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Differential equations on times scales

Abstract

In this thesis, we present some results of existence of solutions for systems of first order
nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for
systems of conformable fractional differential equations under some boundary conditions.
Also, we present existence of solutions for the nonlinear conformable fractional differ-
ential equations and for the conformable fractional dynamic equations on time scales,
with nonlinear functional boundary value conditions.

These results are obtained by using the notion of solution-tube adapted to these
systems. This notion generalizes the definition of lower and upper solution.

Key words and phrases: Conformable fractional derivative, conformable fractional
calculus on time scales, systems of nabla dynamic equations and inclusions, conformable
fractional dynamic equation, nonlinear boundary conditions, Green function, upper
and lower solutions, solution-tube, Schauder’s fixed-point theorem, fractional Sobolev’s
spaces.
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Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary non-integer order. Fractional differential equations play an important role in
describing many phenomena and processes in various fields of science such as physics,
chemistry, control systems, population dynamics, aerodynamics and electrodynamics,
etc. For examples and details, the reader can see the references [10,39,71-73,78,82,89].
Many different forms of fractional differential operators like the Grunwald-Letnikow,
Riemann-Liouville, Hadamard, Caputo, Riesz, can be found in [21,23, 38].

A time scale T is an arbitrary nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. The theory of time scales
was introduced by Stefan Hilger in his PhD thesis [62] in 1988, in order to unify and
generalize continuous and discrete analysis. The reader interested on the subject of time
scales is referred to [5,6,9,32-34,40,59,63]. In [7,16,30,88,90], the authors studied
fractional calculus on time scales and their important properties.

Recently, a new fractional derivative, called the conformable fractional derivative, was
introduced by Khalil et al. [70]. For recent results on conformable fractional derivatives
we refer the reader to [1-4,8,17,19, 43,55, 56,66,68-70,86]. Furthermore, in [8,17,19],
the authors proved the existence and uniqueness of solutions of initial value problems
and boundary value problems for conformable fractional differential equations. In [55],
the authors proved existence and uniqueness theorems for sequential linear conformable
fractional differential equations. In [69], the authors proved the existence of solutions of
boundary value problem involving conformable derivative by the method of upper and
lower solutions. We point out that the method of lower and upper solutions has been
applied by several authors to obtain the existence of solutions of initial value problems
and boundary value problems for fractional differential equations, see [67,84,85,92].

In particular, Benkhettou et al. [31] introduced a conformable fractional calculus on
an arbitrary time scale, which provided a natural extension of the conformable frac-
tional calculus. Furthermore, in [76], the author proved mean value theorem for the
conformable fractional calculus on arbitrary time Scales. In [87] the authors develop
the fractional Sobolev’s spaces via conformable fractional calculus on time scales and
their important properties. In [58], the authors proved some basic theorems for the
conformable fractional Dirac system on time scales.

In this thesis, we present existence of solutions for systems of first order nonlinear
nabla dynamic equations and nabla dynamic inclusions on time scales and for systems
of conformable fractional differential equations. Also, we present existence of solutions



for the nonlinear conformable fractional differential equations and for the conformable
fractional dynamic equations on time scales, with nonlinear functional boundary value
conditions. Existence results for these problems are obtained by using the method of
solution-tube. The purpose of this method is to prove that if a solution z € Wé’l(T, R™)
(resp., x € Wg;;l([o, b], R™)) exists, then it is included in a solution tube, i.e. we can find
functions v € Wo'' (T, R") and M € Wg'(T, [0, 00)) (resp., v € ng;}([o, b,R™) and M €
nggl([O, b],[0,00))) such that

|lz(t) —v(t)| < M(t) for every t € T (resp., t € [0,b]).

We have organized this thesis as follows:

In Chapter 1, we present some definitions and results which are used throughout
this thesis.

In Chapter 2, we define and study the nabla conformable fractional derivative and
nabla conformable fractional integral on time scales. Many basic properties of the theory
are proved.

In Chapter 3, we prove existence of solutions to system of first-order V-dynamic
equation on time scale:

zV(t) = f(t,z(t)), V-ae.te Ty,
(1)
x(a) = z(b).

Here T is an arbitrary compact time scale with @ = minT, b = max T, Ty = T\{a} and
f: Ty x R" — R" is a V-Carathéodory function. For this purpose, we use the method
of solution-tube and Schauder’s fixed-point theorem.

Existence results for system (1) were obtained in [18] with f is a continuous function.
In the particular case where n = 1, existence results for first-order V-dynamic equation
on time scales were obtained in [91] for the dynamic initial value problem:

2V (t) = f(t,x(t), t € (0,b]r, and x(0) =0,

with f is a left-Hilger-continuous function. Their results were established with the
method of lower and upper solutions. Existence results were obtained in [44,47,53], for
systems of A-dynamic equations on time scales. In [53], Gilbert introduced the notion
of solution-tube to systems of first order A-dynamic equations.

In Chapter 4, we establish an existence result for the following system of first-order
V-dynamic inclusions on time scale:

z¥(t) € F(t,x (p(t), V-ae.teTy, (2)
x € (BC),

where T is an arbitrary compact time scale, with ¢ = minT, b = max T, Ty = T\{a},
F : Ty x R" — R" is a multivalued map with compact and convex values, and (B¢C)
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denotes the terminal value or the periodic boundary value conditions:
z(b) = xy, (3)

z(a) = z(b). (4)

In the particular case where n = 1, existence results for first order V-dynamic inclu-
sion on time scales were obtained in [12] for the general boundary conditions:

zV(t) € F(t,z (t)), a.e. on T, and L(x(a),z(b)) =0,

with F' : T, x R — 2%\() a multivalued map with compact and convex values and
L is a continuous single-valued map. Their results were established with the method
of lower and upper solutions. Existence results for systems of first order V-dynamic
inclusions were obtained in [54] for the initial value problem. Multiplicity results were
obtained in [50] for A-dynamic inclusions. In [81], the authors proved two variants of the
Filippov-Pliss lemma in the case of dynamical inclusions on a time scale. In [49], Frigon
and Gilbert introduced the notion of solution-tube to systems of first order A-dynamic
inclusions (with an initial or a periodic boundary value condition) which generalizes
the notions of lower and upper solutions given in [12]. A notion of solution-tube was
introduced for first order systems of differential inclusions by B. Mirandette [74]. In order
to obtain the existence results for problem (2), we introduce the notion of solution-tube

of (2).

In Chapter 5, we present existence of solutions for the nonlinear conformable frac-
tional differential equations, for the conformable fractional dynamic equations on time
scales and for systems of conformable fractional differential equations.

This chapter consists of three sections. In Section 5.1, we study the existence of
solutions for the nonlinear conformable fractional differential equations with nonlinear
functional boundary conditions:

2 9(t) = f(t,x(t)), forae tel=1[0,b], b>0, (5)

where 0 < a < 1, f: I xR — R is a L}-Carathéodory function, and z(*)(¢) denotes the
conformable fractional derivative of x at ¢ of order . We consider, depending on the
circumstances, nonlinear functional boundary conditions of the type

Li(z,z(b)) =0 or Ly(z(0),z) =0,

with L; (i = 1,2) a continuous function that satisfies suitable monotonicity assump-
tions. For this purpose, we use the method of upper and lower solutions together with
Schauder’s fixed point theorem.

In Section 5.2, we are concerned with the existence of solutions for the following con-
formable fractional dynamic equations:

2 = f(t,2°(t)),  for A-ae. t € I =a,blg, (6)
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coupled to nonlinear functional boundary conditions:
B(z(a),z) =0, (7)

or

H(z,xz(a(b))) = 0. (8)

Here, T is an arbitrary bounded time scale, J = [a, o(b)]r with a,b € T, 0 < a < b and
f:IxR — Risa L} \-Carathéodory function, LC(Aa) (t) denotes the delta conformable
fractional derivative of z at ¢ of order & € (0,1], B: RxC(J) - Rand H : C(J)xR — R
are continuous functions. For this purpose, we use the method of upper and lower
solutions together with Schauder’s fixed point theorem. Existence of solutions were
obtained in Section 5.1 for the conformable fractional differential equation (6) with
T=R:
2 9(t) = f(t,x(t)), forae tel0,b], 0<a<l,

coupled to the nonlinear functional boundary conditions B(z(0),x) = Lao(z(0),z) = 0
or H(z,z(b)) = Li(x,z(b)) = 0.
In Section 5.3, we establish existence results for the following system of conformable
fractional differential equations:

2D (t) = f(t,x(t)), forae. tel=10], b>0,

(9)
x € (°B).
Where 0 < a < 1, f: I x R* = R" is a L!-Carathéodory function, 2(® () denotes the
conformable fractional derivative of x at ¢ of order «, and (*8) denotes the initial value
or the periodic boundary value conditions:

x(0) = xo, (10)

z(0) = z(b). (11)

Existence results for problem (9), (10) were obtained in [79], by using the Banach
fixed point theorem with f a continuous function. In the particular case where n = 1,
existence results for problem (9) were obtained in Section 5.1 with nonlinear functional
boundary conditions Ly (z, (b)) = 0 or La(z(0), x) = 0, their results were established, for
the scalar case, with the method of lower and upper solutions and cover, as a particular
case, the boundary conditions (10) and (11). In [19] the authors solved problem (9),(10)
(for n = 1), with f a continuous function by the help of the solution-tube method. As
we will see, the used definition is equivalent to the existence of a pair of lower and upper
solutions of the considered problem.

In order to obtain the existence results for problem (9), we introduce the notion of
solution-tube of (9) which generalizes the notions of lower and upper solutions given
in Section 5.1. It is inspired by a notion of solution tube for first-order systems of
differential equations introduced in [74], (see also [51,52] and [53] on time scales).



Notations

< a.e.:  Almost everywhere.

A

(,.):  The scalar product.

< c0A: The closure of the convex hull of the set A.

<4 ||.|l:  The Euclidian norm in R".

4 B(zg,r) ={x € R" : ||z — z¢|| <r}: The open ball of radius r and centre z.

< C(J, E): The Banach space of continuous functions from J into £ with the norm
|z]| o = sup,ey |2(t)], such that J = [a, b] be an interval of R and (E, |.|) be a real
Banach space.

a LY([a, b],R™): The space of Lebesgue-integrable functions z : [a, b] — R™, with the

norm b
el = / o (s)lds.
a

< T: Time scale (is a closed subset of R).

a4 Ty =T\{a}, with a = minT.

A fa,bp:={teT:a<t<b; a,b€ T} The closed interval in T.

a fA (resp., fV): The delta (resp., nabla) derivative of f.

4 Cpq (T) := Crq (T,R): The space of all right-dense continuous functions on T.
4 Cq (T) := Cjq (T,R): The space of all left-dense continuous functions on T.

a f@(t): The conformable fractional derivative of f of order v at ¢ > 0.

af éa)(t): The delta conformable fractional derivative of f of order av at ¢ € T".

< féa)(t): The nabla conformable fractional derivative of f of order o at t € T.

a C*([a,b]) = C*([a,b],R) ={f : [a,b] = R, is conformal fractional dif ferentiable
of order a on [a,b] and £ € C([a,b],R)}.
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a C%4([a, b)) = C%4([a,b]T,R) = {f : [a,b]r — R is delta conformal fractional
dif ferentiable of order « on [a,b]r and ff’ € Crq([a, b, R)}.

9 Capralla; b, R) = {f € CF([a, b1, R) : f(a) = f(b)}.
a LLA([a, b1,R) = {¢ : T—R : f[a, bl lo(t)|A*t < +oo} is a Banach space

together with the norm

Izt i = | le®IA",
’ [a, b]T

N Wz}zb ([a,b]T,R) = {f € L A (la, b1, R) : f(Aa) € L} A ([a, b]r,R) and there exists
g : la, b5 — R such that g € L, A (la,b]r,R) and

FOK' O =~ [ g A, for all 6 € Cya b B fwith
[a,b]T [a,b]T

”SOHWK;;IJ([a,b]T,R) ::/

[a,b]T

o (1) A%+ / O @)|A%t, for o € WL, (0, blr. R).

[a,b]T



Chapter 1

Preliminaries

In this chapter, we present some definitions and results which we will use in this Thesis.

1.1 Elements of Functional Analysis

Definition 1.1.1. [80]. Let E, F be Banach spaces and T : E — F.

(i) The operator T is said to be bounded if it maps any bounded subset of E into a
bounded subset of F.

(ii) The operator T' is called compact if T(E) is relatively compact (i.e., T(FE) is com-
pact).

(11i) The operator T is said to be completely continuous if it is continuous and maps
any bounded subset of E into a relatively compact subset of F'.

Lemma 1.1.1. [75]. Let E be a Banach space and u : [0,1] — E be an absolutely
continuous function, then the measure of the set {t € [0,1] : u(t) = 0 and ' (t) # 0} is
zero.

Theorem 1.1.1. (Arzela-Ascoli theorem [77]). A subset F of C([a,b], R") is relatively
compact (i.e. F is compact) if and only if the following conditions hold:

1. F is uniformly bounded i.e, there exists M > 0 such that
|f@®)| < M foreacht € [a,b] and each f € F.

2. F is equicontinuous i.e, for every € > 0, there exists 6 > 0 such that for each
t1,ts € la,bl], |ta — t1| < & implies || f(t2) — f(t1)]| < e, for every f € F.

Theorem 1.1.2. (Schauder’s fized point theorem [57]). Let C' be a convex (not neces-
sarily closed) subset of a normed linear space E. Then each compact map N : C — C
has at least one fixed point.

Theorem 1.1.3. (Dunford-Pettis theorem [[6]). Let { f,}nen be a sequence of functions
in L'([a, b]). If there exists a function g € L*([a,b]) such that | f,(t)| < |g(t)| a.e. t € [a, ]
and for every n € N, then {f,}nen has a weakly convergent subsequence in L*([a,b]).



1.2 Multivalued Maps

we recall some definitions and classical results for multivalued maps. The reader is
referred to [14,15,22,35,45,46,48,57,64,65] for more details on multivalued maps.

Let X,Y be metric spaces and G : X — Y a multivalued map. The map G is
upper semi-continuous (u.s.c.) if {z € X : G(z) N C # 0} is closed for every closed
set C' C Y and it is compact if G(X) = UyexG(x) is relatively compact. Let © be
a measurable space, we say that a multivalued map G : Q@ — X is measurable (resp.
weakly measurable) if {t € Q : G(t)NC # 0} is measurable for every closed (resp. open)
set C C X.

Proposition 1.2.1. Let G : Q@ — X be a multivalued map.
(a) If G is measurable then it is weakly measurable.
(b) If G is weakly measurable and has compact values, then it is measurable.

(¢c) The map G is weakly measurable if and only if the multivalued map G:Q— X
defined by G(t) = G(t) is weakly measurable.

Proposition 1.2.2. Forn € N, let G,, : Q0 — X be measurable multivalued maps.
(a) The map G : Q — X defined by G(t) = UpenGn(t) is measurable.

(b) If X is separable, G, has closed values, and for each t, at least one Gy, (t) is
compact, then G : Q — X defined by G(t) = NypenGn(t) is measurable.

Theorem 1.2.1. (Kuratowski-Ryll Nardzewski) Let X be a separable Banach space and
let G : Q2 — X be a measurable multivalued map. Then G has a measurable selection,
i.e. there exists a single-valued measurable map g : Q — X such that g(t) € G(t) for
almost every t € ).

Theorem 1.2.2. (Kakutani fized point theorem ). Let C' be a nonempty conver subset of
a normed space X. If T : C — C is a compact, upper semi-continuous multivalued map
with nonempty, compact, conver values. Then T has a fized point (i.e. there exists x €
C such that x € T'(x)).

1.3 Preliminaries on Time Scales

1.3.1 Definitions and basic properties

Let T be a time scale, which is a closed subset of R. For t € T, we define the forward
and backward jump operators o, p: T — T by

o(t):=inf{s € T:s>t} and p(t) :=sup{s e T:s <t}

respectively. We say that ¢ is right-scattered (resp., left-scattered) if o (¢) > t (resp., if
p(t) < t); that ¢ is isolated if it is right-scattered and left-scattered. Also, if ¢ < sup T

10



and t = o (t), we say that ¢ is right-dense. If ¢ > inf T and ¢ = p (¢), we say that ¢ is left
dense. Points that are right dense and left dense are called dense. The graininess function
p: T — [0,00) is defined by pu(t) := o(t) —t. If T has a left-scattered maximum M, then
T" = T\{M}, otherwise, T* = T. The backward graininess v : T — [0, 00) is defined by
v(t) ==t — p(t). If T has a right-scattered minimum m, then T, = T\{m}, otherwise,
T, =T. For a,b € T we define the closed interval [a,b]r :={t € T :a <t < b}.

If f: T — R, is a function, then we define the function f* (resp., f7) by

f(t) = (fop)(t) = f(p(t)) (resp., f7(t) = (foo)(t) = f(o(t))) for all t € T.
Definition 1.3.1. [33]. The function f : T — R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T, write f € Crq (T, R) .

Definition 1.3.2. [33/(Delta derivative) Assume f : T — R is a function and let
t € T*. Then we define f2(t) to be the number (provided it exists) with the property that
giwen any € > 0, there exists a neighborhood U of t such that

F() — F(s)— FAW) (0 (t)—9)| <elo(®) s, forall seU
We call f2(t) the delta derivative (A-derivative) of f at t and we say that f is delta
differentiable on T* provided f~(t) ewists for all t € T*.
The set of functions f : T — R which are A-differentiable and whose A-derivative is
rd-continuous is denoted by C}, (T, R).

Definition 1.3.3. [33/. The function p: T — R is p-regressive if
1+ p(t)p(t) #0, forall t € T".

The set of all p-regressive and rd-continuous functions p : T — R will be denoted by R,,.
We define the set R*, ={p € R, : 1+ u(t)p(t) > 0} for all t € T.

Definition 1.3.4. [33]. If p € R, then we define the delta exponential function e, by:

eplt,5) = exp ( / 6 (p(7)A7),

fort,s € T, where the u-cylinder transformation is as in :

1
() = Elog(l—i—zh); if h>0;
() =

z; if h=0.

where log is the principal logarithm function.

Lemma 1.3.1. [33].
(1) If pe R, and s,t,ty € T, then

ep(t,t) =1 eg(t,s) =1, ey(t,s) = and e,(t,tp)e,(to, s) = ep(t, s).

ep(s,t)’
(2) Ifpe R} and ty € T, then
ep(t,tg) >0, forallt €T.
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1.3.2 Nabla calculus on time scales

Next, we introduce the nabla derivative on time scales for vector-valued functions and
study some of their important properties.

Definition 1.3.5. A function f : T — R" is called ld-continuous provided it is continu-

ous at left-dense points in T and its right-sided limits exist (finite) at right-dense points
in T, write f € Cq (T, R").

Definition 1.3.6. [91/(Left-Hilger-continuous functions). A mapping f : (a,bly x R —
R is called left-Hilger-continuous at a point (¢, z) if f is continuous at each (¢,x) where
t is left-dense and the limits

lim  f(s,y) and lim f(t,y),
y—w

(s,y)—=(tF,2)
both exist and are finite at each (¢, ) where t is right-dense.

Definition 1.3.7. [83]. For f: T — R" and t € T,, the V-derivative of f at t, denoted
by fV(t) € R", is defined to be the vector (provided it exists) with the property that given
any € > 0, there is a neighborhood U, of t such that

| /2@) = f(s) = fY (@) (p(t) = s)|| < elp(t) —s|, forall s€U,.

We say that f is V-differentiable if f¥ (t) exists for everyt € T,.. The function f¥ : T —
R™ is then called the V-derivative of f on T.. The set of functions f : T — R™ which
are V-differentiable and whose NV -derivative is ld-continuous is denoted by C}, (T,R™).

The set of functions f : T — R™ which are V-differentiable and whose V-derivative
is ld-continuous is denoted by C}, (T, R").

Theorem 1.3.1. [18]. Let W be an open set of R" and t € T be a left-dense point. If
g: T — R" is V-differentiable at t and if f : W — R is differentiable at g(t) € W, then

f o g is V-differentiable at t and (f o g)¥(t) = (f'(g(t)), gV (1)).
Example 1.3.1. [18]. Assume x : T — R™ is V-differentiable at t € T. We know that
.| : R*\ {0} — [0, 00) is differentiable. If t = p(t), by the previous theorem, we have
<z(t),zV(t) >

()]
Definition 1.3.8. [3//. The function p: T — R is v-regressive if

l= @)Y =

1 —v(t)p(t) #0, forallt e Ty.

The set of all v-regressive and ld-continuous functions p : T — R will be denoted by

R, = R,(T,R). We define the set RT, ={p € R, :1—v(t)p(t) >0} forallt €T.

Definition 1.3.9. Let f : T — R. A function F': T — R will be a nabla anti-derivative
of f if F¥(t) = f(t), holds for all t € T.. We define the Cauchy nabla integral of f by

/t f(s)Vs=F(t)— F(ty), forallty, t€T

12



Definition 1.3.10. [34/. If p € R,, then we define the nabla exponential function é,
by:

6ts5) = o0 ([ &) v7),

fort,s € T, where the v-cylinder transformation is as in :

1 |
éh(z):{ “plog(l=sh) if k>0
z; if h=0,

where log is the principal logarithm function.

Theorem 1.3.2. [34]. If p € R,, then the nabla exponential function é,(.,ty) : T — R
15 a solution of the initial value problem

2V (t) = px(t), x(ty) = 1.

