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les conseils qu’il m’ a prodigué au cours de ces trois années, pour les nombreuses et

fructueuses discussions que nous avons eues. En dehors de leur apport scientifique, je

n’oublierai pas aussi de les remercier pour leur qualités humaines, leur cordialité, leur
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Chapitre 1

Introduction and bibliographical

study

1.1 Résumé

Cette thèse est consacrée à l’étude des propriétés asymptotiques de l’estimateur

récursive de la fonction de hasard conditionnelle non paramétriques, quand la variable

explicative prend ses valeurs dans un espace de dimension infinie. Dans un premiers

temps, notre travail est consacrée à la construction de l’estimateur récursive de la fonc-

tion de hasard conditionnelle pour une variable réponse réelle conditionnée à une va-

riable explicative fonctionnelle sous une condition de dépendance faible sur les données

(données ergodiques). Par suite, nous établissons la convergence presque complète en

précisant la vitesse de convergence de notre estimateur proposé. Dans la deuxième

partie, en gardant les mêmes types de données et le même type de dépendance, nous

établissons sous des conditions générales la normalité asymptotique de notre estimateur

récursive de la fonction de hasard conditionnelle donnée dans la première partie.
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1.2 Summary 4

1.2 Summary

This thesis is dedicated to the survey of the asymptotic properties of recursive

estimator of conditional hazard function in nonparametric statics, when the explanatory

variable takes its values in infinite dimension space. In the first part, our work is devoted

to the construction of the recursive estimator of conditional hazard function for a real

response variable conditioned to a functional explanatory variable under a condition

of weak dependence on the data (ergodic data). As a result, we establish the almost

complete convergence of our proposed estimator. In the second part, we keep the same

types of data and the same type of dependence, we establish under general conditions

the asymptotic normality of our recursive estimator of the conditional hazard function

given in the first part.

1.3 introduction

The ergodic processes has a great importance in practice. In particular are usually

used to model the thermodynamic data or the signal process. Although these processes

are to be studied in continuous path, quite a little attention has paid to develop sta-

tistical tools allowing to treat the continuous ergodic processes in its own dimension

by exploring its functional character. In this paper, we will treat the problem of the

estimation of the relative error regression of the functional ergodic data.

Actually, nonparametric functional statistics has become a major topic of research,

mainly due to the interaction with other applied fields. Functional date occurs in many
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fields of applied sciences such as economics, soil science, epidemiology or environmetal

science, among others. For an overview on the statistical analysis of functional data, we

referee to Bosq (2000), Ramsay and Silverman (2002), Ferraty and Vieu (2006), Zhang

(2014), Hsing et al. (2015), Cuevas (2014), Goia and Vieu (2016). In this context, the

mean least square regression is the most used model to examine the relationship between

a two functional variables. We site for instance, Cardot et al(1999) for the linear model,

Ferraty and Vieu (2000) for the nonparametric model, Ferraty et al. (2003) for single

index model. Formally, in all these studies the relationship between a response variable

Y and the explanatory variable X is modeled by

Y = r (X) + ε, (1.1)

where r is an operator which is defined from a semi-metric space (F , d), equipped

with a semi-metric d, to R and ε is a random error variable. Usually, r is obtained by

minimizing the following quantity

IE
[
(Y − r(X))2|X

]
.

However, this kind of regression is very sensitive to outliers, because, it treats all va-

riables as having an equal weight. In this paper, we overcome this drawback by using

an alternative loss function based on the squared relative error which is defined, for

Y > 0, by :

IE

[(
Y − r(X)

Y

)2

|X

]
. (1.2)

The solution of (1.2) can be explicitly expressed by :

r(x) =
IE[Y −1|X = x]

IE[Y −2|X = x]
.
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Such regression model has been introduced in functional statistics by Demongeot et

al., (2016). They proved the almost complete consistency and the asymptotic normality

of a kernel estimate of this model in the i. i. d. case. The main aim of this paper is

to generalize this result to the dependent case by considering a very weak dependence

structure that is the ergodicity condition. Recall that, the latter is implied by all mixing

conditions, being weaker than all of them (see Ash and Gardner (1975)). Noting that,

in the last few years the statistical analysis of functional ergodic data has received lot

of attention. The first results on this topic are given by Laib and Louani (2010). They

showed the strong consistency of the kernel estimate of the mean least square regression.

The asymptotic normality of this estimator has been stated by the same author in and

Laib and Louani (2011). Gheriballah et al. consider the nonparametric estimation of the

M -regression in functional ergodic time series case. We return to Benziadi et al. (2016)

for the quantiles regression model. More recently, Ling et al (2016) treat the conditional

mode estimation for the functional ergodic data when the response variable is subject of

missing at random. In this work we prove the almost complete convergence (with rate)

of a kernel estimate of the relative error regression operator under this less restrictive

dependence structure. It is also worth noting that our hypotheses and results unify

both cases of finite or infinite dimension of the regressors. For this, our methodology

permits us to generalize to the infinite dimension some existing asymptotic results in

the multivariate case.



Chapitre 2

Preliminaries : Nonparametric

functional regression

2.1 Consistency of the classical regression

The almost complete consistency is based on the following conditions

(H1) P (X ∈ B(x, h)) = φx(h) > 0 ∀ h > 0 and lim
h→0

φx(h) = 0.

(H2) There exists C1 > 0 and k > 0 such that ∀x1, x2 ∈ Nx, |r(x1)− r(x2)| ≤

C1d
k(x1, x2).

(H3) The kernelK has a compact support [0, 1] such that 0 < C3 < K(t) < C4 <∞.

(H4) The smoothing parameter such that : limn→∞ hn = 0 and lim
n→∞

log n/nφx(hn) =

0.

(H5) The response variable such that : ∀m ≥ 2, E(|Y |m|X = x) < C <∞.

we obtain the following theorem

7
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Théorème 1. Under the conditions (H1)-(H5), we have

r̂(x)− r(x) = O(hk) +O

(√
log n

nϕx(h)

)
, p.co. (2.1)

Lemme 1. Let ∆1, . . . ,∆n be a centered random variables, independent and identically

distributed, such that

∀m ≥ 2,∃Cm > 2, E|Zm
1 | ≤ Cma

2(m−1)

Then, for all ε > 0 we have

p

[
n−1

∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > ε

]
≤ 2e

− nε2

2a2(1+ε) .

Proof of Theorem 1 We have

r̂(x) =
ĝ(x)

f̂(x)
(2.2)

where

ĝ(x) =
1

nE[K(d(x,Xi)
hn

)]

n∑
i=1

YiK

(
d(x,Xi)

h

)
and

f̂(x) =
1

nE[K(d(x−Xi)
hn

)]

n∑
i=1

K

(
d(x,Xi)

h

)
.

We consider the following decomposition :

r̂(x)− r(x) =
ĝ(x)− r(x)

f̂(x)
+
(

1− f̂(x)
) r(x)

f̂(x)
. (2.3)

Therefore, the Theorem is a consequence of the following lemma

Lemme 2. Under the conditions (H1)-(H5), we have

ĝ(x)− r(x) = O

(
hk +

√
log n

nϕx(h)

)
(2.4)
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Lemme 3. Under the conditions (H1)-(H4), we have

f̂(x)− 1 = O

(√
logn

nϕx(h)

)
(2.5)

Lemme 4. !Under the conditions (H1)-(H4), we have

∃δ > 0, tel que
∑

P
[
|f̂(x)| < δ

]
<∞ (2.6)

Proof of lemma(2) We have

ĝ(x)− r(x) = ĝ(x)− Eĝ(x) + Eĝ(x)− r(x)

Therefore, it suffices to show that

Eĝ(x)− r(x) = O(hk) (2.7)

Eĝ(x)− ĝ(x) = O

(√
logn

nϕx(h)

)
(2.8)

For (2.7) we write

Eĝ(x)− r(x) = E(Y1∆1)− r(x)

with ∆i =
K(h−1d(x,Xi)

EK(h−1d(x,Xi)
. Thus,

Eĝ(x)− r(x) = E [Y1∆1]− r(x)

= E [E [Y1∆1|X1]]− r(x)

= E [r(X1)∆1 − r(x)] .

Now, we use the Lipschitz condition on r to arrive at

| Eĝ(x)− r(x) | ≤ E | r(X1)− r(x) | ∆1

≤ C1E[dk(x,X1)∆1]
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as E∆1 = 1 then

| Eĝ(x)− r(x) |≤ C1(hk),

Hence ,

Eĝ(x)− r(x) = O(hk).

Now, we show (2.8). To do that, we note for all i = 1, ..., n , Ki = K(h−1d(x,Xi)). So,

it suffice to prove that there exists ε0 such that :

∑
n∈N∗

P

(
1

n
|

n∑
i=1

(E(Yi∆i)− Yi∆i) |> ε0

(√
logn

nϕx(h)

))
<∞.

For this, we apply the Bernstien inequality on the variables Zi = Yi∆i − E [Yi∆i].

Indeed, Firstly, we have to prove that

∃C > 0, tel que ∀m = 2, 3, ..., | E(Zi)
m |≤ Cϕx(h)−m+1). (2.9)

To do that, we write

E | Y1 |m ∆m
1 =

1

(EK1)m
(E(| Y1 |m Km

1 )

=
1

(EK1)m
(E(E(| Y1 |m /X)Km

1 ))

=
1

(EK1)m
(Eδm(X)Km

1 ))

=
1

(EK1)m
(E((δm(X)− δm(x))Km

1 ) + δm(x)EKm
1 ).

which implies that

|E |Y1|m ∆m
1 | ≤ E |(δm(X)− δm(x)|∆m

1 + σm(x)E∆m
1

≤ sup
x′∈B(x,h)

∣∣∣δm(x
′
)− δm(x)

∣∣∣E∆m
1 + δm(x)E∆m

1 .

Observe that C11[0,1] ≤ Km ≤ C21[0,1] then

C1ϕx(h) ≤ EKm
1 ≤ C2ϕx(h)
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Ainsi,

C1

ϕx(h)m−1
≤ E∆m

1 ≤
C2

ϕx(h)m−1
.

Consequently

E |Y1|k ∆k
1 = O(ϕx(h)−m+1). (2.10)

On the other hand, we use the Newton formula, to write that

E (Y1∆1 − Y1∆1)m =
m∑
k=0

Ck,m(EY1∆1)m−k(Y1∆1)k(−1)m−k

with Ck,m = m!
k!(m−k)!

. Hence

E |Y1∆1 − E(Y1∆1) | ≤ C
m∑
k=0

Ck,mE |Y1∆1|k |r(x)|m−k

≤ C max(k=0,1,...,m) E |Y1∆1|k

≤ C max(k=2,...,m) ϕx(h)−m+1

The last equality is a consequence of (2.10) for k ≥ 2 while, when k = 1 we can set

E |Y1|∆1 = O(1). Now, we apply the Bernstein inequality with a2 = ϕx(h)−1, then

Un = a2logn
n

we deduce that

Eĝ(x)− ĝ(x) = O

(√
logn

nϕx(h)

)
.

Proof of lemma (3)

We keep the same notation, as E(∆1) = 1 then it suffices to show that there exist

ε0 such that :

∑
n∈N∗

P

(
1

n
|

n∑
i=1

(E(∆i)−∆i) |> ε0

(√
logn

nϕx(h)

))
<∞.

For this, we apply the Bernstein inequality on the variable Zi = ∆i−E [∆i]. Condition

(H3) implies that

|∆i| ≤
C

ϕx(h)
.
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then it suffices to calculate

V ar∆i = V ar
(
(Y −1

i ∆i)
)
≤ IE(∆2

i )

By a simple calculation, we obtain by (H3)

0 < Cϕx(h) < IE[Ki] < C ′ϕx(h)

and

0 < Cϕx(h) < IE[K2
i ] < C ′ϕx(h)

IE(∆2
i ) ≤ C ′ϕ−1

x (h).

