f(t, x)− v( 1
3

)(t)〉 = 〈x, a1‖x‖2x− a2x+ a3ϕ(t)〉
= a1‖x‖4 − a2‖x‖2 + a3〈x, ϕ(t)〉
≤ a1‖x‖4 − a2‖x‖2 + a3‖x‖‖ϕ(t)‖
= a1 − a2 + a3 = 0

≤M(t)M ( 1
3

)(t).

Since the set {t ∈ I,M(t) = 0} = ∅, condition (ii) holds trivially.
So, (v,M) is a solution-tube of (5.68). By Theorem 5.3.1, problem (5.68) has a

solution x ∈ W
1
3
,1

0,1 (I,Rn) such that ‖x(t)‖ ≤ 1 for every t ∈ I.

Example 5.3.2. Consider the periodic problem:
x(1/2)(t) =

−x3(t) + 1− 2t
4
√
t

a.e. t ∈ [0, 1],

x(0) = x(1).

(5.69)

This problem is a particular case of (5.57),(5.59)), with n = 1, α = 1/2, and f(t, x) =
−x3 + 1− 2t

4
√
t

. It is clear that f is a L1
1/2-Carathéodory function.

Take v(t) = 0 and M(t) = 1.

So, v ∈ W
1
2
,1

0,1 (I,R), M ∈ W
1
2
,1

0,1 (I, [0,∞[), v( 1
2

)(t) = 0, M ( 1
2

)(t) = 0, and

|v(1)− v(0)| ≤M(0)−M(1).

For x ∈ R such that |x−v(t)| = M(t), then x = 1 or x = −1, and we have for a.e. t ∈ I,

〈x− v(t), f(t, x)− v( 1
2

)(t)〉 = (x)(
−x3 + 1− 2t

4
√
t

),

=


−2(1− t)

4
√
t

if x = −1,

−2
4
√
t3 if x = 1,

≤ 0 = M(t)M ( 1
2

)(t) for a.e. t ∈ I.
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So, (v,M) is a solution-tube of (5.69). By Theorem 5.3.1, the problem (5.69) has a

solution x ∈ W
1
2
,1

0,1 (I) such that |x(t)| ≤ 1 for every t ∈ I.
Observe that δ = v−M and γ = v +M are, respectively, upper and lower solutions

of (5.69) follows from the fact that

δ( 1
2

)(t) = 0 ≤ f(t, δ(t)) =
2(1− t)

4
√
t

, for a.e. t ∈ [0, 1], δ(0) ≤ δ(1),

and
γ( 1

2
)(t) = 0 ≥ f(t, γ(t)) = −2

4
√
t3, for a.e. t ∈ [0, 1], γ(0) ≥ γ(1),

such that −1 ≤ x(t) ≤ 1, for all t ∈ I.
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Conclusion and future perspectives

Differential equations with fractional order are a generalization of ordinary differential
equations to non-integer order. Recently, a new definition of the fractional derivative,
called conformable fractional derivative, was introduced by Khalil et al. [70]. This def-
inition reflects a natural extension of the normal derivative. In particular, Benkhettou
et al. [31] introduced a conformable fractional calculus on an arbitrary time scale, which
provided a natural extension of the conformable fractional calculus.

In this thesis, we have considered the existence of solutions for systems of first order
nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for
systems of conformable fractional differential equations under some boundary conditions.
Also, we present existence solutions for the nonlinear conformable fractional differential
equations and for the conformable fractional dynamic equations on time scales, with
nonlinear functional boundary value conditions.

These results will be obtained by using Schauder’s fixed point theorem, Kakutani
fixed point theorem and by notions of solution-tube adapted to these systems. These
notions of solution-tube generalize to systems the definitions of lower and upper solution
of first order nonlinear nabla dynamic equations and inclusions on time scales, and of
conformable fractional differential equations.

For future researches, by using the solution-tube method, we can look for existence
of solutions for:

. Systems of first order nonlinear impulsive dynamic equations on time scales,

. systems of conformable fractional dynamic equations on time scales, (i.e., to ex-
tend the results presented in Section 5.3 in continuous case to time scale),

. systems of impulsive conformable fractional dynamic equations on time scales.
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 ملخــــص
سلالم  على ديناميكية لنابلا احتواءات و ديناميكية معادلات لنابلا خطية يرغ لأنظمة حلول وجود نتائج الأطروحة هذه في نقدم  -

 نتائج نقدم كذلك،  .حدية بشروط مرتبطة مطابقة كسرية تفاضلية لمعادلات خطية غير لأنظمة و الأولى، الدرجة من زمنية )جداول(
 غير دالية حدية بشروط مرتبطة زمنية سلالم على كسرية مطابقة ديناميكية لمعادلات و مطابقة كسرية تفاضلية عادلاتلم حلول وجود
 الحلول مفاهيم الانظمة، هذه الى المفاهيم تعمم هذه. نظام لكل الحل أنبوب مفاهيم باستعمال النتائج هذه على الحصول يتم  .خطية

 .)التحتية (لسفلية ا والحلول   )الفوقية(  العلوية
معادلات نابلا أنظمة لمشتق كسري مطابق، الحساب على الاشتقاق الكسري المطابق على السلالم الزمنية،  :المفتاحية الكلمات

أنظمة لمعادلات تفاضلية كسرية مطابقة، شروط حدية غير خطية، دالة قرين، الحلول العلوية و  احتواءات ديناميكية، و ديناميكية
 .السفلية، أنبوب الحل، نظرية النقطة الصامدة لـ شاودير، فضاءات كسرية لـ سوبوليفالحلول 

 .26A24  ،26A33 ،26E70،34A08  ، 34A60, 34A34, 34A12 ،34B15 ، 34N05،47E05 :التصنيفات
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Abstract 

- In this thesis, we present some results of existence of solutions for systems of first order 

nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for systems 

of conformable fractional differential equations under some boundary conditions. Also, we 

present existence of solutions for the nonlinear conformable fractional differential equations and 

for the conformable fractional dynamic equations on time scales, with nonlinear functional 

boundary value conditions. These results are obtained by using the notion of solution-tube 

adapted to these systems. This notion generalizes the definition of lower and upper solution. 
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Résumé 
  Nous présentons dans cette thèse des résultats d'existence de solutions pour des systèmes 

nabla d'équations dynamiques et nabla d'inclusions dynamiques sur les échelles de temps non-

linéaires d'ordre un, et pour des systèmes d'équations différentielles fractionnaires conformes 

non-linéaires sous certaines conditions aux limites. Aussi, nous présentons des résultats 

d'existence de solutions pour des équations différentielles fractionnaires conformes et des 

équations dynamiques fractionnaires conformes sur les échelles de temps, avec conditions 

fonctionnelles non-linéaires aux bords. Ces résultats sont obtenus grâce à la notion de tube-

solution adaptée à ces systèmes. Celle-ci généralise la notion de sous et sur solution. 

Mots Clés: Dérivée fractionnaire conforme, calcul fractionnaire conforme sur les échelles de temps, 

systèmes nabla d'équations dynamiques et  d'inclusions dynamiques, équation dynamique fractionnaire 

conforme, conditions aux limites non linéaires, fonction de Green, sous et sur solutions, tube-solution,  

théorème du point fixe de Schauder, espaces de Sobolev fractionnaires. 
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