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Abstract

In this work, we give a contribution to the study of existence and uniqueness results of mild
solutions on a bounded interval for various classes of first order class and Caputo’s fractional
derivative order class of partial functional and neutral functional type, differential and inte-
grodifferential, perturbed and nonperturbed evolution equations and inclusions with finite and
infinite state-dependent delay.

To get the existence of these mild solutions ; sufficient conditions are considered in the study
of different classes of evolution problems. Uniqueness results are also given for some classes of
these problems.

The method used is to reduce the existence of these mild solutions to the search for the
existence of fixed points of appropriate operators by applying different nonlinear alternatives in
Fréchet and Banach spaces to entire the existence of fixed points of the above operator which
are mild solutions of our problems. This method is based on famous and recent fixed point
theorems and is combined with the semigroup theory.

Controllability of mild solutions is investigated for some classes of first order and fractional
order of partial functional and neutral functional evolution equations in this work as applica-
tions.
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Evolution equations and inclusions with delay - neutral problems - Fractional derivative
order - perturbed evolution problems - mild solution - state-dependent delay - existence -
uniqueness - controllability - fixed point - nonlinear alternative - semigroup.
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Résumé

Ce travail est consacré a I’étude de quelques résultats d’existence et d’unicité de la solution
faible sur un intervalle borné pour quelques classes d’ordre un et d’ordre fractionnaire de type
Caputo d’équations et d’inclusions d’évolution partielles fonctionelles et celles de type neutre,
différentielles et intégrodifférentielles, perturbées et non perturbées, avec un retard fini et infini
dépendant de I’état.

Pour obtenir I'existence de ces solutions faibles ; des conditions suffisantes seront consid-
érées dans I’étude des différentes classes de problémes d’évolution. Des résultats d’unicité sont
également donnés pour quelques classes de ces problémes.

La méthode utilisée est de ramener la recherche de I'existence de ces solutions faibles &
la recherche de l'existence des points fixes d’opérateurs appropriés en appliquant différentes
alternatives non linéaires dans les espaces de Fréchet et de Banach pour entirer 'existence des
points fixes de cet opérateur qui sont les solutions faibles de nos problémes. Cette méthode est
basée sur des célébres et récents théorémes du point fixe et est combinée avec la théorie des
semi-groupes.

La controélabilité des solutions faibles est donnée dans ce travail pour quelques classes d’ordre
fractionnaire d’équations d’évolution et celles de type neutre a titre d’applications.

Mots et Phrases Clefs :

Equations et inclusions d’évolution a retard - problémes de type neutre - Ordre fractionnaire
- Problémes d’évolution perturbées - solution faible - retard dépendant de I’état - existence -
unicité - controlabilité - point fixe - alternative non linéaire - semi-groupes.

Classification AMS : 26A33 - 93B05 - 34G20 - 34G25 - 34K26 - 34K37- 34K40 -35R11.
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Introduction

Fractional calculus deals with the generalization of the integrals and derivatives of noninteger
order. The idea of fractional calculus and fractional order differential equations has been a
subject of interest not only among mathematicians, but also among physicists and engineers.
Indeed, we can find numerous applications in rheology, control, porous media, viscoelasticity,
electrochemistry, electromagnetism, etc... see the books of Baleanu et al. [28], Hilfer [71],
Oldham and Spanier [88], Podlubny [91] and Tarasov [95].

There has been a significant development in ordinary and partial fractional differential
equations in recent years; see the monographs of Miller and Ross [87], Samko et al. (93],
Podlubny [91], the papers of Abbas and Benchohra [2, 3], Benchohra et al. [29, 31|, Kilbas
and Marzan |78], Vityuk and Golushkov |97], Vityuk and Mykhailenko [98] and the references
therein.

In fact, fractional differential equation is considered as an alternative model to nonlinear
differential equations by Bonilla [35]. Though the concepts and the calculus of fractional deriva-
tive are few centuries old, it is realized only recently that these derivatives form an excellent
framework for modeling real world problems. This in turn led to sustained study of the theory
of fractional equations by Lakshmikantham et al. [82]. Numerical experiments for fractional
models on population dynamics are discussed by Luchko and his collaborators in [86].

The first work, devoted exclusively to the subject of fractional calculus, is the book by
Oldham and Spanier [88] published in 1974. One of the most recent works on the subject
of fractional calculus is the book of Podlubny [91]| published in 1999, which deals principally
with fractional differential equations. Some of the lasted (but certainly not the last) works
especially on fractional models of anomalous kinetics of complex process are the volumes edited
by Carpinteri and Mainardi [39] in 1997 and by Hilfer [71] in 2000, and the book by Zaslavsky
[102| published in 2005. Indeed, in the meantime, numerous other works (books, edited volumes,
and conference proceeding) have also appeared. These include (for example) the monographs
of Samko et al. [93], which was published in Russian in 1987 and in English in 1993, the book
of Miller and Ross [87] in 1993, and recently the books of Baleanu and his collaborators 28],
Diethelm [46], Kilbas et al. [79], Lakshmikantham and his collaborators [82] and Tarasov [95].

