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Abstract :

In this thesis, we have studied the null controllability question of

Degenerate Non autonomous Parabolic Equations. Among the tools to study
the null controllability of the degenerate parabolic equations is the Carleman
estimates. These last estimates are used to show the observability inequality of
the adjoint parabolic equations which is equivalent to the null controllability of

the degenerate parabolic equations. We have also studied the global (in time)

existence of small data solutions to semi-linear fractional O-evolution equations
with mass or power non-linearity. Our main goal is to explain on the one hand
the influence of the mass term and on the other hand the influence of higher
regularity of the data on qualitative properties of solutions. Using modified

Bessel functions we proved some polynomial decay in Lp - Lq estimates for

solutions to the corresponding linear fractional O-evolution equations. By a
fixed point argument the existence of small data solutions is proved for some

.admissible range of powers p.



Résumé :

Dans cette thése, nous avons traité la question de la controlabilité a zéro des
équations paraboliques dégénérées non autonomes. Les estimations de
Carleman font partie des outils permettant d’étudier la contrélabilité & zéro des
équations paraboliques dégénérées. Ces dernieres estimations servent & montrer
I'inégalité d'observabilité des équations paraboliques adjointes qui est
équivalente a la controlabilité 4 zéro des équations paraboliques dégénérées.

Nous avons aussi étudié I'existence globale (dans le temps) de solutions de

petites données pour des équations fractionnaires O-évolution semi-linéaires
avec ou sans terme de masse. Notre objectif principal est d'expliquer d'une part
l'influence du terme de masse et d'autre part I'influence de la régularité
supérieure des données sur les propriétés qualitatives des solutions. En utilisant
des fonctions de Bessel modifiées, nous avons démontré une certaine
décroissance polynomiale dans les estimations Lp - Lq pour les solutions aux
équations fractionnaires linéaires correspondantes. Par un argument de point
fixe, l'existence de solutions de données réduites est prouvée pour une gamme

.de puissances admissibles p.
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Notations
Q:  Open set of R".
Q:  The closure of €.
['=090: The boundary of €.
XY Banach spaces.
|- [lx: Norm in X.
H : Hilbert space.
(+,-) :  The scalar product in the Hilbert space H.
L(X,Y): The space of linear and continuous applications of X in Y.
C(2) =  the set of continuous functions u : Q@ — R.
C*(Q) = the set of functions u : @ — R k times continous differentiable in .
C*>(Q) :  The space of indefinitely differentiable functions in €.
supp(u) = {x € Q:u(x) # 0}.
D)= {ueC™(): supp(u) C Q, and supp(u) is compact}.
LP(Q) = {u:Q — R, umeasurable and /!u(m)|pdx < o0}, 1 <p<oo.
Q
L>®(Q) = {u:Q — R,measurable and 3C > 0 : |u(x)| < C, a.e. in Q}.
H'(Q)= {uelLl*): g—;i € L*(),1 <i<n}
Hi(Q)= {ueH(Q):u=00nT}.
H™*(Q) = The dual space of Hy(2).
Guo (Zo vy (m)
O0x1’ O0x9 ox,, Oz 1<j<n
Wwte(Q) {u:ue LP(Q),Vue (LF(Q)"},1 < p < oo.
1
HY01) = {ue I2(0,1) A HL (0,1) - / a(z)ide < o).
0
HIR") : = {fe€SR") | fluy = IIF({F()llLs < oo}
HIRY) :=  {f€S®R):|flla = I1F(EAF))za < o0}




Introduction

In the first part of this thesis, we deal with the null controllability question of Degenerate Non
autonomous Parabolic Equations. In general, the null controllability problem of partial deferen-
tial equations can be treated by different means like the moments method, Hilbert uniqueness
method (called briefly HUM), multipliers method, microlocal analysis, spectral inequalities, fun-
damental solutions, controllability via stabilization or energy estimates (see for example [34] and
[39]). The null controllability of nondegenerate parabolic equations have been widely studied
in the last years, see in particular [9], [27], [30], [41], [43]. On the other hand, very few results
are known in the case of autonomous degenerate equations; see [4], [5], 6], [11], [42]. Among
the tools to study the null controllability of the degenerate parabolic equations is the Carle-
man estimates. These last estimates are used to show the observability inequality of the adjoint
parabolic equations which is equivalent to the null controllability of the degenerate parabolic
equations. The Carleman estimates are the main results of the above references. Recently in
[45], the authors established a new Carleman estimate for the autonomous degenerate equations
under some general conditions on the degenerate diffusion coefficient a. In the first part of this
theses, we are interested to study the null controllability for the one dimensional degenerate non

autonomous parabolic equation
up — M(t)(a(x)ug)z = hxw, (x,t) € @ =1(0,1) x (0,7,

where w = (21, 3) is a small nonempty open subset in (0,1), h € L*(w x (0,7)), the diffusion
coefficients a(+) is degenerate at x = 0 and M(+) is non degenerate on [0, 7. Also the boundary
conditions are considered to be Dirichlet or Neumann type related to the degeneracy rate of a(-).
Under some conditions on the functions a(-) and M(-), we prove some global Carleman estimates
which will yield the observability inequality of the associated adjoint system and equivalently
the null controllability of our parabolic equation.

In the second part of this thesis we study the global (in time) existence of small data solutions to
semi-linear fractional o—evolution equations with mass or power non-linearity. The concept of
non-integer derivative and integral, as a generalization of the traditional integer order differential
and integral calculus was mentioned in 1695 by Leibniz and 1'Hospital, but the first definition

of the fractional derivative and integral was introduced at the end of the nineteenth century by
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Liouville and Riemann. The most important advantage of fractional derivatives compared with
integer derivatives is that it describes the property of memory and heredity of various materials
and processes. In recent years, fractional calculus has attracted many physicists, mathematicians,
engineers and notable contributions have been made to both theory and applications of fractional
differential equations. It has been found that the differential equations involving fractional
derivatives in time are more realistic to describe many phenomena in practical cases than those
of integer order in time. For more details about fractional calculus and fractional differential
equations we refer to the monographs by Miller and Ross [44], Podlubny [50], Hilfer [35] and
Kilbas et al. [38]. Since fractional semilinear evolution equations are abstract formulations for
many problems arising in engineering and physics, fractional evolution equations have attracted
increasing attention in recent years, see [21]-[24] and the references therein.

This thesis is decomposed into 6 chapters and is organized as follows. In chapter 1 we recall
some preliminary results on the spaces of Lebesgue, the space of Sobolev and some properties
related to these spaces. The Chapter 2 is devoted to the study of the theory of simigroup, we give
some definitions and some properties of this theory as well as spectral theory and we end with
a theorem of Hille-Yosida which plays a very important role in the existence , The uniqueness
and the regularity of some Cauchy problems. In chapter 3, we give the various notions of
controllability, the various characterizations related to the notion of controllability and thus
the comparison between these notions. The chapter 4 is devoted to the notion of Carleman
estimate and the importance of using this estimate to deduce an observability inequality witch
will be equivalent to the null controllability. In the chapter 5, we are interested to the null
controllability of degenerate non autonomous parabolic equations in one-dimensional space. For
some hypothesizes on the diffusion coefficient, we proof a Carleman estimate witch will be used
to show the observability inequality and consequently the null controllability. Finally, In chapter
6 we study the global (in time) existence of small data solutions and stabilization to the following

semi-linear fractional o—evolution equations with mass or power non-linearity

oo, + (—A)u + m?u = |ul?,
u(z,0) = ug(x), u(0,2) =0,

Our main goal is to explain on the one hand the influence of the mass term and on the other
hand the influence of higher regularity of the data on qualitative properties of solutions. Using
modified Bessel functions we prove some polynomial decay in LP — L7 estimates for solutions to
the corresponding linear fractional o—evolution equations with vanishing right-hand sides. By
a fixed point argument the existence of small data solutions is proved for some admissible range

of powers p.



Chapter 1

Preliminary results

1.1 LP? spaces

We consider Q C R" an open. We denote by L'(2) the space (of the equivalence classes) of
functions integrable in Lebesgue’s sense on a values in R. That is, as we usually do, we confuse
two functions that coincide Almost everywhere (a.e. in abbreviated).

For v € L'(Q) we note

lulloy = / () |da
Q

Definition 1.1. For 1 < p < 0o, we put

LP(Q) ={u: Q = R, u measurable and /|u(x)]pdx < 00}

Q

The mapping || - || Lr(q) where

[

|w|l ) = (/|u(x)|1’dx)p (1.1)

defines a norm in LP(€).
Definition 1.2. We put
L>*(Q) = {u: Q — R, measurable and 3C > 0 : |u(z)| < C, a.e. in Q}.

Theorem 1.3. (Hélder inequality) Let v € LP(Q?) and v € LI(Q2) with 1 < p,q < oo such that
% + % =1 (q denotes the conjugate exponent of p). Then uv € L'(Q) and we have

[wvllzr < [lullof|v]] 2o
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Theorem 1.4. (Fischer-Riesz) (LP, || - ||z») s a Banach space for all 1 < p < oco.

In the particular case p = 2, the relation

(u,v) = /u(x)v(x)dm, Vu,v € L*(Q), (1.2)
Q
defines a scalar product in L*(Y), whose associated norm is none other than the norm || - |12

defined in (1.1).
Proposition 1.5. The space L*(Q) provided with the scalar product (1.2) is a Hilbert space.

1.2  Sobolev spaces

Sobolev spaces of order 1

Definition 1.6. We call Sobolev space of order 1 on €1, the space

HY(Q) = {u e L¥Q) : g—“ € L¥(Q),1<i<n).
i
H'(Q) is provided with the scalar product
(4, )10 = / @wi Ou Ov )dm = (u,0) + (Vu, Vo), Yu,v € H(Q). (1.3)
) 3 81‘1 axz ) Y ) )

And we note

- 8u % 1
= ([ (4 DG )do)” = (luls + [Fulio) (14)
Q Lo
the corresponding norm.

Proposition 1.7. The space H'(Q) provided with the scalar product (1.3) is a Hilbert space.

Definition 1.8. Let D(Q2) denote the vector space of infinitely differentiable functions on  with
compact support in Q. We defend H}(QY) as the adherence of D(Q) in H'(Q), that is to say

1
Hy(©) =D@)"
Remark 1.9. If Q is bounded, D(Q) is not dense in H*(Q) and we have H}(Q) C H'(Q)
with strict inclusion; On the other hand, if Q = R™, D(R"™) is dense in H'(R"), that is to say
H}(R") = HY(R"™).

Proposition 1.10. The space H}(Q) provided with the norm induced by H'(Q)) is a Hilbert
space.
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Theorem 1.11. (Trace Theorem) Let 2 be an open boundary of class C1, there exists a contin-
uous linear operator o € L(H (), L*(0R2)) such that

You = ulgn, Yu € CH(Q).

L%(092) is the space of (class of) real functions, square integrable on 5.
According to the trace theorem, we can give the following characterization of the functions of
H}(Q) which explains the important role played by the latter in the resolution of equations
with partial differentials coupled with boundary conditions, that is to say when The value u is
prescribed on the boundary 0.

Definition 1.12. The functions of H}(Q) are the functions H'(Q) that vanish on the boundary
I' = 09,
Hi(Q) ={ue H(Q):u=0onT} = the kernel of Y.

Remark 1.13. We denote the dual space of H} () by H=1(Q).

Theorem 1.14. (of Rellich) If Q is an open boundary of class C*, then the canonical injection
of H} () in L*(Q) is compact; That is to say, any boundary set of H(SY) is relatively compact
in L*(Q).

We can identify L?(Q2) and its dual, then we have the inclusions:
Hy(Q) € L*(Q) € H(9),

with continuous and dense injections (see [8]).

Sobolev spaces W1»

Let € be an open set in R™, coordinates in R™ are denoted by = = (z1, 22, ..., ).

Definition 1.15. 1. For u : R® — R, the partial derivative of u with respect to the variable

zj,j =1,2,...,n 1s denoted by %, and then
J
( ou  Ou ou ) < ou )
Vu := , e = .
0xy1’ 0x9 ox,, Ox; 1<j<n
2. If u: Q@ — R™, then we note u = (u',u?,...,u™) the coordinates in the space R™. The

gradient of u can, then, be written by:

Gyt \ 1SEEm
Vu = ( ) = (Vul,Vu27...,Vum)T,

0% ) 1 <j<n

where T stands for the transposition. In this case, Vu is a real matriz of n rows and m columns.

9
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Definition 1.16. Let Q be an open set in R™. C(Q) the set of continuous functions u : @ — R.
C(Q) is the set of continuous functions u : Q — R which can be continuously extended to €.

The norm over C(2) is given by:
|lulle = sup [u(z)|
e

The support of a function u : 2 — R is defined by

supp u = {x € Q:u(zr) # 0}

Definition 1.17. Let Q0 C R™ be an open set, s € IN, and 1 < p < oo. We define the Sobolev
spaces WP(Q)as follows:

WP(Q) :={u:u e LF(Q), Vu € (LP(Q))"}
The spaces W1P(Q) are Banach spaces, with respect to the norm
1
[lullwre = (l[ullze + [IVullZ)7 if 1 <p <oo

and

[lullwioe = max{||ul|ze, [[Vul|} if p = o0.

The closure of C3°(Q) in W'P(Q) is usually denoted by Wy (Q).

Remark 1.18. 1. Ifu : Q — R™ is a vector-valued function, the Sobolev spaces are denoted
by WP(Q,R™),

2. WP(Q) is separable if 1 < p < 0o, and reflevive if 1 < p < cc.
3. The space of C* function is dense in WP(Q) with respect to the norm defined below.

Theorem 1.19. (Poincaré’s Inequality) Let ) be an open bounded set in R™ with Lipshitz
boundary. C§°(Q2) denotes the set of C>(Q2) functions with a compact support in Q. There exists
a positive constant C(p), which depends only on p, such that :

Vu € C5°(Q) : ||ullze < C(p)||Vul|Lr-

Note that, by density, Poincarés inequality is still true over Wol’p(Q), for every 1 < p < oo.

1.3 LP(a,b; X) spaces

We give a brief introduction to the integrability in Bochner’s sense of the functions defended

over an interval, with vectorial value.

10
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let X be a Banach space and —oo < a < b < oo. A function f : [a,b] — X is simple if it exists

a measurable subsets Ay, Ag, -+, A, of [a,b] and x1, 29, -+, x, of X such that

£ =3 )

where x4 is the characteristic function of A. We will say that f is measurable if there is a
sequence of simple functions f, fi : [a,b] — X such that fi, — f, a.e. in [a, b].
A measurable function f is said to be integrable (in the sense of Bochner) if there exists a sequence

of simple functions fx, fi : [a,b] — X such that
b
im [ 17(6) ~ fult)xdt =0,
k—o00

b
in this case [ f(t)dt is defined by

b b
/f(t)dt = lim /fk(t)dt
k—o0
Theorem 1.20. (Bochner) A measurable function f : |a,b] — X is integrable if and only if
If()llx € L(a,b).
For 1 < p < o0, we put
LP(a,b; X) = {f : [a,b] — X, integrable and such that || f(-)||x € L"(a,b)}

With the norm ,

o = ([ 1FOIRat)", itp < o0,
and

l|[w||Loo (apsx) = Inf{C : || f(t)]|x < C, a.e. on [a,bl]}.

Proposition 1.21. LP(a,b; X) is a Banach space, for all 1 < p < co.

Remark 1.22. If X is a Hilbert space with the scalar product (-,-)x, then L*(a,b; X) is a Hilbert

space, for the scalar product

b

(U, V) 2(ap;x) = /(u(t)m(t))xdt.

a

11



Chapter 2
Semigroups

In the following (X, || - ||) denotes a Banach space. In this chapter, we will recall the definitions

of a Cy-semigroup as well as the most important properties.

2.1 (Cjy-semigroup

Definition 2.1. 1. We call Cy-semigroup of linear operators on X a family (S(t))i>0 C L(X)
verifying the following properties

1. S(0) = I, with I the identity of L(X),
2. S(t+s) = S(t)S(s), Vt,s >0, (Property of the semigroup),

3. lim S(t)x = x, Yx € X (Property of the Cy-semigroup).

t—0t

Moreover, if ||S(t)|lzcx) < 1, YVt > 0, we say that (S(t))i>0 is Co-semigroup of contractions.
2. We call Cy-group of linear operators on X, a family (S(t))er C L(X) verifying the 3 previous
properties only we replace (t,s > 0) by (t,s € R) and t — 0% by t — 0.

Proposition 2.2. if (S(t))i>0 is Co-semigroup in X, then
Jw e R, IM > 1:[|S(t)|lgx) < Me*', Yt > 0.

Definition 2.3. The infinitesimal generator of the Cy-semigroup (S(t))i>0, an operator A defined

on the set: St
D(A) = {o € X : Tim 2T

t—0t

exist in X},

and Ar = lim w for all x € D(A).

t—0t

if we replace t — 07 by t — 0 we say that A infinitesimal generator of Co-group (S(t))ier-

12
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Examples 2.4. Let Cy([0,00)) = {f : [0,00) — R, f uniformly continuous and bounded},
with || fllc. (o)) = sup | £ (s)].

s€[0,00

It is clear that (Cu([0,00)), || - lcw(0,00))) @ @ Banach space. Let,
(S@)f)(x)=flx+1), Vt,o >0 andVf € Cyu(]0,00)).

We wverify that, (S(t))i0 s Co-semigroup of contractions in Cyu([0,00)) and that its generator

infinitesimal is given by:
D(A)={f: f and " € Cu([0,0))} and Af = f'.
Proposition 2.5. Let (S(t)):>0 be a Cy-semigroup of generator A in X then we have :

1. A: D(A) C X — X is a linear operator.

t ¢
2. Vr e X : / S(s)xds € D(A),¥t >0 and A/ S(s)xds = S(t)x — .
0 0

t t
3. If x € D(A), then S(t)x —x = A/ S(s)xds = / S(s)Axds.
0 0
4. For all x € D(A), we have

%S(t}x = AS(t)x = S(t)Ax, Vt > 0.

Remark 2.6. Let (S(t))i>0 be a Cy-semigroup in X then we have

t+h

lim = S(s)xds = S(t)x.

h—0 h J,

Definition 2.7. Let A: D(A) — X is an unbounded linear operator, we say that A is closed if
its graph Gr(A) = {(z, Az) : © € D(A)} is closed in X x X

Theorem 2.8. The generator of a Cy-semigroup in X s closed and its domain is dense in X.

Theorem 2.9. Let A be the infinitesimal generator of the Cy-semigroup (S(t))i>o in X. If
D(A™) the domain of A™ is defined by:

D(A™) = {x € D(A) : Av € D(A" 1)}

then (| D(A"™) is dense in X.

neN*

13
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Proposition 2.10. Let (A, D(A)) be a generator of a Cy-semigroup (T'(t))i>o. Then, for all
A€ C andt >0, we have

(A— M) fT(s)xds, ifv e X.
e Mt —z =% , 0
[ T(s)(A— X)zds, if x € D(A).

Proof. It is enough to apply the Proposition 2.5 for S(t) = e MT(t),t > 0 with generator
(A — I, D(A)). O

2.2 Resolvent and spectrum

Notations
For a linear operator not necessarily bounded A : D(A) C X — X, we Note by:
1. p(A) ={A € C: A\ — A is invertible in £(X)}, the resolvent set of A.
2. R\ A): p(A) = L(X), R(A\, A) = (M — A)~! the resolvent of the linear operator A in \.
3. 0(A) =C\ p(A) the spectrum of A.
4. 0,.(A) ={A € C:Im(A — A) is not dense in X} the residual spectrum of A.