1.3.3 Lebesgue V-measure and Lebesgue V-integral

We recall some notions and results related to the theory of V-measure and Lebesgue
V-integration for an arbitrary bounded time scale T where a = minT < maxT = b
introduced in [13,34,59].

Definition 1.3.11. Let § denote the family of all right closed and left open intervals of
T of the form
(r,s]={teT:r<t<s},

with r,s € T and r < s. The interval (r,r] is understood as the empty set. We define an
additive measure my : § — [0,00) by my ((r,s]) = s — r. Using my, the outer measure
mi : P (T) — R, defined for each E C T as:

k=m

inf {ZZZ" (sp —1k): EC U (rk, sg] with (rg, s € {S’} if a¢FE,

3 (B) =

400 if a€ek.

Definition 1.3.12. A set A C T is said to be V-measurable if, for every set E C T
mi (E)=m] (ENA)+m](EN(T\A)).

The Lebesgue V-measure on M (mj) = {A C T : A is V-measurable}, denoted by
Wy, is the restriction of mj to M (mf). So, (T, M (m}), uy) is a complete measurable
space.

Lemma 1.3.2. [3/]. For each ty in Ty the V-measure of the single-point set {to} is
gien by pv({to}) = to — p(to).
Lemma 1.3.3. [3//). 1. Ifr,s € T and r < s, then
po((r;s]) =s—r, pe((r,s)) = p(s) —r.
2. If r,s € Ty and r < s, then pv([r,s)) = p(s) — p(r), pv([r,s]) =s— p(r).
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The following lemma can be proved analogously to Lemma 3.1 in [42].

Lemma 1.3.4. The set of all left-scattered points of T is at most countable, that is,
there are J C N and {t;};e; C T such that Ly :={t € T, p(t) <t} = {t;};e.

The following proposition can be proved analogously to Proposition 3.1 in [42].

Proposition 1.3.1. Let A C T. Then A is a V-measurable if and only if, A is Lebesgue
measurable. In this case the following properties hold for every V-measurable set A :

1. Ifa ¢ A, then v (A) = pr (A) + 325c,, v(E))-
2. uy (A) = pp (A) if and only if a ¢ A and A has no left-scattered point.

The notions of V-measurable and V-integrable functions f : T — R"™ can be defined
similarly to the theory of Lebesgue integral.

Definition 1.3.13. We say that f : T — R = [~o00, +-00| is V-measurable if for every
a €R, the set f~1 ([—oo,a)) ={t € T: f(t) < a} is V-measurable.

In order to compare the Lebesgue V-integral on T and the Lebesgue integral on
la, b], given a function f : T —R", we need an auxiliary function which extends f to
the interval [a,b] defined as

- f(t), ifteT,

f(t) = , ,
f(tj)7 ift e (p(tj)7tj))a for all j € J.

Let E C T, we define Jg:={j e J:t; € EN Ly} and

E=EU|J (p(t;).1;). (1.2)

(1.1)

The following theorem can be proved analogously to Theorem 5.1 in [42].

Theorem 1.3.3. Let E C T be a V-measurable such that a ¢ E, let E be the set
defined in (1.2), let f : T —R" be a V-measurable function and f: [a,b] — R™ be
the extension of f to [a,b]. Then, f is Lebesque V-integrable on E if and only sz 15
Lebesgue integrable on E and we have

/E f )Vt = / Fitydt = / FOdi+ S vt fity). (1.3)

Jj€JE

1.3.4 Sobolev’s spaces on time scales

In this section, we develop the Sobolev’s spaces on bounded time scale T where a =
min T < maxT = b, Tg = T\{a} and their important properties.

Definition 1.3.14. Let p € [1,40), E C T be a V-measurable set and f : T — R™
be a V-measurable function. We say that f € LY (E,R") (respectively f € L% (T,R™))
provided

/ | f(s)]|PVs < +oo (respectively [ | f(s)||PVs < +00).
E To
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Proposition 1.3.2. Assume f € Ly (E,R™). Then,

\/f s < [ 119

Here is an analog of the Lebesgue dominated convergence theorem.

Theorem 1.3.4. Let {fi}ren be a sequence of functions in Ly (T, R™). If there exists
a function f : To — R"™ such that fi(t) — f(t) V-a.e. t € Ty and if there exists a
function g € LY (Ty) such that || fx(t)|| < g(t) V-a.e. t € Ty and for every k € N. Then
[ = [ in Ly (To, R™).

The following proposition can be proved analogously to Proposition 3.1 in [20].

Proposition 1.3.3. Let p € [1,+00), LL(T,R") is a Banach space equipped with the

norm 1
P
it = ( / Hf(t)H”Vt)
0

Using Theorem 1.3.3, we obtain the following result.

Theorem 1.3.5. Let { fi }ren be a sequence of functions in Ly, (To, R™). If{fk} converges
weakly to vy in L'([a, b],R"), then v is the extension fv of a function f defined on Ty in
the sense of definition (1.1). Moreover, for every V-measurable set E C Ty and every
continuous function g : T — R, we have

lim g(s)fk(s)VS—/g(s)f(s)Vs.

k—o0 E E

Proof. Since {f,} converges weakly to v in L*([a, b], R"), we have for every contin-
uous function g:T— ]R
J49(3) fu(s)ds — [, g(s)y(s)ds for every measurable set A C [a, b].

Thus fort € Ry,

/ 3(s) fr(s)ds = / g(t:) fi(ti)ds = g(t:) fi(t:)v (t:)
(p(ti)ti)

(p(ti),ti)

— 9(s)v(s)ds.
(p(ti)ati)

So, {fx(t:)}ken converges to some f(t;) € R™. Thus, {fk} converges strongly to
the constant function f(¢;) in L& ((p(t:),t:), R™), and we can assume that v = f(¢;) on
(p(t;),t;]. The first part of the proposition is proved if we define f = ~ |r. Finally, by
Theorem 1.3.3,

[ ao1hits)vs = / 3(s) i (s)ds
= [ den(e)s = [ G6)16)s = [ o))V

Now we introduce the concept of absolutely continuous function on T.
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Definition 1.3.15. A function f : T — R" is said to be absolutely continuous on T if
for every € > 0, there exists an > 0 such that if {(ax,br],k = 1,...,m}, with ag, by € T,
s a finite pairwise disjoint family of subintervals of T satisfying

k=m

k=m
(be —ag) <n then > [[f(bx) = flar)] <.

k=1 k=1
The following theorem can be proved analogously to Theorem 4.1 in [40].
Theorem 1.3.6. A function f: T — R"™ is absolutely continuous on T if and only if f
is V-différentiable V-almost everywhere on Ty, f¥ € L (To,R™) and
/ Y (s) Vs = f(b) — f(t), for every t € T.
(t,b)NT
The following two propositions can be proved analogously to Proposition 2.19 and
Proposition 2.20 in [53].

Proposition 1.3.4. Let f € LY (To,R™), then F : T — R™ defined by
F(t) = / f (s) Vs satisfies FY(t) = f(t), V-a.e. on T.
(t,5)NT

Proposition 1.3.5. Let u : T — R be an absolutely continuous function, then the
V-measure of the set {t € To\Lr, : u(t) = 0 and uV (t) # 0} is zero.

The following theorem can be proved analogously to Theorem 3.2 in [20].
Theorem 1.3.7. Let p € [1,00), then C(T,R") is dense in L%, (T,R™).
We now define a notion of Sobolev’s space.

Definition 1.3.16. Letp € [1,00), and f : T — R™. Say that f belongs to Wé’p (T, R™)
if and only if f € L% (To,R"™) and there exists g : T, — R" such that g € L (T, R™)
and

/T (f(bv) (s)Vs = —/T (9.0") (s) Vs, for all ¢ € C&,zd (T), (1.4)

with
Chua (1) = {6 € C(T) : 6 (a) = 6 () = 0}

The following theorem can be proved analogously to Theorem 3.4 in [6].

Theorem 1.3.8. Suppose that u € W' (T, R™) and that (1.4) holds for a function
g € Ly (T, R™). Then, there exists a unique function x : T — R™ absolutely continuous
such that V-almost everywhere on Ty, one has © = u and x¥ = g. Moreover, if g is
ld-continuous on Ty, then there exists a unique function x € CL; (T, R™) such that x = u
V-almost everywhere on Ty and such z¥ = g on Ty.
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Theorem 1.3.9. Let p € [1,00). The set Wé’p (T,R™) is a Banach space together with
the norm defined for every f € Wé’p (T,R™) as

v
”fHWé‘p(’]T,]Rn) = ||f||Lg(T,Rn) + Hf HLI’V(M,Rn) :

The proof is analogous to that of Theorem 3.5 in [6].

Remark 1.3.1. Ifz € W' (T, R), then its components x; € W' (T, R). By Theorems
1.3.8 and 1.3.6, x is V-differentiable V-almost every on T. From Fxample 1.3.1, we
obtain

< xz(t), zV(t) >

lz@)]]

Next, we define a notion of V-Carathéodory functions (resp. multivalued maps) on
a compact time scale.

l= (@) =

V-a.e.on{te€T: t=p(t)}.

Definition 1.3.17. A function f : To x R® — R" is called a V-Carathéodory function
if the three following conditions hold.

(i) for every x € R", the function t — f(t,x) is V-measurable;
(i) the function x — f(t,z) is continuous V-almost every t € Ty;

(iii) for every r > 0, there exists a function h, € L5 (Ty,[0,00)) such that ||f(t,z)| <
h.(t) for V-almost every t € Ty and for all x € R™ such that ||z|| < r.

Definition 1.3.18. A multivalued map F : Ty x R™ — R™ with compact and convex
values is said to be V-Carathéodory if the three following conditions hold.

(i) for every x € R™, the function t — F(t,x) is V-measurable;
(i) the function x — F(t,x) is upper semi-continuous (u.s.c.) V-a.e. t € To;
(iii) for every q > 0, there exists a function h, € Lg(Ty, [0,00)) such that

sup{|lyll : y € F(t,2),||z|| < q} < he(t), V-ae. te T,

A single-valued mapping h : To x R" — R™ is a V-Carathéodory if and only if F = {h}
is V-Carathéodory in the sense of Definition 1.5.18.

1.4 Conformable Fractional Calculus

In this section, we introduce some necessary definitions and properties of the conformable
fractional calculus which are used in this thesis and can be found in [1,66,70,79] and
in [87](If T is a real interval [0, 00)) are given:
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Definition 1.4.1. [70]. Given a function f : [0,00) — R and a real constant o € (0, 1].
The conformable fractional derivative of f of order « is defined by,

f(a) (1) := lim flt+et'™) = f(t)

e—0 g

(1.5)

for all t > 0.
If f(t) exists and is finite, we say that f is a-differentiable at t.
If f is a-differentiable in some interval (0,a), a > 0, and lim F(t) exists, then
t—0

the conformable fractional deriwvative of f of order a at t = 0 is defined as

F1(0) = lim f©(t).

t—0+

Example 1.4.1. Conformable fractional derivatives of certain functions as follow:
1. (t7)@) = pr== for all p € R.
2. (AN =0, for all X € R,
3. (eP) @) = ptl=eert and (eat")® =peat”, for all p € R.

Definition 1.4.2. [87]. Assume f :[0,00) = R", f(t) := (fi(t), f2(t), ..., fu(t)) and let
a € (0,1] and t > 0. Then one defines f(t) = (fl(a)(t), féa)(t), e ,sa)(t)) (provided
it exists). One calls f()(t) the conformable fractional derivative of f of order a att > 0.
Function f is conformal fractional differentiable of order a provided f(®)(t) exists for all
t > 0, in such a case, we say that f is a-differentiable at t. We define the conformable
fractional derivative at 0 as f(*)(0) = tlz'rori (¢, provided it exists.

—

Definition 1.4.3. [87]. Let « € (m, m + 1], m € N, and f : [0,00) — R", where
f)(t) exists at t > 0. We define the conformable fractional derivative of f of order a
as

FO) = (fr)em().

Theorem 1.4.1. [87]. If a function f : [0,00) — R" is a-differentiable at t > 0,
a € (0,1], then f is continuous at t.

Remark 1.4.1. (i) The Riemann-liowville derivative DS does not satisfy DY(1) =0,
if f is not a natural number. (D%(1) = 0 for the Caupto derivative).

(i1) All fractional derivatives do not satisfy the Known product rule:
Di(fg) = fDg(9) + 9Dg (f)-

(11i) All fractional derivatives do not satisfy the known quotient rule:

De(fg) — 2PEU) = fDs(9)
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(iv) All fractional derivatives do not satisfy the chain rule:
Dg(fog) = f*(9)g".

(v) All fractional derivatives don’t satisfy: D*DP f = DB f in general.
(vi) The Caputo definition assumes that the function f is differentiable.

Theorem 1.4.2. [87]. Let a € (0,1] and assume f,g : [0,00) — R™ are a-differentiable
att > 0. Then, by denoting (fg)(t) = (f1(t) g1(t), -, fu(t) gn(t)), we have the following
properties:

(i) (af +09)® = af@ 4+ bg'®,  for all a,b € R;
(it) (f9)' = fg' + gf;

gf\ @ — fg'@

i (e)
(iir) (f/g) ;

() If, in addition, f is differentiable at a point t > 0, then
F) =t (@)

Remark 1.4.2. [t is not difficult to verify the following assertions:

(i) The function x : t — e, p € R, is the unique solution to the conformable
fractional differential equation

W (t) = pa(t), t €0,00), z(0) = 1.

(i1) If f is differentiable at t, then fis a-differentiable at t.
We introduce the following spaces: we assume I = [0,b], b > 0.

Co(I,RY) = {f:I—=R" is a-differentiable on I and f* € C(I,R")}.
Co(L,R") = {feC(I,R"): f(0) = f(b) = 0}.
Cop(L,R") = {feC(I,R"): f(0) = f(b)}.

Definition 1.4.4. [70]. Let o € (0,1] and f : [0,00) — R. The conformable fractional
integral of f of order a from 0 to t, denoted by 1,(f)(t), is defined by

L)) = L= L f)(t) = / F(5)das = / £(s)s2Lds.

The considered integral is the usual tmproper Riemann one.
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Definition 1.4.5. [87]. Let f : [0,00) — R" and a € (0, 1]. The conformable fractional
integral of f of order o from 0 to t, denoted by 1,(f)(t), is defined by

Ia(f)(t) = /(; f(5>da5 = <[a(f1)<t)7[a(f2)(t)7 T 7[a(fn)<t))a

where I,(f;)(t) is the conformable fractional integral of f; of order a from 0 to t, for
1=1,...,n.

Lemma 1.4.1. [70,79]. Let 0 < a <1 and f : [0,00) — R"™ be a continuous function
in the domain of I,. Then for all t > 0 we have
(La(F) @) = £(0)

Corollary 1.4.1. [1,87]. Let f : [0,b) — R™ be such that 1, (f*)(t) ezists for 0 <t < b.
Then, f is differentiable on (0,Db).

Lemma 1.4.2. [1,87]. Let f: (0,b) — R™ be differentiable and 0 < o < 1. Then, for
allt > 0 we have

La(f*)(t) = f(t) = £(0). (1.6)
The next result is an adaptation of Lemma 2 in [79]

Proposition 1.4.1. Let 0 < a < 1, and W be an open set of R*. If g : [ — R" is
a-differentiable at t > 0 and f : W — R™ is differentiable at g(t) € W. Then fo g is
a-differentiable at t and

T

(fog)@t) = f'(g(t)) (¢(t))

Here v* denotes the transpose vector of v.

Example 1.4.2. Let a € (0,1], and x : [0,00) — R"™ a-differentiable at t. It is not
difficult to verify that the Fucliden norm || - || : R\ {0} — [0, 00) defined as

le(O)]] =< (1), (t) >2,

with < -, - > the usual scalar product in R™, is differentiable.
By the previous Proposition, we have

x(t), () (t) >
()]
Next, we develop the fractional Sobolev’s spaces via conformable fractional calculus

and their important properties. The basic definitions and relations based on [87] (If T
is a real interval [0,00)) are given:

o <
lx(t)] ) =

Definition 1.4.6. Let B C I. B is called null set if the measure of B is zero. We say
that a property P holds almost everywhere (a.e.) on B, or for almost all (a.a.) t € B if
there is a null set Ey C B such that P holds for allt € B\ FEy.
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Definition 1.4.7. Let A be a Lebesque measurable subset of I. We say that function
f: I =R, is a function a-integrable on A if and only if t*~1 f(t) is Lebesgue integrable
on A. In such a case, we denote

/A f(t) dat = /A 7L f(t) dt.

Definition 1.4.8. [87]. Let E C R be a measurable set, and let ¢ : E — R be a
measurable function. We say that ¢ belongs to L} (E,R) is the following property is
fulfilled

L1l das = [ Joto)] s s < 4.

We say that a measurable function f: E — R™ is in the set L} (E,R™) provided

/E 1£(5)]| dus = / 1F(s)]] s°~Lds < +o0.

i.e. fi€ L (E,R), for each of its components f;: E —R,i=1,...n.

Theorem 1.4.3. [87]. The set L (I,R"™) is a Banach space together with the norm
defined for p € L} (I,R™) as

lollzs rmm = / lo(®)lldat.

Remark 1.4.3. [t is not difficult to verify the following assertions for all o € (0, 1]:
(i) LL(I,R™) C L'(I,R").

(ii) Fort € I,t>0 and ¢ : I — R, it is satisfied that p*) € LL(I,R") if and only if
o € L\(I,R).

Theorem 1.4.4. [87]. Let f € L! (I,R™). Then, a necessary and sufficient condition
for the validity of the equality:

/f(t)h(a)(t)dat =0 for every h € Cg,(I,R"),
I

1s the existence of a constant C € R™ such that f =C a.e. on I.

Definition 1.4.9. A function f : I — R" is said to be absolutely continuous on
I (ie., f e AC(I,R™)) if for every e > 0, there exists n > 0 such that if {[ax, be[}7-;,
s a finite pairwise disjoint family of subintervals of I satisfying

k=m

(by —ax) <, then 3 || f(be) — F((a))] < <.

k=1
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Theorem 1.4.5. [87]. Assume function f : I — R"™ is absolutely continuous on I, then
f is conformable fractional differentiable of order o a.e. on I and the following equality
15 valid:

f(t) = f(0)+ F@(s)dys, foralltel,
[0,¢]

Definition 1.4.10. Let o € (0,1] and f : I — R"™. One says that f € W(i‘g,l (I,R™) if
and only if f € LL (I,R™) and there exists g : [ — R™ such that g € L} (I,R") and

/1 FOO (1)dot = — / o(O)6(t)dat,  for all € (I, RY). (1.7)

I
- We denote

Vil (ILR") = {f € AC(ILR") : f € L, (I,R"), f(0) = f(b)}.
Remark 1.4.4. We have V33! (I,R") C W' (I,R").

Theorem 1.4.6. [87]. Assume that f € Wocf,’)l (I,R™) and that (1.7) holds for some
g € Ly, (I, R™). Then, there exists a unique function x € V" ([a,b],R") such that
z=f 2% =g ae onl.

Theorem 1.4.7. [87]. The set Wg,;l (I,R™) is a Banach space together with the norm
defined as

lelggamn = [ le@ldat+ [ @ldu
’ I I
for every ¢ € Wocfl’)l (I,R").
Proposition 1.4.2. Let x € W(f,;l(I,R”). Then ||z| € W(i"bl(],R) and
o <a(t),x*(t) >
()] = O]

Proof. 1If z € Wg"l’)l(l, R™). By Theorems 1.5.9 and 1.4.5, z is a-differentiable
a.e. on I. From Example 1.4.2, we obtain
< x(t),z™(t) >
)@ = =W > e ()] > 0},

lz(@)]

,a.e. on {t € I:|z(t)] > 0}.

We now define a notion of L!-Carathéodory function.

Definition 1.4.11. A function f : I x R" — R" is called a L. -Carathéodory function
if the three following conditions hold.

(i) for every x € R™, the function t — f(t,x) is Lebesque measurable;
(i1) the function x — f(t,z) is continuous almost every t € I,
(iii) for every r > 0, there exists a function h, € L.(I,[0,00)) such that ||f(t,z)] <
h,(t) for almost every t € I and for all x € R™ such that ||z|| < r.
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1.5 Conformable Fractional Calculus on Time Scales

We begin by introducing the notion of delta conformable fractional derivative of order
a €0, 1] for function defined on arbitrary time scale T.

Definition 1.5.1. [31]. Let f : T — R, t € T%, and o €]0,1]. Fort > 0, we define

féa) (t) to be the number (provided it exists) with the property that, given any e > 0, there
is a d-neighborhood Vy C T (i.e., Vi =t —§,t+6[NT) of t, 6 > 0, such that

[f (o) = f()]t — £ [o(t) — s]| < elo(t) — 5| for all s € V).

We call féa) (t) the delta conformable fractional derivative of f of order « at t, and we
define the delta conformable fractional derivative at 0 as féa)(()) = lin”i féa)(t). The
t—0

function f is delta conformal fractional differentiable of order av on T" provided féa)(t)
exists for all t in T".

Remark 1.5.1. (i) If a = 1, we have fgl) = fA.
(ii) If a« = 0, we denote féa) = f.

(iii) If T =R, then féa) = (@ 4s the conformable fractional derivative of f of order o
(see Definition 1.4.1).

We introduce the following spaces:

Cra([a,blr, R) = {f is delta conformal fractional dif ferentiable of order o on [a,blr
and féa) € Cra([a,b]r,R)}.