Neutral differential equations arise in many areas of applied mathematics and for this reason
these equations have received much attention in last few decades. A good guide to the literature
for neutral functional differential equations is in the books by Hale et al. [61, 62|, Kolmanovskii
and Myshkis [81] and the references therein.

Differential delay equations or functional differential equations, have been used in modeling
scientific phenomena for many years. Often, it has been assumed that the delay is either a
fixed constant or is given as an integral in which case it is called a distributed delay; see for

11



12 Introduction

instance the books of Benchohra and his collaborators [30|, Hale et al. |62, 60|, Hino and his
collaborators [74], Kolmanovskii and Myshkis [81], Lakshmikantham et al. [83, 41| and Wu in
[100].

When the delay is infinite, the notation of the phase space B plays an important role in
the study of both qualitative and quantitative theory for functional differential equations. A
usual choice is a semi-normed space satisfying suitable axioms, which was introduced by Hale
and Kato (see |60]). For further applications see for instance the books of Hale [62|, Hino |74],
Lakshmikantham et al. [83] and their references.

However, complicated situations in which the delay depends on the unknown functions have
been proposed in modeling in recent years (see for instance Arino et al. [17], Rezounenko and
Wu [92], Willé and Baker [99] and the references therein). These equations are frequently called
equations with state-dependent delay. Existence results, among other things, were derived
recently for various classes of functional differential equations when the delay is depending on
the solution. We refer the reader to the papers by Ait Dads and Ezzinbi [9], Gyri and Hartung
[58], Hartung [63, 64, 65] and Hernandez et al. [69]. Darwish and Ntouyas considered in [43] a
class of semilinear functional fractional order differential equations with state-dependent delay.
By means of the Banach contraction principle and the nonlinear alternative of Leray-Schauder,
Abada et al. in [4] present some existence as well as uniqueness results for each of our problems
on bounded domain.

Baghli et al. in [5], [20]-[26] considered existence, uniqueness and controllability of mild
solutions for first order classes of semilinear partial functional and neutral functional differential
and integrodifferential perturbed and nonperturbed evolution equations and inclusions with
finite and infinite delay. Then they look in [27] to the case where the delay is depending on
the solution for evolution equations and in [19] she gives global mild solution for evolution
inclusions with state-dependent delay.

We are going here to give the existence of mild solution for first order of the perturbed
class of evolution equations with state-dependent delay in [10] and we are going to study the
controllability of these mild solution in [11]. Then we extend the above results for Caputo
derivative fractional order of different classes of evolution equations and inclusions with state-
dependent delay in [12]-[15].

So in this thesis, we give existence and even uniqueness of mild solutions on a bounded inter-
val for different classes of the first order and the Caputo’s fractional derivative order for semilin-
ear partial functional and neutral fractional, differential and integrodifferential, perturbed and
nonperturbed of evolution equations and inclusions with finite and infinite state-dependent de-
lay in Fréchet and Banach spaces. Our results are based upon fixed point techniques combined
with semigroup theory.

Our thesis is organized as follows:

The first Chapter contains some notations, definitions, theorems and preliminary facts
that will be used throughout this thesis.

In what follows each chapter concludes with examples applying the abstract theory and this
thesis is clotured by the bibliography.
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The second Chapter is devoted to give our main result, using a nonlinear alternative of
Leary Schauder-type given by Frigon and Granas for contraction maps [52]|, combined with the
semi-group theory. The existence of the unique mild solution is demonstrated in section 2.2 for
the following class of fractional evolution equations with finite state-dependent delay

‘Diy(t) = A)y(t) + f(t, Ypry)), O<a<lae teJ:=]0,0 (1)

y(t) - @(t)ﬂ te H:= [_Tv 0]7 (2)

where b > 0, 0 < r < +00, °Df is the standard Caputo’s fractional derivative order of order

€(0,1), f: JxC(H;E) — E,p:JxC(H;E) — R and ¢ € C(H; E) are given functions
and {A(t)}o<; is a family of linear closed (not necessarily bounded) operators from E into E
that generates an evolution system of operators {U (¢, s)},s)csxs for s <t.

An extension of this problem for the neutral type is given in section 2.3 for the following
class of fractional neutral evolution equations with finite state-dependent delay

Dily(t) = 9t Ypan)] = ADY(E) + f(E Ypeyn), 0<a <1 ae tel] (3)
y(t) = (), teH, (4)
where A(-), f and ¢ are as in problem (2.1)—(2.2) and g : JxC(H; E) — E'is a given function.

In section 2.4 we study the fractional evolution equations with infinite state-dependent delay
‘Diy(t) = AW)y(t) + f(t Ypitn): O<a<lae teJ (5)

y0:¢68a (6)

where B is an abstract phase space to be specified later, D is the standard Caputo’s fractional
derivative of order aw € (0,1), f: J x B — E,p:J x B — IR and ¢ € B are given functions
and {A(t)}ies is a family of linear closed (not necessarily bounded) operators from F into E
that generates an evolution system of operators {U (%, s)},s)csxs for s < t.