Now, we apply the Bernstein inequality, for which, we have for all ε >0 we have :

P

[
|IEf̂(x)− 1| > ε0

√
log n

ϕx(h)

]
≤ 2 exp

(
−nε2

0ϕx(h) log n

4nC ′ϕx(h)

)

≤ 2 exp

(
ε2

0 log n

4C

)

≤ 2n
−ε20
4C .

Thus
n∑
i=1

P

[
|IEĝ1(x)− ĝ1(x)| > ε0

√
log n

n′ϕx(h)

]
≤

n∑
i=1

2n
−ε20
4C .

So, it suffices to choose ε2
0/4C > 1 to give a converge series.

Proof of lemma (4)

From the previous lemma we have for all t ε > 0

n∑
i=1

P
[
|f̂(x)− 1| > ε

]
<∞.
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We observe that

f̂(x) ≤ 1

2
⇒ |f̂(x)− 1| ≥ 1

2
.

It follows that

P

[
|f̂(x)| ≤ 1

2

]
≤ P

[
|f̂(x)− 1| > 1

2

]
.

Thus, it suffices to take that δ =
1

2
.

2.2 The strong consistency of the relative error re-

gression

The main purpose of this section is to study the almost complete convergence 1 (a.co.)

of r̃(x) to r(x). To do that we fix a point x in F , and we denote by Nx a neighbor of this

point. Hereafter, when no confusion is possible, we will denote by C or C ′ some strictly

positive generic constants and by Ki = K(h−1d(x,Xi)) for i = 1, . . . n. Moreover, we will

use the notation B(x, r) = {x′ ∈ F : d(x′, x) < r} and we set gγ(u) = IE [Y −γ|X = u],

γ = 1, 2. We need the following hypotheses

(H1) IP(X ∈ B(x, r)) =: φx(r) > 0 for all r > 0 and limr→0 φx(r) = 0.

(H2) ∀(x1, x2) ∈ N 2
x ,

|gγ(x1)− gγ(x2)| ≤ C
(
dkγ(x1, x2)

)
, for kγ > 0.

1. Let (zn)n∈N be a sequence of real r.v.’s ; we say that zn converges almost completely (a.co.) to

zero if, and only if, ∀ε > 0,
∑∞

n=1 P (|zn| > ε) <∞. Moreover, we say that the rate of almost complete

convergence of zn to zero is of order un (with un → 0) and we write zn = Oa.co.(un) if, and only if,

∃ε > 0,
∑∞

n=1 P (|zn| > εun) <∞. This kind of convergence implies both almost sure convergence and

convergence in probability.
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(H3) K is a measurable function with support [0, 1] and satisfies 0 < C2 ≤ K(·) ≤

C3 <∞.

(H4) nφx(h)/ log n −→∞ as n→∞.

(H5) ∀m ≥ 2, E[Y −m|X = x] < C <∞.

Our conditions are very usual in this context of nonparametric functional statistic.

Hypothesis (H1) is the classical concentration property of the probability measure of

the functional variable. It allows to quantify the contribution of the topological structure

of F in the convergence rate. While the regularity condition (H2) permits to evaluate

the bias term of our estimate. Assumptions (H3)-(H5) are technical conditions imposed

for the brievity of proofs.

Théorème 2. Under the hypotheses (H1)-(H5), we have

|r̃(x)− r(x)| = O(hk1) +O(hk2) +Oa.co.

(√
log n

nφx(h)

)
. (2.11)

Proof of Theorem 2 We write

r̃(x) =
g̃1(x)

g̃2(x)

where

g̃γ(x) =
1

nE[K(h−1d(x,X1))]

n∑
i=1

Y −γi K(h−1d(x,Xi)); γ = 1, 2.

We consider the classical decomposition :

r̃(x)− r(x) =
1

g̃2(x)

[
g̃1(x)− g1(x)

]
+ [g2(x)− g̃2(x)]

r(x)

g̃2(x)
(2.12)

Therefore, Theorem 2 is a consequence of the following intermediate results.
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Lemme 5. Under the hypotheses (H1) and (H3)-(H5), we have , for γ = 1, 2,

|g̃γ(x)− Eg̃γ(x)| = Oa.co.

(√
log n

nφx(h)

)
.

Lemme 6. Under the hypotheses (H1)-(H4), we have , for γ = 1, 2,

|Eg̃γ(x)− gγ(x)| = O(hkγ ).

Corollaire 1. Under the hypotheses of Theorem 2, we have ,

∞∑
n=1

P

(
g̃2(x) <

g2(x)

2

)
<∞.

2.3 The uniform consistency of the relative error

regression

In this section we focus on the uniform almost complete convergence of the estimate

over a fixed subset SF of F . For this, we denote by ψSF (·) Kolmogorov’s entropy function

of F and we reformulate the previous conditions (H1)-(H5) as follows :

(U1) ∀x ∈ SF , ∀ε > 0, 0 < Cφ(ε) ≤ IP (X ∈ B(x, ε)) ≤ C ′φ(ε) <∞,

(U2) ∃η > 0, such that

∀x, x′ ∈ SηF , |gγ(x)− gγ(x′)| ≤ Cdkγ (x, x′),

where SηF = {x ∈ F ,∃x′ ∈ SF , d(x, x′) ≤ η}; η > 0.

(U3) K is a bounded and Lipschitz kernel on its support [0, 1),

(U4) The functions φ and ψSF are such that :

(U4a) ∃η0 > 0, ∀η < η0, φ
′(η) < C,
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(U4b) For n large enough,
(log n)2

nφ(h)
< ψSF

(
log n

n

)
<
nφ(h)

log n
,

(U4C) The Kolmogorov’s ε-entropy of SF satisfies

∞∑
n=1

exp

{
(1− β)ψSF

(
log n

n

)}
<∞, for some β > 1.

(U5) ∀m ≥ 2, E(|Y −m||X = x) < C <∞ for all x ∈ SF and infx∈SF g2(x) ≥ C ′ > 0

.

Clearly Conditions (U1)-(U3) and (U5) are simple uniformization of (H1)-(H3) and

(H5). While assumption (U4) controls the entropy of SF which is closely linked to the

semi-metric d. Similarly to the concentration propriety, this additional argument control

also the contribution of the topological structure of F in the uniform convergence rate.

Théorème 3. Under the hypotheses (U1)-(U5), we have

sup
x∈SF

|r̃(x)− r(x)| = O(hk1) +O(hk2) +Oa.co.

√ψSF
(

logn
n

)
nφ(h)

 . (2.13)

Proof of Theorem 3 The proof is based on decomposition 2.12 and the following

intermediate results.

Lemme 7. Under the hypotheses (U1) and (U3)-(U5), we have, for γ = 1, 2,

sup
x∈SF

|Eg̃γ(x)− gγ(x)| = O(hkγ ).

Lemme 8. Under the hypotheses (U1)-(U4), we have, for γ = 1, 2,

sup
x∈SF

|g̃γ(x)− Eg̃γ(x)| = Oa.co.

√ψSF
(

logn
n

)
nφ(h)

 .

Corollaire 2. Under the hypotheses of Lemma 8, we have

∃δ > 0, such that
∞∑
n=1

P

(
inf
x∈SF

g̃2(x) < δ

)
<∞.
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2.4 The mean squared consistency of the relative

error regression

This section is devoted to the mean squared convergence of our estimate in fixed

point x ∈ F . It is well known, the main feature of L2-norm convergence is that, unlike

to all others consistency modes, the L2 errors can be easily quantified in the empirical

way. This feature is useful in numerous functional statistical methodologies in particular

the prediction problem’s, the bandwidth choice or the semi-metric choice. Our main

interest in this part is to give the exact expression involved in the leading terms of the

quadratic error. To do that, we replace (H1), (H3) and (H4) by the following hypotheses,

respectively.

(M1) The concentration property (H1) holds. Moreover, there exists a function βx(·)

such that

∀s ∈ [0, 1], lim
r→0

φx(sr)/φx(r) = χx(s).

(M2) For γ ∈ {1, 2}, the functions Ψγ(·) = E
[
gγ(X)− gγ(x)

∣∣∣d(x,X) = ·
]

are deri-

vable at 0.

(M3) The kernel K satisfies (H3) and is a differentiable function on ]0, 1[ with

derivative K ′ such that −∞ < C < K ′(·) < C ′ < 0.

(M4) nφx(h) −→∞.

(M5) The functions E[Y −m|X = ·]; m = 1, 2, 3, 4 are continuous in a neighbo-

rhood x
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Similarly to the pervious asymptotic proprieties, the mean squared consistency is ob-

tained under very standard conditions. They are a simple adaptation of the condition

used by Ferraty et al (2007). We recall that Condition (M1) is fulfilled by several small

ball probability functions, we quote the following cases (which can be found in Ferraty

et al (2007)) :

i) φx(h) = Cxh
γ for some γ > 0 with βx(u) = uγ,

ii) φx(h) = Cxh
γ exp

{
−Ch−p

}
for some γ > 0 and p > 0 with βx(u) = δ1(u) where

δ1(·) is Dirac’s function,

iii) φx(h) = Cx| lnh|−1 with βx(u) = 1I]0,1](u).

Assumptions (M2) is a regularity condition which characterize the functional space of

our model and is needed to explicit the bias term. The hypotheses (M3)-(M5) are tech-

nical conditions and are also similar to those considered in Ferraty et al. (2007) for the

regression case.

Théorème 4. Under assumptions (M1)-(M5), we have

E [r̃(x)− r(x)]2 = B2
n(x) +

σ2(x)

nφx(h)
+ o(h) + o

(
1

nφx(h)

)
,

where

Bn(x) =
(Ψ′1(0)− r(x)Ψ′2(0)) β0

β1g2(x)
h

and

σ2 =
(1− 2r(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x]) β2

g2
2(x)β2

1nφx(h)

with

β0 = K(1)−
∫ 1

0

(sK(s))′χx(s)ds, and, βj = Kj(1)−
∫ 1

0

(Kj)′(s)χx(s)ds, for, j = 1, 2),
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Proof. By using the same decomposition used in ( Theorem 3.1 Laksaci (2007), P.71),

we show that the

E [r̃(x)] =
E [ĝ1(x)]

E [ĝ2(x)]
+O

(
1

nφx(h)

)
and

V ar [r̃(x)] =
V ar [ĝ1(x)]

(E [ĝ2(x)])2
−2

E [ĝ1(x)]Cov(ĝ1(x), ĝ2(x))

(E [ĝ2(x)])3
+
V ar [ĝ2(x)] (E [ĝ1(x)])2

(E [ĝ2(x)])4
+o

(
1

nφx(h)

)

Consequently, the proof of Theorem 4 can be deduced from the following interme-

diates results :

Lemme 9. Under the hypotheses of Theorem (4), we have, for γ = 1, 2

E [ĝγ(x)] = gγ(x) + Ψ′γ(0)
β0

β1

h+ o(h).

Lemme 10. Under the hypotheses of Theorem (4), we have, for γ = 1, 2

V ar [ĝγ(x)] = E[Y −2γ|X = x]
β2

β2
1nφx(h)

+ o

(
1

nφx(h)

)
.

and

Cov(ĝ2(x), ĝ1(x)) = E[Y −3|X = x]
β2

β2
1nφx(h)

+ o

(
1

nφx(h)

)
.

2.5 The asymptotic normality of the relative error

regression

This section contains results on the asymptotic normality of r̃(x). For this we keep

the conditions of the previous section and we establish the following Theorem
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Théorème 5. Assume that (M1)-(M5) hold, then for any x ∈ A, we have(
nφx(h)

σ2

)1/2

(r̃(x)− r(x)−Bn − o(h))
D→ N (0, 1) as n→∞.

where
D→ means the convergence in distribution.