C(()I;rd([a’ b]T7R) - {f € ng([a’ b]T7R> : f(a) - f(b) = O}

Cg,b;rd([a’ b]T7R) = {f € ng([a’ b]'JDR) : f(CL) = f(b)}

Definition 1.5.2. [31]. Let T be a time scale, « € (n, n+ 1], n € N, and let f
be n times delta differentiable at t € T*". We define the delta conformable fractional
derivative of f of order a as

ey ny (a—n)
IR = (A7) ).
Theorem 1.5.1. [31]. Let a € (n, n+ 1], n € N. The following relation holds:
() = AT ). (1.8)

Theorem 1.5.2. [31]. Let o €]0,1] and T be a time scale. Assume f: T — R and let
t € T*. The following properties hold.
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(i) If f is delta conformal fractional differentiable of order o at t > 0, then f is
continuous at t.

(i) If f is continuous at t and t is right-scattered, then f is delta conformable fractional
differentiable of order o at t with

Xx) (t) _ f(O'(t)) B f(t) tl—a _ tl_afA(t).

(11i) If t is right-dense, then f is delta conformable fractional differentiable of order «
£ = F(5) 1
(t—s)

) =t (@),

() If f 1s delta conformable fractional differentiable of order o at t, then

Flo(t) = f(t) + (u(t)t fA0 ().

at t if and only if the limat li??;t exists as a finite number. In this
s—

case,

Theorem 1.5.3. [31]. Assume f,g: T — R are delta conformable fractional differen-
tiable of order o. Then,

(i) the sum f+ g is delta conformable fractional differentiable with (f+g)(Aa) = XY) +

g(Aa);.

(ii) for any A € R, \f is delta conformable fractional differentiable with ()\f)f) =
)\fgl)’.

(i1i) if f and g are continuous, then the product fg is delta conformable fractional
differentiable with (f9) = f"g+ (f o 0)g&) = F& (g o o) + foi;

(iv) if [ is continuous, then 1/f is delta conformable fractional differentiable with

1\ @ Fle)
(?)A ~ f(foo)

valid at all points t € T% for which f(t)f(o(t)) # 0,

(v) if f and g are continuous, then f/g is delta conformable fractional differentiable

with
(i) @ fg— fgs
9/ a 9(geo)
valid at all points t € T* for which g(t)g(o(t)) # 0.

Example 1.5.1. Let o € (0,1]. Functions f,g,h: T =R : f(t) =t, p eR, g(t) = A,
A €R, and h(t) = e,(t,a), p € R,, are delta conformable fractional derivatives of order

a with: fM@) =t ¢ @) =0 and B () =tp e,(t, a).
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Now we introduce the delta a-conformable fractional integral (or delta a-fractional
integral) on time scales.

Definition 1.5.3. [31]. Let f : T — R be a requlated function. Then the delta -
fractional integral of f, 0 < a <1, is defined by [ f(t)A% = [ f(t)t* T At.

Definition 1.5.4. [31]. Suppose f : T — R is a regulated function. Denote the
indefinite delta a-fractional integral of f of order a, a € (0, 1], as follows: F(t) =
[ f&)A%t. Then, for all a,b € T, we define the Cauchy delta a-fractional integral by

[P F(t) A%t = F(b) — F(a).

Theorem 1.5.4. [31]. Leta € (0, 1]. Then, for any rd-continuous function f : T — R,

there exist a function F': T — R such that Féa) (t) = f(t) for allt € T*. Function F is
said to be an delta a-antiderivative of f.

The notions of A-measurable and A-integrable functions f : T — R are defined the
same as those in [59].

Definition 1.5.5. [6]. Let B C T. B is called A-null set if the A-measure of B is zero.
We say that a property P holds A-almost everywhere (A-a.e.) on B, or for A-almost all
(A-a.a.) t € B if there is a A-null set Ey C B such that P holds for allt € B\ Ey.

Definition 1.5.6. Assume f : T — R, is a function. Let A is a A-measurable sub-
set of T. f is delta a-integrable on A if and only if t* L f(t) is integrable on A, and

[ fOAt = [ o7 f(t)AL.

Theorem 1.5.5. [31]. Let a € (0,1], a,b,c € T, A € R, and f, g be two rd-continuous
functions. Then,

i [ oo =x [ oacs [ gwan;
i [ swar=- [ rwan;
iy [ swaci= [ roacs [ goa
() [ foact—o;

(v) if there exist g : T — R with |f(t)| < g(t) for allt € [a, b]r, then ‘fab f(t)At] <

12 g(t)Act;

(vi) if f(t) >0 for allt € [a, b, then /bf(t)Ao‘t > 0.
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Theorem 1.5.6. [31]. If f:T* — R is a rd-continuous function and t € T*, then

o(t)
/t F(8)A%s = FE)u(t)e.

Theorem 1.5.7. [31]. Let f : T — R be a function. If f(Aa)(t) >0 for all t € [a,b]r,
then f is an increasing function on [a, b]t.

Now we introduce the concept of absolutely continuous function.

Definition 1.5.7. [87]. A function f : T — R is said to be absolutely continuous on
la, b (i.e., f € AC([a, b]r,R)) if for every € > 0, there exists a n > 0 such that if
{lak, be]r}7—y, is a finite pairwise disjoint family of subintervals of [a, bl satisfying

k=n k=n
D (b —ax) < nthen Y |f(p(be)) — flax)| < e.
k=1 k=1

Theorem 1.5.8. [87]. Assume function [ : [a,blr — R is absolutely continuous on
[a,b]t, then f is delta conformable fractional differentiable of order o A-a.e. on [a,b|T
and the following equality is valid:

Ft) = fla) + £ ()A%s for all t € [a, br.

[avt]'ﬂ‘

Next, we develop the fractional Sobolev’s spaces via conformable fractional calculus
on time scales and their important properties. The basic definitions and relations based
on [87] are given:

Definition 1.5.8. [87]. Let E C T be a A-measurable set and let ¢ : T —R be a
A-measurable function. Say that ¢ belongs to L}%A (E,R) provided that either

/ lo(s)|A%s < +o0.
E

Proposition 1.5.1. [87]. The set L}, 5 ([a, b]r,R) is a Banach space together with the
norm defined for ¢ € L} 5 ([a, blr,R) as

loleg o v = [ le0IAct

la, b

Definition 1.5.9. [87]. Let f : [a,blr — R. One says that f € ngib([a, blr,R) if and

only if f € L A ([a, b1, R), £ e L{ A ([a, b1, R) and there exists g : [a,b)f — R such
that g € L}, A ([a,b]r,R) and

FHe (1) At = — / g6 (AL, for all ¢ € %, ((a.b]r.R).  (L9)

[a,b]T [a,b]T

We denote
Vel (la, b R) = {u € AC(la, B R) :uf) € L 4 ([a, bz R),u(a) = u(b)}.
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Remark 1.5.2. [t is not difficult to verify the following assertions for all o € (0, 1]:
(i) Lea(la,blr) C Li([a, b]r).

(i) Fort € [a,b]r, t >0 and ¢ : [a, bl — R, it is satisfied that go(Aa) € L; A(la, ) if
and only if o* € LL([a, b1).

(iii) Vb, ([a, 0, R) € WXL, ([a, b]r, R) .

Theorem 1.5.9. [87]. Assume that f € ngb ([a,b]r,R) and that equality (1.9) holds

for g € L A ([a,0]r,R). Then, there exists a unique function x € Vﬁ’ib ([a, b]T,R) such

that

x=f, x(Aa) =g A-a.e. on [a,blr.

Theorem 1.5.10. [87]. The set ngb ([a,b]T,R) is a Banach space together with the
norm defined as

lellwer  (fa,bem) ::/

[avb]']l‘

o7 (1) A% + / 09 (1) A%,

[a,bh*
for every ¢ € Wg}zb ([a,b]r, R) .
We now define a notion of L;, -Carathéodory function.

Definition 1.5.10. A function f : [a,blr xR — R is called a L, 5-Carathéodory function
if the three following conditions hold.

1. for every x € R, the function t — f(t,x) is A-measurable;
2. the function x — f(t,x) is continuous A-almost every t € [a, blr;

3. for every r > 0, there exists a function h, € L} A(la, b]r,[0,00)) such that
|f(t,z)]| < h.(t) for A-almost every t € [a, by and for all x € R such that
]l <
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Chapter 2

A nabla conformable fractional
calculus on time scales

2.1 Introduction

In 2014, Khalil et al. [70] defined a new fractional derivative which is called the con-
formable fractional derivative (see Definition 1.4.1). In particular, Benkhettou et al. [31]
extended this definition to an arbitrary time scale, which is a natural extension of the
conformable fractional calculus (see Definition 1.5.1), then developed later in [76,87].

Motivated by results in [31,76,87], in this chapter, we introduce definitions of nabla
conformable fractional derivative and integral on time scales and study their important
properties.

The original results of this chapter are published in [26].

2.2 Nabla Conformable Fractional Derivative

We begin by introducing the notion of nabla conformable fractional derivative of order
a €0, 1] for function defined on arbitrary time scale T.

Definition 2.2.1. Let f: T — R, t € Ty, and a €]0,1]. Fort > 0, we define féa)(t)
to be the number (provided it exists) with the property that, given any € > 0, there is a
d-neighborhood V; C T (i.e., V=]t —6,t +[NT) of t, § > 0, such that

(F(p(1)) = F()) 72 — FE 1) (p(t) — s)| < elp(t) — s,

for all s € V;. We call féa) (t) the nabla conformable fractional derivative of f of order
a at t, and we define the nabla conformable fractional derivative at 0 as f(va)(()) =

lirri féo‘) (t). The function f is nabla conformal fractional differentiable of order a on
t—0

T.. provided féa) (t) exists for all t in Ty.
Note that If o = 1, and f is nabla conformable fractional derivative of order «, then
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R = £Y ().
We denote:

(i) C*([a,b]T,R) = {f :|a,b]r = R, f is nabla conformal fractional differentiable
of order a on [a,blr and féa) € C([a, b]T,R)}.

(i) C%([a,b]r,R) = {f :la,b]r = R, f is nabla conformal fractional differentiable
of order a on [a,blr and & € Cia([a, b]T,R)}.

Some useful properties of the nabla conformable fractional derivative of f of order «
are given in the following theorem.

Theorem 2.2.1. Let a €]0, 1] and T be a time scale. Assume f: T — R and lett € T,.
The following properties hold.

(i) If f is nabla conformal fractional differentiable of order av at t > 0, then f is
continuous at t.

(i) If f is continuous att andt is left-scattered, then f is nabla conformable fractional
differentiable of order o at t with

f(cx) (t) _ f<t> l_/({)(p(t))tl—a. (21)

(iii) If t is left-dense, then f is nabla conformable fractional differentiable of order o
£ = £(5) 1o
(t—s)

£ 1) — 1 T =S e

s—t t—s

at t if, and only if, the limit liﬂ} exists as a finite number. In this
S—

case,

(2.2)
(iv) If f is nabla conformable fractional differentiable of order o at t, then
Fp(t) = F(8) = wO)e £ (0).

Proof. (i) Assume that f is nabla conformable fractional differentiable at ¢. Then,
there exists a neighborhood V), of ¢ such that

[(Fo0)) = FE) 1 = 1) (p(t) = )] < €lp(t) —

for s € V;. Therefore,

10 = F O < (£l = £) = ) (o(8) = )|+ (7 (0(0)) = 1))

RROCOEDIIEEST
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for all s € V; Nt —¢,t + €] and, since ¢ is a left-dense point,

760 = £ ()] < (720 = £(5)) = FO) (olt) — %] + [ 700) (¢ = 5)°
>(t)( 5.

Since 6 — 0 when s — ¢, and ¢t > 0, it follows the continuity of f at t.
(17) Assume that f is continuous at ¢ and ¢ is left-scattered. By continuity,

o F00) = £6) e _ F0) = £ 1 SO = F00) 1

s—ot p(t) —s p(t) —t v(t)

Hence, given € > 0 and « €]0, 1], there is a neighborhood V; of ¢ such that

<ed+ [t | £

'f )= 160 D=6,
0~ o) <
for all s € V,. It follows that
‘[f(p(t)) ) W#W(w — 9| < ety — s

for all s € V;. The desired equality (2.1) follows from Definition 2.2.1.

(737) Assume that f is nabla conformable fractional differentiable of order «v at ¢t and ¢
is left-dense. Let € > 0 be given. Since f is nabla conformable fractional differentiable
of order «v at t, there is a neighborhood V), of ¢ such that

[17(e0) = Fs)]E = = 1 D)ol - 5)
for all s € V. Because p(t) =1,
‘f

< €lp(t) — 5|

f(8) ima  p@
P— e — )] < e

for all s € V;, s # t. Therefore, we get the desired result (2.2). Now, assume that the
limit on the right-hand side of (2.2) exists and is equal to L, and ¢ is left-dense. Then,
there exists V; such that |(f(t) — f(s))t'™* — L(t — s)| < €|t — s] for all s € V;. Because
t is left-dense,

|[(F(p(t) = F()E™ = L(p(t) = )| < elp(t) — s,
which lead us to the conclusion that f is nabla conformable fractional differentiable of
order a at t and Ty o(f)(t) = L.
() If t is left-dense, i.e., p(t) = t, then v(t) = 0 and f(p(t)) = f(t) = f(t) —
(1) f& (£)t2. On the other hand, if ¢ is left-scattered, i.e., p(t) < t, then by (iii)

a—1 f(t> B f(p(t>> 1-«
)t —I/(t) t

The proof is complete. ]

Flp(t)) = f(t) — vt = f(t) — ()t (1),
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Example 2.2.1. (1) If f: T — R is defined by f(t) =c for allt € T, c € R, then

(ii) If f: T — R is defined by f(t) =t for allt € T, then

(a) oo if a 7é 1,
1 if o = 1.

(i) Let p € R,, fir to € T and f(t) = é,(t,to) for t € T, the nabla exponential
function given in Definition 1.3.10, then

(1) =t pey (o).

Example 2.2.2. (i) Function f : R — R is nabla conformable fractional differen-
t —_

tiable of order o at point t € R if, and only if, the limit lim Mtka

s—t t—s

erists
as a finite number. In this case,

(1) = tim {0 =T e (2.3)

s—t t— s

Ifa=1, then f& = V(1) = f'(t).
The identity (2.3) corresponds to the conformable fractional derivative given in
Definition 1.4.1.

(ii) Let h > 0. If f: hZ — R, then f is nabla conformable fractional differentiable of
order o at t € hZ, with

£ ) = f) = fE=1) o

Ifao=1and h =1, then féa) =Vf(t)=f(t)— f(t—1), where V is the backward
difference operator.

Next, we would like to be able to find the derivatives of sums, products, and quotients
of nabla conformable fractional differentiable functions. This is possible according to the
following theorem.

Theorem 2.2.2. Assume f,g : T — R are nabla conformable fractional differentiable
of order a. Then,

(i) the sum f+ g: T — R is nabla conformable fractional differentiable with
(f+ 908 = 15+ 9¢";
(ii) for any A € R, \f : T — R is nabla conformable fractional differentiable with

WY = AR

31



(i1i) if f and g are continuous, then the product fg : T — R is nabla conformable
fractional differentiable with

(F9)S) = 1&g+ 298" = 189" + £,

(iv) if [ is continuous, then 1/f is nabla conformable fractional differentiable with

(1> R
v ffe
valid at all points t € T, for which f(t)f*(t) # 0;
(v) if f and g are continuous, then f/g is nabla conformable fractional differentiable
with @ (@)
(i) ¢ :fv 9—fyv

9/ v 99°
valid at all points t € T, for which g(t)g’(t) # 0.

Y

Proof. Let us consider that a €]0,1], and let us assume that f and g are nabla
conformable fractional differentiable at t € T,..
(1) Let € > 0. Then there exist neighborhoods V, and U; of ¢ for which

([f(p(t)) — ()] — £8() (p(t) — s)’ < g]p(t) _s| forallseV,
and
9(p(1)) = g(s)]t"* = g () (p(t) = 5)| < Slp(t) = 5| for all s € Uy

Let W, =V, NU;. Then
10+ 9)(p®) = (f + ) (N = [F&(1) + 98] (o(t) = 5)| < elo(t) = s
for all s € W,. Thus, f + g is nabla conformable differentiable at ¢ and
(f+ 990 = ££7) + g8 1),

(77) Let € > 0. Then ’[f(p(t)) — f(s)]tt — éa)(t)(p(t) - s)‘ < €|p(t) — s| for all s
in a neighborhood V; of t. It follows that

(AP (1) = AN = ME Op(t) = )| < Al |p(t) = 5| for all s € V.

Therefore, Af is nabla conformable fractional differentiable at ¢ and (A f)(va )= ) féa)
holds at t.
(i) If ¢ is left-scattered, then

@y _ [ LB = Fp®)) 1o 9(t) —9(p(t)) 1 q
18 ) = LD e i 4 | 2O D e

= & g(p(t)) + f(1)g ().
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If ¢ is left-dense, then

(f9)&)(t) = lim f(s)

= 157090 + 95" (1) = 1 (Dg(p(t) + 93" (0] 1),
The other product rule formula follows by interchanging the role of functions f and g.
()
(tv) From Example 2.2.1 (i), we know that (f : %) (t) = (1)(Va) = 0. Therefore, by
v
(i)

s—t

(CESCPR PP OEr R

()
(1> (o) + £ (6)

7)o G

Since we are assuming f(p(t)) # 0, (%): (t) =—
(v) We use (ii) and (iv) to obtain
i (@) _ ' 1 (a) _ l (a) (@) 1
D)wo-(r3) w-ro(3)_ 0+mo
_ 10e) — 10680

The proof is complete. U

Theorem 2.2.3. Let ¢ be a constant, m € N, a € ]0,1] and f(t) = (t —c)™. Then

3

S =17 (=" (plt) — o) (2.4)
Ife=0, then f&(t) = ()¢ = =2 1 O™ 7 (1))
Proof. We prove the first formula by induction. If m = 1, then f(t) = ¢t — ¢ and
F(#) = -2 holds from Example 2.2.1 and Theorem 2.2.2 (i). Now assume that

Il
=)

) = £ 3(0- "0) — oy

holds for f(t) = (t — ¢)™ and let F(t) = (t — ¢)™*! = (¢t — ¢) f(¢). We use Theorem 2.2.2
(7i7) to obtain

(F()' = (t =) f& Fp(t) + FS )t — ) = 7Y (t — )" (p(t) — ).

1=0

Hence, by mathematical induction, (2.4) holds. If ¢ = 0, then we have



Note that if ¢ is left-dense, then féa) (t) = mt™ . O

Theorem 2.2.4 (Chain rule). Let o € |0,1]. Assume g : T — R is continuous and nabla
conformable fractional differentiable of order a att € Ty, and f : R — R is continuously
differentiable. Then there exists ¢ in the real interval [p(t),t] with

(0 9)5 (1) = f'(g(c) 95" (0): (2.5)
Proof. Let t € T,. First we consider ¢ to be left-scattered. In this case,

f@@»—f@@@DHW
v(t) '

If g(p(t)) = g(t), then we get (f og)(vf‘)(t) =0 and ggx) (t) = 0. Therefore, (2.5) holds for
any c in the real interval [p(t),t]. Now assume that g(p(t)) # ¢(t). By the mean value
theorem we have

(fog)S(t) =

(7 0 ) (t) = L) = JG0) 9lt) = 9lolt) 1o

9(p(t)) — g(t) v(t)
where £ between g(p(t)) and ¢(t). Since g : T — R is continuous, there is a ¢ € [p(t), ¢]

such that g(c) = &, which gives the desired result. Now let us consider the case when t
is left-dense. In this case

= f1(€)g (1),

— flg(s)) g() — g(S)tl_a
— g(s) t—s '

Y (1))
(fog)y(®) = lim ==

By the mean value theorem, there exist £ between g(p(t)) and g(¢) such that

(fog)@t) = lim {f'(gs) . @tl_a} ‘

5— t

By the continuity of g, we get that lz'rrtL & =g(t). Then (f o g)(va) (t) = f'(g(1)) -g(va) (t).
S—

Since t is left-dense, we conclude that ¢ =t = p(t), which gives the desired result. [

We define the nabla conformable fractional derivative ()(Va ) for a € (m, m+1], where
m is some natural number.

Definition 2.2.2. Let T be a time scale, « € (m, m+ 1], m € N, and let f be m times
nabla differentiable att € Tym. We define the nabla conformable fractional derivative of

f of order a as féa) (t) = (fvm)(va_m) (t).

Theorem 2.2.5. Let o € (m, m + 1], m € N. The following relation holds:
&) = e @), (26)
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Proof. Let f be a function m times nabla-differentiable. For o € (m, m + 1], there
exist 8 € (0,1] such that & = m + 3. Using Definition 2.2.2, f(va) = (fvm)(vﬂ). From the
definition of (higher-order) nabla derivative and Theorem 2.2.1 (i7) and (iz7), it follows

« _ my\ V
that f& () =7 (f9")" (1). O

Remark 2.2.1. In(2.6), when m = 0, we have f&(t) .=t~V (t), a € (0,1].

Next, we introduce the nabla conformable fractional derivative on time scales for
vector-valued functions and study some of their important properties.