An extension of this problem is given in section 2.5 for the following class of fractional
neutral evolution equations with infinite state-dependent delay

“Dely(t) — 9t Ypyo)] = AB)y(t) + f(t, Ypry), 0<a <1l ae telJ (7)

Yo = Qb € Ba (8)

where A(-), f and ¢ are as in problem (2.5) — (2.6) and g : J x B — E'is a given function.
The third Chapter is devoted to give our main result, using a nonlinear alternative of
Frigon and Granas for contraction maps [52]. The existence of the unique mild solution is

demonstrated in section 3.2 for the following class of fractional integrodifferential evolution
equations with finite state-dependent delay

°Dgy(t) = A(t)y(t) —|—/0 K(t,s)f(s,Ypsys))ds, O0<a<lae telJ 9)

y(t> = ¢(t)7 teH, (10)



14 Introduction

where £ : JxJ = E, 0 <r < 400, °Df is the standard Caputo’s fractional derivative of order

€(0,1), f: JxCH;E) > E,p:JxC(H;E) — R and ¢ € C(H; E) are given functions
and {A(t)}ies is a family of linear closed (not necessarily bounded) operators from E into E
that generates an evolution system of operators {U(t, s)},s)cixs for s <t.

An extension of this problem is given in section 3.3, we consider the following fractional
neutral integrodifferential evolution equations with finite state-dependent delay

CDg[y(t) - g(t7 yp(t,yt))] = A(t)y<t) +/0 ’C(t7 S>f<s7yp(s,y5))d37 O<a<l ae telJ (11)

y(t) =¢(t), teH, (12)
where A(+), f and ¢ are as in problem (3.1)—(3.2) and g : JxC(H; E) — E is a given function.

In section 3.4 we study the following fractional integrodifferential evolution equations with
infinite state-dependent delay

t
°Dgy(t) = A(t)y(t) —|—/ K(t,s)f(s,Ypsys))ds, O0<a<lae telJ (13)
0

Yo=¢ € B, (14)

where K : J x J — E, B is an abstract phase space to be specified later, D is the standard
Caputo’s fractional derivative of order aw € (0,1), f: JxB — E,p: Jx B — IR and ¢ € B are
given functions and {A(¢)}sc; is a family of linear closed (not necessarily bounded) operators
from E into E that generates an evolution system of operators {U(t, 5)},s)csxs for s < t.

An extension of this problem is given in section 3.5, we consider the following fractional
neutral integrodifferential evolution equations with infinite state-dependent delay

“DEy(t) — g(t, Ypwn)) = Alt)y(t) —|—/0 K(t,s)f(s,Ypsyy)ds, 0<a<l ae teJ (15)

Yo = ¢ € B, (16)
where A(-), f, K and ¢ are as in problem (3.5) — (3.6) and g : J x B — E is a given function.

The fourth Chapter is devoted to study the perturbed classes using a nonlinear alternative
of Avramescu for contractions maps in Fréchet spaces [18]. The existence of mild solutions on
the positif real line is demonstrated in section 4.2 for the following class of first order perturbed
evolution equations with infinite state-dependent delay

y/(t) = A(t)y(t) + f(tv yp(t,yt)) + h(ty yp(t,yt))7 a.e. te€ R+a (17)

Yo=9¢€B (18)

where B is an abstract phase space to be specified later, f,h: R* xB — E,p: R" x B — IR and
¢ € B are given functions and {A(t)};>0 is a family of linear closed (not necessarily bounded)
operators from F into I that generates an evolution system of operators {U(t,s)}q s)er+ xr+
for s < t.
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An extension of this problem is given in section 4.3, we consider the following first order
neutral perturbed evolution equations with infinite state-dependent delay

d

E[y(t) - g(t7 yp(t,yt))] = A(t)y(t) + f(ta yp(t,yt)) + h(tu yp(t,yt))J a.e. te R+7 (19)
Yo=9¢€B (20)

where A(-), f and ¢ are as in problem (4.1) — (4.2) and ¢g : R x B — E is a given function.

In section 4.4, we study the following fractional perturbed evolution equations with finite
state-dependent delay

CD8y<t) = A(t)y<t) + f(tu yp(t,yt)) + h(tv yp(t,yt))7 ae teJ= [07 b]u (21)

y(t) = ¢(t), teH=[-r0] (22)

where b > 0,0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0, 1),
fh: JxC(H;E) = E,p:JxC(H;E) - R and ¢ € C(H;FE) are given functions and
{A(t) }1e is a family of linear closed (not necessarily bounded) operators from E into E that
generates an evolution system of operators {U(t,s)},s)esxs for s <t.

An extension of this problem is given in section 4.5, we consider the following fractional
neutral perturbed evolution equations with finite state-dependent delay

Dily(t) = 9t Ypiean)] = AQYE) + F (L Yotew) + 2 Ypwn)),  ae ted (23)
y(t) = (), teH, (24)
where A(-), f and ¢ are as in problem (4.5) — (4.6) and ¢ : J x B — E'is a given function.

In section 4.6, we study the following fractional perturbed evolution equations with infinite
state-dependent delay

cDgy(t) = A<t)y(t) + f(tv yp(t,yt)) + h’(t7 yp(t,yt))7 a.e. t€ J7 (25)

Yo=9¢€B (26)

where B is an abstract phase space to be specified later, D is the standard Caputo’s fractional
derivative of order o € (0,1), f,h: Jx B — E,p:J x B — IR and ¢ € B are given functions
and {A(t)}ies is a family of linear closed (not necessarily bounded) operators from F into E
that generates an evolution system of operators {U(t, s)},s)cixs for s <t.

