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 : الملخص 

 
في هذه الأطروحة، قمنا بدراسة مسأألة قابلية التحكم عند الصفر لمعادلات مكافئة غير مس تقلة ومنحطة. تعد 

مكانية التحكم في معادلات مكافئة الانحطاط. تعمل  تقديرات كارلمان من بين الأدوات المس تخدمة لدراسة ا 
ظهار متباينة الملاحظة في المعادلات المرافقة للمعادلات المكافئة غير المس تقلة  هذه التقديرات الأخيرة على ا 

درس نا أأيضًا الوجود الكلي )في والمنحطة والمكافئة لا مكانية التحكم عند الصفر في المعادلات المكافئة. لقد 
الزمن( لحلول معادلات س يجما تطورية كسرية ش به خطية ذات معطيات صغيرة مع أأو بدون كتلة. هدفنا 
الرئيسي هو توضيح تأأثير عنصر الكتلة من ناحية، ومن ناحية أأخرى تأأثير زيادة صقالة المعطيات على 

عدلة، أأظهرنا بعض الاضمحلال متعدد الحدود في الخصائص النوعية للحلول. باس تخدام توابع بيسال الم
لحلول للمعادلات الكسرية الخطية المرفقة. بواسطة خاصية النقطة الصامدة، أأثبتنا وجود  Lp-Lqتقديرات 

 . pحلول ذات معطيات صغيرة تحت مجموعة من القيم لــ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

: 
 



Abstract :  
     In this thesis, we have studied the null controllability question of 

Degenerate Non autonomous Parabolic Equations. Among the tools to study 
the null controllability of the degenerate parabolic equations is the Carleman 
estimates. These last estimates are used to show the observability inequality of 
the adjoint parabolic equations which is equivalent to the null controllability of 
the degenerate parabolic equations. We have also studied the global (in time) 
existence of small data solutions to semi-linear fractional σ-evolution equations 
with mass or power non-linearity. Our main goal is to explain on the one hand 
the influence of the mass term and on the other hand the influence of higher 
regularity of the data on qualitative properties of solutions. Using modified 
Bessel functions we  proved some polynomial decay in Lp − Lq estimates for 
solutions to the corresponding linear fractional σ-evolution equations. By a 
fixed point argument the existence of small data solutions is proved for some 
admissible range of powers p.. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Résumé : 
     Dans cette thèse, nous avons traité la question de la contrôlabilité à zéro des 

équations paraboliques dégénérées non autonomes. Les estimations de 
Carleman font partie des outils permettant d’étudier la contrôlabilité à zéro des 
équations paraboliques dégénérées. Ces dernières estimations servent à montrer 
l'inégalité d'observabilité des équations paraboliques adjointes qui est 
équivalente à la contrôlabilité à zéro des équations paraboliques dégénérées. 
Nous avons aussi étudié l'existence globale (dans le temps) de solutions de 
petites données pour des équations fractionnaires σ-évolution semi-linéaires 
avec ou sans terme de masse. Notre objectif principal est d'expliquer d'une part 
l'influence du terme de masse et d'autre part l'influence de la régularité 
supérieure des données sur les propriétés qualitatives des solutions. En utilisant 
des fonctions de Bessel modifiées, nous avons démontré une certaine 
décroissance polynomiale dans les estimations Lp - Lq pour les solutions aux 
équations fractionnaires linéaires correspondantes. Par un argument de point 
fixe, l'existence de solutions de données réduites est prouvée pour une gamme 
de puissances admissibles p.. 
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CONTENTS 4

Notations

⌦ : Open set of Rn.

⌦ : The closure of ⌦.

� = @⌦ : The boundary of ⌦.

X, Y : Banach spaces.

k · kX : Norm in X.

H : Hilbert space.

(·, ·) : The scalar product in the Hilbert space H.

L(X, Y ) : The space of linear and continuous applications of X in Y.

C(⌦) = the set of continuous functions u : ⌦ �! R.
Ck(⌦) = the set of functions u : ⌦ �! R k times continous differentiable in ⌦.

C1(⌦) : The space of indefinitely differentiable functions in ⌦.

supp(u) = {x 2 ⌦ : u(x) 6= 0}.
D(⌦) = {u 2 C1(⌦) : supp(u) ⇢ ⌦, and supp(u) is compact}.

Lp(⌦) = {u : ⌦ ! R, u measurable and
Z

⌦

|u(x)|pdx < 1}, 1  p < 1.

L1(⌦) = {u : ⌦ ! R,measurable and 9C � 0 : |u(x)|  C, a.e. in ⌦}.

H1(⌦) = {u 2 L2(⌦) :
@u

@xi

2 L2(⌦), 1  i  n}.

H1
0 (⌦) = {u 2 H1(⌦) : u = 0 on �}.

H�1(⌦) = The dual space of H1
0 (⌦).

ru =

✓
@u

@x1
,
@u

@x2
, . . . ,

@u

@xn

◆
=

✓
@u

@xj

◆

1jn

.

W 1,p(⌦) = {u : u 2 Lp(⌦),ru 2 (Lp(⌦))n} , 1  p < 1.

H1
a
(0, 1) = {u 2 L2(0, 1) \H1

loc
(0, 1) :

1Z

0

a(x)u2
x
dx < 1}.

H�

q
(Rn) : =

�
f 2 S 0(Rn) : kfkH�

q
:= kF�1(h⇠i�F (f))kLq < 1

 
.

Ḣ�

q
(Rn) : = {f 2 S 0(Rn) : kfk

Ḣ
�
q
:= kF�1(|⇠|�F (f))kLq < 1}.4



Introduction

In the first part of this thesis, we deal with the null controllability question of Degenerate Non
autonomous Parabolic Equations. In general, the null controllability problem of partial deferen-
tial equations can be treated by different means like the moments method, Hilbert uniqueness
method (called briefly HUM), multipliers method, microlocal analysis, spectral inequalities, fun-
damental solutions, controllability via stabilization or energy estimates (see for example [34] and
[39]). The null controllability of nondegenerate parabolic equations have been widely studied
in the last years, see in particular [9], [27], [30], [41], [43]. On the other hand, very few results
are known in the case of autonomous degenerate equations; see [4], [5], [6], [11], [42]. Among
the tools to study the null controllability of the degenerate parabolic equations is the Carle-
man estimates. These last estimates are used to show the observability inequality of the adjoint
parabolic equations which is equivalent to the null controllability of the degenerate parabolic
equations. The Carleman estimates are the main results of the above references. Recently in
[45], the authors established a new Carleman estimate for the autonomous degenerate equations
under some general conditions on the degenerate diffusion coefficient a. In the first part of this
theses, we are interested to study the null controllability for the one dimensional degenerate non
autonomous parabolic equation

ut �M(t)(a(x)ux)x = h�!, (x, t) 2 Q = (0, 1)⇥ (0, T ),

where ! = (x1, x2) is a small nonempty open subset in (0, 1), h 2 L2(! ⇥ (0, T )), the diffusion
coefficients a(·) is degenerate at x = 0 and M(·) is non degenerate on [0, T ]. Also the boundary
conditions are considered to be Dirichlet or Neumann type related to the degeneracy rate of a(·).
Under some conditions on the functions a(·) and M(·), we prove some global Carleman estimates
which will yield the observability inequality of the associated adjoint system and equivalently
the null controllability of our parabolic equation.
In the second part of this thesis we study the global (in time) existence of small data solutions to
semi-linear fractional ��evolution equations with mass or power non-linearity. The concept of
non-integer derivative and integral, as a generalization of the traditional integer order differential
and integral calculus was mentioned in 1695 by Leibniz and l’Hospital, but the first definition
of the fractional derivative and integral was introduced at the end of the nineteenth century by
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CONTENTS 6

Liouville and Riemann. The most important advantage of fractional derivatives compared with
integer derivatives is that it describes the property of memory and heredity of various materials
and processes. In recent years, fractional calculus has attracted many physicists, mathematicians,
engineers and notable contributions have been made to both theory and applications of fractional
differential equations. It has been found that the differential equations involving fractional
derivatives in time are more realistic to describe many phenomena in practical cases than those
of integer order in time. For more details about fractional calculus and fractional differential
equations we refer to the monographs by Miller and Ross [44], Podlubny [50], Hilfer [35] and
Kilbas et al. [38]. Since fractional semilinear evolution equations are abstract formulations for
many problems arising in engineering and physics, fractional evolution equations have attracted
increasing attention in recent years, see [21]-[24] and the references therein.
This thesis is decomposed into 6 chapters and is organized as follows. In chapter 1 we recall
some preliminary results on the spaces of Lebesgue, the space of Sobolev and some properties
related to these spaces. The Chapter 2 is devoted to the study of the theory of simigroup, we give
some definitions and some properties of this theory as well as spectral theory and we end with
a theorem of Hille-Yosida which plays a very important role in the existence , The uniqueness
and the regularity of some Cauchy problems. In chapter 3, we give the various notions of
controllability, the various characterizations related to the notion of controllability and thus
the comparison between these notions. The chapter 4 is devoted to the notion of Carleman
estimate and the importance of using this estimate to deduce an observability inequality witch
will be equivalent to the null controllability. In the chapter 5, we are interested to the null
controllability of degenerate non autonomous parabolic equations in one-dimensional space. For
some hypothesizes on the diffusion coefficient, we proof a Carleman estimate witch will be used
to show the observability inequality and consequently the null controllability. Finally, In chapter
6 we study the global (in time) existence of small data solutions and stabilization to the following
semi-linear fractional ��evolution equations with mass or power non-linearity

@1+↵

t u+ (��)�u+m2u = |u|p,
u(x, 0) = u0(x), ut(0, x) = 0,

Our main goal is to explain on the one hand the influence of the mass term and on the other
hand the influence of higher regularity of the data on qualitative properties of solutions. Using
modified Bessel functions we prove some polynomial decay in Lp � Lq estimates for solutions to
the corresponding linear fractional ��evolution equations with vanishing right-hand sides. By
a fixed point argument the existence of small data solutions is proved for some admissible range
of powers p.

6



Chapter 1

Preliminary results

1.1 Lp spaces

We consider ⌦ ⇢ Rn an open. We denote by L1(⌦) the space (of the equivalence classes) of
functions integrable in Lebesgue’s sense on a values in R. That is, as we usually do, we confuse
two functions that coincide Almost everywhere (a.e. in abbreviated).
For u 2 L1(⌦) we note

kukL1(⌦) =

Z

⌦

|u(x)|dx

Definition 1.1. For 1  p < 1, we put

Lp(⌦) = {u : ⌦ ! R, u measurable and
Z

⌦

|u(x)|pdx < 1}.

The mapping k · kLp(⌦) where

kukLp(⌦) =
⇣Z

⌦

|u(x)|pdx
⌘ 1

p (1.1)

defines a norm in Lp(⌦).

Definition 1.2. We put

L1(⌦) = {u : ⌦ ! R,measurable and 9C � 0 : |u(x)|  C, a.e. in ⌦}.

Theorem 1.3. (Hölder inequality) Let u 2 Lp(⌦) and v 2 Lq(⌦) with 1  p, q  1 such that
1
p
+ 1

q
= 1 (q denotes the conjugate exponent of p). Then uv 2 L1(⌦) and we have

kuvkL1  kukLpkvkLq .

7



CHAPTER 1. PRELIMINARY RESULTS 8

Theorem 1.4. (Fischer-Riesz) (Lp, k · kLp) is a Banach space for all 1  p  1.
In the particular case p = 2, the relation

(u, v) =

Z

⌦

u(x)v(x)dx, 8u, v 2 L2(⌦), (1.2)

defines a scalar product in L2(⌦), whose associated norm is none other than the norm k · kL2

defined in (1.1).

Proposition 1.5. The space L2(⌦) provided with the scalar product (1.2) is a Hilbert space.

1.2 Sobolev spaces

Sobolev spaces of order 1

Definition 1.6. We call Sobolev space of order 1 on ⌦, the space

H1(⌦) = {u 2 L2(⌦) :
@u

@xi

2 L2(⌦), 1  i  n}.

H1(⌦) is provided with the scalar product

(u, v)1,⌦ =

Z

⌦

⇣
uv +

nX

i=1

@u

@xi

@v

@xi

⌘
dx = (u, v) + (ru,rv), 8u, v 2 H1(⌦). (1.3)

And we note

kuk1,⌦ =
⇣Z

⌦

⇣
u2 +

nX

i=1

(
@u

@xi

)2
⌘
dx
⌘ 1

2
= (kuk2

L2 + kruk2
L2)

1
2 , (1.4)

the corresponding norm.

Proposition 1.7. The space H1(⌦) provided with the scalar product (1.3) is a Hilbert space.

Definition 1.8. Let D(⌦) denote the vector space of infinitely differentiable functions on ⌦ with
compact support in ⌦. We defend H1

0 (⌦) as the adherence of D(⌦) in H1(⌦), that is to say

H1
0 (⌦) = D(⌦)

H
1(⌦)

Remark 1.9. If ⌦ is bounded, D(⌦) is not dense in H1(⌦) and we have H1
0 (⌦) ⇢ H1(⌦)

with strict inclusion; On the other hand, if ⌦ = Rn, D(Rn) is dense in H1(Rn), that is to say
H1

0 (Rn) = H1(Rn).

Proposition 1.10. The space H1
0 (⌦) provided with the norm induced by H1(⌦) is a Hilbert

space.

8



CHAPTER 1. PRELIMINARY RESULTS 9

Theorem 1.11. (Trace Theorem) Let ⌦ be an open boundary of class C1, there exists a contin-
uous linear operator �0 2 L(H1(⌦), L2(@⌦)) such that

�0u = u|@⌦, 8u 2 C1(⌦).

L2(@⌦) is the space of (class of) real functions, square integrable on @⌦.
According to the trace theorem, we can give the following characterization of the functions of
H1

0 (⌦) which explains the important role played by the latter in the resolution of equations
with partial differentials coupled with boundary conditions, that is to say when The value u is
prescribed on the boundary @⌦.

Definition 1.12. The functions of H1
0 (⌦) are the functions H1(⌦) that vanish on the boundary

� = @⌦,
H1

0 (⌦) = {u 2 H1(⌦) : u = 0 on �} = the kernel of �0.

Remark 1.13. We denote the dual space of H1
0 (⌦) by H�1(⌦).

Theorem 1.14. (of Rellich) If ⌦ is an open boundary of class C1, then the canonical injection
of H1

0 (⌦) in L2(⌦) is compact; That is to say, any boundary set of H1
0 (⌦) is relatively compact

in L2(⌦).

We can identify L2(⌦) and its dual, then we have the inclusions:

H1
0 (⌦) ⇢ L2(⌦) ⇢ H�1(⌦),

with continuous and dense injections (see [8]).

Sobolev spaces W 1,p

Let ⌦ be an open set in Rn, coordinates in Rn are denoted by x = (x1, x2, . . . , xn).

Definition 1.15. 1. For u : Rn �! R, the partial derivative of u with respect to the variable
xj, j = 1, 2, . . . , n is denoted by @u

@xj
, and then

ru :=

✓
@u

@x1
,
@u

@x2
, . . . ,

@u

@xn

◆
=

✓
@u

@xj

◆

1jn

.

2. If u : ⌦ �! Rm, then we note u = (u1, u2, . . . , um) the coordinates in the space Rm. The
gradient of u can, then, be written by:

ru :=

✓
@ui

@xj

◆1im

1jn

=
�
ru1,ru2, . . . ,rum

�T
,

where T stands for the transposition. In this case, ru is a real matrix of n rows and m columns.

9



CHAPTER 1. PRELIMINARY RESULTS 10

Definition 1.16. Let ⌦ be an open set in Rn. C(⌦) the set of continuous functions u : ⌦ �! R.
C(⌦) is the set of continuous functions u : ⌦ �! R which can be continuously extended to ⌦.
The norm over C(⌦) is given by:

||u||C = sup
x2⌦

|u(x)|

The support of a function u : ⌦ �! R is defined by

supp u := {x 2 ⌦ : u(x) 6= 0}

Definition 1.17. Let ⌦ ⇢ Rn be an open set, s 2 IN, and 1  p  1. We define the Sobolev
spaces W 1,p(⌦)as follows:

W 1,p(⌦) := {u : u 2 Lp(⌦),ru 2 (Lp(⌦))n}

The spaces W 1,p(⌦) are Banach spaces, with respect to the norm

||u||W 1,p = (||u||p
Lp + ||ru||p

Lp)
1
p if 1  p < 1

and
||u||W 1,1 = max {||u||L1 , ||ru||L1} if p = 1.

The closure of C1
0 (⌦) in W 1,p(⌦) is usually denoted by W 1,p

0 (⌦).

Remark 1.18. 1. If u : ⌦ �! Rm is a vector-valued function, the Sobolev spaces are denoted
by W 1,p(⌦,Rm),

2. W 1,p(⌦) is separable if 1  p < 1, and reflexive if 1 < p < 1.

3. The space of C1 function is dense in W 1,p(⌦) with respect to the norm defined below.

Theorem 1.19. (Poincaré’s Inequality) Let ⌦ be an open bounded set in Rn with Lipshitz
boundary. C1

0 (⌦) denotes the set of C1(⌦) functions with a compact support in ⌦. There exists
a positive constant C(p), which depends only on p, such that :

8u 2 C1
0 (⌦) : ||u||Lp  C(p)||ru||Lp .

Note that, by density, Poincarés inequality is still true over W 1,p
0 (⌦), for every 1  p < 1.

1.3 Lp(a, b;X) spaces

We give a brief introduction to the integrability in Bochner’s sense of the functions defended
over an interval, with vectorial value.

10



CHAPTER 1. PRELIMINARY RESULTS 11

let X be a Banach space and �1 < a < b < 1. A function f : [a, b] ! X is simple if it exists
a measurable subsets A1, A2, · · · , An of [a, b] and x1, x2, · · · , xn of X such that

f(t) =
nX

i=1

�Ai(t)xi,

where �A is the characteristic function of A. We will say that f is measurable if there is a
sequence of simple functions fk, fk : [a, b] ! X such that fk ! f , a.e. in [a, b].
A measurable function f is said to be integrable (in the sense of Bochner) if there exists a sequence
of simple functions fk, fk : [a, b] ! X such that

lim
k!1

bZ

a

kf(t)� fk(t)kXdt = 0.

in this case
bR
a

f(t)dt is defined by

bZ

a

f(t)dt = lim
k!1

bZ

a

fk(t)dt

Theorem 1.20. (Bochner) A measurable function f : [a, b] ! X is integrable if and only if
kf(·)kX 2 L1(a, b).

For 1  p  1, we put

Lp(a, b;X) = {f : [a, b] ! X, integrable and such that kf(·)kX 2 Lp(a, b)}

With the norm

kukLp(a,b;X) =
⇣ bZ

a

kf(t)kp
X
dt
⌘ 1

p
, if p < 1,

and
kukL1(a,b;X) = inf{C : kf(t)kX  C, a.e. on [a, b]}.

Proposition 1.21. Lp(a, b;X) is a Banach space, for all 1  p  1.

Remark 1.22. If X is a Hilbert space with the scalar product (·, ·)X , then L2(a, b;X) is a Hilbert
space, for the scalar product

(u, v)L2(a,b;X) =

bZ

a

(u(t), v(t))Xdt.

11



Chapter 2

Semigroups

In the following (X, k · k) denotes a Banach space. In this chapter, we will recall the definitions
of a C0-semigroup as well as the most important properties.

2.1 C0-semigroup

Definition 2.1. 1. We call C0-semigroup of linear operators on X a family (S(t))t�0 ⇢ L(X)

verifying the following properties

1. S(0) = I, with I the identity of L(X),

2. S(t+ s) = S(t)S(s), 8t, s � 0, (Property of the semigroup),

3. lim
t!0+

S(t)x = x, 8x 2 X (Property of the C0-semigroup).

Moreover, if kS(t)kL(X)  1, 8t � 0, we say that (S(t))t�0 is C0-semigroup of contractions.
2. We call C0-group of linear operators on X, a family (S(t))t2R ⇢ L(X) verifying the 3 previous
properties only we replace (t, s � 0) by (t, s 2 R) and t ! 0+ by t ! 0.

Proposition 2.2. if (S(t))t�0 is C0-semigroup in X, then

9! 2 R, 9M � 1 : kS(t)kL(X)  Me!t, 8t � 0.

Definition 2.3. The infinitesimal generator of the C0-semigroup (S(t))t�0, an operator A defined
on the set:

D(A) = {x 2 X : lim
t!0+

S(t)x� x

t
exist in X},

and Ax = lim
t!0+

S(t)x�x

t
for all x 2 D(A).

if we replace t ! 0+ by t ! 0 we say that A infinitesimal generator of C0-group (S(t))t2R.

12



CHAPTER 2. SEMIGROUPS 13

Examples 2.4. Let Cub([0,1)) = {f : [0,1) �! R, f uniformly continuous and bounded},
with kfkCub([0,1))

.
= sup

s2[0,1)
|f(s)|.

It is clear that (Cub([0,1)), k · kCub([0,1))) is a Banach space. Let,

(S(t)f)(x) = f(x+ t), 8t, x � 0 and 8f 2 Cub([0,1)).

We verify that, (S(t))t�0 is C0-semigroup of contractions in Cub([0,1)) and that its generator
infinitesimal is given by:

D(A) = {f : f and f 0 2 Cub([0,1))} and Af = f 0.

Proposition 2.5. Let (S(t))t�0 be a C0-semigroup of generator A in X then we have :

1. A : D(A) ⇢ X �! X is a linear operator.

2. 8x 2 X :

Z
t

0

S(s)xds 2 D(A), 8t � 0 and A

Z
t

0

S(s)xds = S(t)x� x.

3. If x 2 D(A), then S(t)x� x = A

Z
t

0

S(s)xds =

Z
t

0

S(s)Axds.

4. For all x 2 D(A), we have

d

dt
S(t)x = AS(t)x = S(t)Ax, 8t � 0.

Remark 2.6. Let (S(t))t�0 be a C0-semigroup in X then we have

lim
h!0

1

h

Z
t+h

t

S(s)xds = S(t)x.

Definition 2.7. Let A : D(A) ! X is an unbounded linear operator, we say that A is closed if
its graph Gr(A) = {(x,Ax) : x 2 D(A)} is closed in X ⇥X

Theorem 2.8. The generator of a C0-semigroup in X is closed and its domain is dense in X.

