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et remarques constructives.

Mes remerciements s’adressent aux Messieurs : BENCHIKH TAWFIK,
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temps et l’attention qu’ils y’ont consacrés pour la lecture attentive de cette thèse.
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Chapitre 1

Introduction

1.1 Résumé

Cette thèse est consacrée à l’étude d’un nouvel estimateur de l’opérateur de

régression d’un variable de réponse scalaire étant donné une variable explicative

fonctionnelle. Ce dernier est construit en minimisant la moyenne d’erreur relative

au carre de l’operateur de régression linéaire locale. Comme résultats asympto-

tiques, nous établissons la convergence ponctuelle et uniforme presque complète

avec les taux de cet estimateur. Une étude de Monte Carlo est réalisée pour évaluer

la performance de cette estimateur
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1.2 Abstract

1.2 Abstract

This thesis is dedicated to the survey a new estimator of the regression operator

of a scalar response variable given a functional explanatory variable. The latter

is constructed by minimizing the mean squared relative error of the local linear

regression operator. As asymptotic results, we establish the pointwise and the

uniform almost complete consistency with rates of this estimator. A Monte Carlo

study is carried out to evaluate the performance of this estimate.
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1.2 Abstract

List des traveaux

– Chahad, Abdelkader ; Ait-Hennani, Larbi ; Laksaci, Ali. Functional local li-

near estimate for functional relative-error regression. J. Stat. Theory Pract.

11 (2017), no. 4, 771–789
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1.3 Literature Review

1.3 Literature Review

Let us introduce n pairs of random variables (Xi, Yi) for i = 1, . . . , n that we

assume drawn from the pair (X, Y ) which is valued in F × IR∗+, where F is a

semi-metric space equipped with a semi-metric d. Furthermore, we assume that

the variables X and Y are connected by the following relation

Y = R (X) + ε, (1.1)

where R is an operator from F to IR and ε is a random error variable independent

to X.

The nonparametric estimation of the operator R is one of the most important

tools to predict the relationship between Y and X. In this situation of functio-

nal covariate, there exist several nonparametric procedures allowing to estimate

this operator. A popular one is the functional version of the Nadaraya-Watson

estimator. The latter has been introduced by Ferraty and Vieu (2006). They ob-

tained the almost complete consistency of this estimator. The functional version of

the M-estimator of the regression operator has been studied by Chen and Zhang

(2009). Burba et al. (2009) have investigated the asymptotic properties of the k-

NN estimator of the regression function. Recently, Demongeot et al. (2016) have

considered another estimation method based on the relative error technique. In

this paper, we construct a new estimator of the regression operator. The latter

is obtained by combining the ideas of the relative error regression with those of

the local linear approach. Noting that the local linear approach has various nice
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1.3 Literature Review

features over the kernel method, in particular, it has a small bias compared to this

last. On the other hand, it is well known that the relative error regression is more

robust than the least square error regression, namely, in the presence of outliers.

So, our new estimator has the nice features of both approaches.

Recall that, the local linear method was introduced in the nonparametric functional

data analysis (NFDA) by Bàıllo and Grané (2009). They studied the L2-consistency

of the local linear estimate of the regression function when the explanatory variable

takes its values in a Hilbert space. Barrientos-Marin et al. (2010) have proposed an

alternative fast version of the functional local linear estimate which can be used for

a more general functional regressor. They proved the almost complete convergence

(with rate) of the proposed estimate. Berlinet et al. (2010) constructed another

local linear estimate based on the inverse of the local covariance operator of the

functional explanatory variable. Zhou and Lin (2016) gave the asymptotic norma-

lity of the functional local linear regression estimate. The relative error regression

has been recently introduced in NFDA by Demongeot et al. (2016). They showed

that this regression model has significant advantages over the classical regression.

It should be noted that both local linear estimation or relative error regression

have been extensively studied in the multivariate case ( see, for example, Stone

(1977), Fan et al. (1996), Masry (1996), Hallin et al. (2009), Narula and Welling-

ton (1977), Jones et al (2008), Yang et Ye (2013)). However, much less attention

has been paid to the local linear estimation of the relative error regression. As

far as we know, only the paper by Jones et al. (2008) provides an estimator of
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1.4 Some previous results

the relative error regression based on the multivariate local linear procedure. In

this contribution, we treat the general case where the covariates are of functional

nature.

The main aim of this thesis is to establish the asymptotic properties of the construc-

ted estimator. We prove the pointwise and the uniform almost complete consisten-

cies of this estimate. These results are obtained under some standard conditions

in NFDA. The considered conditions are closely linked to the functional structure

of the data as well as to the functional nature of the nonparametric model. Noting

that these questions, in infinite dimension are particularly interesting, at once for

the fundamental problems they formulate, but also for many applications they may

allow. There exists an increasing number of situations coming from different fields

of applied sciences in which the data are of functional nature (see Bosq (2000),

Ramsay and Silverman (2002), Ferraty and Vieu (2006) for an overview on func-

tional data analysis and Zhang (2014), Hsing et al. (2015), Cuevas (2014), Goia

and Vieu (2016) for recent advances and references).

1.4 Some previous results

Some previous results on the iid case classical kernel case

Theorem 1 (See, Demongeot et al. (2016) ) Under assumptions

(H1) IP(X ∈ B(x, r)) =: φx(r) > 0 for all r > 0 and lim
r→0

φx(r) = 0.
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1.4 Some previous results

(H2) For all (x1, x2) ∈ N 2
x , we have :

|gγ(x1)− gγ(x2)| ≤ C dkγ (x1, x2) for kγ > 0.

(H3) The kernel K is a measurable function which is supported within (0, 1)

and satisfying :

0 < C2 ≤ K(·) ≤ C3 <∞.

(H4) The small ball probability :

nφx(h)

log n
→∞ as n→ +∞.

(H5) The inverse moments of the response variable :

∀m ≥ 2, E[Y −m|X = x] < C <∞.

, we have :

|r̃(x)− r(x)| = O(hk1) +O(hk2) +Oa.co.

(√
log n

nφx(h)

)
. (1.2)

Theorem 2 (See, Demongeot et al. (2016) ) Under hypotheses

(U1) ∀x ∈ SF , ∀ε > 0, 0 < Cφ(ε) ≤ IP (X ∈ B(x, ε)) ≤ C ′φ(ε) <∞.

(U2) There exists η > 0, such that :

∀x, x′ ∈ SηF , |gγ(x)− gγ(x′)| ≤ Cdkγ (x, x′),

where SηF = {x ∈ F ,∃x′ ∈ SF , d(x, x′) ≤ η}.

(U3) The kernel K is a bounded and Lipschitz function on its support [0, 1).

(U4) The functions φ and ψSF are such that :
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1.4 Some previous results

(U4a) there exists η0 > 0, ∀η < η0, φ
′(η) < C,

(U4b) for n large enough, we have :

(log n)2

nφ(h)
< ψSF

(
log n

n

)
<
nφ(h)

log n
,

(U4C) the Kolmogorov’s ε-entropy of SF satisfies :

∞∑
n=1

exp

{
(1− β)ψSF

(
log n

n

)}
<∞ for some β > 1.

(U5) For any m ≥ 2, E(|Y −m||X = x) < C < ∞ for all x ∈ SF and

inf
x∈SF

g2(x) ≥ C ′ > 0 .

we have :

sup
x∈SF

|r̃(x)− r(x)| = O(hk1) +O(hk2) +Oa.co.

√ψSF
(
logn
n

)
nφ(h)

 . (1.3)

Theorem 3 (See, Demongeot et al. (2016) ) Under assumptions

(M1) The concentration property (H1) holds. Moreover, there exists a function

βx(·) such that :

for all s ∈ [0, 1], lim
r→0

φx(sr)

φx(r)
= χx(s).

(M2) For γ ∈ {1, 2}, the functions Ψγ(·) = E
[
gγ(X)− gγ(x)

∣∣∣d(x,X) = ·
]

are

derivable at 0.

(M3) The kernel K satisfies (H3) and is a differentiable function on ]0, 1[ where

its first derivative K ′ is such that : −∞ < C < K ′(·) < C ′ < 0.

(M4) The small ball probability satisfies :

nφx(h) −→∞.
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1.4 Some previous results

(M5) For m ∈ {1, 2, 3, 4}, the functions E[Y −m|X = ·] are continuous in a

neighborhood of x.

we have :

E [r̃(x)− r(x)]2 = B2
n(x)h2 +

σ2(x)

nφx(h)
+ o(h) + o

(
1

nφx(h)

)
,

where

Bn(x) =
(Ψ′1(0)− r(x)Ψ′2(0)) β0

β1g2(x)

and

σ2 =
(1− 2r(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x]) β2

g22(x)β2
1

with

β0 = K(1)−
∫ 1

0

(sK(s))′χx(s)ds, and, βj = Kj(1)−
∫ 1

0

(Kj)′(s)χx(s)ds, for j = 1, 2.

Theorem 4 (See, Demongeot et al. (2016) ) Assume that (M1)-(M5) hold, then

for any x ∈ F , we have :

(
nφx(h)

σ2(x)

)1/2

(r̃(x)− r(x)−Bn(x)− o(h))
D→ N (0, 1) as n→∞.

where
D→ means the convergence in distribution.
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1.4 Some previous results

Some previous results on the dependent case

The spatial case studied by Atoouch et al. (2017) and the considered the ran-

dom filed (Zi, i ∈ NN) satisfies the following mixing condition :

There exists a function ϕ (t) ↓ 0 as t→∞, such that

∀E, E ′ subsets of NN with finite cardinals

α
(
B (E) , B

(
E
′))

= sup
B∈B(E), C∈B(E′)

|IP (B ∩ C)− IP (B) IP (C)|

≤ s
(
Card (E) ,Card

(
E
′))

ϕ
(
dist

(
E,E

′))
,

(1.4)

where B (E)(resp. B
(
E
′)

) denotes the Borel σ-field generated by (Zi, i ∈ E) (resp.(
Zi, i ∈ E ′

)
), Card(E) (resp. Card

(
E
′)

) the cardinality of E (resp. E
′
), dist

(
E,E

′)
the Euclidean distance between E and E

′
and s : N2 → IR+ is a symmetric positive

function nondecreasing in each variable such that :

s (n,m) ≤ C min (n,m) , ∀n,m ∈ N. (1.5)

Theorem 5 (see, Atoouch et al. (2017)) Under assumptions

(H1) The density f of the variable X is positif function, of class C2 in S.