5. 0p(A) ={A € C: A\l — A is not injective in X} the punctual spectrum of A.

2.3 Hille-Yosida theorem

Let (S(t))t>0 be a Cy-semigroup in Banach space X. From Proposition 2.2 it follows that there
are constants Jw € R,IM > 1 such that ||S(¢)||zx) < Me*', ¥t > 0. If w = 0 then (S(t)):>0
is called uniformly bounded and if moreover M = 1 it is called a Cy-semigroup of contractions.
This section is devoted to the characterization of the infinitesimal generators of Ciy-semigroup of
contractions. Conditions on the behavior of the resolvent of an operator A, which are necessary

and sufficient for A to be the infinitesimal generator of a Cy-semigroup of contractions, are given.

Theorem 2.11. (Hille-Yosida). A linear (unbounded) operator A is the infinitesimal generator
of a Cy-semigroup of contractions (S(t))>o if and only If

1. A is closed and D(A) is dense in X.

14
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2. The resolvent set p(A) of A contains |0, 00[ and for every A >0

1
< —.
IROL A < 5

The proof of this theorem is in [48].

Corollary 2.12. A linear operator A is the infinitesimal generator of a Cy-semigroup satisfying
S| < e¥t, for allt >0, if and only If

1. A is closed and D(A) is dense in X.

2. The resolvent set p(A) of A contains |w, oo and for every A > w
1
RNA)| < —.
1RO, A < 1

Corollary 2.13. A linear operator A is the infinitesimal generator of a Cy-semigroup satisfying
S| < Me**, for all t > 0, if and only If
1. A is closed and D(A) is dense in X.

2. The resolvent set p(A) of A contains |w, o0 and for every A > w

M
A—w

IR(A A <

Definition 2.14. 1. An operator (A, D(A)) is said to be dissipative if:

Vo € D(A),YA > 0: |(M — A)x|| > N|z]|.

2. If more \I — A is surjective (YA > 0), we say that A is m-dissipative in X .

Remarks 2.15. 1. If point 2 of Definition 2.14 is verified, then the operator \I — A is a
Isomorphism of D(A) into X.

2. In the case where X is a Hilbert space with the scalar product (-,-), we can show that A is
dissipative if and only if Re(Ax,x) <0, Vo € D(A).

Then we have the following Theorem in the framework of a space of Hilbert.

Theorem 2.16. Let A be a linear operator of domain D(A) dense in a Hilbert space H. Then A
is a generator of a unitary group (S(t))i>o0 of H if and only if A is skew adjoint, a.e., A* = —A.

Remark 2.17. Let A : D(A) C H — H is an unbounded linear operator, then A is m-
dissipative of dense domain in H if and only if A is the infinitesimal generator of a Cy-semigroup

of contractions.

15
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Proposition 2.18. Let A : D(A) C H — H be a dissipative and dense domain in a Hilbert
space H. Then,

1. If A 1s closed, then A*, its adjoint, is dissipative if and only if A is M-dissipative of H.
2. If A is self-adjoint then A is m-dissipative of H.

Theorem 2.19 (Lumer and Phillips 1961 ). Let (A, D(A)) a closed operator with dense domain
D(A). Then the following propositions are equivalent

(a) A is the generator of Cy-semigroup of contractions in X .

(b) A is dissipative and there exists X > 0(or VA > 0) Im(A — A) = X

16



Chapter 3

Controllability of Distributed Systems

3.1 Description of the system
Consider the systems described by the operational differential equation of state

{ Dy(t) = Ay(t) + Bu(t) inQx (0,T) (3.1)

y(O) = Yo, n Q?
where €2 is open in R" represent the geometric domain of the system, 7’ > 0 and

1. A€ L(V,H) is a differential operator generates a Cy—semigroup (S(¢)):>o on the space of
state H,

2. B € L(U,H) with U is a space of Hilbert called control space,
3. we L?(0,T;U) called the control,
4. yo € L*() is initial data.

The representation of the solution of the system (3.1) is formally given by

yu(t) = S(t)yo -I—/O S(t — s)Bu(s)ds (3.2)

where ¥, (t)(x) = y(x,t,u). We consider the linear and bounded operator L; : L*(0,T;U) — H
defined by

Lou = / 'S(t— $)Bu(s)ds, Vu € LX0.T:U). (3.3)

L, is called controllability operator.

17



CHAPTER 3. CONTROLLABILITY OF DISTRIBUTED SYSTEMS 18

3.2 Controllability and different notions of controllability

The problem of controllability consists in the possibility of transferring the state of a system in a
finite time, from an initial state to a desired state chosen a priori. In the case of finite-dimensional
systems, The Kalman condition necessary and sufficient condition for the controllability. For the
distributed systems one is led to consider various degrees of controllability. We will introduce
the following notions of controllability: exact, approximate, to the trajectories, null and finally

regional controllability

3.3 Exact Controllability
Definition 3.1. The system (3.1) is said to be exactly controllable in H on [0,T] if
Vys € H,3u € L*(0,T;U) : y(yo, T) = ya. (3.4)
Remark 3.2. The above definition is equivalent to Im(Ly) = H.
Proposition 3.3. The system (3.1) is exactly controllable in H over [0,T] if and only If:
36> 01 gl < el B ()pllizoany, Vo € H (3.5)
The proof is based on the following Lemma witch is more general result:

Lemma 3.4. Let VW and Z be Banach spaces reflexive, and F € L(V, Z),G € L(W,Z). Then,

the following assertions are equivalent,
1. ImF C ImG.

2. e >0 || F*y*|

ve < |Gy ||lwe, Yyt e Z*.

Proof. We take V=27 = H/W = L*(0,T;U) and F = Idy,G = Ly. Let y* € H*, then for all
u € L?(0,T;U) we have

(L' u) = (", L) = (o, / S(T — 5)Bu(s)ds)
:/0 (", S(t — s)Bu(s))ds

:/0 (B*S™(T — s)y*,u(s))ds

= (B*S*(T — )y, u).

18



CHAPTER 3. CONTROLLABILITY OF DISTRIBUTED SYSTEMS 19

So Lhy* = B*S*(T — -)y*. Now we suppose that the system (3.1) is exactly controllable and let
y € ImF = H. For y; = S(T)yo + y, there exist u € L?(0,T;U) such that y,(T) = y4, then we

obtain .
/ S(T — s)Bu(s)ds = y.
0

We have Lru = y. Consequently, ImF C ImLp. Then from the Lemma 3.4, we obtain the
enequality (3.5). Conversely, we suppose that (3.5) is verified, then by lemma 3.4, ImF = H C
ImLy and therefore we have the exact controllability of (3.1). O

3.4 Approximate Controllability
Definition 3.5. The system (3.1) is said to be approximate (week) controllable in H on [0,T] if
Vya € H,Ve > 03u € L*(0,T;U) : [|[y(T) — ya| < e. (3.6)

Proposition 3.6. The following properties are equivalent

1. The system (3.1) is said to be approximate (week) controllable in H on [0,T.

2. ImLr = H.

3. ker(L%) = ker(LyL%) = {0},

4. ((B*S*(s)y,v) =0, Vs €[0,T], Yv € U) =y =0.

5. If the semigroup (S(t))i>o0 is analytic, then we have:

3s € [0,7] : UpnenIm(AS(s)B) = H.

Proof. (1) = (2) : The system (3.1) is approximately controllable on [0, 7] .a.e.

Vyq € H,Ve > 03u € L*(0,T;U) : [|[y(T) — yq| < e. (3.7)
This is equivalent to

Vyq € H,Ve > 0,3u € L*(0,T;U) : || Lyu — yq|| < e. (3.8)

Consequently ImLy = H.
(2) = (3) : Let y/nH* such that Lyy* = 0, then we have

(y*, Lyu) = 0, Yu € L*(0,T;U)

19



CHAPTER 3. CONTROLLABILITY OF DISTRIBUTED SYSTEMS 20

That implies y* € (ImLT)L = {0}. So, y* = 0, we deduce that ker L}, = {0}. On other hand,
for x;nH such that (LyL%)x = 0. Then

(LyLy)e,y) =0, Vy € H.

In particular
((LrLy)e,x) = ((L1)z, Lyx) = || Lia|* = 0.

So, Lz = 0. Then = 0 and consequently ker(LrL%.) = {0}.

(3) = (4) : Suppose that ker L. = ker(LyL%) = {0}. From above, we have Liy = B*S*(T —
Jy, Vy € H. If ((B*S*(s)y,v} =0, Vs € [0,T], Yo € U, then (Lyy,v) =0 Vv € U. And as
ker L = {0}, we deduce that y = 0.

(4) = (5) : Suppose that for all s € [0, T] such that

UnenIm(AnS(s)B) # H.
Then
dy #0: (y, A"S(s)Bv) =0, Vn €N, and Vv € U.

In particular
(y,S(s)Bv) =0, and Vv € U.

Then, (B*S * (s)y,v) =0, Yv € U, and Vs € [0,T]. So, y = 0. Contradiction.
(5) = (2) : Assume that, ImLy # H, then there exists y* # 0 such that

t
<y*,/ St — $)Bu(s)) st = 0, Yo € U,
0
So
(y*, S(t — s)Bv(s)ds)g+nu =0, Vs € [0,T],Yv € U.

We deduce that
d’I’L

@(y*, S(t — s)Bv(s)ds)y+u =0, Yn € N,Vs € [0,T],Vv € U.

Consequently
(y*, A"S(t — s)Bv(s)ds)g=u =0, Vs € [0,T],¥n € N,Yv € U.

Witch gives

y* € UnenIm(A"S(s)B) Vs € [0,T].
Hence, U,enIm(A"S(s)B) # H, Vs € [0,T]. O

However, this notion is unfortunately insufficient when, for example, the system is to be
stabilized around an unsteady stationary state, since it would be necessary to control all the
time to remain in a neighborhood of the solution, which is impossible in practice, Controllability

approach is too weak. For this purpose, we propose the following concepts:
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3.5 Controllability to trajectories

Here it is a matter of reasoning not on the final states of the system but on the trajectories. We
will modify our problem to say that we want not to reach any final state but to coincide with a

given trajectory at time T. Consider then a free trajectory of our system

{ 5%5“): yOAg(t) in Q x (0,7) (39)

in €,

Let us suppose our initial state yo € H different to 7,. Then we want to find a control u such
that the solution of (3.1) verifies y(7") = y(7T).

Definition 3.7. The system (3.1) is said to be controllable on the trajectories in time T if, from

any nitial data, it is possible to reach any trajectory in time T.

So, it is to bring the solution exactly on a free trajectory of the system at time 7. Suppose
that the system we consider is in the state yy at ¢ = 0. The idea is that We want to be exactly
on 7 at the time ¢ = T, that is to say, one wants to have, by positing Z =y — 7, 2(T) = 0, with
an initial condition 2y = yy — Y, which describes the space U, when y, Traverses Uy. We are thus
reduced to the problem of exact control over the trajectories, or null controllability (equivalent
notions on linear problems). Finally, we note that for a linear problem, the problem is reduced

to the null controllability.

3.6 Null Controllability

Definition 3.8. The system (3.1) is said to be null controllable in time T if, from any initial

data, it is possible to reach the trajectory zero in time T

In other words, the system (3.1) is null controllable at time 7' if for all yo € L*(Q), There
exists a control u € L?*(0,T; U) such that the solution y of (3.1) satisfies y(7T) = 0 in .

Proposition 3.9. Let T' > 0. The system (3.1) is null controllable in H over [0,T] if and only
if:
3o > 0[Sl < I BS* Oplzoramy, Ve € H (3.10)

The proof of the Proposition 3.9 is based on the following Lemma

Lemma 3.10. Let H,, Hy and Hs be three Hilbert spaces. Let Cy be a linear mapping continuous
from Hy to Hy and Let C3 be a closed linear operator densely defined from D(C3) C Hs into H;.

Then the following properties are equivalent:
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1. There exist M > 0 such that

|Csh||lg, < M||C3h||gy, Vh € D(Cs). (3.11)

2. We have the following inclusion

Cy(Hy) C C5(D(Cy)). (3.12)

Moreover, if there exists M > 0 is that (3.11) satisfies, there exists a continuous linear mapping
Ch of Hy to Hs such that

Cl(HQ) C D(Cg) and 02 = 0301 (313)
1C s,y < M. (3.14)

Proof of Proposition 3.9

1. Let T > 0. Assume that The system (3.1) is null controllable in H over [0,7]. Let
Yo € H, then there exists a control u € L?*(0,T;U) such that the solution y of (3.1) satisfies
y(T) =0 in Q. That is to say

S(T)yo+ Lru=0

So Im(S(T)) € Im(Lr). We apply Lemma 3.10, with H, = Hy, = H, and Hs =
Lz(O,T, U), 02 = S(T), 03 = LT, we get

e >0 ||S* ()| < c||B*S* ()l 20,0+, Yo € H. (3.15)
2. Assume that
Je >0 ||S*(T)e|| < c||B*S™ ()l 20,0+, Yo € H. (3.16)
We apply Lemma 3.10, with H; = Hy = H, and Hz = L*(0,T;U), Cy = S(T),Cs = L,
we get

CQ(HQ) C Cg(Hg) (317)

This is equivalent to
S(T)(H) C Lp(L*(0,T;U)). (3.18)

Let yo € H, then there exists v € L?(0,T;U) such that S(T)yo = Lrv. If we put u = —v,
we obtain the solution of the system (3.1) satisfies y(7") = 0. Hence, the system (3.1) is
null controllable.
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3.7 Comparison of the different notions

It is clear that exact controllability implies null controllability. The reciprocal is false in general.
However, the reciprocal is true if the family of linear and bounded operators (S(t))er is Co-group

in the Hilbert space H. More precisely, we have the following theorem

Theorem 3.11. Assume that (S(t))wer is Co-group in the Hilbert space H. Let T > 0 and
assume that the system (3.1) is null controllable in the time T'. Then the system (3.1) is exact

controllable in the time T.

Proof. Let yo,yq € H. We applied the null controllability with the initial data yo — S(=T")yq,
then there exists u € L*(0,T; U) such that the solution of the system

0 ~ .
y( ) = - ( T)ycb m Q?
satisfies
g(T) = 0. (3.20)
We remark that the solution of the system (3.1) is given by
y(t) = 5(t) + S(=T)ya, Vi € [0,T]. (3.21)
In particular, from (3.20) and (3.21), we get
y(T) = ya
This concludes the proof of the theorem. n

Proposition 3.12. 1. The exact controllability implies the approximate controllability but the

reciprocal is false.

2. The exact controllability implies the controllability to the trajectories but the reciprocal is

false.

3. There is no relationship between approrimated controllability and controllability to the tra-

jectories.
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Chapter 4

Carleman estimate and observability

inequality

4.1 Introduction

Carleman’s estimates are a priori estimates of EDP solutions in Sobolev spaces with weights.
These estimates may be local or global depending on whether they apply to compact support
solutions or to solutions in the whole domain (with associated boundary conditions in the latter
case).

The local Carleman estimates were introduced by T. Carleman in 1939 with the aim of studying
the unique continuation property of operators of partial derivatives. Overall estimates were de-
veloped much later in the 90 by Fursikov and Imanuvilov in the context of control problems for
EDPs. The links between control theory and carleman estimates were established through two
prototypical examples, those of the wave and heat equations. The problem of exact control for
these equations, which consists in bringing the state of the system towards a target state desired
by the action of a control, is equivalent by duality to the problem of observability, which consists
in restoring the dynamics Complete system of the dual system from partial measurements (or
observations) of the state in the region where the control is active. These studies have links to
inverse and identity problems.

The classical methods for establishing the observability inequalities for the wave or heat equation
are based on the development of solutions in a Riesz basis or on the multiplier methods. These
methods are relatively well adapted to the case of constant coefficient operators and under some
geometric conditions on the control domain. They do not provide a general way of dealing with
the case of EDPs with variable coefficients.

Carleman’s estimates are a powerful tool for dealing with these cases, but also for semi-linear
PDEs, Navier-Stockes equations and degenerate parabolic equations. From the carleman esti-

mates, we can deduce the required observability inequalities.
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4.2 Carleman estimate for the linear heat equation

Let © be an open set of R" with boundary I" = 9% of class C%. For a given T' > 0, We consider

a linear parabolic equation of the form

aty_Ay = VXw; (l’,t) € x <07T>
Y =0, ondQx(0,7) (4.1)
y(@,0)  =uyo(x), in €,

where y is the state of the system, w is a nonempty open of €2, ., is the characteristic function
of w, v is the control, and y, is the data. We denote by @ the cylinder €2 x (0,7) and by ) the
lateral boundary of the cylinder (> = 09 x (0,7")). Then, We have the following theorem

Theorem 4.1. For all yo € L*(2) and for allv € L*(w x (0,T)), There exists a unique solution
y of the equation (4.1) with y € C([0,T]; L*(2)) N L*(0,T; HL(Q)). Moreover, there exists a
constant C' = C(T,2) > 0 such that

lylleqomc2@) + 1Vl L20m:m2 @) < C(HyOHL?(ﬂ) + HUHLZ’(Q))'

This theorem of existence and uniqueness of solutions is inherent to the denial of controlla-
bility since it gives a meaning to the solutions of the system under consideration.
We follow [28] for a presentation of Carleman’s inequalities in the case of a linear parabolic equa-
tion with Dirichlet condition. In order to write Carleman’s estimate of (4.1) we must introduce

a weight function. According to [33], we know that for all open w with w CC €, there exists

n = n(z) satisfying

n  €C*Q),
n >01in Q and n =0 on 01, (4.2)
Vn #0, in Q\w.

The existence of such a function is nontrivial and derives from the theory of Morse functions.
For the proof, we refer to (|33] lemma 1.1), (see also [14]).
Let w an open with w CC €2, we introduce the following functions:

emlinllee _ Amlinlloctn(@) () Amlnllos-+n(a))

ale,t) = HT — 1) “ o SO = o,

(4.3)

for all (z,t) € @, m > 1 and A > 1 is a parameter that depends only on and €2 and w to be fixed
later.

Remark that e2A™lnlle — eAtmlinle=n(z) ~ 0 in ). We also introduce the space
Z={q€C*Q):q=00n Z}

Then we have the following carleman estimate result.
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Theorem 4.2 ([28] and [33]). There are three positive constants, \y = C(Q,w), s1 = C(Q,w)(T+
T?%) and C = C1(Q,w) such that, for all \ > X\, s > s and q € Z, we have

st //6_280‘5_1(|Aq|2 + |q|*)dzdt + sA\? // e~ B¢Vl dadt 4 s3A\* // e~ 263 q dadt
Q Q Q

< C’(// e g + Aqg|*dzdt + s>\ // 6_25a53|q|2dxdt>, (4.4)
Q )

wx (0,7

For the proof the reader can be found in [29] and [33].

4.3 Observability inequality

In this section we show how to obtain the inequality of observability from the Carleman estimate.