Theorem 2.9. Let A be the infinitesimal generator of the C0-semigroup (S(t))t�0 in X. If
D(An) the domain of An is defined by:

D(An) = {x 2 D(A) : Ax 2 D(An�1)}

then
T

n2N⇤
D(An) is dense in X.

13
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Proposition 2.10. Let (A,D(A)) be a generator of a C0-semigroup (T (t))t�0. Then, for all
� 2 C and t � 0, we have

e��tT (t)x� x =

8
>><

>>:

(A� �I)
tR
0

T (s)xds, if x 2 X.

tR
0

T (s)(A� �I)xds, if x 2 D(A).

Proof. It is enough to apply the Proposition 2.5 for S(t) = e��tT (t), t � 0 with generator
(A� �I,D(A)).

2.2 Resolvent and spectrum

Notations

For a linear operator not necessarily bounded A : D(A) ⇢ X ! X, we Note by:

1. ⇢(A) = {� 2 C : �I � A is invertible in L(X)}, the resolvent set of A.

2. R(�, A) : ⇢(A) ! L(X), R(�, A) = (�I �A)�1 the resolvent of the linear operator A in �.

3. �(A)
.
= C \ ⇢(A) the spectrum of A.

4. �r(A) = {� 2 C : Im(�I � A) is not dense in X} the residual spectrum of A.

5. �p(A) = {� 2 C : �I � A is not injective in X} the punctual spectrum of A.

2.3 Hille-Yosida theorem

Let (S(t))t�0 be a C0-semigroup in Banach space X. From Proposition 2.2 it follows that there
are constants 9! 2 R, 9M � 1 such that kS(t)kL(X)  Me!t, 8t � 0. If ! = 0 then (S(t))t�0

is called uniformly bounded and if moreover M = 1 it is called a C0-semigroup of contractions.
This section is devoted to the characterization of the infinitesimal generators of C0-semigroup of
contractions. Conditions on the behavior of the resolvent of an operator A, which are necessary
and sufficient for A to be the infinitesimal generator of a C0-semigroup of contractions, are given.

Theorem 2.11. (Hille-Yosida). A linear (unbounded) operator A is the infinitesimal generator
of a C0-semigroup of contractions (S(t))t�0 if and only If

1. A is closed and D(A) is dense in X.

14
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2. The resolvent set ⇢(A) of A contains ]0,1[ and for every � > 0

kR(�, A)k  1

�
.

The proof of this theorem is in [48].

Corollary 2.12. A linear operator A is the infinitesimal generator of a C0-semigroup satisfying
kS(t)k  e!t, for all t � 0, if and only If

1. A is closed and D(A) is dense in X.

2. The resolvent set ⇢(A) of A contains ]!,1[ and for every � > !

kR(�, A)k  1

�� !
.

Corollary 2.13. A linear operator A is the infinitesimal generator of a C0-semigroup satisfying
kS(t)k  Me!t, for all t � 0, if and only If

1. A is closed and D(A) is dense in X.

2. The resolvent set ⇢(A) of A contains ]!,1[ and for every � > !

kR(�, A)k  M

�� !
.

Definition 2.14. 1. An operator (A,D(A)) is said to be dissipative if:

8x 2 D(A), 8� > 0 : k(�I � A)xk � �kxk.

2. If more �I � A is surjective (8� > 0), we say that A is m-dissipative in X.

Remarks 2.15. 1. If point 2 of Definition 2.14 is verified, then the operator �I � A is a
Isomorphism of D(A) into X.

2. In the case where X is a Hilbert space with the scalar product (·, ·), we can show that A is
dissipative if and only if Re(Ax, x)  0, 8x 2 D(A).

Then we have the following Theorem in the framework of a space of Hilbert.

Theorem 2.16. Let A be a linear operator of domain D(A) dense in a Hilbert space H. Then A

is a generator of a unitary group (S(t))t�0 of H if and only if A is skew adjoint, a.e., A⇤ = �A.

Remark 2.17. Let A : D(A) ⇢ H �! H is an unbounded linear operator, then A is m-
dissipative of dense domain in H if and only if A is the infinitesimal generator of a C0-semigroup
of contractions.

15
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Proposition 2.18. Let A : D(A) ⇢ H ! H be a dissipative and dense domain in a Hilbert
space H. Then,

1. If A is closed, then A⇤, its adjoint, is dissipative if and only if A is M-dissipative of H.

2. If A is self-adjoint then A is m-dissipative of H.

Theorem 2.19 (Lumer and Phillips 1961 ). Let (A,D(A)) a closed operator with dense domain
D(A). Then the following propositions are equivalent

(a) A is the generator of C0-semigroup of contractions in X.

(b) A is dissipative and there exists � � 0(or 8� � 0) Im(�I � A) = X

16



Chapter 3

Controllability of Distributed Systems

3.1 Description of the system

Consider the systems described by the operational differential equation of state
(

@

@t
y(t) = Ay(t) + Bu(t) in ⌦⇥ (0, T )

y(0) = y0, in ⌦,
(3.1)

where ⌦ is open in Rn represent the geometric domain of the system,T > 0 and

1. A 2 L(V,H) is a differential operator generates a C0�semigroup (S(t))t�0 on the space of
state H,

2. B 2 L(U,H) with U is a space of Hilbert called control space,

3. u 2 L2(0, T ;U) called the control,

4. y0 2 L2(⌦) is initial data.

The representation of the solution of the system (3.1) is formally given by

yu(t) = S(t)y0 +

Z
t

0

S(t� s)Bu(s)ds (3.2)

where yu(t)(x) = y(x, t, u). We consider the linear and bounded operator Lt : L2(0, T ;U) �! H

defined by

Ltu =

Z
t

0

S(t� s)Bu(s)ds, 8u 2 L2(0, T ;U). (3.3)

Lt is called controllability operator.

17



CHAPTER 3. CONTROLLABILITY OF DISTRIBUTED SYSTEMS 18

3.2 Controllability and different notions of controllability

The problem of controllability consists in the possibility of transferring the state of a system in a
finite time, from an initial state to a desired state chosen a priori. In the case of finite-dimensional
systems, The Kalman condition necessary and sufficient condition for the controllability. For the
distributed systems one is led to consider various degrees of controllability. We will introduce
the following notions of controllability: exact, approximate, to the trajectories, null and finally
regional controllability

3.3 Exact Controllability

Definition 3.1. The system (3.1) is said to be exactly controllable in H on [0, T ] if

8yd 2 H, 9u 2 L2(0, T ;U) : y(y0, T ) = yd. (3.4)

Remark 3.2. The above definition is equivalent to Im(LT ) = H.

Proposition 3.3. The system (3.1) is exactly controllable in H over [0, T ] if and only If:

9c > 0 : k'k  ckB⇤S⇤(·)'kL2(0,T ;U⇤), 8' 2 H⇤. (3.5)

The proof is based on the following Lemma witch is more general result:

Lemma 3.4. Let V,W and Z be Banach spaces reflexive, and F 2 L(V, Z), G 2 L(W,Z). Then,
the following assertions are equivalent,

1. ImF ⇢ ImG.

2. 9c > 0 : kF ⇤y⇤kV ⇤  ckG⇤y⇤kW ⇤ , 8y⇤ 2 Z⇤.

Proof. We take V = Z = H,W = L2(0, T ;U) and F = IdH , G = LT . Let y⇤ 2 H⇤, then for all
u 2 L2(0, T ;U) we have

hL⇤
T
y⇤, ui = hy⇤, LTui = hy⇤,

Z
T

0

S(T � s)Bu(s)dsi

=

Z
T

0

hy⇤, S(t� s)Bu(s)ids

=

Z
T

0

hB⇤S⇤(T � s)y⇤, u(s)ids

= hB⇤S⇤(T � ·)y⇤, ui.

18



CHAPTER 3. CONTROLLABILITY OF DISTRIBUTED SYSTEMS 19

So L⇤
T
y⇤ = B⇤S⇤(T � ·)y⇤. Now we suppose that the system (3.1) is exactly controllable and let

y 2 ImF = H. For yd = S(T )y0 + y, there exist u 2 L2(0, T ;U) such that yu(T ) = yd, then we
obtain Z

T

0

S(T � s)Bu(s)ds = y.

We have LTu = y. Consequently, ImF ⇢ ImLT . Then from the Lemma 3.4, we obtain the
enequality (3.5). Conversely, we suppose that (3.5) is verified, then by lemma 3.4, ImF = H ⇢
ImLT and therefore we have the exact controllability of (3.1).

3.4 Approximate Controllability

Definition 3.5. The system (3.1) is said to be approximate (week) controllable in H on [0, T ] if

8yd 2 H, 8" > 09u 2 L2(0, T ;U) : ky(T )� ydk  ". (3.6)

Proposition 3.6. The following properties are equivalent

1. The system (3.1) is said to be approximate (week) controllable in H on [0, T ].

2. ImLT = H.

3. ker(L⇤
T
) = ker(LTL⇤

T
) = {0}.

4.
⇣
hB⇤S⇤(s)y, vi = 0, 8s 2 [0, T ], 8v 2 U

⌘
) y = 0.

5. If the semigroup (S(t))t�0 is analytic, then we have:

9s 2 [0, T ] : [n2NIm(AnS(s)B) = H.

Proof. (1) ) (2) : The system (3.1) is approximately controllable on [0, T ] .a.e.

8yd 2 H, 8" > 09u 2 L2(0, T ;U) : ky(T )� ydk  ". (3.7)

This is equivalent to

8yd 2 H, 8" > 0, 9u 2 L2(0, T ;U) : kLTu� ydk  ". (3.8)

Consequently ImLT = H.
(2) ) (3) : Let y⇤

i
nH⇤ such that L⇤

T
y⇤ = 0, then we have

hy⇤, LTui = 0, 8u 2 L2(0, T ;U)

19
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That implies y⇤ 2 (ImLT )
?
= {0}. So, y⇤ = 0, we deduce that kerL⇤

T
= {0}. On other hand,

for xinH such that (LTL⇤
T
)x = 0. Then

h(LTL
⇤
T
)x, yi = 0, 8y 2 H.

In particular
h(LTL

⇤
T
)x, xi = h(L⇤

T
)x, L⇤

T
xi = kL⇤

T
xk2 = 0.

So, L⇤
T
x = 0. Then x = 0 and consequently ker(LTL⇤

T
) = {0}.

(3) ) (4) : Suppose that kerL⇤
T
= ker(LTL⇤

T
) = {0}. From above, we have L⇤

T
y = B⇤S⇤(T �

·)y, 8y 2 H. If
⇣
hB⇤S⇤(s)y, vi = 0, 8s 2 [0, T ], 8v 2 U , then hL⇤

T
y, vi = 0 8v 2 U . And as

kerL⇤
T
= {0}, we deduce that y = 0.

(4) ) (5) : Suppose that for all s 2 [0, T ] such that

[n2NIm(AnS(s)B) 6= H.

Then
9y 6= 0 : hy, AnS(s)Bvi = 0, 8n 2 N, and 8v 2 U.

In particular
hy, S(s)Bvi = 0, and 8v 2 U.

Then, hB⇤S ⇤ (s)y, vi = 0, 8v 2 U, and 8s 2 [0, T ]. So, y = 0. Contradiction.
(5) ) (2) : Assume that, ImLT 6= H, then there exists y⇤ 6= 0 such that

hy⇤,
Z

t

0

S(t� s)Bv(s)iH⇤,H = 0, 8v 2 U.

So
hy⇤, S(t� s)Bv(s)dsiH⇤,H = 0, 8s 2 [0, T ], 8v 2 U.

We deduce that
dn

dsn
hy⇤, S(t� s)Bv(s)dsiH⇤,H = 0, 8n 2 N, 8s 2 [0, T ], 8v 2 U.

Consequently

hy⇤, AnS(t� s)Bv(s)dsiH⇤,H = 0, 8s 2 [0, T ], 8n 2 N, 8v 2 U.

Witch gives
y⇤ 2 [n2NIm(AnS(s)B)

?
, 8s 2 [0, T ].

Hence, [n2NIm(AnS(s)B) 6= H, 8s 2 [0, T ].

However, this notion is unfortunately insufficient when, for example, the system is to be
stabilized around an unsteady stationary state, since it would be necessary to control all the
time to remain in a neighborhood of the solution, which is impossible in practice, Controllability
approach is too weak. For this purpose, we propose the following concepts:
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3.5 Controllability to trajectories

Here it is a matter of reasoning not on the final states of the system but on the trajectories. We
will modify our problem to say that we want not to reach any final state but to coincide with a
given trajectory at time T. Consider then a free trajectory of our system

(
@

@t
y(t) = Ay(t) in ⌦⇥ (0, T )

y(0) = y0, in ⌦,
(3.9)

Let us suppose our initial state y0 2 H different to y0. Then we want to find a control u such
that the solution of (3.1) verifies y(T ) = y(T ).

Definition 3.7. The system (3.1) is said to be controllable on the trajectories in time T if, from
any initial data, it is possible to reach any trajectory in time T .

So, it is to bring the solution exactly on a free trajectory of the system at time T . Suppose
that the system we consider is in the state y0 at t = 0. The idea is that We want to be exactly
on y at the time t = T , that is to say, one wants to have, by positing Z = y � y, z(T ) = 0, with
an initial condition z0 = y0� y0 which describes the space U0 when y0 Traverses U0. We are thus
reduced to the problem of exact control over the trajectories, or null controllability (equivalent
notions on linear problems). Finally, we note that for a linear problem, the problem is reduced
to the null controllability.

3.6 Null Controllability

Definition 3.8. The system (3.1) is said to be null controllable in time T if, from any initial
data, it is possible to reach the trajectory zero in time T .

In other words, the system (3.1) is null controllable at time T if for all y0 2 L2(⌦), There
exists a control u 2 L2(0, T ;U) such that the solution y of (3.1) satisfies y(T ) = 0 in ⌦.

Proposition 3.9. Let T > 0. The system (3.1) is null controllable in H over [0, T ] if and only
if:

9c > 0 : kS⇤(T )'k  ckB⇤S⇤(·)'kL2(0,T ;U⇤), 8' 2 H⇤. (3.10)

The proof of the Proposition 3.9 is based on the following Lemma

Lemma 3.10. Let H1, H2 and H3 be three Hilbert spaces. Let C2 be a linear mapping continuous
from H2 to H1 and Let C3 be a closed linear operator densely defined from D(C3) ⇢ H3 into H1.
Then the following properties are equivalent:
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1. There exist M � 0 such that

kC⇤
2hkH2  MkC⇤

3hkH3 , 8h 2 D(C3). (3.11)

2. We have the following inclusion

C2(H2) ⇢ C3(D(C3)). (3.12)

Moreover, if there exists M � 0 is that (3.11) satisfies, there exists a continuous linear mapping
C1 of H2 to H3 such that

C1(H2) ⇢ D(C3) and C2 = C3C1 (3.13)

kC1kL(H3,H2)  M. (3.14)

Proof of Proposition 3.9

1. Let T > 0. Assume that The system (3.1) is null controllable in H over [0, T ]. Let
y0 2 H, then there exists a control u 2 L2(0, T ;U) such that the solution y of (3.1) satisfies
y(T ) = 0 in ⌦. That is to say

S(T )y0 + LTu = 0

So Im(S(T )) ⇢ Im(LT ). We apply Lemma 3.10, with H1 = H2 = H, and H3 =

L2(0, T ;U), C2 = S(T ), C3 = LT , we get

9c > 0 : kS⇤(T )'k  ckB⇤S⇤(·)'kL2(0,T ;U⇤), 8' 2 H⇤. (3.15)

2. Assume that
9c > 0 : kS⇤(T )'k  ckB⇤S⇤(·)'kL2(0,T ;U⇤), 8' 2 H⇤. (3.16)

We apply Lemma 3.10, with H1 = H2 = H, and H3 = L2(0, T ;U), C2 = S(T ), C3 = LT ,
we get

C2(H2) ⇢ C3(H3). (3.17)

This is equivalent to
S(T )(H) ⇢ LT (L

2(0, T ;U)). (3.18)

Let y0 2 H, then there exists v 2 L2(0, T ;U) such that S(T )y0 = LTv. If we put u = �v,
we obtain the solution of the system (3.1) satisfies y(T ) = 0. Hence, the system (3.1) is
null controllable.
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3.7 Comparison of the different notions

It is clear that exact controllability implies null controllability. The reciprocal is false in general.
However, the reciprocal is true if the family of linear and bounded operators (S(t))t2R is C0-group
in the Hilbert space H. More precisely, we have the following theorem

Theorem 3.11. Assume that (S(t))t2R is C0-group in the Hilbert space H. Let T > 0 and
assume that the system (3.1) is null controllable in the time T . Then the system (3.1) is exact
controllable in the time T .

Proof. Let y0, yd 2 H. We applied the null controllability with the initial data y0 � S(�T )yd,
then there exists u 2 L2(0, T ;U) such that the solution of the system

(
@

@t
ỹ(t) = Aỹ(t) + Bu(t) in ⌦⇥ (0, T )

ỹ(0) = y0 � S(�T )yd, in ⌦,
(3.19)

satisfies
ỹ(T ) = 0. (3.20)

We remark that the solution of the system (3.1) is given by

y(t) = ỹ(t) + S(�T )yd, 8t 2 [0, T ]. (3.21)

In particular, from (3.20) and (3.21), we get

y(T ) = yd

This concludes the proof of the theorem.

Proposition 3.12. 1. The exact controllability implies the approximate controllability but the
reciprocal is false.

2. The exact controllability implies the controllability to the trajectories but the reciprocal is
false.

3. There is no relationship between approximated controllability and controllability to the tra-
jectories.
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Chapter 4

Carleman estimate and observability
inequality

4.1 Introduction

Carleman’s estimates are a priori estimates of EDP solutions in Sobolev spaces with weights.
These estimates may be local or global depending on whether they apply to compact support
solutions or to solutions in the whole domain (with associated boundary conditions in the latter
case).
The local Carleman estimates were introduced by T. Carleman in 1939 with the aim of studying
the unique continuation property of operators of partial derivatives. Overall estimates were de-
veloped much later in the 90 by Fursikov and Imanuvilov in the context of control problems for
EDPs. The links between control theory and carleman estimates were established through two
prototypical examples, those of the wave and heat equations. The problem of exact control for
these equations, which consists in bringing the state of the system towards a target state desired
by the action of a control, is equivalent by duality to the problem of observability, which consists
in restoring the dynamics Complete system of the dual system from partial measurements (or
observations) of the state in the region where the control is active. These studies have links to
inverse and identity problems.
The classical methods for establishing the observability inequalities for the wave or heat equation
are based on the development of solutions in a Riesz basis or on the multiplier methods. These
methods are relatively well adapted to the case of constant coefficient operators and under some
geometric conditions on the control domain. They do not provide a general way of dealing with
the case of EDPs with variable coefficients.
Carleman’s estimates are a powerful tool for dealing with these cases, but also for semi-linear
PDEs, Navier-Stockes equations and degenerate parabolic equations. From the carleman esti-
mates, we can deduce the required observability inequalities.
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4.2 Carleman estimate for the linear heat equation

Let ⌦ be an open set of Rn with boundary � = @⌦ of class C2. For a given T > 0, We consider
a linear parabolic equation of the form

8
><

>:

@ty ��y = v�!, (x, t) 2 ⌦⇥ (0, T )

y = 0, on @⌦⇥ (0, T )

y(x, 0) = y0(x), in ⌦,

(4.1)

where y is the state of the system, ! is a nonempty open of ⌦, �! is the characteristic function
of !, v is the control, and y0 is the data. We denote by Q the cylinder ⌦⇥ (0, T ) and by

P
the

lateral boundary of the cylinder (
P

= @⌦⇥ (0, T )). Then, We have the following theorem

Theorem 4.1. For all y0 2 L2(⌦) and for all v 2 L2(!⇥ (0, T )), There exists a unique solution
y of the equation (4.1) with y 2 C([0, T ];L2(⌦)) \ L2(0, T ;H1

0 (⌦)). Moreover, there exists a
constant C = C(T,⌦) > 0 such that

kykC([0,T ];L2(⌦)) + kykL2(0,T ;H1
0 (⌦))  C

⇣
ky0kL2(⌦) + kvkL2(Q)

⌘
.

This theorem of existence and uniqueness of solutions is inherent to the denial of controlla-
bility since it gives a meaning to the solutions of the system under consideration.
We follow [28] for a presentation of Carleman’s inequalities in the case of a linear parabolic equa-
tion with Dirichlet condition. In order to write Carleman’s estimate of (4.1) we must introduce
a weight function. According to [33], we know that for all open ! with ! ⇢⇢ ⌦, there exists
⌘ = ⌘(x) satisfying

8
><

>:

⌘ 2 C2(⌦),

⌘ > 0 in ⌦ and ⌘ = 0 on @⌦,

r⌘ 6= 0, in ⌦ \ !.
(4.2)

The existence of such a function is nontrivial and derives from the theory of Morse functions.
For the proof, we refer to ([33] lemma 1.1), (see also [14]).
Let ! an open with ! ⇢⇢ ⌦, we introduce the following functions:

↵(x, t) =
e2�mk⌘k1 � e�(mk⌘k1+⌘(x))

t(T � t)
=

�(x)

t(T � t)
, ⇠(x, t) =

e�(mk⌘k1+⌘(x))

t(T � t),
(4.3)

for all (x, t) 2 Q, m > 1 and � � 1 is a parameter that depends only on and ⌦ and ! to be fixed
later.
Remark that e2�mk⌘k1 � e�(mk⌘k1�⌘(x) > 0 in ⌦. We also introduce the space

Z = {q 2 C2(Q) : q = 0 on
X

}

Then we have the following carleman estimate result.
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CHAPTER 4. CARLEMAN ESTIMATE AND OBSERVABILITY INEQUALITY 26

Theorem 4.2 ([28] and [33]). There are three positive constants, �1 = C(⌦,!), s1 = C(⌦,!)(T+

T 2) and C = C1(⌦,!) such that, for all � � �1, s � s1 and q 2 Z, we have

s�1

ZZ

Q

e�2s↵⇠�1(|�q|2 + |qt|2)dxdt+ s�2

ZZ

Q

e�2s↵⇠|rq|2dxdt+ s3�4

ZZ

Q

e�2s↵⇠3|q|2dxdt

 C
⇣ZZ

Q

e�2s↵|qt +�q|2dxdt+ s3�4

ZZ

!⇥(0,T )

e�2s↵⇠3|q|2dxdt
⌘
, (4.4)

For the proof the reader can be found in [29] and [33].