Definition 2.2.3. Assume f: T — R" is a function, f(t) = (f1(t), fa(t), ..., fu(t)) and
lett € T. Then one defines

72w = (RS0, (RS0, - ()8 0)

provided it exists. One calls féa)(t) the nabla conformable fractional derivative of f of
order o at t > 0. The function f is nabla conformal fractional differentiable of order
a on T, provided féa)(t) exists for all t in T,.. The function féa) : T, — R" is then
called the nabla conformable fractional derivative of f of order o, and we define the
nabla conformable fractional derivative at 0 as féa)(O) = tl_izgzL féa) (t).

Definition 2.2.4. Let T be a time scale, « € (m, m+ 1], m € N, and let f : T — R"
be m times nabla differentiable at t € Tym. We define the nabla conformable fractional

derivative of [ of order o as féa) (t) := (fvm)(va_m) (1).
Combining Definition 2.2.3 and Theorems 2.2.1, 2.2.2 we have the following theorems.

Theorem 2.2.6. Let o €]0,1]. Assume f : T — R"™ and let t € T,. The following
properties hold:

(i) If f is nabla conformal fractional differentiable of order o at t > 0, then f is
continuous at t.

(i) If f is continuous att andt is left-scattered, then f is nabla conformable fractional
differentiable of order o at t with

f(@) = f(p(t)) 1-a
B S (2.7)

(111) If t is left-dense, then f is nabla conformable fractional differentiable of order «

1) = /(5) 1

at t if and only if the limit lim exists as a finite number. In this

case o (t B S)
o) g f(t) - f(S) 1-«
v (1) = lim Ti—s (2:8)
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() If f is nabla conformable fractional differentiable of order a at t, then
Fp(0) = f() = W) 57 (0):

Theorem 2.2.7. Assume f,q: T — R™ are nabla conformable fractional differentiable
of order a. Then,

(i) the sum f+ g: T — R™ is nabla conformable fractional differentiable with
(F+ 9% = 15+ 99

(ii) for any A € R, A\f : T — R" is nabla conformable fractional differentiable with
AN = AR

(ii) if f and g are continuous, then the product fg : T — R™ is nabla conformable
fractional differentiable with

(f9)S) = 19+ (fo p)gs) = f&(g 0 p) + fo.

2.3 Nabla Conformable Fractional Integral

Now we introduce the nabla conformable fractional integral (or nabla a-fractional inte-
gral) on time scales.

Definition 2.3.1. Let f : T — R be a requlated function. Then the nabla a-fractional
integral of f, 0 < a <1, is defined by [ f(t)Vat = [ f(t)t* VL.

Note that If o = 1, then [ f(t)Vat = [ f(t)Vt is the indefinite nabla integral. If T =R,
then [ f(t)Vat = [t*71f(t)dt is the conformable fractional integral given in Definition
144

Definition 2.3.2. Suppose f : T — R s a regulated function. Denote the indefinite
nabla a-fractional integral of f of order o, v € (0, 1], as follows: Fy o(t) = [ f(t)Vat.
Then, for all a,b € T, we define the Cauchy nabla a-fractional integral by:

b
/f@%hﬁww—%dw

Definition 2.3.3. Assume f : T — R is a function. Let A is a V-measurable subset
of T. f is nabla a-integrable on A if and only if t*"1f(t) is integrable on A, and
S f@)Vat = [t f(t)VE

Theorem 2.3.1. Let a € (0, 1]. Then, for any ld-continuous function f : T — R, there
exist a function Fy, : T — R such that (Fv,a)(vf) (t) = f(t) for allt € T,. Function
Fy o is said to be an nabla a-antiderivative of f.
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Proof. The case o = 1 is proved in [33]. Let a € (0, 1). Suppose f is ld-continuous.
By Theorem 1.16 of [34], f is regulated. Then, Fy ,(t) = [ f(t)V4t is nabla conformable
fractional differentiable on T,. Using (2.6) and Definition 2.3.1, we obtain that

(Foa)& (t) = ' (Fo ()Y = f(t), t € Ty,
U

Theorem 2.3.2. Let a € (0, 1], a,b,c € T, \,v € R, and f,g be two ld-continuous
functions. Then,

i) [0 20 = [ 09 [ o9
(i) / KOVt = — /b NONAT
(iii) / OV = / OVt + / OVt

(iv) /a f(t)Vat =0;

(v) if there exist g : T — R with |f(t)| < g(t) for all t € [a, b], then

/a KOVt

(vi) if F(£) > 0 for all t € [a, bz, then / KOVt > 0.

b
< / g(t)Vat;

Proof. The relations follow from Definitions 2.3.1 and 2.3.2, analogous properties of
the nabla-integral, and the properties of Section 2.2 for the nabla conformable fractional
derivative on time scales. 0

Theorem 2.3.3. If f: T, — R is a ld-continuous function andt € T,, then

/ J6)Vas =00 Foet

Proof. Let f be a ld-continuous function on T,. Then f is a regulated function. By
Definition 2.3.2 and Theorem 2.3.1, there exist an antiderivative Iy, of f satisfying

/(t) F($)Vas = Fya(t) = Foa(p(t) = (Fya)S (u(6)t' = = () f (1)t

This concludes the proof. O
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Theorem 2.3.4. Let a,b € T, o € (0, 1] and f : T — R be ld-continuous function.
Then we have the following.

(i) If T = R, then fabf Vot = f f)t=tdt where the integral on the right is the
conformable fmctz’onal integral (see Definition 1.4.4). If o = 1, then it reduces to
the usual Riemann integral.

(i) If [a,b]r consists of only isolated points, then
Dicap VT ()  ifa<d

b
/f(t)Vat: 0 if a=b

- Zte(b,a]T vt f(t) ifa>b

(iii) If T = hZ = {hk : k € Z}, where h > 0, then

b

f_a iy h(ER) (k) ifa<b

/bf(t)Vatz 0 if a=b

— S, h(kh)elf(kh)  ifa>b

k=g+1
(iv) If T =17 then
Z?:a-i-l () ifa<b

b
/ fE)Vat=4¢ 0 if a=0b

— Y () ifa>b

Proof. Part (i). It follows from Example 2.2.2 (i).
Part (i7). First, note that [a, b]r contains only finitely many points since each point in
la, b]r is isolated. Assume that a < b and let [a,b] = {to,t1, ..., t,}, where

a=th<ti <ta<..<t,=0b

By virtue of Theorem 2.3.2 (4i7),

i1 z+1) n—1
[roma= 5 [ 0w =5 [ 07 vt
ti =0

+1

Consequently,
/ 0 V(D).
te(a bl

If @ > b, then the result follows from what we just proved and Theorem 2.3.2 (ii). If
a = b, then the result follows from Theorem 2.3.2 (vi). Part (iii) and (iv) are special
cases of Part (ii). The proof is complete. O
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Example 2.3.1. (i) If f: T — R is defined by f(t) = ct'=* for allt € T, c € R, then

L/f (b - a)

(i) If f: R — R is defined by f(t) =t for allt € R, then

b b
_ «@ o 1 a+l  a+l
/Gf(twat_/a it = ——= (0" — ")

(iti) If f: N — R is defined by f(t) = 2' and a = %, then

1 2 3 1 2 s 1
t - t “ 93 Y Z 93 ~— 93
/2 1t— E \/72 (\/;QZ—I—\/;Q +\/;22+\/;2)

te 1,3]
%N

B 6
SChivaav 1

Lemma 2.3.1. Let T be a time scale, a,b € T with a < b. If féa)(t) > 0 for all
t € [a,b]r, then f is an increasing function on [a,b]r.

Proof. Assume féa) exist on [a, b]r and féa) (t) > 0 for all ¢ € [a,b]y. Then, by (i) of
Theorem 2.2.1, féa) is continuous on [a, bt and, therefore, by Theorem 2.3.2 (vi),

t
/ FENEVLE >0 for st such that a < s <t <b,

From Definition 2.3.2, f(t) = f(s) + [* & (€)Va€ > f(5). 0

Theorem 2.3.5. Let f : T — R be a continuous function on [a,b|y that is nabla
conformal fractional differentiable of order o on (a,blr and satisfies f(a) = f(b). Then
there exist £,m € |a, bl such that

e <0< 1),

Proof. Since the function f is continuous on the compact set [a,blr, f assumes its
minimum m and its maximum M Therefore there exist &, 7 € [a, bt such that m = f()
and M = f(n). Since f(a) = f(b), we may assume that &,n € [a, b], 7. By Lemma 2.3.1,
we have

e <0< 1),
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Theorem 2.3.6. (Mean value theorem). Let 0 < a < b and f be a continuous function
on [a, bl which is nabla conformal fractional differentiable of order o on [a,b],.r. Then
there exist £,m € |a, bl such that

e < VO =00 s

Proof. Tt follows from Theorem 2.2.5 that

(2.9)

(@) = if0<a< 1,
1 ifa=1.

Let h(t) = f(t) — f(b) — Then, the function h is continuous

(f(b) = f(a))
=22 (t — b).
= (t =)
function on [a, b]r which is nabla conformal fractional differentiable of order o on [a, b)r
and h(a) = h(b). Combining Theorem 2.2.2 and (2.9), we have

- £ () — Y=L if o = 1,
W (1) = (2.10)

FE() = YO=falyizaf 0 < < 1.

Applying Theorem 2.3.5 to h, there exist £,n € (a, bly such that h(va) (&) <0< h(vf‘) (n).

That is )
o150 < DO =00 oo,

The proof is complete. 0

In the next theorems we give a relationship between the nabla conformable frac-
tional differentiable and the delta conformable fractional differentiable given in Defini-
tion 1.5.1.

Theorem 2.3.7. Assume f : T — R is delta conformable fractional differentiable (

Definition 1.5.1) on T" and if féa) 1s continuous on T®, then f is nabla conformable
fractional differentiable on T, and

F&) = fp(t) for all t €T,

Proof. Fix t € T,. First we consider the case where t is left-scattered. Since f is
delta conformable fractional differentiable, it will be continuous function. Therefore, f
will be nabla conformable fractional differentiable at ¢ and

_ Fp®) = f(#) 1a
p(t) —t '

On the other hand, since p(t) will be right-scattered, we have

Flo(p®)) = F(o#) 1o _ F(&) = F(p(t) 1o
t

a(p(t)) = p(t) t—p(t)
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Therefore f&(t) = f1%(p(t)) which is the desired result.
Let now t be left-dense and right-dense, simultaneously. In this case from the existence
of féa) (t) it follows that the limit

lim Mtl—a (2.11)
s—t (t — s)

exists as a finite number and is equal to fX” (t). On the other hand since t is left-dense,
from the existence of the limit 2.11 it follows that féa) (t) exists and is equal to this limit.
Therefore féa) (t) = éa)(f)(t).

Finally, let ¢ be left-dense and right-scattered. Applying mean value Theorem 15 of [87]
to f, we can write

e s DO =600 oo, 2.12)

where &, are between s and ¢t. Since ¢ — ¢, n — t as s — t and since, by the condition,
féa) is continuous, it follows from 2.12 that

o SO =) s

()
fim = £ (2.13)

On the other hand since ¢ is left-dense, the left-hand side of (2.13) is equal to ¢t~ féa) (t).
So, f&(t) = £1%. The theorem is proved. O

The following theorem can be proved in a similar way using an analogous mean value
Theorem 2.3.6.

Theorem 2.3.8. Assume f : T — R is nabla conformable fractional differentiable on

T, and if féa) 15 continuous on T,, then f is delta conformable fractional differentiable
(Definition 1.5.1) on T* and

féa)(t) = féa)(a(t)) for all t € T".

Similar to the Definition 1.5.7, we give the following definition of absolutely contin-
uous function.

Definition 2.3.4. A function f : [a,blr — R is said to be absolutely continuous on
la,b]r (i.e., f € AC([a,b|r,R)) if for every e > 0, there exists a n > 0 such that if
{(ak, be]r}iey, is a finite pairwise disjoint family of subintervals of |a, blr satisfying

k=m k=m
(b — ax) < then Y |f(by) — f(o(ar))| <e.
=1 h=1

The following analogue for nabla differentiable of Theorem 4.1 in [40] can be proved
in a similar way.
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Lemma 2.3.2. Assume function f : [a,blyr — R is absolutely continuous on |a,blr, if
and only if f is nabla differentiable V-a.e. on [a, bl and

f(t) = f(a)+ fY(s)Vs, for alltc [a,b]r.
la,t]T

The following analogue for nabla conformable fractional differentiable of Theorem 18
in [87] can be proved in a similar way.

Theorem 2.3.9. Assume function f : [a,blr — R is absolutely continuous on [a,b]r,
then f is nabla conformable fractional differentiable of order o V-a.e. on [a,blr and the
following equality is valid:

ft) = fla)+ f(va)(s)vas for all t € [a,b]r.

[avt]']l‘

Next, we introduce the nabla conformable fractional integral (or nabla a-fractional
integral) on time scales for vector-valued functions.

Definition 2.3.5. Assume f : T — R", is a function and f(t) = (f1(t), fo(t), ..., fu(t)).
Let A be a V- measumble subset of T. Then f is nabla a-integrable on A if and only if
fii=1,2,. are nabla a-integrable on A, and

/f NVt = ( /f1 Vt/fz ...,/Afn(t)Vt

Combining Definition 2.3.5 and Theorem 2.3.2, we have the following theorem.

Theorem 2.3.10. Let o € (0, 1], a,b,c € T, \,v € R, and f,g : T — R™ be two
ld-continuous functions. Then,

(i) / F(E) + 79(8)]Val = A / OVt +7 / 4(1)Vat;

(i) /abf(t)Vat: —/baf(t)v ;
(iii) /abf(t)vat_/acf(t)VatJr/cbf(t)V "
(i) [ 109 =

(v) if there exist g : T — R with || f(t)|| < g(t) for allt € [a, b], then

< /abg(t)vat-

Similar to the Definition 37 in [87], we give the following definition of absolutely
continuous function.
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Definition 2.3.6. A function f : [a,b]ly — R, f(t) = (f1(t), f2(t), ..., fa(t)). We say f
absolutely continuous on [a,blr (i.e., f € AC([a,b]r,R"™)), if for every e > 0, there exists

an >0 such that if {(ax, be]r}iy, is a finite pairwise disjoint family of subintervals of
la, b satisfying

k=m k=m
(b — ag) <n then Y || f(by) = fo(ar)] <e.
k=1 k=1

Combining Definitions 2.2.3, 2.3.2 and Theorem 2.3.9, we have the following theorem.
Theorem 2.3.11. Assume function f : [a,bly — R" is absolutely continuous on [a,b]r,

then f is nabla conformable fractional differentiable of order o V-a.e. on |a, bl and the
following equality is valid:

Ft) = fa) + N($)Vas for all t € [a,b]r.

[avt}’]l‘

43



Chapter 3

Systems of first-order nabla
dynamic equations on time scales

3.1 Introduction

In this chapter, we prove existence of solutions to system of first-order V-dynamic equa-
tions on time scale:
aV(t) = f(t,x(t)), V-ae teT,,
(3.1)
z(a) = x(b),

where T is an arbitrary compact time scale, with @ = minT, b = max T, Ty = T\{a}
and f : Top x R" — R" is a V-Carathéodory function. For this purpose, we use the
method of solution-tube and Schauder’s fixed-point theorem.

Existence results for system (3.1) were obtained in [18] with f is a continuous func-
tion. In the particular case where n = 1, existence results for first-order V-dynamic
equation on time scales were obtained in [91] for the dynamic initial value problem:

2V (t) = f(t,x (1)), t € (0,b]p, and =(0) =0,

with f is a left-Hilger-continuous function, their results were established with the method
of lower and upper solutions. Existence results were obtained in [44,47,53], for systems
of A-dynamic equations on time scales. In [53] Gilbert introduced the notion of solution-
tube to systems of first order A-dynamic equations which generalizes the notions of lower
and upper solutions.

The original results of this chapter are published in [27].

3.2 Existence Theorem

In this section, we establish an existence result for the problem (3.1). A solution of this
problem will be a function z € Wé’l(T,R”) for which (3.1) is satisfied. We introduce
the notion of solution tube for the problem (3.1).
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Definition 3.2.1. Let (v, M) € W& (T, R?) x W& (T, [0,00)). We say that (v, M) is a
solution tube of (3.1) if

1. {x—o(t), ft,z)—oV(t)) < M@E)MV(t) V-a.e. t € Ty and for every x € R™ such
that |lz - o(t)]] = M(1)

2. vV(t) = f(t,v(t)) V-a.e. t € Ty such that M(t) =0,
3. [lo(b) = v(a)|| < M(a) — M(b).

If T is a real interval [a, b], our definition of solution tube is equivalent to the notion
of solution tube introduced in [74] for first order systems of ordinary differential equa-
tions.

We denote
T(v, M) = {x € WG (T,R") : ||=(t) — v(t)|| < M(t) for every t € T}.
We consider the following problem.

zV(t) +z(t) = f(t,Z(t)) + T(t), V-.ae. te T,

(3.2)
z(a) = z(b)
where
MO (¢ + v(t), if ||z —w(t)|| > M(t),
o { (5 (1)) + o) fe— o0l > M0,
x(t), otherwise.
Lemma 3.2.1. For every g € Ly (T, R"), the problem
zV(t) + z(t) = g(t), V-a.e te Ty, 3.4)

(a) = x(b),

has a unique solution x € Wé’l(T,R”) given by:

Y =) N B 1 NS SR 1O N
#(f) = éa(tb) ( 1(a,b) — /(a,b]mr é—l(P(5>ab)v /(t,b]mr é—l(p(s)’b)v ) |

Proof. Let x be a solution to (3.4). By Theorem 3.3 in [34], consider
[ z(t) }V _ )A 1(t,0) + e (L, b)a(l) g(t)
7=

é_1(t,b -

At b)ea(p(t).b)  ealp(t),b)

and hence integrating the above on (t,b] N'T obtain

2(t) = &1 (4,D) (x(b) - /Qt . %V&) | (3.5)
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If follows from the boundary condition in (3.4) and (3.5) that
é-1(a,b) / 9(s)
z(a) =2(b) = ———F—— ————Vs. 3.6
== @0 1 e 100510 &0
So by substituting (3.6) into (3.5), the result follows.

The following lemma is similar to Lemma 2.11 in [18].

Lemma 3.2.2. Let r € Wg'(T) such that vV (t) < 0 V-a.e. t € {t € Ty : r(t) > 0}. If
r(a) < r(b), then r(t) <0, for every t € T.

Let us define the operator 75 : C(T,R") — C(T,R") by:
é(a, b) (f(s,7(s)) +7(s))
Rl G oy i = ox e

‘/(t - ! S’i&)) >( ))Vs) |
)

Proposition 3.2.1. If (v, M) € W& (T, R") x W& (T, [0, 00)) is a solution tube of (3.1)
then the operator Ty : C(T,R") — C’(T R™) is compact.

Proof. We first observe that from Definitions 1.3.17 and 3.2.1, there exists a func-
tion h € Ly (Ty,[0,00)) such that || f(¢,Z(t)) + Z(t)|| < h(t),V-ae. t € Ty for every
x € C(T,R"). Let {2, }nen be a sequence of C(T,R") converging to = € C(T,R"). By
Proposition 1.3.2,

[Ta(2n(t)) — To(2(t)) ]

< K(C+1) /
m (a,b]NT

where K := maxyer |6_1(¢,0)| , C =

| (£(5, () + Tals)) = (f(5,7(5) + 7)) | Vs,

é,1<a, b)
é,l(a, b) —1
we must show that the sequence { g, }nen defined by g,(s) = f(s, Tn(s))+Tn(s) converges
to the function g(s) € Ly (Ty, R™) where g(s) = f(s,Z(s)) + Z(s). We can easily check
that @, (t) — T(t) for every t € Ty and, then, by (ii) of Definition 1.3.17, g,(s) — g(s)
V-a.e. s € Ty. Using also the fact that ||g,(s)|| < h(s), V-a.e. s € Ty, we deduce that
gn(s) — g(s) in Ly(Ty, R™) by Theorem 1.3.4. This prove the continuity of 7. For
the second part of the proof, we have to show that the set To(C(T,R")) is relatively
compact. Let y = Ty(x) € To(C(T,R")). Therefore,

Tl < D (o)l g )-

m

and m := minger |é_1(¢,0)|. Then,

So, T5(C(T,R™)) is uniformly bounded. This set is also equicontinuous since for every
ti <ty €T,

1T () (t2) = T3 (z) (1)

o1 (b ty) — ey (b, 1) LD

m

/ h(s)Vs+ K h(s)Vs.
(a,bNT (t1,t2]NT
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By an analogous version of the Arzela-Ascoli theorem adapted to our context, T5(C(T, R"))
is relatively compact in C'(T,R"). Hence, T» is compact. |

Here is the main existence theorem for problem (3.1).

Theorem 3.2.1. If (v, M) € Wg' (T, R") x W' (T, [0, 00)) is a solution tube of (3.1)
then the problem (3.1) has a solution x € W' (T, R") N T (v, M).

Proof. By Proposition 3.2.1, T5 is compact. It has a fixed point by the Schauder
fixed-point theorem. Lemma 3.2.1 implies that this fixed point is a solution for the
problem (3.2). Then, it suffices to show that for every solution z of (3.2), z € T'(v, M).
Consider the set A = {t € Ty : ||x(t) —v(t)|| > M(¢t)}. By Remark 1.3.1, V-a.e. on the
set A={tc A:t=p(t)}, we have

N 1 O R U IO ) S
(la(t) = w(e)]| = M (1) o o] PAONNC Ry

If t € A is left scattered, then v (t) =t — p(t) > 0 and

(l=(t) = v()ll = M(£))¥
_ () = o = ll(o(t) —
v(t)[|(2)

_ {x(t) —v(t), aV(t) — vV (1))

() = v(0)]]

Since (v, M) is a solution tube of (3.1), we have V-a.e. on {t € A: M(t) > 0},

— MY (t).