We consider again the following linear heat equation
Oy — Ay = vxe, (z,t) € Q2 x(0,T)
y =0, ondQx(0,7) (4.5)
y(@,0)  =yo(z), in Q,

we assume that the data yo is in L?(Q2) and we try to find a control v € L?(w x (0,T')) such as
the associated state y possesses a desired behavior at time ¢ = 7. Our aim is to show that the

system (4.5) is null controllable, that is to say
Vo € L*(Q),3v € L*(w x (0,T)) : y(-,T) =0, in Q.

We consider the adjoint problem relative to (4.5)

—Op —Ap =0, (z,t) € Q2 x (0,T)
® =0, ondQx(0,7) (4.6)
o(z,T) = o(z), in &,

Then we have the following result

Theorem 4.3 (see [29]). For all solution ¢ of (4.6), there exists a constant C' = C(T,Q,w) > 0
such that

oGOy <€ [[ JoPdsa (@.7)
wx(0,T)

Proof. In Carleman estimate (4.4), we put ¢ = ¢, where ¢ is the solution of (4.6). In view of
the fact that ¢; + Ap = 0, it follows that

sA\? / / e~ BVl drdt + s\ / / e~ 263 Pdwdt < Cs* A\ / / e~ 263 | Pdxdt.
Q Q

wx(0,T)
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Now using the fact that for fixed A > \; and s > s; there exists a constant M > 0 such that
1 Almlnfloo) M

=0 == 9T =0 SHT—1

then we obtain

s // e~ B (T — ) Vol dwdt + s° // e~ 3T — 1) 3| p|*dadt
Q

<5 / / 20T ) B\ Pdudt.  (4.8)

wx(0,T)

We deduce that

// 6—25at—3(T_ t)_3|(ﬂ|2dl'dt S C // 6_28at_3(T—t)_3|90|2d5L'dt. (49)
Q

wx(0,T)
We now turn to the estimate of the weight functions appearing in (4.9).

Lemma 4.4. 1. Forallt € ]0,T], we have
et 7T = 1) oo < CT® exp(~CsT7)
for some s > sy = max{s;,3T*(8mino(x)) '}
2. For all x € Q, and for all t € [£, 2]
e 23T — )7 > CT S exp(—CsT™?)
for all s > s3.

Then we deduce from (4.9) the following estimate

3T
/T4 /Q\g0|2dxdt§0// - |2 ddt. (4.10)
= wx (0,

On the other hand, by multiplying (4.6) with ¢ and integration by parts on 2 gives

——— = 4.11
s | tebda s [ 1vpas=o. (4.11)

We deduce that [[¢(+,?)[|72(q, is increasing on (0,T). So, [l¢(+,0)[172q) < llo(-, )72, for all
€ (0,7).

Consequently, we obtain

/ (2, 0)2dr < —/ /|<p| dxdt < C// o | *dxdt. (4.12)
©
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The null controllability of (4.1) is follows from the following theorem.
Theorem 4.5. The following assertions are equivalent:

1. There exists a constant C > 0, such that, for all yo € L*(Q2), there exists a control v €
L*(w x (0,T)), with
”UHLQ(wX(O,T)) < CHyoHL2(Q) (4.13)

such that the solution y, € C([0,T]; L*(Q)) N L*(0,T; H}(Y)), of the system (4.5) corre-
sponding to yo and v satisfied y,(T) = 0 in L*(Q).

2. There exists a constant C' > 0, such that the following inequality of observability

nww@@sc// o dudt, (4.14)
wx(0,T)

satisfied, for all solution v € C([0,T]; L*(2)) N L*(0,T; HY(Q)), of the system (4.6) with
initial data oo € L*(2).

before the proof of this theorem, we need the following proposition.

Proposition 4.6. Let yo, po € L*(Q) be fized and v € L*(w x (0,T)), Then

T
/%wn%M—/mmW@mw:/ /wmw
Q Q 0 w

where y, and @ are respectively, the solutions of (4.5) and (4.6) for yo,v and py.

Proof. Multiplying the equations satisfies by ¢ by y and also of y by ¢. after integration by
parts and take in consideration the boundary conditions, we obtain

T
/ /vgpd:r;dt = // (yr — Ay)pdxdt
0 w Qx(0,T)
= - / / (o + Ap)ydedt + / yplo do
Ox(0,T Q0

)
Jy Dy
+ // —=—¢ +y=—)pdodl
8Q><(0,T)( on 377)

_ /Q v, T)godz — /Q vo(2)p(, 0)da.

Proof of the theorem :
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1. let yo € L*(2) and consider that (4.5) is null controllable. Then, there exists v € L?(w X
(0,7)) such that y,(7T) = 0 in .
For ¢y € L*(), let o the solution of the adjoint system with the initial data ¢o. by the

Proposition 4.6, we deduce

(6(0).0) = [

Q

o(x,0)yo(z)dr = _//x(o T)v(x,t)go(x,t)dxdt

< Cllell 2@x 0.1V L2 @ 0,1))
< el 22 wx 0. 1ol 22 0 -

If we put yo = ¢(0), we obtain the observability inequality (4.14).

2. For The reciprocal, we will divide the proof into two steps. In the first step, we will construct
a sequence of controls v. € L*(w x (0,7T)), with ¢ > 0 which provide the approximate
controllability of (4.5). Secondly, we will go to the limit when tends towards zero and we
will conclude.

Step 1 : Let yo € L*(Q) and € > 0. We introduce the functional .J. defined by

1
i) =3 [ tpldad + clinlia + (£0) ). Yion € 1),
wx (0,

where ¢ is the solution of (4.6) with the initial data ¢,. It is easy to verified that the
functional J, is strictly convex, continue and coercive in L?(Q2). It therefore has a unique
minimum ¢, . whose associated solution is denoted by ¢.. Let us now introduce the control
v: = YeXw and denoted by y. the solution of (4.5) associated to v.. Since J. achieved its

minimum in ¢g ., then for all ¢y € L*(9), the function

1
g:hw— J(poe+ hpo) = = // (go? + 2hpp. + h*p?)dxdt
2 J Juxo,m)

=

2

+ 8(@3,5 + 2ho.ep0 + hQs@%)
+ (< (0) + he(0), %0)

achieved its minimum in 0, then ¢’(0) = 0. that is to say

/ / pepdudt +2(— P05 o)+ / op(0)dz = 0, Yo € L2(Q).  (4.15)
wx(0,T) ||900,a||L2(Q) Q
For ¢y = ¢o ., we obtain
// |¢6‘2dxdt + 5||§00,e||L2(Q) + / y0g05<0)dl‘ = O (416)
wx(0,T) Q
However
UE = SOEXw
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Hence
loilee = [l Pdodt < [ ope(0)is
wx(0,T) Q
< lyollz2 @)l (0)[| 2(0)
C 1
< §||yo||2L2 + @II%(O)H%Q
C 1
<Glwle+g ([ et
wx(0,T)
So

[0l 21y < CllyollZ2-

where C'is the constant of the observability inequality (4.14).
On the other hand, according to the Proposition 4.6

//wx(o,T) pepdrdt = (y=(T), o) — /Q?JO(JS)SO(fE,O)dx

then we deduce from (6.56)

©o,e

Ma%ﬂ < 6H900||L2(Q)-
£

|(y€(T)7900)’ = | - 5(

Hence
|ye(T)|[ 20y < e

Step 2 : Since the sequence (v.) is a bounded in L?(f2), we can extract a subsequence,
again noted (v.) which converge weakly in L?(Q x (0,7)) to an element v then we deduce
that the sequence y. = y,_. converge to y = vy, in L*(0,T; Hy(Q)) N H*(0,T; H*(Q2)). In
particular, this gives a weak convergence for (y-(t)) (¢ € [0,T]) in L*(2). In particular, one

can pass to the limit under the boundary conditions, and one obtains:

y(T) = 0.
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Chapter 5

Null Controllability of Degenerate Non

autonomous Parabolic Equations !

5.1 Introduction

The purpose of this chapter is to establish the null controllability for the linear nonautonomous

degenerate parabolic equation

/

u — M(t)(a(x)ug)z = hxw, (xz,t) € Q
u(l,t) =u(0,t) =0, te(0,7T)
or (5.1)

u(l,t) = (au,)(0,t) =0, te(0,7)
u(z,0) = ug(x), z € (0,1),

\

where w = (z1,22) is a nonempty open subinterval of (0,1), @ = (0,1) x (0,7), a(-) and
M (-) are space and time diffusion coefficients, the initial condition ug is given in L?(0,1), and
h € L*(w x (0,T)) is the control function acting on w.

The null controllability of nondegenerate parabolic equations have been widely studied in the last
years, see in particular [9], [27], [30], [41], [43]. On the other hand, very few results are known in
the case of autonomous (M (t) = 1) degenerate equations; see [4], [5], [6], [11], [42]. The main tool
to study the null controlabillity of the above parabolic equations is the Carleman estimates. These
last estimates are used to show the observability inequality of the adjoint parabolic equations
which is equivalent to the null controllability of the above parabolic equations. The Carleman
estimates are the main results of the above references. In [45], the authors established a new
Carleman estimate for the autonomous degenerate equations under some general conditions on

the degenerate diffusion coefficient a. In this chapter, we consider the the non autonomous

'A. Benaissa, A. Kainane Mezadek and L. Maniar, Null Controllability of Degenerate Non autonomous

Parabolic Equations, Facta Universitatis (NIS), Accepted.
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degenerate equations 5.1 under these general conditions on a. We show an adequate Carleman

estimate and then obtain the null controllability via an observability inequality.

5.2 Assumptions and Preliminary Results

In order to study the null controllability of equations 5.1, we make the following assumptions on
the coefficients M(-) and a(-).

Hypothesis 5.1.

1. M is continuous on (0,T) and there ezist two positive constants oy, By such that

0 <ap< M(t) <, te(0,T),

2. M is derivable on (0,T) and there ezists a positive constant vy such that

[M'(t)] <0, te€(0,T).

Hypothesis 5.2.
1. a € C([0,1]) N C*((0,1]), a(xz) >0 in (0,1] and a(0) =0,
2. there exists o € (0,2) such that za'(z) < aa(zx) for every x € [0,1],
3. if a € [1,2), there exist m > 0 and dy > 0 such that for every x € [0, o), we have

a(z) >m sup a(y).
0<y<e

Remark 5.3. It should be noted that the Hypothesis 5.2 appeared in the first time in [45]. It is
weaker than the condition given in [6]. In [45] the author proved also that under the Hypothesis 2.
the classical Hardy-inequality does not hold in general, (see [45, Example 3/), and they proposed

an tmproved Hardy inequality, see Proposition 5.7.

As in [6, 45, 54], for the well-posedness of the problem, the natural setting involves the space

1
H(0,1) = {u € L2(0,1) N HL (0,1) /a@)uidx < oo},
0
which is a Hilbert space for the scalar product

1
(u,v) := /uv + a(2)uvpdr, u,v € HX(0,1). (5.2)
0
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For any u € H}(0,1), the trace of u at z = 1 obviously makes sense which allows to consider
homogeneous Dirichlet condition at z = 1. On the other hand, the trace of u at x = 0 only
makes sense when 0 < o < 1. But, for o > 1, the trace at z = 0 does not make sense anymore,
so one choses some suitable Neumann boundary condition in this case, see for example Lemma

10 of [45]. This leads to introduce the following space H, ((0,1) depending on the value of a:

1. For 0 < a < 1,
H,(0,1) := {u € Hy(0,1) : u(1) = u(0) = 0}.

2. For1 <a <2,
H;(0,1) :=={u € Hy(0,1) : u(1) = 0}.

In order to study the well-posdeness of 5.1, we define the operator (A(t), D(A(t))) by
A(t)u == M(t)Au == M(t)(a(z)uy )., (5.3)
endowed with the domain
D(A(t)) = D(A) = {u € HLy(0,1) 0 H2((0,1)) : (alw)u,), € L0, )}t € [0,7].
Remark 5.4. The domain D(A) may also be characterized in the case of a € [0,1) by
D(A) :={u € L*(0,1) N H ((0,1]) : a(x)u, € H'(0,1) and u(0) = u(1) =0},
and in case of a € [1,2) by

D(A) := {u € L*(0,1) N H}

loc

((0,1)) : a(z)u, € H'(0,1) and  (a(z)u,)(0) = 0 = u(1)}.
Some properties of the operator A are given in the following proposition, see [10].

Proposition 5.5. The operator (A, D(A)) is closed, self adjoint and negative with dense domain

in L*(0,1). Hence A is the infinitesimal generator of a strongly continuous semigroup e'* on

L2(0,1).

From assumptions on M (-), we can check that the family of operators (A(t), D(A(t))),0 <t <
T, satisfies the Acquistapace-Terreni conditions, see [1, 2|, then it generates an evolution family
U(t,s),t > s > 0. More precisely, for t > s the map (¢,s) — U(t,s) € L(L*(0,1)) is continuous
and continuously differentiable in ¢, U(t, s)L?(0,1) C D(A(t)), and OU(t,s) = A(t)U(t,s). We
further have U(t,s)U(s,r) = U(t,r) and U(t,t) = I for t > s > r > 0. Moreover, for s € R
and z € D(A(s)), the function t — wu(t) = U(t, s)x is continuous at t = s and w is the unique
solution in C([s, 00), L*(0,1)) N C*((s,00), L*(0, 1)) of the Cauchy problem u'(t) = A(t)u(t),t >
s,u(s) = x. These facts have been established in [1, 2].

The problem 5.1 is well-posed in the sense of the following theorem.
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Theorem 5.6. For all h € L*(w x (0,T)) and ug € L*(0,1), the problem 5.1 has a unique weak
solution

ue C([0,T); L(0,1)) N L*(0, T; Hy (0, 1))
Moreover, if ug € D(A), then

u € H'(0,T; L*(0,1)) N L*(0,T; D(A)) N C([0,T); H:(0,1)).

Throughout this paper we use the following improved Hardy inequality taken from [45, The-

orem 2.1|, which is the key ingredient in the proof of our Carleman estimate.

Proposition 5.7 (see [45]). Suppose that a(-) and satisfy Hypotheses 5.1. Then, for alln > 0
and 0 < v < 2 — a, there exists some positive constant Co(a,c,y,n) > 0 such that such that for
all u € HiO(O, 1), the following inequality holds

1 1 1

1
2 2 a(1)(1 - a) u? u?
/a(x)uxdx + Co/u dx > 1 —a dx +n Edm. (5.4)
0

0 0 0

5.3 Carleman Estimates

In this section we prove a crucial Carleman estimate, that will be useful to prove an observability

inequality for the adjoint problem of 5.1. For this aim let us consider the parabolic problem

v+ At = f, (z,t) €Q
v(1,t) =v(0,t) =0, te(0,7), in the case a € (0, 1) (5.5)
v(1,t) = (av,)(0,t) =0, te€(0,7), in the case a € [1,2), '
v(z,T) = vr(z), z € (0,1).
Now, we consider 0 < v < 2 — « and ¢(z,t) = 6(t)p(x). Here
O(t) = [T — )] " k= 1+2 = (/yd—) 5.6
( ) [ ( )] ) + /77 p(x) 2 _ CL(y) Y —C2 ( )
0
where ¢; > 0 and ¢y > m such that p(z) < 0 for all z € [0, 1]. Observe that there exists
some constant ¢ = ¢(7T") > 0 such that
10,] < O FVE 16y < c0FHE in o (0,7). (5.7)

We have the following main result.
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Theorem 5.8. Assume that the functions a(-) and M(-) satisfy Hypotheses 5.1 and 5.2 and let
T > 0. For every 0 < v < 2 — « there exists so = so(T, a, a7, Bo, o, Y0) > 0 such that for all
s > so and all solutions v of (5.5), we have

53 7 v?
P 03 ——v*e**Pdudt //«9 2252 dydt 1)(1— 2//9 252 ddt
2—a) // a(:v)v e“*Pdxdt + s a(x)vie®*Pdxdt + sa(1)(1 — «) L
Q Q Q
4
+s// —e2s‘pd dt < — // Fe2edudt + 32a<_ )fo /9 g(l,t)eQSS"(lvt)dt).

Proof. For the proof, let us define the function w = e*?v, where s > 0 and v is the solution of
(5.5). Then w satisfies

(e™*Pw), + M(t) (a (x)(e **w) ) = f, (x,t) € Q,
w(l,t) = w(0,t) = te(0,7), in the case « € (0,1), (5.8)
w(l,t) = (aw,)(0 ,t) s(praw)(0,t) =0, te(0,7), in the case a € [1,2),
w(x, T) =w(zx,0) = xz € (0,1).
Set
Lv :=v+ M(t)(a(x)vy)s, Lsw:=e**L(e”*w).
Lyw = Liw+ Lyw
where
Liw := M(t)(a(x)wy)s — souw + s*M(t)a(z)p>w
Low = w; — 2sM (t)a(z)p,w, — sM(t)(a(x)py)w. (5.9)
Therefore, we have
2(Lyw, Lyw) < ||Lyw + Lyw|]* = || fe*?||?, (5.10)
where || - || and (-,-) denote the usual norm and scalar product in L?*(Q) respectively. The proof

of Theorem 5.8 is based on the computation of the scalar product (L;w, Low) wich comes in the

following lemma.

Lemma 5.9. The scalar product (Lyw, Low) may be written as a sum of distributed term (d.t)
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and a boundary term (b.t), where the distributed term (d.t) is given by

//M 00tp2 2dedt + = 5 // Oupwidrdt
Q

+ s/ 0(2ap,. + a'p,)a(x) M? (t)widzdt

+ s° // 03 (2ap.y + a'py)a(x)p2 M? (t)w* dvdt (5.11)

/ M'(t Ywidwdt — —//M' (t)0*a(z)p2widwdt

whereas the boundary term (b.t) is given by

T
1
s / (1) ae),)?] (5.12)
0
0
Proof. To simplify the notation, we will denote by (L;w);, (1 <i < 2,1 < j < 3) the j term in
the expression of L;w given in (5.9). We will develop the nine terms appearing in the product
scalar (Ljw, Low). For this, we will integrate by parts several times respect to the space and

time variables. First we have

((Llw 1, (Low); //M )W, ) wpdxdt

_ /T [M(t)a(x)wxwt};dt— / / M(t)a(e)w,wndudt (5.13)
0 Q
:/T[M(t)a(x)wxwt};dt—%/[M(t)a(x wi dx—l— / M'(t)a(z)widzdt.

Then

((Llw)27 (L2w>1> = —S // gotwwtd:pdt
Q
/ T
_s 2 s 2
2/ [gptw ]Od$+ 5 // ppwdrdt (5.14)
0 Q
1
=1 Q]Td + 2 ] bupwrdadt
~ 9 SOtwO£E2 Lwpwaxdt.
Q

»

0

36



CHAPTER 5. NULL CONTROLLABILITY OF DEGENERATE NON AUTONOMOUS
PARABOLIC EQUATIONS 37

We also have
52 T
((L1w>3, (ng)1> = 5° a(x) M (t)p2ww,drdt = ?/ [a(:zc)M(t)gpiw2 dx
0

a(x) M (t) ez pmw?drdt — %// 2w dxdt

Il |
[\Dl c”w mw
- 0T e

@\ o\

[a( YM (t) 2w 2 dx— s /a (t)p200,w* dvdt (5.15)
Q

/a(az)M’(t)@Qpiwzdxdt.

s
2
On the other hand, we have

(L1}, (Law)s ) = —2s / / M2 (), (a(z)w,) (a(x)w, ) drdt
x)wx)Q};dt—i—s/ M?(t)pppa®(x)widrdt (5.16)

[MQ(t)gox(a(x)wx)2} :)dt + s/ M?(t)0pypa® (z)widrdt.