4.3 Observability inequality

In this section we show how to obtain the inequality of observability from the Carleman estimate.
We consider again the following linear heat equation

8
><

>:

@ty ��y = v�!, (x, t) 2 ⌦⇥ (0, T )

y = 0, on @⌦⇥ (0, T )

y(x, 0) = y0(x), in ⌦,

(4.5)

we assume that the data y0 is in L2(⌦) and we try to find a control v 2 L2(! ⇥ (0, T )) such as
the associated state y possesses a desired behavior at time t = T . Our aim is to show that the
system (4.5) is null controllable, that is to say

8y0 2 L2(⌦), 9v 2 L2(! ⇥ (0, T )) : y(·, T ) = 0, in ⌦.

We consider the adjoint problem relative to (4.5)

8
><

>:

�@t'��' = 0, (x, t) 2 ⌦⇥ (0, T )

' = 0, on @⌦⇥ (0, T )

'(x, T ) = '0(x), in ⌦,

(4.6)

Then we have the following result

Theorem 4.3 (see [29]). For all solution ' of (4.6), there exists a constant C = C(T,⌦,!) > 0

such that
k'(·, 0)k2

L2(⌦)  C

ZZ

!⇥(0,T )

|'|2dxdt. (4.7)

Proof. In Carleman estimate (4.4), we put q = ', where ' is the solution of (4.6). In view of
the fact that 't +�' = 0, it follows that

s�2

ZZ

Q

e�2s↵⇠|r'|2dxdt+ s3�4

ZZ

Q

e�2s↵⇠3|'|2dxdt  Cs3�4

ZZ

!⇥(0,T )

e�2s↵⇠3|'|2dxdt.
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Now using the fact that for fixed � � �1 and s � s1 there exists a constant M > 0 such that

1

t(T � t)
 ⇠ =

e�(mk⌘k1+⌘)

t(T � t)
 M

t(T � t)

then we obtain

s

ZZ

Q

e�2s↵t�1(T � t)�1|r'|2dxdt+ s3
ZZ

Q

e�2s↵t�3(T � t)�3|'|2dxdt

 Cs3
ZZ

!⇥(0,T )

e�2s↵t�3(T � t)�3|'|2dxdt. (4.8)

We deduce that
ZZ

Q

e�2s↵t�3(T � t)�3|'|2dxdt  C

ZZ

!⇥(0,T )

e�2s↵t�3(T � t)�3|'|2dxdt. (4.9)

We now turn to the estimate of the weight functions appearing in (4.9).

Lemma 4.4. 1. For all t 2 [0, T ], we have

ke�2s↵t�3(T � t)�3k1  CT�6 exp(�CsT�2)

for some s � s2 = max{s1, 3T 2(8min �(x))�1}.

2. For all x 2 ⌦, and for all t 2 [T4 ,
3T
4 ]

e�2s↵t�3(T � t)�3 � CT�6 exp(�CsT�2)

for all s � s3.

Then we deduce from (4.9) the following estimate
Z 3T

4

T
4

Z

⌦

|'|2dxdt  C

ZZ

!⇥(0,T )

|'|2dxdt. (4.10)

On the other hand, by multiplying (4.6) with ' and integration by parts on ⌦ gives

�1

2

d

dt

Z

⌦

|'|2dx+

Z

⌦

|r'|2dx = 0. (4.11)

We deduce that k'(·, t)k2
L2(⌦) is increasing on (0, T ). So, k'(·, 0)k2

L2(⌦)  k'(·, t)k2
L2(⌦), for all

t 2 (0, T ).
Consequently, we obtain

Z

⌦

|'(x, 0)|2dx  2

T

Z 3T
4

T
4

Z

⌦

|'|2dxdt  C

ZZ

!⇥(0,T )

|'|2dxdt. (4.12)
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The null controllability of (4.1) is follows from the following theorem.

Theorem 4.5. The following assertions are equivalent:

1. There exists a constant C > 0, such that, for all y0 2 L2(⌦), there exists a control v 2
L2(! ⇥ (0, T )), with

kvkL2(!⇥(0,T ))  Cky0kL2(⌦) (4.13)

such that the solution yv 2 C([0, T ];L2(⌦)) \ L2(0, T ;H1
0 (⌦)), of the system (4.5) corre-

sponding to y0 and v satisfied yv(T ) = 0 in L2(⌦).

2. There exists a constant C > 0, such that the following inequality of observability

k'(0)k2
L2(⌦)  C

ZZ

!⇥(0,T )

|'|2dxdt, (4.14)

satisfied, for all solution ' 2 C([0, T ];L2(⌦)) \ L2(0, T ;H1
0 (⌦)), of the system (4.6) with

initial data '0 2 L2(⌦).

before the proof of this theorem, we need the following proposition.

Proposition 4.6. Let y0,'0 2 L2(⌦) be fixed and v 2 L2(! ⇥ (0, T )), Then
Z

⌦

yv(x, T )'0dx�
Z

⌦

y0(x)'(x, 0)dx =

Z
T

0

Z

!

v'dxdt,

where yv and ' are respectively, the solutions of (4.5) and (4.6) for y0, v and '0.

Proof. Multiplying the equations satisfies by ' by y and also of y by '. after integration by
parts and take in consideration the boundary conditions, we obtain

Z
T

0

Z

!

v'dxdt =

ZZ

⌦⇥(0,T )

(yt ��y)'dxdt

= �
ZZ

⌦⇥(0,T )

('t +�')ydxdt+

Z

⌦

y'|T0 dx

+

ZZ

@⌦⇥(0,T )

(�@y

@⌘
'+ y

@'

@⌘
)'d�dt

=

Z

⌦

yv(x, T )'0dx�
Z

⌦

y0(x)'(x, 0)dx.

Proof of the theorem :
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1. let y0 2 L2(⌦) and consider that (4.5) is null controllable. Then, there exists v 2 L2(! ⇥
(0, T )) such that yv(T ) = 0 in ⌦.
For '0 2 L2(⌦), let ' the solution of the adjoint system with the initial data '0. by the
Proposition 4.6, we deduce

('(0), y0) =

Z

⌦

'(x, 0)y0(x)dx = �
ZZ

!⇥(0,T )

v(x, t)'(x, t)dxdt

 Ck'kL2(!⇥(0,T ))kvkL2(!⇥(0,T ))

 k'kL2(!⇥(0,T ))ky0kL2(⌦).

If we put y0 = '(0), we obtain the observability inequality (4.14).

2. For The reciprocal, we will divide the proof into two steps. In the first step, we will construct
a sequence of controls v" 2 L2(! ⇥ (0, T )), with " > 0 which provide the approximate
controllability of (4.5). Secondly, we will go to the limit when tends towards zero and we
will conclude.
Step 1 : Let y0 2 L2(⌦) and " > 0. We introduce the functional J" defined by

J"('0) =
1

2

ZZ

!⇥(0,T )

|'|2dxdt+ "k'0kL2(⌦) + ('(0), y0), 8'0 2 L2(⌦),

where ' is the solution of (4.6) with the initial data '0. It is easy to verified that the
functional J" is strictly convex, continue and coercive in L2(⌦). It therefore has a unique
minimum '0," whose associated solution is denoted by '". Let us now introduce the control
v" = '"�! and denoted by y" the solution of (4.5) associated to v". Since J" achieved its
minimum in '0,", then for all '0 2 L2(⌦), the function

g : h 7! J"('0," + h'0) =
1

2

ZZ

!⇥(0,T )

('2
"
+ 2h''" + h2'2)dxdt

+ "
⇣
'2
0," + 2h'0,"'0 + h2'2

0

⌘ 1
2

+ ('"(0) + h'(0), y0)

achieved its minimum in 0, then g0(0) = 0. that is to say
ZZ

!⇥(0,T )

'"'dxdt+ "(
'0,"

k'0,"kL2(⌦)
,'0) +

Z

⌦

y0'(0)dx = 0, 8'0 2 L2(⌦). (4.15)

For '0 = '0,", we obtain
ZZ

!⇥(0,T )

|'"|2dxdt+ "k'0,"kL2(⌦) +

Z

⌦

y0'"(0)dx = 0. (4.16)

However
v" = '"�!
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Hence

k'"k2L2(⌦) =

ZZ

!⇥(0,T )

|'"|2dxdt 
Z

⌦

y0'"(0)dx

 ky0kL2(⌦)k'"(0)kL2(⌦)

 C

2
ky0k2L2 +

1

2C
k'"(0)k2L2

 C

2
ky0k2L2 +

1

2

ZZ

!⇥(0,T )

|'"|2dxdt

So
kv"k2L2(⌦)  Cky0k2L2 .

where C is the constant of the observability inequality (4.14).
On the other hand, according to the Proposition 4.6

ZZ

!⇥(0,T )

'"'dxdt = (y"(T ),'0)�
Z

⌦

y0(x)'(x, 0)dx

then we deduce from (6.56)

|(y"(T ),'0)| = |� "(
'0,"

k'0,"kL2(⌦)
,'0)|  "k'0kL2(⌦).

Hence
ky"(T )kL2(⌦)  ".

Step 2 : Since the sequence (v") is a bounded in L2(⌦), we can extract a subsequence,
again noted (v") which converge weakly in L2(⌦⇥ (0, T )) to an element v then we deduce
that the sequence y" = yv" converge to y = yv in L2(0, T ;H1

0 (⌦)) \ H1(0, T ;H�1(⌦)). In
particular, this gives a weak convergence for (y"(t)) (t 2 [0, T ]) in L2(⌦). In particular, one
can pass to the limit under the boundary conditions, and one obtains:

y(T ) = 0.
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Chapter 5

Null Controllability of Degenerate Non
autonomous Parabolic Equations 1

5.1 Introduction

The purpose of this chapter is to establish the null controllability for the linear nonautonomous
degenerate parabolic equation

8
>>>>>><

>>>>>>:

ut �M(t)(a(x)ux)x = h�!, (x, t) 2 Q

u(1, t) = u(0, t) = 0, t 2 (0, T )

or
u(1, t) = (aux)(0, t) = 0, t 2 (0, T )

u(x, 0) = u0(x), x 2 (0, 1),

(5.1)

where ! = (x1, x2) is a nonempty open subinterval of (0, 1), Q = (0, 1) ⇥ (0, T ), a(·) and
M(·) are space and time diffusion coefficients, the initial condition u0 is given in L2(0, 1), and
h 2 L2(! ⇥ (0, T )) is the control function acting on !.
The null controllability of nondegenerate parabolic equations have been widely studied in the last
years, see in particular [9], [27], [30], [41], [43]. On the other hand, very few results are known in
the case of autonomous (M(t) = 1) degenerate equations; see [4], [5], [6], [11], [42]. The main tool
to study the null controlabillity of the above parabolic equations is the Carleman estimates. These
last estimates are used to show the observability inequality of the adjoint parabolic equations
which is equivalent to the null controllability of the above parabolic equations. The Carleman
estimates are the main results of the above references. In [45], the authors established a new
Carleman estimate for the autonomous degenerate equations under some general conditions on
the degenerate diffusion coefficient a. In this chapter, we consider the the non autonomous

1A. Benaissa, A. Kainane Mezadek and L. Maniar, Null Controllability of Degenerate Non autonomous
Parabolic Equations, Facta Universitatis (NIS), Accepted.
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degenerate equations 5.1 under these general conditions on a. We show an adequate Carleman
estimate and then obtain the null controllability via an observability inequality.

5.2 Assumptions and Preliminary Results

In order to study the null controllability of equations 5.1, we make the following assumptions on
the coefficients M(·) and a(·).

Hypothesis 5.1.

1. M is continuous on (0, T ) and there exist two positive constants ↵0, �0 such that

0 < ↵0  M(t)  �0, t 2 (0, T ),

2. M is derivable on (0, T ) and there exists a positive constant �0 such that

|M 0(t)|  �0, t 2 (0, T ).

Hypothesis 5.2.

1. a 2 C([0, 1]) \ C1((0, 1]), a(x) > 0 in (0, 1] and a(0) = 0,

2. there exists ↵ 2 (0, 2) such that xa0(x)  ↵a(x) for every x 2 [0, 1],

3. if ↵ 2 [1, 2), there exist m > 0 and �0 > 0 such that for every x 2 [0, �0], we have

a(x) � m sup
0yx

a(y).

Remark 5.3. It should be noted that the Hypothesis 5.2 appeared in the first time in [45]. It is
weaker than the condition given in [6]. In [45] the author proved also that under the Hypothesis 2.
the classical Hardy-inequality does not hold in general, (see [45, Example 3]), and they proposed
an improved Hardy inequality, see Proposition 5.7.

As in [6, 45, 54], for the well-posedness of the problem, the natural setting involves the space

H1
a
(0, 1) := {u 2 L2(0, 1) \H1

loc
(0, 1) :

1Z

0

a(x)u2
x
dx < 1},

which is a Hilbert space for the scalar product

(u, v) :=

1Z

0

uv + a(x)uxvxdx, u, v 2 H1
a
(0, 1). (5.2)
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For any u 2 H1
a
(0, 1), the trace of u at x = 1 obviously makes sense which allows to consider

homogeneous Dirichlet condition at x = 1. On the other hand, the trace of u at x = 0 only
makes sense when 0  ↵ < 1. But, for ↵ � 1, the trace at x = 0 does not make sense anymore,
so one choses some suitable Neumann boundary condition in this case, see for example Lemma
10 of [45]. This leads to introduce the following space H1

a,0(0, 1) depending on the value of ↵:

1. For 0  ↵ < 1,
H1

a,0(0, 1) := {u 2 H1
a
(0, 1) : u(1) = u(0) = 0}.

2. For 1  ↵ < 2,
H1

a,0(0, 1) := {u 2 H1
a
(0, 1) : u(1) = 0}.

In order to study the well-posdeness of 5.1, we define the operator (A(t), D(A(t))) by

A(t)u := M(t)Au := M(t)(a(x)ux)x, (5.3)

endowed with the domain

D(A(t)) = D(A) = {u 2 H1
a,0(0, 1) \H2

loc((0, 1]) : (a(x)ux)x 2 L2(0, 1)}, t 2 [0, T ].

Remark 5.4. The domain D(A) may also be characterized in the case of ↵ 2 [0, 1) by

D(A) := {u 2 L2(0, 1) \H2
loc((0, 1]) : a(x)ux 2 H1(0, 1) and u(0) = u(1) = 0},

and in case of ↵ 2 [1, 2) by

D(A) := {u 2 L2(0, 1) \H2
loc((0, 1]) : a(x)ux 2 H1(0, 1) and (a(x)ux)(0) = 0 = u(1)}.

Some properties of the operator A are given in the following proposition, see [10].

Proposition 5.5. The operator (A,D(A)) is closed, self adjoint and negative with dense domain
in L2(0, 1). Hence A is the infinitesimal generator of a strongly continuous semigroup etA on
L2(0, 1).

From assumptions on M(·), we can check that the family of operators (A(t), D(A(t))), 0  t 
T, satisfies the Acquistapace-Terreni conditions, see [1, 2], then it generates an evolution family
U(t, s), t � s � 0. More precisely, for t � s the map (t, s) 7! U(t, s) 2 L(L2(0, 1)) is continuous
and continuously differentiable in t, U(t, s)L2(0, 1) ⇢ D(A(t)), and @U(t, s) = A(t)U(t, s). We
further have U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t � s � r � 0. Moreover, for s 2 R
and x 2 D(A(s)), the function t 7! u(t) = U(t, s)x is continuous at t = s and u is the unique
solution in C([s,1), L2(0, 1)) \C1((s,1), L2(0, 1)) of the Cauchy problem u0(t) = A(t)u(t), t >

s, u(s) = x. These facts have been established in [1, 2].
The problem 5.1 is well-posed in the sense of the following theorem.
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Theorem 5.6. For all h 2 L2(! ⇥ (0, T )) and u0 2 L2(0, 1), the problem 5.1 has a unique weak
solution

u 2 C([0, T ];L2(0, 1)) \ L2(0, T ;H1
a
(0, 1)).

Moreover, if u0 2 D(A), then

u 2 H1(0, T ;L2(0, 1)) \ L2(0, T ;D(A)) \ C([0, T ];H1
a
(0, 1)).

Throughout this paper we use the following improved Hardy inequality taken from [45, The-
orem 2.1], which is the key ingredient in the proof of our Carleman estimate.

Proposition 5.7 (see [45]). Suppose that a(·) and satisfy Hypotheses 5.1. Then, for all ⌘ > 0

and 0 < � < 2� ↵, there exists some positive constant C0(a,↵, �, ⌘) > 0 such that such that for
all u 2 H1

a,0(0, 1), the following inequality holds

1Z

0

a(x)u2
x
dx+ C0

1Z

0

u2dx � a(1)(1� ↵)2

4

1Z

0

u2

x2�↵
dx+ ⌘

1Z

0

u2

x�
dx. (5.4)

5.3 Carleman Estimates

In this section we prove a crucial Carleman estimate, that will be useful to prove an observability
inequality for the adjoint problem of 5.1. For this aim let us consider the parabolic problem

8
>>><

>>>:

vt + A(t)v = f, (x, t) 2 Q

v(1, t) = v(0, t) = 0, t 2 (0, T ), in the case ↵ 2 (0, 1)

v(1, t) = (avx)(0, t) = 0, t 2 (0, T ), in the case ↵ 2 [1, 2),

v(x, T ) = vT (x), x 2 (0, 1).

(5.5)

Now, we consider 0 < � < 2� ↵ and '(x, t) = ✓(t)p(x). Here

✓(t) = [t(T � t)]�k, k = 1 + 2/�, p(x) =
c1

2� ↵

⇣ xZ

0

y

a(y)
dy � c2

⌘
(5.6)

where c1 > 0 and c2 > 1
a(1)(2�↵) such that p(x) < 0 for all x 2 [0, 1]. Observe that there exists

some constant c = c(T ) > 0 such that

|✓t|  c✓1+1/k, |✓tt|  c✓1+2/k in (0, T ). (5.7)

We have the following main result.
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Theorem 5.8. Assume that the functions a(·) and M(·) satisfy Hypotheses 5.1 and 5.2 and let
T > 0. For every 0 < � < 2 � ↵ there exists s0 = s0(T, a,↵, �, �0,↵0, �0) > 0 such that for all
s � s0 and all solutions v of (5.5), we have

s3

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
v2e2s'dxdt+ s

ZZ

Q

✓a(x)v2
x
e2s'dxdt+ sa(1)(1� ↵)2

ZZ

Q

✓
v2

x2�↵
e2s'dxdt

+ s

ZZ

Q

✓
v2

x�
e2s'dxdt  18

↵2
0

⇣ZZ

Q

f 2e2s'dxdt+
4sa(1)�2

0

2� ↵

TZ

0

✓v2
x
(1, t)e2s'(1,t)dt

⌘
.

Proof. For the proof, let us define the function w = es'v, where s > 0 and v is the solution of
(5.5). Then w satisfies

8
>>>><

>>>>:

(e�s'w)t +M(t)
⇣
a(x)(e�s'w)x

⌘

x

= f, (x, t) 2 Q,

w(1, t) = w(0, t) = 0, t 2 (0, T ), in the case ↵ 2 (0, 1),

w(1, t) = (awx)(0, t) = s('xaw)(0, t) = 0, t 2 (0, T ), in the case ↵ 2 [1, 2),

w(x, T ) = w(x, 0) = 0, x 2 (0, 1).

(5.8)

Set
Lv := vt +M(t)(a(x)vx)x, Lsw := es'L(e�s'w).

Lsw := L1w + L2w

where

L1w := M(t)(a(x)wx)x � s'tw + s2M(t)a(x)'2
x
w,

L2w := wt � 2sM(t)a(x)'xwx � sM(t)(a(x)'x)xw. (5.9)

Therefore, we have

2(L1w,L2w)  kL1w + L2wk2 = kfes'k2, (5.10)

where k · k and (·, ·) denote the usual norm and scalar product in L2(Q) respectively. The proof
of Theorem 5.8 is based on the computation of the scalar product (L1w,L2w) wich comes in the
following lemma.

Lemma 5.9. The scalar product (L1w,L2w) may be written as a sum of distributed term (d.t)
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and a boundary term (b.t), where the distributed term (d.t) is given by

(d.t) =� 2s2
ZZ

Q

M(t)a(x)✓✓tp
2
x
w2dxdt+

s

2

ZZ

Q

✓ttpw
2dxdt

+ s

ZZ

Q

✓(2apxx + a0px)a(x)M
2(t)w2

x
dxdt

+ s3
ZZ

Q

✓3(2apxx + a0px)a(x)p
2
x
M2(t)w2dxdt (5.11)

+
1

2

ZZ

Q

M 0(t)a(x)w2
x
dxdt� s2

2

ZZ

Q

M 0(t)✓2a(x)p2
x
w2dxdt

whereas the boundary term (b.t) is given by

(b.t) = �s

TZ

0

h
M2(t)✓px(a(x)wx)

2
i1
0
dt. (5.12)

Proof. To simplify the notation, we will denote by (Liw)j, (1  i  2, 1  j  3) the jth term in
the expression of Liw given in (5.9). We will develop the nine terms appearing in the product
scalar (L1w,L2w). For this, we will integrate by parts several times respect to the space and
time variables. First we have
⇣
(L1w)1, (L2w)1

⌘
=

ZZ

Q

M(t)(a(x)wx)xwtdxdt

=

TZ

0

h
M(t)a(x)wxwt

i1
0
dt�

ZZ

Q

M(t)a(x)wxwtxdxdt (5.13)

=

TZ

0

h
M(t)a(x)wxwt

i1
0
dt� 1

2

1Z

0

h
M(t)a(x)w2

x

iT
0
dx+

1

2

ZZ

Q

M 0(t)a(x)w2
x
dxdt.

Then
⇣
(L1w)2, (L2w)1

⌘
= �s

ZZ

Q

'twwtdxdt

= �s

2

1Z

0

h
'tw

2
iT
0
dx+

s

2

ZZ

Q

'ttw
2dxdt (5.14)

= �s

2

1Z

0

h
'tw

2
iT
0
dx+

s

2

ZZ

Q

✓ttpw
2dxdt.