(H2) The functions rl(·) ; (l = 1, 2) is of class C2 in S

(H3) The joint probability density fi,j of Xi and Xj exists and satisfies

|fi,j(u, v)− f(u)f(v)| ≤ C for some constant C and for all u, v, i and j

(H4) The mixing coefficient defined in (1.4) satisfies

∞∑
i=1

iN−1(ϕ(i))a <∞, for some 0 < a <
1

2
.

14



1.4 Some previous results

(H5) K is continuous lipschitz function, symmetric , with compact support.

(H6) There exists γ ∈ (0, 1) such that



∑
n

n̂ (log n̂)−1ϕ(pn) <∞ for pn = O

(
n̂1−γhd

log n̂

)1/2N

and

n̂δh→∞ for certain δ > 0.

(H7) The inverse moments d’order l = 1, 2 if the response variable such that,

IE
(
exp

(
|Y −l|

))
≤ C and ∀i, j IE

(∣∣Y −li Y −lj

∣∣ ∣∣∣Xi, Xj

)
≤ C ′.

and, if inf
x∈S

g2(x) > 0, we have :

sup
x∈S
|θ̃(x)− θ(x)| = O(h2) +Oa.co.

(√
log n̂

n̂hd

)
a.co. (1.6)

Theorem 6 (see, Atoouch et al. (2017)) Assume that (H1)-(H5) and (H7)-(H9)

hold, then we have, for any x ∈ A,

(
n̂hd

σ2(x)

)1/2 (
θ̃(x)− θ(x)

)
D→ N (0, 1) as n→∞.

where

σ2 =
(g2(x)− 2θ(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x])

g22(x)

∫
Rd
K2(z)dz,

A =
{
x ∈ S,

(
g2(x)− 2θ(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x]

)
g22(x) 6= 0

}
and

D→ means the convergence in distribution.
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1.4 Some previous results

Mechab and Laksaci have studied the quasi-associated process defined by

Definition A sequence (Zn)n∈IN of real random vectors variables is said to be

quasi-associated, if for any disjoint subsets I and J of IN and all bounded Lipschitz

functions f : IR|I|d → IR and g : IR|J |d → IR satisfying :

|Cov(f(Zi, i ∈ I), g(Zj, j ∈ J))| ≤ Lip(f)Lip(g)
∑
i∈I

∑
j∈J

d∑
k=1

d∑
l=1

∣∣Cov(Zk
i , Z

l
j)
∣∣(1.7)

(here and in the sequel |I| denotes the cardinality of a finite set I)

where Zk
i denotes the kth component of Zi, and

Lip(f) = sup
x 6=y

|f(x)− f(y)|
‖x− y‖1

, with ‖(x1, . . . , xk)‖1 = |x1|+ . . .+ |xk|.

Theorem 7 (see, Mechab and Laksaci (2016)) Under assumptions (H1)-(H6)

and, if inf
x∈S

g2(x) > 0,

(H1) The density f of the variable X is positif function, of class C2 in S and

such that :

sup
|i−j|≥1

‖f(Xi,Xj)‖∞ <∞.

(H2) The functions rl(·) = E[Y −γ|X = ·] ; (l = 1, 2) is of class C2 in S

(H3) The random pair {(Xi, Yi), i ∈ IN} is quasi-associated with covariance

coefficient λk, k ∈ IN checked

∃a > 0, ∃C > 0, such that λk ≤ Ce−ak.
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1.4 Some previous results

(H4) K is continuous lipschitz function, symmetric , with compact support.

(H5) There exists γ ∈ (0, 1) and ξ1, ξ2 > 0 such that

logn1/d

n(1−γ−ξ2)/d ≤ h ≤ C
(logn)(1+ξ1)/d

.

(H6) The inverse moments d’order l = 1, 2 f the response variable such that,

IE
(
exp

(
|Y −l|

))
≤ C and ∀i 6= j IE

(∣∣Y −li Y −lj

∣∣ ∣∣∣Xi, Xj

)
≤ C ′.

we have :

sup
x∈S
|r̃(x)− r(x)| = O(h2) +Oa.co.

(√
log n

n1−γhd

)
a.co. (1.8)

Theorem 8 (see, Mechab and Laksaci (2016)) Assume that (H1)-(H4), (H5’) and

(H6) hold, then for any x ∈ R̂d, we have :

(
nhd

σ2(x)

)1/2

(r̃(x)− r(x))
D→ N (0, 1) as n→∞.

where

σ2 =
(g2(x)− 2r(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x])

g22(x)

∫
Rd
K2(z)dz,

A =
{
x ∈ S,

(
g2(x)− 2r(x)E[Y −3|X = x] + r2(x)E[Y −4|X = x]

)
g22(x) 6= 0

}
D→ means the convergence in distribution and

– There exists γ ∈ (0, 1) and ξ1, ξ2 > 0 such that

1
n2(1/2−γ/9−ξ2)/d) ≤ h ≤ C

n(1+ξ1)/(d+4) .
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Chapitre 2

Functional local linear relative

regression : Complete data case

Ce chapitre fait l’objet d’une publication au Journal of Statistical Theory and

Practice
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2.1 Introduction

2.1 Introduction

Let us introduce n pairs of random variables (Xi, Yi) for i = 1, . . . , n that we

assume drawn from the pair (X, Y ) which is valued in F × IR∗+, where F is a

semi-metric space equipped with a semi-metric d. Furthermore, we assume that

the variables X and Y are connected by the following relation

Y = R (X) + ε, (2.1)

where R is an operator from F to IR and ε is a random error variable independent

to X.

The nonparametric estimation of the operator R is one of the most important

tool to predict the relationship between Y and X. Such a subject has taken an

important place in Nonparametric Functional data analysis (NFDA). Various non-

parametric techniques can be found in the literatures of NFDA. We cite for instance

Ferraty and Vieu (2006) for the functional Nadaraya-Watson estimator, Attouch et

al.(2010) for the nonparametric robust estimation, Burba et al.(2009) for k-nearest

neighbor kernel method, Barrientos et al. (2010) for the local linear approach or

Demongeot et al.(2016) for the functional relative error techniques. The main pur-

pose of this paper is to construct a new estimator of the regression operator. The

latter is obtained by combining the ideas of the relative error regression with those

of the local linear approach. Noting that the local linear approach has various nice

features over the kernel method, in particular, has small bias compared to this last.

On the other hand it is well known the relative error regression is more robust than
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2.1 Introduction

the least square error regression, namely, in presence of the outliers. So, our new

estimator has the nice features of both approaches.

Recall that, the local linear modeling was introduced in NFDA by Bàıllo and

Grané (2009). They studied the L2- consistency of the local linear estimate of the

regression function when the explanatory variable takes values in a Hilbert space.

We refer to Barrientos et al. (2010) for the almost complete convergence (with rate)

of an alternative version of the local linear estimate of the nonparametric functional

regression. Their simplified version has been adapted by Laksaci et al. (2013) for

others nonparametric models, such as the conditional distribution function, the

conditional density or the conditional mode function. We return to Berlinet et al.

(2011) for another version constructed by inverting the local covariance operator

of the functional explanatory variable. They obtained the convergence rate of the

mean quadratic error of the constructed estimator. In parallel, the relative error

regression has been recently introduced in NFDA by Demongeot et al. (2016).

They shown that this regression model has significant advantages over the classical

regression. It should be noted that both local linear estimation or relative error

regression have been extensively studied in the multivariate case. See, for example,

Stone (1977), Fan et al. (1996), Masry (1996), Hallin et al. (2009), Narula and

Wellington (1977), Jones et al (2008), Yang et Ye (2013), Laksaci and Mechab

(2016), Attouch et al. (2016), among others. However, much less attention has

been paid to the local linear estimation of the relative error regression. As far

as we know, only the paper by Jones et al (2008) provides an estimator of the
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2.1 Introduction

relative error regression based on the multivariate local linear procedure. In this

contribution we treat the general case where the regressors are of functional nature.

The main aim of this paper is to establish the asymptotic proprieties of the

constructed estimator. We prove the pointwise and the uniform almost complete

consistency of this estimate. These results are obtained under some standard condi-

tions in NFDA. The considered conditions are closely linked to the functional

structure of the data as well as to the functional nature of the nonparametric

model. It worth to noting that these questions in infinite dimension are particu-

larly interesting, at once for the fundamental problems they formulate, but also for

many applications they may allow. There exits an increasing number of situations

coming from different fields of applied sciences in which the data are of functional

nature ( see Bosq (2000), Ramsay and Silverman (2002), Ferraty and Vieu (2006)

for an overview on functional data analysis and Zhang (2014), Hsing et al. (2015),

Cuevas (2014), Goia and Vieu (2016) for recent advanced and references).

The paper is organized as follows : We construct our estimate in the following

Section. We study the pointwise consistency in Section 3. The uniform almost

complete convergence is treated in Section 4. Some simulated data examples are

reported in Section 5. All proofs are put into the Appendix.
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2.2 The model and its estimate

2.2 The model and its estimate

Unlike to the multivariate case, there exists various versions of the functional local

linear estimate. But, all these versions are based on two common procedures. The

first one is the functional operator which is supposed smooth enough to be locally

well approximated by a polynom. The second one is the use of the following least

square error

IE
[
(Y −R(X))2|X

]
as a loss function to determine the estimate. However, this criterion may be una-

dapted to some situations. Indeed, this loss function treats all variables, in the

study, as having the same weight. Thus, this approach gives irrelevant results

when the data contains some outliers. In this paper we circumvent this limitation

by estimating the operator R with respect the following mean squared relative

error

For Y > 0, IE

[(
Y −R(X)

Y

)2 ∣∣X] . (2.2)

Clearly, this criterion is a more meaningful measure of the prediction performance

than the least square error, in particular, when the range of predicted values is

large. Moreover, solution of (2.2) is explicitly expressed by

R(x) =
IE[Y −1|X = x]

IE[Y −2|X = x]
.