An extension of this problem is given in section 4.7, we consider the following fractional
neutral perturbed evolution equations with infinite state-dependent delay

CD(O)é [y<t) - g(t7 yp(t,yt))] = A<t)y<t) + f(tu yp(t,yt)> + h’<t7 yp(t,yt))ﬂ a.e. te J7 (27)

yw=0¢pcbB (28)
where A(-), f and ¢ are as in problem (4.9) — (4.10) and g : J x B — E is a given function.

The fifth Chapter is devoted to controllability problems, using a nonlinear alternative of
Avramescu for contractions maps in Banach spaces [18]. The controllability of mild solutions
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over the real line is demonstrated in section 5.2 for the following class of first order evolution
equations with infinite state-dependent delay

y'(t) = A@)y(t) + Cul(t) + f(t, Ypty), ae. t€RT, (29)

Yo=9¢€B (30)

where B is an abstract phase space to be specified later, f : Rt x B — E,p: Rt x B — IR
and ¢ € B are given functions, the control function u(.) is given in L?*(RTE), the Banach space
of admissible control function with F is a real separable Banach space with the norm |- |, C
is a bounded linear operator from E into F and {A(t)};cr+ is a family of linear closed (not
necessarily bounded) operators from E into F that generates an evolution system of operators
{U(t, 3)}(t,s)€R+XR+ for s <.

An extension of this problem is given in section 5.3, we consider the controllability of mild
solutions over the real line for the following first order neutral evolution equations with infinite
state-dependent delay

D100~ ot )] = ADUD) + Cult) + [ ypp). ne. 1ER, (1)
Yo=9€bB (32)

where A(+), f and ¢ are as in problem (29) — (30) and g : R x B — FE' is a given function.

The controllability of mild solutions on a bounded interval is demonstrated in section 5.4
for the following class of fractional evolution equations with finite state-dependent delay

‘Diy(t) = At)y(t) + Cult) + f(t, Ypty)), ae. teJ=10,0 (33)

y(t) = ¢(t), teH =[-r0] (34)
where 0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0,1),
f:JxCH;E) = E,p:JxC(H;E)— Rand p € C(H; E) are given functions, the control
function u(.) is given in L?*(J; E), the Banach space of admissible control function with F is a
real separable Banach space with the norm |- |, C'is a bounded linear operator from E into £
and {A(t)}+es is a family of linear closed (not necessarily bounded) operators from E into E
that generates an evolution system of operators {U(t, s)},s)cixs for s <t.

An extension of this problem is given in section 5.5, we consider the controllability of mild
solutions of the following fractional neutral evolution equations with finite state-dependent
delay

Dily(t) = 9t Ypaan)] = Ay (t) + Cu(t) + [t Ypry), ae. L€ J (35)
y(t) = (), teH, (36)
where A(-), f, u, C and ¢ are as in problem (5.5) — (5.6) and g : J x C(H; E) — E is a given

function.

In section 5.6, we study the controllability of mild solutions of the following fractional
evolution equations with infinite state-dependent delay

Dyy(t) = A)y(t) + Cult) + [t Ypey), ae. L€ J (37)
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Yo =0 € B, (38)

where °D§ is the standard Caputo’s fractional derivative of order € (0,1), f: J x B — E
and ¢ € B are given functions, the control function u(.) is given in L?(J; E), the Banach space
of admissible control function with E is a real separable Banach space with the norm |- |, C
is a bounded linear operator from E into E and {A(t)}es is a family of linear closed (not
necessarily bounded) operators from E into F that generates an evolution system of operators

{U<t7 3)}(t,s)EJ><J for s <'t.

An extension of this problem is given in section 5.7, we consider the controllability of mild
solutions of the following fractional neutral evolution equations with infinite state-dependent
delay

‘Dily(t) = 9 Ypeyn)] = AB)y () + Cult) + [t Ypyn), ae. t€J (39)
where A(+), f, u, C and ¢ are as in problem (5.9) —(5.10) and g : J xB — E is a given function.

The sixth Chapter is devoted to give our main result, using a nonlinear alternative of
Frigon contraction multivalued maps [50|. The existence of mild solutions on a bounded interval
is demonstrated in section 6.2 for the following class of fractional evolution inclusion with finite
state-dependent delay

‘Diy(t) € A)y(t) + F(t, Ypty)), ae. teJ (41)

y<t> = (p(t), teH, (42)

where ¢Df is the standard Caputo’s fractional derivative of order o € (0,1), F': JxC(H; E) —
P(FE) is a multivalued map with nonempty compact values, P(FE) is the family of all subsets
of B, p: JxC(H;E) - R and ¢ € C(H; E) are given functions and {A(t)}:>o is a family of
linear closed (not necessarily bounded) operators from FE into E that generates an evolution
system of operators {U(t, s)}(,s)csxs for s <.