36



CHAPTER 5. NULL CONTROLLABILITY OF DEGENERATE NON AUTONOMOUS
PARABOLIC EQUATIONS 37

We also have

⇣
(L1w)3, (L2w)1

⌘
= s2

ZZ

Q

a(x)M(t)'2
x
wwtdxdt =

s2

2

1Z

0

h
a(x)M(t)'2

x
w2
iT
0
dx

� s2
ZZ

Q

a(x)M(t)'x'xtw
2dxdt� s2

2

ZZ

Q

a(x)M 0(t)'2
x
w2dxdt

=
s2

2

1Z

0

h
a(x)M(t)'2

x
w2
iT
0
dx� s2

ZZ

Q

a(x)M(t)p2
x
✓✓tw

2dxdt (5.15)

� s2

2

ZZ

Q

a(x)M 0(t)✓2p2
x
w2dxdt.

On the other hand, we have
⇣
(L1w)1, (L2w)2

⌘
= �2s

ZZ

Q

M2(t)'x(a(x)wx)(a(x)wx)xdxdt

= �s

TZ

0

h
M2(t)'x(a(x)wx)

2
i1
0
dt+ s

ZZ

Q

M2(t)'xxa
2(x)w2

x
dxdt (5.16)

= �s

TZ

0

h
M2(t)'x(a(x)wx)

2
i1
0
dt+ s

ZZ

Q

M2(t)✓pxxa
2(x)w2

x
dxdt.

We also have
⇣
(L1w)2, (L2w)2

⌘
= 2s2

ZZ

Q

M(t)a(x)'x'twwxdxdt

= s2
TZ

0

h
M(t)a(x)'t'xw

2
i1
0
dt� s2

ZZ

Q

M(t)a(x)'tx'xw
2dxdt

� s2
ZZ

Q

M(t)'t(a(x)'x)xw
2dxdt

= s2
TZ

0

h
M(t)a(x)'t'xw

2
i1
0
dt� s2

ZZ

Q

M(t)a(x)✓✓tp
2
x
w2dxdt (5.17)

� s2
ZZ

Q

M(t)✓tp(a(x)'x)xw
2dxdt.
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Additionally, we find that
⇣
(L1w)3, (L2w)2

⌘
= �2s3

ZZ

Q

M2(t)a2(x)'3
x
'twwxdxdt (5.18)

= �s3
TZ

0

h
M2(t)a2(x)'3

x
w2
i1
0
dt+ s3

ZZ

Q

M2(t)
h
2aa0'x + 3a2'xx

i
'2
x
w2dxdt.

Let us now consider the scalar product
⇣
(L1w)1, (L2w)3

⌘
= �s

ZZ

Q

M2(t)(a(x)wx)x(a(x)'x)xwdxdt (5.19)

= �s

TZ

0

h
M2(t)(a(x)'x)xa(x)wxw

i1
0
dt+ s

ZZ

Q

M2(t)(a(x)'x)xxa(x)wwxdxdt

+ s

ZZ

Q

M2(t)(a(x)'x)xa(x)w
2
x
dxdt

= �s

TZ

0

h
M2(t)(a(x)'x)xa(x)wwx

i1
0
dt+ s

ZZ

Q

M2(t)(a(x)'x)xa(x)w
2
x
dxdt,

since (a(x)'x)xx = 0.

Furthemore
⇣
(L1w)2, (L2w)3

⌘
= s2

ZZ

Q

M(t)'t(a(x)'x)xw
2dxdt. (5.20)

Finally, we have
⇣
(L1w)3, (L2w)3

⌘
= �s3

ZZ

Q

M2(t)a(x)'2
x
(a(x)'x)xw

2dxdt. (5.21)

Additionally (5.13)-(5.21), we find that

(d.t) =� 2s2
ZZ

Q

M(t)a(x)✓✓tp
2
x
w2dxdt+

s

2

ZZ

Q

✓ttpw
2dxdt

+ s

ZZ

Q

✓(2apxx + a0px)a(x)M
2(t)w2

x
dxdt

+ s3
ZZ

Q

✓3(2apxx + a0px)a(x)p
2
x
M2(t)w2dxdt (5.22)

+
1

2

ZZ

Q

M 0(t)a(x)w2
x
dxdt� s2

2

ZZ

Q

M 0(t)✓2a(x)p2
x
w2dxdt,
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and

(b.t) =

TZ

0

h
M(t)a(x)wxwt � sM2(t)'x(a(x)wx)

2 + s2M(t)a(x)'t'xw
2

� s3M2(t)a2(x)'3
x
w2 � sM2(t)(a(x)'x)xa(x)wwx

i1
0
dt (5.23)

+

1Z

0

h
� 1

2
M(t)a(x)w2

x
� s

2
'tw

2 +
s2

2
a(x)M(t)'2

x
w2
iT
0
dx

= �
TZ

0

h
sM2(t)'x(a(x)wx)

2
i1
0
dt.

The proof of (6.21) is similar as that in [6] and used the fact that M(·) is bounded function.
Now we put (d.t) = A+B, where

A =� 2s2
ZZ

Q

M(t)a(x)✓✓tp
2
x
w2dxdt+

s

2

ZZ

Q

✓ttpw
2dxdt

+ s

ZZ

Q

✓(2apxx + a0px)a(x)M
2(t)w2

x
dxdt

+ s3
ZZ

Q

✓3(2apxx + a0px)a(x)p
2
x
M2(t)w2dxdt, (5.24)

and

B =
1

2

ZZ

Q

M 0(t)a(x)w2
x
dxdt� s2

2

ZZ

Q

M 0(t)✓2a(x)p2
x
w2dxdt. (5.25)

Observe that

A+B  1

2
kfes'k2 � (b.t). (5.26)

The crucial step is to prove the following estimate.

Lemma 5.10. There exists a positive constant s1 = s1(T, a,↵,↵0, �0, �, �0) > 0 such that for all
s � s1 we have,

A+B � s3↵2
0

4(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt+ s

↵2
0

4

ZZ

Q

✓a(x)w2
x
dxdt

+
sa(1)(1� ↵)2↵2

0

4

ZZ

Q

✓
w2

x2�↵
dxdt+

s

4
↵2
0

ZZ

Q

✓
w2

x�
dxdt. (5.27)
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Proof. By the assumption xa0(x)  ↵a(x) and the fact that px = c1x

(2�↵)a(x) , and observe that

2apxx + a0px =
c1

2� ↵

⇣2a(x)� xa0(x)

a(x)

⌘

� c1
2� ↵

⇣2a(x)� ↵a(x)

a(x)

⌘
= c1 (5.28)

one can estimate A in the following way

A �� 2s2c21
(2� ↵)2

�0

ZZ

Q

✓✓t
x2

a(x)
w2dxdt+

s

2

ZZ

Q

✓ttpw
2dxdt

+ sc1↵
2
0

ZZ

Q

✓a(x)w2
x
dxdt+

s3c31↵
2
0

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt. (5.29)

According to the relation (5.7), we know that |✓✓t|  c✓2+1/k  c0✓3 and we obtain

A �
⇣ s3c31↵

2
0

(2� ↵)2
� 2s2c21c

0

(2� ↵)2
�0

⌘ZZ

Q

✓3
x2

a(x)
w2dxdt

+ sc1↵
2
0

ZZ

Q

✓a(x)w2
x
dxdt+

s

2

ZZ

Q

✓ttpw
2dxdt. (5.30)

Let

A1 = c1↵
2
0

ZZ

Q

✓a(x)w2
x
dxdt+

ZZ

Q

✓ttpw
2dxdt. (5.31)

Therefore

A �
⇣ s3c31↵

2
0

(2� ↵)2
� 2s2c21c

0

(2� ↵)2
�0

⌘ZZ

Q

✓3
x2

a(x)
w2dxdt+

s

2
c1↵

2
0

ZZ

Q

✓a(x)w2
x
dxdt+

s

2
A1. (5.32)

We apply the improved Hardy inequality (5.4), with ⌘ = 1, which gives

1Z

0

a(x)w2
x
dx+ c0

1Z

0

w2dx � a(1)(1� ↵)2

4

1Z

0

w2

x2�↵
dx+

1Z

0

w2

x�
dx, (5.33)

for suitable c0 = c0(a,↵, �). Therefore we can write

A1 �
a(1)(1� ↵)2c1↵2

0

4

ZZ

Q

✓
w2

x2�↵
dxdt+ c1↵

2
0

ZZ

Q

✓
w2

x�
dxdt

� c0c1↵
2
0

ZZ

Q

✓w2dxdt+

ZZ

Q

✓ttpw
2dxdt. (5.34)
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Finally, we need to estimate the term

A2 =

ZZ

Q

✓ttpw
2dxdt� c0c1↵

2
0

ZZ

Q

✓w2dxdt. (5.35)

By (5.7), there exists a positive constant c3 such that

|A2|  c3

ZZ

Q

✓1+2/kw2dxdt. (5.36)

Now, we consider q = k

k�1 and q0 = k, so that 1
q
+ 1

q0 = 1. Using the Young inequality, we have,
for all " > 0

|A2|  c3

ZZ

Q

⇣
✓1+2/k� 3

q0 a
1
q0 x

�2
q0 w

2
q

⌘⇣
✓

3
q0 a

�1
q0 x

2
q0w

2
q0
⌘
dxdt

 c3"

ZZ

Q

✓(1+2/k� 3
q0 )qa

q
q0 x

�2q
q0 w2dxdt+ c3c(")

ZZ

Q

✓3
x2

a(x)
w2dxdt, (5.37)

where c(") = 1
q0 ("q)

�q0
q . Observe that

(1 + 2/k � 3

q0
)q = 1,

2q

q0
= �. (5.38)

Using the fact that a(·) is continuous on [0, 1], there exists a positive constant c4 such that
(a(x))

q
q0  c4 for every x 2 [0, 1], and then

A2 � �c3c4"

ZZ

Q

✓
w2

x�
dxdt� c3c(")

ZZ

Q

✓3
x2

a(x)
w2dxdt. (5.39)

Putting the estimate (5.39) in (5.34) and using (6.63), we obtain

A �
⇣ s3c31↵

2
0

(2� ↵)2
� 2s2c21c

0

(2� ↵)2
�0 �

sc3c(")

2

⌘ZZ

Q

✓3
x2

a(x)
w2dxdt+

s

2
c1↵

2
0

ZZ

Q

✓a(x)w2
x
dxdt

+
sa(1)(1� ↵)2c1↵2

0

8

ZZ

Q

✓
w2

x2�↵
dxdt+

s

2

⇣
c1↵

2
0 � c3c4"

⌘ZZ

Q

✓
w2

x�
dxdt. (5.40)

Now, take c1 = 2 and " = "(a,↵,↵0, �) =
3↵2

0
2c3c4

. Thus there exists s2 = s2(T, a,↵,↵0, �0, �) > 0

such that for all s � s2

A � s3↵2
0

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt+ s↵2

0

ZZ

Q

✓a(x)w2
x
dxdt

+
sa(1)(1� ↵)2↵2

0

4

ZZ

Q

✓
w2

x2�↵
dxdt+

s

4
↵2
0

ZZ

Q

✓
w2

x�
dxdt. (5.41)
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On the other hand, we have

|B|  1

2

ZZ

Q

|M 0(t)|a(x)w2
x
dxdt+

s2

2

ZZ

Q

|M 0(t)|✓2a(x)p2
x
w2dxdt

 �0
2

ZZ

Q

a(x)w2
x
dxdt+

2s2�0
(2� ↵)2

ZZ

Q

✓2
x2

a(x)
w2dxdt

 2�0
⇣ZZ

Q

a(x)w2
x
dxdt+

s2

(2� ↵)2

ZZ

Q

✓2
x2

a(x)
w2dxdt

⌘

 2c5�0
⇣ZZ

Q

✓a(x)w2
x
dxdt+

s2

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt

⌘

 3↵2
0

4

⇣
s

ZZ

Q

✓a(x)w2
x
dxdt+

s3

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt

⌘
(5.42)

for all s � 8c5�0
3↵2

0

. Therefore

B � �s
3↵2

0

4

ZZ

Q

✓a(x)w2
x
dxdt� 3s3↵2

0

4(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt. (5.43)

By addition (5.41) and (5.43), for s � s1(a,↵, �, �0,↵0, �0) > 0, with s1 = max{s2, 8c5�03↵2
0
}, we

obtain the complet proof of Lemma 5.10.

Now, using the fact that
TR
0

h
sM2(t)'x(a(x)wx)2

i

0
dt is nonegative, the right hand of (5.26)

become

1

2
kfes'k2 � (b.t)  1

2

ZZ

Q

f 2e2s'dxdt+
2sa(1)�2

0

2� ↵

TZ

0

✓w2
x
(1, t)dt. (5.44)

From (5.26), (5.44) and Lemma 5.10, we obtain

s3

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt+ s

ZZ

Q

✓a(x)w2
x
dxdt+ sa(1)(1� ↵)2

ZZ

Q

✓
w2

x2�↵
dxdt

+ s

ZZ

Q

✓
w2

x�
dx  2

↵2
0

⇣ZZ

Q

f 2e2s'dxdt+
4sa(1)�2

0

2� ↵

TZ

0

✓w2
x
(1, t)dt

⌘

(5.45)

for all s � s1. Finally, we turn back to our original function v = e�s'w. Using that

vx =
⇣
� s✓

2

2� ↵

x

a(x)
w + wx

⌘
e�s',
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by Young inequality, we find

s

ZZ

Q

✓a(x)v2
x
e2s'dxdt  8

s3

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
w2dxdt+ 2s

ZZ

Q

✓a(x)w2
x
dxdt. (5.46)

Also, we have

wx(1, t) =
⇣
s'xv(1, t) + vx(1, t)

⌘
es'(1,t)

= vx(1, t)e
s'(1,t). (5.47)

Consequently, from (5.45)-(5.47), we have

s3

(2� ↵)2

ZZ

Q

✓3
x2

a(x)
v2e2s'dxdt+ s

ZZ

Q

✓a(x)v2
x
e2s'dxdt+ sa(1)(1� ↵)2

ZZ

Q

✓
v2

x2�↵
e2s'dxdt

+ s

ZZ

Q

✓
v2

x�
e2s'dxdt  18

↵2
0

⇣ZZ

Q

f 2e2s'dxdt+
4sa(1)�2

0

2� ↵

TZ

0

✓v2
x
(1, t)e2s'(1,t)dt

⌘

for all s � s0, with s0 = s1

5.4 Observability Inequality and null controllability

In order to prove the controllability of (5.1), we first need to derive the observability inequality
for the following adjoint problem

8
>>><

>>>:

vt + A(t)v = 0, (x, t) 2 Q

v(1, t) = v(0, t) = 0, in the case ↵ 2 (0, 1) t 2 (0, T )

v(1, t) = (avx)(0, t) = 0, in the case ↵ 2 [1, 2) t 2 (0, T )

v(x, T ) = vT (x), x 2 (0, 1).

(5.48)

More precisely, we need to prove the following inequality

Proposition 5.11. Assume that the coefficients a(·) and M(·) satisfies the hypothesis (5.2) and
(5.1) respectivly, let T > 0 be given and ! be a nonempty subinterval of (0, 1). Then there existe
a positive constant C = C(T, a,↵,M) such that the following observability inequality is valid for
every solution v of (5.48)

1Z

0

v2(x, 0)dx  C

TZ

0

Z

!

v2(x, t)dxdt. (5.49)

Now, by standard arguments, a null controllability result follows.
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Theorem 5.12. Let T > 0 be given, and ! be a nonempty subinterval of (0, 1). Then for all
u0 2 L2(0, 1), there exists h 2 L2(!⇥(0, T )) such that the solution u of (5.1) satisfies u(x, T ) = 0,
for every x 2 (0, 1). Furthermore, we have the estimate

khkL2(!⇥(0,T ))  Cku0kL2(0,1) (5.50)

for some constant C.

5.5 Caccioppoli’s inequality

An inequality of the Caccioppoli type makes it possible to increase the norm of the gradient
of the solution by means of those of the solution and of the second member. It plays a very
important role in showing Carleman’s estimates or inequalities of observability.

Lemma 5.13. (Caccioppoli’s inequality) Let !0 b ! be a nonempty open set. Then, there exists
a positive constant c̃ such that for every solution of (5.48)

Z
T

0

Z

!0

v2
x
e2s'dxdt  c̃

Z
T

0

Z

!

v2dxdt.

Proof. Let us consider a smooth function ⇠ : R ! R such that
8
><

>:

0  ⇠(x)  1, 8x 2 R,
⇠(x) = 1, x 2 !0

⇠(x) = 0, x /2 !̄

(5.51)

and ⇠ > 0 for x 2 !. Then

0 =

TZ

0

d

dt

1Z

0

⇠2e2s'v2dxdt

= 2s

ZZ

Q

⇠2'te
2s'v2dxdt+ 2

ZZ

Q

⇠2e2s'vvtdxdt

= 2s

ZZ

Q

⇠2'te
2s'v2dxdt� 2

ZZ

Q

⇠2M(t)e2s'v(a(x)vx)xdxdt

= 2s

ZZ

Q

⇠2'te
2s'v2dxdt+ 2

ZZ

Q

M(t)(⇠2e2s')xa(x)vvxdxdt+ 2

ZZ

Q

M(t)⇠2a(x)v2
x
e2s'dxdt.
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Hence,

2

ZZ

Q

M(t)⇠2a(x)v2
x
e2s'dxdt = �2s

ZZ

Q

⇠2'te
2s'v2dxdt� 2

ZZ

Q

M(t)(⇠2e2s')xa(x)vvxdxdt

 �2s

ZZ

Q

⇠2'te
2s'v2dxdt+

�2
0

↵0

ZZ

Q

⇣p
a
(⇠2e2s')x
⇠es'

v
⌘2

dxdt+ ↵0

ZZ

Q

⇣p
a⇠es'vx

⌘2

dxdt.

(5.52)

In other hand we have

2↵0

ZZ

Q

⇠2a(x)v2
x
e2s'dxdt  2

ZZ

Q

M(t)⇠2a(x)v2
x
e2s'dxdt. (5.53)

Using (5.52) and (5.53), we obtain

↵0

ZZ

Q

⇠2a(x)v2
x
e2s'dxdt  �2s

ZZ

Q

⇠2'te
2s'v2dxdt+

�2
0

↵0

ZZ

Q

⇣p
a
(⇠2e2s')x
⇠es'

⌘
v2dxdt. (5.54)

Thanks the definition of ⇠ and the fact that 'tes' and 'tes' are bounded functions on !⇥ (0, T ),
the inequality (5.54) implies that there exists a positive constant c̃1 such that

min
x2!0

(a(x))

Z
T

0

Z

!0

v2
x
e2s'dxdt 

Z
T

0

Z

!0

a(x)v2
x
e2s'dxdt 

ZZ

Q

⇠2a(x)v2
x
e2s'dxdt  c̃1

Z
T

0

Z

!

v2dxdt.

We deduce that
Z

T

0

Z

!0

v2
x
e2s'dxdt  c̃

Z
T

0

Z

!

v2dxdt, (5.55)

with
c̃ =

c̃1
minx2!0(a(x))

.

Proof of the Observability inequality (6.17). The proof can be made in three steps.
Step 1: We consider !0 = (x0

1, x
0
2) b ! = (x1, x2) and a smooth cut-off function 0  ⇠  1 such

that (
⇠(x) = 1, x 2 (0, x0

1)

⇠(x) = 0, x 2 (x0
2, 1)).

(5.56)

The function w := ⇠v, where v is the solution of (5.48), satisfies the following problem
8
>>><

>>>:

wt +M(t)(a(x)wx)x = M(t)(2a(x)⇠0vx + (a(x)⇠0)0v) := f, (x, t) 2 Q

w(1, t) = w(0, t) = 0, t 2 (0, T ), in the case ↵ 2 (0, 1),

w(1, t) = (awx)(0, t) = 0, t 2 (0, T ), in the case ↵ 2 [1, 2),

w(x, T ) = wT (x), x 2 (0, 1).

(5.57)

45



CHAPTER 5. NULL CONTROLLABILITY OF DEGENERATE NON AUTONOMOUS
PARABOLIC EQUATIONS 46

Applying Theorem 6.16 with � = 2�↵

2 and observe that wx(1, t) = 0, we get

s0

ZZ

Q

✓w2e2s0'dxdt  s0

ZZ

Q

✓
w2

x�
e2s0'dxdt

 18

↵2
0

ZZ

Q

M2(t)(2a(x)⇠0vx + (a(x)⇠0)0v)2e2s0'dxdt

 c

Z
T

0

Z

!0

(v2
x
+ v2)e2s0'dxdt.

According to Lemma 5.13, we obtain

s0

ZZ

Q

✓w2e2s0'dxdt  č

Z
T

0

Z

!

v2dxdt.

Next using the definition of ⇠, we obtain
Z

T

0

Z
x1

0

✓v2e2s0'dxdt  č

s0

Z
T

0

Z

!

v2dxdt.

Using the fact that p(x) and ✓ satisfies the following inequality

✓(t) 
⇣3T 2

16

⌘�k

, t 2 [T/4, 3T/4],

and

|p(x)|  2c2
2� ↵

, for all x 2 [0, 1].

Then there exists a positive constant c = c(T, a,↵) such that

e�cs0

Z 3T/4

T/4

Z
x1

0

v2dxdt 
⇣T 2

4

⌘k č

s0

Z
T

0

Z

!

v2dxdt,

witch implies
Z 3T/4

T/4

Z
x1

0

v2dxdt  ecs0
⇣T 2

4

⌘k č

s0

Z
T

0

Z

!

v2dxdt.

Step 2: We define z = (1� ⇠)v. Then, z satisfies the folowing problem
8
><

>:

zt +M(t)(a(x)zx)x = M(t)(2a(x)(1� ⇠)0vx + (a(x)(1� ⇠)0)0v) := f, (x, t) 2 (x0
1, 1)⇥ (0, T )

z(1, t) = z(x0
1, t) = 0, t 2 (0, T ),

z(x, T ) = zT (x), x 2 (x0
1, 1).