In this work, we adopt the fast version proposed by Barrientos et al. (2010) and

we use the loss function (2.2) to estimate components of the linear approximation.

23



2.2 The model and its estimate

Specifically, for a fixed point x in F , we suppose that

∀x′ in neighborhood of x R(x′) = a+ bβ(x, x′) + o(β(x, x′))

and we use the loss function (2.2) to estimate a, b as follows

(â, b̂) = arg min
(a,b)

n∑
i=1

(Yi − a− bβ(Xi, x))2

Y 2
i

K(h−1δ(x,Xi)) (2.3)

where β(., .) is a known function from F2 into IR such that, ∀ξ ∈ F , β(ξ, ξ) = 0,

with K is a kernel and h = hK,n is a sequence of positive real numbers and δ(., .)

is a function defined on F × F such that d(., .) = |δ(., .)|.

Clearly, by a simple algebra, we prove that (â, b̂) are solutions of (3.1) are zeros of

(Q′B∆QB)

 a

b

− (Q′B∆Y ) = 0⇒

 a

b

 = (Q′B∆Y )(Q′B∆QB)−1.

where Q′B =

 1 . . . 1

B(X1, x) . . . B(Xn, x)


∆ = diag(Y −21 K(h−1δ(x,X1)), ...., Y

−2
n K(h−1δ(x,Xn))) and Y ′ = (Y1, . . . , Yn).

Thus, we get explicitly

â = (Q′B∆Y )(Q′B∆QB)−1

 1

0


and

b̂ = (Q′B∆Y )(Q′B∆QB)−1

 0

1

 .
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2.3 Pointwise almost complete convergence

Moreover, as β(x, x) = 0, we can take

R̂(x) = â =

∑n
i,j=1 Vij(x)Yj∑n
i,j=1 Vij(x)

(2.4)

where

Vij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1δ(x,Xi))K(h−1δ(x,Xj))Y
−2
i Y −2j

remarkwith the convention 0/0 = 0.

1) If b = 0, then we obtain from (3.1) the same estimator as that in Demongeot

et al. (2016).

2) If F = IR and β(x, x′) = x− x′, then we obtain the same local linear estimate

as in Jones et al. (2008).

2.3 Pointwise almost complete convergence

In what follows, when no confusion is possible, we will denote by C and C ′ some

strictly positive generic constants. Moreover, x denotes a fixed point in F , Nx

denotes a fixed neighborhood of x and φx(r1, r2) = IP(r2 ≤ δ(X, x) ≤ r1) and we

put gγ(u) = IE [Y −γ|X = u], γ = 1, 2.

Notice that our nonparametric model will be quite general in the sense that we

will just need the following assumptions

(H1) For any r > 0, φx(r) := φx(−r, r) > 0
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2.3 Pointwise almost complete convergence

(H2) For all (x1, x2) ∈ N 2
x , we have

|gγ(x1)− gγ(x2)| ≤ C dkγ (x1, x2) for kγ > 0.

(H3) The function β(., .) is such that

∀x′ ∈ F , C |δ(x, x′)| ≤ |β(x, x′)| ≤ C ′ |δ(x, x′)|.

(H4) K is a positive, differentiable function with support [−1, 1].

(H5) The functions β and φx are such that : there exists an integer n0, such

that

∀n > n0, −
1

φx(h)

∫ 1

−1
φx(zh, h)

d

dz

(
z2K(z)

)
dz > C > 0

and

h

∫
B(x,h)

β(u, x)dP (u) = o

(∫
B(x,h)

β2(u, x) dP (u)

)
where B(x, r) = {x′ ∈ F/|δ(x′, x)| ≤ r} and dP (x) is the cumulative distri-

bution of X.

(H6) The bandwidth h satisfies

lim
n→∞

h = 0 and lim
n→∞

log n

nφx(h)
= 0.

(H7) The function g2(x) > C > 0 and the inverse moments of the response

variable

∀m ≥ 2, E[Y −m|X = x] < C <∞.

Obviously, all these conditions are very standard and are usually assumed in this

context. Indeed, the conditions (H1), (H4)-(H6) are the same as those used in
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2.3 Pointwise almost complete convergence

Barrientos et al. (2010). Assumptions (H2) and (H7) are also the same as in De-

mongeot et al. (2016). We point out that (H2) is a regularity condition which

characterizes the functional space of our model and is needed to evaluate the bias

term in the asymptotic results of this paper. While (H1) is closely linked to topo-

logical structure of the functional space of the data F .

The following theorem gives the almost-complete convergence 1 (a.co.) of R̂(x).

Theorem 9 Under assumptions (H1)-(H7), we have

|R̂(x)−R(x)| = O
(
hb1
)

+O

(√
log n

n φx(h)

)
, a.co

where b1 = min(k1, k2)

It is clear that the proof of Theorem 9 is based on the following decomposition

R̂(x)−R(x) =
1

f̂(x)

[
ĝ(x)− g2(x)g1(x)

]
+
[
g22(x)− f̂(x)

] R(x)

f̂(x)
(2.5)

where

ĝ(x) =
1

n(n− 1)IE[Wij]

∑
i 6=j

Wij(x)Yj and f̂(x) =
1

n(n− 1)IE[Wij]

∑
i 6=j

Wij(x)

1. Let (zn)n∈N be a sequence of real r.v.’s ; we say that zn converges almost completely

(a.co.) to zero if, and only if, ∀ε > 0,
∑∞

n=1 IP (|zn| > 0) < ∞. Moreover, let (un)n∈N∗ be

a sequence of positive real numbers ; we say that zn = O(un) a.co. if, and only if, ∃ε > 0,∑∞
n=1 IP (|zn| > εun) < ∞ This kind of convergence implies both almost sure convergence and

convergence in probability (see Sarda and Vieu (2000) for details).
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2.4 Uniform almost complete convergence

with

Wij = β(Xi, x) (β(Xj, x)− β(Xj, x))K(h−1δ(x,Xi))K(h−1δ(x,Xj)).

Then Theorem 9 is a direct consequence of the following Lemmas.

Lemma 1 Under the hypotheses (H1), (H3)-(H7), we have

∣∣∣f̂(x)− IE[f̂(x)]
∣∣∣ = Oa.co.

(√
log n

n φx(h)

)

and

|ĝ(x)− IE[ĝ(x)]| = Oa.co.

(√
log n

n φx(h)

)
.

Lemma 2 Under hypotheses (H1)-(H6), we have

∣∣∣IE[f̂(x)− g22(x)]
∣∣∣ = O(hk2)

and

|IE[ĝ(x)]− g2(x)g1(x)| = O(hk1).

Corollary 1 Under the hypotheses of Theorem 9, we obtain :

∞∑
n=1

IP

(
f̂(x) <

g22(x)

2

)
<∞.

2.4 Uniform almost complete convergence

In this Section, we focus on the uniform almost complete convergence of R̂(·) on

some subset SF of F . Noting that, the uniform consistency has a great impor-

tance in practice as well has in theory. Indeed, the uniform convergence results
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2.4 Uniform almost complete convergence

are indispensable tools for data-driven bandwidth choice, testing hypotheses or in

bootstrapping approach. In addition, in practice, the uniform consistency allows

us to make prediction, even if the data are not perfectly observed. Recall that

unlike to the multivariate case, the uniform consistency is not a simple extension

of the pointwise one. In functional statistic this type of consistency requires some

additional tools and topological conditions (see, Ferraty and Laksaci et al. (2010)

for more discussions on this subject). So, in addition to the conditions introduced

in the previous section, we need the following ones.

(U1) There exists a differentiable function φ(.), such that

∀x ∈ SF , 0 < C φ(h) ≤ φx(h) ≤ C ′ φ(h) <∞ and ∃η0 > 0, ∀η < η0, φ
′(η) < C,

where φ′ denotes the first derivative of φ.

(U2) There exists η > 0, such that

∀x, x′ ∈ SηF , |gγ(x)− gγ(x′)| ≤ Cdkγ (x, x′),

where SηF = {x ∈ F ,∃x′ ∈ SF , d(x, x′) ≤ η}.

(U3) The function β(., .) is such that

∀x′ ∈ F , C d(x, x′) ≤ |β(x, x′)| ≤ C ′ d(x, x′)

and

∀(x1, x2) ∈ SF × SF , |β(x1, x
′)− β(x2, x

′)| ≤ C d(x1, x2).

(U4) The kernel K satisfies (H4) and, the following Lipschitz’s condition

|K(x)−K(y)| ≤ C
∣∣x− y∣∣.
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2.4 Uniform almost complete convergence

(U5) Condition (H5) is verified for all x ∈ SF

(U6) The subset SF such that

SF ⊂
dn⋃
k=1

B(xk, rn),

where xk ∈ F , rn = O

(
log n

n

)
and the sequence dn satisfies

(log n)2

nφ(h)
< log dn <

nφ(h)

log n
and

∞∑
n=1

d(1−β)n <∞ for some β > 1.

(U7) For any m ≥ 2, E(|Y −m||X = x) < C < ∞ for all x ∈ SF and

inf
x∈SF

g2(x) ≥ C ′ > 0 .

Once again all these conditions are usual in this context of the uniform consistency

in NFDA. In particular, condition (U1), (U5) and (U6) are the same as those

considered by Ferraty, Laksaci et al. (2010). It is shown in this article that these

three conditions are related to the topological structure of the functional space of

the data. We found in this work several examples of functional spaces for which

all these functions are explicitly known.

Theorem 10 Under assumptions (U1)-(U7) we have

sup
x∈SF

∣∣∣R̂(x)−R(x)
∣∣∣ = O(hb1) +Oa.co.

(√
log dn
nφ(h)

)
. (2.6)

Obviously, as for Theorem 9, Theorem 10’s proof can be deduced directly from the

decomposition (2.5) and from the following intermediate results which correspond

to the uniform versions of Lemmas 1 2 and Corollary 1. The proofs of these results

are given in the Appendix.
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Lemma 3 Under assumptions (U1), (U3)-(U7), we obtain that

sup
x∈SF

∣∣∣f̂(x)− IE
[
f̂(x)

]∣∣∣ = Oa.co.

(√
log dn
nφ(h)

)

and

sup
x∈SF

|ĝ(x)− IE[ĝ(x)]| = Oa.co.