(l(t) = v(®)]] = M(1))¥

(M(t) — [lz(t) = o))
[2(t) — v(@)]]
[(t) — (@)
M) MY (t)

= St (e = vl = M) = M¥(0) <0

(x(t) = o(t), (z(t) = o(1)))

On the other hand, we have V-a.e. on {t € A: M (t) = 0}, that
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(le(t) — o(t)]) — M(1))
(o) — olt), J(LEW) +2(0) —2(t) — o7 (1) o
< () —o(0)] M)
{elt) = o(t), S 0(0) — o7 (1)
@) — o0

If we set 7(t) = ||z(t) — v(t)|| — M(t), then rV(t) <0 V-ae.t e {t € Ty:r(t) >0}
Moreover, since (v, M) is a solution tube of (3.1) and x(a) = x(b), then r(a) — r(b) <
|v(a) —v()]| — (M(a) — M (b)) < 0. Lemma 3.2.2 implies that A = 0. So, z € T'(v, M)
and the theorem is proved. O

8

— [lz(t) —v(®)]| = MY (t) < 0.

Example 3.2.1. The following is a modified version, considering a periodic condition,
of Example 4.1 in [55]:

{xv(t) = ay||z(t) [Pz (t) — agz(t) + azp(t), t € Ty,

x(a) = z(b). (3:8)

where ay,as, a3 € Ry such that as > a1 + ag and ¢ : Tog — R™ is a continuous function
satisfying ||p(t)|| = 1 for every t € Ty. It is easy to check that v =0 and M =1, is
a tube solution. By Theorem 3.2.1, problem (3.8) has a solution x € W& (T, R") such
that ||x(t)]] < 1 for everyt € T.

Remark 3.2.1. Definition 3.2.1 generalizes the notions of lower and upper solutions
a and [ introduced in [91] in the particular case where the problem (3.1) is considered
with n = 1, and the periodic boundary condition replaced by x(0) = 0 and f is left-Hilger
continuous on (0,bly x R. We recall these definitions.

Consider the problem:

2V (t) = f(t,z(t)), forallte (0, br, (3.9)
2(0) = z(b). |

Definition 3.2.2. Let «, [ be nabla differentiable functions on (0,b]r. We call a a
lower solution to (3.9) on [0, by if

(i) aV(t) < f(t,a(t)), forallte (0,b]r;
(i) a(0) = a(b).
Similarly, we call  an upper solution to (3.9) on [0, b]y if
(i) BV (t) > f(t,B(t)), for allt € (0,b]r;
(1i) B(0) = B(b).
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Remark If o, 5 € R are, respectively, lower and upper solutions of (3.9) such that
a(t) < p(t) for every t € (0,b]r, then v = (a+)/2 and M = (f—«)/2 is a solution tube
for this problem. Conversely, if (v, M) is a solution tube of (3.9) with v and M of class
C'w(0) = v(b), and M(0) = M(b), then « = v — M and 8 = v + M are, respectively,
lower and upper solutions of (3.9).

Example 3.2.2. Consider the problem:

oV(t) = —a3(t) —t, forallte (0,1]r;
(3.10)

Verify that with v = 0 and M = 1, (v, M) is a solution-tube of (3.10). By Theorem
3.2.1, the problem (3.10) has a solution z such that |z(¢)|] < 1 for every ¢t € (0,1]r.
Observe that « = v — M and § = v+ M are, respectively, lower and upper solutions of
(3.10) and —1 < z(t) <1 for every ¢ € [0, 1]r.
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Chapter 4

Systems of first-order nabla
dynamic inclusions on time scales

4.1 Introduction

In this chapter, we establish an existence result for the following system of first-order
V-dynamic inclusions on time scale:

zV(t) € F(t,z (p(t))), V-ae.teTy,
(4.1)
x € (BE),

where T to be an arbitrary compact time scale, with @ = min T, b = max T, Ty = T\{a},
F : Ty x R" — R" is a multivalued map with compact and convex values, and (B¢)
denotes the terminal value or the periodic boundary value conditions:

z(b) = o, (4.2)

x(a) = z(b). (4.3)

In the particular case where n = 1, existence results for first order V-dynamic inclu-
sion on time scales were obtained in [12] for the general boundary conditions:

zV(t) € F(t,r (1)), a.e. on T, and L(z(a),z(b)) =0,

with F: T, x R — 2%\() a multivalued map with compact and convex values and L is a
continuous single-valued map. Their results were established with the method of lower
and upper solutions. Existence results for systems of first order V-dynamic inclusions
were obtained in [54] for the initial value problem. In [49] Frigon and Gilbert introduced
the notion of solution-tube to systems of first order A-dynamic inclusions (with an initial
or a periodic boundary value condition) which generalizes the notions of lower and upper
solutions given in [12]. In order to obtain the existence results for problem (4.1), we
introduce the notion of solution-tube of (4.1).

The original results of this chapter are published in [28].
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4.2 Existence Theorem

In this section, we are concerned with the existence of solutions for the problem (4.1).
A solution of this problem will be a function = € W' (T, R?) for which (4.1) is satisfied,
we introduce the notion of solution-tube of this problem.

Definition 4.2.1. Let (v, M) € W' (T,R") x WH'(T, [0, 00)). We say that (v, M) is a
solution tube of (4.1) if

1. V-a.e. t € Ty and for every x € R™ such that ||z —v(p(t))|| = M (p(t)), there ezists
d > 0 such that, for every u € R™ such that ||u — z|| < 0, and ||lu — v(p(t))| >
M(p(t)), there exists y € F(t,u) such that

(u—v(p(t),y — v () = MY (t)[lu—v(p(t))]-

2. vV (t) € F(t,v(p(t))) V-a.e. t € Ty such that M(p(t)) =0,
3. M(t) =0, for every t € Ty such that M(p(t)) =0,

4. - If (BE) denotes (4.2), then ||xo — v(b)|| < M(b).

- If (BC) denotes (4.3), then ||v(a) — v(b)|| < M(b) — M(a).
We denote
T(v, M) = {x € WG'(T,R") : ||z(t) —v(t)|| < M(t) for everyt € T}.
We need the following auxiliary lemmas.

Lemma 4.2.1. Let g € L5 (To,R"). The function x : T — R™ defined by
(1) = e1(0.1) (0 - / 9()e1(5.5)Vs) (4.4)
(£,b]NT
s a unique solution of the problem

zV(t) —x(p(t)) = g(t), V-ae teT,

(4.5)
z(b) = xo.

Proof. We check (4.5) for each pair (z;, ¢;), i € {1,2,...,n}, by direct calculation.
From Theorem 3.3 in [34] and Proposition 1.3.4 we have that

2V (t) —x(p(t) = w0 (é—l(b,t))v—(é—l(b,t))v/ 9(s)é-1(s,0)Vs

(p(H).HINT

+é_1(b, s)é_1(s,b)Vs
( p(t))/(;;(t),b]mrg( )é-1(s,b)
g(t)7
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for all t € T. It is easy to verify that z(b) = x. O

Lemma 4.2.2. Let g € Ly (To,R"). The function z : T — R™ defined by

() = é_l(lt7b) ( 1_é_11 o /(&bm 9(5)é 1 (5,b)Vs — /(t . g(s)él(s,b)Vs)

1s a unique solution of the problem

oV (t) —x(p(t)) = g(t), V-a.e. t €Ty,
x(a) = x(b).

(4.6)

Proof. The result follows in a similar way to the proof of Lemma 4.2.1. 0

The following lemma can be proved analogously to Lemma 2.24 in [53].

Lemma 4.2.3. Let r € W& (T) such that ¥ (t) > 0 V-a.e. t € {t € Ty : r(p(t)) > 0}.
If one of the following conditions holds,

(i) r(b) < 0;
(i) r(b) < r(a);
then r(t) <0, for every t € T.
We assume the following hypothesis

(Hy) F:TyxR" — R"is a V-Carathéodory multivalued map with compact and convex
values.

(Hy) There exists (v, M) € W' (T, R™) x Wg'(T, [0, 00)) a solution tube of (4.1).

To prove our existence theorem, we consider the following modified problem:

29(t) - 2(p(t)) € Fu(t,x(p(t)) — Z(p(t), V-ae. t € To,

(4.7)
x € (BC),
where F), : Tg x R" — R" is defined by :
Fu(t, x) = F(t,7(p(t)) N G(t, 2); (4.8)
with
(0Y(t) if M(p(t)) =0,
R" if [lz(p(t)) — v(p@)]| < M(p(t)),
G(t,z) = and M(p(t)) > 0,

{zeR": (x—v(p(t),z — vV ()
> MY (t)||lz —v(p(t))||}, otherwise,
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and

{ MO (2~ (1)) + 0(t), il — o(t)| > M(2),
z(t), otherwise.

Remark 4.2.1. For every (t,xz) such that ||z —v(p(t))| > M(p(t)),
G(t,x) = G(t,Te(p(t))) for all § € [0, 1], (4.9)

where
Folp(t)) = 07(p(t)) + (1 — ).
Indeed, for 6 € [0, 1],

Falote) ~ o) = (1= 0+ L2 COL) (o= olpto),

Thus,
G(t,x) = {z eER": (z—v(p(t)),z—vV(t)) > MY (t)||lz — o( ||}
= {z e R": (Ty(p(t)) — v(p(t)),z — vV (t)) > MV (¢ )Ill’e( () = v(p()]l} -
So, for 6 € [0,1[, G(t,z) = G(t,To(p(1))) since [[To(p(t)) — v(p(t))]] > M(p(1)).

Similar to the Propositions 3.3 and 3.4 in [49], we give the following propositions.

Proposition 4.2.1. The multivalued map G : Ty x R® — R" satisfies the following
properties:

(i) G(t,x) has nonempty, closed, convex values for all x € R™, and for V-almost every

(i) ©+— G(t,x) has closed graph for V-almost every t € T;
(iii) t — G(t,x) is V-measurable for every x € R™.

Proof. (i) It is obvious that G has nonempty, closed, convex values.
(ii) To show that
Ar={(z,y) eR™:y € G(t,2)}

is closed for V-a.e. t € Ty, we just have to check the case where t € Ty is such that
M(p(t)) # 0. Let {(xk,yr)} be in A; such that zp — x and yp — y. If ||z —v(p(t))]| <
M(p(t)) then y € G(t,z) = R". So, (x,y) € A;. Otherwise, ||z — v(p(t))|| > M(p(t))
and for k sufficiently large ||xx — v(p(t))|| > M(p(t)) and

{zx = v(p(t), ye — vV (1)) = MY (t)[lzr — v(p(1))]].
Therefore,

(@ —v(p(t),y — vV () = MY 1)z — v(p(t)]l, and hence (x,y) € A
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(iii) Let C' be a nonempty, closed subset of R", and fix x € R". Let {y,, : m € N} be a
countable, dense subset of C'. Observe that

B, ={teTo:G(t,z)NC #0} =By UBy U (B3N By),
where

B, = {t €To: vV (1) € c} N {t €Ty : M(p(t)) = o}

B = {t €Ty llo— v(p®)| = M(p(t)) <0} n{t € Ty: M(p(t)) >0},
By = {1 € To: llo — vlp(t)]] ~ My >o}m&ewo M(p(t)) > 0.
lﬁz(]LJ&ETw<x—M()) ~07) > MYl — (o) - 1

keNmeN

The V-measurability of the maps ¢ — v(p(t)), t = M(p(t)), t — vV (t), and t — MV (t)
imply that B, is V-measurable, and so is t — G(t, x). O

We now define the multivalued map H : C(T,R") — Ly (To, R™) by
H(x) = {w € LL(To, R") : w(t) € Fult,2(p(1))) V-ae. t € To}.

Proposition 4.2.2. Assume (H;) and (H2). Then, H has nonempty, convex values,
and there exists h € Ly(Ty, [0,00)) such that

|lw(t)|| < h(t) V-a.e. on Ty for all w € H(z) and all x € C(T,R"). (4.10)

Proof. First of all, we want to show that A has nonempty values. Let z € C(T,R").
There exists a sequence of simple functions {z,, }men such that

lzm(p(t)) — v(p(D) ]| > M(p(t))
V-ae.on {t: ||e(p(t) = v(p(t)l| > M(p(t)) }.

and such that z,, — z in C(T,R"). Since the multivalued maps t — F(t,y) and
t — G(t,y) are V-measurable for every y € R", the maps t — F(t,z,(p(t))) and
t — G(t,x,(p(t))) are also V-measurable for every m € N. Proposition 1.2.2 implies
that, for every m € N,

t= F(t,zm(p(t))) NG(t, 2m(p(t)))

is V-measurable, and for every k € N,

tr J (P 2(o(0) 0 G 2(ol0))

m>k

is V-measurable. Again, Propositions 1.2.2 and 1.2.1 imply that

tes ) U (F(t,2m(p(t) NGt (p(1))))
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is V-measurable. Definition 4.2.1 (1) guarantees that this map has nonempty values
V-almost everywhere on {t : M(p(t)) # 0}. Indeed, V-almost everywhere on

{t: M(p(t)) # 0 and ||#(p(t)) — v(p(t))]| < M(p(t))},
for m > k sufficiently large, [l (p(t)) — v(p(t))]| < M(p(t)) and
F(t, 2 (p(t))) N Glt,2m(p(1))) = F(t, 2m(p(t))) NR" 0.
On the other hand, for V-almost every
te {t: 7(o(t) — v(pt)]l = M(p(t)) > 0},

if there exists m > k such that ||z..(p(t)) — v(p(t))|]| < M(p(t)), then as before,
F(t,z,(p(t)) N G(t,xm(p(t))) # 0. Otherwise, there exists a § > 0 given by Defini-
tion 4.2.1 (1) and m > k sufficiently large such that

lzm (p(8)) = Z(pO)I| < 0, llzm(p(t)) — v(p®)]| > M(p(t)),
and there exists z € F(t,z,(p(t))) such that
(@m(p(t)) = v(p(t), 2 = vV (1)) = lzm(p(t)) = v(p(t) 1MV (1),

ile. z € F(t,xn(p(t)) NG(t, zm(p(t))).
Thus, the multivalued map @ : Tg — Ly, (To, R™) defined by

o(t) = { M Unse (Ft 2(pl0) 0 Gt 2npl0)))), i £ € {82 M(p(t)) # 0},
VT, if £ € {t: M(p(t)) = 0},

is V-measurable and has nonempty and compact values. Finally, Theorem 1.2.1 guar-
antees the existence of a V-measurable selection w of ®.

We must show that w € H(x). Since w(t) € ®(t) V-a.e., we have,

wt) € [ (Fton(p() N Gt zn(p(t))) V-ae. inft: M(p(t)) # 0},

m>k

for every k € N. So, for V-almost every ¢t € {t : M(p(t)) # 0}, there exists a subsequence

Uy () € E(t, 2, (p(1))) N G, 2m, (p(1)))

such that w, (t) — w(t). If ||z(p(t)) — v(pE)|| < M(p(t)), since y — F(t,y) and
y — G(t,y) have closed graph and since z,, (p(t)) — Z(p(t)) = z(p(t)), we deduce that
w(t) € F(t,7(p(t) NG, x(p(t))) = Fult, z(p(t))).

On the other hand, if ||z(p(t)) — v(p(t))|| > M(p(t)), since ,,, (p(t)) — Z(p(t)), there
exists a sequence {y,,, } such that y,,, — x(p(t)) and

T, (P(1)) = O Ty (P(1)) + (1 = O )y = (i )g,,, (p(1)) for some O, € [0,1]
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By (4.9),

U, (1) € F(t, 2, (p(1))) O G, 2, (p(1))) = F(t 2, (p(1))) OV G(E, Yy )-

Again, since y € F(t,y) and y € G(t, y) have closed graph and since z,,, (p(t)) — Z(p(t))
and y,,, = x(p(t)), we can deduce that

w(t) € F(t,7(p(t)) NG, x(p(t))) = Fult, z(p(t))).
Moreover, Definition 4.2.1 (2) implies that V-a.e. on {t : M (p(t)) = 0},
w(t) = v (t) € F(t,z(p(t) N G(t,2(p(t))) = Fult, 2(p(t))).

Hence, we can conclude that w € H(z) since by hypothesis (H;), w € Ly (To, R™).
The convexity of H(x) follows from convexity of the values of F' and G.

Finally, hypothesis (H;) guarantees the existence of h := h, € Lg(Ty,|[0,00)) with
q = max{||v(t)||+ M(t) : t € T}, such that for every z € C(T,R™) and every w € H(z),

lw(t)]| < h(t) V-ae. teT,.

Let us define the multivalued operators Ny, N, : C(T,R") — C(T,R") by

Ni(z)(t) = {u Su(t) = é_1(b, 1) (xo . /(t - é_1(s,b) (w(s) . @(p(s)))w),

where w € 7‘[(513)}

N, (2)(t) = {u e O(T,R") :

u(t) = Al(lt’b) E _611<a ; /ab} T (ws) = 7o (5)))é-1(s5,b)Vs
- /(tb}mr ( ) (s,b) Vs} where w € H(m)}

Clearly, from Lemma 4.2.1 (resp. Lemma 4.2.2), the solutions of problem (4.7), (4.2)
(resp. problem (4.7), (4.3)) coincide with the fixed points of operator N (resp. N,,).

Proposition 4.2.3. Assume (Hy) and (Hy). The operator N7 is compact, u.s.c., with
nonempty, convex and compact values.

Proof. The previous proposition insures that N; has nonempty, convex values, and
guarantees the existence of h € Ly, (T, [0, 00)) satisfying (4.10).
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Set K :=max{|é_i(t,s)|,s,t € T} and ¢ := max {||v(t)|| + M (t) : t € T}. To show that
N (C(T,R™)) is bounded, we just have to remark that for every u € N;(C(T,R"™)),

) < & (llzol + [

(a,b]NT

K Juw(s) = #(p (5))]| V)
< K(on|y+/(%bmf((h(swq) Vs) forall t € T.

On the other hand, for every to > t; € T,
lu(ts) — u(ty)]
< s (b ta) — ea(bty)] (||=T0|| i /( e Dl —x<p<s>>||Vs)
t2,b|N

+ /(tl,tz}mr le_1(s,t1)| [[w(s) —Z(p(s))| Vs

< lealtte)— et (Il + [ Klg+no)vs)
(a,b]NT
+ K? / (g + h(s))Vs.
(t1,t2}ﬂ'ﬂ‘
Thus, N;(C(T,R")) is equicontinuous since
t—é_1(bt) and t— (¢ + h(s))Vs
(£,5]NT

are continuous on T. By an analogous version of the Arzela-Ascoli theorem adapted
to our context, we conclude that N (C(T,R™)) is relatively compact in C(T,R").

We now prove that N has closed graph.
Let {x,,} and {u,,} be convergent sequences in C(T,R™) such that x,, = x, u, — u
and u,, € Ni(x,,). Let w,, € H(z,,) be such that

um(t) = é_1(b,1) (xo - /

-1(5.0) (wn(5) = Foulp ())) V).
(t5NT
Let h be the function given in (4.10). Considering the extensions @, and h in L*([a, b]),
we have B

| Wi ()|l < R(t) for almost every t € [a,b].

By Dunford-Pettis theorem, there exists g € L!([a,b],R") and a subsequence still de-
noted {w,,} such that w,, — g in L'([a,b],R"). Since a closed convex set is weakly
closed, there exist 2, € co{Wy,, Wy+1, ...} such that z,, — g in L'([a,b], R").

Thus, there exists a subsequence again noted {z,,} such that, z,,(¢) — ¢(t) for almost
every t € [a, b]. Therefore, for almost every ¢ € [a, b,

Za(t) € co{ U wl(w} c 00{ U Ft.mp(t) N é(t,xl(p(t)))}.

I>m I>m
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where the multivalued maps F and G are respectively extensions of the multivalued
maps F' and G in the sense of (1.1). Taking the limit, we get

gt) € () eo{ |J Fit,mulpt) N Glt,m(pl1)}

meN I>m

C F(t,2(p(1))) NG(t,x(p(t)) = Fult, z(p(1))),

since x,, — x in C(T,R") and since y — ﬁ(t, y) and y — é(t, y) have closed graph and
closed, convex values. By Theorem 1.3.5, there exists a function w : Tg — R™ such that
g =w. So, B

w(t) € Fu(t,z(p(t))) = Fu(t,z(p(t))) V-a.e. teT.
Thus, w € H(z).
Finally, since w,, — w in L'([a,b],R") and x,, — z in C(T,R"), again by Theorem
1.3.5, we deduce that for every t € T,

/(t - e-1(s,0) (wm(s) — Zm(p (S))>VS — é_1(s,b) <w(5) —Z(p (S))>Vs.

(t,b]T

Moreover, since u,, — u in C(T,R"™), we get that for every ¢t € T,
ut) = s, ) (v0— [ eafs ) ()~ 2(o(s)) V).
(t,5)NT

Thus, u € Nj(x) and hence, N7 has closed graph. Since N7 is compact and has closed
graph, Ny has compact values.

We now prove that N7 is upper semi-continuous.