(5.58)
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In this case, we use classical Carleman estimates, since the operator (a(x)zx)x is nondegenerate
on (x0

1, 1). Then v can be estimated on (x2, 1) ⇢ (x0
1, 1) in the same way, see [30]. Therefore

Z 3T/4

T/4

Z 1

0

v2dxdt =

Z 3T/4

T/4

Z
x1

0

v2dxdt+

Z 3T/4

T/4

Z

!

v2dxdt+

Z 3T/4

T/4

Z 1

x2

v2dxdt

 C

Z
T

0

Z

!

v2dxdt. (5.59)

Step 3: Multiplying both sides of (5.48) by v and integrate on (0, 1), we obtain

1

2

d

dt

1Z

0

v2dx = M(t)

1Z

0

a(x)v2
x
dx � 0, t 2 (0, T ).

Hence, we deduce that

kv(·, 0)k2
L2(0,1)  kv(·, t)k2

L2(0,1) for all t 2 (0, T ). (5.60)

Then integrate (5.60) on (T/4, 3T/4), and use (5.59), to obtain

1Z

0

v2(x, 0)dx  2

T

Z 3T/4

T/4

Z 1

0

v2dxdt  C̃

Z
T

0

Z

!

v2dxdt. (5.61)
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Chapter 6

Global existence of small data solutions to
semi-linear fractional ��evolution
equations with mass or power
non-linearity 1

6.1 Introduction

In [16] the authors studied the following Cauchy problem for semi-linear fractional wave equations

@1+↵

t u��u = |u|p,
u(x, 0) = u0(x), ut(0, x) = 0,

(6.1)

where ↵ 2 (0, 1), @1+↵

t u = D↵

t
(ut) with

D↵

t
(f) = @t(I

1�↵

t
f) and I�t f =

1

�(�)

Z
t

0

(t� s)��1f(s) ds for � > 0.

Here D↵

t
(f) and I�t f denote the fractional Riemann-Liouville derivative and the fractional Riemann-

Liouville integral of f on [0, t], respectively. Moreover, � is the Euler Gamma function. The
authors proved the following results.

Proposition 6.1. Let

p > p := max
n
p↵(n);

1

1� ↵

o
, where p↵(n) := 1 +

2(1 + ↵)

(n� 2)(1 + ↵) + 2
.

1A. Kainane Mezadek, M. Reissig, Semi-linear fractional ��evolution equations with mass or power non-
linearity. Nonlinear Differ. Equ. Appl.(2018) 25:42
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Then there exist positive constants " and � such that for any u0 2 L1(Rn) \ L1(Rn) with
ku0kL1\L1  " and for any � 2 (0, �) there exists a uniquely determined global (in time) Sobolev
solution

u 2 C
�
[0,1), L1+�(Rn) \ L1(Rn)

�

to (6.1). The solution satisfies the following estimate for any t � 0:

ku(t, ·)kLq  C(1 + t)��q+↵ku0kL1+�\L1 , q 2 [1 + �,1], (6.2)

where
�q = �q(�) := min

nn(1 + ↵)

2

⇣ 1

1 + �
� 1

q

⌘
; 1
o
.

Proposition 6.2. Let p 2 (1, p↵(n)] and u0 2 L1(Rn) be such that
Z

Rn

u0(x) dx > 0.

Then there does not exist any global (in time) Sobolev solution

u 2 Lp

loc

�
[0,1)⇥ Rn

�
.

This chapter is devoted to the Cauchy problem for the semi-linear fractional ��evolution
equations with mass or power non-linearity

@1+↵

t u+ (��)�u+m2u = |u|p,
u(x, 0) = u0(x), ut(0, x) = 0,

(6.3)

where ↵ 2 (0, 1), m � 0, � � 1, (t, x) 2 [0,1)⇥Rn. Our main goal is to understand on the one
hand the improving influence of the mass term and on the other hand the influence of higher
regularity of the data u0 on the solvability behavior.
By the assumption ut(0, x) = 0 the Cauchy problem (6.3) may be written in the form of a Cauchy
problem for an integro-differential equation

@tu = I↵
t

�
� (��)�u�m2u+ |u|p

�
,

u(x, 0) = u0(x).
(6.4)

A solution to (6.3) is defined as a solution of (6.4). On the contrary, if we have a solution to
(6.4) on a time interval [0, T ] the integral I↵

t
(· · · ) is defined for all t 2 [0, T ]. Hence, the limit

limt!+0 I↵t (· · · ) = 0. In this way, we verified ut(0, x) = 0 and obtain a solution to (6.3), too.
For this reason we may restrict ourselves in the further considerations to the study of (6.4) to
obtain results for (6.3). Our results of global (in time) existence of small data Sobolev solutions
are given in the next section.
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6.2 Main results

6.2.1 Fractional �-evolution models

In the first two results we assume low regularity for the data u0. We distinguish between condi-
tions for the spatial dimension n.

Theorem 6.3. Let us assume 0 < ↵ < 1, ↵  � < 1+↵

2 , � � 1 and r � 1. We assume that
n � 2�r

1+↵
. Moreover, the exponent p satisfies the condition

p > p↵,�,�,r(n) := max
n
pr
↵,�,�

(n);
1

1� �

o
,

where pr
↵,�,�

(n) := 1 +
n(r � 1)(1 + ↵) + 2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �)
.

Then there exists a positive constant " such that for any data

u0 2 Lr(Rn) \ L1(Rn) with ku0kLr\L1  "

we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1)

to the Cauchy problem

@1+↵

t
u+ (��)�u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

Moreover, the solution satisfies the following estimate for any t � 0 and for all sufficiently small
� > 0 :

ku(t, ·)kLq  C(1 + t)��
r,�
↵,q,�+�ku0kLr\L1 for all q 2 [r,1],

where
�r,�

↵,q,�
:= min

nn(1 + ↵)

2�

⇣1
r
� 1

q

⌘
; 1� �

o
.

The constant C is independent of u0.

Theorem 6.4. Let us assume 0 < ↵ < 1, ↵  � < 1+↵

2 , 1  � < ↵+1
2� and 1  r < ↵+1

2�� . We
assume that 1  n < 2�r

1+↵
. Moreover, the exponent p satisfies the condition

p > pr
↵,�,�

(n), where pr
↵,�,�

(n) := 1 +
n(r � 1)(1 + ↵) + 2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �)
.

Then there exists a positive constant " such that for any data

u0 2 Lr(Rn) \ L1(Rn) with ku0kLr\L1  "
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we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1)

to the Cauchy problem

@1+↵

t
u+ (��)�u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

Moreover, the solution satisfies the following estimate for any t � 0:

ku(t, ·)kLq  C(1 + t)��
r
↵,q,�+�ku0kLr\L1 for all q 2 [r,1],

where
�r

↵,q,�
:=

n(1 + ↵)

2�

⇣1
r
� 1

q

⌘
.

The constant C is independent of u0.

In the next two results we assume higher regularity for the data u0 but with additional
regularity L1. We distinguish between conditions for the spatial dimension n.

Theorem 6.5. Let us assume 0 < ↵ < 1, ↵  � < 1+↵

2 , � � 1, 1 < r < 1 and � � 0. We
assume that n � 2�r

1+↵
. The exponent p satisfies the condition

p > p↵,�,�,r,� := max
n
pr
↵,�,�

(n);
2

1� �
; �
o
,

where
pr
↵,�,�

(n) := 1 +
n(r � 1)(1 + ↵) + 2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �)
.

Then there exists a positive constant " such that for any data

u0 2 H�

r
(Rn) \ L1(Rn) with ku0kH�

r \L1  "

we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), H�

r
(Rn) \ Lq(Rn)

�
for all q 2 [r,1)

to the Cauchy problem

@1+↵

t
u+ (��)�u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

The solution satisfies the following estimate for any t � 0 and for all sufficiently small � > 0:

ku(t, ·)kLq  C(1 + t)��
r,�
↵,q,�+�ku0kH�

r \L1 , q 2 [r,1],

where
�r,�

↵,q,�
:= min

nn(1 + ↵)

2�

⇣1
r
� 1

q

⌘
; 1� �

o
.

Moreover, the solution satisfies the estimate

ku(t, ·)kH�
r
 C(1 + t)�ku0kH�

r \L1 .

The constants C are independent of u0.
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Theorem 6.6. Let us assume 0 < ↵ < 1, ↵  � < 1+↵

2 , 1  � < ↵+1
2� , 1 < r < ↵+1

2�� and � � 0.
We assume that 1  n < 2�r

1+↵
. Moreover, the exponent p satisfies the condition

p > max{pr
↵,�,�

(n); �},

where pr
↵,�,�

(n) := 1 +
n(r � 1)(1 + ↵) + 2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �)
.

Then there exists a positive constant " such that for any data

u0 2 H�

r
(Rn) \ L1(Rn) with ku0kH�

r \L1  "

we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), H�

r
(Rn) \ Lq(Rn)

�
for all q 2 [r,1)

to the Cauchy problem

@1+↵

t
u+ (��)�u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

The solution satisfies the following estimate for any t � 0:

ku(t, ·)kLq  C(1 + t)��
r
↵,q,�+�ku0kH�

r \L1 , q 2 [r,1],

where
�r

↵,q,�
:=

n(1 + ↵)

2�

⇣1
r
� 1

q

⌘
.

Moreover, the solution satisfies the estimate

ku(t, ·)kH�
r
 C(1 + t)�ku0kH�

r \L1 .

The constants C are independent of u0.

6.2.2 Fractional �-evolution models with mass term

Theorem 6.7. Let us assume 0 < ↵ < 1, � � 1, r � 1 and p > 1
1�↵

. Then there exists a positive
constant " such that for any data

u0 2 Lr(Rn) \ L1(Rn) with ku0kLr\L1  "

we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), Lr(Rn) \ L1(Rn)

�

to the Cauchy problem

@1+↵

t
u+ (��)�u+m2u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

Moreover, the solution satisfies the decay estimate

ku(t, ·)kLq  C(1 + t)↵�1ku0kLr\L1 for all t � 0, q 2 [r,1].

The constant C is independent of u0.
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Theorem 6.8. Let us assume 0 < ↵ < 1, � � 1, � � 0, 1 < r < 1 and p > max{2; 1
1�↵

; �}.
Then there exists a positive constant " such that for any data

u0 2 H�

r
(Rn) \ L1(Rn) with ku0kH�

r \L1  ",

we have a uniquely determined global (in time) Sobolev solution

u 2 C
�
[0,1), H�

r
(Rn) \ L1(Rn)

�

to the Cauchy problem

@1+↵

t
u+ (��)�u+m2u = |u|p, u(x, 0) = u0(x), ut(0, x) = 0.

Moreover, the solution satisfies the decay estimate

ku(t, ·)kH�
r \L1  C(1 + t)↵�1ku0kH�

r \L1 .

The constant C is independent of u0.

Remark 6.9. If we compare Theorem 6.3 with the corresponding result for (6.1) from [16], then
we feel the improving influence of the power � and the order of regularity r in two facts. On the
one hand p↵,↵,1,1(n) = p and on the other hand u 2 C

�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q < 1.

In Theorem 6.5 we explain the influence of the regularity of the data on the critical exponent
and we have p↵,↵,1,1(n) � p. If we compare Theorem 6.7 with the corresponding result for (6.1)
from [16], then we feel the improving influence of the mass term in three facts. On the one hand
p = 1

1�↵
, u 2 C

�
[0,1), Lr(Rn) \ L1(Rn)

�
and on the other hand �q = 1 in (6.2). In the case

of Theorem 6.8 we also feel the influence of the regularity of the data on the exponent and we
obtain an exponent larger then p. Besides some stronger restrictions to the critical exponent the
statements of Theorems 6.5, 6.6 and 6.8 are regularity results. If the data u0 is more regular,
then we expect more regularity with respect to the spatial variables for the solution.

6.3 Some preliminaries

The Cauchy problem (6.4) with � � 1 and m � 0 can be formally converted to an integral
equation and its solution is given by

u(t, x) = (Gm

↵,�
(t) ⇤ u0)(t, x) +Nm

↵,�
(u)(t, x) (6.5)

with

Gm

↵,�
(t, x) =

Z

Rn

eix·⇠E↵+1

�
� t↵+1h⇠i2

m,�

�
d⇠, (6.6)

Nm

↵,�
(u)(t, x) =

Z
t

0

�
Gm

↵,�
(t� s) ⇤ I↵

s
(|u|p)

�
(t, s, x) ds, (6.7)
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where {Gm

↵,�
(t)}t�0 denotes the semigroup of operators which is defined via Fourier transform by

\(Gm
↵,�

(t)f)(t, ⇠) = E↵+1

�
� t↵+1h⇠i2

m,�

� bf(⇠) with h⇠i2
m,�

= |⇠|2� +m2.

Here E�(z) =
1P
k=0

z
k

�(�k+1) denotes the Mittag-Leffler function (see Section 6.7).

A representation of solutions of the linear integro-differential equation associated to (6.4) or (6.3)
with � � 1 and m � 0 (and without the term |u|p) is given by

u(t, x) = (Gm

↵,�
(t) ⇤ u0)(t, x).

Indeed, we put
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↵,�
(t) ⇤ u0)(t, x)

�
(t, ⇠)

= E↵+1(�t↵+1h⇠i2
m,�

) bu0(⇠).

By using (6.4) and (6.76) we have
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�
(t, x) = u(t, x)� u0(x).

Consequently, we have shown (after application of the Fourier inversion formula in S 0) that

u = Gm

↵,�
(t) ⇤ u0

is a formal solution to
u = u0(x) +

Z
t

0

I↵
s
(�(��)�u�m2u) ds.
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In the moment we will not provide any function spaces to which the formal solution will belong.
But, as pointed out by the referee the continuity of solutions with respect to the time variable
requires a special treatment. Later we will come back to this issue. But, from the above
considerations we can formally conclude the following relation (if the convolution really exist)

u(t, ·)� u0

=
1

�(↵ + 1)

Z
t

0

(t� ⌧)↵
�
F�1
⇠!x

�
h⇠i2

m,�
E↵+1(�⌧↵+1h⇠i2

m,�
)
�
⇤ u0

�
d⌧.

(6.8)

Later we will use this relation for the discussion of continuity in time of solutions for models
with mass.

6.4 Lp estimates for model oscillating integrals

At first we derive Lp estimates for the model oscillating integral

F�1
⇠!x

�
E↵+1(�t1+↵|⇠|2�)

�
.

Proposition 6.10. The following estimate holds in Rn for � > 0, ↵ � 0:

kF�1
⇠!x

�
E↵+1(�t1+↵|⇠|2�)

�
(t, ·)kLp . t�

n(1+↵)
2� (1� 1

p ) (6.9)

for p 2 [1,1], t > 0 and for all n � 1 satisfying n(1� 1
p
) < 2�.

Here and in the following we use for non-negative functions f and g the notation f . g if
there exists a constant C which is independent of y 2 D such that f(y)  Cg(y) for all y 2 D.

Proof. The proof of (6.9) uses the Propositions 5 and 12 of [49]. In a first step we estimate the
following oscillating integrals:
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�
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�
and F�1
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where c1 = � cos( ⇡
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), c2 =

p
1� c21, ⇢ = �

1+↵
and ⌧ > 0. We prove instead of (6.9) the

polynomial type decay estimates
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for all p 2 [1,+1] and t > 0. Then, we deduce (see Section 6.7)
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for all p 2 [1,+1] and t > 0. It remains to prove that (see Section 6.7)
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for all p 2 [1,+1] and t > 0. Therefore we use the formula (see Section 6.7)
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Taking account of the definition of modified Bessel functions (see Section 6.7) we get
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The estimate
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if n(1� 1
p
) < 2�.

Now let us turn to Lp estimates for the model oscillating integral (see Section 6.7)

F�1
⇠!x

�
E↵+1(�t1+↵h⇠i2

m,�
)
�

with m > 0.

At the first glance one might expect an exponential type decay estimate. We are able to prove
a potential type decay estimate only.

Proposition 6.11. The following estimate holds in Rn for � > 0, m > 0, ↵ 2 [0, 1) and for all
n � 1: ��F�1
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��
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for p 2 [1,1] and t � 0.
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Proof. The proof of (6.23) uses ideas of [52]. In a first step we estimate the following oscillating
integrals:

F�1
⇠!x

�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

�
and F�1

⇠!x

�
e�⌧ th⇠i2m,�

�
,

where c = � cos( ⇡

1+↵
), = 1

1+↵
2 (12 , 1) and ⌧ > 0. We shall derive the exponential type decay

estimate
��F�1

⇠!x

�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

�
(t, ·)

��
Lp

+
��F�1

⇠!x

�
e�⌧ th⇠i2m,�

�
(t, ·)

��
Lp . e�Ct (6.15)

with a suitable positive C = C(m,↵), for p 2 [1,1] and t � 0. By using modified Bessel
functions (see Section 6.7) we have for n = 3
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Using twice integration by parts we obtain
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where hi(r) = ai cos(g(r)) + bi sin(g(r)), i = 1, · · · , 6, g(r) = thri2
m,�

p
1� c2 and ai, bi, i =

1, · · · , 6, are constants which depend on ↵ and � only.
To estimate (6.16) we use the inequality
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Then, we get
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For the oscillating integral F�1
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Summarizing all estimates we proved the statement (6.15) in the case n = 3.
Now, let us study the case n odd and n � 4. Then we carry out n+1

2 steps of partial integration.
We obtain after n�1

2 steps and by applying the rules (see Section 6.7)
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Analogously, we obtain the same estimate for
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All together implies the statement (6.15) for odd n � 4.
For n = 2 we have
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Then, we get
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Using the boundedness of J̃1(s) for s 2 [0, 1] (see Section 6.7) the first integral can be estimated
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Remark that 4�+2�2 > 2. To estimate the second integral we apply the following asymptotic
formula (see Section 6.7) for J̃1(s) for s � 1:
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We explain only the first integral because the second one can be treated in the same way. We
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The integral in (6.18) is equal to
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m,�

e�cthri2m,� dr.

The latter integral can be estimated by |x|� 5
2 e�

c
2 tm

2 . Finally, we have for the oscillating integral
F�1
⇠!x

�
e�⌧ th⇠i2m,�

�
the relation

F�1
⇠!x

(e�⌧ th⇠i2m,�)(t, x) =

Z 1

0

e�⌧ thri2m,�rJ̃0(r|x|) dr

=

Z 1

0

e�⌧ thri2m,�@r(r
2J̃1(r|x|)) dr

=

Z 1

0

2�⌧ tr2�+1hri2�2
m,�

e�⌧ thri2m,� J̃1(r|x|) dr.

Then, we derive the same estimates as we did before for estimating the oscillating integral

F�1
⇠!x

�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

�
.

Summarizing all estimates yields the statement (6.15) for n = 2.
Now for the case of even n � 4 we carry out n

2 � 1 steps of partial integration. In this way we
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obtain

F�1
⇠!x

�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

�
(t, x)

=

Z 1

0

e�cthri2m,� cos(thri2
m,�

p
1� c2)rn�1J̃n

2�1(r|x|) dr

=
1

|x|n�2

Z 1

0

⇣ @

@r

1

r

⌘n�2
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
J̃0(r|x|) dr

=
1

|x|n�2

Z 1

0

⇣ @

@r

1

r

⌘n�2
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘

⇥ 1

r
@r(r

2J̃1(r|x|)) dr

=
1

|x|n�2

Z 1

0

⇣ @

@r

1

r

⌘n
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
r2J̃1(r|x|) dr

=
1

|x|n�2

Z 1
|x|

0

⇣ @

@r

1

r

⌘n
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
r2J̃1(r|x|) dr (6.21)

+
1

|x|n�2

Z 1

1
|x|

⇣ @

@r

1

r

⌘n
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
r2J̃1(r|x|) dr. (6.22)

For the integral in (6.21) we are able to derive the following estimate:

���
1

|x|n�2

Z 1
|x|

0

⇣ @

@r

1

r

⌘n
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
r2J̃1(r|x|) dr

���

. 1

|x|n�2
e�

c
2 tm

2

Z 1
|x|

0

r2�+1hri2�2
m,�

dr . e�
c
2 tm

2hxi�(n+2+2��2)
m

.

For the integral in (6.22) we follow the same arguments to obtain the estimate
���

1

|x|n�2

Z 1

1
|x|

⇣ @

@r

1

r

⌘n
2
⇣
e�cthri2m,� cos(thri2

m,�

p
1� c2)rn�1

⌘
r2J̃1(r|x|) dr

���

. e�
c
2 tm

2hxi�(n+ 1
2 )

m .

In the same way we can estimate the oscillating integral F�1
⇠!x

�
e�⌧ th⇠i2m,�

�
. All together implies

the statement (6.15) for even n � 4. To complete the proof it remains to show
��F�1

⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp . (1 + t)�(1+↵)

for p 2 [1,1] and t � 0. Therefore we use the formula (see Section 6.7)

l1+↵(t
1+↵
2 h⇠im,�) ⇠

Z 1

0

exp
�
� th⇠i

2
1+↵
m,� s

1
1+↵

�

s2 + 2s cos((1 + ↵)⇡) + 1
ds.
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Taking account of the definition of modified Bessel functions (see Section 6.7) we get

F�1
⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, x)

=

Z 1

0

⇣Z 1

0

exp
�
� thri

2
1+↵
m s

1
1+↵

�

s2 + 2s cos((1 + ↵)⇡) + 1
rn�1J̃n

2�1(r|x|) dr
⌘
ds

=

Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

⇥
⇣Z 1

0

exp
�
� thri

2
1+↵
m s

1
1+↵

�
rn�1J̃n

2�1(r|x|) dr
⌘
ds

=

Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

⇣
F�1
⇠!x

�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, x)

⌘
ds.

The estimate
��F�1

⇠!x

�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, ·)

��
Lp . e�

1
2 s

1
1+↵ tm

2
1+↵

implies
��F�1

⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp

.
Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

��F�1
⇠!x

�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, ·)

��
Lp ds

.
Z 1

0

e�
1
2 s

1
1+↵ tm

2
1+↵

s2 + 2s cos((1 + ↵)⇡) + 1
ds.

For t 2 (0, 1] we may conclude

��F�1
⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp .

Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1
ds . 1.

For t � 1 we have

��F�1
⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp .

Z 1

0

e�
1
2 s

1
1+↵ tm

2
1+↵

s2 + 2s cos((1 + ↵)⇡) + 1
ds

.
Z 1

0

exp
�
� C̃1ts

1
1+↵

�
ds.