An extension of this problem is given in section 6.3, we consider the following fractional
neutral evolution inclusion with finite state-dependent delay

Dyy)[y(t) = 9(t, Ypean)] € AB)Y () + F(E Ypry),  ae. ted (43)

y(t> = Sp(t)7 teH, (44)

where A(-), F' and ¢ are as in problem (6.1) — (6.2) and g : J x C(H;E) — E is a given
function.

In section 6.4, we study the following fractional evolution inclusions with infinite state-
dependent delay
‘Diy(t) € A)y(t) + F(t, Ypty)), ae. teJ (45)

where B is an abstract phase space to be specified later, F' : J x C(H;E) — P(F) is a
multivalued map with nonempty compact values, p : J x B — IR and ¢ € B are given functions
and {A(t)}ies is a family of linear closed (not necessarily bounded) operators from FE into E
that generates an evolution system of operators {U(t, s)},s)coxs for s <t.
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An extension of this problem is given in section 6.5, we consider the following fractional
neutral evolution inclusion with infinite state-dependent delay

‘Doyt)[y(t) — 9t Ypean)] € ADY(E) + F(t, Yprye) ae. te€J (47)

Yo = ¢ € B, (48)
where A(-), F' and ¢ are as in problem (6.5) — (6.6) and ¢ : J x B — E'is a given function.

Finally, we give the conclusion of our results and the bibliography based on this work.



Chapter 1

Preliminaries

The aim of this Chapter is to introduce some basic concepts, notations and elementary results
that used throughout this thesis.

1.1 Notations and Definitions

Let J :=[0,b0] and H := [—r,0] be two closed and bounded intervals in R for the real numbers
b,r > 0.
Let E be the Banach space of real numbers with the norm ||.||

Consider C(H; E) be the Banach space of continuous functions from H into F with the
norm

Iyl =sup { |y(¥)| -t € H }.
Let B(E) be the space of all bounded linear operators from FE into F, with the norm

INl[By = sup { [N(y)] = [yl =1}

A measurable function y : J — E is Bochner integrable if and only if |y| is Lebesgue
integrable. (For the Bochner integral properties, see the classical monograph of Yosida [101]).

Let L'(J, E) denotes the Banach space of measurable functions y : J — F which are Bochner
integrable normed by

+o0
Il = / y(0)] dt.

For any continuous function y defined on [—r,b], and for all ¢ € J, note by y; element of
C(H; E) defined by
y,(0) =y(t+6) forfe H.

Here y;(-) represent the history of the state from ¢ — r up to the present time ¢.

Definition 1.1.1. A function f:J x E — E is said to be an L' -Carathéodory function if it
satisfies :

(i) for each t € J the function f(t,.): E — E is continuous ;

(ii) for each y € E the function f(.,y): J — E is measurable ;

19
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(iii) for every positive integer k there exists hy, € L'(J;R™) such that

|f(t, )| < hg(t) forall |y| <k and almost every t € J.

1.2 Some Properties in Fréchet Spaces

Let X be a Fréchet space with a family of semi-norms {||- ||, }nen. We assume that the family
of semi-norms {|| - ||} verifies :

lzlls <zl < [lzfls < ... forevery z € X,
Let Y C X, we say that Y is bounded if for every n € N, there exists M, > 0 such that
lyll. < M, forall yeY.

To X we associate a sequence of Banach spaces {(X™, || - ||,)} as follows : For every n € N,
we consider the equivalence relation ~,, defined by : x ~,, y if and only if ||z — y||,, = 0 for
x,y € X. We denote X™ = (X|.,, || |l) the quotient space, the completion of X" with respect
to || - |l.. To every Y C X, we associate a sequence {Y"} of subsets Y C X" as follows
: For every z € X, we denote [z], the equivalence class of x of subset X™ and we defined
Y™ = {[z], : £ € Y}. We denote Y™, int,(Y") and 9, Y". Respectively, the closure, the interior
and the boundary of Y with respect to | - ||,, in X™.

The appropriate concept of contraction in X is given in the following definition.

Definition 1.2.1. [562] A function f : X — X is said to be a contraction if for each n € N
there exists k, € (0,1) such that

If(x) = f()lln < kn |z —yl|ln  forall z,y e X.

1.3 Evolution System Generator

In what follows, we assume that {A(t)}ics is a family of closed densely defined linear un-
bounded operators on the Banach space E and with domain D(A(t)) independent of ¢. Addi-
tionally, we introduce the following hypothesis:

(P1) For t € [0,b], the domain D(A(t)) = D is independent of t and is dense on X.

(P2) For t > 0, the resolvent R(\, A(t)) = (M — A(t)) ™! exists for all A with Re()\) < 0, and
there is a constant M independent of A and ¢ such that

|R(t, A@)|| < M(1+|X)""  for Re(\) <O0.

(P3) There exist constant L > 0 and 0 < o < 1 such that

|(A(t) — A@)A™YT)|| < Lt —7|* t,0,7€J.