Proof of Theorem We write

r̃(x)− r(x) =
1

g̃2(x)
[Dn + An (g̃2(x)− Eg̃2(x))] + An

where

An =
1

Eg̃2(x)g2(x)

[[
Eg̃1(x)

]
g2(x)−

[
Eg̃2(x)

]
g1(x)

]
and

Dn =
1

g2(x)

[[
g̃1(x)− Eg̃1(x)

]
g2(x) +

[
Eg̃2(x)− g̃2(x)

]
g1(x)

]
Since

An = Bn + o(h),

then

r̃(x)− r(x)−Bn − o(h) =
1

g̃2(x)
[Dn + An (g̃2(x)− Eg̃2(x))] (2.14)

Therefore, Theorem 5 is a consequence of the following results.

Lemme 11. Under the hypotheses of Theorem (5)(
nφx(h)

g2
2(x)σ2

)1/2 ([[
g̃1(x)− Eg̃1(x)

]
g2(x) +

[
Eg̃2(x)− g̃2(x)

]
g1(x)

])
→ N(0, 1).

Lemme 12. Under the hypotheses of Theorem (5)

ĝ2(x)→ g2(x) in probability

and (
nφx(h)

g2(x)2σ2

)1/2

An (g̃2(x)− Eg̃2(x))→ 0 in probability.
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2.6 Appendix

Proof of Lemma 5 We put, for γ = 1, 2

Γi,γ =
1

E[K1]

[
KiY

−γ
i − IE

[
KiY

−γ
i

]]
.

Then,

g̃γ(x)− Eg̃γ(x) =
n∑
i=1

Γi,γ.

The proof of this Lemma is based on the exponential inequality given by Corol-

lary A.8.ii in Ferraty and Vieu (2006) which requires the evaluation of the quantity

...................E|Γmi,γ|. Firstly, we write for all j ≤ m

E
∣∣Y −jγ1 Kj

1

∣∣ = E
[
Kj

1E
[∣∣Y −jγ1

∣∣ |X1

]]
= CE

[
Kj

1 ]
]

≤ C ′φx(h)

which implies that

1

Ej[K1]
E
∣∣Y −jγ1 Kj

1

∣∣ = O
(
φx(h)−j+1

)
(2.15)

and

1

E[K1]
E
[
Y −γ1 K1

]
≤ C.

Next, by Newton’s binomial expansion we have

E|Γmi,γ| ≤ C
m∑
j=0

1

(E[K1])k
E|Y −jγ1 Kj

1(x)|

≤ C max
j=0,...,m

φ−j+1
x (h)

≤ Cφ−m+1
x (h).
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It follows that

E|Γmi,γ| = O(φx(h)−m+1). (2.16)

Thus, we apply the mentioned exponential inequality with a = 1√
φx(h)

and we get, for

all η > 0, for γ = 1, 2,

IP

(
|g̃γ(x)− Eg̃γ(x)| > η

√
log n

nφx(h)

)
≤ C ′n−Cη

2

.

Finally, an appropriate choice of η permits to deduce that :

∑
n

IP

(
|g̃γ(x)− Eg̃γ(x)| > η

√
log n

nφx(h)

)
<∞.

Proof of Lemma 6

The equidistribution of the couples (Xi, Yi) leads to

|Eg̃γ(x)− gγ(x)| = 1

IE [K1]
IE
[(
K11IB(x,h)(X1)

) (
gγ(x)− IE

[
Y −γ1 |X = X1

])]
, (2.17)

where 1I is indicator function. The Hölder hypothesis (H2) imply

1IB(x,h)(X1)|gγ(X1)− gγ(x)| ≤ Chkγ .

Thus,

|Eg̃γ(x)− gγ(x)| ≤ Chkγ .

Proof of Corollary 1. It is easy to see that,

|g̃2(x)| ≤ g2(x)

2
⇒ |g2(x)− g̃2(x)| ≥ g2(x)

2
.

So,

IP

(
|g̃2(x)| ≤ g2(x)

2

)
≤ IP

(
|g2(x)− g̃2(x)| > g2(x)

2

)
.
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Consequently ,
∞∑
n=1

IP

(
|g̃2(x)| < g2(x)

2

)
<∞.

Proof of Lemma 7. Let x1, . . . , xN be a finite set of points in F such that SF ⊂
N⋃
k=1

B(xk, ε) with ε = logn
n

. For all x ∈ SF , we set k(x) = arg min
k∈{1,2,...,Nε(SF )}

d(x, xk) and

Ki(x) = K(h−1d(x,Xi)). We consider the following decomposition :

sup
x∈SF
|g̃γ(x)− Eg̃γ(x)| ≤ sup

x∈SF
|g̃γ(x)− g̃γ(xk(x))|︸ ︷︷ ︸

F1

+ sup
x∈SF
|g̃γ(xk(x))− Eg̃γ(xk(x))|︸ ︷︷ ︸

F2

+ sup
x∈SF
|Eg̃γ(xk(x))− Eg̃γ(x)|︸ ︷︷ ︸

F3

.

• First, we study F1. A direct consequence of (H3) is that

Cφ(h) ≤ EK1(x) ≤ C ′φ(h).

Therefore,

F1 ≤ sup
x∈SF

1

n

n∑
i=1

∣∣∣∣ 1

E[K1(x)]
Ki(x)Y −γi − 1

E[K1(xk(x))]
Ki(xk(x))Y

−γ
i

∣∣∣∣
≤ C

φ(h)
sup
x∈SF

1

n

n∑
i=1

∣∣Ki(x)−Ki(xk(x))
∣∣Y −γi 11B(x,h)∪B(xk(x),h)(Xi).

≤ C sup
x∈SF

(F11 + F12 + F13) ,

with

F11 =
1

nφ(h)

n∑
i=1

∣∣Ki(x)−Ki(xk(x))
∣∣Y −γi 11B(x,h)∩B(xk(x),h)(Xi),

F12 =
1

nφ(h)

n∑
i=1

Ki(x)Y −γi 11B(x,h)∩B(xk(x),h)(Xi),

F13 =
1

nφ(h)

n∑
i=1

Ki(xk(x))Y
−γ
i 11B(x,h)∩B(xk(x),h)(Xi).
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Concerning the first term we use the fact that K is Lipschitz in [0, 1) and we write

F11 ≤ sup
x∈SF

C

n

n∑
i=1

Zi,γ with Zi,γ =
ε

h φ(h)
Y −γi 11B(x,h)∩B(xk(x),h)(Xi)Y

−γ
i .

While for the two lasts terms we use the the boundness of K to write

F12 ≤
C

n

n∑
i=1

Wi,γ with Wi,γ =
1

φ(h)
Y −γi 11B(x,h)∩B(xk(x),h)(Xi)

and

F13 ≤
C

n

n∑
i=1

Vi,γ with Vi,γ =
1

φ(h)
Y −γi 11B(x,h)∩B(xk(x),h)(Xi).

Thus, it suffices to use the same arguments as those used in Lemma5 where Γi,γ is

replaced by Zi,γ, Wi,γ and Vi,γ. In this case, we apply the inequality of Corollary A.8 in

Ferraty and Vieu (2006) with a2 = ε
h φ(h)

, one gets

F11 = Oa.co.

(√
ε log n

nhφ(h)

)
,

F12 = O

(
ε

φ(h)

)
+Oa.co.

(√
ε log n

nφ(h)2

)
and

F13 = O

(
ε

φ(h)

)
+Oa.co.

(√
ε log n

nφ(h)2

)
.

Combination of conditions (U4a) and (U4b) allow to simplify the convergence rate and

to get

F1 = Oa.co.

(√
ψSF (ε)

nφ(h)

)
.

Similarly, one can state the same rate of convergence for F3.

F3 = Oa.co.

(√
ψSF (ε)

nφ(h)

)
.
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Now, we evaluate F2. To see this, we write for all η > 0,

IP

(
F2 > η

√
ψSF (ε)

nφ(h)

)

= IP

(
max

k∈{1,··· ,N}
|g̃γ(xk(x))− Eg̃γ(xk(x))| > η

√
ψSF (ε)

nφ(h)

)

≤ N max
k∈{1,··· ,N}

IP

(
|g̃γ(xk)− Eg̃γ(xk)| > η

√
ψSF (ε)

nφ(h)

)
.

Once again we apply the exponential inequality given by Corollary A.8.ii in Ferraty and

Vieu (2006) on

∆i,γ =
1

E[K1(xk))]

[
Ki(xk)Y

−γ
i − IE

[
Ki(xk)Y

−γ
i

]]
.

Since E |∆i,γ|m = O(φ(h)−m+1), then, we can take a2 = 1
φ(h)

. Hence, for all η > 0

IP

(
|g̃γ(xk)− Eg̃γ(xk)| > η

√
ψSF (ε)

nφ(h)

)
= IP

(
1

n

∣∣∣∣∣
n∑
i=1

∆i,γ

∣∣∣∣∣ > η

√
ψSF (ε)

nφ(h)

)

≤ 2 exp{−Cη2ψSF (ε)}.

By using the fact that ψSF (ε) = logN and by choosing η such that Cη2 = β, we have

N max
k∈{1,··· ,N}

IP

(
|g̃γ(xk)− Eg̃γ(xk)| > η

√
ψSF (ε)

nφ(h)

)
≤ C ′N1−β. (2.18)

This completes the proof.

Proof of Lemma 8. The proof is very similar to the proof of Lemma 6 where we

have shown that

|Eg̃γ(x)− gγ(x)| ≤ 1

E[K1(x)]

[
E[K1(x) |gγ(X1)− gγ(x)|]

]
.

Consequently, combination of hypotheses (U1) and (U2) a gives

∀x ∈ SF , |Eg̃γ(x)− gγ(x)| ≤ C
1

E[K1(x)]
[EK1(x)11B(x,h)(X1)dkγ (X1, x)] ≤ Chkγ ,
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this last inequality yields the proof, since C does not depend on x.

Proof of Corollary 2.

It is easy to see that,

inf
x∈SF
|g̃2(x)| ≤ g2(x)

2
⇒ ∃x ∈ SF , such that g2(x)−g̃2(x) ≥ g2(x)

2
⇒ sup

x∈SF
|g2(x)−g̃2(x)| ≥ g2(x)

2
.

We deduce from Lemma 7 that

IP

(
inf
x∈SF
|g̃2(x)| ≤ g2(x)

2

)
≤ IP

(
sup
x∈SF
|g2(x)− g̃2(x)| > g2(x)

2

)
.

Consequently ,
∞∑
n=1

IP

(
inf
x∈SF
|g̃2(x)| < g2(x)

2

)
<∞.

2

Proof of Lemma 9 By stationarity, we write, for γ = 1, 2

E[ĝγ(x)] =
1

E[K1]
E
[
K1E[Y −γ1 |X1]

]
.

Now, by the same arguments as those used by Ferraty et al. (2007), for the regression

operator, we show that :

E
[
K1E[Y −γi |Xi]

]
= gγ(x)E[K1] + E [K1E [gγ(X1)− gγ(x)|d(X1, x)]]

= gγ(x)E[K1] + E [K1 (Ψγ(d(X1, x))]

Therefore, according the definition of Ψγ, we have

E[ĝγ(x)] = gγ(x) +
1

E[K1]
E [K1 (Ψγ(d(X1, x))] .

Since Ψγ(0) = 0, γ ∈ {1, 2} we obtain : for γ ∈ {1, 2}

E [K1 (Ψγ(d(X1, x))] = Ψ′γ(0)E [d(X1, x)K1] + o(E [d(X1, x)K1]).
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By a simple algebra, we have under (M1)

E[K1d(X1, x)] = hφx(h)

(
K(1)−

∫ 1

0

(uK(u))′χx(u)du

)
+ o(hφx(h)). (2.19)

and

E[K1] = φx(h)

(
K(1)−

∫ 1

0

(K(u))′χx(u)du

)
+ o(φx(h)). (2.20)

It follows that

E [ĝγ(x)] = gγ(x) + hΨ′γ(0)

K(1)−
∫ 1

0

(uK(u))′χx(u)du

K(1)−
∫ 1

0

K ′(u)χx(u)du

+ o(h).

Proof of Lemma 10 Similarly to previous Lemma, we have for γ = 1, 2,

V ar[ĝγ(x)] =
1

(nE[K1])2

n∑
i=1

V ar
[
KiY

−γ
i

]
=

1

n (E[K1])2V ar
[
K1Y

−γ
1

]
.