After the change of variables ⌧ := ts
1

1+↵ it follows
��F�1

⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp .

Z 1

0

exp
�
� C̃1ts

1
1+↵

�
ds

. t�(1+↵)

Z 1

0

⌧↵ exp
�
� C̃1⌧

�
d⌧ . t�(1+↵).

We deduce for all p 2 [1,1] the estimate
��F�1

⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp . (1 + t)�(1+↵) for all t � 0.
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Summarizing all the estimates we may conclude
��F�1

⇠!x

�
E1+↵(�t1+↵h⇠i2

m,�
)
�
(t, ·)

��
Lp

.
��F�1

⇠!x

�
exp

�
a1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp

+
��F�1

⇠!x

�
exp

�
b1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp

+
��F�1

⇠!x

�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp

. e�Ct + (1 + t)�(1+↵) . (1 + t)�(1+↵).

This completes the proof.

The following proposition is helpful for the treatment of �-evolution models with a mass
term.

Proposition 6.12. The following estimate holds in Rn for � > 0, m > 0, ↵ 2 [0, 1) and for all
n � 1: ��F�1

⇠!x

�
h⇠i2

m,�
E1+↵(�t1+↵h⇠i2

m,�
)
�
(t, ·)

��
Lp . (1 + t)�(1+↵) (6.23)

for p 2 [1,1] and t � 0.

Proof. The proof is similar to the proof of the previous proposition. In a first step we estimate
the oscillating integrals

F�1
⇠!x

�
h⇠i2

m,�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

�
and F�1

⇠!x

�
h⇠i2

m,�
e�⌧ th⇠i2m,�

�
,

where c = � cos( ⇡

1+↵
), = 1

1+↵
2 (12 , 1) and ⌧ > 0. Following the approach from the previous

proof we may conclude an exponential type decay estimate
��F�1

⇠!x

�
h⇠i2

m,�
e�cth⇠i2m,� cos(th⇠i2

m,�

p
1� c2)

���
Lp

+
��F�1

⇠!x

�
h⇠i2

m,�
e�⌧ th⇠i2m,�

���
Lp . e�Ct

with a suitable positive constant C = C(m,↵), and for p 2 [1,1] and t � 0. Let us make some
comments to the third oscillating integral. Following the same steps of treatment of the previous
proof we may conclude

��F�1
⇠!x

�
h⇠i2

m,�
l1+↵(t

1+↵
2 h⇠im,�)

���
Lp . (1 + t)�(1+↵)

for p 2 [1,1] and t � 0. Indeed, we use the formula

h⇠i2
m,�

l1+↵(t
1+↵
2 h⇠im,�) ⇠

Z 1

0

h⇠i2
m,�

exp
�
� th⇠i

2
1+↵
m,� s

1
1+↵

�

s2 + 2s cos((1 + ↵)⇡) + 1
ds.
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Taking account of the definition of modified Bessel functions we get

F�1
⇠!x

�
h⇠i2

m,�
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1+↵
2 h⇠im,�)

�

=

Z 1

0

⇣Z 1

0

hri2
m,�

exp
�
� thri

2
1+↵
m s

1
1+↵

�

s2 + 2s cos((1 + ↵)⇡) + 1
rn�1J̃n

2�1(r|x|) dr
⌘
ds

=

Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

⇥
⇣Z 1

0

hri2
m,�

exp
�
� thri

2
1+↵
m s

1
1+↵

�
rn�1J̃n

2�1(r|x|) dr
⌘
ds

=

Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

⇥
⇣
F�1
⇠!x

�
h⇠i2

m,�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, x)

⌘
ds.

The estimate

��F�1
⇠!x

�
h⇠i2

m,�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, ·)

��
Lp . e�

1
2 s

1
1+↵ tm

2
1+↵

implies
��F�1

⇠!x

�
h⇠i2

m,�
l1+↵(t

1+↵
2 h⇠im,�)

�
(t, ·)

��
Lp

.
Z 1

0

1

s2 + 2s cos((1 + ↵)⇡) + 1

��F�1
⇠!x

�
e�s

1
1+↵ th⇠i

2
1+↵
m,�

�
(t, ·)kLp ds

.
Z 1

0

e�
1
2 s

1
1+↵ tm

2
1+↵

s2 + 2s cos((1 + ↵)⇡) + 1
ds.

As in the previous proof we conclude the desired estimate.

6.5 Lr � Lq estimates for the formal solutions from Section
6.3

6.5.1 Models without any mass term

Proposition 6.13. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

satisfies the following Lm � Lq estimates:

ku(t, ·)kLq . t�
n(1+↵)

2� ( 1
m� 1

q )ku0kLm (6.24)

65



CHAPTER 6. GLOBAL EXISTENCE OF SMALL DATA SOLUTIONS TO SEMI-LINEAR
FRACTIONAL ��EVOLUTION EQUATIONS WITH MASS OR POWER
NON-LINEARITY 66

for all r  m  q  1 provided that n( 1
m
� 1

q
) < 2�.

Let u0 2 H�

r
(Rn) \ L1(Rn), n � 1, 1 < r < 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

satisfies the following estimates:

ku(t, ·)kH�
r
. ku0kH�

r
and ku(t, ·)k

Ḣ
�
r
. ku0kḢ�

r
. (6.25)

Proof. The inequality (6.24) follows from Young’s inequality and Proposition 6.10. Applying
these tools to the relation

|D|�(G0
↵,�

(t) ⇤ u0)(t, x) =
�
F�1
⇠!x

�
E↵+1

�
� t↵+1|⇠|2�

��
⇤ |D|�u0

�
(t, x)

implies the inequality (6.25). This completes the proof.

Proposition 6.14. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

satisfies the following estimate for any fixed � > 0 small enough:

ku(t, ·)kLq . (1 + t)��
r,�
↵,q,�(ku0kLr + ku0kLq) for all q 2 [r,1], (6.26)

where
�r,�

↵,q,�
:= min

nn(1 + ↵)

2�

⇣1
r
� 1

q

⌘
; 1� �

o
.

Proof. To get (6.26) we use ideas of D’Abbicco (cf. with [16]). For t 2 (0, 1] we set m = q in
(6.24) to get the Lq � Lq estimate

ku(t, ·)kLq . ku0kLq .

For t � 1 we choose m = r in (6.24) if n(1
r
� 1

q
) < 2�. Otherwise, in (6.24) the parameter m is

chosen as the solution to
n(1 + ↵)

2�

⇣ 1

m
� 1

q

⌘
= 1� �

with a fixed sufficiently small positive �. In this way, we may conclude the Lr � Lq estimate

ku(t, ·)kLq . t��
r,�
↵,q,�ku0kLr .

Gluing both estimates together we derive the desired estimate (6.26).

Remark 6.15. The last two statements are valid for r = 1, too, in contrary to the paper [16]. In
this paper the authors use estimates in scales of Morrey spaces from the paper [7], where r = 1

is excluded. For this reason the positive parameter � appears in Proposition 6.1.
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The statements of the Propositions 6.13 and 6.14 allow to conclude the following result.

Corollary 6.16. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
L1�(0, T ), Lr(Rn) \ L1(Rn)

�
for all T > 0.

Let u0 2 H�

r
(Rn) \ L1(Rn), n � 1, 1 < r < 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
L1�(0, T ), H�

r
(Rn) \ L1(Rn)

�
for all T > 0.

The next result contains even the continuity property with respect to the time variable.

Proposition 6.17. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
C
�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

Let u0 2 H�

r
(Rn) \ L1(Rn), n � 1, 1 < r < 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
C
�
[0,1), H�

r
(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

Proof. The second statement follows immediately from the first statement by using only the
higher regularity H�

r
instead of Lr. The first statement follows from Proposition 6.37 of the

Appendix.

6.5.2 Models with a mass term

Proposition 6.18. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
Gm

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
C
�
[0,1), Lr(Rn) \ L1(Rn)

�
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and satisfies the following Lr � Lq estimates:

ku(t, ·)kLq . (1 + t)�(1+↵)ku0kLr (6.27)

for all 1  r  q  1.
Let u0 2 H�

r
(Rn) \ L1(Rn), n � 1, 1  r < 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
Gm

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
C
�
[0,1), H�

r
(Rn) \ L1(Rn)

�

and satisfies the following estimates:

ku(t, ·)kH�
r
. (1 + t)�(1+↵)ku0kH�

r
and ku(t, ·)k

Ḣ
�
r
. (1 + t)�(1+↵)ku0kḢ�

r
. (6.28)

Proof. The proof follows immediately from (6.5), (6.6), Proposition 6.11 and Lemma 6.38. To
verify the last inequality we use

|D|�(Gm

↵,�
(t) ⇤ u0)(t, x) =

�
F�1
⇠!x

�
E↵+1

�
� t↵+1h⇠i2

m,�

��
⇤ |D|�u0

�
(t, x).

The continuity of solutions follows from (6.8) and Proposition 6.12. This completes the proof.

6.6 Proofs of the main results

Proof of Theorem 6.3

For any n � 2�r
1+↵

and sufficiently small � 2 (0, 1) there exists a parameter q = q(�) 2 (r,1) such
that

n(1 + ↵)

2�

⇣1
r
� 1

q

⌘
= 1� �. (6.29)

We define the space
X(T ) := L1�(0, T ), Lr(Rn) \ L1(Rn)

�

with the norm

kukX(T ) := esssup
t2(0,T )

�
(1 + t)��ku(t, ·)kLr

+(1 + t)1����
�
ku(t, ·)kLq + ku(t, ·)kL1

� 
.

For any u 2 X(T ) we consider for m = 0 the operator

P : X(T ) �! X(T ), Pu := (G0
↵,�

(t) ⇤ u0)(t, x) +N0
↵,�

(u)(t, x).
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We shall prove that

kPukX(T ) . ku0kLr\L1 + kukp
X(T ), (6.30)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.31)

For the proof of (6.30), after taking into consideration the estimates (6.26), we have

kG0
↵,�

(t) ⇤ u0kX(T ) = esssup
t2(0,T )

�
(1 + t)��k(G0

↵,�
(t) ⇤ u0)(t, ·)kLr

+(1 + t)1����
�
k(G0

↵,�
(t) ⇤ u0)(t, ·)kLq + k(G0

↵,�
(t) ⇤ u0)(t, ·)kL1

� 

. ku0kLr\L1 .

It remains to prove that kN0
↵,�

(u)kX(T ) . kukp
X(T ). If u 2 X(T ), then we derive by interpolation

the following estimate:

ku(t, ·)kLq . (1 + t)��
r,�
↵,q,�+�kukX(T ) for all q 2 [r,1]. (6.32)

Consequently,

k|u(t, ·)|pkLq . ku(t, ·)kp
Lpq . (1 + t)�p(�r,�

↵,pq,���)kukX(T )

. (1 + t)�p(�r,�
↵,p,���)kukX(T ) (6.33)

for any q 2 [r,1] and due to �r,�

↵,pq,�
� �r,�

↵,p,�
. Thanks to (6.26) and (6.33) we can estimate

kN0
↵,�

(u)(t, ·)kLq . kukX(T )Iq(t) for all t 2 [0, T ] and q 2 [r,1], (6.34)

where
Iq(t) =

Z
t

0

(1 + t� ⌧)��
r,�
↵,q,�

Z
⌧

0

(⌧ � s)↵�1(1 + s)�p(�r,�
↵,p,���) ds d⌧.

We are interested to estimate the function Iq(t) in (6.34). For this we apply Lemma 6.39. We
notice that p(�r,�

↵,p,�
� �) > 1 if and only if

p > p↵,�,�,r,�(n) := max
n
pr
↵,�,�

(n);
1

1� � � �

o
.

Consequently, by using Lemma 6.39 we may estimate Iq(t) as follows:

Iq(t) .
Z

t

0

(1 + t� ⌧)��
r,�
↵,q,�(1 + ⌧)↵�1 d⌧ . (1 + t)��

r,�
↵,q,�+↵ . (1 + t)��

r,�
↵,q,�+�,

thanks to the fact that �r,�

↵,q,�
2 (0, 1� �] and ↵ 2 (0, 1). Therefore (6.33) gives

kN0
↵,�

(u)kX(T ) . kukp
X(T ).

69



CHAPTER 6. GLOBAL EXISTENCE OF SMALL DATA SOLUTIONS TO SEMI-LINEAR
FRACTIONAL ��EVOLUTION EQUATIONS WITH MASS OR POWER
NON-LINEARITY 70

Finally, it remains to show (6.31). Let q 2 [r,1]. By Hölder’s inequality, for u, v 2 X(T ), and
if p0 denotes the conjugate to p, then we have

k|u(s, ·)|p � |v(s, ·)|pkLq

.
⇣Z

Rn

|u(s, x)� v(s, x)|q
⇣
|u(s, x)|p�1 + |v(s, x)|p�1

⌘q

dx
⌘ 1

q

.
⇣Z

Rn

|u(s, x)� v(s, x)|pq dx
⌘ 1

pq
⇣Z

Rn

⇣
|u(s, x)|p�1+|v(s, x)|p�1

⌘qp
0

dx
⌘ 1

qp0

. ku(s, ·)� v(s, ·)kLpqk|u(s, ·)|p�1 + |v(s, ·)|p�1k
Lqp0

. ku(s, ·)� v(s, ·)kLpq

�
k|u(s, ·)|p�1k

Lqp0 + k|v(s, ·)|p�1k
Lqp0

�

. ku(s, ·)� v(s, ·)kLpq

�
ku(s, ·)kp�1

Lqp0(p�1) + kv(s, ·)kp�1

Lqp0(p�1)

�

. ku(s, ·)� v(s, ·)kLpq

�
ku(s, ·)kp�1

Lpq + kv(s, ·)kp�1
Lpq

�

. (1 + s)�p(�r,�
↵,p,���)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Hence,

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)kLq . Iq(t)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

. (1 + t)��
r,�
↵,q,�+�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

We deduce that

kPu� PvkX(T ) = kN0
↵,�

(u)�N0
↵,�

(v)kX(T )

. ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Notice that p > p↵,�,�,r,� for all � > 0 if and only if p > p↵,�,�,r.

Remark 6.19. All the estimates (6.30) and (6.31) are uniformly with respect to T 2 (0,1) if
p > p↵,�,�,r(n).

From (6.30) it follows that P maps X(T ) into itself for all T and for small data. By standard
contraction arguments (see [18]) the estimates (6.30) and (6.31) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3) with m = 0, that is, the solution of (6.3) with
m = 0 satisfies (6.26). Since all constants are independent of T we let T tend to 1 and we
obtain a global (in time) existence result for small data solutions to (6.3).
Finally, let us discuss the continuity of the solution with respect to t. The solution satisfies the
operator equation

u(t) = G0
↵,�

(t) ⇤ u0 +N0
↵,�

(u)(t).

The above estimates for N0
↵,�

(u) and the integral term
R

t

0 in N0
↵,�

(u) imply for all T > 0

N0
↵,�

(u) 2 C
�
[0, T ], Lr(Rn) \ L1(Rn)

�

with lim
t!+0

kN0
↵,�

(u)(t, ·)kLr\L1 = 0. (6.35)
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Proposition 6.17 gives

G0
↵,�

(t) ⇤ u0 2 C
�
[0, T ], Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1). (6.36)

Consequently,
u 2 C

�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1)

what we wanted to have.
If the data are large, then instead we get for p > 1 the estimates

kPukX(T )  Cku0kLr\L1 + C(T )kukp
X(T ),

kPu� PvkX(T )  C(T )ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
,

where C(T ) tends to 0 for T ! +0. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only. The proof is complete.

Proof of Theorem 6.4

If 1  n < 2�r
1+↵

, then for all q 2 [r,1] we obtain

n(1 + ↵)

2�

⇣1
r
� 1

q

⌘
< 1� n(1 + ↵)

2�q
 1.

Hence, we can choose a positive � such that there does not exist any q 2 [r,1] which satisfies
(6.29). For this reason,

�r,�

↵,q,�
= �r

↵,q,�
:=

n(1 + ↵)

2�

⇣1
r
� 1

q

⌘
.

We define the space
X(T ) := L1�(0, T ), Lr(Rn) \ L1(Rn)

�

with the norm

kukX(T ) := esssup
t2(0,T )

�
(1 + t)��ku(t, ·)kLr + (1 + t)�

r
↵,1,���ku(t, ·)kL1

 
,

where �r

↵,1,�
= n(1+↵)

2�r . For any u 2 X(T ), we consider for m = 0 the operator

P : X(T ) �! X(T ), Pu := (G0
↵,�

(t) ⇤ u0)(t, x) +N0
↵,�

(u)(t, x).

We shall prove that

kPukX(T ) . ku0kLr\L1 + kukp
X(T ), (6.37)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.38)
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For the proof of (6.37), after taking into consideration the estimates (6.26), we have

kG0
↵,�

(t) ⇤ u0kX(T )

= esssup
t2(0,T )

�
(1 + t)��k(G0

↵,�
(t) ⇤ u0)(t, ·)kLr

+(1 + t)�
r
↵,1,���k(G0

↵,�
(t) ⇤ u0)(t, ·)kL1

 

. ku0kLr\L1 .

It remains to prove that kN0
↵,�

(u)kX(T ) . kukp
X(T ). If u 2 X(T ), then we derive by interpolation

the following estimate:

ku(t, ·)kLq . (1 + t)��
r
↵,q,�+�kukX(T ) for all q 2 [r,1]. (6.39)

Consequently,

k|u(t, ·)|pkLq . ku(t, ·)kp
Lpq . (1 + t)�p(�r

↵,pq,���)kukX(T )

. (1 + t)�p(�r
↵,p,���)kukX(T )

(6.40)

for any q 2 [r,1] and due to �r

↵,pq,�
� �r

↵,p,�
. Thanks to (6.26) and (6.40) we can estimate

kN0
↵,�

(u)(t, ·)kLq . kukX(T )Iq(t) for all t 2 [0, T ] and q 2 [r,1], (6.41)

where
Iq(t) =

Z
t

0

(1 + t� ⌧)��
r
↵,q,�

Z
⌧

0

(⌧ � s)↵�1(1 + s)�p(�r
↵,p,���) ds d⌧.

We notice that p(�r

↵,p,�
� �) > 1 if and only if

p > pr
↵,�,�

(n) := 1 +
n(r � 1)(1 + ↵) + 2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �)

under the assumptions 1  � < ↵+1
2� and 1  r < ↵+1

2�� . Consequently, by using Lemma 6.39 we
may estimate as follows:

Iq(t) .
Z

t

0

(1 + t� ⌧)��
r
↵,q,�(1 + ⌧)↵�1 d⌧ . (1 + t)��

r
↵,q,�+�,

thanks to the fact that �r

↵,q,�
2 (0, 1) and ↵ 2 (0, 1). Therefore (6.40) gives

kN↵,�(u)kX(T ) . kukp
X(T ).

The proof of (6.38) is similar to the proof of (6.31) of Theorem 6.3. Then we may conclude a
uniquely determined solution

u 2 L1�(0, T ), Lr(Rn) \ L1(Rn)
�

for all T > 0.

As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to

C
�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

The proof is complete.
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Proof of Theorem 6.5

We define the solution space

X(T ) := L1�(0, T ), H�

r
(Rn) \ L1(Rn)

�

with the norm

kukX(T ) := esssup
t2(0,T )

�
(1 + t)��ku(t, ·)kH�

r

+ (1 + t)1����
�
ku(t, ·)kLq + ku(t, ·)kL1

� 
,

where q is defined as in Section 6.6. For any u 2 X(T ), we consider for m = 0 the operator

P : X(T ) �! X(T ), Pu := (G0
↵,�

(t) ⇤ u0)(t, x) +N0
↵,�

(u)(t, x).

We shall prove that

kPukX(T ) . ku0kH�
r \L1 + kukp

X(T ), (6.42)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.43)

For the proof of (6.42), after taking account of the estimates (6.26) and (6.25) we have

kG0
↵,�

(t) ⇤ u0kX(T )

= esssup0tT

�
(1 + t)��k(G0

↵,�
(t) ⇤ u0)(t, ·)kH�

r

+ (1 + t)1����
�
k(G0

↵,�
(t) ⇤ u0)(t, ·)kLq + k(G0

↵,�
(t) ⇤ u0)(t, ·)kL1

� 

. ku0kH�
r \L1 .

It remains to prove for m = 0 that kN0
↵,�

(u)kX(T ) . kukp
X(T ). If u 2 X(T ), then we derive by

interpolation the following estimate:

ku(t, ·)kLq . (1 + t)��
r,�
↵,q,�+�kukX(T ) for all q 2 [r,1]. (6.44)

Moreover, we have
ku(t, ·)k

Ḣ
�
r
. (1 + t)�kukX(T ). (6.45)

As in Section 6.6 we deduce

kN0
↵,�

(u)(t, ·)kLq . (1 + t)��
r,�
q,�+�kukX(T ) for all t 2 [0, T ] and q 2 [r,1],

if and only if
p > p↵,�,�,r,� := max

n
pr
↵,�,�

(n);
1

1� � � �

o
.

73



CHAPTER 6. GLOBAL EXISTENCE OF SMALL DATA SOLUTIONS TO SEMI-LINEAR
FRACTIONAL ��EVOLUTION EQUATIONS WITH MASS OR POWER
NON-LINEARITY 74

Now let us turn to the desired estimate of the norm kNm

↵,�
(u)(t, ·)k

Ḣ
�
r
. We need to estimate the

norm k|u(t, ·)|pk
Ḣ

�
r
. Applying Proposition 6.34, with p > max{2; �}, we obtain

k|u(t, ·)|pk
Ḣ

�
r
. ku(t, ·)k

Ḣ
�
r
ku(t, ·)kp�1

L1

. (1 + t)�kukX(T )(1 + t)(p�1)(�+��1)kukp�1
X(T ) (6.46)

. (1 + t)��(p�1)(1����)kukp
X(T )

. (1 + t)�((p�1)(1����)��)kukp
X(T ).

Then
kN0

↵,�
(u)(t, ·)k

Ḣ
�
r
. kukX(T )Ir(t) for all t 2 [0, T ], (6.47)

where
Ir(t) =

Z
t

0

Z
⌧

0

(⌧ � s)↵�1(1 + s)�((p�1)(1����)��) ds d⌧. (6.48)

If
p > max{p0(�, �); �},

where p0(�, �) = 1 + 1+�

1����
, then

Ir(t) . (1 + t)↵ . (1 + t)�.