Il
| |
St~ T
<

We also have

((Llw)g, (Lyw)y ) = 25 //M T)Qppwwdrdt

| —

M (t)a(z)prpw? dt —s //M ) prapw?drdt

(t)e(alz)py) wdzdt

="
<

M (t)a(x)pipw? dt—s //M (2)00,p2wdxdt (5.17)

()0,p(a(z) @y ) w?drdt.

—
<
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Additionally, we find that
((Llw)g, (ng / M?(t)a*(z) 2 pyww,dzdt (5.18)

T

= —53/ [MQ(t)aQ( } dt + s / M?(t) 2aa ¢z + 3a gom] w?dxdt.
0

Let us now consider the scalar product

Qmmhww :Lﬂ/ M2(t 2o (a(2)p0)swdzdt (5.19)

= —s/ [MQ(t)(a( )P )20 (T)wpw dt+s// M?(t)(a(2)g)spa(x)ww,dzdt

+s [[ a2 et)en ot

Q
T

—8/ [MZ(t)(a(x)%)xa(x)wwx];dt+8/ M?(t)(a(x)er)wa(z)widedt,
0 Q
since (a(x)@s)ze = 0.
Furthemore

((Llw)g, (Low)s —5/ M (), (a(x)pe);wdzdt. (5.20)

Finally, we have

(L), (Law)s) = /)MQ 2 (a(2)py )aw?dzdt. (5.21)

Additionally (5.13)-(5.21), we find that

(dt) = — 2s® //M (2)00,p>widxdt + = / Oupwidrdt
+ s// (2apse + d'pp)a(x) M? (t)wdxdt

+ s // 03 (2ap.e + a'pe)a(x)p2 M? (t)w? dvdt (5.22)

/ M'(t dedt— - / / M (t)0%a(z)p*widadt,
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and

— M2 (t)a? (z)p>w? — 3M2(t)(a(x)gox)xa(x)wwx} ;dt (5.23)

5M2 a(r)w,)?| dt.
0

O\H
—

The proof of (6.21) is similar as that in [6] and used the fact that M(-) is bounded function.
Now we put (d.t) = A+ B, where

= — 242 //M 99tp§ 2dedt + = 5 // Oupw?drdt
Q

s//&(?apm + d'p,)a(x) M? (t)wdxdt
Q

+ s* / 03 (2ap.e + a'p,)a(x)p2 M? (t)wdwdt, (5.24)
and
/ M (t)a(x)wdzdt — — // M'(t)0%a(x)p2wdxdt. (5.25)
Observe that
1
A+B< 5||fes<P\|2 — (b.t). (5.26)

The crucial step is to prove the following estimate.

Lemma 5.10. There exists a positive constant s; = s1(T, a, o, g, Bo,¥,%0) > 0 such that for all

A+ B // 93—w2d1’dt+ s— // Oa(x dedt
1 _
a)ag / / —dudt + 2 ~a] / / G—dxdt (5.27)

39

s > s1 we have,
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Proof. By the assumption za'(x) < ca(x) and the fact that p, = @ oy and observe that
s+l = 5 (22
2 —« a(x)
¢ (2a(x) — oza(x))
> = 2
T 2—« ( a(x) “ (5.28)
one can estimate A in the following way
2522 x? s
— ﬁﬁo/ 99ta(x) U)dedt + = / Httprdxdt
Q
+ sci1af // Ga(ac)widxdt—k > Clao // 6 v w?dxdt. (5.29)
Q
According to the relation (5.7), we know that |06,| < c6?+'/* < ¢/6° and we obtain
3.3 2 2 c
Az<sclo‘0 _ 26 //93 TR dwdt
(2—a)
+ sciaf // Oa(z)widrdt + 5/ Oupwdadt. (5.30)
Q Q
Let
Ay = ci0f // Oa(z)w>drdt + // Oupwidrdt. (5.31)
Q Q
Therefore
836304 2 2 c s
Az (o0 / / 3Ly 2 / / 2 24 (5.32
“(@—ag - 2_& 0 dxdt+2cloz0 Ba(z)w xdxdt—i—Q 1 (5.32)
Q
We apply the improved Hardy inequality (5.4), with » = 1, which gives
1 1 1)1 - @ L L
a -« w w
/a(a:)widx—l—co/dex > 1 /xQ_adx—i-/Ed:c, (5.33)
0 0 0 0
for suitable cq = ¢q(a, a,7y). Therefore we can write
(1 — 2 2 2 2
4, > AU =)y //9 v da:dt+c1a3/ 0 dudt
4 x?-e xY
Q Q
(5.34)

— cocloz?) // Owdxdt + // Oy pw?dzdt.
Q

Q
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Finally, we need to estimate the term

Ay = // 0y pw?drdt — cocrof // Qw3dxdt. (5.35)
Q Q

By (5.7), there exists a positive constant ¢z such that

|Ag] < 5 / / 0 kw2 dadt. (5.36)
Q

Now, we consider ¢ = k—fl and ¢’ = k, so that é + i = 1. Using the Young inequality, we have,
for all e > 0

q —<q 2
< cye / / U+2R= 004 T w2 ddt + cze(e) / / 93%w2dxdt, (5.37)
a\xr
Q Q

where c(g) = %(sq) . Observe that

3 2q

Using the fact that a(-) is continuous on [0,1], there exists a positive constant ¢, such that

(a(x))ﬁ < ¢4 for every x € [0, 1], and then

w? 5 @
Ay > —czeqe // Hgdxdt — c3c(e) //9 (D)
Q Q

Putting the estimate (5.39) in (5.34) and using (6.63), we obtain

s3cla? 2s%cid scgc 72 s
A Z((2 _1 (; — (2 Q)QBO / 93 w2drdt + 5010&3/ «9a<x>w§dxdt
BY (01040 — C3C4E // H—dacdt (5.40)

L8 sa(1)(1 — a)?c1ad /
Thus there exists so = $o(T', a, v, g, Bo,y) > 0

widzdt. (5.39)

2
3ag
2c3cq”

s % // 93—w2dxdt + soy // Oa(z)widdt
2 — a)?
1 —
+ 2 “ ao/ // e—da:dt. (5.41)

Now, take ¢; = 2 and € = e(a, o, g, 7y) =
such that for all s > s,
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On the other hand, we have

|B| < = / |M'(t)|a(z 2dwdt+—//!M' (t)|6%a(z)p2w’dxdt

2

<X / / Ywldadt 1 b / / 02 _w2drdt
2 § 2 x?

<2 dxdt 0
< ’yo(//a(x)wm xdt + (2—@)2/ ()

Q Q

2 5? 3 a?

< 2c570 Oa(x)widrdt + —— 6

(2 — «a)?

2
0‘0 // fa(z)wdzdt + ——— e // g 2dxdt> (5.42)
—Oé

. Therefore

2
B> —s% // Oa(x)wdzdt — 38 ozo // ? v
Q

By addition (5.41) and (5.43), for s > sy(a, ®,7, By, ao,Y0) > 0, with s; = max{s,, % 570} we
obtain the complet proof of Lemma 5.10.

dexdt)

w2dxdt>

80570
O‘o

for all s >

w2dzdt. (5.43)

T
Now, using the fact that [ [SMQ(t)gox(a(x)wx)Q] dt is nonegative, the right hand of (5.26)
5 0

become

2
ers“"||2 / Pereqpar + 245 /0 (1,t)d (5.44)

From (5.26), (5 44) and Lemma 5.10, we obtain

//93 2dazdt+s//9a$wgdxdt+sa(1)(1—a)2//9 —dxdt
2—04 xr?-e
Q
+s//6—dm§% //fQQs‘Pddt 4sal /9 (1, t)dt)
Qg

(5.45)

for all s > s;. Finally, we turn back to our original function v = e~*?w. Using that

2 T
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by Young inequality, we find

3 2
2 2sp < S 3 L 2 // 2 ' .
s //Ga(ac)vze dxdt < 8—(2 o) //9 a(x)w dxdt + 2s Oa(x)widxdt (5.46)
Q Q Q

Also, we have

we(1,t) = (39035@(1,15) + vx(l,t)> s (L)

= (1, 1), (5.47)

Consequently, from (5.45)-(5.47), we have

53 z? \ . 2,
G [ Pttt v [ [ va@ieednissa - [ [ o e
Q Q

Q
2 4 5 L
18 1
+ S// 022 ddt < —2<// f2e**dxdt + M/Qvfc(l,t)e%‘p(l’t)dt>
7 ag 2 -«
Q Q 0

for all s > sy, with sp = s1

5.4 Observability Inequality and null controllability

In order to prove the controllability of (5.1), we first need to derive the observability inequality
for the following adjoint problem

v+ A(t)v =0, (x,t) € Q
v(1,t) =v(0,t) =0, in the case  a € (0,1) te (0,7) (5.48)
v(1,t) = (av,)(0,t) = 0, in the case  a€[1,2) te (0,7 '

v(x, T) = vp(z), z € (0,1).
More precisely, we need to prove the following inequality

Proposition 5.11. Assume that the coefficients a(-) and M(-) satisfies the hypothesis (5.2) and
(5.1) respectivly, let T > 0 be given and w be a nonempty subinterval of (0,1). Then there existe
a positive constant C = C(T, a,a, M) such that the following observability inequality is valid for
every solution v of (5.48)

1 T
/UQ(x,O)dx < C//UQ(x,t)dxdt. (5.49)
0 0 w

Now, by standard arguments, a null controllability result follows.
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Theorem 5.12. Let T > 0 be given, and w be a nonempty subinterval of (0,1). Then for all
ug € L*(0,1), there exists h € L?(wx(0,T)) such that the solution u of (5.1) satisfies u(z,T) = 0,

for every x € (0,1). Furthermore, we have the estimate

1 Pl| 2 x (0,r)) < Clluol| 20,1 (5.50)

for some constant C.

5.5 Caccioppoli’s inequality

An inequality of the Caccioppoli type makes it possible to increase the norm of the gradient
of the solution by means of those of the solution and of the second member. It plays a very

important role in showing Carleman’s estimates or inequalities of observability.

Lemma 5.13. (Caccioppoli’s inequality) Let wy € w be a nonempty open set. Then, there exists

a positive constant ¢ such that for every solution of (5.48)

T T
/ / vgeQS@dxdt < 6/ /UZdZEdt.
0 wo 0 w

Proof. Let us consider a smooth function £ : R — R such that
f@)=1,  wew (5.51)

and £ > 0 for x € w. Then

1
/ 2% dxdt

)
I
O\ﬂ
S

0
25/ 5290t€25(’07)2d$dt+2// 2e*Ppudrdt
Q Q

=2s // 2P dadt — 2/ E2M (t)e*?v(a(x)vy ) odadt

Q Q
=2s // v dadt + 2// M (t)(£2e**%) pa(x)vv dadt + 2// M (1) a(z)vie**?dadt.
Q Q Q
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Hence,

2/ M ()& a(z)vie**drdt = —2s //5290 e*Pvidrdt — 2//M t)(£2e*%) pa(x)vvdadt
Q
52 25<p 2
< —2s // Epe*Pv*drdt + =2 // ) dxdt—l—ag/ \/afewvx> dxdt.
Q Q

(5.52)

In other hand we have

ap // Ea(z)v’e*?drdt < 2/ M ()&% a(z)v2e**?dxdt. (5.53)
Q Q

Using (5.52) and (5.53), we obtain

2 2sg0
Qg //5 a(x)vie*Pdrdt < —2s // P drdt + =2 // 5 2d:r;dt (5.54)
Q

Thanks the definition of £ and the fact that ¢;e®? and pe®? are bounded functions on w x (0,7),
the inequality (5.54) implies that there exists a positive constant ¢; such that

T T
min(a(zr) / / e* P dxdt S/ / a(x)vie**?dxdt §/ a(x)v’e*Pdrdt < 51/ /v2d:17dt.
TEWo 0 wo 0 w

Q

We deduce that
T T
/ / vie* Pdrdt < E/ /v2dxdt, (5.55)
0 wo 0 w

mingeu, (a(z))

Proof of the Observability inequality (6.17). The proof can be made in three steps.

with

c =

Step 1: We consider wy = (2], 25) € w = (x1,22) and a smooth cut-off function 0 < ¢ < 1 such

that
£(x) =1, z€(0,4)
{ £(x) =0, z € (a5,1)). (5.56)

The function w := v, where v is the solution of (5.48), satisfies the following problem

o DOl = MO+ (a0 = (1.1) €Q
w(l,t) =w(0,t) =0, € (0,7), in the case a € (0,1), (5.57)
w(l,t) = (aw,;)(0,t) =0, te(0,7), in the case a € [1,2), '
w(z,T) = wy(x), € (0,1).
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Applying Theorem 6.16 with v = 252 and observe that w,(1,t) = 0, we get
2

2
So // Ow?e** P dxdt < sg //Qj—e%wdxdt
Q

/ M?(t)(2a(z)E v, + (a(z)E) v)2e**0?dxdt

T
< c/ / (v2 + v?)e* 0P dxdt.
0 wo

According to Lemma 5.13, we obtain

T
So // Ow?e** P dxdt < é/ /vgdxdt.
0 w
Q

Next using the definition of &, we obtain

T x1
/ / Ov2e?* 0P drdt < —/ / v2dxdt.
o Jo

Using the fact that p(x) and 6 satisfies the following inequality

o(t) < (2%;>_%:t65[774,3774L
and

262

Ip(z)] < , forall ze[0,1].

2 —«

Then there exists a positive constant ¢ = ¢(T, a, «) such that

3T/4 T2 k
M/‘ / 2mm< C/)/QMﬁ
3T/4
/1 / 2ﬁﬁ<é% /(/2Mﬁ

Step 2: We define z = (1 — §)v. Then, z satisfies the folowing problem

2+ M(t)(a(r)z). = (t)(Qa(f)( §)'va + (a(x)(1 = &))v) == f, (x,1) € (¢7,1) x (0,T)
z(1,t) = z(2,t) =0, te(0,7),
2(x,T) = zr(x), T € (x’l, 1).

witch implies

(5.58)
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In this case, we use classical Carleman estimates, since the operator (a(z)z;), is nondegenerate

on (z,1). Then v can be estimated on (z2,1) C (27,1) in the same way, see [30]. Therefore

37/4 1 3T/4  pxy 3T/4 37/4 1
/ dea:dt:/ / demdt+/ /UQd:L“dt+/ / v2dxdt
T/4 Jo T/4 Jo T/4 Juw T/4  Jao

T
<C / / v dxdt. (5.59)
0 w

Step 3: Multiplying both sides of (5.48) by v and integrate on (0, 1), we obtain

1 1
1d
5% /’UQdZE = M(t) /a(a:)vidx >0, te(0,7).
0 0
Hence, we deduce that
[0( 0)ll720.0) < o)z, forall ¢ € (0,T). (5.60)

Then integrate (5.60) on (7'/4,37/4), and use (5.59), to obtain

1

o [3T/4 1 T
/02(x,0)dx < —/ / vidrdt < C’/ /vzdxdt. (5.61)
T T/4 0 0 w

0
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Chapter 6

(Global existence of small data solutions to
semi-linear fractional c—evolution
equations with mass or power

non-linearity L

6.1 Introduction

In [16] the authors studied the following Cauchy problem for semi-linear fractional wave equations

O u — Au = |ulP,

u(z,0) = uo(x), w(0,2) =0, (6.1)

where a € (0,1), 9/ Tu = D (u;) with

1 t
DY(f)=0,(I}f) and I'f = m/ (t —s)""f(s)ds for 3> 0.
0
Here D(f) and I? f denote the fractional Riemann-Liouville derivative and the fractional Riemann-
Liouville integral of f on [0,¢], respectively. Moreover, I' is the Euler Gamma function. The

authors proved the following results.
Proposition 6.1. Let

1
11—«

21+ «)
(n—2)1+a)+2

p > P = max {pa(n); }, where py(n) =1+

LA. Kainane Mezadek, M. Reissig, Semi-linear fractional oc—evolution equations with mass or power non-
linearity. Nonlinear Differ. Equ. Appl.(2018) 25:42
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Then there exist positive constants € and § such that for any v € L*(R™) N L®(R") with

llwol| Linre < € and for any 6 € (0,0) there exists a uniquely determined global (in time) Sobolev

solution
u € C([0,00), L' (R™) N L™(R™))

to (6.1). The solution satisfies the following estimate for any t > 0:
lut, Mlze < COL+ 1) lug| presnpee, g € [1+6, 00, (6.2)

where

By = B,4(6) := min{na;&) <1i5 — %);1}.

Proposition 6.2. Let p € (1,pa(n)] and uy € L*(R™) be such that

/n wo(z) dz > 0.

Then there does not exist any global (in time) Sobolev solution

w € LP

loc

([0, 00) x R™).

This chapter is devoted to the Cauchy problem for the semi-linear fractional o—evolution

equations with mass or power non-linearity

0p " u+ (=A)7u +mPu = [ul?,

u(z,0) = ug(x), u(0,2) =0, (6.3)

where a € (0,1), m >0, 0 > 1, (t,x) € [0,00) x R". Our main goal is to understand on the one
hand the improving influence of the mass term and on the other hand the influence of higher
regularity of the data uy on the solvability behavior.

By the assumption u;(0, z) = 0 the Cauchy problem (6.3) may be written in the form of a Cauchy

problem for an integro-differential equation

Ou = I (— (—A)7u — m*u + |u?),

u(x,0) = ug(x). (6.4)

A solution to (6.3) is defined as a solution of (6.4). On the contrary, if we have a solution to
(6.4) on a time interval [0,77] the integral I7(---) is defined for all ¢ € [0,7]. Hence, the limit
limy 40 If(---) = 0. In this way, we verified u;(0,2) = 0 and obtain a solution to (6.3), too.

For this reason we may restrict ourselves in the further considerations to the study of (6.4) to
obtain results for (6.3). Our results of global (in time) existence of small data Sobolev solutions

are given in the next section.
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6.2 Main results

6.2.1 Fractional o-evolution models

In the first two results we assume low regularity for the data ug. We distinguish between condi-

tions for the spatial dimension n.

Theorem 6.3. Let us assume 0 < a < 1, a < A < HTQ, o>1andr > 1. We assume that

n > 123:2 Moreover, the exponent p satisfies the condition

1
p > pa,/\,a,r(n) = max {p;,/\,a (n)j m}’
n(r—1)(1+«a) 4+ 20r(1 + A)

(n—20r)(14+a)+20r(l+a—A)

where p;AJ(n) =1+
Then there exists a positive constant € such that for any data
up € L"(R") N L>®(R™)  with ||ug||prape < €
we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), L"(R") N LYR™)) for all q € [r,0)
to the Cauchy problem
O u + (—=A)u = |ulP, u(x,0) =ug(x), u(0,7)=0.