Conditioning on X and using (M1) and (M4) to get

E
[
K2

1Y
−2γ

1

]
= E[Y −2γ|X = x]

(
K2(1)−

∫ 1

0

(K2(s))′χx(u)du

)
+o(1) and E

[
K1Y

−γ
1

]
= O(φx(h))

(2.21)

Thus,

V ar
[
K1Y

−γ
1

]
= E[Y −2γ|X = x]

(
K2(1)−

∫ 1

0

(K2(s))′χx(u)du

)
+O

(
φ2
x(h)

)
. (2.22)

In conclusion, we can write

V ar[ĝγ(x)] =
E[Y −2γ|X = x]

(
K2(1)−

∫ 1

0
(K2(s))′χx(u)du

)
nφx(h)

(
K(1)−

∫ 1

0
K ′(s)χx(s)ds

)2 + o

(
1

nφx(h)

)
.

Concerning the covariance term, we follow the same steps as the previous term and we

write

Cov(ĝ1(x), ĝ2(x)) =
1

n (E[K1])2Cov
(
K1Y

−2
1 , K1Y

−1
1

)
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Now, we write

Cov
(
K1Y

−2
1 , K1Y

−1
1

)
= E

[
K2

1Y
−3

1

]
−
(
E
[
K1Y

−2
1

]
E
[
K1Y

−1
1

])
.

Since the first term is leading one in this quantity, we obtain that

Cov(ĝ1(x), ĝ2(x)) =
E[Y −3|X = x]

(
K2(1)−

∫ 1

0
(K2(s))′χx(s)ds

)
nφx(h)

(
K(1)−

∫ 1

0
K ′(s)χx(s)ds

)2 + o

(
1

nφx(h)

)
.

Proof of Lemma 11

Let

Sn =
n∑
i=1

(Li(x)− E[Li(x)])

where

Li(x) :=

√
nφx(h)

nE[K1]
Ki

(
g1(x)Y −2

i − g2(x)Y −1
i

)
. (2.23)

Obviously, we have

√
nφx(h)σ−1 ([ĝ2(x)− Eĝ2(x)] g1(x)− [ĝ1(x)− Eĝ1(x)] g2(x)) =

Sn
σ
.

Thus, the asymptotic normality of Sn. is sufficient to show the proof of this Lemma.

This last is shown by applying the Lyaponove central limit Theorem on Li(x) where it

suffices to show that for some δ > 0

n∑
i=1

IE
[
|Li(x)− IE [Li(x)] |2+δ

]
(
V ar

(
n∑
i=1

Li(x)

))(2+δ)/2
→ 0.
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Clearly,

V ar (
∑n

i=1 Li(x)) = nφx(h)V ar
[[
g̃1(x)

]
g2(x) +

[
g̃2(x)

]
g1(x)

]
= nφx(h) (V ar [g̃1(x)] g2

2(x) + V ar [g̃2(x)] g2
1(x)

+g1(x)g2(x)Cov(g̃1(x), g̃2(x)))

= nφx(h)
(

β2
β2
1nφx(h)

(g3
2(x) + g2(x)g1(x)E[Y −3|X = x]

+g2
1(x)E[Y −4|X = x]) + o

(
1

nφx(h)

))
.

Hence,

V ar

(
n∑
i=1

Li(x)

)
= σ + o(1)

Therefore, to complete the proof of this Lemma, it is enough to show that the numerator

of the above expression converges to 0. For this, we use the Cr-inequality (see Loève

(1963), p. 155) we show that,

n∑
i=1

IE

[∣∣∣Li(x)− IE [Li(x)]
∣∣∣2+δ

]

≤ C
n∑
i=1

IE
[
|Li(x)|2+δ

]
+C ′

n∑
i=1

|IE [Li(x)] |2+δ. (2.24)
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Recall that, for all j > 0, IE
[
Kj

1

]
= O(φ(h)), then, because of (H5), we have

n∑
i=1

IE
[
|Li(x)|2+δ|

]
= n−δ/2(φ(h))−1−δ/2IE

[
K2+δ

1

∣∣g1(x)Y −2
i − g2(x)Y −1

i

∣∣2+δ
]

≤ n−δ/2(φ(h))−1−δ/2IE
[
K2+δ

1

[
21+δg1(x)2+δE[|Y −2(δ+2)

i |X] + 21+δg2(x)2+δE[||Y −(δ+2)
i ||X]

]]
≤ C(nφ(h))−δ/2

(
IE
[
K2+δ

1

]
/φ(h)

)
−→ 0.

Similarly, the second term of (2.24) is evaluated as follows

n∑
i=1

|IE [Li(x)] |2+δ ≤ n−δ/2 (φ(h))−(2+δ)/2)
∣∣∣IE [K1

∣∣g1(x)Y −2
i − g2(x)Y −1

i

∣∣] ∣∣∣2+δ

≤ Cn−δ/2 (φ(h))−(2+δ)/2)
∣∣∣IE [K1]

∣∣∣2+δ

≤ Cn−δ/2 (φ(h))1+δ/2 → 0,

which completes the proof.

Proof of Lemma 12 : For the first limit, we have, by Lemma (9) and Lemma (10)

E [ĝ2(x)− g2(x))]→ 0

and

V ar [ĝ2(x)]→ 0

hence

ĝ2(x)− g2(x)→ 0 in probability.

Next, for the last convergence, we have by the same fashion

E

[(
nφx(h)

g1(x)2σ2

)1/2

An (g̃2(x)− Eg̃2(x))

]
= 0

and

V ar

[(
nφx(h)

g1(x)2σ2

)1/2

An (g̃2(x)− Eg̃2(x))

]
= O(A2

n) = O(h2)→ 0.
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It follows that

(
nφx(h)

g1(x)2σ2

)1/2

An (g̃2(x)− Eg̃2(x)))→ 0 in probability.
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3.1 The model and its estimate

Let Zi = (Xi, Yi)i=1,...n be a F×R-valued measurable strictly stationary process, defined

on a probability space (Ω, A,P), where F is a semi-metric space, d denoting the semi-

metric. In this work, we will assume that the the underlying process Zi is functional

stationary ergodic and we estimate the relative error regression by

r̂(x) =

∑n
i=1 Y

−1
i K(h−1d(x,Xi))∑n

i=1 Y
−2
i K(h−1d(x,Xi))

where K is a kernel and h = hK,n is a sequence of positive real numbers. Noting that

this estimator has been recently introduced in functional statistics by Demongeot et al.

(2016). They established its asymptotic properties in the i.i.d. case.

We point out that, from theoretical point of view this work includes the finite dimen-

sional case (F = Rp) but its importance is due to the fact that it covers also the infinite

dimensional case. From practical point of view the ergodicity assumption has a great

consideration in practice. In particular, it is one of a principal postulate of statistical

physics in order to control the thermodynamic properties of gases, atoms, electrons or

plasmas. Furthermore, the functional autoregressive models is a particular example of
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the functional ergodic random variables. The later is widely considered in functional

data analysis to carry out some concrete problem (see, Bosq (1996) for some examples

and references).

3.2 Notations, hypotheses and comments

All along the paper, when no confusion is possible, we will denote by C and C ′

some strictly positive generic constants, x is a fixed point in F and Nx denote a fixed

neighborhood of x. We denote by rγ(u) = IE [Y −γ|X = u], γ = 1, 2. For r > 0, let

B(x, r) := {x′ ∈ F| d(x′, x) < r}. Moreover, for i = 1, . . . , n, we put Fk as the σ-

field generated by ((X1, Y1), . . . (Xk, Yk))) and we pose Gk as the σ-field generated by

((X1, Y1), . . . (Xk, Yk), Xk+1).

In order to establish our asymptotic results we need the following hypotheses :

(H1) The processes (Xi, Yi)i∈IN satisfies :

(i) The function φ(x, r) := IP(X ∈ B(x, r)) > 0, ∀ r > 0.

(ii) For all i = 1, . . . , n there exist a deterministic function φi(x, ·) such that

0 < IP (Xi ∈ B(x, r)|Fi−1) ≤ φi(x, r), ∀ r > 0 (φi(x, r)→ 0 as r → 0).

(iii) For all r > 0,
1

nφ(x, r)

n∑
i=1

IP (Xi ∈ B(x, r)|Fi−1)→ 1 a.co.

(H2) The function rγ is such that :
(i) The function rγ are continuous at the point x.

(ii) ∀(x1, x2) ∈ Nx ×Nx

|rγ(x1)− rγ(x2)| ≤ Cdb(x1, x2), b > 0 γ = 1, 2.

(H3) For all j ≥ 1, IE [Y −j|Gi−1] = IE [Y −j|Xi] < Cj! <∞, a.s.,
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(H4) K is a function with support (0, 1) such that

0 < C1I(0,1) < K(t) < C ′1I(0,1) <∞.

(H5) limn→∞ h = 0 and lim
n→∞

ϕ(x, h) log n

n2φ2(x, h)
= 0 where ϕ(x, h) =

n∑
i=1

φi(x, h).

Comments on the hypotheses

Our assumptions are very mild in this context of nonparametric statistic in functional

time series. They allow to involve a larger class of precesses and/or of models. We precise

that (H1) and (H5) are the same as used by Gheriballah et al. (2013). Moreover, (H2),

(H3) and (H4) are similar to Demongeot et al., (2016).

3.3 Results

Our main result is almost complete (a.co.) 1 convergence.

Théorème 6. Assume that (H1), (H2)(i) and (H3)-(H5) are satisfied, then, we have

r̂(x)− r(x)→ 0 a.co.

In order to give a more accurate asymptotic result, we replace (H2) (i) by H2(ii) and

we obtain the following result

Théorème 7. Assume that (H1), (H2) (ii) and (H3)-(H5) are satisfied, then, we have

r̂(x)− r(x) = O
(
hb
)

+O

(√
ϕ(x, h) log n

n2φ2(x, h)

)
a.co.

1. Let (zn)n∈N be a sequence of real r.v.’s ; we say that zn converges almost completely (a.co.) to

zero if, and only if, ∀ε > 0,
∑∞

n=1 P (|zn| > ε) <∞. Moreover, we say that the rate of almost complete

convergence of zn to zero is of order un (with un → 0) and we write zn = Oa.co.(un) if, and only if,

∃ε > 0,
∑∞

n=1 P (|zn| > εun) <∞. This kind of convergence implies both almost sure convergence and

convergence in probability.
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Proof of the main result : For the proofs of Theorems 6 and 7 we write

r̂(x) = Bn(x) +
Rn(x)

Ψ̂D(x)
+
Qn(x)

Ψ̂D(x)

where

Qn(x) := (Ψ̂N(x)− Ψ̄N(x))− r(x)(Ψ̂D(x)− Ψ̄D(x))

Bn(x) :=
Ψ̄N(x)

Ψ̄D(x)
− r(x), and Rn(x) := −Bn(x)(Ψ̂N(x)− Ψ̄N(x))

with

Ψ̂N(x) :=
1

nIE[K(h−1d(x,X1))]

n∑
i=1

K(h−1d(x,Xi))Y
−1
i ,

Ψ̄N(x) :=
1

nIE[K(h−1d(x,X1))]

n∑
i=1

IE
[
K(h−1d(x,Xi))Y

−1
i |Fi−1

]
,

Ψ̂D(x) :=
1

nIE[K(h−1d(x,X1))]

n∑
i=1

K(h−1d(x,Xi))Y
−2
i ,

Ψ̄D(x) :=
1

nIE[K(h−1d(x,X1))]

n∑
i=1

IE
[
K(h−1d(x,Xi))Y

−2
i |Fi−1

]
.

Thus, both Theorems are a consequence of the following intermediates results, where

their proofs are given at the end.

Lemme 13. Under Hypotheses (H1) and (H3)-(H6), we have,

Ψ̂D(x)− Ψ̄D(x) = O

(√
ϕ(x, h) log n

n2φ2(x, h)

)
a.co.