Let B € C(T,R™) be a closed set and A = {z € C(T,R") : Ni(z) N B # 0}. Let {z,,}
be a sequence in A converging to x in C(T,R"). There exists u,, € Nj(x,) N B.
The compacity of N; guarantees the existence of a subsequence still denoted {u,}
converging to u in C(T,R™). Since B is closed and N; has closed graph, we deduce
that u € N7(z) N B. Thus x € A. O

The following result can be proved as the previous one.

Proposition 4.2.4. Assume (H,) and (Hy). The operator N, is compact, u.s.c., with
nonempty, convex and compact values.

Now, we can obtain our main theorem.

Theorem 4.2.1. Assume (H,) and (Hy). The problem (4.1) has a solution x € W' (T, R™)N
T(v, M).

Proof. By Proposition 4.2.3 (resp. Proposition 4.2.4), the operator N (resp. N,) is
compact and upper semi-continuous with nonempty, convex, and compact values. It has
a fixed point by the Kakutani fixed point theorem. If (B¢€) denotes (4.2) (resp. (4.3)),
Lemma 4.2.1 (resp. Lemma 4.2.2), implies that this fixed point of N; (resp. N,) is a
solution of Problem (4.7), (4.2) (resp. problem (4.7), (4.3). Then, it suffices to show that
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for every solution z of (4.7), x € T(v, M).

Consider the set A = {t € Ty : ||z(p(t)) — v(p(t))|| > M(p(t))}. By Remark 1.3.1,
V-a.e. on the set {t € A:t = p(t)}, we have

(lx(t) = v(@®)] = M ()Y = : —MY(t).  (4.11)

(le(t) — v(e)]| - M(1)"
e p®) — (el — @l — l2(e(t) — v
- VO 2(o®) — ()] M)

(z(p(t)) = v(p(t)), (z(t) —v(@)) = (x(p(t)) = v(p@))) _ v (4.12)
- v(t)llz(p(t)) = v(p®))ll M)

_ {0 = op0). 7T W) _

Let us denote y(t) = <$V(t) —x(p(t)) —{—T(p(t))) € Fu(t,z(p(t))) V-a.e. on Ty. Since
(v, M) is a solution-tube of (4.1) and from (4.8), (4.11), (4.12) and Remark 4.2.1, we
deduce that V-a.e. on {t € A: M(p(t)) > 0},

(ll2(t) = v(®)]| = M(E)
_ (olpld) = w(p(0), 90— (To(0) + 2(p(1))) 0" (©)

- [2(p(t)) — v(p(t))
(T(p(t) = v(p(t), y(t) — v (t))

— MY(t)

M{(p(2)
— (M(p(t) = ll2(p(t)) = v(p@)) = M (1)
> M(ﬂ(t>>Mv(t) _ Mv(t) =0.

M(p(t))

On the other hand, if M(p(t)) = 0, then F,(¢,z(p(t))) = {vV(¢t)} and V-a.e. on {t € A :
M(p(t)) = 0}, we have

(l=(t) = o)l = M(£))¥
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This last equality follows from Definition 4.2.1 (3) and Proposition 1.3.5.
If weset r(t) = ||z(t)—v(t)||[ =M (t), then rV(t) > 0 V-a.e.on A = {t € Ty : r(p(t)) > 0}.
Moreover, since (v, M) is a solution tube of (4.1) and z satisfies (4.2) (resp. (4.3)), then
r(b) < 0 (resp. r(b) —r(a) < ||v(a) —v(b)|| = (M(b) — M(a)) < 0), Lemma 4.2.3 implies
that A =0. So, x € T(v, M) and the theorem is proved. O
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Chapter 5

Existence of solutions for
conformable fractional differential
equations and dynamic equations
and for systems of conformable
fractional differential equations

In this chapter, we present existence of solutions for the nonlinear conformable frac-
tional differential equations, for the nonlinear conformable fractional dynamic equations
on time scales with nonlinear functional boundary value conditions and for systems of
nonlinear conformable fractional differential equations with periodic boundary value or
initial value conditions.

5.1 Existence of solutions for conformable fractional
problems with nonlinear functional boundary con-
ditions

The results of this section are original and are submitted for publication [24].

5.1.1 Introduction

In this section, we study the existence of solutions for the nonlinear conformable frac-
tional differential equations with nonlinear functional boundary conditions:

2@ (t) = f(t,z(t)), forae tel=][0,b], b>0, (5.1)

where 0 < a <1, f: I xR — R is a L-Carathéodory function, and x(*)(¢) denotes the
conformable fractional derivative of x at ¢ of order . We consider, depending on the
circumstances, nonlinear functional boundary conditions of the type

Li(z,z(b)) =0 or Ly(z(0),z) =0,
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with L; (i = 1,2) a continuous function that satisfies suitable monotonicity assump-
tions. For this purpose, we use the method of upper and lower solutions together with
Schauder’s fixed point theorem. Existence results for the conformable fractional differ-
ential equations with linear and nonlinear functional boundary conditions are obtained
with new comparison results and definitions of upper and lower solutions. For first order
ordinary differential equations with nonlinear boundary conditions, we refer the reader
to the papers [36,60].

5.1.2 Green’s Functions and Comparison Results

In this subsection, we study the expression of the solutions of a linear conformable
fractional differential equation of order o € (0, 1] coupled to two-point linear conditions.
This study is mainly devoted to obtain the expression of the fractional Green’s function
related to the considered problem. Once we have such expression, we derive comparison
results for the considered problems.

To be concise, we look for z € W' ;1(I), the solution of the following linear problem:

2@ +p(t)x(t) = g(t), ae tel, ao z(0) — by z(b) = Ao, (5.2)
with p, g € LL(I), and ag, by, Ao € R.

Theorem 5.1.1. If ag # boe™ 1320 dat then problem (5.2) has a unique solution x €
ng’)l(f), and it is given by the following expression.:

b )\O e~ fotp(r) dar
x(t) ::/ G(t,s)g(s)das + ) : (5.3)
0 ag — bO e~ fo p(r) dar
where
e~ Jip(r)dar Qo, 0<s<t<h,
G(t,s) = — \ (5.4)
ag — bo e fO p("') al bo e fO p(T‘) da’l”’ 0 S t <s S b

Proof. Let x be a solution of problem (5.2). Since z € Wéjfg)l(l), from Remark 1.4.3,
we have that z is differentiable a.e. on I. Thus, Theorem 1.4.2 (iv), ensures that, it is
a solution of the following singular differential equation:

2 () + p(t) z(t) = g(t), ae. tel, ao x(0) — by z(b) = Ao,

or, which is the same,

o ()t pt) () =t g(t), ae tel, ao z(0) — by x(b) = Ao. (5.5)

Now, by using that p, g € LL(I), we have that, for a.e. t € I,

d t t t
E (I(t) efo p(r) dar) — efO p(r) dar (:E’(t) + ta—lp(t) :L’(t)) _ efo p(r) darpa—1 g(t).
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Thus, by direct integration, we have that

¢
o(t) = e~ JoPdar () 4 / e~ Jipdarg(d, s forallt e 1. (5.6)
0
If follows from (5.6) and the boundary condition in (5.2) that
b[) /b b )\0
x(0) = e~ Jsp(r)dar g g dys + ) 5.7
0= | oe)las P (6T)
Now, by substituting (5.7) into (5.6), we arrive to
boe™ fg p(r) dar t b t .
x(t) = - / e~ P dar () d s + / e~ Jo P dar g (6)d s
ag — bp e~ Jo P dar Jg 0
— [ o(r) dor b — [ o(r) dor
bo e Jo p(b) / oy ot g($)dos + Mo e Jo p(b)
ag — bo e fo p(?“) dar t ag — bO e~ fo p(’/‘) dar
=[S p(r) dar t b
e Js b
= a s)dys + b / e~ Jop(r)dar g das>
ao—boe*f(?p(r)dar ( 0/0 g(s) ’ t g(s)
A —ft p(r) dar b A —ft p(r) dar
0 :/ G(t, 8)9(8)dus + —
ag — bO e fg p(r) dar 0 ag — bO e~ f() p(r) dar
U

As a direct consequence, we deduce the following result:

Lemma 5.1.1. The fractional Green’s function G, related to the linear problem (5.2),
and given by the expression (5.4), satisfies the following properties for every p € LL(I):

(i) G >0 onIxI if and only if
bo

Qg

>0 and > 0. 5.8
ag — bO e~ f(fp(T) dar ag — bO e~ fé)p(T) dor ( )
(1) G <0 on I x I if and only if
b
e <0 and - <0. (5.9)
ag — bO e~ Jo p(r) dar ag — bO e~ Jo p(r) dar

As a direct consequence of previous result, we deduce the following expressions for
the particular cases of the initial, terminal and periodic problems.

Corollary 5.1.1. The initial problem
@) +p(t)x(t) = g(t), for ae tel,
z(0) = xo,

(5.10)
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with p, g € LL(I), has a unique solution = € W(fl’)l(l), and it is given by the following
ETPTESSION

b
x(t) :== / Gi(t, $)g(s)dys 4 xq e Jo P dar, (5.11)
0
where
t : 0<s<t<hb,
Gy(t, s) = e s Pr)dar (5.12)
0, 0<t<s<hb.

Corollary 5.1.2. The terminal problem

@) +p(t)x(t) = g(t), for ae tel,

(5.13)
z(b) = xo,

with p, g € LL(I), has a unique solution = € W(i‘g)l(l), and it is given by the following
ETPTESSION

b
x(t) = / Gr(t,s)g(s)das + xo e~ I p() dor (5.14)
0
where
t 0, 0<s<t<b,
Gr(t,s) = —e Js P dar (5.15)
1, 0<t<s<b.

From expressions (5.12) and (5.15), it is obvious that Gy > 0 and Gr < 0on I x .
Thus, as a direct consequence of expressions (5.11) and (5.14), we deduce the following
comparison result:

Lemma 5.1.2. Let x € Woojl;l(f), then the following comparison principles hold for every
pe LL(I):

(i) If 29 (t) + p(t) 2(t) > 0 a.e. t € I and x(0) > 0 then x>0 on I.
(i3) If 2 (t) + p(t) x(t) > 0 a.e. t € I and x(b) <0 then v <0 on 1.

Concerning the non homogeneous periodic problem, which follows directly by the
choice of ag = by = 1, as a corollary of Theorem 5.1.1, we deduce the following result.

Corollary 5.1.3. The non homogeneous periodic problem

@) +p(t)x(t) = g(t), forae tel,

2(0) — z(b) = N, (5:16)

with p, g € LL(I), has a unique solution x € W(fl’)l(l), and it is given by the following
ETPTESSLON
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o JEp(r) dar

b
x(t) ::/ Gp(t,s)g(s)das + o - : (5.17)
0 1—e fo p(r) dar
where
eff;p(r)dar 1, 0§8§t§b,
Gp(t,s) = (5.18)
1— eff(?p(T)doﬂ' e_fobp(r)d(ﬂ“’ 0 S t<s< b.

As a consequence, it is immediate to verify, from expression (5.18), that the periodic
problem has a unique solution if and only if

/0 " o) dur £ 0.

Moreover the fractional Green’s function G'p has the same sign of the previous integral,
ie.,

Corollary 5.1.4. Let p € LL(I), then the following properties hold:
(i) Gp >0 on I x I if and only z'ffobp(r) dor > 0.

(ii) Gp <0 on I x I if and only if fobp(r) dor < 0.

As a direct consequence of previous result and equality (5.17), denoting y > 0 on [
asy > 0 and y # 0 on I, we deduce the following comparison result.

Corollary 5.1.5. Let x € W3 (I) be such that
() + p(t) z(t) = 0 on I; and z(0) > x(b).
Then the following comparison principles are fulfilled:
(i) ]ffobp(r) dor >0 then x>0 on I.

(1) If fobp(r) dor <0 then z <0 on I.

5.1.3 Nonlinear Functional Boundary Conditions

In this subsection, we prove the existence of solutions of the nonlinear conformable frac-
tional differential equation (5.1) coupled to nonlinear functional boundary conditions.
In particular, we will consider the two following kind of functional boundary conditions:

Li(z,2(b)) = 0 (5.19)

and

Ly(2(0), ) = 0. (5.20)

Here L; : C(I) xR — Rand Ly : Rx C(I) — R are continuous functions that satisfy
suitable monotonicity assumptions.
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The used tool will be the well known method of upper and lower solutions. A solution
of these problems will be a function z € W ;1(I) that satisfies equation (5.1) a.e. on I
coupled to the corresponding boundary conditions (either (5.19) or (5.20) in each case).

First, we consider the problem (5.1), (5.19). To this end, we introduce the following
definition of lower and upper solution related to such problem.

Definition 5.1.1. Let y € Wg,’)l(l). We say that v is a lower solution of the boundary
value problem (5.1), (5.19) if

(i) ¥ (t) > f(t, (1)), ae tel;

(i1) L1(7,v(b)) > 0.

Let § € W(i‘g,l([). We say that § is an upper solution of the boundary value problem (5.1),
(5.19) if

(i) 8@ (t) < f(t,0(t)), ae tel;
(ii) L1(8,8(b)) < 0.

In order to obtain existence and location results for the considered nonlinear prob-
lems, we define the sector

[v,0] ={x € C(I) : v(t) < z(t) <4(t), for allt € I}.

Now we give the main result on the existence of solutions for the nonlinear problem
(5.1), (5.19). The proof is on the basis on the one given in [36, Theorem 3.1] for two-point
nonlinear boundary conditions.

Theorem 5.1.2. If there exist v and § in W&‘g,l(]), v <0 in I, a pair of well ordered
lower and upper solutions respectively for problem (5.1), (5.19), with Ly a continuous
function in [y,6] x [v(b),0(b)] and nondecreasing in the first variable on [7,d], then
problem (5.1), (5.19) has at least one solution x € [7,0].

Proof.
We consider the following modified problem:

o (t) = f(t,7(t,x(t))), forae. tel,

2(b) = 7(b, 2(b) + La(7 (- z(-)), 7(b, z(b)))),

(5.21)

where 7 is the truncated function, defined for any x € C(I), as follows:

7(t, 2(t)) = max {fy(t), min{z(t), 5(75)}}, for all ¢ € I.
By the definition of function 7, it is obvious that (b)) < x(b) < §(b).
Suppose now that z(0) < (0). From the continuity of both functions we know that
there exists ¢y € (0, b] such that v(ty) = x(to) with v > x on [0, ty). In this case, due to
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the linearity of the conformable a-derivative and the definition of the truncated function
7, we have that

(v—2) () >0, ae te[0,t), (v—2)(ts)=0.

So, Lemma 5.1.2 (¢7) implies that x > 7 on [0, to], and we arrive to a contradiction.

Analogously, we can prove that z(0) < §(0).

If there exists ¢ € (0,b) with z(c) < ~y(c), then there exists a subinterval (¢;,t2) C
(0,0), such that (v — z)(t1) = (v — )(t2) = 0, with v > x on (1, t2).

But, arguing as before, we deduce that

(v —2)D(t) >0, ae. t € [ty,ts].

Now, using Lemma 5.1.2, (ii) again, we deduce that v < x on [t1, 5] and we attain
a contradiction.

A similar argument is valid to show that z < ¢§ on [.

Therefore, every solution z of problem (5.21) belongs to the sector [v,d]. Let’s see
now that it satisfies the functional boundary condition (5.19).

Clearly, if x(b) + Li(7(-,z(-)), 7(b,z(b))) < v(b), we obtain that x(b) = v(b) and, in
consequence, y(b) > x(b) + Ly (7(-,z(+)),v(b)).

The nondecreasing character of L; with respect to the first variable on the sector
[, 0], and the definition of function 7, allow us to arrive at the following contradiction

7(b) > x(b) + L1(7,7(b)) = (b) = 7(b).

Analogously, we can verify that z(b) + L (7 (-, z(-)), 7(b, 2(b))) < 4(b), and, as conse-
quence, every solution x of the truncated problem (5.21) is a solution of (5.1), (5.19).

Now, to finalize the proof, we must ensure that the truncated problem (5.21) has a
solution.
To this end, let us define the operator F : C'(I) — C(I) as follows:

b
Fa)t) == [ (#s,7(s,2(6))das + 7b.2(b) + La(r(a())o (b)),

First, notice that the solutions of problem (5.21) coincide with the fixed points of
the operator F. This property holds from equation (5.14) and the expression of the
fractional Green’s function Gr, related to the terminal problem (5.13), with p = 0,
which is given in (5.15).

In order to ensure that operator F has a fixed point, we will prove that it is compact.
We first observe that, from Definition 1.3.17 of a L!-Carathéodory function and the
definition of 7, function f(-,7(-,z(-))) is Lebesgue measurable on I for any continuous
function z [11, Theorem 1.1], and there exists h € L!(I,[0,00)) such that

|f(t,7(t,x(t))| < h(t), forae. telandall xeC(I).

The continuity of operator F follows from the continuous dependence with respect to
x of function f, the definition of 7 and the Lebesgue’s dominated convergence theorem.
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To see that F(C(1)) is a relatively compact set on C'(1), consider x € C(I). Therefore
F@) O] < [l + max(B)], 5G)]}, forall te 1,

and, as a consequence, F(C(I)) is uniformly bounded on C(I).
This set is also equicontinuous since for every t; < ty € I,

|F () (tg) — F (x) (t,)| < /t |h(3)|dys.

By Arzela-Ascoli theorem, we conclude that the set F(C/(I)) is relatively compact in
C(I). Hence, F is compact.

As a consequence, the Schauder fixed-point theorem ensures that operator F has a
fixed point.

From previous arguments, we conclude that such fixed point is a solution of problem
(5.1), (5.19), and lies on [y, d]. O

Concerning the problem (5.1), (5.20), we introduce the following definition of lower
and upper solution related to such problem.

Definition 5.1.2. Let v € W(f;)l(l). We say that v is a lower solution of the boundary
value problem (5.1), (5.20) if

(i) ¥ (t) > f(t,y(t)), ae tel;

(ii) La(v(0),7) > 0.

Let§ € ngl’)l(l). We say that 0 is an upper solution of the boundary value problem (5.1),
(5.20) if

(i) 0(t) < f(t,6(t), aetel
(11) L2(6(0),6) < 0.
Analogously to Theorem 5.1.2, one can prove the following result.

Theorem 5.1.3. If there exist v and  in W(fl;l(l), a pair of reversed ordered lower and
upper solutions respectively for problem (5.1), (5.20), such that v > & on I, and Lo is a
continuous function in [0(0),v(0)] X [d,v], nonincreasing in the second variable on [0, 7],
then problem (5.1), (5.20), has at least one solution z € [0,7].

Proof. The proof follows the same steps as Theorem 5.1.2. In this case, we consider
the following modified problem

2@ t) = f(t,7(t,x(t))), forae tel,
2(0) = 7(0,2(0) = La(7(0, z(0)), 7(-, z(-)))),

where, for any z € C(I), the function 7 is defined as

7(t,z(t)) = max {5@), min{z(t), ’y(zﬁ)}}.

(5.22)
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O

In the particular case in which the boundary conditions are defined only at the
extremes of the interval, we can deduce as a direct corollary, the following result.

Corollary 5.1.6. Assume that there exist v and § € ngl’)l(f), a pair of lower and upper
solutions (either v > 0 or v < d) for problem

2@ (t) = f(t,2(t)), fora.e.t €1, L(z(0),z(b)) =0,

with L a continuous function nondecreasing in the first variable and nonincreasing in
the second one on its domain of definition. Then this problem has at least one solution
x € W(;’fl;l([) lying between v and 0.

We note that previous result can be automatically applied to the linear boundary
conditions L(z,y) = apx — boy — o, with ag, by and \g € R, ag,by > 0 and ag + by > 0,
which includes the periodic case (ag = by = 1, A\¢g = 0) and the initial (ay = 1,5y = 0)
and terminal (ag = 0,by = 1) problems.

5.1.4 Examples

In this subsection, we present three examples where we apply Theorems 5.1.2 and 5.1.3
to some particular cases.

Example 5.1.1. Consider the linear boundary value problem:

2*(t)

23 (¢) = o —t(1—1), aete01], z(1) = /|z(1/2)]. (5.23)

This problem is a particular case of (5.1), (5.19), with o = %, f(t,x) = 2?/2 —t (1 —1)
and

Ly(z,y) = V/]z(1/2)| — y.
Obviously, function f is a L%/3-Camthé0d0ry function, and 6(t) = 2, v(t) = 0 are

upper and lower solutions of the boundary-value problem (5.23), respectively with v(t) <
d(t) fort €[0,1]. To see this, it is enough to verify the following inequalities

(1) = 0 < f(t,0(t) =2 — (1 — 1), \/[o(1/2)] - 6(1) <0,
and )
V() =02 f(t, () = —t(1 — 1), v/ [7(1/2)] = 7(1) = 0.
By Theorem 5.1.2, problem (5.23) has a least one solution v € Wff([o, 1]), such that
0<uz(t) <2, forallt e [0,1].

Example 5.1.2. Consider the nonlinear boundary value problem with functional bound-
ary conditions:

22 (t) = tet sin(2(t)) g t € [0, 2],

(5.24)
2(0) — sin®(z(0)) = £ maxeqo 1) {(t)}.
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This problem is a particular case of (5.1), (5.20), with v =1, f(t,z) = tetsin®@) gnd

1
Ly(z,y) = = — sin*(z) — 3 nax {y(®)}.

It is clear that f is a L3 /Q-Camthéodory function, Lo is a continuous function in
(x,y) € [6(0),7(0)] x [0,7], and nonincreasing in y € [0,7], with 6(t) = 0 < ~(t) =
et for t €0,2].