(√
log dn
nφ(h)

)
.

Lemma 4 Under the assumptions (U1)- (U6), we obtain that

sup
x∈SF

∣∣∣IE[f̂(x)− g22(x)]
∣∣∣ = O(hk2)

and

sup
x∈SF

|IE[ĝ(x)]− g2(x)g1(x)| = O(hk1).

Corollary 2 Under the assumptions of Theorem 10, we have

There exists C > 0
∞∑
n=1

IP

(
inf
x∈SF

f̂(x) < C

)
<∞.

2.5 Appendix

In what follows, we put, for any x ∈ F , and for all i = 1, . . . , n

Ki(x) = K(h−1δ(x,Xi)), δi(x) = δ(Xi, x) and βi(x) = β(Xi, x).

Proof of lemma 1. It is clear that

f̂(x) =
n2h2φ2

x(h)

n(n− 1)IE[W12]︸ ︷︷ ︸
A1


(

1

n

n∑
j=1

Kj(x)Y −2j

φx(h)

)
︸ ︷︷ ︸

T1

(
1

n

n∑
i=1

Ki(x)β2
i (x)Y −2i

h2φx(h)

)
︸ ︷︷ ︸

T2
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−

(
1

n

n∑
j=1

Kj(x)βj(x)Y −2j

hφx(h)

)
︸ ︷︷ ︸

T3

(
1

n

n∑
i=1

Ki(x)βi(x)Y −2i

hφx(h)

)
︸ ︷︷ ︸

T3


and

ĝ(x) =
n2h2φ2

x(h)

n(n− 1)IE[W12]︸ ︷︷ ︸
A1


(

1

n

n∑
j=1

Kj(x)Y −1j

φx(h)

)
︸ ︷︷ ︸

T4

(
1

n

n∑
i=1

Ki(x)β2
i (x)Y −2i

h2φx(h)

)
︸ ︷︷ ︸

T2

−

(
1

n

n∑
j=1

Kj(x)βj(x)Y −1j

hφx(h)

)
︸ ︷︷ ︸

T5

(
1

n

n∑
i=1

Ki(x)βi(x)Y −2i

hφx(h)

)
︸ ︷︷ ︸

T3

 .
Moreover, observe that, for all, i, j = 2, . . . , 5

TiTj − IE[TiTj] = (Ti − IE[Ti]) (Tj − IE[Tj]) + (Tj − IE[Tj]) IE[Ti]

+ (Ti − IE[Ti]) IE[Tj] + IE[Ti]IE[Tj]− IE[TiTj].

So, the claimed result is a consequence of the following assertions

∑
n

IP

{
|Ti − IE[Ti]| > η

√
log n

nφx(h)

}
<∞, for i = 1, . . . , 5, (2.7)

A1 = O(1), IE[Ti] = O(1) and Cov(Ti, Tj) = o

(√
log n

nφx(h)

)
for i, j = 1, . . . , 5. (2.8)

For (2.7) we define

Z l,k
i =

1

hlφx(h)

(
Ki(x)Y −ki βli(x)− IE

[
Ki(x)Y −ki βli(x)

])
for l = 0, 1, 2, and k = 1, 2

and we apply the Bernstein’s exponential inequality on Z l,k
i . For this we must

evaluate asymptotically its mth order moment. Indeed, by the Newton’s binomial
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expansion, we obtain

IE
∣∣(Ki(x)Y −ki βli(x)− IE

[
Ki(x)Y −ki βli(x)

])m∣∣
= IE

∣∣∣∣∣
m∑
d=0

Cd
m

(
Ki(x)Y −ki βli(x)

)d (
IE
[
Ki(x)Y −ki βli(x)

])m−d
(−1)m−d

∣∣∣∣∣
≤

m∑
d=0

Cd
m

(
IE
∣∣Ki(x)Y −ki βli(x)

∣∣d) ∣∣IE [Ki(x)Y −ki βli(x)
]∣∣m−d

≤
m∑
d=0

Cd
mIE

∣∣Kδ
1(x)βdl1 (x)IE[Y −dk1 |X1]

∣∣ ∣∣IE [K1(x)βl1(x)IE[Y −k1 |X1]
]∣∣m−d

where Ck,m = m!/(k!(m− k)!).

Under condition (H7) we have

IE
[
Y −kd1 |X

]
= O(1), for all d ≤ m.

Next, using (H3) to write that

h−lIE
[
Ki(x)βli(x)

]
≤ h−lIE

[
Ki(x)δli(x)

]
≤ Cφx(h). (2.9)

We deduce that

h−lmφ−mx (h)
m∑
d=0

Cd
mIE

∣∣Kδ
1(x)βdl1

∣∣ ∣∣IE [K1(x)βl1
]∣∣m−d ≤ Cφx(h)−m+1.

Therefore, for l = 0, 1, 2, and k = 1, 2, we obtain that

IE
∣∣∣Z l,k

i

∣∣∣m = O
(
(φx(h))−m+1

)
.

Thus, to achieve this proof, it suffices to use the classical Bernstein’s inequality

(see Corollary A8 in Ferraty and Vieu (2006), page 234), with an = (φx(h))−1/2 to
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write that

∀i = 1, . . . 5 IP

{
|Ti − IE[Ti]| > η

√
log n

nφx(h)

}
≤ C ′n−Cη

2

.

Therefore, an appropriate choice of η permits to deduce that

∑
n

IP

{
|Ti − IE[Ti]| > η

√
log n

nφx(h)

}
<∞, for i = 1, 2, 3, 4, 5.

Now we prove (3.4). Recall that the term A1 is the same as in Barrientos et al.

(2010). So, it suffices to show the other terms. To do that we evaluate

IE
[
Ki(x)Y −ki βli(x)

]
, for l = 0, 1, 2, and k = 1, 2.

As previously, we conditione on X1 to show that, for all l = 0, 1, 2, and k = 1, 2.

we have

IE
[
Ki(x)Y −ki βli(x)

]
= O(IE

[
Ki(x)βli(x)

]
)

From (2.9) we have

IE
[
Ki(x)Y −ki βli(x)

]
= O(hlφx(h)). (2.10)

Therefore

IE[Ti] = O(1), for i = 1, 2, 3, 4, 5.

Concerning the seconde part of (3.4), we precise that all Cov(Ti, Tj) for i, j =

1, 2, 3, 4, 5. are of order

1

nhlφ2
x(h)

IE
[
Ki(x)Y −ki βli(x)

]
, for l = 0, 1, 2, 3, 4 and k = 1, 2, 3, 4.
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Once again, we use (H3) to get

1

nhlφ2
x(h)

IE
[
Ki(x)Y −ki βli(x)

]
= O

(
1

nφx(h)

)
, for l = 0, 1, 2, 3, 4 and k = 1, 2, 3, 4.

Hence

Cov(Ti, Tj) = O

(
1

nφx(h)

)
= o

(√
log n

nφx(h)

)
for i, j = 1, 2, 3, 4, 5.

The latter yields to the proof of the Lemma.

Proof of Lemma 2. Since the observations (Xi, Yi)i=1,...n are independent and

identically distributed, then

IE[f̂(x)]− g22(x) =
1

IE[W12]

(
IE
[
β2
1(x)K1(x)Y −21

]
IE
[
K1(x)Y −21

]
−IE2

[
β1(x)K1(x)Y −21

]
− g2(x)IE[W12]

)
≤ 1

IE[W12]
IE
[
K1(x)Y −21

] ∣∣IE [β2
1(x)K1(x)Y −21

]
− g2(x)IE

[
β2
1(x)K1(x)

]∣∣
+

1

IE[W12]
g2(x)IE

[
β2
1(x)K1(x)

] ∣∣IE [K1(x)Y −21

]
− g2(x)IE [K1(x)]

∣∣
+

1

IE[W12]
IE
[
β1(x)K1(x)Y −21

] ∣∣IE [β1(x)K1(x)Y −21

]
− g2(x)IE [β1(x)K1(x)]

∣∣
+

1

IE[W12]
g2(x)IE [β1(x)K1(x)]

∣∣IE [β1(x)K1(x)Y −21

]
− g2(x)IE [β1(x)K1(x)]

∣∣ .
From conditions (H2), (H3) and (H4) we have :

∣∣IE [β2
1(x)K1(x)Y −21

]
− g2(x)IE

[
β2
1(x)K1(x)

]∣∣ ≤ CIE
[
β2
1(x)K1(x)

]
hk2

and

∣∣IE [β1(x)K1(x)Y −21

]
− g2(x)IE [β1(x)K1(x)]

∣∣ ≤ C ′IE [β1(x)K1(x)]hk2 .
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Furthermore, we use the fact that for k, l = 0, 1, 2

IE
[
βl1(x)K1(x)Y −k1

]
= O

(
hlφx(h)

)
to write that ∣∣∣IE[f̂(x)]− g22(x)

∣∣∣ ≤ Ch2φ2
x(h)

IE[W12]
hk2 ≤ C ′hk2 .

By using the same arguments as above we show that

|IE[ĝ(x)]− g2(x)g1(x)| ≤ Chk1 .

Consequently ∣∣∣IE[f̂(x)− g22(x)]
∣∣∣ = O(hk2)

and

|IE[ĝ(x)]− g2(x)g1(x)| = O(hk1).

Proof of Corollary 1. It is easy to remark that :

|f̂(x)| ≤ g22(x)

2
, implies that |g22(x)− f̂(x)| ≥ g22(x)

2
.

So,

IP

(
|f̂(x)| ≤ g22(x)

2

)
≤ IP

(
|g22(x)− f̂(x)| > g22(x)

2

)
.

Consequently,
∞∑
n=1

IP

(
|f̂(x)| < g22(x)

2

)
<∞.
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Proof of Lemma 5. The proof of this lemma is based on the same decomposition

as for the proof of Lemma 1 and all it remains to show the uniform version of (2.7)

and (3.4). Clearly, the last equation is a direct consequence of the assumption

(U1) and the evaluation obtained in Lemma 1. While the uniform version of (2.7)

is based on the following decomposition

sup
x∈SF
|Tk(x)− IE[Tk(x)]| ≤ sup

x∈SF
|Tk(x)− Tk(xj(x))|︸ ︷︷ ︸

F1

+ sup
x∈SF
|Tk(xj(x))− IE[Tk(xj(x))]|︸ ︷︷ ︸

F2

+ sup
x∈SF
|IE[Tk(xj(x))]− IE[Tk(x)]|.︸ ︷︷ ︸

F3

k = 1, 2, . . . 5.