Corollaire 3. Under Hypotheses of Lemma 13, we have,

∃C > 0
∞∑
n=1

IP
(

Ψ̂D(x) < C
)
<∞.

Lemme 14. Under Hypotheses (H1),(H2)((i)-(ii)), (H4) and (H5), we have,

|Bn(x)| = o(1) a.co.

If we replace ((H2) (ii)) by ((H2) (iii)), we have

|Bn(x)| = O(hb) a.co.
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Lemme 15. Under Hypotheses (H1) and (H3)-(H5), we have,

|Ψ̂N(x)− Ψ̄N(x)| = O

(√
ϕ(x, h) log n

n2φ2(x, h)

)
a.co.

3.4 Some particulars situations

In order to emphasize the generality of our study over several existing results we

present in this section some particular cases :

– The independent case : In this case, we have IP (Xi ∈ B(x, r)|Fi−1) =

IP (Xi ∈ B(x, r)), then condition (H1(ii)) and (H1(iii)) are verified and for all

i = 1, . . . n take φi(x, r) = φ(x, r). So, condition (H1) is restricted to φ(x, r) > 0,

for all r > 0. Thus, our Theorem leads to the next Corollary,

Corollaire 4. Under assumptions (H1), (H2)( (i)-iii)) and (H3)-(H5) we have :

r̂(x)− r(x) = O
(
hb
)

+O

(√
log n

nφ(x, h)

)
a.co.

Remark 1.

We point out that in this case where the (Xi, Yi) are independent, we obtain the

same convergence rate given by Demongeot et al., (2016)

– The real case The real case can be treated as particular case of our study. It

suffices to put F = R̂, and suppose that the probability density of the random

variable X (resp. the conditional density of X given Fi−1 ) denoted by f (resp.

by f
Fi−1

i ), is of C1 class, then φ(x, h) = IP (Xi ∈ [x− h, x+ h]) =
∫ x+h

x−h f(s)ds =

f(x)h+o(h) and IP (Xi ∈ [x− h, x+ h]|Fi−1) = f
Fi−1

i (x)h+o(h)). Moreover using
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the ergodic Theorem to prove that

‖ 1

n

n∑
i=1

f
Fi−1

i − f‖ → 0,

where ‖.‖ is a norm in sparable Banach space C1. So, (H1) is also verified and

Theorem 7 can be reformulated in the following way.

Corollaire 5. Under assumptions H2 (i), H2 (iii) and (H3)-(H5) we have :

r̂(x)− r(x) = O
(
hb
)

+O

(√
log n

nh

)
a.co.

3.5 Appendix

Proof of Lemma 13

For all i = 1, . . . , n we put Ki(x) = K(h−1d(x,Xi)) and

∆i(x) = Ki(x)Y −2
i − IE

[
Ki(x)Y −2

i |Fi−1

]
. Then, it can be seen that

Ψ̂D(x)− Ψ̄D(x) =
1

nIE [K1(x)]

n∑
i=1

∆i(x)

with ∆i(x) is a triangular array of martingale differences according the σ-fields (Fi−1)i.

For this, we must evaluate the quantity IE[∆i(x)|Fi−1]. The Latter can be evaluated by

the same arguments as those invoked for proving Lemma 5 in Laib and Louani (2011).

Indeed, firstly by (H5), we have, for all j ≤ p

IE
[∣∣Kj

i (x)Y −2j
i

∣∣ |Fi−1

]
= IE

[
Kj
i (x)IE

[∣∣Y −2j
i

∣∣ |Gi−1

]
|Fi−1

]
= IE

[
Kj
i (x)IE

[∣∣Y −2j
i

∣∣ |Xi

]
|Fi−1

]
≤ CIE

[
Kj

1(x)|Fi−1

]
≤ Cφi(x, h).

(3.1)
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Secondly, by Newton’s binomial expansion

IE[∆p
i (x)|Fi−1] =

p∑
k=0

Ck,m(−1)m−kIE
(
Y −2
i Ki(x)

)k (
IEm−k [Y −2

i Ki(x)|Fi−1

])
where Ck,m = m!

k!(m−k)!
. Next, employing Jensen inequality and (3.1) to write that

IEm−k [K1(x)Y −2
1 |Fi−1

]
≤ IE

[
(K1(x)Y −2

1 )m−k|Fi−1

]
≤ Cφi(x, h)

It follows that

IE[∆p
i (x)|Fi−1] ≤ Cφi(x, h).

Now, applying the exponential inequality of Lemma 1 in Louani and Laib (2011, P.365)

to get for all ε > 0, we have

IP
{∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣ > ε
}

= IP

{∣∣∣∣∣ 1

nIE [K1(x)]

n∑
i=1

∆i(x)

∣∣∣∣∣ > ε

}

≤ 2 exp

{
− ε2n2IE[∆1(x)]2

2(ϕ(x, h) + CεnIE[∆1(x)])

}
≤ 2 exp

{
−ε2n2IE[∆1(x)]2

Cϕ(x, h)

(
1

1 + CεnIE[∆1(x)]
ϕ(x,h)

)}
.(3.2)

Finally, taking ε = ε0

√
ϕ(x, h) log n

nIE[K1(x)]
and using the fact that

log n

ϕ(x, h)
= o(1) to show

that

IP

{∣∣∣Ψ̂D(x)− Ψ̄D(x)
∣∣∣ > ε0

√
ϕ(x, h) log n

nIE[K1(x)]

}
≤ n−Cε

2
0 .

Consequently an appropriate choice of ε0 complete the proof of this lemma.

Proof of Corollary 3

It is clear that, under (H5), there exists 0 < C < C ′ <∞

0 < C
1

nφ(x, h)

n∑
i=1

IP(Xi ∈ B(x, r)|Fi−1) < Ψ̄D(x) <
∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣+ Ψ̂D(x).



3.5 Appendix 40

Hence,

C

nφ(x, h)

n∑
i=1

IP(Xi ∈ B(x, r)|Fi−1)−
∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣ < Ψ̂D(x).

It follows that

IP
(

Ψ̂D(x) ≤ C
2

)
≤ IP

(
C

nφ(x, h)

n∑
i=1

IP(Xi ∈ B(x, r)|Fi−1) <
C

2
+
∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣)

≤ IP

(∣∣∣∣∣ C

nφ(x, h)

n∑
i=1

IP(Xi ∈ B(x, r)|Fi−1)−
∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣− C∣∣∣∣∣ > C

2

)
.

It is obvious that the previous Lemma and (H1)(iii) allows to get

∑
n

IP

(∣∣∣∣∣ C

nφ(x, h)

n∑
i=1

IP(Xi ∈ B(x, r)|Fi−1)−
∣∣∣Ψ̂D(x)− Ψ̄D(x)

∣∣∣− C∣∣∣∣∣ > C

2

)
.

which gives the result.

Proof of Lemma 14

Using a similar argument as those used by Laib and Louani (2010) to write

Bn(x) =
Ψ̄N(x)− r(x)Ψ̄D(x)

Ψ̄D(x)

=
1

nr2(x)IE [K1(x)] Ψ̄D(x)

n∑
i=1

[
IE
[
Ki(x)IE[Y −1

i |Gi−1]|Fi−1

]
r2(x)− r1(x)IE

[
Ki(x)IE[Y −2

i |Gi−1]|Fi−1

]]
=

1

nr2(x)IE [K1(x)] Ψ̄D(x)

n∑
i=1

[
IE
[
Ki(x)IE[Y −1

i |Xi]|Fi−1

]
]r2(x)− r1(x)IE

[
Ki(x)IE[Y −1

i |Xi]|Fi−1

]]
≤ 1

nr2(x)IE [K1(x)] Ψ̄D(x)

n∑
i=1

[IE [Ki(x)|]r1(Xi)r2(x)− r2(Xi)r1(x)|Fi−1]]

≤ 1

nr2(x)IE [K1(x)] Ψ̄D(x)

n∑
i=1

[IE [Ki(x)|]r1(Xi)r2(x)− r1(x)r2(x) + r1(x)r2(x)− r2(Xi)r1(x)|Fi−1]]

Now by ((H2) (iii)) we obtain that,

|Bn(x)| ≤ C

(
sup

x′∈B(x,h)

|r1(x′)− r1(x)|+ sup
x′∈B(x,h)

|r2(x′)− r2(x)|

)
→ 0.
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However, under ((H2) (ii)), we get,

1I{B(x,h)}(X1)|r1(X1)− r1(x)| ≤ Chb.

and

1I{B(x,h)}(X1)|r2(X1)− r2(x)| ≤ Chb.

This last result yields the proof.

Proof of Lemma 15 Similarly to Lemma 13, we define

Λi(x, z) = Ki(x)Y −1
i − IE

[
Ki(x)Y −1

i |Fi−1

]
.

The reset of the proof is based on the same exponential inequality used in previous

Lemma. For this, we must evaluate the quantity IE[Λp
i (x)|Fi−1]. The Latter can be

evaluated by the same arguments as those invoked for proving Lemma 13 which allow

to write, under (H3)

IE[Λp
i (x)|Fi−1] ≤ Cφi(x, h).
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Thus, we are now in position to apply the exponential inequality of Lemma 1 in

Louani and Laib (2011, P.365) and we get : for all η > 0 and dn = l−1
n , we have

IP

(∣∣∣Ψ̂N(x)− Ψ̄N(x)
∣∣∣ > η

√
ϕ(x, h) log n

n2 φ2(h)

)
≤ C ′n−Cη

2+1/2b2 .

Consequently, an appropriate choice of η completes the proof of this lemma.



Chapitre 4

UIB consistency of the local linear

estimate for functional relative

error regression

4.1 The Model

Let us introduce n pairs of random variables (Xi, Yi) for i = 1, . . . , n that we assume

drawn from the pair (X, Y ) which is valued in F ×R, where F is a semi-metric space

equipped with a semi-metric d. Furthermore, we assume that the link between X and

Y is modeled by the following relation

Y = R (X) + ε,

43
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where R is an operator from F toR and ε is a random error variable such that IE[ε|X] =

0. The functional local linear modeling is based on the following assumption

∀x′ in neighborhood of x R(x′) = a+ bβ(x, x′) + o(β(x, x′))

Thus, the local linear relative error regression is obtained by using the following loss

function

(â, b̂) = arg min
(a,b)

n∑
i=1

(Yi − a− bβ(Xi, x))2

Y 2
i

K(h−1δ(x,Xi)) (4.1)

where β(., .) is a known function from F2 into IR such that, ∀ξ ∈ F , β(ξ, ξ) = 0, with K

is a kernel and h = hK,n is a sequence of positive real numbers and δ(., .) is a function

defined on F × F such that d(., .) = |δ(., .)|.

By a simple algebra we get

R̂(x) = â =

∑n
i,j=1 Vij(x)Yj∑n
i,j=1 Vij(x)

(4.2)

where

Vij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1δ(x,Xi))K(h−1δ(x,Xj))Y
−2
i Y −2

j

with the convention 0/0 = 0.

4.2 Notations and assumptions

We fix a point x in ∈ F , Nx neighborhood of x and we consider the following

assumptions

(H1) ∀r > 0, IP (r1 < δ(X, x) < r2) := φx(r1, r2) with φx(r) = φx(−r, r) > 0 and

For all s ∈ (0, 1), lim
r→0

φx(−r/2, sr)
φx(−r, r)

= τx(s) <∞.
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(H2) For all (x1, x2) ∈ N 2
x , we have

|gγ(x1)− gγ(x2)| ≤ C dkγ (x1, x2) for kγ > 0.

(H3) For k = 0, 1, 2 the class of functions :

Kk = {· 7→ γ−kK(γ−1δ(x, ·))βk(x, ·), γ > 0} is a pointwise measurable class 1

such that :

sup
Q

∫ 1

0

√
1 + logN (ε‖F‖Q,2,Kk, dQ)dε <∞

where the supremum is taken over all probability measures Q on the space F with

Q(F 2) <∞ and where F is the envelope function 2 of the set Kk. Here, dQ is the

L2(Q)-metric and N (ε,Kk, dQ) is the minimal number of open balls (with respect

to the L2(Q)-metric) with radius ε which are needed to cover the function class

Kk. We will denote by ‖ · ‖Q,2 the L2(Q)-norm.