Moreover, the solution satisfies the following estimate for any t > 0 and for all sufficiently small
0>0:
8
w(t, )||ze < C(1 4+ t)Poae®™ N ug|| prape for all q € [r, 00l

where

. min{MG - 1);1 —5}.

e 20 roq

The constant C' is independent of uyg.
Theorem 6.4. Letusassum60<a<1,a§/\<1+7a, 1§0<a2—J:\1 and1§r<3‘7+;. We

291 Moreover, the exponent p satisfies the condition

assume that 1 <n < e
(6%

n(r—1)(1+«a)+ 20r(1+ \)
n—2or)(1+a)+20r(l+a—N)

b > pqonz,)\,cr(n)J where pg,A,a(”) =1 + (
Then there ezists a positive constant € such that for any data

up € L"(R™) N L>®(R™)  with ||ug

LraLe <€

20



CHAPTER 6. GLOBAL EXISTENCE OF SMALL DATA SOLUTIONS TO SEMI-LINEAR
FRACTIONAL ¢—EVOLUTION EQUATIONS WITH MASS OR POWER
NON-LINEARITY 51

we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), L"(R™) N LYR™)) for all q € [r,0)
to the Cauchy problem
O u+ (—A)u = [uP, u(x,0) =ug(z), u:(0,7)=0.
Moreover, the solution satisfies the following estimate for any t > 0:
lw(t, Y|pe < C(1+t)Paae™ | ug||prape for all q € [r,oq],

where
— n(l—i—a)(l 1)
®Le T 9g r q/
The constant C' 1is independent of ug.

In the next two results we assume higher regularity for the data uy, but with additional

regularity L>°. We distinguish between conditions for the spatial dimension n.
Theorem 6.5. Letusassum60<a<1,a§)\<H'TQ,JZL l<r<ooand~y >0. We

297 The exponent p satisfies the condition

assume that n > et

2
p > pa,)\KETW ‘= Inax {pZ,A,U (n); m; ’Y}a

where
n(r—1)(1+a) 4+ 20r(1 + N)

(n—20r)(1+a)+20r(1+a—N)
Then there exists a positive constant € such that for any data

pg,A,O’(”) =1+

up € HY(R") N L®(R")  with ||uo||pgrape < €

we have a uniquely determined global (in time) Sobolev solution

u € C([0,00), H!(R™) N LYR™)) for all q € [r,0)
to the Cauchy problem

O u+ (—A)7u = [ulP, u(r,0) =ug(z), u(0,7)=0.
The solution satisfies the following estimate for any t > 0 and for all sufficiently small 6 > 0:
7,6

lut, )lzs < CQA+ 1) gl g2nree, g € [, 00,

where ) L1
g;fm = min{w<— — —); 1— 5}.
b 20 roq
Moreover, the solution satisfies the estimate
lut, Y < OO+ 0 fuoll g

The constants C' are independent of uyg.
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Theorem 6.6. Letusassum60<oz<1,a§)\<1+7"‘,1§0<0‘—+1 1<r<°2‘7+/\1and720.

X
We assume that 1 <n < . Moreover, the exponent p satisfies the condition

20T
1+«
p > max{p}, , ,(n); v}

n(r—1)(1+a)+ 20r(1+ N)
(n—=20r)(14+a)+20r(l+a—N)

where pgy/\jg(n) =1+

Then there exists a positive constant € such that for any data
up € HI(R") N L®(R™)  with ||uol|lgyape <€

we have a uniquely determined global (in time) Sobolev solution

u € C([0,00), H!(R™) N LYR™)) for all q € [r,0)
to the Cauchy problem

O u + (—=A)u = |ulP, u(x,0) =wug(x), u(0,7)=0.

The solution satisfies the following estimate for any t > 0:

lult, Mlze < OO+ )% ae|ug || aar, g € [r,00],

. '_n(l—i—oz)(l 1)
®Go T 9y r q/

Moreover, the solution satisfies the estimate

where

lut, My < CO+ )Mol azape-

The constants C' are independent of uyg.

6.2.2 Fractional o-evolution models with mass term

Theorem 6.7. Let us assume) < a<1l,0>1,r>1andp > ﬁ Then there exists a positive

constant € such that for any data
up € L"(R™) N L®(R"™)  with ||ug||prar= < e
we have a uniquely determined global (in time) Sobolev solution
u € C([0,00), L"(R™) N L®(R™))

to the Cauchy problem

O u + (—A)u +m?u = [ulP, u(x,0) =ug(z), u(0,z)=0.
Moreover, the solution satisfies the decay estimate

lu(t, )||ze < CA+1)*Huollprape for all t>0, q¢€[r o0l

The constant C' is independent of uy.
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Theorem 6.8. Let us assume 0 < a < 1,0 >1,v>0,1<r < oo and p > max{2; ﬁ;'y}.

Then there exists a positive constant € such that for any data
uo € HI(R") N L") with |uollpoze < <,

we have a uniquely determined global (in time) Sobolev solution

u € C([0,00), H)(R") N L=(R"))
to the Cauchy problem

O u + (=A)7u+mPu = |ulf, u(x,0) =uo(z), u(0,z)=0.
Moreover, the solution satisfies the decay estimate
ot Mgz < O+ D ol

The constant C' is independent of uy.

Remark 6.9. If we compare Theorem 6.3 with the corresponding result for (6.1) from [16], then
we feel the improving influence of the power o and the order of reqularity r in two facts. On the
one hand paq11(n) =D and on the other hand u € C ([0, 00), L"(R™) N LY(R™)) for all ¢ < occ.
In Theorem 6.5 we explain the influence of the reqularity of the data on the critical exponent
and we have pya11(n) > p. If we compare Theorem 6.7 with the corresponding result for (6.1)
from [16], then we feel the improving influence of the mass term in three facts. On the one hand
p=1=,uecC([0,00), L"(R") N L>®(R")) and on the other hand B, =1 in (6.2). In the case
of Theorem 6.8 we also feel the influence of the regularity of the data on the exponent and we
obtain an exponent larger then p. Besides some stronger restrictions to the critical exponent the
statements of Theorems 6.5, 6.6 and 6.8 are reqularity results. If the data ug is more regular,

then we expect more reqularity with respect to the spatial variables for the solution.

6.3 Some preliminaries

The Cauchy problem (6.4) with ¢ > 1 and m > 0 can be formally converted to an integral

equation and its solution is given by

u(t,z) = (Go 5 (t) * uo)(t, z) + Ny, (u)(t, x) (6.5)

with
Grolt) = [ B (- e, ) de (6.6
N (u)(t,x) = /0 (G (¢ — ) # I2(|ul?)) (¢, 5, 2) ds, (6.7)
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where {G7,,(t) }>0 denotes the semigroup of operators which is defined via Fourier transform by

o — -~

(G, (1) f)(t,€) = Byt (— t*THEZ, ) F(&) with ()2, = [¢]* +m?.

Here Es(z) = 1;) F(BZTICH) denotes the Mittag-Leffler function (see Section 6.7).

A representation of solutions of the linear integro-differential equation associated to (6.4) or (6.3)

with ¢ > 1 and m > 0 (and without the term |u|P) is given by
u(t,r) = (Gg,(t) * uo)(t, ).
Indeed, we put

v(t,€) = Fume(u(t, ))(t, €) = Fume (Gl (t) * uo) (8, 2)) (£, €)

= F
= Bt (—t"THE )W (€).

By using (6.4) and (6.76) we have

Fb (Fune ([ 00— s, d5) 0.6)) )

= F, ({02 / (G (7 ) (7, ) ) t,2)

= (e [ [ - @ty ) ) r ds) .

= (B [ B e €0, dr ) 1.0
= (e [ [t s B (7 ) ar) 1.0
= e (e [ 1 B (702, (6 ) .0

= P ((Ban (=7 149)2,0) = 1)@ ©)) ()

= Pl (Bt (477192, )@ (€) — @(€) ) (¢ 2)

Consequently, we have shown (after application of the Fourier inversion formula in S’) that
u =G, (t)*uo
is a formal solution to

u = up(x) + /0 I%(—(=A)7u — m?u) ds.
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In the moment we will not provide any function spaces to which the formal solution will belong.
But, as pointed out by the referee the continuity of solutions with respect to the time variable
requires a special treatment. Later we will come back to this issue. But, from the above

considerations we can formally conclude the following relation (if the convolution really exist)

u<t7 ) — Up
! t 1 2 at1/¢\2
- m/o (t - T)Q(Ff_—>x(<£>m7aEOz+l<_T (€)ms)) * uo) dr.

(6.8)

Later we will use this relation for the discussion of continuity in time of solutions for models

with mass.

6.4 L? estimates for model oscillating integrals
At first we derive LP estimates for the model oscillating integral

F—l (Ea+1(—t1+a|f|20)).

E—a

Proposition 6.10. The following estimate holds in R™ for o >0, a > 0:
7n(1+a) 1
1F s (Bt (8 1EP)) () w S 772 070 (6.9)
forp € [1,00], t > 0 and for all n > 1 satisfying n(1 — %) < 20.

Here and in the following we use for non-negative functions f and g the notation f < g if
there exists a constant C' which is independent of y € D such that f(y) < Cg(y) for all y € D.

Proof. The proof of (6.9) uses the Propositions 5 and 12 of [49]. In a first step we estimate the

following oscillating integrals:

F! (6_61“5'%cos(02t|§|2p)) and ngx(e—ﬁ\ﬂ?”)?

E—x

s g

where ¢; = —cos(tf5),c2 = /1 —cf,p = 77 and 7 > 0. We prove instead of (6.9) the

polynomial type decay estimates

n(l+a) (17l)
p

”Fﬁj:p <e—c1t|f\2ﬂ COS(CQt|f|2p)) (t’ ')HLP 5 t 20 ’ (610)

[E (e ) () oo S (7)™ 507 (6:11)
for all p € [1,400] and t > 0. Then, we deduce (see Section 6.7)
1+a 14+a _n(l+a)q_1
| F2 (xp (ara(t 2 1€17) + oxp (buralt 27 1€1)) (1), S 4772 07 (6.12)
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for all p € [1,400] and t > 0. It remains to prove that (see Section 6.7)

1F, (a2 D) ) S

for all p € [1,4+o00] and t > 0. Therefore we use the formula (see Section 6.7)

20 1
Lot 1+a‘5’ )~ /°° exp(—t|5|1Tasm)
e o $2+2scos((1+a)m)+1

n(121—o¢) (1_%)

(6.13)

Taking account of the definition of modified Bessel functions (see Section 6.7) we get
_ 1ta o
2 (laa (5 167)) (0, 2)
20 1
°° ©  exp ( — trlTaslTa) 5
_ "1 d )d
/0 </0 52+2scos((1+a)7r)+1T s (rlel)dr) ds

o 1
B /0 s?2 +2scos((1+ a)m) + 1
X (/ exp (— trl%sﬁ)rn_lj%_l(ﬂﬂ)dr) ds
0

* 1 1 20
= Fl (et )d .
/o s?2+2scos((1 4 a)m) + 1 ( {—a (e )(x) s

The estimate

[ S 5B 0P

[ (e )
implies

1+o¢

e (B (2 1E17)) (1) ] o

_n(1+o<) 1_1 o0 S U(lil _M 1_l
< t 20 ( p) ds < t 20 ( p)
~ o s2+2scos((l4+a)m)+1  ~

if n(1—1) < 20. O
p
Now let us turn to LP estimates for the model oscillating integral (see Section 6.7)

F*l

E—x

(Bas1(—t7(€)7,,)) with m > 0.
At the first glance one might expect an exponential type decay estimate. We are able to prove
a potential type decay estimate only.

Proposition 6.11. The following estimate holds in R"™ for o >0, m >0, a € [0,1) and for all
n>1:
[P (Bapa ()7 )) (8 )] 1 S (14 6)70+) (6.14)

forp € [1,00] and t > 0.
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Proof. The proof of (6.23) uses ideas of [52]. In a first step we estimate the following oscillating

integrals:
F, (efct<s>%€‘,v cos(H(€)% V1 — %)) and Fol(e 77t<s>m)’
where ¢ = —cos(1;), k = HLO( € (%, 1) and 7 > 0. We shall derive the exponential type decay
estimate
[Feta (7% cos(t(&)2 VT = ) (8, )],
HIEL () (), S e (6.15)

with a suitable positive C' = C(m,«), for p € [1,00] and ¢ > 0. By using modified Bessel

functions (see Section 6.7) we have for n = 3

F! (e—ct(@%;(, cos(t(&)mo V1 — 02)>

-z

:/ e~ M) cos(t t(r)ar V1 — 2)r? Ji (r|z|) dr
0

1
2

1 [~ . =
= _—/ e~ Ui cos(t(r)m V1 — 02)7“8TJ7%(7“]$\) dr

|lz[2 Jo

\/§ > —ct(r)2r K
= X [ o) VT costr el

Using twice integration by parts we obtain

\/_\/li;| g_lm (e_Ct<£>m o cos(t(f)iﬁg\/ 1-— 02)) (t,x)

o A N e N N R Lo (6.16)
+t2(h4(7’)7"4072<7’)$n70+h5(7’) 60— 2)< >4n 6+t3h (r)r 6072(7‘)?:’;6)

—etnite cos(r|a|) dr,

X e

where h;(r) = a;cos(g(r)) + bisin(g(r)), i = 1,---,6, g(r) = t(r)ar,v/1—c® and a;,b;, i =
1,---,6, are constants which depend on v and ¢ only.

To estimate (6.16) we use the inequality
(r)m, > 25N, + 27 Im (6.17)

Then, we get

[F, (% cos(t() 2, VI = ) (1 2)] S
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For the oscillating integral F ix (e_”@ﬁ%) we have

_ —T & T T,ZH ~
Fg_lm(e e ) (t,z) = /0 e ! >mv“r2J%(r|x|)dr

Lo

=), Tyl
VI

:‘W/o e cos(rlal) dr

Using twice integration by parts we obtain

\/_\/‘;| g—m (e—rt(§> ) (t 33)

= / < —20(40” — V)RTtr?? 2 (r)2 2 — 240°k(k — 1) 7tr* 2 (r) 2t
0

—80%k(k — 1)(k — 2)Tt7"60_2<7">3,’z;6 + 240352T2t27“40_2<7">i§;4
+ 803K (k — 1)T2t2r6”_2<7“>§f7;6 — 803113737537“6"_2(@%;6)

77't<7“)2'i

X e m.o cos(r|x|) dr

This leads to the estimate

_T 2K
stm

Pk e 0] £ T

m

Summarizing all estimates we proved the statement (6.15) in the case n = 3.
Now, let us study the case n odd and n > 4. Then we carry out ”T“ steps of partial integration.

We obtain after "T_l steps and by applying the rules (see Section 6.7)

- 1 -
S (r]z]) = —War%(ﬂﬂ)
for real non-negative y the relation

F! (e—ct(@%,;[, cos(t(E) V1 — ) (t,x

E—x

= [ e cos(a(r), VI >"1Jn \(rlz) dr
0
:(—1)’31#/ (31 (e con(tlr) 2 VT @)

|z|n=t ), \Orr

X j_%(rm)dr
_ n-l 1 *ro1 "7*1 —ct(r)2r 2K 2\,.n—1
=(-1) W/o (E;) (e 7 cos(t(r)r V1 —c)r )

x cos(r|x|) dr
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n+41 1 2
— (] ]2
(=1) |x’n+1\/;

LG ) (e e

x cos(r|z|) dr.

All integrals have the form
/‘(ﬂ%pf%‘ﬂ”%“aﬁﬁﬁﬁ%UV1—c%cmﬂﬂﬂ)m"
0
or / (r)ﬁwr‘se_dm%;” sin(t(rﬁ,’z(,\/ 1 — ¢?) cos(r|x|) dr,
0

where p is a negative integer depending on x and n and ¢ is a non negative real depending on o

and n. For this reason we conclude the estimate

_SthH
_ e 2K o e
‘Fg—lm (e HEmo cos(t(@fmom))(t,x” S (z)nil

Analogously, we obtain the same estimate for

F! (e_”@ﬁf’”) (t,x).

E—x

All together implies the statement (6.15) for odd n > 4.

For n = 2 we have

Ffjx (e—ct<§>$r7,cr COS(t<€> 2 M)) (t7 l‘)

m,o

= / e~ cos(t(r)%zav 1— CZ)TJU(T’|.TD dr.
0

From the relation (see Section 6.7)

(Mgzémg+%h@

it follows that ]
Jo(r|z]) = 21 (r|x|) + 70, Ji(r]z|) = 8T(7°2J1(r|3:])).

r
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Then, we get
Fl, (e7 e cos(t(¢) 2, VT = ) (¢, )

oo
= —/ 2/{0757"4"_1(7’}2“_26_0””330 cos (75(7“)2"i 1—c?
0

m,o e
X j1(7“|$|) dr
a1
= — | M onotrie )2t >"‘“COS( oVt = )
0
x Jy(r|z]) dr
_ oo 2ktrt L (r) 2 et COS( (V1= WQ)
TaT
x Jy(r|z]) dr

Using the boundedness of J;(s) for s € [0,1] (see Section 6.7) the first integral can be estimated
by

efgtm“ <I>;l(40+2n72).

Remark that 40 + 2k —2 > 2. To estimate the second integral we apply the following asymptotic
formula (see Section 6.7) for J;(s) for s > 1:

~ 3
Ji(s) = ¢s72 cos <s — Z?T) +O(|s|73).
Consequently, the integral can be estimated as follows:
PO )t e O((rlal) 73 dr S |35
1

Tal

It remains to estimate

1 g .
r¥<r>%ﬁf’;2e’d<7’ﬁw cos <t<r>3,ﬁ0m +

m
. a) cos(r|x|) dr

1 [ 80—
WE / rT (r)26-2=UMie cos (t(rﬁfg\/ L—c?+ 1 . ) sin(r|z|) dr
- : 7 a
o]

We explain only the first integral because the second one can be treated in the same way. We

write the first integral as follows:

L[ s
3/ TST<T>37TUQ€_Ct< )mU CcOoS ( < >72,:0_\/—02+
1
T=]

]2

R
= [P e cos (0 VT
i b
0080'

) cos(r|z|) dr

N T a> cos(r|z|) dr (6.18)

|2
1

21

) cos(r|z|) dr. (6.19)

TT<7’>$,’;026_“< M cos ( (r )f,fgv -2 —i—
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The integral in (6.18) is equal to

1 TSUTO“)% 2, <>zn,gcos<<>ggam+_) , (sin(r|z])) dr (6.20)

m,o
Ek

c 2K
stm

After partial integration and by using (6.17) the limit terms can be estimated by |z| 3¢~

o)
oz (r)a 4008( (ryzs A1 —¢? )
+ cgrm?? <r>4” 4gin ( <r>ifgm + T a>
e (Y cos ( ()2 V1= + H—@))e*cﬂw%ﬁv sin(r|z|) dr

The new integral is equal to

1 [t -

5/ <clr82 (r)2” 2COS( (r >f,fa\/1—02+
1
IEd)

]2

1207

It can be estimated by |x|’ge’§tm2x, too. After integration by parts the integral in (6.19) can
be estimated by

]2
The latter integral can be estimated by |z|~ Sest ". Finally, we have for the oscillating integral
F 2, (e"™%<) the relation

Fol (e T80 (¢, ) :/ e TRy Jy (7)) dir
0

E—a

= [ emEea, (i rlal) ar
0
= [ 2onrtre i e (el dr
0
Then, we derive the same estimates as we did before for estimating the oscillating integral

F! (e’Ct@m 7 cos(t(€)ar ,V/1 — 2)).