We have, then, to evaluate each term Fj for j = 1, 2, 3.

Firstly, we treat the terms F1 and F3. Since K is supported within [−1, 1], then

we can write

F1 ≤ 1

nhlφx(h)
sup
x∈SF

n∑
i=1

∣∣Ki(x)Y −ki βli(x)11B(x,h)(Xi)

−Ki(xj(x))Y
−k
i βli(xj(x))11B(xj(x),h)(Xi)

∣∣∣
≤ C

nhlφx(h)
sup
x∈SF

n∑
i=1

Ki(x)Y −ki 11B(x,h)(Xi)

×
∣∣∣βli(x)− βli(xj(x))11B(xj(x),h)(Xi)

∣∣∣
+

1

nhlφx(h)
sup
x∈SF

n∑
i=1

Y −ki βli((xj(x))11B(xj(x),h)(Xi)

×
∣∣Ki(x)11B(x,h)(Xi)−Ki(xj(x))

∣∣ .
The Lipschitz condition on K allows to have

11B(xj(x),h)(Xi)
∣∣Ki(x)11B(x,h)(Xi)−Ki(xj(x))

∣∣
≤ Cε11B(x,h)∩B(xj(x),h)(Xi) + C11B(xj(x),h)∩B(x,h)(Xi)
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and the Lipschitz condition on β allows in turn to write

11B(x,h)(Xi)
∣∣∣βi(x)− βi(xj(x))11B(xj(x),h)(Xi)

∣∣∣
≤ ε11B(x,h)∩B(xj(x),h)(Xi) + h11B(x,h)∩B(xj(x),h)

(Xi)

11B(x,h)(Xi)
∣∣∣β2
i (x)− β2

i (xj(x))11B(xj(x),h)(Xi)
∣∣∣

≤ εh11B(x,h)∩B(xj(x),h)(Xi) + h211B(x,h)∩B(xj(x),h)
(Xi).

Thus,

F1 ≤ C sup
x∈SF

(F11 + F12 + F13 + F14) ,

where

F11 =
C

nφ(h)

n∑
i=1

Y −ki 11B(x,h)∩B(xj(x),h)
(Xi), F12 = Cε

nφ(h)

∑n
i=1 Y

−k
i 11B(x,h)∩B(xj(x),h)(Xi).

F13 =
Cε

nhφ(h)

n∑
i=1

Y −ki 11B(x,h)∩B(xj(x),h)(Xi), F14 = C
nφ(h)

∑n
i=1 Y

−k
i 11B(xj(x),h)∩B(x,h)(Xi).

It suffices to apply the Bernstein’s inequality on

∆i =



Y −ki

φ(h)
sup
x∈SF

[
11B(x,h)∩B(xj(x),h)

(Xi)
]

for F11

εY −ki

hφ(h)
sup
x∈SF

[
11B(x,h)∩B(xj(x),h)(Xi)

]
for F12 and F13

Y −ki

φ(h)
sup
x∈SF

[
11B(xj(x),h)∩B(x,h)(Xi)

]
for F14

to determine the almost complete limit of F11, F12, F13 and F14. Clearly, under

(U6), (U7) and the second part of (U1), we have for the first and the last cases

IE[∆1] = O

(
ε

φ(h)

)
and IE|∆1|m = O

(
ε

φm(h)

)
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and for F12 or F13 cases

IE[∆1] = O
( ε
h

)
and IE|∆1|m = O

(
εm

hmφm−1(h)

)
,

which implies that

F11 = O

(
ε

φ(h)

)
+Oa.co.

(√
ε log n

nφ(h)2

)
, F14 = O

(
ε

φ(h)

)
+Oa.co.

(√
ε log n

nφ(h)2

)

F12 = Oa.co.

(√
log dn
nφ(h)

)
and F13 = Oa.co.

(√
log dn
nφ(h)

)
.

Hence, by assumption (U6) we get

F1 = Oa.co.

(√
ln dn
nφ(h)

)
. (2.11)

Furthermore, since

F3 ≤ IE

[
sup
x∈SF
|Tk(x)− Tk(xj(x))|

]
we have also

F3 = O

(√
log dn
nφ(h)

)
.

Next, we treat the term F k
2 . For all η > 0, we have that

IP

(
F2 > η

√
log dn
nφ(h)

)

= IP

(
max

j∈{1,··· ,dn}
|Tk(xj(x))− IE

[
Tk(xj(x))

]
| > η

√
log dn
nφ(h)

)

≤ dn max
j∈{1,··· ,dn}

IP

(
|Tk(xj)− IE [Tk(xj)] | > η

√
log dn
nφ(h)

)
.

Set,

∆ki =
1

nhlφ(h)

(
Ki(xk)Y

−k
i βli(xk)− IE

[
Ki(xk)Y

−k
i βli(xk)

])
.
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By using similar ideas as in the proof of Lemma 1 we show that

IE|∆ki|m = O
(
φ(h)−m+1

)
.

Once again, we apply a Bernstein-type inequality to obtain directly

IP

(
|Ti(xk)− IE [Ti(xk)] | > η

√
log dn
nφ(h)

)
= IP

(
1

n

∣∣∣∣∣
n∑
i=1

∆lki

∣∣∣∣∣ > η

√
log dn
nφ(h)

)

≤ 2 exp{−Cη2 log dn}.

Thus, by choosing η such that Cη2 = β, we get

dn max
k∈{1,··· ,dn}

IP

(
|Ti(xk)− IE [Ti(xk)] | > η

√
log dn
nφ(h)

)
≤ C ′d1−βn . (2.12)

Since
∞∑
n=1

d1−βn <∞, we obtain that

F2 = Oa.co.

(√
log dn
nφ(h)

)
.
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Proof of Lemma 6. It suffices to combine the proofs of Lemma 2, to the Lip-

schitz’s condition, uniformly on x in SF

Proof of Corollary 3.

It is clear that

inf
x∈SF

|f̂(x)| ≤ inf
x∈SF

g22(x)/2 ⇒ sup
x∈SF

|f̂(x)− g22(x)| ≥ inf
x∈SF

g22(x)/2,

which implies that∑
n=1

IP

(
inf
x∈SF

|f̂(x)| ≤ inf
x∈SF

g22(x)/2

)

≤
∑
n=1

IP

(
sup
x∈SF

|f̂(x)− g22(x)| ≥ inf
x∈SF

g22(x)/2

)
<∞.
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Chapitre 3

Functional local linear relative

regression :The missing data case

3.1 The model and its estimate

In our MAR (Missing at Random ) data case we introduce a Bernoulli random

variable δ such that δ = 1 if Y is observed and δ = 0 otherwise. This consideration

implies that the variables Y and δ are independent given X. Specifically,

IP(δ = 1|X, Y ) = IP(δ = 1|X) = P (X).

The function P (·) is called the conditional probability of observing Y given X. In

practice, this functional operator is unknown. Now, in MAR data case, the two

operators ax and bx are obtained by the following criterion

(â, b̂) = arg min
(a,b)

n∑
i=1

(Yi − a− bβ(Xi, x))2

Y 2
i

δiK(h−1δ(x,Xi)) (3.1)
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Clearly, by a simple algebra, we prove that (â, b̂) are solutions of (3.1) are zeros of

(Q′B∆QB)

 a

b

− (Q′B∆Y ) = 0⇒

 a

b

 = (Q′B∆Y )(Q′B∆QB)−1.

where Q′B =

 1 . . . 1

B(X1, x) . . . B(Xn, x)


∆ = diag(Y −21 δ1K(h−1δ(x,X1)), ...., Y

−2
n δnK(h−1δ(x,Xn))) and Y ′ = (Y1, . . . , Yn).

Thus, we get explicitly

â = (Q′B∆Y )(Q′B∆QB)−1

 1

0


and

b̂ = (Q′B∆Y )(Q′B∆QB)−1

 0

1

 .

Moreover, as β(x, x) = 0, we can take

R̂(x) = â =

∑n
i,j=1 Vij(x)Yj∑n
i,j=1 Vij(x)

(3.2)

where

Vij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x)) δiδjK(h−1δ(x,Xi))K(h−1δ(x,Xj))Y
−2
i Y −2j

with the convention 0/0 = 0.

Remark 1

1) If b = 0, then we obtain from (3.1) the same estimator as that in Demongeot et

al. (2016).
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2) If F = IR and β(x, x′) = x − x′, then we obtain the same local linear estimate

as in Jones et al. (2008).

3.2 Pointwise almost complete convergence

In what follows, when no confusion is possible, we will denote by C and C ′ some

strictly positive generic constants. Moreover, x denotes a fixed point in F , Nx

denotes a fixed neighborhood of x and φx(r1, r2) = IP(r2 ≤ δ(X, x) ≤ r1) and we

put gγ(u) = IE [Y −γ|X = u], γ = 1, 2.

Notice that our nonparametric model will be quite general in the sense that we

will just need the following assumptions

(H1) For any r > 0, φx(r) := φx(−r, r) > 0

(H2) For all (x1, x2) ∈ N 2
x , we have

|gγ(x1)− gγ(x2)| ≤ C dkγ (x1, x2) for kγ > 0.

(H3) The function β(., .) is such that

∀x′ ∈ F , C |δ(x, x′)| ≤ |β(x, x′)| ≤ C ′ |δ(x, x′)|.

(H3) The function P (·) is continuous on Nx such that P (x′) > 0, for all x′ ∈

Nx.

(H4) K is a positive, differentiable function with support [−1, 1].
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(H5) The functions β and φx are such that : there exists an integer n0, such

that

∀n > n0, −
1

φx(h)

∫ 1

−1
φx(zh, h)

d

dz

(
z2K(z)

)
dz > C > 0

and

h

∫
B(x,h)

β(u, x)dP (u) = o

(∫
B(x,h)

β2(u, x) dP (u)

)
where B(x, r) = {x′ ∈ F/|δ(x′, x)| ≤ r} and dP (x) is the cumulative distri-

bution of X.