(H4) The kernel K is supported within (−1/2, 1/2) and has a continuous first de-

rivative on (−1/2, 1/2) which is such that :

0 < C211(−1/2,1/2)(·) ≤ K(·) ≤ C311(−1/2,1/2)(·) (11A is the indicator function of the set A)

K(1/2)τx(1/2)−
∫ 1/2

−1/2

K ′(s)τx(s)ds > 0

and (1/4)K(1/2)τx(1/2)−
∫ 1/2

−1/2

(s2K ′(s))τx(s)ds > 0.

1. A class of functions C is said to be a pointwise measurable class if, there exists a countable

subclass C0 such that for any function g ∈ C there exists a sequence of functions (gm)m∈N in C0 such

that : |gm(z)− g(z)| = o(1).

2. An envelope function G for a class of functions C is any measurable function such that :

supg∈C |g(z)| ≤ G(z), for all z.
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(H5) The function β(., .) is such that :

∀x′ ∈ F , C4 |δ(x, x′)| ≤ |β(x, x′)| ≤ C5 |δ(x, x′)| C4, C5 > 0.

(H6) For all h ∈ (an, bn) we have

h

∫
B(x,h/2)

β(u, x)dP (u) = o

(∫
B(x,h/2)

β2(u, x) dP (u)

)
where B(x, r) = {x′ ∈ F/d(x′, x) ≤ r} and dP (x) is the cumulative distribution.

(H7) The sequence (an) verifies :

log n

nmin(an, φx(an))
→ 0.

4.3 The uniform consistency

The following theorem gives the UIB consistency of R̂(x).

Théorème 8. Under the conditions (H1)-(H7), we have :

sup
an≤hK≤bn

|R̂(x)−R(x)| = O(bk1n ) +O(bk2n ) +Oa.co.

(√
log n

nφx(an)

)
.

Proof We consider the following decomposition

R̂(x)−R(x) = B̂(x) +
D̂(x)

f̂(x)
+
Q̂(x)

f̂(x)

where

Q̂(x) = (ĝ(x)− IE[ĝ(x)])−R(x)(f̂(x)− IE[f̂(x)])

B̂(x) =
IE[ĝ(x)]

IE[f̂(x)]
−R(x) and D̂(x) = −B̂(x)(f̂(x)− IE[f̂(x)])

with

ĝ(x) =
1

n(n− 1)h2φ2
x(h)

∑
i 6=j

Vij(x)(x)Yjandf̂(x) =
1

n(n− 1)h2φ2
x(h)

∑
i 6=j

Vij(x)(x).

Then, Theorem 8 is a direct consequence of the following Lemmas.
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Lemme 16. Under the assumptions (H1), (H3)-(H7), we have that :

sup
an≤h≤bn

∣∣∣f̂(x)− IE[f̂(x)]
∣∣∣ = Oa.co.

(√
log n

nφx(an)

)
.

Corollaire 6. Under the assumptions of Lemma 23, there exists a real number C6 > 0

such that :
∞∑
n=1

IP

(
inf

an≤h≤bn
f̂(x) < C6

)
<∞.

Lemme 17. Under the hypotheses (H1)-(H6) we have that :

sup
an≤h≤bn

∣∣∣B̂(x)
∣∣∣ = O(bβn).

Lemme 18. Under the hypotheses of Theorem 8, we have that :

sup
an≤h≤bn

|ĝ(x)− IE[ĝ(x)]| = Oa.co.

(√
log n

nφx(an)

)
.

4.4 Appendix

In what follows, when no confusion is possible, we will denote by C and C ′ some strictly

positive generic constants. Moreover, we put, for any x ∈ F , and for all i = 1, . . . , n :

Ki = K(h−1δ(x,Xi)), βi = β(Xi, x) and δi = δ(x,Xi).

First of all we state the following lemmas which are needed to establish our asymptotic

results

Lemme 19. (cf. Theorem 2.14.1 in Van der Vaart and Wellner (1996), page 239).

Let Z1, Z2, . . . , Zn be independent and identically distributed taking values in a measu-

rable space (E ,Υ) and consider C a pointwise measurable class of functions g : E → R̂
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with envelope function F , then :

‖αn(g)‖C‖p ≤ CJ(1, C)‖F‖p∨2

where

αn(g) =
1√
n

n∑
i=1

(g(Zi)− IEg(Zi)) and J(1, C) = sup
Q

∫ 1

0

√
1 + logN (ε‖F‖Q,2, C, dQ)dε

with ‖ · ‖p = IE1/p[·]p, ‖αn(g)‖C = supg∈C |αn(g)| and s ∨ t denoting the maximum of s

and t.

Lemme 20. (see Dony and Einmahl (2009)).

Let Z1, Z2, . . . , Zn be independent and identically distributed taking values in a measu-

rable space (E ,Υ) and consider C a pointwise measurable class of functions g : E → R̂

satisfying :

IE‖αn(g)‖C ≤ C‖F‖2

with F is an envelope function of C. Then, for any A ∈ Υ, we have :

IE‖αn(g.11A)‖C ≤ 2C‖F.11A‖2.

Lemme 21. (see Dony and Einmahl (2009)) Let Z1, Z2, . . . , Zn be independent and

identically distributed taking values in a measurable space (E ,Υ) and consider C a point-

wise measurable class of functions g : E → R̂ with envelope function F . Assume that

for some H > 0 :

IE[F p(Z)] ≤ p!

2
σ2Hp−2 where σ2 ≥ IE[F 2(Z)].

Then, for βn = IE[‖
√
nαn(g)‖C], we have for any t > 0 :

IP

{
max

1≤k≤n
‖αn(g)‖C ≥ βn + t

}
≤ exp

(
− t2

2nσ2 + 2tH

)
.



4.4 Appendix 49

Proof of Lemma 23. Using the same ideas as in Barrientos-Marin et al.(2010) which

are based on the following decomposition

f̂(x) =
n2h2φ2

x(h)

n(n− 1)IE[W12]︸ ︷︷ ︸
A1


(

1

n

n∑
j=1

Kj(x)Y −2
j

φx(h)

)
︸ ︷︷ ︸

T1

(
1

n

n∑
i=1

Ki(x)β2
i (x)Y −2

i

h2φx(h)

)
︸ ︷︷ ︸

T2

−

(
1

n

n∑
j=1

Kj(x)βj(x)Y −2
j

hφx(h)

)
︸ ︷︷ ︸

T3

(
1

n

n∑
i=1

Ki(x)βi(x)Y −2
i

hφx(h)

)
︸ ︷︷ ︸

T3


The, the claimed result is a simple consequence of

∑
n

IP

{
sup

an≤hK≤b0

√
nφx(an)

log n
|Tl − IE[Tl]| ≥ η0

}
<∞, (4.3)

for some positive number b0 and for l = 2, 3, 4.

IE[Tl] = O(1) for l = 2, 3, 4. (4.4)

Cov(T2, T4) = o

((
log n

nφx(an)

)1/2
)

(4.5)

and V ar[T3] = o

((
log n

nφx(an)

)1/2
)
. (4.6)

Note first that (4.4) was proved by Barrientos-Marin et al. (2010). On the other side,

under (H1),(H4) and (H5) we have

IE[h−kK l
iβ

k
i ] ≤ φx(h/2).

Now, for (4.5) and (4.6), we write that

Cov(T2, T4) =
1

n2φ2
x(h)

∑
i

Cov

(
Ki,

Kiβ
2
i

h2

)
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and

V ar[T3] =
1

n2φ2
x(h)

∑
i

V ar

[
Y −2
i Ki

βi
h

]
.

Then

Cov(T2, T4) = O

(
1

nφx(h)

)
= o

(√
log n

nφx(an)

)
and

V ar[T3] = O

(
1

nφx(h)

)
= o

(√
log n

nφx(an)

)
.

Concerning (4.3). We consider

∆k
i =

1

hk
(
Y −2
i Kiβ

k
i − IE

[
Y −2
i Kiβ

k
i

])
for k = 0, 1, 2

and we put

hj = 2jan and L(n) = max{j : hj ≤ 2b0}.

Therefrom, we can write

sup
an≤h≤b0

√
nφx(an)

log n
|Tl − IE[Tl]| ≤ max

1≤j≤L(n)
sup

hj−1≤h≤hj

√
nφx(h)

log n
|Tl − IE[Tl]| .

Now, we have, for l = 2, 3, 4

Tl − IE[Tl] :=
1√

nφx(h)
αln(K),

where αln(K) =
1√
n

n∑
i=1

(∆4−l
i − IE[∆4−l

i ]) corresponds to the empirical process based on

the variables X1, X2, . . . , Xn. Next, we consider the following class of functions :

Glj =
{
z 7−→ γ4−ly−2K

(
γ−1δ(x, z)

)
β4−l(x, z) where hj−1 ≤ γ ≤ hj

}
.

Therefore

IP

{
sup

an≤h≤b0

√
nφx(an)

log n
|Tl − IE[Tl]| ≥ η0

}
≤ L(n) max

j=1,...,L(n)
IP

{
max

1≤k≤n
‖
√
kαlk(K)‖Glj ≥ η0

√
nφx(hj/2) log n

}
.
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Furthermore, the Bernstein’s inequality is the principal tool to evaluate

IP

{
max

1≤k≤n
‖
√
kαlk(K)‖Glj ≥ η0

√
nφx(hj/2) log n

}
.

For this purpose, we have to study the asymptotic behavior of :

βn = IE
[
‖
√
nαln(K)‖Glj

]
and σ2 = IE

[
G2
j(X)

]
where Gj is the envelope function of the class Glj. Observe that under (H4) and (H5)

the envelope function Gj satisfies that :

Gj(z) ≤ C1IB(x, hj/2)(z).

Hence,

IE
[
Gp
j(X)

]
≤ Cpφx(hj/2)

and

σ2 = O(φx(hj/2)).

Concerning the term βn, we combine (H3) together with the Lemma 19’s result to write

that :

IE[‖αln(g)‖Glj ] ≤ CJ(1,K4−l)‖F‖2

where F is the envelope function of K4−l. Since, Lemma 20’s conditions are verified for

the class Glj and for the envelope function F . Thus,

IE‖αln(g.11B(x,hj/2))‖Glj ≤ 2CJ(1,K4−l)‖F.11B(x,hj/2)‖2.

Finally, we obtain that :

IE
[
‖
√
nαln(K)‖Glj

]
≤ C

√
nφx(hj/2).
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Now, we apply the Bernstein’s inequality for :

βn = O

(√
nφx(hj/2)

)
, σ2 = O (φx(hj/2)) , D = C and t = η0/2

√
nφx(hj/2) log n.

which implies that :

IP

{
max

1≤k≤n
‖
√
kαlk(K)‖Glj > η0

√
nφx(hj/2) log n

}
≤ IP

{
max

1≤k≤n
‖
√
kαlk(K)‖Glj > βn + t

}

≤ exp

−η2
0

log n

8 + C
√

logn
nφx(hj/2)


≤ n−C

′η20 .

The last inequality is a consequence of (H7). Moreover, since L(n) ≤ 2 log n, we get

that :

L(n) max
j=1,...,L(n)

IP

{
max

1≤k≤n
‖
√
kαlk(K)‖Glj > η0

√
nφx(hj/2) log n

}
≤ C(log n)n−C

′η20 .

Now for η0 such that C ′η2
0 > 1 we get :

sup
an≤h≤bn

|Tl − IE[Tl]| = Oa.co.

(√
log n

nφ(an)

)
.

Which permits to deduce the proof of this Lemma
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Proof of Corollary 7. Using some algebra to show that

IE
[
δ2

1Y
−2
i K1

]
h2φx(h)

−→ (1/4)K(1/2)τx(1/2)−
∫ 1/2

−1/2

(s2K(s))′τx(s)ds > 0

and

IE [K1]

φx(h)
−→ K(1/2)τx(1/2)−

∫ 1/2

−1/2

(K(s))′τx(s)ds > 0.