We remark that p0(�, �) > 1
1����

and also p0(�, �) > 2. Then we deduce that

kN0
↵,�

(u)kX(T ) . kukp
X(T )

if and only if
p > p1

↵,�,�,r,�,�
:= max{pr

↵,�,�
(n); p0(�, �); �}.

Finally, we have to show (6.43). From Section 6.6 we get for m = 0 the estimate

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)kLq

. (1 + t)��
r,�
↵,q,�+�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

for all t 2 [0, T ] and q 2 [r,1]. It remains to prove

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)k
Ḣ

�
r

. (1 + t)�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

From the above considerations it is sufficient to prove that

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

. (1 + s)�+(p�1)(�+��1)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.
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By using the integral representation

|u(s, ·)|p � |v(s, ·)|p = p

Z 1

0

(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·)) d!, (6.49)

where Q(u) = u|u|p�2, we obtain

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
R 1

0 k|D|�
�
(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·))

�
kLr d!.

(6.50)

Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in Ḣ�

r
(Rn)

we get

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
Z 1

0

k|D|�
�
u(s, ·)� v(s, ·)

�
kLrkQ(!u(s, x) + (1� !)v(s, x))kL1 d!

+

Z 1

0

ku(s, ·)� v(s, ·)kL1k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. k|D|�
�
u(s, ·)� v(s, ·)

�
kLr

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. ku(s, ·)� v(s, ·)k
Ḣ

�
r

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. (1 + s)�+(p�1)(�+��1)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

+ (1 + s)�+��1ku� vkX(T )

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!.

We apply again Proposition 6.34 to estimate the term inside of the integral. In this way we
obtain

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLrd!

.
Z 1

0

k|D|�(!u(s, ·) + (1� !)v(s, ·))kLr

⇥ k!u(s, ·) + (1� !)v(s, ·)kp�2
L1 d!

.
Z 1

0

(1 + s)�k!u+ (1� !)vkX(T )

⇥ (1 + s)(p�2)(�+��1)k!u+ (1� !)vkp�2
X(T )d!

.
Z 1

0

(1 + s)�+(p�2)(�+��1)k!u+ (1� !)vkp�1
X(T ) d!

. (1 + s)�+(p�2)(�+��1)
�
kukp�1

X(T ) + kvkp�1
X(T )

�
.
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Then

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r
. (1 + s)�+(p�1)(�+��1)

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Hence,

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)k
Ḣ

�
r

. (1 + t)�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

We deduce that

kPu� PvkX(T ) = kN0
↵,�

(u)�N0
↵,�

(v)kX(T )

. ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Notice that p > p1
↵,�,�,r,�,�

for all � > 0 if and only if p > p↵,�,�,r,�. Then we may conclude a
uniquely determined solution

u 2 L1�(0, T ), H�

r
(Rn) \ L1(Rn)

�
for all T > 0.

As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to

C
�
[0,1), H�

r
(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

If the data are large, then instead we get for p > 2 the estimates

kPukX(T )  Cku0kH�
r \L1 + C(T )kukp

X(T ),

kPu� PvkX(T )  C(T )ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
,

where C(T ) tends to 0 for T ! +0. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only. This completes the proof.

Proof of Theorem 6.6

We define the solution space

X(T ) := L1�(0, T ), H�

r
(Rn) \ L1(Rn)

�

with the norm

kukX(T ) := esssup
t2(0,T )

�
(1 + t)��ku(t, ·)kH�

r
+ (1 + t)�

r
↵,1,���ku(t, ·)kL1

 
,

where �r

↵,1,�
is defined as in Section 6.6. For any u 2 X(T ), we consider for m = 0 the operator

P : X(T ) �! X(T ), Pu := (G0
↵,�

(t) ⇤ u0)(t, x) +N0
↵,�

(u)(t, x).
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We shall prove that

kPukX(T ) . ku0kH�
r \L1 + kukp

X(T ), (6.51)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.52)

For the proof of (6.51), after taking account of the estimates (6.26) and (6.25) we have

kG0
↵,�

(t) ⇤ u0kX(T )

= esssup
t2(0,T )

�
(1 + t)��k(G0

↵,�
(t) ⇤ u0)(t, ·)kH�

r

+(1 + t)�
r
↵,1,���k(G0

↵,�
(t) ⇤ u0)(t, ·)kL1

� 

. ku0kH�
r \L1 .

It remains to prove for m = 0 that kN0
↵,�

(u)kX(T ) . kukp
X(T ). If u 2 X(T ), then we derive by

interpolation the following estimate:

ku(t, ·)kLq . (1 + t)��
r
↵,q,�+�kukX(T ) for all q 2 [r,1]. (6.53)

Moreover, we have
ku(t, ·)k

Ḣ
�
r
. (1 + t)�kukX(T ). (6.54)

As in Section 6.6 we deduce

kN0
↵,�

(u)(t, ·)kLq . (1 + t)��
r
↵,q,�+�kukX(T ) for all t 2 [0, T ] and q 2 [r,1],

if and only if
p > pr

↵,�,�
(n).

Now let us turn to the desired estimate of the norm kNm

↵,�
(u)(t, ·)k

Ḣ
�
r
. We need to estimate the

norm k|u(t, ·)|pk
Ḣ

�
r
. Applying Proposition 6.34 with p > max{2; �} we obtain

k|u(t, ·)|pk
Ḣ

�
r
. ku(t, ·)k

Ḣ
�
r
ku(t, ·)kp�1

L1

. (1 + t)�kukX(T )(1 + t)(p�1)(��
r
↵,1,�+�)kukp�1

X(T ) (6.55)

. (1 + t)��(p�1)(�r
↵,1,���)kukp

X(T )

. (1 + t)�((p�1)(�r
↵,1,���)��)kukp

X(T ).

Then
kN0

↵,�
(u)(t, ·)k

Ḣ
�
r
. kukX(T )Ir(t) for all t 2 [0, T ], (6.56)

where
Ir(t) =

Z
t

0

Z
⌧

0

(⌧ � s)↵�1(1 + s)�((p�1)(�r
↵,1,���)��) ds d⌧. (6.57)
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Notice that (p� 1)(�r

↵,1,�
� �)� � > 1 if and only if

p > p1
↵;�;�;r(n) = 1 +

2�r(1 + �)

(n� 2�r)(1 + ↵) + 2�r(1 + ↵� �))

under the assumptions 1  � < ↵+1
2� and 1 < r < ↵+1

2�� . If

p > p1
↵;�;�;r(n),

then
Ir(t) . (1 + t)�.

We remark that pr
↵,�,�

(n) � p1
↵;�;�;r(n) > 2 . Then we deduce that

kN0
↵,�

(u)kX(T ) . kukp
X(T )

if and only if
p > max{pr

↵,�,�
(n); �}.

Finally, we have to show (6.43). From Section 6.6 we get for m = 0 the estimate

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)kLq

. (1 + t)��
r
↵,q,�+�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

for all t 2 [0, T ] and q 2 [r,1]. It remains to prove

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)k
Ḣ

�
r

. (1 + t)�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

From the above considerations it is sufficient to prove that

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

. (1 + s)�+(p�1)(��
r
↵,1,�+�)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

By using the integral representation

|u(s, ·)|p � |v(s, ·)|p = p

Z 1

0

(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·)) d!, (6.58)

where Q(u) = u|u|p�2, we obtain

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
R 1

0 k|D|�
�
(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·))

�
kLr d!.

(6.59)
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Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in Ḣ�

r
(Rn)

we get

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
Z 1

0

k|D|�
�
u(s, ·)� v(s, ·)

�
kLrkQ(!u(s, x) + (1� !)v(s, x))kL1 d!

+

Z 1

0

ku(s, ·)� v(s, ·)kL1k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. k|D|�
�
u(s, ·)� v(s, ·)

�
kLr

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. ku(s, ·)� v(s, ·)k
Ḣ

�
r

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. (1 + s)�+(p�1)(��
r
↵,1,�+�)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

+ (1 + s)��
r
↵,1,�+�ku�vkX(T )

Z 1

0

k|D|�Q(!u(s, ·)+(1� !)v(s, ·))kLr d!.

We apply again Proposition 6.34 to estimate the term inside of the integral. In this way we
obtain

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLrd!

.
Z 1

0

k|D|�(!u(s, ·) + (1� !)v(s, ·))kLr

⇥ k!u(s, ·) + (1� !)v(s, ·)kp�2
L1 d!

.
Z 1

0

(1 + s)�k!u+ (1� !)vkX(T )

⇥ (1 + s)(p�2)(��
r
↵,1,�+�)k!u+ (1� !)vkp�2

X(T )d!

.
Z 1

0

(1 + s)�+(p�2)(��
r
↵,1,�+�)k!u+ (1� !)vkp�1

X(T ) d!

. (1 + s)�+(p�2)(��
r
↵,1,�+�)

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Then

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r
. (1 + s)�+(p�1)(��

r
↵,1,�+�)

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Hence,

kN0
↵,�

(u)(t, ·)�N0
↵,�

(v)(t, ·)k
Ḣ

�
r

. (1 + t)�ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].
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We deduce that

kPu� PvkX(T ) = kN0
↵,�

(u)�N0
↵,�

(v)kX(T )

. ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Summarizing we may conclude a uniquely determined solution

u 2 L1�(0, T ), H�

r
(Rn) \ L1(Rn)

�
for all T > 0.

As at the end of the proof of Theorem 6.3 we verify that the solution u belongs even to

C
�
[0,1), H�

r
(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

If the data are large, then instead we get for p > 2 the estimates

kPukX(T )  Cku0kH�
r \L1 + C(T )kukp

X(T ),

kPu� PvkX(T )  C(T )ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
,

where C(T ) tends to 0 for T ! +0. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only.
This completes the proof.

Proof of Theorem 6.7

We recall that the solution of (6.3) is given by

u(t, x) = (Gm

↵,�
(t) ⇤ u0)(t, x) +Nm

↵,�
(u)(t, x).

Let T > 0. We define the space

X(T ) := C
�
[0, T ];Lr(Rn) \ L1(Rn)

�

with the norm
kukX(T ) := sup

0tT

�
(1 + t)1�↵

�
ku(t, ·)kLr + ku(t, ·)kL1

� 
.

For any u 2 X(T ) we consider the operator

P : X(T ) ! X(T ), Pu := (Gm

↵,�
(t) ⇤ u0)(t, x) +Nm

↵,�
(u)(t, x).

We shall prove that

kPukX(T ) . ku0kLr\L1 + kukp
X(T ), (6.60)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.61)
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After proving (6.60) and (6.61) we may conclude the global (in time) result of small data solutions
in Theorem 6.7. Due to Proposition 6.18 we know that

Gm

↵,�
(t) ⇤ u0 2 C

�
[0,1), Lr(Rn) \ L1(Rn)

�
.

By using (6.27) we have

kGm

↵,�
(t) ⇤ u0kX(T )

= sup
0tT

�
(1 + t)1�↵

�
k(Gm

↵,�
(t) ⇤ u0)(t, ·)kLr+k(Gm

↵,�
(t) ⇤ u0)(t, ·)kL1

� 

. sup
0tT

�
(1 + t)1�↵(1 + t)�(1+↵)

 
ku0kLr\L1

. sup
t�0

�
(1 + t)1�↵(1 + t)�(1+↵)

 
ku0kLq\L1 . ku0kLr\L1 . (6.62)

It remains to prove kNm

↵,�
ukX(T ) . kukp

X(T ). If u 2 X(T ), then by interpolation we derive

ku(t, ·)kLq . (1 + t)↵�1kukX(T ) for all t 2 [0, T ] and q 2 [r,1].

On the other hand, we have

k|u(t, ·)|pkLq  ku(t, ·)kp
Lpq . (1 + t)�p(1�↵)kukp

X(T )

for all t 2 [0, T ] and q 2 [r,1].
(6.63)

Thanks to (6.27) and (6.63) we may derive the estimate

kNm

↵,�
u(t, ·)kLq . kukp

X(T )I(t) for all t 2 [0, T ] and q 2 [r,1], where

I(t) =

Z
t

0

(1 + t� ⌧)�(1+↵)

Z
⌧

0

(⌧ � s)↵�1(1 + s)�p(1�↵) ds d⌧. (6.64)

We are interested to estimate the right-hand side of (6.64). For this we need the Lemma 6.39.
We put

!(⌧) =

Z
⌧

0

(⌧ � s)↵�1(1 + s)�p(1�↵) ds.

Thanks to Lemma 6.39 we obtain

!(⌧) .

8
><

>:

(1 + ⌧)↵�1 if p > 1
1�↵

,

(1 + ⌧)↵�1 ln(2 + ⌧) if p = 1
1�↵

,

(1 + ⌧)↵�p(1�↵) if p < 1
1�↵

.

(6.65)

If we assume that p > 1
1�↵

, then we obtain !(⌧) . (1 + ⌧)↵�1.
Hence,

I(t) .
Z

t

0

(1 + t� ⌧)�(1+↵)!(⌧) d⌧ .
Z

t

0

(1 + t� ⌧)�(1+↵)(1 + ⌧)↵�1 d⌧. (6.66)

81



CHAPTER 6. GLOBAL EXISTENCE OF SMALL DATA SOLUTIONS TO SEMI-LINEAR
FRACTIONAL ��EVOLUTION EQUATIONS WITH MASS OR POWER
NON-LINEARITY 82

Once more we apply Lemma 6.39 to (6.66) to obtain I(t) . (1 + t)↵�1.

Hence, kNm

↵,�
ukX(T ) . kukp

X(T ). Finally, it remains to show (6.61). Let r 2 [q,1]. By Hölder’s
inequality, for u, v 2 X(T ), and if p0 denotes the conjugate to p, then we have

k|u(s, ·)|p � |v(s, ·)|pkLq

.
⇣Z

Rn

|u(s, x)� v(s, x)|q
⇣
|u(s, x)|p�1 + |v(s, x)|p�1

⌘q

dx
⌘ 1

q

.
⇣Z

Rn

|u(s, x)� v(s, x)|pq dx
⌘ 1

pq
⇣Z

Rn

⇣
|u(s, x)|p�1+|v(s, x)|p�1

⌘qp
0

dx
⌘ 1

qp0

. ku(s, ·)� v(s, ·)kLpqk|u(s, ·)|p�1 + |v(s, ·)|p�1k
Lqp0

. ku(s, ·)� v(s, ·)kLpq

�
k|u(s, ·)|p�1k

Lqp0 + k|v(s, ·)|p�1k
Lqp0

�

. ku(s, ·)� v(s, ·)kLpq

�
ku(s, ·)kp�1

Lqp0(p�1) + kv(s, ·)kp�1

Lqp0(p�1)

�

. ku(s, ·)� v(s, ·)kLpq

�
ku(s, ·)kp�1

Lpq + kv(s, ·)kp�1
Lpq

�

. (1 + s)�p(1�↵)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Hence,

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kLq . I(t)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

We deduce that

kPu� PvkX(T ) = kNm

↵,�
(u)�Nm

↵,�
(v)kX(T )

. ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Remark 6.20. All estimates (6.60) and (6.61) are uniformly with respect to T 2 (0,1) if
p > 1

1�↵
.

From (6.60) it follows that P maps X(T ) into itself for all T and for small data. By standard
contraction arguments (see [18]) the estimates (6.60) and (6.61) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3), that is, the solution of (6.3) satisfies (6.62). Since
all constants are independent of T we let T tend to 1 and we obtain a global (in time) existence
result for small data solutions to (6.3).
If the data are large, then instead we get for p > 1 the estimates

kPukX(T )  Cku0kLr\L1 + C(T )kukp
X(T ),

kPu� PvkX(T )  C(T )ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
,

where C(T ) tends to 0 for T ! +0. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only. This completes the proof.
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Proof of Theorem 6.8

Let T > 0. We define the space

X(T ) := C
�
[0, T ], H�

r
(Rn) \ L1(Rn)

�

with the norm
kukX(T ) := sup

0tT

�
(1 + t)1�↵

�
ku(t, ·)kH�

r
+ ku(t, ·)kL1

� 
.

For any u 2 X(T ) we consider the operator

P : X(T ) ! X(T ), Pu := (Gm

↵,�
(t) ⇤ u0)(t, x) +Nm

↵,�
(u)(t, x).

We shall prove that

kPukX(T ) . ku0kH�
r \L1 + kukp

X(T ), (6.67)

kPu� PvkX(T ) . ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
. (6.68)

After proving (6.67) and (6.68) we may conclude the global (in time) existence result of small
data solutions in Theorem 6.8. Due to Proposition 6.18 we know that

Gm

↵,�
(t) ⇤ u0 2 C

�
[0,1), H�

r
(Rn) \ L1(Rn)

�
.

By using (6.27) we have

kGm

↵,�
(t) ⇤ u0kX(T )

= sup
0tT

�
(1 + t)1�↵

�
k(Gm

↵,�
(t) ⇤ u0)(t, ·)kH�

r
+ k(Gm

↵,�
(t) ⇤ u0)(t, ·)kL1

� 

. sup
0tT

�
(1 + t)1�↵(1 + t)�(1+↵)

 
ku0kH�

r

. sup
t�0

�
(1 + t)1�↵(1 + t)�(1+↵)

 
ku0kH�

r
. ku0kH�

r \L1 . (6.69)

It remains to prove kNm

↵,�
ukX(T ) . kukp

X(T ). If u 2 X(T ), then we derive

ku(t, ·)kH�
r \L1 . (1 + t)↵�1kukX(T ).

On the other hand, applying Proposition 6.33 with p > max{2; �} we obtain

k|u(t, ·)|pkH�
r
. ku(t, ·)kH�

r
ku(t, ·)kp�1

L1

. (1 + t)↵�1kukX(T )(1 + t)(p�1)(↵�1)kukp�1
X(T ) (6.70)

. (1 + t)�p(1�↵)kukp
X(T ).

Moreover, we have

k|u(t, ·)|pkL1 . (ku(t, ·)kL1)p . (1 + t)�p(1�↵)kukp
X(T ). (6.71)
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Thanks to (6.28), (6.70) and (6.71) we may derive the estimates

kNm

↵,�
u(t, ·)kH�

r
. kukp

X(T )I(t) for all t 2 [0, T ],

kNm

↵,�
u(t, ·)kL1 . kukp

X(T )I(t) for all t 2 [0, T ],

where I(t) is as in (6.64). We recall that we obtain I(t) . (1 + t)↵�1 for p > 1
1�↵

. Hence,
kNm

↵,�
ukX(T ) . kukp

X(T ). Finally, it remains to show (6.68). We have

k|u(s, ·)|p � |v(s, ·)|pkL1 . ku(s, ·)� v(s, ·)kL1
�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

. (1 + s)�p(1�↵)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Hence,

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kL1 . I(t)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

It remains to prove

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kH�

r
. I(t)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

We have

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kH�

r

⇡ kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kLr + kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)k

Ḣ
�
r
.

Here f ⇡ g means that g . f . g. As above we have

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)kLr

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

It remains to prove

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)k

Ḣ
�
r

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ],

that is, it is sufficient to prove that

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r
. (1 + s)�p(1�↵)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

By using the integral representation

|u(s, ·)|p � |v(s, ·)|p = p

Z 1

0

(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·)) d!,
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where Q(u) = u|u|p�2, we obtain

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
Z 1

0

k|D|�
�
(u(s, ·)� v(s, ·))Q(!u(s, ·) + (1� !)v(s, ·))

�
kLr d!.

Applying the fractional Leibniz formula from Proposition 6.36 to estimate a product in Ḣ�

r
we

get

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r

.
Z 1

0

k|D|�
�
u(s, ·)� v(s, ·)

�
kLrkQ(!u(s, x) + (1� !)v(s, x))kL1 d!

+

Z 1

0

ku(s, ·)� v(s, ·)kL1k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. k|D|�
�
u(s, ·)� v(s, ·)

�
kLr

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. ku(s, ·)� v(s, ·)k
Ḣ

�
r

�
ku(s, ·)kp�1

L1 + kv(s, ·)kp�1
L1

�

+ ku(s, ·)� v(s, ·)kL1

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

. (1 + s)�p(1�↵)ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�

+ (1 + s)�(1�↵)ku� vkX(T )

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!.

We apply again the Proposition 6.34 to estimate the term in the integral. In this way we may
conclude

Z 1

0

k|D|�Q(!u(s, ·) + (1� !)v(s, ·))kLr d!

.
Z 1

0

k|D|�(!u(s, ·) + (1� !)v(s, ·))kLr

⇥ k!u(s, ·) + (1� !)v(s, ·)kp�2
L1 d!

.
Z 1

0

(1 + s)�(1�↵)k!u+ (1� !)vkX(T )

⇥ (1 + s)�(p�2)(1�↵)k!u+ (1� !)vkp�2
X(T ) d!

.
Z 1

0

(1 + s)�(p�1)(1�↵)k!u+ (1� !)vkp�1
X(T ) d!

. (1 + s)�(p�1)(1�↵)
�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Then

k|u(s, ·)|p � |v(s, ·)|pk
Ḣ

�
r
. (1 + s)�p(1�↵)

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.
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Hence,

kNm

↵,�
(u)(t, ·)�Nm

↵,�
(v)(t, ·)k

Ḣ
�
r

. (1 + t)↵�1ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
for all t 2 [0, T ].

We deduce that

kPu� PvkX(T ) = kNm

↵,�
(u)�Nm

↵,�
(v)kX(T )

. ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(T )

�
.

Remark 6.21. All estimates (6.67) and (6.68) are uniformly with respect to T 2 (0,1) if
p > max{2; �; 1

1�↵
}.

From (6.67) it follows that P maps X(T ) into itself for all T and for small data. By standard
contraction arguments (see [18]) the estimates (6.67) and (6.68) lead to the existence of unique
solution to u = Pu and, consequently, to (6.3), that is, the solution of (6.3) satisfies the desired
decay estimate. Since all constants are independent of T , after letting T tend to 1 we obtain
a global (in time) existence result for small data solutions to (6.3). If the data are large, then
instead we get for p > 2 the estimates

kPukX(T )  Cku0kH�
r \L1 + C(T )kukp

X(T ),

kPu� PvkX(T )  C(T )ku� vkX(T )

�
kukp�1

X(T ) + kvkp�1
X(X)

�
,

where C(T ) tends to 0 for T ! +0. For this reason we can have for general (large) data a local
(in time) existence result of weak solutions only. By the same argument as above we obtain the
desired results. The proof is complete.