(H6) The bandwidth h satisfies

lim
n→∞

h = 0 and lim
n→∞

log n

nφx(h)
= 0.

(H7) The function g2(x) > C > 0 and the inverse moments of the response

variable

∀m ≥ 2, E[Y −m|X = x] < C <∞.

Obviously, all these conditions are very standard and are usually assumed in this

context. Indeed, the conditions (H1), (H4)-(H6) are the same as those used in

Barrientos et al. (2010). Assumptions (H2) and (H7) are also the same as in De-

mongeot et al. (2016). We point out that (H2) is a regularity condition which

characterizes the functional space of our model and is needed to evaluate the bias

term in the asymptotic results of this paper. While (H1) is closely linked to topo-

logical structure of the functional space of the data F .
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The following theorem gives the almost-complete convergence 1 (a.co.) of R̂(x).

Theorem 11 Under assumptions (H1)-(H6), we have

|R̂(x)−R(x)| = O
(
hb
)

+O

(√
log n

n φx(h)

)
, a.co.

Proof of Theorem 11. We consider the following decomposition :

R̂(x)−R(x) = B̂(x) +
M̂(x)

f̂D(x)
+
Q̂(x)

f̂D(x)

where

Q̂(x) :=
(
f̂N(x)− IE[f̂N(x)]

)
−R(x)

(
f̂D(x)− IE[f̂D(x)]

)
B̂(x) :=

IE[f̂N(x)]

IE[f̂D(x)]
−R(x) and M̂(x) := −B̂(x)

(
R̂D(x)− IE[f̂D(x)]

)
with

f̂N(x) =
1

nh2φx(h)

n∑
i,j

Wij(x)Yj and f̂D(x) =
1

nh2φx(h)

n∑
i,j

Wij(x).

Thus, the proof of Theorem 11 is based on the following intermediate results, for

which the proofs are given in the Appendix.

Lemma 5 Under the hypotheses of Theorem 11, we have that :

∣∣∣f̂D(x)− IE[f̂D(x)]
∣∣∣ = Oa.co.

(√
log n

nφx(h)

)
.

1. Let (zn)n∈N be a sequence of real r.v.’s ; we say that zn converges almost completely

(a.co.) to zero if, and only if, ∀ε > 0,
∑∞

n=1 IP (|zn| > 0) < ∞. Moreover, let (un)n∈N∗ be

a sequence of positive real numbers ; we say that zn = O(un) a.co. if, and only if, ∃ε > 0,∑∞
n=1 IP (|zn| > εun) < ∞ This kind of convergence implies both almost sure convergence and

convergence in probability (see Sarda and Vieu (2000) for details).
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3.3 Uniform almost complete convergence

and

|f̂N(x)− IE[f̂N(x)]| = Oa.co.

(√
log n

nφx(h)

)
.

Corollary 3 Under the hypotheses of Lemma 5, there exists a positive real C such

that
∞∑
n=1

IP
(
f̂D(x) < C

)
<∞.

Lemma 6 Under assumptions (H1), (H2) and (H4) we have

∣∣∣B̂(x)
∣∣∣ = O(hb).

3.3 Uniform almost complete convergence

In this Section, we focus on the uniform almost complete convergence of R̂(·) on

some subset SF of F . Noting that, the uniform consistency has a great impor-

tance in practice as well has in theory. Indeed, the uniform convergence results

are indispensable tools for data-driven bandwidth choice, testing hypotheses or in

bootstrapping approach. In addition, in practice, the uniform consistency allows

us to make prediction, even if the data are not perfectly observed. Recall that

unlike to the multivariate case, the uniform consistency is not a simple extension

of the pointwise one. In functional statistic this type of consistency requires some

additional tools and topological conditions (see, Ferraty and Laksaci et al. (2010)
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3.3 Uniform almost complete convergence

for more discussions on this subject). So, in addition to the conditions introduced

in the previous section, we need the following ones.

(U1) There exists a differentiable function φ(.), such that

∀x ∈ SF , 0 < C φ(h) ≤ φx(h) ≤ C ′ φ(h) <∞ and ∃η0 > 0, ∀η < η0, φ
′(η) < C,

where φ′ denotes the first derivative of φ.

(U2) There exists η > 0, such that

∀x, x′ ∈ SηF , |gγ(x)− gγ(x′)| ≤ Cdkγ (x, x′),

where SηF = {x ∈ F ,∃x′ ∈ SF , d(x, x′) ≤ η}.

(U3) The function β(., .) is such that

∀x′ ∈ F , C d(x, x′) ≤ |β(x, x′)| ≤ C ′ d(x, x′)

and

∀(x1, x2) ∈ SF × SF , |β(x1, x
′)− β(x2, x

′)| ≤ C d(x1, x2).

(U4) The kernel K satisfies (H4) and, the following Lipschitz’s condition

|K(x)−K(y)| ≤ C
∣∣x− y∣∣.

(U5) Condition (H5) is verified for all x ∈ SF

(U6) The subset SF such that

SF ⊂
dn⋃
k=1

B(xk, rn),
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3.3 Uniform almost complete convergence

where xk ∈ F , rn = O

(
log n

n

)
and the sequence dn satisfies

(log n)2

nφ(h)
< log dn <

nφ(h)

log n
and

∞∑
n=1

d(1−β)n <∞ for some β > 1.

(U7) For any m ≥ 2, E(|Y −m||X = x) < C < ∞ for all x ∈ SF and

inf
x∈SF

g2(x) ≥ C ′ > 0 .

(U8) The function P (·) is continuous on SF and satisfies

0 < C < inf
x∈SF

P (x) < sup
x∈SF

P (x) < C ′ <∞.

Theorem 12 Under assumptions (U1)-(U8), we have

sup
x∈SF

|R̂(x)−R(x)| = O(hb) +Oa.co.

(√
log dn
nφ(h)

)
. (3.3)

Proof of Theorem 12. It is clear that, the Theorem 12’s proof can be deduced

directly from the following uniform versions of the previous lemmas.

Lemma 7 Under the hypotheses of Theorem 12, we have

sup
x∈SF

∣∣∣f̂D(x)− IE[f̂D(x)]
∣∣∣ = Oa.co.

(√
log n

nφx(h)

)

and

sup
x∈SF

|f̂N(x)− IE[f̂N(x)]| = Oa.co.

(√
log n

nφx(h)

)
.

Corollary 4 Under the hypotheses of Lemma 5, there exists a positive real C such

that :
∞∑
n=1

IP

(
inf
x∈SF

f̂D(x) < C

)
<∞.
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Lemma 8 Under the assumptions (H1), (H2) and (H4) we have

sup
x∈SF

∣∣∣B̂(x)
∣∣∣ = O(hb).

3.4 Appendix

In what follows, when no confusion is possible, we will denote by C and C ′ some

strictly positive generic constants. Moreover, we put, for any x ∈ F , and for all

i = 1, . . . , n

Ki(x) = K(h−1d(x,Xi)) and βi(x) = β(Xi, x).

Proof of lemma 5. Similarly to Barrientos et al. (2010), we write

f̂D(x) =

(
1

n

n∑
j=1

δjY
−2
j Kj(x)

φx(h)

)
︸ ︷︷ ︸

E2(x)

(
1

n

n∑
i=1

δiY
−2
i Ki(x)β2

i (x)

h2φx(h)

)
︸ ︷︷ ︸

E3(x)

−

(
1

n

n∑
j=1

δjY
−2
j Kj(x)βj(x)

hφx(h)

)
︸ ︷︷ ︸

E4(x)

(
1

n

n∑
i=1

δiY
−2
i Ki(x)βi(x)

hφx(h)

)
︸ ︷︷ ︸

E5(x)

and

f̂N(x) =

(
1

n

n∑
j=1

δjY
−1
j Kj(x)

φx(h)

)
︸ ︷︷ ︸

T2(x)

(
1

n

n∑
i=1

δiY
−2
i Ki(x)β2

i (x)

h2φx(h)

)
︸ ︷︷ ︸

T3(x)

−

(
1

n

n∑
j=1

δjY
−1
j Kj(x)βj(x)

hφx(h)

)
︸ ︷︷ ︸

T4(x)

(
1

n

n∑
i=1

δiY
−2
i Ki(x)βi(x)

hφx(h)

)
︸ ︷︷ ︸

T5(x)

.
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It follows that

f̂D(x)−IE[f̂D(x)] = (E2(x)E3(x)− IE[E2(x)E3(x)])−(E4(x)E5(x)− IE[E4(x)E5(x)])

f̂N(x)−IE[f̂N(x)] = (T2(x)T3(x)− IE[T2(x)T3(x)])−(T4(x)T5(x)− IE[T4(x)T5(x)]) .

So, by a simple algebra, we write for all i 6= j

Ei(x)Ej(x)− IE[Ei(x)Ej(x)] = (Ei(x)− IE[Ei(x)]) (Ej(x)− IE[Ej(x)])

+ (Ej(x)− IE[Ej(x)]) IE[Ei(x)]

+ (Ei(x)− IE[Ei(x)]) IE[Ej(x)]

+IE[Ei(x)]IE[Ej(x)]− IE[Ei(x)Ej(x)]

and

Ti(x)Tj(x)− IE[Ti(x)Tj(x)] = (Ti(x)− IE[Ti(x)]) (Tj(x)− IE[Tj(x)])

+ (Tj(x)− IE[Tj(x)]) IE[Ti(x)]

+ (Ti(x)− IE[Ti(x)]) IE[Tj(x)]

+IE[Ti(x)]IE[Tj(x)]− IE[Ti(x)Tj(x)]

So, all it remains to show is that

∑
n

IP

{
|Ei(x)− IE[Ei(x)]| > η

√
log n

nφx(h)

}
<∞ for i = 2, 3, 4, 5,

∑
n

IP

{
|Tj(x)− IE[Tj(x)]| > η

√
log n

nφx(h)

}
<∞ for j = 2, 3, 4, 5,

IE[Ei(x)] = O(1) and IE[Ti(x)] = O(1) for i = 2, 3, 4, 5,
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and

Cov(E2(x), E3(x)) = o

(√
log n

nφx(h)

)
, Cov(E4(x), E5(x)) = o

(√
log n

nφx(h)

)
,

Cov(T2(x), T3(x)) = o

(√
log n

nφx(h)

)
and Cov(T4(x), T5(x)) = o

(√
log n

nφx(h)

)
.