By , (H4) and (H5) we get that

IE
[
β1Y

−2
i K1]

]
= o(hφx(h/2)) and IE [β1K1]] ≥ CIE

[
δ2

1K1

]
.

Therefore, we can find a constant C ′ > 0, such that :

IE[f̂(x)] ≥ C ′ for all h ∈ (an, bn).

Then

inf
h∈(an,bn)

f̂(x) ≤ C ′

2
implies that there exists h ∈ (an, bn) such that

∣∣∣IE[f̂(x)]− f̂(x)
∣∣∣ ≥ C ′

2

which allows to write sup
h∈(an,bn)

∣∣∣IE[f̂(x)]− f̂(x)
∣∣∣ ≥ C ′

2
.

So, we use the Lemma 23 to write that for a C =
C ′

2
:

∑
n

IP

(
inf

h∈(an,bn)
f̂(x) ≤ C

)
≤
∑
n

IP

(
sup

h∈(an,bn)

∣∣∣IE[f̂(x)]− f̂(x)
∣∣∣ ≥ C

)
<∞.
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Proof of Lemma 25. The proof of this Lemma is similar to Lemma 23. It based on

the following decomposition

ĝ(x) ==
n2h2φ2

x(h)

n(n− 1)IE[W12]︸ ︷︷ ︸
A1


(

1

n

n∑
j=1

Kj(x)Y −1
j

φx(h)

)
︸ ︷︷ ︸

T4

(
1

n

n∑
i=1

Ki(x)β2
i (x)Y −2

i

h2φx(h)

)
︸ ︷︷ ︸

T2

−

(
1

n

n∑
j=1

Kj(x)βj(x)Y −1
j

hφx(h)

)
︸ ︷︷ ︸

T5

(
1

n

n∑
i=1

Ki(x)βi(x)Y −2
i

hφx(h)

)
︸ ︷︷ ︸

T3

 .
So, the claimed result is consequences of the three following results

∑
n

IP

{
supan≤h≤b0

√
nφx(an)

log n
|Sm − IE[Sm]| > η

}
<∞, for m = 1, 2, for a certain b0.

(4.7)

Cov(S1, T4) = o

(√
log n

nφx(an)

)
(4.8)

and Cov(S2, T3) = o

(√
log n

nφx(an)

)
. (4.9)

Firstly, the claimed result (4.7) can be obtained exactly as (4.3). Indeed, we put

Λm
i = h1−mKβm−1

i Yi − h1−mIE
[
K1β

m−1
i Y −1

i

]
for k = 1, 2

and define the empirical process :

α
′m
n (K) =

1√
n

n∑
i=1

(Λm
i − IE [Λm

i ]).
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We consider the following class of functions :

G ′mj =
{

(z, y) 7→ γ1−my−1K
(
γ−1δ(x, z)βm−1(x, z)

)
for hj−1 ≤ γ ≤ hj

}
.

This class of functions admits an envelope function Fj(·, ·) such that :

Fj(z, y) ≤ Cy1IB(x, hj/2)(z)

Under (H1), (H2) and (H4) we obtain that :

IE
[
F p
j (X, Y )

]
≤ Cpφx(hj/2) and IE

[
F 2(X, Y )

]
= O (φx(hj/2)) .

By a similar ideas as those used in Lemma 23‘s proof allow to get :

β′n = IE
[
‖
√
nα
′m
n (K)‖G′mj

]
= O

(√
nφx(hj/2)

)
.

Using Bernstein’s inequality on the empirical process α
′m
n (K) to show that :

IP

{
max

1≤k≤n
‖
√
kα
′m
k (K)‖G′mj > η′0

√
nφx(hj/2) log n

}
≤ IP

{
max

1≤k≤n
‖
√
kα
′m
k (K)‖G′mj > β′n + t

}

≤ n−C
′η′20 .

So,

IP

{
supan≤h≤b0

√
nφx(an)

log n
|Sm − IE[Sm]| > η

}

≤ L(n)IP

{
max

1≤k≤n
‖
√
kα
′m
k (K)‖G′mj > η′0

√
nφx(hj/2) log n

}
≤ log(n)n−C

′η′20 .
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Thus a suitable choice of η′0 allows to deduce that :

sup
an≤h≤bn

|Sm − IE[Sm]| = Oa.co.

(√
log n

nφ(an)

)
.

Now, let us show the results ( 4.8) and (4.9). The proof of these lasts follows the

same lines as the proof of ( 4.5) and (4.6), it suffices to write that

Cov(S1, T4) =
1

n2φ2
x(h)

∑
i

Cov

(
KiYi,

Kiβ
2
i

h2

)
and

Cov(S2, T3) =
1

n2φ2
x(h)

∑
i

Cov

(
KiβiYi
h

,
Kiβi
h

)
.

Using the assumptions (H4) and (H8), for k = 0, 1 and l = 1, 2, to write that∣∣∣Cov (Kiβki Yihk
,
Kiβ

l
i

hl

)∣∣∣ =

∣∣∣∣IE [K2
i β

k+l
i Yi

hk+l

]
− IE

[
Kiβ

k
i Yi

hk

]
IE

[
Kiβ

l
i

hl

]∣∣∣∣
≤ C

∣∣IE [K2
i Yi
]∣∣+ |IE [KiYi] IE [Ki]|

≤ C
[
φx(h/2) + φ2

x(h/2)
]
≤ Cφx(h/2)

hence ∑
i

Cov

(
Kiβ

k
i Yi

hk
,
Kiβ

l
i

hl

)
≤ nφx(h/2)).

Thus, for (k, l) = (0, 2) we get

Cov(S1, T4) ≤ C

(
1

nφx(h)

)
≤ C

(
1

nφx(h)

)
= Oa.co.

(√
log n

nφ(an)

)

Next, it suffices to take (k, l) = (1, 1) to show that

Cov(S2, T3)C

(
1

nφx(h)

)
≤ C

(
1

nφx(h)

)
= Oa.co.

(√
log n

nφ(an)

)



Chapitre 5

UNN consistency of the kernel

estimator of the relative error

regression

5.1 The kNN estimate of the relative error regres-

sion

The mean squared relative error is defined as zero of

For Y > 0, IE

[(
Y − r(X)

Y

)2 ∣∣X] (5.1)

and we estimate it by

r̃(x) =

∑n
i=1 Y

−1
i K(h−1d(x,Xi))∑n

i=1 Y
−2
i K(h−1d(x,Xi))

(5.2)

57
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where K is a kernel and h = hK,n is a sequence of positive real numbers. Thus, the

functional version of the kNN estimator of this model is defined by :

r̂(x) =

∑n
i=1 Y

−1
i K(H−1

k,xd(x,Xi))∑n
i=1 Y

−2
i K(H−1

k,xd(x,Xi))
(5.3)

where Hk,x = min
{
h ∈ R̂+ such that

∑n
i=1 11B(x,h)(Xi) = k

}
.

5.2 UINN asymptotics

We start by gathering together all assumptions required to obtain our asymptotic re-

sults.

(H1) For all r > 0, IP(X ∈ B(x, r)) =: φx(r) > 0 such that, for all s ∈ (0, 1),

lim
r→0

φx(sr)

φx(r)
= τx(s).

(H2) For all (x1, x2) ∈ N 2
x , we have

|gγ(x1)− gγ(x2)| ≤ C dkγ (x1, x2) for kγ > 0.

(H3) The class of functions :

K = {· 7→ K(γ−1d(x, ·)), γ > 0} is a pointwise measurable class 1

such that :

sup
Q

∫ 1

0

√
1 + logN (ε‖F‖Q,2,K, dQ)dε <∞

1. A class of functions C is said to be a pointwise measurable class if, there exists a countable

subclass C0 such that for any function g ∈ C there exists a sequence of functions (gm)m∈N in C0 such

that : |gm(z)− g(z)| = o(1).
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where the supremum is taken over all probability measures Q on the probability

space (X ,A) with Q(F 2) < ∞ where F is the envelope function 2 of the set K.

Here, dQ is the L2(Q)-metric and N (ε,K, dQ) is the minimal number of open balls

(with respect to the L2(Q)-metric) with radius ε which are needed to cover the

function class K. We will denote by ‖ · ‖Q,2 the L2(Q)-norm.

(H4) The kernel K is supported within (0, 1/2) and has a continuous first derivative

on (0, 1/2) which is such that :

0 < C411(0,1/2)(·) ≤ K(·) ≤ C511(0,1/2)(·) and K(1/2)−
∫ 1/2

0

K ′(s)τx(s)ds > 0

where 11A is the indicator function of the set A.

(H5) The sequence of numbers (k1,n) verifies :

log n

min(nφ−1
x

(
k1,n
n

)
, k1,n)

→ 0.

Théorème 9. Under the hypotheses (H1)-(H5), and if IE[|Y |−m|X] < C5 <∞, almost-

surely for some m ≥ 2 and C5 > 0, then we have :

sup
k1,n≤k≤k2,n

|r̂(x)− r(x)| = O

(
φ−1
x

(
k2,n

n

)max(k1,k2)
)

+Oa.co.

(√
log n

k1,n

)
.

5.3 Proofs of the results

Proof of Theorem 9. Let us begin by putting

zn = O

(
φ−1
x

(
k2,n

n

)β1
+

√
log n

k1,n

)
2. An envelope function G for a class of functions C is any measurable function such that :

supg∈C |g(z)| ≤ G(z), for all z.
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and we write for some α ∈]0, 1[ :

sup
k1,n≤k≤k2,n

|r̂(x)− r(x)| = sup
k1,n≤k≤k2,n

|r̂(x)− r(x)|11{
φ−1
x

(
α
k1,n
n

)
≤Hk,x≤φ−1

x

(
k2,n
αn

)}
+ sup

k1,n≤k≤k2,n
|r̂(x)− r(x)|11{

Hk,x 6∈
(
φ−1
x

(
αk1,n
n

)
, φ−1

x

(
k2,n
αn

))}.
Thus, for all ε > 0, we have :

IP

{
sup

k1,n≤k≤k2,n
|r̂(x)− r(x)| ≥ εzn

}

≤ IP

 sup
k1,n≤k≤k2,n

|r̂(x)− r(x)|11{
φ−1
x

(
αk1,n
n

)
≤Hk,x≤φ−1

x

(
k2,n
nα

)} ≥ εzn
2


+IP

{
Hk,x 6∈

(
φ−1
x

(
αk1,n

n

)
, φ−1

x

(
k2,n

nα

))}
.

So, to show that sup
k1,n≤k≤k2,n

|r̂(x) − r(x)| = Oa.co.(zn), it suffices to prove the three

following results :

∑
n

k2,n∑
k=k1,n

IP

(
Hk,x ≤ φ−1

x

(
αk1,n

n

))
<∞ (5.4)

∑
n

k2,n∑
k=k1,n

IP

(
Hk,x ≥ φ−1

x

(
k2,n

nα

))
<∞ (5.5)

sup
φ−1
x

(
k1,n
n

)
≤h≤φ−1

x

(
k2,n
n

) |r̃(x)− r(x)| = Oa.co.(zn) (5.6)

For the first claimed result we use the following lemma

Lemme 22. Let U1, . . . , Un be independent Bernoulli random variables with IP[Ui =

1] = p for i = 1, . . . n. Set U :=
∑n

i=1 Xi and µ = pn. Then, for any ω > 0, we have :

IP (U ≥ (1 + ω)µ) ≤ e−µmin(ω2,ω)/4 (5.7)

and if ω ∈ (0, 1), we have :

IP (U ≤ (1− ω)µ) ≤ e−µ(ω
2/2). (5.8)
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Then, by using Lemma 22, we can write that :

IP

(
Hk,x ≤ φ−1

x

(
αk1,n

n

))
= IP

(
n∑
i=1

11
B
(
x,φ−1

x

(
αk1,n
n

)) > k

)

= IP

(
n∑
i=1

11
B
(
x,φ−1

x

(
α
k1,n
n

)) > k

αk1,n

αk1,n

)
≤ exp (−(k − αk1,n)/4) .