6.7 Appendix

In this chapter we present results that we have already used in the demonstrations of Chapter 5
and Chapter 6.

Lemma 6.22. Let a(·) satisfy the hypothesis 5.2, then the integral
R 1

0
dx

a(x) is finite for ↵ 2 (0, 1)

and
R 1

0
dxp
a(x)

is finite for ↵ 2 [1, 2).

Remark 6.23. For ↵ 2 (1, 2), the integral
R 1

0
1

a(x)dx could be finite or infinite, for example
consider the functions a(x) = xre(↵�r)x where r  ↵.

Proof. Since xa0(x)  ↵a(x) for all x, the function x 7! a(x)
x↵ is decreasing on (0, 1), so a(x) �

a(1)x↵ and for ↵ < 1 Z 1

0

dx

a(x)

Z 1

0

dx

a(1)x↵
< +1.
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⇤

Lemma 6.24. ( Hardy Inequality) (voir [6])
We assume that ↵ 2 (0, 1), then, for all u 2 H1

a
(0, 1) such that u(0) = 0, we have

Z 1

0

a(x)

x2
u2(x)dx  4

(1� ↵)2

Z 1

0

a(x)|u0(x)|2dx. (6.72)

Lemma 6.25. For ↵ 2 (0, 2) and for all u 2 H1
a
(0, 1), we have lim

x!0
xu2 = 0 and lim

x!0
xu = 0.

Proof. At first, we show that xu2 2 W 1,1. It’s obvious that xu2 2 L1(0, 1) for each u 2 H1
a
(0, 1).

On the other hand

(xu2)x = u2 + 2xuux,

xuux =
� xp

a(x)
u
�
(
p

a(x)ux),

and by the Hypothesis 5.2 we can easily see that the function x 7! x
2

a(x) is increasing, so

xp
a(x)

 1p
a(1)

) xp
a(x)

u 2 L2(0, 1) ) xuux 2 L1(0, 1).

Hence xu2 2 W 1,1(0, 1) and it follows that xu2 �! L � 0 when x �! 0. If L > 0, so we could
have

u ⇠
r

L

x
/2 L2(0, 1),

so L = 0. Similarly we can see that lim
x!0

xu = 0.

⇤

Lemma 6.26. Assume that ↵ 2 [1, 2). Then for all u 2 H1
a
(0, 1) such that (aux)x 2 L2(0, 1),

we have aux 2 W 1,1(0, 1).

Proof. Note that w = a(x)ux and choose M > 0, such that a(x)  M for all x 2 [0, 1]. we have

Z 1

0

|w|dx =

Z 1

0

|a(x)ux|dx 

sZ 1

0

a(x)2u2
x
dx 

s

M

Z 1

0

a(x)u2
x
dx < +1

since u 2 H1
a
(0, 1). On the other hand, starting from the inclusion L2(0, 1) in L1(0, 1) and the

fact that wx is in L2(, 1), we deduce that wx is in L1(0, 1). Therefore, w 2 W 1,1(0, 1).
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Let us mention that for the well-posedness of boundary conditions in problem (??), we need
to de

ne the trace of u at boundary points x = 0 and x = 1 for any u 2 H1
a
(0, 1). The trace at

x = 1 obviously makes sense which allows to consider the Dirichlet boundary condition at this
point. (Note that the function u 2 H1

a
(0, 1) belongs to the Sobolev space W 1,2 in a neighborhood

of x = 1). On the other hand, if ↵ < 1, the trace of u at x = 0 is meaningful because of the
following lemma.

Lemma 6.27. If a(·) satis
es Hypothesis 5.2 and ↵ 2 (0, 1), then for every u 2 H1

a
(0, 1) we have u 2 W 1,1(0, 1) = {u 2

L1(0, 1) : ux 2 L1(0, 1)} and so u(0) is meaningful.. Thus we could introduce the following space
H1

a
(0, 1) depending on the values of ↵.

Proof. For any u 2 H1
a
(0, 1) we have u 2 L2(0, 1), so u 2 L1(0, 1). We prove that ux 2 L1(0, 1).

Z 1

0

|ux|dx =

Z 1

0

|
p

a(x)ux

1p
a(x)

|dx 
� Z 1

0

1

a(x)
dx

Z 1

0

a(x)u2
x
dx
� 1

2

But by Lemma 6.22 the integral
R 1

0
1

a(x)dx is finite, so ux 2 L1(0, 1). Now, consider a sequence
{un} of smooth functions which converge to u in W 1,1(0, 1) and let � be a smooth cut-of function
such that �|[0, 12 ] ⌘ 1 and � vanishes in some neighbourhood of 1. Then we have �un �! �u in
W 1,1. On the other hand for every x, we have �un(x) = �

R 1

0 (�un)x(t)dt, which means that the
lim
x!0

�un(x) exist, so lim
x!0

un(x) exist et we define u(0) to be equal to this value.

⇤

Proposition 6.28. 1. For ↵ 2 (0, 1) the space C1
c
(0, 1) is dense in H1

a,0(0, 1)

2. In the case ↵ 2 [1, 2) the subset of C1([0, 1]) which vanishes at x = 1 is dense in H1
a,0(0, 1).

Proof. (1): Since C1
c
(0, 1) is dense in H1

0 (0, 1) and the embedding of H1
0 (0, 1) in H1

a,0(0, 1) est
continu, is continuous, it suffices to prove that H1

0 (0, 1) is dense in H1
a,0(0, 1). Let v 2 H1

a,0(0, 1)

be given and define the family {v�}��0, with � 2 (0, 1) in the following way

v�(x) :=

(
x

�
v(x), 0  x  �,

v(x), � < x  1.

We want to show that:
(1) v� 2 H1

0 (0, 1) for all � 2 (0, 1).
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(2) v� ! v in H1
a,0(0, 1) as � ! 0. One has

Z 1

0

|v0
�
(x)|2dx =

Z
�

0

|1
�
v(x) +

x

�
v0(x)|2dx+

Z 1

�

|v0(x)|2dx

 2

Z
�

0

1

�2
|v(x)|2 + x2

�2
|v0(x)|2dx+

Z 1

�

|v0(x)|2dx. (6.73)

By Hypothesis 5.2 , the function x 7! a(x)
x2 is decreasing on (0, 1], so a(x) � a(1)x2 for every

x 2 [0, 1]. Therefore for every � > 0 we have
Z

�

0

x2

�2
|v0(x)|2dx  1

a(1)�2

Z
�

0

a(x)|v0(x)|2dx. (6.74)

On the other hand, since a(x) > 0 on (0, 1], there exists M� > 0 such that a(x) � M� in [�, 1], so
Z 1

0

|v0(x)|2dx  M�1
�

Z 1

�

+a(x)|v0(x)|2dx (6.75)

Combining (6.73), (6.74) and (6.75) nous obtenons C� > 0 such that
Z 1

0

|v0
�
(x)|2dx  C�

Z 1

0

|v(x)|2 + a(x)|v0(x)|2dx.

The right part of the last inequality is
nite since v 2 H1

a
(0, 1). Then v� 2 H1

0 (0, 1). Also

kv � v�k2H1
a,0

=

Z 1

0

|v � v�|2 + a(x)|v0 � v0
�
|2dx

=

Z
�

0

|v � x

�
v|2dx+

Z
�

0

a(x)|v0 � v

�
� x

�
v0|2dx


Z

�

0

v2dx+ 2

Z
�

0

a(x)|v0|2dx+ 2

Z
�

0

a(x)
v2

�2
dx.

Now
R

�

0 v2dx+2
R

�

0 a(x)|v0|2dx ! 0 as � ! 0, since v 2 H1
a,0(0, 1). On the other hand by Lemma

6.24, we obtain
Z

�

0

a(x)
v2

�2
dx 

Z
�

0

a(x)
v2

x2
dx  4

(1� ↵)2

Z
�

0

a(x)|v0(x)|2dx.

Indeed, we can rewrite the proof of Lemma 6.24 in the interval [0, �] instead of [0, 1] and derive
a new inequality with the same constant 4

(1�↵)2 . Now, the right part of the last inequality tends
to zero � ! 0, because v 2 H1

a,0(0, 1) and the proof of (1) is complete.
(2): Similarly in this case, for v 2 H1

a,0(0, 1) it suffices to construct functions {v�}��0 such that
(1) v� 2 H1(0, 1) and v�(1) = 0.
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(2) v� ! v in H1
a,0(0, 1) as � ! 0.

Defi
ne

v�(x) :=

(
v(2� � x), 0  x  �,

v(x), � < x  1.

we have

v0
�
(x) :=

(
�v0(2� � x), 0 < x < �,

v0(x), � < x < 1.

Since a(·) is strictly positive on (0, 1) and in the computing of
R 1

0 |v0
�
|2dx, we are far from the

boundary, it is easy to see that v� 2 H1(0, 1). Also

kv� � vk2
H1

a(0,1)
= kv� � vk2

H1
a(0,�)

 2[kvk2
H1

a(0,�)
+kv�k2H1

a(0,�)
].

Since v 2 H1
a
(0, 1), the term kvk2

H1
a(0,�)

tends to zero as � ! 0. Also if �  �0/2 where �0 is the
constant introduced in property (3) of Hypothesis 5.2, then

Z
�

0

v2
�
(x) + a(x)|v0

�
(x)|2dx =

Z
�

0

v2(2� � x) + a(x)|v0(2� � x)|2dx


Z 2�

�

v2(x) +
1

m

Z 2�

�

a(x)|v0(x)|2dx,

which tends to zero as � ! 0. Observe that v�(1) = 0, so the subset of C1([0, 1]) which vanishes
at x = 1 is dense in H1

a,0(0, 1).

Modified Bessel functions

Definition 6.29. The Bessel function Jµ of first kind and of order µ 2 R is defined by

Jµ(s) =
1X

k=0

(�1)k

k!�(k + µ+ 1)

⇣s
2

⌘2k+µ

,

where µ is not allowed to be a negative integer. The modified Bessel function J̃µ(s) is defined by
J̃µ(s) :=

Jµ(s)
sµ

.

Lemma 6.30. Let f 2 Lp(Rn), p 2 [1, 2], be a radial function. Then the inverse Fourier
transform is also a radial function and it satisfies

F�1(f)(x) =

Z 1

0

g(r)rn�1J̃n
2�1(r|x|) dr, g(|x|) := f(x).

Lemma 6.31. Assume that µ is not a negative integer. Then the following rules hold:
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1. sdsJ̃µ(s) = J̃µ�1(s)� 2µJ̃µ(s),

2. dsJ̃µ(s) = �sJ̃µ+1(s),

3. J̃�1/2(s) =
q

2
⇡
cos(s),

4. we have the relations

|J̃µ(s)|  Ce⇡|=µ| if |s|  1,

Jµ(s) = Cs�
1
2 cos

⇣
s� µ

2
⇡ � ⇡

4

⌘
+O(|s|� 3

2 ) if |s| � 1,

5. J̃µ+1(r|x|) = � 1
r|x|2@rJ̃µ(r|x|), r 6= 0, x 6= 0.

Mittag-Leffler function

The Mittag-Leffler function E� allows the following implicit definition:

�

�(�)

Z
t

0

(t� s)��1E�(�s
�) ds = E�(�t

�)� 1. (6.76)

The Mittag-Leffler function E�(�t�h⇠i2
m,�

) may be written in the following form:

E�(�t�h⇠i2
m,�

) =
1

�

⇣
exp

�
a�(t

�
2 h⇠im,�)

�
+ exp

�
b�(t

�
2 h⇠im,�)

�⌘

+ l�(t
�
2 h⇠im,�),

where

a�(y) = y
2
� exp(⇡i

�
) for y � 0,

b�(y) = y
2
� exp(�⇡i

�
) for y � 0,

l�(y) =

8
>>>>><

>>>>>:

sin(�⇡)
⇡

Z 1

0

y2s��1 exp(�s)

s2� + 2y2s� cos(�⇡) + y4
ds

= sin(�⇡)
�⇡

Z 1

0

exp(�y
2
� s

1
� )

s2 + 2s cos(�⇡) + 1
ds for y > 0,

1� 2
�

for y = 0.

Here � = 1 + ↵. The proof can be found in the paper [32].

Remark 6.32. We have also the relation

exp
�
a�(t

�
2 h⇠im,�)

�
+ exp

�
b�(t

�
2 h⇠im,�)

�

= 2eth⇠i
2

1+↵
m,� cos( ⇡

1+↵ ) cos
⇣
th⇠i

2
1+↵
m,� sin

⇣ ⇡

1 + ↵

⌘⌘

= 2e�cth⇠i
2

1+↵
m,� cos

⇣
th⇠i

2
1+↵
m,�

p
1� c2

⌘
, where c = � cos

⇣ ⇡

1 + ↵

⌘
.
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Results from Harmonic Analysis

We recall some results from Harmonic Analysis (cf. with [47]).

Proposition 6.33. Let r 2 (1,1), p > 1 and � 2 (0, p). Let Q(u) denote one of the functions
|u|p,±u|u|p�1. Then the following inequality holds:

kQ(u)kH�
r
. kukH�

r
kukp�1

L1

for any u 2 H�

r
(Rn) \ L1(Rn). Here we use for � � 0 and 1 < q < 1 the fractional Sobolev

spaces or Bessel potential spaces

H�

q
(Rn) :=

�
f 2 S 0(Rn) : kfkH�

q
:= kF�1(h⇠i�F (f))kLq < 1

 
.

Moreover, hDi� stands for the pseudo-differential operator with symbol h⇠i� and it is defined by
hDi�u = F�1(h⇠i�F (u)).

Proof. This result is a special case of the following more general inequality for Triebel-Lizorkin
spaces F �

r,q
:

kQ(u)kF�
r,q

. kukF�
r,q
kukp�1

L1 for any u 2 F �

r,q
\ L1,

where q > 0, whose proof may be found in [51, Theorem 1 in Section 5.4.3].

Proposition 6.34. Let r 2 (1,1), p > 1 and � 2 (0, p). Let Q(u) denote one of the functions
|u|p,±u|u|p�1. Then the following inequality holds:

kQ(u)k
Ḣ�

r
. kuk

Ḣ�
r
kukp�1

L1

for any u 2 Ḣ�

r
(Rn) \ L1(Rn), where

Ḣ�

q
(Rn) := {f 2 S 0(Rn) : kfk

Ḣ
�
q
:= kF�1(|⇠|�F (f))kLq < 1}.

Here |D|� stands for the pseudo-differential operator with symbol |⇠|� and it is defined by |D|�u =

F�1(|⇠|�F (u)).

Proof. We will use a homogeneity argument. For any positive � we define u�(x) = u(�x).
Applying Proposition 6.33 to u� we get

kQ(u�)kH�
r
. ku�kH�

r
ku�kp�1

L1 . (6.77)

Since for r 2 (1,1) we have the decomposition

kvkH�
r
⇡ kvk

Ḣ�
r
+ kvkLr for any v 2 H�

r

and the scaling properties

ku�kḢ�
r
= ���n

r kuk
Ḣ�

r
, ku�kLr = ��n

r kukLr and ku�kL1 = kukL1

diving both sides of (6.77) by ���n
r and taking the limit as � ! 1 we obtain the desired

inequality.
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Proposition 6.35. Let r 2 (1,1) and � > 0. Then the following inequality holds:

kuvkH�
r
. kukH�

r
kvkL1 + kukL1kvkH�

r

for any u, v 2 H�

r
\ L1.

Proof. The result that we want to prove is a special case of the following inequality for Triebel-
Lizorkin spaces F �

r,q
:

kuvkF�
r,q

. kukF�
r,q
kvkL1 + kukL1kvkF�

r,q

for any u, v 2 F �

r,q
\ L1, where q > 0, whose proof can be found in [51, Theorem 2 in Section

4.6.4].

Finally let us state the corresponding inequality in homogeneous spaces Ḣ�

r
. For the proof it

is possible to follow the same strategy as in the proof of Proposition 6.34.

Proposition 6.36 (Fractional Leibniz formula). Let r 2 (1,1) and � > 0. Then the following
inequality holds:

kuvk
Ḣ�

r
. kuk

Ḣ�
r
kvkL1 + kukL1kvk

Ḣ�
r

for any u, v 2 Ḣ�

r
(Rn) \ L1(Rn).

The following result was proposed and proved by Marcello D’Abbicco and already used in a
special case in [17]. We present the proof to make this chapter more self-contained.

Proposition 6.37. Let u0 2 Lr(Rn) \ L1(Rn), n � 1, r � 1 and ↵ 2 (0, 1). Then the function

u = u(t, x) =
�
G0

↵,�
(t) ⇤ u0

�
(t, x)

belongs to
C
�
[0,1), Lr(Rn) \ Lq(Rn)

�
for all q 2 [r,1).

Proof. Due to (6.6) we have

G0
↵,�

(t, x) =

Z

Rn

eix·⇠E↵+1

�
� t↵+1|⇠|2�

�
d⇠.

The estimate (6.9) from Proposition 6.10 implies G0
↵,�

(t, ·) 2 L1(Rn) for all t > 0. Moreover,
G0

↵,�
(t, ·) has the following scale-invariant property:

G0
↵,�

(t, x) = t�n�G0
↵,�

(1, t��x) with � =
↵ + 1

2�
. (6.78)

Consequently, we conclude for all t > 0 the relations

kG0
↵,�

(t, ·)kL1 = kG0
↵,�

(1, ·)kL1 (6.79)
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and
Z

Rn

G0
↵,�

(t, x)dx =

Z

Rn

G0
↵,�

(1, x)dx = 1. (6.80)

Let us choose a positive zero sequence {tl}l. We want to prove for a given g 2 Lp(Rn), p 2 [1,1),
that the sequence {Tl ⇤ g}l tends to g, where Tl(·) := G0

↵,�
(tl, ·). We have liml!1 Tl = �0 in the

distributional sense. Hence, liml!1 Tl ⇤ g = g in distributional sense, too. But, this implies the
desired relation

R
Rn G0

↵,�
(t, x)dx = 1. Otherwise, if we would have for t > 0 the relation
Z

Rn

G0
↵,�

(t, x)dx =

Z

Rn

G0
↵,�

(1, x)dx = M 2 C,

then we might conclude liml!1 Tl ⇤ g = Mg in the distributional sense, in contradiction to
liml!1 Tl = �0 in the distributional sense.
The scale-invariant property (6.78) implies for all positive �

Z

|x|��

|Tl(x)|dx ! 0 for l ! 1. (6.81)

Indeed, the relation (6.81) holds after taking account of
Z

|x|��

|Tl(x)|dx = t�n�

l

Z

|x|��

|G0
↵,�

(1, t��

l
x)|dx

=

Z

|y|�t
��
l �

|G0
↵,�

(1, y)|dy ! 0.

Let us choose a function g 2 Cc(Rn). We prove that the sequence {(Tl ⇤ g)(x)}l tends to g(x) for
all x 2 Rn. Using (6.80) we obtain

(Tl ⇤ g)(x)� g(x) =

Z

Rn

(g(x� y)� g(x))Tl(y)dy.

For a fixed positive " we choose  = (", x) such that |g(x� y)� g(y)| < " for |y| < . Then,

|(Tl ⇤ g)(x)� g(x)|  "

Z

|y|

|Tl(y)|dy + 2kgkL1

Z

|y|�

|Tl(y)|dy

 "(kG0
↵,�

(1, ·)kL1 + 2kgkL1)

for sufficiently large l = l(). This implies the desired relation liml!1(Tl ⇤ g)(x) = g(x) for all
x 2 Rn.
Applying Hölder’s inequality gives

|(Tl ⇤ g)(x)� g(x)|  k(g(x� ·)� g(x))Tl(·)kL1

 k|g(x� ·)� g(x)|pTl(·)k
1
p

L1kTl(·)k
1
p0

L1 ,
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where p0 is the conjugate exponent to p. From this estimate it follows

k(Tl ⇤ g � g)(·)kp
Lp  cp

Z

Rn
y

|Tl(y)|
⇣Z

Rn
x

|g(x� y)� g(x)|pdx
⌘
dy

= cp

Z

Rn
y

|Tl(y)|'(�y)dy = cp(|Tl| ⇤ ')(0),

where we introduced
'(�y) :=

Z

Rn
x

|g(x� y)� g(x)|pdx.

The function ' = '(�y) is bounded and continuous. Consequently, we get liml!1 k(Tl ⇤ g �
g)(·)kLp = 0 what we wanted to have for all bounded and continuous functions g 2 C(Rn) \
L1(Rn). The set Cc(Rn) is dense in Lp(Rn), then a density argument in Lp(Rn) completes the
proof.

Inequalities

First we recall Young’s inequality.

Lemma 6.38. Let u 2 Lp(Rn) and v 2 Lr(Rn) with 1  p, r  1. Then u ⇤ v 2 Lq(Rn), where
1 + 1

q
= 1

p
+ 1

r
and

ku ⇤ vkLq . kukLpkvkLr .

Finally, we recall the following lemma from [15].

Lemma 6.39. Suppose that ✓ 2 [0, 1), a � 0 and b � 0. Then there exists a constant C =

C(a, b, ✓) > 0 such that for all t > 0 the following estimate holds:
R

t

0 (t� ⌧)�✓(1 + t� ⌧)�a(1 + ⌧)�b d⌧



8
><

>:

C(1 + t)�min{a+✓,b} if max{a+ ✓, b} > 1,

C(1 + t)�min{a+✓,b} ln(2 + t) if max{a+ ✓, b} = 1,

C(1 + t)1�a�✓�b if max{a+ ✓, b} < 1.

(6.82)
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Conclusion and perspectives

We have studied in the first part of this thesis the null controllability of a non-autonomous
degenerate parabolic equation. Our perspective is to study the null controlability to the following
non-autonomous degenerate parabolic non linear

ut �M(kruk2)(a(x)ux)x = h�!, (x, t) 2 Q = (0, 1)⇥ (0, T ).

In this study we need some theorems of compactness, fixed point and some additional hypotheses
on the coefficient M(·).
In the second part of this thesis we have studied the global existence of small data solutions
to semi-linear fractional ��evolution equations with mass or power non-linearity under the
condition ut(0, x) = 0. Our perspective is to study the same probleme when ut(0, x) = u1(x),
where u1 is in some suitable space.
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