Proof of the first claimed result : In order to obtain both convergence rates we apply

the unbounded Bernstein’s exponential inequality (see Corollary A8 in Ferraty

and Vieu (2006), p. 234). We precise that, the latter is based on the asymptotic

evaluation of mth order moments of the following random variables

Z l,k
i =

1

hlφx(h)

(
δiY

−k
i Ki(x)βli(x)− IE

[
δiY

−k
i Ki(x)βli(x)

])
for l = 0, 1, 2, and k = 1, 2.

Notice that, by the Newton’s binomial expansion, we obtain :

IE
∣∣(δiY −ki Ki(x)βli(x)− IE

[
δiY

−k
i Ki(x)βli(x)

])m∣∣
= IE

∣∣∣∣∣
m∑
d=0

Cd
m

(
δiY

−k
i Ki(x)βli(x)

)d (
IE
[
δiY

−k
i Ki(x)βli(x)

])m−d
(−1)m−d

∣∣∣∣∣
≤

m∑
d=0

Cd
m

(
IE
∣∣δiY −ki Ki(x)βli(x)

∣∣d) ∣∣IE [δiY −ki Ki(x)βli(x)
]∣∣m−d

≤
m∑
d=0

Cd
mIE

∣∣δ1Kd
1β

dl
1 (x)Y −dki

∣∣ ∣∣IE [δ1K1(x)βl1(x)Y −k1

]∣∣m−d
where Ck,m = m!/(k!(m− k)!).

52



3.4 Appendix

Since the variables δ and Y are independent given X, then under Assumption (H6)

we have for all d ≤ m

IE
[
δY −dk|X

]
= (P (x) + o(1))IE

[
Y −dk|X

]
≤ C.

Now, from Barrientos et al. (2010)

h−lmφ−mx (h)
m∑
d=0

Cd
mIE

∣∣K1(x)βdl1 (x)
∣∣ ∣∣IE [K1(x)βl1(x)

]∣∣m−d ≤ Cφx(h)−m+1.

Therefore, for l = 0, 1, 2, and k = 0, 1, we obtain

IE
∣∣∣Z l,k

i

∣∣∣m = O
(
(φx(h))−m+1

)
.

Consequently, it suffices to apply the Corollary A8 in Ferraty and Vieu (2006), for

an = (φx(h))−1/2, to conclude

∑
n

IP

{
|Ei(x)− IE[Ei(x)]| > η

√
log n

nφx(h)

}
<∞ for i = 2, 3, 4, 5,

∑
n

IP

{
|Tj(x)− IE[Tj(x)]| > η

√
log n

nφx(h)

}
<∞ for j = 2, 3, 4, 5,

Proof of the second claimed result. The proof of these results are based on the

fact that the observations (Xi, δi, Yi) for i = 1, . . . , n are identically distributed.

53



3.4 Appendix

Therefore

IE[E2(x)] =
IE[δ1Y

−2
1 K1(x)]

φx(h)
,

IE[E3(x)] = IE[T3(x)] =
IE[δ1Y

−2
1 K1(x)β2

1(x)]

h2φx(h)
,

IE[E4(x)] = IE[E5(x)] = IE[T5(x)] =
IE[δ1Y

−2
1 K1(x)β1(x)]

hφx(h)
,

IE[T2(x)] =
IE[δ1Y

−1
1 K1(x)Y1]

φx(h)
and IE[T4(x)] =

IE[δ1Y
−1
1 K1(x)Y1β1(x)]

hφx(h)
.

(3.4)

Thus, everything is based on on the evaluation of the following quantities

IE
[
δiY

−k
i Kj

i (x)βli(x)
]

for l = 0, 1, 2, j = 1, 2 and k = 1, 2.

Once again we use the fact that the variables δ and Y are conditionally independent

with respect to the functional variable X. Therefore, for all l = 0, 1, 2, and k = 0, 1,

we have

IE
[
δiY

−k
i Kj

i (x)βli(x)
]

= O(IE
[
Y −ki Ki(x)βli(x)

]
) = O(hlφx(h)). (3.5)
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Proof of the last claimed result. Similarly to the previous case it suffices to evaluate

IE[E2(x)E3(x)] =
IE[δ1Y

−4
1 K2

1β
2
1(x)(x)]

nh2φ2
x(h)

,

IE[E4(x)E5(x)] =
IE[δ1Y

−4
1 K2

1(x)β2
1(x)]

nh2φ2
x(h)

,

IE[T2(x)T3(x)] =
IE[δ1Y

−3
1 K2

1(x)β2
1(x)Y1]

nh2φ2
x(h)

,

IE[T4(x)T5(x)] =
IE[δ1Y

−3
1 K2

1(x)β2
1(x)Y1]

nh2φ2
x(h)

.

Using the same arguments as for proving (3.5) we show that

IE
[
δiY

−k
i K2

i (x)Y k
i β

l
i(x)

]
= O(hlφx(h)).

It follows that

IE[E2(x)E3(x)] = O

(
1

nφx(h)

)
, IE[E4(x)E5(x)] = O

(
1

nφx(h)

)
,

IE[T2(x)T3(x)] = O

(
1

nφx(h)

)
, IE[T4(x)T5(x)] = O

(
1

nφx(h)

)
.

Now, by combining this last to (3.4), we get

Cov(E2(x), E3(x)) = o

(√
1

nφx(h)

)
, Cov(E4(x), E5(x)) = O

(√
1

nφx(h)

)
,(3.6)

Cov(T2(x), T3(x)) = O

(√
1

nφx(h)

)
and Cov(T4(x), T5(x)) = O

(√
1

nφx(h)

)
.

which completes the proof of this lemma.
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Proof of Lemma 6. We write

B̂(x) =
IE
[
f̂N(x)

]
−R(x)IE

[
f̂D(x)

]
IE
[
f̂D(x)

] =
IE
[
f̂N(x)

]
−R(x)IE

[
f̂D(x)

]
+ g2(x)− g2(x)

IE
[
f̂D(x)

] .

Thus all it remain show that

∣∣∣IE[f̂D(x)− g1(x)]
∣∣∣ = O(hk2)

and

|IE[f̂N(x)]− g2(x)| = O(hk1).

The proof is based on the same arguments as those used in the forst chapter. It

suffices to observe that

∣∣IE [β1(x)K1(x)Y −γ1

]
− gγ(x)IE [β1(x)P (X1)K1(x)]

∣∣ ≤ C ′IE [β1(x)K1(x)]hγ.

Furthermore, we use the fact that for γ, l = 0, 1, 2

IE
[
βl1(x)K1(x)Y −γ1

]
= O

(
hlφx(h)

)
to prove the claimed result

Proof of Lemma 7. The proof of this lemma is based on same ideas as for Lemma

5, since it suffices to prove the uniformity of its claimed results. Concerning (3.4)

and (3.6), we use the fact that φx(h) > Cφ(h) to give the uniform limit. Now, all

it remains to show is that

sup
x∈EF
|Ek(x)− IE[Ek(x)]| = O

(√
log dn
nφ(h)

)
, a.co., for k = 2, 3, 4, 5. (3.7)
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sup
x∈EF
|Tk(x)− IE[Tk(x)]| = O

(√
log dn
nφ(h)

)
, a.co., for k = 2, 3, 4, 5 (3.8)

The proof of (3.5) follows the same ideas as in Ferraty et al. (2010). Indeed, we

define j(x) = arg min
j∈{1,2,...,dn}

|%(x, xk)|, and we consider the following decomposition

sup
x∈SF
|Ek(x)− IE[Ek(x)]| ≤ sup

x∈SF
|Ek(x)− Ek(xj(x))|︸ ︷︷ ︸

F1

+ sup
x∈SF
|Ek(xj(x))− IE[Ek(xj(x))]|︸ ︷︷ ︸

F2

+ sup
x∈EF
|IE[Ek(xj(x))]− IE[Ek(x)]|.︸ ︷︷ ︸

F3

and

supx∈EF |Ti(x)− IE[Ti(x)]| ≤ sup
x∈EF

∣∣Ti(x)− Ti(xj(x))
∣∣︸ ︷︷ ︸

E1

+ sup
x∈SF

∣∣Ti(xj(x))− IE[Ti(xj(x))]
∣∣︸ ︷︷ ︸

E3

+ sup
x∈SF

∣∣IE[Ti(xj(x))]− IE[Ti(x)]
∣∣︸ ︷︷ ︸

E2

.

Concerning the first term F1 we have

F1 ≤
C(k − 2)

nhlφx(h)
sup
x∈EF

n∑
i=1

δiY
−k
i Ki(x)1IB(x,h)(Xi)×

∣∣∣βli(x)− βli(xj(x))1IB(xj(x),h)(Xi)
∣∣∣

+
1

nhlφx(h)
sup
x∈EF

n∑
i=1

δiβ
l
i((xj(x))1IB(xj(x),h)(Xi)Y

−k
i ×

∣∣Ki(x)1IB(x,h)(Xi)−Ki(xj(x))
∣∣ .

Under, the Lipschitz condition, on the kernek K, we obtain

1IB(xj(x),h)(Xi)
∣∣Ki(x)1IB(x,h)(Xi)−Ki(xj(x))

∣∣
≤ Cε1IB(x,h)∩B(xj(x),h)(Xi) + C1IB(xj(x),h)∩B(x,h)(Xi).
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Furthermore, by the Lipschitz condition on β, we obtain

1IB(x,h)(Xi)
∣∣∣βi(x)− βi(xj(x))1IB(xj(x),h)(Xi)

∣∣∣
≤ ε1IB(x,h)∩B(xj(x),h)(Xi) + h1IB(x,h)∩B(xj(x),h)

(Xi)

1IB(x,h)(Xi)
∣∣∣β2
i (x)− β2

i (xj(x))1IB(xj(x),h)(Xi)
∣∣∣

≤ εh1IB(x,h)∩B(xj(x),h)(Xi) + h21IB(x,h)∩B(xj(x),h)
(Xi)

which allows to write that

1IB(x,h)(Xi)
∣∣∣βli(x)− βli(xj(x))1IB(xj(x),h)(Xi)

∣∣∣
≤ εhk−31IB(x,h)∩B(xj(x),h)(Xi) + hl1IB(x,h)∩B(xj(x),h)

(Xi).