E—a

Summarizing all estimates yields the statement (6.15) for n = 2.
Now for the case of even n > 4 we carry out § — 1 steps of partial integration. In this way we
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obtain
ngx (e‘dg)iﬁa cos(t(f)m SV1— 02)) (t,z)

= / e~ cos(t(r)?,’zg 1— cQ)T"_lj%,l(Ha:]) dr
0

_ 1 /00(21>7122 (e—ct<7’>3rffa COS(t<T>QH 1 02)7"”_1> ~ (r|x|) r

N |'T’n72 0 87“7“ m,o 0
10N ) N

= (5rr) (e st VT =)

|z |2 rr
1 ﬁ 1 3 2K ~
=i [ o) (e conte i T T i (G2)
xXr n— 0 TrTr )
L [T O 1NE( ez 2 -1),27
+ 2 <8__> <e Aime cos(t(r)ir V1 —c)r" >r Ji(r|x|) dr. (6.22)
x|"~ rr ’

For the integral in (6.21) we are able to derive the following estimate:

1
1 B0 1\% - -
‘—‘ | 2/ (8__> ’ <e_0t<r>%w cos(t(r)2r /1 — 02)7’”_1>r2J1(7"|93|) dr
z|" = Jo rr ’

< ! e—gtm%/ g P2 (252 gy < g 2 () =120 20-2),
0

~ |(L’|n_2 m,o

For the integral in (6.22) we follow the same arguments to obtain the estimate

1 CrOING [ ime ; - -
’—|x|”2/1 <§;> (e « >m°cos(t<7“>fn7g 1—c)r 1>T2J1(T|l’|)d7“‘
Tl
5 efgtm2“<x>r_n(”+%).

In the same way we can estimate the oscillating integral Fg_lm( e THE) ) All together implies

the statement (6.15) for even n > 4. To complete the proof it remains to show

+

et ot ) 0], € 14005

for p € [1,00] and ¢ > 0. Therefore we use the formula (see Section 6.7)

La = exp (= t{e)igsTa)
halt > (Ehmo) ~ /0 s?2+2scos((1+a)m) +1 ds.
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Taking account of the definition of modified Bessel functions (see Section 6.7) we get

1+«

Fl (ot (©mo)) (¢, 7)
= - > eXp(—t< >1+a81+a) n—17
_/0 </0 s2 + 2scos((1+ a)m )+1T J%—l(ﬂl‘\)dr) ds

> 1
N /0 s?2 4+ 2scos((1 4+ a)m) +1
X (/ exp (—t(r )1+a31+a) "_ljg_l(r|m|) dr) ds
0

- Fil —sl+at(l)ms t ) ds.
/0 82+2scos((1+a)7r)+1( 5—>w(€ )( ,x) ) ds

The estimate

1 2

[ ooty g, g bt
implies
1F (a3 (€ me)) (1)
< [" 1 —sﬁat@ﬁ
N/O s2 + 2scos((1 + « +1H £—>x ’ HLp
o0 6*551+atmT
S ds.
N/O s?2+2scos((1 4+ a)m) + 1
For ¢ € (0, 1] we may conclude
i . < & 1 <
H §—>m(l1+a <€>m,a>)(t7 )HLp ~ /0 2 + 25 COS((l T Oé)ﬂ') 1 ds N 1.

For t > 1 we have

1E (i (05 (€ ma)) ()|, < /goo c s

s?2+2scos((1+ a)m) + 1
< [ e (- sty as
0

After the change of variables 7 := tsT+a it follows

ﬂ

[P tat ¥ @) ()] S [ oo (= Cutsrio)as
S / 7 exp (= Cyr)dr S ¢ 0F,
0

We deduce for all p € [1,00] the estimate

1+a

[ra e v (la 7<§>mo)) HLP < (146" forall t>0.
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Summarizing all the estimates we may conclude

[ Fe e (Brra (=€) 5.0)) (&)
< [[F, (exp (a1+a(t ( Vo)) ()| 1
+ || Fet, (exp (brvalt 2 () ma)) (8, )|,
)(t,

+ 1 F e (el (€ me)) (6]
SeiCt—i-(l—l—t) (14a) 5 (1_'_75) (1+a)'

This completes the proof. [

The following proposition is helpful for the treatment of o-evolution models with a mass

term.
Proposition 6.12. The following estimate holds in R"™ for o >0, m >0, a € [0,1) and for all
n>1:

1F ()2 Brya( =t 4€)2, ) (t)]| o S (14 1)70F) (6.23)
forp € [l,00] and t > 0.

Proof. The proof is similar to the proof of the previous proposition. In a first step we estimate

the oscillating integrals

F, (o "% cos(He)im, VT = 2)) and  F, ((€)7, 00 ),

E—x m,o m,o

where ¢ = —cos(15), Kk = 1+_a € ( 1) and 7 > 0. Following the approach from the previous

proof we may conclude an exponential type decay estimate

[F, (€006 e cos(t(€) 2, VT — 2))

+H e €>?n,ae‘”<§ ) T

Dz

with a suitable positive constant C' = C'(m, «), and for p € [1,00] and ¢ > 0. Let us make some
comments to the third oscillating integral. Following the same steps of treatment of the previous

proof we may conclude

14+

|Fa (@5 ohrat T (ma)) |l S (14870

for p € [1,00] and ¢ > 0. Indeed, we use the formula

1+a

<€>2 lita(t2 eXp ( — t<5>71n+g‘31+a)

ds.
s?2+2scos((1+ a)m) + 1 °

o)~ | e,
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Taking account of the definition of modified Bessel functions we get
_ 1+a
Fgalz(@ﬁn,all-i-a(t 2 <€>m70))

:/OOO(/OOO@«)? exp (— t{r)ir s75%) r”_lj%_l(r|x|)dr>ds

"7 g2+ 2scos((1 4+ a)m) + 1

o 1
N /0 s?2+2scos((14 a)m) + 1
X (/ ()2, yexp (= t{r)a = s )Ly (rz]) dr) ds
0

& 1
_/0 s2 4+ 2scos((1 4 a)m) +1

) (FE, (002,67 108 ) 1,2) ) ds.

The estimate

2 1 2

|FL, (62, e T HOm ) (1), S emz T m e
implies

_ lta
HF ix<<€>gl,ol1+a(t 2 <€>m,a)) (t7 ) HLP
< /OO 1 HF—1 (e—sl-&%at(f)ﬁ)(t ')HLP ds
~Jo s?+2scos((l+a)m)+ 1" 7% ’
[ele] —lsﬁth’%
< / 5 € ds.
o S+ 2scos((l+a)m)+1

As in the previous proof we conclude the desired estimate. [

6.5 L" — L7 estimates for the formal solutions from Section
6.3

6.5.1 Models without any mass term

Proposition 6.13. Let ug € L"'(R")NL®(R™), n>1,r>1 and o € (0,1). Then the function
u=u(t,x) = (Go,(t) * uo) (t, z)
satisfies the following L™ — L9 estimates:

lu(t, Mzo S = 570 ug (6.24)
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for allr <m < q < oo provided that n(% — é) < 20.
Let ug € HY(R")NL®[R"),n>1,1<r <oo and o € (0,1). Then the function

u=u(t,x) = (Ggp(t) * uo) (t,x)
satisfies the following estimates:
[t My < lluolly and {lult, gy < lluoll - (6.25)

Proof. The inequality (6.24) follows from Young’s inequality and Proposition 6.10. Applying

these tools to the relation
[D'(Go o (t) # uo)(t,2) = (Fe sy (Basa (— t*7HE)) # [ D[Muo) (. )
implies the inequality (6.25). This completes the proof. O

Proposition 6.14. Let uy € L'(R")NL®(R™"), n>1,r>1 and o € (0,1). Then the function
u=u(t,x) = (Ggﬂ(t) * ) (¢, )
satisfies the following estimate for any fixed 6 > 0 small enough:
lut, Moo S (1 +8) 0 (Juollr + lluolla)  for all g € [r,00], (6.26)

where

7,0 = mln{ml——{_@(l — 1);1 —5}.

*q.0 20 rooq

Proof. To get (6.26) we use ideas of D’Abbicco (cf. with [16]). For ¢ € (0,1] we set m = ¢ in
(6.24) to get the L7 — L7 estimate

[ult, )za S lluollze-

For t > 1 we choose m = r in (6.24) if n( — %) < 20. Otherwise, in (6.24) the parameter m is

chosen as the solution to
n(1+a)<1 1>1 5

20 \m ¢

m q
with a fixed sufficiently small positive §. In this way, we may conclude the L™ — L7 estimate

7,0
lut, Mlza S 70 |-

Y

Gluing both estimates together we derive the desired estimate (6.26). O]

Remark 6.15. The last two statements are valid for r = 1, too, in contrary to the paper [16]. In
this paper the authors use estimates in scales of Morrey spaces from the paper [7], where r = 1

is excluded. For this reason the positive parameter & appears in Proposition 6.1.
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The statements of the Propositions 6.13 and 6.14 allow to conclude the following result.

Corollary 6.16. Let up € L"(R") N L>®(R™), n>1,r>1 and o € (0,1). Then the function
u=u(t,x)= (vag(t) * uo) (t,x)

belongs to
LOO((O, T),L"(R") N LOO(R”)) for all T > 0.

Let ug € HY(R")NL®R"), n>1,1<r <oo and o € (0,1). Then the function
u = ult,7) = (G2, (8) * uo) (1)

belongs to

L“((O, T),H'(R") N L“(R”)) for all T > 0.
The next result contains even the continuity property with respect to the time variable.

Proposition 6.17. Let ug € L"'(R*")NL®(R™), n>1,r>1 and o € (0,1). Then the function
u=u(t,x) = (Go,(t) * uo) (t, )

belongs to
C([0,00), L"(R™) N LYR™)) for all q € [r, 0).

Let ug € HY(R")NL®(R™), n>1,1<r <oo and o € (0,1). Then the function
u=u(t,z) = (Ggﬁg(t) * uo) (t,x)

belongs to

C([0,00), H}(R™) N LYR™)) for all q € [r,o0).

Proof. The second statement follows immediately from the first statement by using only the
higher regularity H) instead of L". The first statement follows from Proposition 6.37 of the
Appendix. O]

6.5.2 Models with a mass term

Proposition 6.18. Let uy € L'(R")NL®(R™), n>1,r>1 and o € (0,1). Then the function
u=u(t,x) = (G, (t) *uo)(t,x)

belongs to

C([0, 00), L"(R™) N L*(R™))
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and satisfies the following L™ — L7 estimates:
lult, Mee S 1+ gl 2 (6.27)

foralll <r <gq<oo.
Let ug € HY(R")NL®(R™), n>1,1<r <oo and a € (0,1). Then the function

u=u(t,x) = (ng(t) * uo) (t,x)

belongs to
C([0,00), H)(R") N L*(R"))

and satisfies the following estimates:
lult, My S @+ 0ol iy and Jult, Yy S L+ uol| - (6.28)

Proof. The proof follows immediately from (6.5), (6.6), Proposition 6.11 and Lemma 6.38. To

verify the last inequality we use

DG (t) * uo)(t,2) = (F, (Basa (= t*7(€)70)) * [D"uo) (8, ).

{—x m,o

The continuity of solutions follows from (6.8) and Proposition 6.12. This completes the proof. [

6.6 Proofs of the main results

Proof of Theorem 6.3

For any n > 123::; and sufficiently small § € (0, 1) there exists a parameter § = g(d) € (r, 00) such
that (1+a)/1 1
n o
—-=—=)=1-0. 6.29
20 (r q) ( )

We define the space
X(T) = LOO((O, T),L"(R") N LOO(R"))

with the norm

ullx ) == eSSSUPtG(O,T){(1 + t)i)\”u@a Iz
H(L 48"t )l e + lult, ) oe) }-

For any v € X(7T') we consider for m = 0 the operator

P:X(T) — X(T), Pu:= (G2, (t)*u)(t,z) + Ny ,(u)(t, x).
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We shall prove that
[1Pullx(r) S lluolleraze + lullsr (6.30)
[Pu— Pollxa) S Il = ollxcr) (HuHX(T lelz). (6.31)

For the proof of (6.30), after taking into consideration the estimates (6.26), we have

G0 () * wollxr) = esssupye(o ) { (1 + 1) (Go(t) * uo)(t,)12r
(1 + 1) ((Ga o () * o)t )7 + [(Ga o (8) * uo)(t, ) [l2) }

S ol razes

It remains to prove that || N2, (u)||x) < ||u|\§((T). If w € X(T'), then we derive by interpolation

the following estimate:
< _52&@1 o+>\
Jut, e S (X +8)7 0" ullx) forall g€ r, o0 (6.32)
Consequently,
7,6 _
ot )P llea S It M en S (14 8) PN ful| x(ry
S (14 £) P05 oy (6.33)

for any ¢ € [r, o0] and due to 37° Thanks to (6.26) and (6.33) we can estimate

a,pq,0 — apa
HNg’U(u)(t, MNiee S llullxly(t) forall te[0,7] and ¢ € [r,o0], (6.34)

where . T
0 0

We are interested to estimate the function [,(t) in (6.34). For this we apply Lemma 6.39. We

notice that p(5~°  — A) > 1 if and only if

o p o
> Parnraln) = max { gl (0 -}
axors(n) i=max{ph \ ,(n); ————¢.
P = Parors Paux, 1—0—A
Consequently, by using Lemma 6.39 we may estimate ,(¢) as follows:
t
I(t) < / (L4t —7) e (14 7)2  dr < (14 ) Fhote < (1 4 ¢) Pt
0

thanks to the fact that 7 € (0,1 — 4] and a € (0, 1). Therefore (6.33) gives

aqo

INGo (W)l xery S Nl
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Finally, it remains to show (6.31). Let ¢ € [r,o0]. By Holder’s inequality, for u,v € X (7T'), and

if p’ denotes the conjugate to p, then we have
Huls, )P = |v(s, )Pl Lo

1

o ap’ ;
S (o —ets. ) ( f (s ot o)) 'ar) ™
R" n
< lluds, e llTuCs, )P+ To(s, )Pl o
< lluds, s zea (s, )P g+ MoCs, )Pl o)

) —v(s, )
) —o(s,)
S lluls, ) = v(s, Mz (luls, M + 106 )
) —v(s,)
)

v(s, -

v

S lluls, ) = v(s, Mz (luls, ) + lols, )

o B _
S(1+4s)7? 5amﬁo_k)||u — ’U“X(T) (HU“&(;) + ||UH§((%F))'
Hence,

ING o () (t, ) = NG o () (e S Ly (@)l = vl xery (Tl + ol )
X(T) (T)
S(A+1)” ﬂaq"+’\||u — U||X(T)(HU||X(T + v HX(T) for all ¢ € [0,T].

We deduce that

|Pu— Po|xr) = |Ng ,(u) = Ny (v )||X
S Mlu = vl x ey (Null% X(T + (v |X(T )-
Notice that p > paers for all 6 > 0 if and only if p > P a e -
Remark 6.19. All the estimates (6.30) and (6.31) are uniformly with respect to T € (0, 00) if
P> Papor(n).
From (6.30) it follows that P maps X (T) into itself for all 7" and for small data. By standard

contraction arguments (see [18]) the estimates (6.30) and (6.31) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3) with m = 0, that is, the solution of (6.3) with
m = 0 satisfies (6.26). Since all constants are independent of 7" we let T" tend to oo and we
obtain a global (in time) existence result for small data solutions to (6.3).

Finally, let us discuss the continuity of the solution with respect to t. The solution satisfies the
operator equation

u(t) = Go (1) % 1o + Ny 5 () (t).
The above estimates for N ,(u) and the integral term fot in N9 ,(u) imply for all ' > 0

N ,(u) € C([0,T], L"(R™) N L>(R™))
with  lim INg (w)(t, )| Lraze = 0. (6.35)
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Proposition 6.17 gives
Go () *up € C([0,T], L"(R™) N LY(R™)) for all g € [r,0). (6.36)

Consequently,
u € C([0,00), L"(R™) N LYR™)) for all ¢ € [r,o0)

what we wanted to have.
If the data are large, then instead we get for p > 1 the estimates

[Pullx(r) < Clluol|rare + C(T)||ull 7y,
|1Pu = Pl xry < C(T)lu =l xey (lul + 10F)

where C(T") tends to 0 for " — 40. For this reason we can have for general (large) data a local

(in time) existence result of weak solutions only. The proof is complete.

Proof of Theorem 6.4

Ifl1<n< fj:T , then for all ¢ € [r, o] we obtain

n(1+a)<1 1) <1_n(1—|—a) <1

20 ro 5 20q

Hence, we can choose a positive § such that there does not exist any g € [r, co] which satisfies
(6.29). For this reason,

g (1+a)(1 1)
aqa_ aqa‘_ 20 r q .

We define the space
X(T) :=L>((0,T), L"(R™) N L®(R™))
with the norm

lullxery = esssupyeiory {(1+6) M lult, )llzr + (14 1) e ut, )| },

where 3/ ., = (Ha) . For any v € X(T'), we consider for m = 0 the operator

P:X(T) — X(T), Pu:= (G, (t)*u)(t,z) + Ny ,(u)(t, x).
We shall prove that

[1Pullxry < lluollzrnz= + lull (6.37)
1Pu— Pullxery S lu—=vllxeny (lullf +Hva ) (6.38)
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For the proof of (6.37), after taking into consideration the estimates (6.26), we have
1G24 () * uollx(r)

= esssupyeqopf (1 )G, (1) * o)1, )
(1 1) (G, (1) % o) ()1}

S Juollzrazes -

LT

It remains to prove that [|N9 ,(u)|x ) < [ull - If w € X(T), then we derive by interpolation

the following estimate:
llu(t, )lpe S (1+ t)_ﬁquv°+’\||u||X(T) for all ¢ € [r, o0]. (6.39)
Consequently,

ut, WPllze S Nult, Moe S (14 8)7PFrar ™ [lu]|x(r)

(6.40)
S (L + 1) PBawe ™|y

for any ¢ € [r, oo] and due to 37, , > B, Thanks to (6.26) and (6.40) we can estimate
||N2’U(u)(t, MNize S llullxryly(t) forall te0,T] and g € [r, 0], (6.41)

where

t T
I,(t) = / (1+t— T)_B‘Zv‘f"’/ (1 — 5)2 "Y1 + 5)PBare=N ds dr.
0 0
— A) > 1 if and only if

n(r—1)(1+a)+ 20r(1+ N)
(n—20r)(1+a)+20r(l+a—X)

We notice that p(f,

a,p,o

p > pg,)\,a(n) =1 +

under the assumptions 1 < o < % and 1 <r < ££L. Consequently, by using Lemma 6.39 we

may estimate as follows:
t
1,(t) S / (1+t— 7')762"1’”(1 + ) tdr < (1+ t)fﬁquﬁ*)‘
0

thanks to the fact that 5% € (0,1) and a € (0,1). Therefore (6.40) gives

a,q,0

1 Nawo (llxiry S lull ).

The proof of (6.38) is similar to the proof of (6.31) of Theorem 6.3. Then we may conclude a

uniquely determined solution
we L>((0,T),L"(R") N L*(R™)) for all T > 0.
As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to
C([0,00), L"(R™) N LY(R™)) for all g € [r, c0).