(P4) The resolvent R(t, A(t)) is compact for ¢ > 0.
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Lemma 1.3.1. ([7], p. 159) Under the assumption (P1) — (P4), the Cauchy problem
Y(t)— Alty(t) =0 te
(1.1)
y(0) =yo
has a unique evolution system {U(t, s) }o<s<i<p on E satisfying the following properties:
1. U(t,t) = I where I is the identity operator in E,
2. U(t,s) U(s,7) =U(t,7) for0 <7 <s<t<bh,

3. U(t,s) € B(F) the space of bounded linear operators on E, where for every (t,s) € A
and for each y € E, the mapping (t,s) — U(t,s) y is continuous.

4. For 0 < s <t <b, Ult,s) : X — D and t — U(t,s) is strongly differentiable on
0
E. The derivative aU(t, s) € B(E) and it is strongly continuous on 0 < s <t < b.

Moreover,
%U(t,s) =At)U(t,s) for 0<s<t<hb,
0 C
I3, U )lse) = 1ARUE s)llsew) <

|A(t)U(t, S)A_l(s)HB(E) <C for 0<s<t<h

5. For everyv € D and t € (0,b],U(t, s)v is differentiable with respect to s on 0 < s <t <b

0
&U(t, s)v = —=U(t, s)A(s)v.

6. U(t,s) is a compact operator for 0 < s <t <b.
And, for each yo € E, the Cauchy problem (1.1) has a unique classical solution y €

CY(J, E) given by
y(t) =U(t,0)yo, teJ

More details on evolution systems and their properties could be found on the books of
Ahmed [7], Engel and Nagel [47] and Pazy [90].

1.4 Definition of Mild Solution

Definition 1.4.1. We say that the function y(-) : HUJ — E is a mild solution for the following
first order of partial functional differential evolution equations with delay

y'(t) = At)y(t) + f(t,ye), ae teJ
(1.2)

y(t) = ¢(t), teH

If y(t) = @(t) for all t € H and y satisfies the following integral equation :

y(t) = U(t,0) ¢(0) -l—/o Ul(t,s)f(s,ys) ds  for each t € J. (1.3)
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Definition 1.4.2. We say that the function y(-) : HUJ — E is a mild solution for the following
Caputo’s fractional derivative order of partial functional differential evolution equations with

delay
Dy(t) = Alt)yt) + f(t,y), O0<a<lae teJ

(1.4)
y(t) = o(t), teH
If y(t) = @(t) for allt € H and y satisfies the following integral equation :
1 t
y(t) =U(t,0) ¢(0) + m/ (t—s)* L U(t,s)f(s,ys) ds  for each t € J. (1.5)
0

1.5 Controllability of Mild Solution

Controllability of differential equations is the origin of the study of differential inclusions.
Let us consider the control problem of the following evolution equations with delay

v(1) = AWy +Cult) + f(t.), ac. €] (1.6)
y(t) = ¢(t), teH, |

where f: J x C(H;E) - E, p: JxC(H;E) - R and ¢ € C(H; E) are given functions
and {A(t) }o<t<p is a family of linear closed (not necessarily bounded) operators from F into E
that generates an evolution system of operators {U(t, s)}.s)esxs for 0 < s < t. The control
function u(.) is given in L?*(J; F), the Banach space of admissible control function with E is a
real separable Banach space with the norm |- |, C is a bounded linear operator from F into F.

Definition 1.5.1. The mild solution y of the problem evolution (1.6) is said to be controllable
on the interval H U J if for every initial function ¢ € H and y; € E, there exists a control
u € L*(J; E) such that the mild solution y(-) of the problem (1.6) satisfies y(b) = y;.

1.6 Phase Space B

The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-normed
space satisfying suitable axioms, which was introduced by Hale and Kato (see [60]). For further
applications see for instance the books of Hale et al. |62], Hino and his collaborators |74] and
Lakshmikantham [83] and their references.

For any t € J denote B,o, = {y :] —00,b] = E : y|l; € C(J; E), yo € B} or yl|; is the
restriction of y on J. Consider that the space (B,||(.,.)||s) is a seminormed linear space of
functions that mapping (—o0,0] X (—o00,0] into F, and satisfying the following fundamental
axioms which were adapted from those introduced by Hale and Kato for ordinary differential
functional equations:

(Ay) Ify : (—o0,b) — E, b> 0, is continuous on [0, b] and yy € B, then for every ¢t € [0, b) the
following conditions hold :
(i) y. € B;
(ii) There exists a positive constant H such that |y(¢)| < H||ly||5 ;
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(iii) There exist two functions K (-), M(-) : Ry — R, independent of y with K continuous
and M locally bounded such that

1yellz < K (&) sup{ |y(s)]: 0 <'s <t} + M(#)[|yol|s-

(Az) For the function y in (A,), y; is a B— valued continuous function on [0, b].
(As) The space B is complete.

Denote K, = sup{K(t) : t € [0,b]} and M, = sup{M(¢) : t € [0,b]}.

Remark 1.6.1. 1. (ii) is equivalent to |p(0)| < H||¢||p for every ¢ € B.

2. Since || - || is a seminorm, two elements ¢, € B can verify ||¢p — ¢¥||pg = 0 without
necessarily ¢(0) = 1(0) for all 6 < 0.

3. From the previous equivalence in the first remark, we can see that for all ¢, € B such
that ||¢ — ¥||ls = 0 - We necessarily have that ¢(0) = 1(0).