The fact that 6 and ~ are upper and lower solutions of problem (5.24) follows from
the fact that

SE(t) = 0 < f(,5() =1, ae. t €[0,2], 6(0) —sin®(5(0)) — égg% (5()} = 0
and
~@ (1) = ViEert > Ft,y(t) =t ge. t €10,2]
1(0) = sin(2(0)) ~ 5 max (7(0)} 2 .

1
Theorem 5.1.3, implies that problem (5.24) has a least one solution x € Wofil([O,Q]),
such that 0 < z(t) < et for all t € [0,2].

Example 5.1.3. Consider the nonlinear boundary value problem with functional bound-
ary conditions:

)+ 1—2t
2(t) = rH+1-2 a.e. t€[0,1],
Vi (5.25)
z(1) —cos(5 x(1)) = [1 x(s)ds.
; : : : ?+1—2t
This problem is a particular case of (5.1), (5.19), with a =1, f(t,x) = — and

1
Lyi(z,y) = [ z(s)ds —y + Cos(g Y).
2
It is clear that f is a L'-Carathéodory function, L, is a continuous function in
(x,y) € [v,0] x [v(1),d(1)], and nondecreasing in x € [,0], with v(t) = —1 < §(t) =
1 fort €]0,1].
The fact that v and § are lower and upper solutions of problem (5.25) follows from
the fact that

YO =02 F(t.1(0) = 2VF, act€ 0,1, [ (s =21+ cos(F (1) 20
and 2
2(1—1)

\/% )

[ 5(s)ds — 6(1) + Cos(g 5(1)) < 0.

2

O'(t) =0< f(t,6(t) = a.e. t €[0,1],

Theorem 5.1.2, implies that problem (5.25) has a least one solution x € Wol”ll([(), 1)),
such that —1 < z(t) < 1, for all t € 0, 1].
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5.2 Nonlinear functional boundary value problems
for conformable fractional dynamic equations on
time scales

The original results of this section are published in [29].

5.2.1 Introduction

This section is devoted to the study of the existence of solutions of the following con-
formable fractional dynamic equation on time scales with nonlinear functional boundary
value conditions:

x(Aa) (t) = f(t,z°(t)), for A-ae.t €l =la,blr, (5.26)
coupled to nonlinear functional boundary conditions:
B(z(a),z) =0, (5.27)

or

H(x,z(o(b))) = 0. (5.28)

Here T is an arbitrary bounded time scale, J = [a,0(b)]r with a,b € T, 0 < a < b
and f : I x R — R is a L} \-Carathéodory function, :r;ga)(t) denotes the delta con-
formable fractional derivative of z at ¢ of order a € (0,1], B : R x C(J) — R and
H:C(J) x R — R are continuous functions.

If B(z,y) = agx — boy(o(b)) — Ao, with ag;bo; Ao € R, then (5.26),(5.27) is the
boundary value problem,

2 = f(t,27(t)) for A-aet €1, agz(a) — byax(co(b)) = Ao, (5.29)
if B(x,y) =x — Ao, then (5.26), (5.27) is the initial value problem,
2(t) = f(t,2°(t)) for A-aet eI, x(a) = A, (5.30)
and, if B(z,y) = — y(o(b)), then (5.26), (5.27) is the periodic value problem,
e () = f(t,27(t) for Aaetel, x(a)=a(o(b)). (5.31)
Finally, the anti-periodic value problem,
2(t) = f(t,2°(t)) for A-ae. t €I, z(a)=—z(c(b)), (5.32)

corresponds to the particular case B(x,y) = z + y(o(D)).

Existence of solutions was obtained in Section 5.1 for the conformable fractional
differential equation (5.26) with T = R:

2@ (t) = f(t, z(t)), fora.e. t € [0,0], 0 <a <1,
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coupled to the nonlinear functional boundary conditions B(x(0),x) = Lo(x(0),z) = 0
or H(z,z(b)) = Li(x,z(b)) = 0.

Cabada in [36], used the monotone method for nonlinear boundary problem (5.26), (5.27)
with T =R and a = 1:

Z'(t) = f(t,z(t)), forae.t€[a,b], B(z(a),z(b)) =0,

where f is a Carathéodory function, x € W'l ([a,b],R) and B : Rx R — R is a
continuous function which satisfies some properties of monotony.

In [41], Cabada et al. present an existence theorem for the problem (5.26), (5.27)
with a = 1:

2 (t) = f(t,2°(t)), for A-a.e. t € [a,bly, a,b€R,  B(z(a),z) =0,

where f : [a,b]y x R — R is a LY-Carathéodory function and B : R x C(T) — R is a
continuous function.

Motivated by the previously mentioned papers, in this section, we establish the
existence of solutions for the conformable fractional dynamic equations (5.26) on time
scales with nonlinear functional boundary value conditions. For this purpose, we use
the upper and lower solutions method together with Schauder’s fixed-point theorem.

5.2.2 Linear Conformable Fractional Dynamic Problems

In this subsection, we study the expression of the solutions of a linear conformable
fractional dynamic equation of order « € (0, 1], with linear boundary conditions:

2(t) — top(t) w(o(t)) = g(t), A-ae tel,
apz(a) — box(a(b)) = Ao,

(5.33)

with —p € Ry, g € Ly A(I,R) and ag, by, Ao € R.
We obtain the expression of the fractional Green’s function for this linear problem.

Theorem 5.2.1. Let —p € R, and ape_p(0(b), a) # by. For every g € L, A(I,R), the
problem (5.33) has a unique solution x € ngiﬂ(b)({], R) given by:

_ PRV L OR)
o) = [ Gtgaanss 2SO0 e

where the fractional Green’s function is

Gt s) = e_p(s,1) ape_,(o(b), a), a<s<t<o(b), (5.35)
T dgep(0(b),a) — bo b, L<t<s<ol), -
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Proof. Let x be a solution to (5.33). By Theorem 1.5.3, consider

[wep(t.0)] = 2 0eoylt, @) — PO (1, a)a(o (1),
=e_,(t,a)g(t).

and hence integrating the above on [a, t]; obtain

x(t)e_p(t,a) — z(a) = / e_p(s,a)g(s)A%s. (5.36)

[a’t]T

So,
z(t) = e_p(a,t) <x(a) +/ e_p(s, a)g(s)Ao‘s) (5.37)
[a,t]jr
If follows from the boundary condition in (5.33) and (5.37) that

b e ey(o(b).0)
20 = o)) — by /[a,(,(b)h (8 a)g(s)A s+ o)) — by

Now, by substituting (5.38) into (5.37), we get

(5.38)

= boe—p(a, 1) e_(s,a)g(s)A% +e_,(a e_p(s,a)g(s)A%s
") = ot T o WA et [ e (s

boe_,(a,t) o (s d)al(s\A%s Xoe—p(a(b), 1)
age_p(o(b),a) — by /[t,a(b)]qr (5 a)g(s)A% + age—p(o(b),a) — by

Xoe—p(a(b),t) 1 .
- age—_p(o(b),a) —by  age_p(a(b),a) — by (ao /[a’t]T e—p(a(b), a)e_p(s,t)g(s)A%s

+ by / e_p(s, t)g(s)Aas)
[tvo—(b)]T

Moe—p(a(b), 1)
age_p(a(b),a) — by

= / G(t,s)g(s)A%s +
[a,0(b)]z

O
As a direct consequence of previous result, we deduce the following expressions for the
particular cases of the initial, terminal and periodic problems.

Corollary 5.2.1. The initial problem
x(Aa) (t) =t p(t) z(o(t)) = g(t), A-a.e. teI; (5.39)

x(a) = xo.

with —p € R, x0 €R, and g € L&A(I, R), has a unique solution x € ngi U(b)(J, R),
given by the following expression

o(t) = / Gi(t, $)g(s)A% + zpe_y(art), L€ J, (5.40)
la,o(b)]T
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where

Gi(t,s) = e_p(s,t) - (5.41)
0, a<t<s<o(bh).

Corollary 5.2.2. The terminal problem
2t = top a(o(t)) = g(t), A-ae tel;
z(o(b)) = z1.

(5.42)

with —p € R, x1 €R, and g € LQA(I,R), has a unique solution x € ngi U(b)(J, R),
giwen by the following expression

x(t) :== / Gr(t,s)g(s)A%s 4+ x1e_,(a(b),t), teJ, (5.43)
[a,0(b)]r
where
0, a<s<t<o(b),
Gr(t,s) = —e_p(s,1) (5.44)
1, a<t<s<o(bh),

Corollary 5.2.3. The periodic problem
w{() — 1 0p(t) w(o(t) = g(t), A-ace. t€Ty;
z(a) = z(o(b)).

with —p € Ry, e_p(o(b),a) # 1 and g € L\ A(I,R), has a unique solution x €
Wg;;a(b)(J, R), given by the following expression

(5.45)

() = / Gr(t s)g(s)A%s, ¢ € J, (5.46)
[ava(b)]T
where
a _ e_p(s,t) e—p(a(b)7 a), a<s<t< U(b)v 4
plts) = — (5.47
e p(o(b),a) 1, a<t<s<o(b),

If —p € R}, from expressions (5.41) and (5.44), it is obvious that G; > 0 and G < 0
on J x J.

5.2.3 Conformable Problems with Nonlinear Functional Bound-
ary Conditions.

In this subsection, we will prove the existence of at least one solution between a pair
of coupled lower and upper solutions of the problem (5.26), (5.27), and of the problem
(5.26), (5.28).
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A solution of these problems will be a function z € Wgzi’g(b) (J) that satisfies equation
(5.26) a.e. on I coupled to the corresponding boundary conditions (either (5.27) or (5.28)
in each case).

5.2.3.1 Existence of Solutions of the Problem (5.26),(5.27).
We introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 5.2.1. We say that v, § € ng U(b)(J) 1s a pair of coupled lower and upper
solutions of the conformable fractional problem (5.26),(5.27), if v < ¢ in J and the
following inequalities hold:

A = FtA7 (1) <0< 8D () — f(t,6°(1)) for A-ace. t € I,
(5.48)

B(y(a),z) <0< B(d(a),x) for all x € [y,4d],
we define the sector

[7,0] = {z € C(J), v(t) < z(t) <o(t) forall te J}.

We assume the following hypothesis
(H;) BEC(RxC(J))and f: I xR —Risa L \-Carathéodory function.

(Hy) There exists 7,6 € ngi O(b)(J ), a pair of coupled lower and upper solutions of the
problem (5.26), (5.27).

Now we consider the following modified problem:

20t = F(t,2°(t))  for Aae. t €1, 519

z(a) = 7(a,z(a) — B(z(a), z)),
where, for all ¢ € I fixed,
F(t,z) = f(t,7(o(t),2)) — 2

and
__z2=7(a(t),2) _ .
zZ = BT 7(t, z) = max{~y(¢),min{z,d(¢t)}}, z€R.

We need the following auxiliary lemmas.

Lemma 5.2.1. Assume that G : I xR — R s a L;A—Camthéodory function. If
x € C(J), then function G, : I — R defined for every s € I as

Go(s) = G(s,27(s))
belongs to L}, A(I).
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Proof. If x € C(J), then 27 € C,4(J) [33, Theorem 1.60] and, using [34, Theorems
5.81 and 5.82] we have that 27 is A-measurable in /. It follows from [61, Theorem 1.4.3]
that G, is A-measurable in I. Since x7 is bounded [33, Theorem 1.65], from condition
3 on definition of L}, -Carathéodory function, we obtain the result. O

From previous lemma, we obtain the following lemma.

Lemma 5.2.2. Suppose that hypotheses (Hy) and (Hg) hold, then the following condi-
tions are satisfied:

1. For every x € R, function 7(-,x) is continuous in J.

2. Function T(t,-) is continuous in R, uniformly att € J, i.e.:
Ve>0,3de)>0/|z—yl<d=|r(t,x) —7(t,y)| <e, forallteJ

There exists K, > 0 such that |7(t,z)| < K, for every (t,x) € J x R.

For every x € R, function F(-,x) is measurable.

F(t,) € C(R) for A-a.e. t € I.

S v S

There exists mp € L}, A(I) such that

|F(t,x)| < mp(t) for A-a.e. t € I and all x € R.

To deduce the existence of solutions of problem (5.26), (5.27) in the sector [y, ], we
define operator A : C(J) — C(J), as

Ax(t) .= 1(a,x(a) — B(z(a), x)) +/ F(s,27(s)) A%s, teJ. (5.50)

[a’t]T

Clearly, from Corollary 5.2.1 with p = 0, the fixed point of the operator A is a
solution of the problem (5.49).

Proposition 5.2.1. Suppose that hypotheses (Hy) and (Hy) are fulfilled. Then, the
operator

A:C(J) = C(J) is compact.

Proof. We first observe that, from Lemma 5.2.2, there exists a function mp €
L}, A(I) such that

F(ta(o(0)] = |1t (00 2(o(1))) ~ To ()| < me(t)

for A-a.e. t € I and all x € C(J).
Let {x,, }nen be a sequence of C(J) converging to € C(J). Then

Ala(®) = A®)] < [ 5 (f(s,7(0(5), a0 () = Talo(s)
[a,0(b)]r
- (#(s.7(o(s). 2o () = 7(o(3))) |As.
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We can easily check that T, (t) — Z(t) for every t € J.
Since

|f(s,7(0(s),2n(0(5)))) — Tn(o(s))| < mp(s) A-ae. s €I for all n € N,

the continuity of operator A follows from the continuous dependence with respect to x
of function f, the definition of 7 and the Lebesgue’s dominated convergence theorem.

To see that the set A(C(J)) is relatively compact on C(J), consider x € C(J).
Therefore,

[A(z) ()] < |7(a, 2(a) = B(z(a), 2))] +/ F(S,JIU(S))’A"‘S

[C"’b}’ﬂ'
< KT + Kp = K7

where
K, :=sup{|7(t,z)| : (t,x) € JxR}, and Kp := ||Mp||, Mp(t) = f[a,th mp(s) A%s,t € J.
So, A(C(J)) is uniformly bounded on C(J). This set is also equicontinuous since for

every t; < ty € J,

A () (t2) — A () (t1)]] S/ mp(s)A%s.
[t1,t2]T
By Arzela—Ascoli theorem, we conclude that the set A(C(J)) is relatively compact
in C(J). Hence, A is compact. d

Lemma 5.2.3. Suppose that hypotheses (Hy) and (Hs) are fulfilled. Then, all the solu-
tions of problem (5.49) belong to the sector [y, d] and are solutions of problem (5.26), (5.27).

Proof. Let x € Wg;;g(b)([]) be a solution of the problem (5.49). Suppose it is false
that z := 2 — 3 < 0in J. From the definition of 7, we know that z(a) < 0, then there is
c € J\{a} such that z(c¢) = max{z(t): t € J} > 0.

If p(c) = ¢, then, there exists € > 0 such that z(t) > 0 for all ¢ € [p(c —¢€),c] N J.
For A-almost every t € [c — ¢,¢] N J, we have that there exists z(Aa)(,o(t)) and, in such
points, it is satisfied that

z(t) = o(t)

A (o) < F(t,a(t) — f(1,6(t) = T <

Since z € szi’g(b)(J), for every t € [p(c —¢€),c) N J, we arrive at
_ _ (a) «
z(c) — z(t) = Z7(s) A% <0,
[t,ch-

which is a contradiction with the definition of c.
If p(c) < ¢, then



but we know that

#(p(c) = Flp(e),a(c)) = f(p(c),(;@)_%

< flpe),8(c)) < 6% (p(c)),

that is, z(Aa)(p(c)) < 0, and so we obtain a contradiction with the previous inequality.

As a consequence, x < ¢ in J.

Analogously, we can prove that v < x in J.

Now, let us see that z(a) — B(x(a), z) € [y(a),d(a)].

If z(a) — B(z(a),x) < 7v(a), then z(a) = v(a), and therefore B(y(a),z) > 0, which
contradicts the definition of 7.

Analogously, we can prove that z(a) — B(z(a),z) < d(a).

Thus, every solution x of (5.49) is a solution of (5.26), (5.27) that belongs to [, d]
and the proof is complete. O

Now, we prove an existence result for problem (5.26), (5.27).

Theorem 5.2.2. Suppose that hypotheses (Hy) and (Hz) hold, then problem (5.26), (5.27)
has at least one solution x € Wg;i’a(b)(J) such that y(t) < x(t) < §(t) for everyt € J.

Proof. From Lemma 5.2.3, we know that if problem (5.49) is solvable, then the same
holds for problem (5.26), (5.27). By Proposition 5.2.1, A is compact. It has a fixed point
by the Schauder fixed-point theorem. As a consequence, problem (5.49) has at least one

solution = € WX;;g(b)(J) which, by Lemma 5.2.3, is a solution of problem (5.26), (5.27)

and belongs to [y, J]. O

From previous theorem, we obtain the following existence results for the linear bound-
ary value problem (5.29), the periodic problem (5.31), and the anti-periodic value prob-
lem (5.32).

Corollary 5.24. If f : I xR — R is a L}LA—Camthéodory function and v, €
ngiva(b)(J) is a pair of coupled lower and upper solutions of problem (5.29). Then

problem (5.29) has at least one solution x € Wﬁéi,aa))(J) such that v(t) < x(t) < 6(t) for
everyt € J.

Corollary 5.2.5. If f : [ xR — R is a LQ’A—Camthéodory function and v,d €
ngi’a(b)(J) is a pair of coupled lower and upper solutions of problem (5.31). Then

problem (5.31) has at least one solution x € szi o0y (J) such that y(t) < x(t) < 6(t) for
every t € J.

Corollary 5.2.6. If f : I xR — R is a LévA—Camthéodory function and ~v,6 €
ngi J(b)(J) is a pair of coupled lower and upper solutions of problem (5.32). Then

problem (5.32) has at least one solution x € Wz;i,a’(b)(‘]) such that ~(t) < z(t) < 6(t) for
every t € J.
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5.2.3.2 Existence of solutions of the problem (5.26),(5.28).
We introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 5.2.2. We say that 7, § € WK?}I U(b)(J) s a pair of coupled lower and upper

solutions of the conformable fractional problem (5.26),(5.28), if § < ~ in J and the
following inequalities hold:

V(1) = F(EA7 () <0 < 08 (t) — f(t,0°(t)) for A-ae t €T, -
H(z,7(a(b))) < 0 < H(xz,8(c(b))) for all = € [5,7], '
we define the sector

16,7] = {w € C(J), 6(t) < a(t) <~(t) for all t e J}.

We assume the following hypothesis
(F1) He C(C(J) xR) and f: I xR — Ris a L} ,-Carathéodory function.

(F2) There exists 7,6 € Wg;(lw(b)(J ), a pair of coupled lower and upper solutions of the
problem (5.26), (5.28).
Now we consider the following modified problem:
20t =F(t,2°(t)  for Aae. t €1,
2(a (b)) = 7(o(b), x(0 (b)) + H(x,z(a(b)))),

where, for all ¢ € I fixed,

(5.52)

F(t,z) = f(t,7(o(t),2)) — 2
and
z—71(0(t), 2)

z =
1+ 2|

: 7(t, z) = max{d(t), min{z, v(¢)}}, 2 €R.

To deduce the existence of solutions of problem (5.26), (5.28) in the sector [, 7], we
define operator 7 : C(J) — C(J), as

Tx(t) :=7(0(b),z(c(b)) + H(z,z(c(b)))) — / F(s,27(s)) A%, te J (5.53)

[t.o(®)]r

Clearly, from Corollary 5.2.2 with p = 0, the fixed point of the operator 7 is a solu-
tion of the problem (5.52).

Following the technique used in the previous subsection, it is easy to prove the
following results:
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Proposition 5.2.2. Suppose that hypotheses (F1) and (F3) are fulfilled. Then the op-
erator

T:C(J)— C(J) is compact.

Lemma 5.2.4. Suppose that hypotheses (F1) and (Fy) are fulfilled. Then, all the solu-
tions of problem (5.52) belong to the sector [6, 7] and are solutions of problem (5.26), (5.28).

Theorem 5.2.3. Suppose that hypotheses (F1) and (F2) hold, then problem (5.26), (5.28)
has at least one solution x € szi,a(b)u) such that 6(t) < x(t) < y(t) for everyt € J.

Remark 5.2.1. The results (Theorems 5.2.2 and 5.2.3) in this Subsection 5.2.3 gen-
eralize the previous ones (Theorems 5.1.3 and 5.1.2) given in Subsection 5.1.3 for the
nonlinear conformable fractional differential equation (5.1).

5.2.4 Examples

In this subsection, we present two examples where we apply Theorems 5.2.2 and 5.2.3
to some particular cases.

Example 5.2.1. Consider the nonlinear boundary value problem with functional bound-
ary conditions:

) 2t — 1 —25(0(2))
X (t) = , A-ae.tel=101]r,

® Vi 1 (5.54)
x(0) — cos(mz(0)) = = MaXee[o,1ly {z(t)}.