Therefore

F1 ≤ C sup
x∈EF

(
F k
11 + F12 + F k

13 + F14

)
,

where

F k
11 =

C

nφ(h)

n∑
i=1

Y −ki 1IB(x,h)∩B(xj(x),h)
(Xi),

F12 =
Cε

nφ(h)

n∑
i=1

Y −ki 1IB(x,h)∩B(xj(x),h)(Xi).

F k
13 =

Cε

nhφ(h)

n∑
i=1

Y −ki 1IB(x,h)∩B(xj(x),h)(Xi).

F14 =
C

nφ(h)

n∑
i=1

1IB(xj(x),h)∩B(x,h)(Xi).

Now, we apply a standard inequality for sums of bounded random variables (cf.
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Corollary A.8 in Ferraty and Vieu, 2006) with Zi is identified such that :

Zi =



1

φ(h)
Y −ki sup

x∈SF

[
1IB(x,h)∩B(xj(x),h)

(Xi)
]

for F k
11

ε

hφ(h)
Y −ki sup

x∈SF

[
1IB(x,h)∩B(xj(x),h)(Xi)

]
for F12 and F k

13

1

φ(h)
Y −ki Y −ki sup

x∈SF

[
1IB(xj(x),h)∩B(x,h)(Xi)

]
for F14

So, under the second part of (U1), we have

F1 = Oa.co.

(√
log dn
nφ(h)

)
. (3.9)

Concerning F3, we use the fact that

F3 ≤ IE

[
sup
x∈SF
|Ek(x)− Ek(xj(x))|

]

to get

F3 = O

(√
log dn
nφ(h)

)
.

By the same arguments, we obtain

E1 = Oa.co.

(√
log dn
nφ(h)

)
and E2 = O

(√
log dn
nφ(h)

)
. (3.10)

Therefore, for i = 2, 3, 4, 5, and Cη2 = β, we have

dn max
k∈{1,...,dn}

IP

(
|Ei(xk)− IE [Ei(xk)] | > η

√
log dn
nφ(h)

)

= IP

(
1

n

∣∣∣∣∣
n∑
i=1

∆lki

∣∣∣∣∣ > η

√
log dn
nφ(h)

)
≤ d1−βn .
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and

dn max
k∈{1,...,dn}

IP

(
|Ti(xk)− IETi(xk)| > η

√
log dn
n φ(h)

)
≤ C ′d1−βn .

The proof of this Lemma is now finished.

Proof of Corollary 4. It easy to show that if

inf
x∈SF

f̂D(x) ≤ 1

2
⇒ ∃x ∈ SF , such that 1− f̂D(x) ≥ 1

2
⇒ sup

x∈SF
|1− f̂D(x)| ≥ 1

2
.

From Lemma 5, we get

IP

(
inf
x∈EF

f̂D(x) ≤ 1

2

)
≤ IP

(
sup
x∈SF
|1− f̂D(x)| > 1

2

)
.

It follows that
∞∑
n=1

IP

(
inf
x∈EF
|f̂D(x)| < 1

2

)
<∞.

Proof of lemma 8. The proof follows the same lines allowing to show Lemma 6

combined with the uniformity, of x in EF , of the Lipschitz assumption. That com-

pletes the proof of this Lemma.
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Chapitre 4

Dissections and Applications

4.1 Monte Carlo study

In this section we carry out a numerical simulation to evaluate the performance of

the proposed method for finite samples data. The aims of this study are :

– To show how we can implement easily and rapidly our estimator ( local linear

relative error regression (L.L.R.E.R.)) in practice.

– To compare the efficiency of the developed estimator to other regression

models such as the classical regression (C.R.), the local linear regression

(L.L.R) and to the local constant relative-error regression (L.C.R.E.R.).

Recall that the C.R. model was introduced in NDFA by Ferraty and Vieu (2006)

and its estimator is defined by∑n
i=1K(h−1d(x,Xi))Yi∑n
i=1K(h−1d(x,Xi))

.
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While, for L.L.R. model, we use the estimator of Barrientos et al. (2010) defined

by∑n
i,j=1WijYj∑n
i,j=1Wij

where Wij = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1δ(x,Xi))K(h−1δ(x,Xj)).

The function L.C.R.E.R. is more recent than other regression models. It was in-

troduced by Demongeot et al. (2016) and is defined by∑n
i=1 Y

−1
i K(h−1d(x,Xi))∑n

i=1 Y
−2
i K(h−1d(x,Xi))

.

In this illustration example, the random variables (Xi, Yi)i=1,...,n are generated

according to the following formula

Yi = R(Xi) + εi, i = 1, . . . n, εi  exp(.5)

where the explanatory curves are defined by

Xi(t) = sin(4(bi − t)π) + ait
2 , ∀t ∈ (0, 1) and i = 1, . . . , n

with bi is distributed as N (0, 1), while the n random variables ai’s are generated

according to a N (4, 3) distribution. All the curves Xi’s are discretized on the same

grid generated from 100 equispaced measurements in (0, 1)

The operator R, is defined by

R(Xi) = exp

{
−
∫ 1

0

dt

1 +X2
i (t)

}
for i = 1, . . . , n. (4.1)

For practical purposes, we select the smoothing parameters, for the four regressions

models, by the local cross-validation method on the number of nearest neighbors
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Figure 4.1 – A sample of 100 curves

and we use the quadratic kernel of support [−1, 1] defined by

K(x) =
3

4
(1− x2) if x ∈ [−1, 1].

Notice that the infinite dimensional structure of the data is an interesting source

of information, which brings many opportunities for all statistical analysis. Thus,

the choice of the parameters of the topological structure is an important point

for insuring a good behavior of the functional regression analysis. We refer to

Ferraty and Vieu (2006) for more discussions on the choice of these parameters.

Nevertheless, here, the curves Xi are smooth enough to consider the following

types of functions

δ(x, x′) =

(∫ 1

0

(x(i)(t)− x′(i)(t))2dt
)1/2

and β(x, x′) =

∫ 1

0

θ(t)(x(j)(t)−x′(j)(t))dt
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where x(i) denotes the ith derivative of the curve x and θ is the eigenfunction of

the empirical covariance operator
1

n

n∑
i=1

(X
(j)
i −X(j))t ((X

(j)
i −X(j))) associated to

the q-greatest eigenvalues.

In this simulation study, we have worked with several values of i, q and j, but, for

the sake of shortness, we present only the results of the case where i = 2, j = 1

and q = 3. In order to test the rapidity of our estimate we compare the four re-

gression models over various sample size n = 100, 200, 500, 1000. Furthermore, as

discussed in the introduction, the main advantage of the relative-error regression

is its resistance to the presence of outliers. So, we emphasize this feature by com-

paring these regression models in both cases (absence and presence of outliers).

More precisely, we artificially introduced outliers by multiplying, by 100, k% of the

response variables Y . In the following table we report the Mean Absolute Error

(MAE-error) defined by

1

n

n∑
i=1

|Yi −m(Xi)|

where m(·) means C.R., L.L.R., L.C.R.E.R. or L.L.R.E.R.
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n k% C.R. L.L.R. L.C.R.E.R. L.L.R.E.R

n=100 0% 1.54 1.05 1.18 0.96

5% 14.90 9.56 4.54 3.40

10% 171.58 139.20 15.55 13.47

20% 784.23 908.39 22.75 17.16

n=200 0% 0.67 0.80 0.72 0.53

5% 12.05 7.22 3.22 2.02

10% 114.78 103.18 10.19 7.54

20% 756.68 603.89 13.45 11.97

n=500 0% 0.42 0.59 0.55 0.44

5% 6.78 4.21 1.52 1.33

10% 90.39 84.25 12.03 6.88

20% 276.62 154.38 09.65 8.78

n=1000 0% 0.33 0.22 0.21 0.20

5% 3.52 2.25 0.67 0.11

10% 80.81 58.37 7.56 2.38

20% 188.38 133.71 8.95 6.96

Table 1 The MAE-error of the estimates .

It appears clearly that the efficiency of these functional varies with respect to k.

However, the two L.C.R.E.R and L.L.R.E.R models are more stable than C.R.

and L.L.R.. In the sense that the MAE of C.R. and L.L.R. increase substantially
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with respect to values of k, whereas the variability of this error in L.C.R.E.R and

L.L.R.E.R models is very low. We point out that the error for the L.L.R.E.R and

L.L.R. is smaller than for C.R. and L.C.R.E.R in the most cases.

n C.R. L.L.R. L.C.R.E.R. L.L.R.E.R

n=100 0.18 0.41 0.30 0.56

n=200 0.83 1.27 1.03 1.42

n=500 1.59 2.16 1.87 2.63

n=1000 2.25 3.12 2.48 3.48

Table 2 The computational time without perturbation.

In the Table 2 we compare the computational time (in seconds) for the four re-

gression models. It is clear that the difference is not very significative. All these

models are faster even if the sample sizes is large.

4.2 Conclusion and prospects

In this contribution we have modeled the co-variability between a functional va-

riable X and a scalar variable Y by minimizing the mean squared relative error.

The main feature of this loss function is that it takes into account the size of each

observation, unlike to the least square loss function for which e all observations

have the same weight. From a theoretical point of view, our approach has the
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same asymptotic properties as the least square regression. In particular it has the

same (pointwise and uniform) almost complete convergence rate. On the other

hand, from a practical point of view our approach has more advantage than the

classical regression. Typically, the local linear relative error regression is more ef-

ficiency than other competitive models, such as the kernel relative regression, the

local linear regression or the local constant regression. While the robustness of

this model is due to the considered loss function, the superiority in precision is

justified by the small bias of the local linear approach. It should be noted that

the theoretical quantification of the gain in the bias term requires some addi-

tional tools and conditions. Precisely, it is obtained by the determination of the

exact asymptotic mean squared error. This question is a natural prospect of the

present work. Furthermore, the approach developed in this paper generates other

interesting perspectives. Specifically, it can be adapted to nonparametric as well

as parametric or semiparametric regression models such as the linear model, the

k-NN method or the partial linear modeling.
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