Now we indicate some examples of phase spaces. For other details we refer, for instance to
the book by Hino et al [74].

Example 1.6.1. The spaces BC', BUC, C and Cy. Let:
BC' the space of bounded continuous functions defined from (—o0,0] to E;

BUC' the space of bounded uniformly continuous functions defined from (—oo, 0| to E;

O — {gb € BC: elim o(0) exist in E} ;

CY = {925 € BC: alim o(0) = 0} , endowed with the uniform norm
——00

6]l = sup{|¢(0)] - 0 < 0}

We have that the spaces BUC, C™ and C° satisfy conditions (A;) — (A3). However, BC
satisfies (Ay), (Az) but (Az) is not satisfied.

Remark 1.6.2. C° c C~.

Example 1.6.2. The spaces Cy, UC,, C° and CY.
Let g be a positive continuous function on (—oo,0]. We define

Cy = {gb € C((—o0,0],E) : (0) is bounded on (—oo,()]};
9(0)
Co._{¢ec_1. 4(6) _ } . |
7 = o lim —= =0¢, endowed with the uniform norm
0——o0 g(6)

o]l zsup{%: GSO}.
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Then we have that the spaces Cy and C’g satisfy conditions (Az). We consider the following
condition on the function g.

t+6
(91) For alla >0, sup sup {g( +9)
0<t<a 9(0)

They satisfy conditions (A1) and (As) if (g91) holds.
Remark 1.6.3. For g =1, we have C; = BC and C?¥ = C,

:—oo<9§—t}<oo.

Example 1.6.3. The space C,.
For any real constant vy, we define the functional space C, by

C, = {qb € C((—00,0], E) : eli)r_noo ) (0) exists in E}

endowed with the following norm

]l = sup{e?’|6(0)] : 6 < 0}.
Then in the space C., the axioms (Ay) — (As) are satisfied.

1.7 State-Dependent Delay

1. Finite delay : We always assume that p : J x C(H; E) — R is continuous. Additionally,
we introduce the following hypothesis:

R(p~) ={p(s, ) : (s,0) € I X C(H: E), p(s,¢) < O}

(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £?: R(p~) — (0,00) such that

leell < L2l el for every £ € R(p™).

Remark 1.7.1. The condition (H,), is frequently verified by functions continuous and bounded.
For more details, see for instance [1, 70, 74].

Lemma 1.7.1. ([70], Lemma 2.4) If y : [-r,b] — E is a function such that yo = ¢, then
lysll < LZ[lpll + sup{ly(0)]; 6 € [0, maz{0,s}]}, s € R(p™) U J,

where LY = sup L*(1).
teR(p™)

2. Infinite delay : We always assume that p : JxB—— R is continuous. Additionally, we
introduce the following hypothesis:

Rip™) = {p(s,¢) : (s,0) € J x B, p(s,¢) < 0}.

Hyg) The function t — ¢, is continuous from R(p~) into B and there exists a continuous and
@
bounded function £ : R(p~) — (0, 00) such that

lloells < E¢(t)H¢HB for every t € R(p™).
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Remark 1.7.2. The condition (Hy), is frequently verified by functions continuous and bounded.
For more details, see for instance [1, 70, 74].

Lemma 1.7.2. ([70], Lemma 2.4) If y : (—o0,b] — E is a function such that yo = ¢, then
lyslls < (M + L) 6]l5 + Ko sup{|y(0) ;6 € [0, maz{0,s}]}, s € R(p™) U J,
where L? = sup L%(t). K, and M, are as defined in the previous assumption (Al) in the

teR(p™)
condition (iii).

1.8 Some Properties of Fractional Calculs

In this section, we introduce the notations, definitions and preliminary lemmas concerning
to partial fractional calculs theory.

Lemma 1.8.1. Letv : J — [0, 00) be a real function and w(.) be a nonnegative, locally integrable
function on J. If there are constants ¢ >0 and 0 < a < 1 such that

U(t)gw(t)+c/0t o) g (1.7)

then there ezists a constant § = §(«) such that

¢
v(t) <w(t) + 50/0 %ds, (1.8)
for every t € J.
Lemma 1.8.2. The system (1.4) is equivalent to the nonlinear integral equation
y(t) = ¢(0) + L /t(t —5)* L A(s)y(s) ds + L /t(t —5)* 1 f(s,y) ds  teJ (1.9)
I'(a) Jo I'(a) Jo

In other words, every solution of the integral equation (1.9) is also solution of the system (1.4)
and vice versa.

Definition 1.8.1. The Riemann-Liouville fractional integral operator of order o > 0 of a
function f: RY — R is defined as

1 t

ISft) = — [ (t—s)*""f(s)d 1.10

310 = e [ =9 s (1.10)

Provide the right hand side exists pointwise on RT. T'(.) is the Euler gamma function.

For instance, 1°f ezists for all > 0. When h € C°(R") N L, .(R"). Note also that when
h € CO(RY) then I°f € C°(R{) and moreover I*f(0) = 0.