% —1— a5
This problem is a particular case of (5.26), (5.27) with o = %, f(t,27(t)) = ! \/§ (o)

and

1
B(,y) = x = cos(mz) — = max {y(t)}.

It is clear that f is a L} A-Carathéodory function, B is a continuous function in

(xz,y) € [7(0),8(0)] x [, 4], with v(t) =—=1<46(t) =1 for t € [0,0(1)]r. The fact that
v and § are lower and upper solutions of problem (5.54) follows from the fact that

-

2(1 —t)

V) = Ft 7 (1) = —2VE < 0 <69 (1) — F(t, 67 (1)) = o Jordactel,
B((0),2) = 5 <0< B0),x) =2 for allz € [1,0],

1
Theorem 5.2.2, implies that problem (5.54) has a least one solution x € Wﬁ;é,o(n([()? a(1)]r),
such that —1 < z(t) <1, for all t € [0,0(1)]r.
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Example 5.2.2. Consider the nonlinear boundary value problem with functional bound-
ary conditions:

e Cd ) S NP T
t(r —1) (5.55)
z%(m) 4+ 3sin(z? (7)) = fg Vs z(s)Azs.

2sin(x?(t
This problem is a particular case of (5.26), (5.28) with a = %, f(t,2°(t)) = %(t)))
7"' —_—

and

H(x,y) = [{W Vs [L’(S)A%S —y — 3sin(y).

It is clear that f is a L} A-Carathéodory function, H is a continuous function in
2)

_ —T T
(2.9) € 6.4 % [o(m)), 2 (o (x))], with 6(t) = = < (1) = 5 for t € [0,0(m)}x.

The fact that v and § are lower and upper solutions of problem (5.55) follows from
the fact that

B n ooy 2 By fr 5o — 2 i
80 = 1077 0) = = SO0 S50 = s for A € T,
H(x,v"(ﬁ))g%Q—g—3§0§_T7r2+g+3§H(%50(77)) for all x € [5,7),

1
Theorem 5.2.3, implies that problem (5.55) has a least one solution x € WZ&U(F)([O, o(m)|r),
such that _TW <z(t) < g, for allt € [0,0(m)]r.

Example 5.2.3. Consider the periodic problem:

t
d) = “2sin(r 2(t+ 1) + Sex(t+ 1), A-ae tel=[0,0z beZ

Vi (5.56)
z(0) =x(b+1).

This problem is a particular case of (5.26), (5.28) with o = %, T =7, f(t,z°(t)) =
t
—2sin(m z(t)) + %x”(t) and H(x,y) = x —y. It is clear that f is a L} -Carathéodory

function, H is a continuous function in (x,y) € [0,7] x [0(b+ 1),v(b+ 1)], with
dt)==1<~(t)=1 fort€0,b+1]z.

The fact that v and § are lower and upper solutions of problem (5.56) follows from
the fact that
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F () = 0 < f(t,47(1)) = —2sin(r) + e—tt for Acace. t € T =0,8z, 7(0) < ~v(b+1),

\/_
1 t
82 (t) = 0> f(t,0°(t)) = 2sin(r) — % for A-ace. t € 1 =1[0,bz, 6(0) > o(b+ 1).
1
Theorem 5.2.3, implies that problem (5.56) has a solution x € Wg;&bﬂ([(),b +1]z),
such that —1 < z(t) < 1 for every t € [0,b+ 1]z.

5.3 Existence results for systems of conformable frac-
tional differential equations

The results of this chapter are original and are accepted for publication [25].

5.3.1 Introduction

In this section, we establish existence results for the following system of conformable
fractional differential equations:

2@ (t) = f(t,x(t)), forae. tel=10b], b>0,
x € (B),

(5.57)

where 0 < o < 1, f : I x R® — R" is a L!}-Carathéodory function, #(*)(¢) denotes the
conformable fractional derivative of x at ¢ of order «, and (*B) denotes the initial value
or the periodic boundary value conditions:

2(0) = o, (5.58)

2(0) = z(b). (5.59)

Existence results for problem (5.57),(5.58) were obtained in [79], by using the Banach
fixed point theorem with f a continuous function. In the particular case where n = 1,
existence results for problem (5.57) were obtained in Section 5.1 with nonlinear functional
boundary conditions L; (z, z(b)) = 0 or La(x(0), x) = 0, their results were established, for
the scalar case, with the method of lower and upper solutions and cover, as a particular
cases, the boundary conditions (5.58) and (5.59). In [19] the authors solved problem
(5.57),(5.58) (for n = 1), with f a continuous function by the help of the solution-tube
method. As we will see, the used definition is equivalent to the existence of a pair of
lower and upper solutions of the considered problem.

In order to obtain the existence results for problem (5.57), we introduce the notion
of solution-tube of (5.57) which generalizes the notions of lower and upper solutions
given in Section 5.1. It is inspired by a notion of solution tube for first-order systems of
differential equations introduced in [74], (see also [51,52] and [53] on time scales).
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5.3.2 Existence Theorem

In this subsection, we establish an existence result for the problem (5.57). A solution
of problem (5.57) will be a function x € W JH(IL,R™) for which (5.57) is satisfied. We
introduce the notion of solution-tube of this problem as follows.

Definition 5.3.1. Let (v, M) € W(i‘g,l([,R") X W(i‘g,l(l, [0,00)). We say that (v, M) is a
solution tube to problem (5.57) if

(i) {x —v(t), f(t,x) — v (t)) < M(E)MD(t) for a.e. t € I and every x € R™ such
that |12 - v(t)] = M(1),

(i) v (t) = f(t,v(t)) and M@ (t) =0 a.e. on {t € :M(t) =0},

(iii) - if (B) denotes (5.58), then ||zo — v(0)|| < M(0),
- if (B) denotes (5.59), then ||v(b) —v(0)|| < M(0) — M(b).

If o = 1, our definition of solution tube is equivalent to the notion of solution tube
introduced in [74] for first order systems of Ordinary Differential Equations.
Now, we introduce the following set

T(v, M) :={z € W&;}(I,R") () — ()| < M(t), for everytel}.

Remark 5.3.1. If n = 1, our definition of solution tube is equivalent to the notion of
solution tube introduced in [19]. We point out that in this case the solution-tube method
1s equivalent of the lower and upper solutions one. To this end, we introduce the following
definition:

Definition 5.3.2. A function v € W;fg,l(f) is called a lower solution of (5.57), if

(i) ¥ (t) > f(t,y(t)), forae tel;

(i) - if (B) denotes (5.58), then v(0) > xy,
- if (%B) denotes (5.59), then v(0) > ~(b).

A function 6 € W(fg)l(l) is called an upper solution of (5.57) if it satisfies (i), (i) with
the reversed inequalities.

Indeed, we consider the following assumptions:

(A) There exist § <~y respectively upper and lower solutions of (5.57), such that § < ~y
a.e. on I.

(B) There exists (v, M) a solution-tube of (5.57).

First, we prove the following assertion
If (B) is satisfied, then (A) is also fulfilled.
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Define d =v— M and y=v+ M.

(6= 252(0) (#(0.6) — CEFH0) < OO0 forae. t e 1

(o) _ (cx)
(v — Z2(1)) <f(t77) _ i) <t)) < 0=90) 0-5)

for a.e. tel.
It is not difficult to verify that, since 6 <~ a.e. on I, that

@(t) < f(t,0(1), forae tel
V() = f(t (1),

forae tel.

Moreover, from condition (iii) it is immediate to conclude that 6(0) < xy < ~(0)

provided (5.58) is considered, and §(0) — §(b) <0 < 4(0) —(b) for conditions (5.59).
Now, let’s prove the reverse implication, i.e

If (A) holds, then (B) is satisfied.

To this end, take v = (v +6)/2 and M = (v
vy=v+ M.

—0)/2, we have 6 = v — M and
For x € R such that |x —v(t)| =

M(t), then x =~ or x = 0, and we have for a.e. t € 1

(0= 252 0) (ft.6) - C9w),
(v = v(®) (f(t,2) =0 (t)) (

)
(= 220) (Fit7) - ).

CRONCRIOEES IO
< 9
|(520) (0 - 29 0).
= M@)M(t) for a.e. tel.

We consider the following modified problem

@) +axt) = f(t,7(t) +a Z(t), forae tel

) (5.60)
where
MO v if ||z — v
- { 20 (0~ (1)) + u(t), o=l =000,
x(t), if [z —ov(t)]] < M(t).

We need the following auxiliary lemmas, which are direct generalizations of Corollary
5.1.1 and Corollary 5.1.3 in Section 5.1, and we omit the proofs
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Lemma 5.3.1. For every g € LL(I,R"), 1o € R", 0 < a < 1 and p € R, problem

2 (1) + pa(t) = g(t), a.e tel, (5.62)
z(0) = xo, '
has a unique solution x € W&g,l(I,R”) given by the expression:
b P
x(t) ::/ Grn(t,8)g(s)dys + oe” o' (5.63)
0
where
U ¢ 0<s<t<b,
Grn(t,s) = ea" =) (5.64)
0, 0<t<s<b,

Lemma 5.3.2. For every g € L (I,R"), A € R", 0 < a < 1 and p € R\{0}, problem

@ (¢ t) = g(t e tel
2(0) —z(b) = A,
has a unique solution x € W&‘;}(I,R”) given by the following expression:
b e_gta
() = / Gl $)9(3)das + A ———-. (5.66)
0 — € «a
where
oz (1, 0<s<t<b
Gpe(t, S) = T _Ppe (567)
L —ema e~ al, 0<t<s<b,

The following lemma can be proved analogously to [19, Lemma 11].

Lemma 5.3.3. Let r € W(i"bl(],]R), such that 7@ (t) < 0 a.e. on{t € I :7(t) >0}. If
one of the two following conditions holds,

(i) r(0) <0,
(i) (0) < r(b),
then r(t) <0 for every t € I.

Let us define the operators Ay, Ay : C(I,R™") — C(I,R™) by

Ai(2)(t) = /Ob Gr(t, s) (f(S,f(S)) +a E(S))So‘_lds + zoe
and

As(@)(t) = /0 b Gpelt, s) ( F(5,7(s) +a f(s))so‘_lds,
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where G, (resp., Gpe) is the Green’s function related to the initial problem (5.62)(resp.,
periodic problem (5.65)) and is given by expression (5.64)(resp.,(5.67)) with p = a.

Clearly, from Lemma 5.3.1 (resp. Lemma 5.3.2) with p = «, the solutions of problem
(5.60), (5.58) (resp. (5.60),(5.59)) coincide with the fixed points of operator A; (resp.
Ay).

Proposition 5.3.1. Let f : [ X R™ — R"™ be a L} -Carathéodory function. Assume there
exists (v, M) € W&‘gf([,R”) X W&g,l(f, [0,00)) a solution tube of problem (5.57),(5.59),
then operator A, is compact.

Proof. We first observe that, from Definitions 1.3.17 and 5.3.1, there exists a function
h € LL(1,]0,00)) such that

(&, Z(t) + a Z(t)]] < h(t), forae telandall zeC(I,R").

Let {z,}nen be a sequence of C'(I,R™) converging to = € C(I,R™). In this case, it is
clear that

[Auteate - o] < [ Gte0)

b
< M/ gt
0

(F65.7(5) + @ 7ls)

=~ (f(s,7() +a 7(s)) s
(£(5,7a(s)) + a 7uls)
(s 7)) + 0 7(s) ) s

where M := max, e |G pe(t, s)|.

The continuity of operator A, follows from the continuous dependence with respect to
x of function f, the definition of  and the Lebesgue’s dominated convergence theorem.

To see that A2 (C'(I,R™)) is relatively compact set on C'(I,R"), consider x € C'(I,R™).
Therefore,

| A2@)®)|| < 2 Whlzyrze.

So, As(C(I,R™)) is uniformly bounded.
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This set is also equicontinuous since for every t; < ty € I,
42 @) (t2) = A2 () (1)

— H /0t2 Gpe(t, s) (f(S,E(S)) + « E(S))das + /t: Gpe(ta, s) <f(8,f(s)) + o T(S))das

_ /0 ! Gpelts, 5) ( F(5,7(s) +a T(s))das . /: Gpelts, 5) ( F(5,7(s) +a T(s))das

—tg —t¢ 131 b
e 2 — e 1 % a__po
< —| | e’ dns + st b dys
1 —e b
0 to

+ / 2 |G pe(ta, s) — Gpe(t1, 9)| ‘f(s,f(s)) + a T(s)

t1

[(5.7(5)) +a 7(s)| f(5.7(5)) + a 7(s)|

d,s

t1 b t2
< Klet - | / h(s)dus + / M()das) +2M / h(s)dus.
0 to t1

where
@ a__pa
e’ e’ 1
K := max = )
sel{l—e—ba’ 1—6—’7“} 1 —e b

By Arzela-Ascoli theorem, we conclude that the set As(C(I,R™)) is relatively compact
in C(I,R™). Hence, A, is compact. O

The following result can be proved as the previous one.

Proposition 5.3.2. Let f : [ x R" — R" be a L!-Carathéodory function. Assume
there exists (v, M) € W&I;I(I,Rn) X Wocfl’)l(], [0,00)) a solution tube of (5.57),(5.58), then

operator Ay is compact.

Now, we can obtain our main theorem. The proof is on the basis on the one given
in [53] for first order systems of ordinary differential equations.

Theorem 5.3.1. Let f : [ x R" — R" be a L!-Carathéodory function. Assume there
exists (v, M) € WS&I(I,R”) X Wg;}([, [0,00)) a solution tube of (5.57). Then, problem
(5.57) has a solution x € W&g}([,R") NT(v, M).

Proof. We will do the proof for the initial case (5.58). As we will see the proof for
the periodic problem (5.59) is analogous.

By Proposition 5.3.2 the operator A; is compact. It has a fixed point by the Schauder
fixed-point theorem. Lemma 5.3.1 implies that this fixed point is a solution for the
problem (5.60). Then, it suffices to show that for every solution x of (5.60), z € T(v, M).
Consider the set B := {t € I : ||z(t) — v(t)|| > M(t)}. By Proposition 1.4.2, a.e. on B
we have

(@(t) — v(t), 2 (t) — v (2))
l2(t) = v(®)]
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Since (v, M) is a solution tube of problem (5.57), we have a.e. on {t € B : M(t) > 0}
that

(l(t) — v(t)|| — M(£)
_ (a(t) - v(t), 2 (t) — vl (1))

e@—vol M0
— (=SS0 00—t =)
_ GO A0S =) | G000 0]
< MOXZOD 1o (M0) - et - w(0) - MO0
<0

e {a(t) (0. £ #(0) + 0alt) — ax(t) — o @)
(le(t) — w(t)] - M(E)® = el M@ (1)
() — o(t), £t o(0) + oolt) — ax(t) — 0@ @)
= 20 = o] ML)
(alt) — vlt). f(t0l) O ®) “
< 0] Ja(t) — o(t)| - M@ (t)

< 0.

If we set, r(t) := ||z(t) — v(t)|| — M(t), then r® < 0 a.e. on B:={t € I :r(t) > 0}.
Moreover, since (v, M) is a solution tube to problem (5.57) and x satisfies (5.58), then
r(0) < 0 and, as consequence, Lemma 5.3.3 (i) implies that B = 0. So, x € T(v, M) and
the result holds for this case.

When the periodic case is studied, we follow the same steps with operator A, and
we arrive to the fact that

r(0) = 7(b) < [[o(0) = v(b)[[ = (M(0) = M(b)) <0,
and the result is fulfilled from Lemma 5.3.3 (ii).

Remark 5.3.2. This result (Theorem 5.3.1) generalize the previous one (Corollary
5.1.6) given in Subsection 5.1.83 with L(z,y) = x — A\ or L(z,y) =z — y.

5.3.3 Examples

The following example is a modified version, considering a periodic condition, of Example
4.6 in [53]:
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Example 5.3.1. Consider the periodic problem:

2@ (1) = ay ||z ()] 22 (t) — asz(t) + asp(t), ae. tel=][0,1],
(5.68)
z(0) = z(1).

where a = 1/3, ay,a9,a3 € Ry such that a; — as + a3 =0, ¢ : I — R™ is a continuous
function satisfying ||o(t)|] = 1 for every t € I. Take v(t) =0 and M(t) = 1.
So, v e Wi (I R™), M € W\ (1,10, 00]), v&)(t) = 0, MG)(t) =0, and
lo(1) = v(0)]] < M(0) — M(1).
For x € R™ such that ||x — v(t)|| = M(t), then |z|| = 1, and we have, for a.e. t € I
(z—v(t), f(t,2) = 0D (1) = (@, a1|2]*x — ase + asp (1))
= arllz|* — asll2l® + as(w, o(1))
< arl|2]|* — asf|z]|* + aslz ||| o(t)]
=a;—ag+az3=0
< MM (1),

Since the set {t € I, M(t) =0} =0, condition (ii) holds trivially.
So, (v, M) is a solution-tube of (5.68). By Theorem 5.53.1, problem (5.68) has a

1
solution x € Wofil(I,R") such that ||x(t)|| < 1 for every t € I.

Example 5.3.2. Consider the periodic problem:

/2 () — —23(t) +1 -2t o
(1) i e. tefo,1], (5.66)
z(0) = z(1).

This problem is a particular case of (5.57),(5.59)), with n =1, « = 1/2, and f(t,z) =
—x34+1—2t

Take v(t) = 0 and M (t) = 1.
So, v € Wgi (I,R), M € Wi (1,[0, 00]), v2)(t) = 0, M)(t) = 0, and

[0(1) = v(0)] < M(0) — M(1).

. It is clear that f is a L7 /Q—Carathéodory function.

For z € R such that |x —v(t)| = M (t), then x = 1 or z = —1, and we have for a.e. t € I,

(@ = vl0). £(t.2) =D (0) = () (=),
20—t .,
_ T if v =—1,

—oVB ifx =1,

<0= M(t)]\/[(%)(t) for a.e. t € I.
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So, (v, M) is a solution-tube of (5.69). By Theorem 5.3.1, the problem (5.69) has a

1
solution x € W(fil([) such that |z(t)| <1 for every t € I.
Observe that 6 = v — M and v = v+ M are, respectively, upper and lower solutions
of (5.69) follows from the fact that

2(1 — 1)

0D(t) =0 < f(t,8(1) = 7

, fora.e. t €0,1], 0(0) <0o(1),
and )

Y2(t) = 0> f(t, (1) = =2V, for ae. t€[0,1], ~(0) > (1),
such that —1 < z(t) < 1, for all ¢t € I.
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Conclusion and future perspectives

Differential equations with fractional order are a generalization of ordinary differential
equations to non-integer order. Recently, a new definition of the fractional derivative,
called conformable fractional derivative, was introduced by Khalil et al. [70]. This def-
inition reflects a natural extension of the normal derivative. In particular, Benkhettou
et al. [31] introduced a conformable fractional calculus on an arbitrary time scale, which
provided a natural extension of the conformable fractional calculus.

In this thesis, we have considered the existence of solutions for systems of first order
nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for
systems of conformable fractional differential equations under some boundary conditions.
Also, we present existence solutions for the nonlinear conformable fractional differential
equations and for the conformable fractional dynamic equations on time scales, with
nonlinear functional boundary value conditions.

These results will be obtained by using Schauder’s fixed point theorem, Kakutani
fixed point theorem and by notions of solution-tube adapted to these systems. These
notions of solution-tube generalize to systems the definitions of lower and upper solution
of first order nonlinear nabla dynamic equations and inclusions on time scales, and of
conformable fractional differential equations.

For future researches, by using the solution-tube method, we can look for existence
of solutions for:

> Systems of first order nonlinear impulsive dynamic equations on time scales,

> systems of conformable fractional dynamic equations on time scales, (i.e., to ex-
tend the results presented in Section 5.3 in continuous case to time scale),

> systems of impulsive conformable fractional dynamic equations on time scales.
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Abstract

- In this thesis, we present some results of existence of solutions for systems of first order
nonlinear nabla dynamic equations and nabla dynamic inclusions on time scales and for systems
of conformable fractional differential equations under some boundary conditions. Also, we
present existence of solutions for the nonlinear conformable fractional differential equations and
for the conformable fractional dynamic equations on time scales, with nonlinear functional
boundary value conditions. These results are obtained by using the notion of solution-tube
adapted to these systems. This notion generalizes the definition of lower and upper solution.

Key words and phrases: Conformable fractional derivative, conformable fractional calculus on time
scales, systems of nabla dynamic equations and inclusions, conformable fractional dynamic equation,
nonlinear boundary conditions, Green function, upper and lower solutions, solution-tube, Schauder's
fixed-point theorem, fractional Sobolev's spaces.

AMS (MOS) Subject (lassifications: 26A24, 26A33, 26E70, 34A08, 34A12, 34A34, 34A60, 34B15, 34N05, 47E05.

Résumé

Nous présentons dans cette thése des résultats d'existence de solutions pour des systemes
nabla d'équations dynamiques et nabla d'inclusions dynamiques sur les échelles de temps non-
linéaires d'ordre un, et pour des systémes d'équations différentielles fractionnaires conformes
non-linéaires sous certaines conditions aux limites. Aussi, nous présentons des résultats
d'existence de solutions pour des équations différentielles fractionnaires conformes et des
équations dynamiques fractionnaires conformes sur les échelles de temps, avec conditions
fonctionnelles non-linéaires aux bords. Ces résultats sont obtenus gréce a la notion de tube-
solution adaptée a ces systemes. Celle-ci généralise la notion de sous et sur solution.
Mots Clés: Dérivée fractionnaire conforme, calcul fractionnaire conforme sur les échelles de temps,
systémes nabla d'équations dynamiques et d'inclusions dynamiques, équation dynamique fractionnaire
conforme, conditions aux limites non linéaires, fonction de Green, sous et sur solutions, tube-solution,
théoreme du point fixe de Schauder, espaces de Sobolev fractionnaires.
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