Therefore one has,

k2,n∑
k=k1,n

IP

(
Hk,x ≤ φ−1

x

(
αk1,n

n

))
≤ k2,n exp (−(1− α)k1,n/4) ≤ n1−((1−α)/4)

k1,n
logn .

By the same way we obtain that :

IP

(
Hk,x ≥ φ−1

x

(
k2,n

αn

))
≤ exp

(
−(k2,n − αk)2

2αk2,n

)
.

It follows that :

k2,n∑
k=k1,n

IP

(
Hk,x ≥ φ−1

x

(
k2,n

αn

))
≤ k2,n exp (−(1− α)k1,n/2α) ≤ n1−((1−α)/2α)

k2,n
logn .

Because k1,n/ log n → ∞ we finally obtain (5.4) and (5.5). Now for sup
k1,n≤k≤k2,n

|r̂(x) −

r(x)| = Oa.co.(zn), we start by writing :

r̂(x)− r(x) = B̂n(x) +
R̂n(x)

F̂D(x)
+
Q̂n(x)

F̂D(x)

where

Q̂n(x) := (ĝ(x)− IE[ĝ(x)])−m(x)(f̂xD − IE[F̂ x
D])

B̂n(x) :=
IE[ĝ(x)]

IE[F̂ x
D]
−m(x) and R̂n(x) := −B̂n(x)(F̂ x

D − IE[F̂ x
D])

with

ĝ2(x) =
1

nφx(hK)

n∑
i=1

K
(
h−1
K d(x,Xi)

)
Y −1
i
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and

ĝ1(x) =
1

nφx(hK)

n∑
i=1

K
(
h−1
K d(x,Xi)

)
Y −2
i .

Therefore, Theorem 9 is a consequence of the following intermediate results.

Lemme 23. Under the hypotheses (H1)-(H4), we have that :

sup
an≤hK≤bn

|ĝ2(x)− IE[ĝ2(x)]| = Oa.co.

(√
log n

nφ(an)

)
.

Proof of Lemma 23. In order to prove this Lemma, we have to show that there exists

η0 > 0 such that :

∑
n

IP

{
sup

an≤hK≤b0

√
nφx(an)

log n
|ĝ2(x)− Eĝ2(x)| ≥ η0

}
<∞, for some positive number b0.

Then, to do that, we follow similar ideas as in Einmahl and Mason (2005) which are

based on the Bernstein’s inequality for empirical processs. For this aim, we put :

hK,j = 2jan and L(n) = max{j : hK,j ≤ 2b0}.

Therefore, we have that :

sup
an≤hK≤b0

√
nφx(an)

log n
|ĝ2(x)− Eĝ2(x)| ≤ max

1≤j≤L(k)
sup

hK,j−1≤hK≤hK,j

√
nφx(hK)

log n
|ĝ2(x)− Eĝ2(x)| .

Now, we write the difference :

ĝ2(x)− Eĝ2(x) :=
1√

nφx(hK)
αn(K),

where αn(K) =
1√
n

n∑
i=1

Ki − EKi corresponds to the empirical process based on the

variables X1, X2, . . . , Xn. Then, we consider the following class of function :

GK,j =
{
z 7−→ y−2K

(
γ−1d(x, z)

)
where hK,j−1 ≤ γ ≤ hK,j

}
.
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Thus

IP

{
sup

an≤hK≤b0

√
nφx(an)

log n
|ĝ2(x)− Eĝ2(x)| ≥ η0

}

≤
L(n)∑
j=1

IP

{
1√

nφx(hK,j/2) log n
‖
√
nαn(K)‖GK,j ≥ η0

}

≤ L(n) max
j=1,...L(k)

IP

{
max

1≤k≤n
‖
√
kαk(K)‖GK,j ≥ η0

√
nφx(hK,j/2) log n

}
.

Furthermore, we apply the Bernstein’s inequality (cf. Lemma 21), to evaluate :

IP

{
max

1≤k≤n
‖
√
kαk(K)‖GK,j > η0

√
nφx(hK,j/2) log n

}
.

For this aim, we must study the asymptotic behavior of :

βn = IE
[
‖
√
nαn(K)‖GK,j

]
and σ2 = IE

[
G2
K,j(X)

]
where GK,j is the envelope function of class GK,j. It follows from (H3) that the envelope

function GK,j is such that :

GK,j(z) ≤ C1IB(x, hK,j/2)(z).

Hence, for all p ≥ 1, we have that :

IE
[
Gp
K,j(X)

]
≤ Cpφx(hK,j/2) (5.9)

and particularly :

σ2 = O(φx(hK,j/2)).

Concerning the term βn, we combine the assumption (H3) together with

Lemma 19’s result to get that :

IE‖αn(g)‖GK,j ≤≤ CJ(1,K)‖F‖2
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where F is the envelope function for K. Thus the conditions of Lemma20 is

verified for the class GK,j and the envelope function F . It follows that,

IE‖αn(g.11B(x,hK,j/2))‖GK,j ≤ 2CJ(1,K)‖F.11B(x,hK,j/2)‖2

Finally, we obtain that

IE
[
‖
√
nαn(K)‖GK,j

]
≤ C

√
nφx(hK,j/2).

We are now in position to apply the Bernstein’s inequality for :

βn = O

(√
nφx(hK,j/2)

)
, σ2 = O (φx(hK,j/2)) , H = C and t = η0/2

√
nφx(hK,j/2) log n.

Therefrom, we obtain that :

IP

{
max

1≤k≤n
‖
√
kαk(K)‖GK,j > η0

√
nφx(hK,j/2) log n

}
≤ IP

{
max

1≤k≤n
‖
√
kαk(K)‖GK,j > βn + t

}

≤ exp

−η2
0

log n

8 + C
√

logn
nφx(hK,j/2)


≤ n−C

′η20 .

Moreover, since L(k) ≤ 2 log n, we get that :

L(k) max
j=1,...L(k)

IP

{
max

1≤k≤n
‖
√
kαk(K)‖GK,j > η0

√
nφx(hK,j/2) log n

}
≤ C(log n)n−C

′η20 .

Choosing now η0 such that C ′η2
0 > 1 permits to get :

sup
an≤hK≤bn

∣∣∣F̂ x
D − IE[F̂ x

D]
∣∣∣ = Oa.co.

(√
log n

nφ(an)

)
.

Proof of Corollary 7. By some simple analytical arguments we show that :

IE[ĝ2(x)]→ K(1/2)−
∫ 1/2

0

K ′(s)τx(s)ds > 0.
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So, for n large enough there exists a constant C > 0, such that :

IE[ĝ2(x)] ≥ C for all hK ∈ (an, bn).

Therefrom we obtain the following implications :

inf
hK∈[an,bn]

ĝ2(x) ≤ C

2
=⇒ there exists hK ∈ (an, bn)v such that |IE[ĝ2(x)]− ĝ2(x)| ≥ C

2

=⇒ sup
hK∈(an,bn)

|IE[ĝ2(x)]− ĝ2(x)| ≥ C

2
.

Then, we deduce from Lemma 23 that :

IP

(
inf

hK∈(an,bn)
ĝ2(x) ≤ C

2

)
≤ IP

(
sup

hK∈(an,bn)

|IE[ĝ2(x)]− ĝ2(x)| ≥ C

2

)
.

It is obvious that the previous Lemma allows us to get the desired result. 2

Corollaire 7. Under the hypotheses of Lemma 23, there exists a number real C > 0

such that :
∞∑
n=1

IP

(
inf

an≤hK≤bn
ĝ2(x) < C

)
<∞.

Lemme 24. Under the hypotheses (H1)-(H4), we have that :

sup
an≤hK≤bn

∣∣∣B̂n(x)
∣∣∣ = O(bmax(k1,k2)

n ).

Lemme 25. Under the assumptions of Theorem 9, we have that :

sup
an≤hK≤bn

|ĝ1(x)− Eĝ1(x)| = Oa.co.

(√
log n

nφ(an)

)
.

2 Proof of Lemma 25 As in Lemma 23, it suffices to show that

∃η′0 > 0
∑
n

IP

{
sup

an≤hK≤b0

√
nφx(an)

log n
|ĝ(x)− IE [ĝ(x)]| ≥ η′0

}
<∞ for certain b0.
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This can be shown by following similar steps as in Lemma 23. Indeed, we keep the same

notations, we consider the empirical process

α′n(K) =
1√
n

n∑
i=1

YiKi − IE [YiKi]

and we define the following class of function

G ′K,j =
{

(z, y)→ y−1K
(
γ−1d(x, z)

)
, hK,j−1 ≤ γ ≤ hK,j

}
.

Clearly, this class of function has an envelop function FK,j(·, ·) such that

FK,j(z, y) ≤ Cy1IB(x, hK,j/2)(z)

In view of (H3) and (H4), we have

IE
[
F p
K,j(X, Y )

]
≤ Cpφx(hK,j/2) and IE

[
F 2(X, Y )

]
= O (φx(hK,j/2)) . (5.10)

Next, similar ideas as those used in Lemma 23 allow to get

β′n = IE
[
‖
√
nα′n(K)‖G′K,j

]
= O

(√
nφx(hK,j/2)

)
.

We apply now again the Bernstein̈ı¿1
2
s inequality on the empirical process α′n(K) we

obtain

IP
{

max1≤k≤n ‖
√
kα′k(K)‖G′K,j > η′0

√
nφx(hK,j/2) log n

}
≤ IP

{
max

1≤k≤n
‖
√
kαk(K)‖G′K,j > β′n + t

}

≤ n−C
′η′20 .

Therefore,

IP
{

supan≤hK≤b0

√
nφx(hK)

logn
|ĝ(x)− IE [ĝ(x)]| ≥ η′0

}
≤ L(n)IP

{
max

1≤k≤n
‖
√
kα′k(K)‖G′K,j > η′0

√
nφx(hK,j/2) log n

}
≤ log(n)n−C

′η′20 .
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Consequently, an appropriate choice of η′0 permits to deduce that

sup
an≤hK≤bn

|ĝ(x)− IE [ĝ(x)] | = Oa.co.

(√
log n

nφ(an)

)
.



Conclusion and perspective

The research work developed in this thesis is the modeling of relative nonparame-

tric regression when the data are ergodic. At first, we demonstrated almost complete

convergence for a fixed smoothing parameter. Under standard conditions we obtained

the speed of convergence. The case of a variable window, we showed the uniform

convergence on the smoothing parameter. In the last part, we treated the estimator

of the number of nearest neighbors. We also give the speed of convergence on this

number. These results are very important in practice. they constitute a mathematical

support for the use of the methods of selection of the smoothing parameter as well as

the number of neighbors.

The generalization of these last results to the ergodic case is the first perspective of

the present contribution. Also, we can mention other perspectives such as asymptotic

normality as well as convergence in norm Lp
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tures Notes in Statistics. Springer Verlag, New York. 149.*

[7] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model. Statist.

Probab. Lett. 45, 11–22.

69



Bibliographie 70

[8] Cuevas, A. (2014). A partial overview of the theory of statistics with functional

data. J. Statist. Plann. Inference, 147, 1-23.

[9] Demongeot, J., Hamie, A., Laksaci, A., and Rachdi, M. (2016). Relative-error pre-

diction in nonparametric functional statistics : theory and practice. J. Multivariate

Anal. 146, 261–268

[10] Gheriballah, A. Laksaci, A. and Sekkal, S. (2013) Nonparametric M -regression for

functional ergodic data. Statist. Probab. Lett. , 83, 902–908.

[11] Goia, A. and Vieu, P. (2016). An introduction to recent advances in high/infinite

dimensional statistics. J. Mutiv. Anal., 146, 1-6.

[12] Ferraty, F. and Vieu, P. (2000) Dimension fractale et estimation de la régression
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