The proof is complete.
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Proof of Theorem 6.5
We define the solution space

X(T) == L((0,T), H} (R") N L*(B")
with the norm

lullxry = esssupyeiom {(1+8) " ult, )l
+ (L) ([fult, oz + lult, )llz)

where G is defined as in Section 6.6. For any u € X (7'), we consider for m = 0 the operator
P:X(T) — X(T), Pu:= (G2, (t)*u)(t,z) + Ny ,(u)(t, x).
We shall prove that
1Pullx(ry S lluoll mpaze + [lull ), (6.42)
[P~ Pollxcry S llu = vllcer (lallech, + olh). (6.43)
For the proof of (6.42), after taking account of the estimates (6.26) and (6.25) we have
1G%.o () * ol x(r)

= esssupg;<p { (1 + 1) [(Go, (1) * wo) () ||y
+ (L4 ) (G0, () % uo) (8, )7 + [[(Ga o () * wo) (8, )| ) }

S luollmynze

It remains to prove for m = 0 that [N, (u)|lxz) S Hu||§((T). If u e X(T), then we derive by

interpolation the following estimate:
[ult, Yze S (1+ ) oo ul gy forall g € [r,o0]. (6.44)
Moreover, we have
lult, My < @+ O Mullxe (6.45)

As in Section 6.6 we deduce

INGo (@)t o S (1 65 ulxry forall ¢ €[0,7] and g € [r, 0],

~Y

if and only if

1
P > Parors = Max {p;,)\,a(n); 1—4§— )\}
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Now let us turn to the desired estimate of the norm || NJ', (u)(Z, )| ;7. We need to estimate the

norm |||u(t,-)[P[| . Applying Proposition 6.34, with p > max{2;~}, we obtain

It )Pl u(t, )l

S (1+t) ||u||X(T>(1+t)(p RRa (L1
S L+ )OIVl o
S

(1—|—t) ((p—1)(1=6—X)— )\HUHP

2 S lult)la

Then
INg o (w)(t, ) gz S Nullxery L (t)  for all ¢ e [0,T],
where .
:// (7 — 8)* 711 + 5)"(@=DA==0=Y g g7
0 Jo
If

p > max{po(A,6); 7},
where pg(), d) =

L) S (1 +6)* < (1 41)N

We remark that po(A,d) > —— and also po(A,d) > 2. Then we deduce that

INa o (Wllxy S lullr)

if and only if
D> ptlx,)\,a,r,'y,é = maX{pg,)\,a(n);p()()\a 5)7 fy}

Finally, we have to show (6.43). From Section 6.6 we get for m = 0 the estimate

ING o (u)(t, ) = Na o (V) (2, )| o

_prd
< (L + )P lu— ol xery (lullfery + ol
for all t € [0, 7] and g € [r, 00]. It remains to prove

IV o ()(t, ) = No o (v) ()l
S+ )Mu— vl xer) (fulf5 X(T + |Jv |X(T) for all ¢ € [0,T].

From the above considerations it is sufficient to prove that

[fuls, )" = Tols, )Pl

S (L4 s)M DO Dl — iy (lullfery + o lr)-
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By using the integral representation
1
us, )" = u(s, )P = p/ (u(s,-) = v(s,-))Qwuls, ) + (1 —w)u(s, -)) dw, (6.49)
0
where Q(u) = u|u|P~2, we obtain

(s, )P = Jo(s, )Pl g
< LHIDP ((u(s, ) — v(s, ) Q(wuls, ) + (1 — w(s, -))) || - doo. (6.50)

Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in H,? (R™)

we get
If(s; )P = To(s, )Pl g

/IHDI7 ) = (s,) e [Qwuls, z) + (1 = w)v(s, )| = dw

/°nu 5, M= DPQuu(s, ) + (1 = w)o(s, )l or de
SMDP((,J—U(JHM%WN Y+ (s, )
+Hu@f>—wma»uuolfHuwawu@f>+<1—aov@f»nydw
< (s, ) = v(s, Y (s, B+ o(s, ) 12)
+nuwf>—vuaumﬁtélmzwwxwu@f>+<1—a»wS~»mydw
S (14 VO — ol oy ([[ull iy + 10 a)
49 = ol [ NIDP@ts, ) + (1~ whels, s ds

We apply again Proposition 6.34 to estimate the term inside of the integral. In this way we

obtain

/0 DI Q(wu(s, ) + (1 = w)v(s, )| prdw

< [ IDr s ) + (1=t D
X fJwu(s,-) + (1 = wv(s, )7 dw
5/ (14 s)Mwu + (1 — w)ollx
0
(1_|_S)(p 2)(A+d6-1) ||wu+( ) ||§(;)dw

1
< /O (1 4+ 5) 204Dy 1 (1 — ok, do

S+ 5)/\+(p_2)()\+6 Y (HU| X(T + [l |X(T )
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Then
_ — ~1 -1
(s, )P = fo(s, )Pl gz S (1 + MDD (i + ollfr)-
Hence,

ING o ()(¢, ) = N o (v) ()| 2

S (4 0P = vl (lalfghy + lolld) forall € [0,7]
We deduce that

|Pu — Pol|x(r) = | Na ,(u) = Ny, (0)||x)

-1 -1
S llu— U||X(T)(||U||I;((T) + ||U||§((T))-

Notice that p > pl, ;. for all 6 > 0 if and only if p > psrory- Then we may conclude a

uniquely determined solution
we L=((0,T),H)(R") N L>*(R™)) for all T > 0.
As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to
C([0,00), H)(R™) N LY(R™)) for all ¢ € [r, 00).
If the data are large, then instead we get for p > 2 the estimates

[1Pullx(ry < Clluollmznre + C(T)[[ull 7
1Pu — Pol|xcry < C(T)llu = vllxe) (lullir + l0lm):

where C(T") tends to 0 for " — 40. For this reason we can have for general (large) data a local

(in time) existence result of weak solutions only. This completes the proof.

Proof of Theorem 6.6

We define the solution space
X(T) = LOO((O, T),H'(R")N LOO(]R”))
with the norm
lull x(ry := esssupreomy { (1 + ) Mult, Muz + 1+ )% |ult, )|},

where 7

«,00,0

is defined as in Section 6.6. For any u € X (T'), we consider for m = 0 the operator
P:X(T)— X(T), Pu:= (Gg’g(t) xug) (t, ) + Ng}o(u)(t,x).
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We shall prove that
[1Pullx(r) S luollmnre + l[ulli (6.51)
|Pu—Pullxa S Hu—muauMu@+WM@a» (6.52)
For the proof of (6.51), after taking account of the estimates (6.26) and (6.25) we have
1Ga. o () * uollx(ry
= esssupye (o) { (1 +6) (G, () % o) (¢, )|y

(14 8) o ™A (G o (1) * wo) (t, )| }

S lwoll mzapes

It remains to prove for m = 0 that [N, (u)|lxz) S [ull% - 1w € X(T), then we derive by

interpolation the following estimate:
Jult, Ve S (1+ &) Paeullxry forall g€ [r,o0]. (6.53)

Moreover, we have
lu(t, M S @+ Mullxe). (6.54)

As in Section 6.6 we deduce
INS ()t e S (L+t)Poae|ul xy for all t € [0,T] and q € [r, oo,

if and only if
b > pg,A,a(”)'
Now let us turn to the desired estimate of the norm || N7, (u)(Z, -)|| ;. We need to estimate the

;v } we obtain

norm [[[u(t, ) |"[| z;

Mt )Pl < N, g e,

S (L+ )M ullxery (1 + )P D Pt a5 7y (6.55)
S (L4 ) 0D Dyl
S

(1+1)" (=1 (Ba,00,0 =N~ A)HUHP

Then
INg o (@)(t, ) gy S Nullxery L (t) for all ¢ € [0,T], (6.56)

where

/ / JEL(1 4 5) (DB DY) g g (6.57)
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Notice that (p —1)(8} 0, — A) — A > 1 if and only if

20r(1+ \)
(n—20r)(1+a)+20r(1+a—2A))

P> pi;A;a;r(”) =1+
under the assumptions 1 < o < O‘Q—T and 1 <r < % If

p> pé;)\;a;r (n) ’

then
L(t) < (1 +1)

We remark that pf, , ,(7) > pi.gn(n) > 2. Then we deduce that
IN ) ey S Nl

if and only if
p > max{pg, » ,(n);7}.

Finally, we have to show (6.43). From Section 6.6 we get for m = 0 the estimate

”Nao,o'(u)<t7 ) - N2,0'<U)<t7 ‘)HLq
< (14 1) e = ol (i + o)

for all t € [0, 7] and g € [r, 00]. It remains to prove

IND () (2, ) = N2, (o)t )
S (U4 M = ollxen (uld + [ol% L) forall ¢ € 0,7

From the above considerations it is sufficient to prove that

(s, )P = Jo(s, )Pl gy

< (14 )V acor Dy — vy (Il + 101 -
By using the integral representation
1
[us, )" = [u(s, )" = p/ (u(s,-) —v(s,))Qwuls, ) + (1 —w)v(s,-)) dw,
0
where Q(u) = u|u|P~2, we obtain

s, )P = Jols, )Pl

< o IIDI ((uls, ) = v(s,))Q(wuls, ) + (1 = w)o(s, ) |- duw.
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Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in HZ (R™)
we get
lu(s, )" = Jv(s, )Pl g

1

S i D1 (uls, ) = v(s, ) e |Qwuls, ) + (1 = w)v(s, 2)) [ dw

~Y

1

| Nt ) = o, ) e[ D Qwu(s, )+ (1= w)uls, Dl do
SN (uls, ) = v(s, ) e (luls, )+ flo(s, 7<)

+ u(s, -) = (s, )|z / 11D Qwuls, ) + (1 = w)v(s, )
< s ) = vl Yl (luls, g+ llos, I

+ u(s, ) = (s, )|z / P QEu(s, ) + (1 - w)u(s, e d

S (14 MotV lw — || x () (el + W15 2)

Lr dw

(1t ) P P u— o) / DI Qwus, )+ (1 — wols, ) - dw.

We apply again Proposition 6.34 to estimate the term inside of the integral. In this way we

obtain
1
/0 11D Q(wu(s,-) + (1 — w)v(s,-))||Lrdw
1
S/o D[ (wuls, ) + (1 = w)ols, ) -
X ||wu(s, ) + (1 —w)o(s, ,)”1;02 dw
< [ ons 0 -l
x (14 s)(p*2)(fﬁa,oo,g+A)ku +(1- w)vH?{(QT)dw
e R B
S WU ) (ullyr + lolfr)-
Then
(s, )P = [v(s, Wl gz S (14 ) EDEFaea ™D ((luB7 00 + olli )
Hence,

NG o (w)(t, ) = No o (0)(t, ) | 2
S (L4 0l = ol xey (lulli ) + ol5y)  forall ¢ e [0,T].
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We deduce that

1Pu— Pullxery = |Na o (u) — Ngo(v )||X

S llu— UHX(T)(HU| X(T + (v |X(T )
Summarizing we may conclude a uniquely determined solution
ue L*((0,T),H](R") N L*(R™)) for all T > 0.
As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to
C(]0,00), H(R™) N LY(R™)) for all ¢ € [r, c0).
If the data are large, then instead we get for p > 2 the estimates

[1Pullx(z) < Clluoll gz + C(T)|lull’ 7,
1Pu — Pullxery < O(T)llu — vllxer (lullf + 1ol

where C(T') tends to 0 for 7" — 40. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only.

This completes the proof.

Proof of Theorem 6.7

We recall that the solution of (6.3) is given by
u(t,z) = (G35 (t) * uo)(t, x) + NI, (u)(t, ).
Let T > 0. We define the space
X(T) = C([0,T); L'(R") 1 L2(R")

with the norm
HUHX(T) = SUP { +t = a(HU( )HLT + Hu(ta)HLw)}

For any v € X(T') we consider the operator
P:X(T)— X(T), Pu:= (G, (t)*uo)(t,z) + Ny, (u)(t, ).
We shall prove that
[1Pullxcry S luollzraze + llully (6.60)

uPu—Pwﬂnsnu—mu@uwum+4Hu@> (6.61)
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After proving (6.60) and (6.61) we may conclude the global (in time) result of small data solutions
in Theorem 6.7. Due to Proposition 6.18 we know that

G, (t) x ug € C([0,00), L"(R™) N L®(R™)).
By using (6.27) we have

|G o (t) * uollx(r)
= sup {(1+6)"" (G, () * uo)(t, ) r + Gy (8) * uo) (t, )| o= ) }

0<t<T
< sup {(L+ 671+ 6 Y o rare
0<t<T
S sup {(1 + t)liO[(l + t)i(lJra)}HUoHLquoo 'S HU()HerLoo. (662)

t>0

It remains to prove ||NT" ulxr) S ||u||§((T). If u e X(T), then by interpolation we derive

lult, e S

~Y

(L+6)* Mullxe forall t€[0,7] and gq € [r,o0].
On the other hand, we have

[t WPlze < ult, e S (1487 ully g,
forall te€[0,7] and ¢ € [r,o0].

(6.63)
Thanks to (6.27) and (6.63) we may derive the estimate
[N u(t,)ze S ||u||§((T)](t) forall t€[0,7] and ¢ € [r,00], where
t T
1) / (14— 7)) / (7 — )" (1 4+ 5) 1) ds dr. (6.64)
0 0

We are interested to estimate the right-hand side of (6.64). For this we need the Lemma 6.39.
We put

w(r) = /OT(T — 5)* (1 + 5) 7P s,

Thanks to Lemma 6.39 we obtain

(1+ 7)ot if p>t,
wit) ¢ 1+7)*tIn(2+7) if p= ﬁ, (6.65)
(14 7)erl=o if p<ii.

If we assume that p > L~ then we obtain w(r) < (14 7)*1.

Hence,

¢ ¢
I(t) < / (1+t—7)"F90(r)dr < / (14t —7)" 091 4 7)2"Ldr, (6.66)
0 0
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Once more we apply Lemma 6.39 to (6.66) to obtain I(¢) < (1+¢)*!
Hence, |[Ngullxr) S llulls(r)- Finally, it remains to show (6.61). Let r € [g,00]. By Holder’s
inequality, for u,v € X(T'), and if p’ denotes the conjugate to p, then we have

Ifuls, ) = Tols, )7l o

< ([ o)t (s + o) )’

S ( [u(s, x) — v(s, z)[" dx) plq(/ <|U(s,x)|p_1+|v(s,w)|p_l>qilw>qlp/

R n
S llus, o [lu(s, )P+ [o(s, )P ] o

)
S lu s Mzea (s, )P g + v s, )P o)
)

) — (s,
(s,-) = o
S s, ) = v(s, Mww (luls, M gy + 005 o))
(s,-) =
)

v(s, Wzea (luls, Wna + [o(s, )70)

PN — wllxery (Tl + 1ol er)-

S lu(s,
S(1+s

Hence,

INZ () (¢, ) = NI @) ) lze S IOl = vllxey (lullfegy + 1o ld)
< (40" = vl (Il + Iold,) forall ¢e0,T].

We deduce that

1Py — Pollxcry = [N (u) — N (0) || xry
< M= vllxe ([l + lolr)-

Remark 6.20. All estimates (6.60) and (6.61) are uniformly with respect to T € (0,00) if
P>

From (6.60) it follows that P maps X (7) into itself for all 7" and for small data. By standard
contraction arguments (see [18]) the estimates (6.60) and (6.61) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3), that is, the solution of (6.3) satisfies (6.62). Since
all constants are independent of 7" we let T" tend to oo and we obtain a global (in time) existence
result for small data solutions to (6.3).
If the data are large, then instead we get for p > 1 the estimates

[ Pullx(r) < Clluol|rare + C(T)||ull 7y,
|1Pu = Pl xry < C(T)lu—= vl xey (luli + 10Ba)

where C(T") tends to 0 for " — 40. For this reason we can have for general (large) data a local

(in time) existence result of weak solutions only. This completes the proof.
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Proof of Theorem 6.8
Let T' > 0. We define the space
X(T) == C([0,T), H)(R") N L*(R"))

with the norm
lullxery == sup {1+ (lult, gy + llult,)llz=) }-
0<t<T

For any u € X(T') we consider the operator
P:X(T)— X(T), Pu:= (G, (t)*uo)(t,z) + Ny, (u)(t, ).
We shall prove that

1Pullxery S lolluznss + lullr (6.67)
1Pu— Pllxcry S llu— vl (Ilellit, + nvup L). (6.68)

After proving (6.67) and (6.68) we may conclude the global (in time) existence result of small

data solutions in Theorem 6.8. Due to Proposition 6.18 we know that
G, (t) * ug € C([0,00), H)(R") N L¥(R™)).
By using (6.27) we have

||Gng( )*UOHX(T)
= sup {(1+8)" (G, (1) % uo)(t, May + (G (t) * o) (t, )l 2) }

0<t<T
< sup {1671+ 1) Y luol| iy

Ssup {(1+ 671+ 67 Hluoll iy S [fuoll sz (6.69)
It remains to prove || Ny ullxr) < |lull% ). If w € X(T), then we derive
lult, Mae < 1+ 0 ullxer
On the other hand, applying Proposition 6.33 with p > max{2;~} we obtain

et WP laz S Mt e e, )l
< (L) ullxer) (1 + )PV D lullf g, (6.70)
<

(14670
Moreover, we have

[t )Pl S (lult, llz=)? < (1480l - (6.71)
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Thanks to (6.28), (6.70) and (6.71) we may derive the estimates
INGut, My S lully () forall ¢e0,T],
[Nawu(t, e S lullsryI(t) forall te[0,T],

where I(t) is as in (6.64). We recall that we obtain I(¢) < (14 ¢)** for p > 2. Hence,

[Naoullxr) < llull gy Finally, it remains to show (6.68). We have
(s, P = To(s, )Pl S Nuls, ) = v(s, Mze (luls, Mg + llo(s, )7
< (14 8) N — vl xry (lullfeery + o)

Hence,

INE () () = N () (e S T lu = vl xery (Nl + ol
S A4+ Yu —vllxe (||u||X(T + Hv||§((;)) for all ¢ € [0,T].

It remains to prove

1N () (t,-) = N2 () (8 )l S DO = ollxery (1l + 015 )
< (1 0l — vllxry (Nl + ol forall ¢ e [0,7].
We have
[N (w)(t, ) — No'o (0) (& )| a2
~ |No'y (w)(t, ) = Noty (V) (& ) e + I Ng's (w)(Es ) = Noty (V) (& ) -

Here f ~ g means that ¢ < f < g. As above we have

NG (W) (t, ) = N (0)(E, )

< (14 4)°u— UHX(T)(HUHX(T) + HUHX(T ) forall te0,7].

L

It remains to prove

INZ () () = N2 )t
< 40 lu— vl (lull5d + (0% ,) for all ¢ € [0,7],

that is, it is sufficient to prove that

(s, )P = fo(s, )Pl S (1 + )P0 = oll ey (lall% iy + 0% k).

By using the integral representation

|u(87 )|p - |U(S7 )|p - p/o (u(57 ) - U(S, -))Q(MU(S, ) + (1 - W>U(S7 )) dw,
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where Q(u) = u|u|p*2, we obtain

lluts, 7 = lots, Pl
/ 1D ((ufs. ) = v(s. NQwu(s. ) + (1= )o(s, ) do.

Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in H;’ we

get

s, )P = Jols, )Pl

1

S i DI (u(s, ) = v(s, )l |Qwuls, 2) + (1 — w)v(s, 2)) ||~ dw

~

1

[t = vl NIPP Qs )+ (1 = huls, )
S IIDP (s, ) — v, ) e (s, Y + s, L)

s, ) = sl [ INDPQEen(s,) + (1=l Dl
< (s, ) — w5, M (s, R + s, D)

s, = s s [ NIDP@euts, ) + (1 = el Mir
< (14 )7 — ol (i, + olE70)

+(1+5) " lu = v]lx) /O D" Q(wuls, ) + (1 —w)uv(s, )| dw.

LT dw

We apply again the Proposition 6.34 to estimate the term in the integral. In this way we may

conclude
1
/0 D" Q(wuls, ) + (1 —w)uv(s, )| dw
1
5/0 D" (wus, ) + (1 —w)v(s, )| -
X (s, ) + (1 — w)ols, ) [12 de
< [+ 9 out (1 = ol
X (14)" "2 wu + (1 - w)olly 7, dw
< /01(1 n S)—(p_l)(l_o‘)ﬂwu + (1 —w) ||X(T)
< (148" (% gy + ol -
Then

(s, P = To(s, )Py S L+ 8) 7P (Julliery + ol )
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Hence,

[N (W)t ) = Nelo (0) ()l

< @+ u— vl (lull5d + [ol%,)  forall ¢ € [0,T],
We deduce that

|Pu — Pollxcry = [N (u) — NI (0) || xry
< M= vllxa ([l + o)

Remark 6.21. All estimates (6.67) and (6.68) are uniformly with respect to T € (0,00) if
p > max{2;7; ﬁ}

From (6.67) it follows that P maps X (T) into itself for all 7" and for small data. By standard
contraction arguments (see [18]) the estimates (6.67) and (6.68) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3), that is, the solution of (6.3) satisfies the desired
decay estimate. Since all constants are independent of T, after letting T" tend to oo we obtain
a global (in time) existence result for small data solutions to (6.3). If the data are large, then

instead we get for p > 2 the estimates

| +C(T )HUHX(T
1P~ Pl < OOl — vl (Tl + ol

where C(T') tends to 0 for T — 40. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only. By the same argument as above we obtain the

desired results. The proof is complete.

6.7 Appendix

In this chapter we present results that we have already used in the demonstrations of Chapter 5
and Chapter 6.

Lemma 6.22. Let a(-) satisfy the hypothesis 5.2, then the integral fol % is finite for a € (0,1)
and fo \/— is finite for a € [1,2).

Remark 6.23. For a € (1,2), the integral fo o dx could be finite or infinite, for example

consider the functions a(x) = z"e ez where r g Q.

Proof. Since xd'(z) < aa(x) for all z, the function = — % is decreasing on (0, 1), so a(z) >
a(l)z® and for o < 1
/1 dv _ /1 de
— < 00.
o a(z) = Jo a(l)z®
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Lemma 6.24. ( Hardy Inequality) (voir [6])
We assume that a € (0,1), then, for alluw € H(0,1) such that uw(0) = 0, we have

Ya(r) , 4 ' 12
/o —a U (x)dr < i —04)2/0 a(z)u'(x)|“dx. (6.72)

Lemma 6.25. For o € (0,2) and for allu € H}(0,1), we have lim zu? = 0 and lim xu = 0.

z—0 z—0

Proof. At first, we show that zu? € W', It’s obvious that zu? € L'(0,1) for each u € H}(0,1).
On the other hand

(zu?), = u? + 2zuU,,

") (Va(w)u,),

Vva(x)

and by the Hypothesis 5.2 we can easily see that the function = +— % is increasing, so

TUU, = (

T 1 x
Vo) = Yam) _ va@

Hence zu® € W1(0,1) and it follows that zu> — L > 0 when x — 0. If L > 0, so we could

U~ \/% ¢ L*(0,1),

so L = 0. Similarly we can see that liH(l) xu = 0.
T—

u € L*(0,1) = ruu, € L'(0,1).

have

]

Lemma 6.26. Assume that o € [1,2). Then for all u € H}(0,1) such that (au,), € L*(0,1),
we have au, € WH1(0,1).

Proof. Note that w = a(x)u, and choose M > 0, such that a(z) < M for all z € [0, 1]. we have

1 1 1 1
/ |w|dx = / la(x)u,|dx < \// a(x)?udx < \/M/ a(z)uldr < oo
0 0 0 0

since u € H}(0,1). On the other hand, starting from the inclusion L?*(0,1) in L*(0,1) and the
fact that w, is in L?(,1), we deduce that w, is in L'(0,1). Therefore, w € W0, 1). O
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Let us mention that for the well-posedness of boundary conditions in problem (?7), we need
to de

ne the trace of u at boundary points z = 0 and z = 1 for any v € H}(0,1). The trace at
x = 1 obviously makes sense which allows to consider the Dirichlet boundary condition at this
point. (Note that the function u € H}(0,1) belongs to the Sobolev space W2 in a neighborhood
of x = 1). On the other hand, if < 1, the trace of u at x = 0 is meaningful because of the

following lemma.

Lemma 6.27. If a(-) satis

es Hypothesis 5.2 and o € (0,1), then for every u € H(0,1) we have u € WH(0,1) = {u €
LY0,1) : u, € L'(0,1)} and so u(0) is meaningful.. Thus we could introduce the following space
H!(0,1) depending on the values of .

Proof. For any u € H}(0,1) we have u € L?(0,1), so u € L*(0,1). We prove that u, € L'(0,1).

\ux!dx— \\/_ |dx < ( 1%@ 1a<x)u§dg;)%
\/_ o a(@)  Jo

But by Lemma 6.22 the integral fol ﬁdm is finite, so u, € L'(0,1). Now, consider a sequence
{u,} of smooth functions which converge to v in W1(0, 1) and let x be a smooth cut-of function
such that X’[o,%] = 1 and y vanishes in some neighbourhood of 1. Then we have yu,, — yu in
W1 On the other hand for every z, we have yu,(z) = — fol(xun)x(t)dt, which means that the

liII(l) Xun(x) exist, so lin}) un(x) exist et we define u(0) to be equal to this value.
T— T—r

Proposition 6.28. 1. For a € (0,1) the space C°(0,1) is dense in H, (0, 1)
2. In the case o € [1,2) the subset of C>([0, 1]) which vanishes at x = 1 is dense in H, (0, 1).
Proof. (1): Since Cg°(0,1) is dense in Hj(0,1) and the embedding of Hj(0,1) in Hj,(0,1) est

continu, is continuous, it suffices to prove that Hj(0,1) is dense in H, ((0,1). Let v € H,,(0,1)
be given and define the family {vs}s>0, with 6 € (0, 1) in the following way

vs(w) = { i), 0=2b

We want to show that:
(1) vs € H3(0,1) for all 6 € (0,1).
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(2) vs = v in H;(0,1) as § — 0. One has

/]v5 2al:v—/|v + ’U ]dx—i—/\’u )|?dx
1
§2A(pW(W |dx+/‘w ) 2de. (6.73)

By Hypothesis 5.2 , the function z % is decreasing on (0, 1], so a(x) > a(1)z? for every

x € [0,1]. Therefore for every 6 > 0 we have

[ Bpera < o [awi@pa (6.74
0521}95 x_a(1)520axvx . :
On the other hand, since a(z) > 0 on (0, 1], there exists M > 0 such that a(x) > Mj in [J, 1], so

1 1

/ v (2)Pdx < M{l/ +a(x) v (z)Pdx (6.75)

0 5
Combining (6.73), (6.74) and (6.75) nous obtenons Cs > 0 such that

/ AE 2dm<C’5/ lv(2)|? + a(z)|v'(z)|*dz.

The right part of the last inequality is
nite since v € H}(0,1). Then vs € H}(0,1). Also

1
o= vsliy, = [ o= v + a)e’ - eifde
’ 0
1) 1)
= /0 v — %vlzd:)s +/O a(z)|v' — % — %v’|2da:

4 4 1 U2
s/zﬂm+2/ (nuum+2/ a(x) 5.
0 0

Now fo 2d:v—|—2f0 x)|v'[Pdr — 0 as § — 0, since v € Hy((0,1). On the other hand by Lemma

6.24, we obtain
) 2 é 2 é
v v 4 9
/0 a(x)é—deg/O a(:p);dzﬁ m/o a(z)'(x)|*dx.

Indeed, we can rewrite the proof of Lemma 6 24 in the interval [0, §] instead of [0, 1] and derive

a new inequality with the same constant )2 Now, the right part of the last inequality tends

-
to zero § — 0, because v € H, ((0,1) and the proof of (1) is complete.
(2): Similarly in this case, for v € H, ((0,1) it suffices to construct functions {vs}s>o such that

(1) wvs € H*(0,1) and vs(1) = 0.
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(2) ws —wvin Hy(0,1) as & — 0.

Defi
ne
v(26 — x), 0 <z <9,
vs(z) = ( )
v(x), )<z <1l
we have

, —v'(20 — z), 0<z <9,
vs(z) = )
v'(z), o<z <l

Since a(-) is strictly positive on (0,1) and in the computing of fol |v§|?dx, we are far from the
boundary, it is easy to see that vs € H*(0,1). Also

[[vs — U||§Jg(o,1): |vs — U||?qg(o,5)§ 2[||U||§{g(o,5)+||vé||§Jg(o,5)]-

Since v € H}(0,1), the term HUH%”(O 5) tends to zero as & — 0. Also if § < dp/2 where 4y is the
constant introduced in property (3) of Hypothesis 5.2, then

5 5
/ vi(z) + a(z)|vs(z)Pdr = / v?(20 — x) + a(z) |V (26 — ) Pdx
0 0
26 1 2
< [ ) [ @)
5 m.Js
which tends to zero as § — 0. Observe that vs(1) = 0, so the subset of C*°([0, 1]) which vanishes

at x = 1 is dense in H, (0, 1).
[l

Modified Bessel functions

Definition 6.29. The Bessel function J,, of first kind and of order jn € R is defined by

B o (—1)k s\ 2k+nu
J“(S)_kz;klr( +p+1) (5) ’

where p is not allowed to be a negative integer. The modified Bessel function ju(s) 1s defined by
Tu(s) = 2,

Lemma 6.30. Let f € LP(R"), p € [1,2], be a radial function. Then the inverse Fourier

transform is also a radial function and it satisfies

FH(f)(z) = /Ooog(r)r”_ljg—l(rlﬂfl)dﬁ g(|z[) == f(x).

Lemma 6.31. Assume that p is not a negative integer. Then the following rules hold:
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1. sdyJ,(s) = Ju1(s) — 2udu(s),
2. dsju(s) = —sJNMH(s),
3. J_1ja(s) = \/gcos(s),

4. we have the relations

[Ju(s)] < CemBlqf s <1,

Ju(s) = C's™2 cos (s - gﬂ' — %) + O(|s|_%) if |s| > 1,
5. Ju(rlz)) = —r|ylc‘28TJ~u(7‘|x|), r# 0,2z #0.

Mittag-Lefller function

The Mittag-Leffler function Ejg allows the following implicit definition:

A 1 _
m/o (t = )" Es(\s”) ds = Eg(M”) — 1. (6.76)

The Mittag-Leffler function Eg(—t?(€)Z, ;) may be written in the following form:
9 1

Bs(~#"(€)h) = 5 (0 (aslt

B B
2 2

<£>m70)) + exp (bﬂ(t <£>m,0))>

where

lﬁ(Z/) = _ sin(ﬁfr)/oO eXp(_y SE)
pr s? + 2s cos(fm) +
1- % for y = 0.

1d5 for y > 0,

\

Here 8 = 1+ a. The proof can be found in the paper [32].

Remark 6.32. We have also the relation

<§>m,a)) + exp (bﬁ(t <§>m,a))

2
= 261 ORF (55 cos (1) 7 sin (- ) )
e cos (t{&)m'a sin o

s 2
= 2e~HOm cog (t(@%{? v1— 02>, where ¢ = — cos ( T )

1+«

exp (ag(t H
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Results from Harmonic Analysis

We recall some results from Harmonic Analysis (cf. with [47]).

Proposition 6.33. Let r € (1,00),p > 1 and o € (0,p). Let Q(u) denote one of the functions
|ulP, Fu|u|P~t. Then the following inequality holds:

Q) g < llullag 7

for any v € HZ(R™) N L*(R™). Here we use for v > 0 and 1 < q¢ < oo the fractional Sobolev

spaces or Bessel potential spaces

HY(R") := {f € S'R") : (| fllmy = [FT (&) F(f)lze < o0}
Moreover, (D)7 stands for the pseudo-differential operator with symbol ()7 and it is defined by
(D)Yu = FH({E)F(u)).

Proof. This result is a special case of the following more general inequality for Triebel-Lizorkin

spaces I :
Q) kg, S llulleg,llullf= for any w e F7,n L™,
where ¢ > 0, whose proof may be found in [51, Theorem 1 in Section 5.4.3]. O

Proposition 6.34. Let r € (1,00),p > 1 and o € (0,p). Let Q(u) denote one of the functions
|u|P, ulu[P~t. Then the following inequality holds:

Q)¢ < Null g el
for any w € H?(R™) N L®(R™), where
H(R") := {f € S'R") : |[fl gy := I1F (P F(f))llza < 00}

Here |D|" stands for the pseudo-differential operator with symbol |£|7 and it is defined by |D|"u =
FH[EF (u)).

Proof. We will use a homogeneity argument. For any positive A we define uy(z) = u(Az).

Applying Proposition 6.33 to u) we get
1QuN) g < llunll g lluall (6.77)
Since for r € (1,00) we have the decomposition
[ollag ~ 0]l ge + [0l forany ve HY
and the scaling properties
lusll g = 27" llull g Muallzr = A7 [lullzr and [Juallzoe = [Jul =
diving both sides of (6.77) by A\?~+ and taking the limit as A — oo we obtain the desired

inequality. O]
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Proposition 6.35. Let r € (1,00) and o0 > 0. Then the following inequality holds:
Jwvll g S [lullag llvllzes + ullzoe o] g
for any u,v € H7 N L*>.
Proof. The result that we want to prove is a special case of the following inequality for Triebel-
Lizorkin spaces F7 :

luvllrg, S llullrg, [0l + llullz<lv]leg,

for any u,v € F7, N L>, where ¢ > 0, whose proof can be found in [51, Theorem 2 in Section
4.6.4]. O

Finally let us state the corresponding inequality in homogeneous spaces Hf . For the proof it

is possible to follow the same strategy as in the proof of Proposition 6.34.

Proposition 6.36 (Fractional Leibniz formula). Let r € (1,00) and o > 0. Then the following
inequality holds:

lwollgre S Nl g [0l + [lull= 0]l e
for any u,v € HZ(R™) N L=(R").

The following result was proposed and proved by Marcello D’Abbicco and already used in a

special case in [17]. We present the proof to make this chapter more self-contained.

Proposition 6.37. Let uy € L'(R*")NL®(R™"), n>1,r>1 and o € (0,1). Then the function
u=u(t,x) = (Ggw(t) * uo) (t,x)

belongs to
C([0,00), L"(R™) N LY(R™)) for all q € [r, o).

Proof. Due to (6.6) we have
Gg,a(t> .’L’) = / eimeaJrl( - ta+1’5‘20) dg

The estimate (6.9) from Proposition 6.10 implies GY, ,(t,-) € L'(R") for all ¢ > 0. Moreover,

G? ,(t,-) has the following scale-invariant property:

a+1

GO _(t,z) =tPGY (1, Pz) with B = e (6.78)
’ : o
Consequently, we conclude for all ¢ > 0 the relations
1Goo(t: )l = 1Ga (L, )| (6.79)
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and
/ Gy o (t, x)dx :/ G (1, x)dr = 1. (6.80)

Let us choose a positive zero sequence {t;};. We want to prove for a given g € LP(R"), p € [1,00),
that the sequence {7} * g}, tends to g, where T;(-) := vag(tl, -). We have lim;_,, T} = do in the
distributional sense. Hence, lim; ,., T} * ¢ = ¢ in distributional sense, too. But, this implies the
desired relation [, GY ,(t,z)dx = 1. Otherwise, if we would have for ¢ > 0 the relation

GOt r)dr = [ G, (1 x)dr=MeC,
R" R

then we might conclude lim; .., 7; * g = Mg in the distributional sense, in contradiction to
lim;_,o, T} = d¢ in the distributional sense.

The scale-invariant property (6.78) implies for all positive &

/| T(@)ldr =0 for 1 . (6.81)
z|>

Indeed, the relation (6.81) holds after taking account of
[ ms = [ 1600 e
|z|>6

j@|>3

= ]Ggg(l,y)]dy — 0.
ly|>t; "5 7

Let us choose a function g € C.(R™). We prove that the sequence {(7;* ¢g)(x)}, tends to g(z) for
all z € R". Using (6.80) we obtain

Uwgmw—g@%=/(ﬂx—w—0@Dﬂ@My

n

For a fixed positive € we choose k = k(g, x) such that |g(z —y) — g(y)| < € for |y| < k. Then,

\awgmw—g@ﬂgs/

ly|<w

Tiwldy+2lglo~ [ [Titw)ldy

ly|>r

< (G )l + 2llgllz=)

for sufficiently large [ = (). This implies the desired relation lim;_,. (7} * g)(z) = g(z) for all
x € R".
Applying Holder’s inequality gives
(T % g)(x) = g(2)| < |[(9(x =) = g(=))Ti()l| s
: o
< gl =) = g@)PTONL NN
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where p’ is the conjugate exponent to p. From this estimate it follows

I 9= )M < [ TWI( | 1ot~ ) = gl@)Pdz)dy

R R?

= Cp/ IT1(y)|(—y)dy = cp(|T1| * )(0),
Ry
where we introduced

p(—y) = - lg(x —y) — g(x)Pd.

The function ¢ = p(—y) is bounded and continuous. Consequently, we get lim;_, |[(7; * g —
9)(*)||zr = 0 what we wanted to have for all bounded and continuous functions g € C(R") N
L>*(R™). The set C.(R™) is dense in L’(R"), then a density argument in L’(R") completes the
proof. O

Inequalities

First we recall Young’s inequality.

Lemma 6.38. Let u € LP(R") and v € L"(R™) with 1 < p,r < oco. Then uxv € LIY(R"), where

1_ 1,1
1+5—p+rand

[wx vllze S {0l
Finally, we recall the following lemma from [15].

Lemma 6.39. Suppose that 6 € [0,1),a > 0 and b > 0. Then there exists a constant C' =
C(a,b,0) > 0 such that for all t > 0 the following estimate holds:

[t—m)A+t—7) (1 +7)"tdr

C(1 + )~ min{at6.b} if max{a+6,b} > 1, (6.82)
< C(1+t) - mindatf0 02 +¢) if max{a+0,b} =1, '
C(1+t)ta-0-b if max{a+60,b} < 1.
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Conclusion and perspectives

We have studied in the first part of this thesis the null controllability of a non-autonomous
degenerate parabolic equation. Our perspective is to study the null controlability to the following

non-autonomous degenerate parabolic non linear
Ut — M(”VUH2>(6L<I)U$)$ - thM (Jf7t) € Q = (07 1) X (07 T)

In this study we need some theorems of compactness, fixed point and some additional hypotheses
on the coefficient M(-).

In the second part of this thesis we have studied the global existence of small data solutions
to semi-linear fractional o—evolution equations with mass or power non-linearity under the
condition u:(0,z) = 0. Our perspective is to study the same probleme when (0, z) = ui(x),

where u, is in some suitable space.
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