Definition 1.8.2. The fractional derivative of order o > 0 of a function f : Rt — R in the
Caputo sense is given by

dof(t) 1 d d
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1.9 Definition of Multivalued Functions

Let (X, d) be a metric space. We use the following notations :
Pu(X)={Y € P(X) : Y closed}, Py(X)={Y € P(X):Y bounded},

Peo(X) ={Y € P(X) : Y convexe}, Pg,(X)={Y € P(X):Y compact}.
Consider Hy : P(X) x P(X) — R, U {oco}, given by

Hy(A,B) = rnax{ sup d(a,B) , sup d(A,b) }7

acA beB
where d(A,b) = in£ d(a,b), d(a,B) = li)nlg d(a,b). Then (Pp(X), Hy) is a metric space and
ac S
(Pu(X), Hy) is a generalized (complete) metric space (see [80]).

Definition 1.9.1. A multivalued map G : J — Py(X) is said to be measurable if for each
r € E, the function Y : J — X defined by

Y(t) =d(z,G(t)) =inf{|lz — 2| : 2 € G(t)}
15 measurable where d is the metric induced by the normed Banach space X.

Definition 1.9.2. A function F : J x C(H; E) — P(X) is said to be an L}, -Carathéodory
multivalued map if it satisfies :

(i) x— F(t,y) is continuous (with respect to the metric Hy) for almost all t € J;
(ii) t — F(t,y) is measurable for each y € C(H; E);
(iii) for every positive constant k there exists hy, € Li,.(J;RT) such that

loc

E(t,y)|| < he(t) for all ||y|| < k and for almost all t € J.

Let (X, - ||) be a Banach space. A multivalued map G : X — P(X) has convez (closed)
values if G(x) is convex (closed) for all z € X. We say that G is bounded on bounded sets if
G(B) is bounded in X for each bounded set B of X i.e.,

sup {sup{ flyll : v € G(x)}} < oo,

Finally, we say that G has a fized point if there exists x € X such that z € G(x).
For each y € B, let the set Sp, known as the set of selectors from F' defined by
Spy={ve L' (J;E):v(t) € F(t,y;) , a.e. t € J}.

For more details on multivalued maps we refer to the books of Deimling |45], Goérniewicz
[56], Hu and Papageorgiou |75] and Tolstonogov [96].

Definition 1.9.3. A multivalued map F': X — P(X) is called an admissible contraction with
constant {ky}nen if for each n € N there ezists k, € (0,1) such that

i) Ha(P(@), F(g)) < ku ll2 = ylln for all 2,y € X.
ii) for every v € X and every e € (0,00)", there exists y € F(x) such that

|l —ylln < ||z — F(z)||, + €, for everyn € N
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1.10 Fixed Point Theorems

In this section we give some fixed point theorems that will be used in the sequel. All the
abstract results established in this thesis are based on these theorems.

1. Nonlinear Alternative in Fréchet space:

Theorem 1.10.1. (Nonlinear Alternative of Frigon-Granas, [52]). Let X be a Fréchet space
andY C X be a closed subset and let N :' Y — X be a contraction such that N(Y') is bounded.
Then one of the following statements holds :

(C1) N has a unique fized point ;

(C2) There exists A € [0,1), n € N and x € 0,Y™ such that ||z — A N (z)|, = 0.

Theorem 1.10.2. (Nonlinear Alternative of Avramescu [18]). Let X be a Fréchet space and
A, B : X — X two operators satisfying:

(1) A is a compact operator.

(2) B is a contraction.
Then either

(C1) the operator A+ B has a fized points.Or
(C2) the set {x € X,z = MA(z) + AB(5)} is unbounded for X €]0,1[.
Theorem 1.10.3. (Nonlinear Alternative of Frigon, [50, 51]). Let X be a Fréchet space and

U an open neighborhood of the origin in X and let N : U — P(X) be an admissible multivalued
contraction. Assume that N is bounded. Then one of the following statements holds :

(C1) N has a fized point ;
(C2) There exists A € [0,1) and x € OU such that x € A N (z).

2. Nonlinear Alternative in Banach space:

Theorem 1.10.4. (Nonlinear Alternative of Frigon-Granas, [52]). Let X be a Banach space
andY C X be a closed subset and let N :' Y — X be a contraction such that N(Y') is bounded.
Then one of the following statements holds :

(C1) N has a unique fized point ;

(C2) There exists A € [0,1) and x € Y such that |t — A N (z)|| = 0.

Theorem 1.10.5. (Nonlinear Alternative of Avramescu [18]). Let X be a Banach space and
A, B: X — X two operators satisfying:
(1) A is a compact operator.

(2) B is a contraction.
Then either

(C1) the operator A+ B has a fized points.Or
(C2) the set {w € X, o = MA(z) + AB(5)} is unbounded for X €]0,1[.
Theorem 1.10.6. (Nonlinear Alternative of Frigon, [50, 51]). Let X be a Banach space and

U an open neighborhood of the origin in X and let N : U — P(X) be an admissible multivalued
contraction. Assume that N is bounded. Then one of the following statements holds :
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(C1) N has a fized point ;

(C2) There exists A € [0,1) and x € OU such that x € A N (z).



Chapter 2

Fractional Evolution Equations with
State-Dependent Delay

2.1 Introduction

In this chapter, we shall establish sufficient conditions for the existence of the unique mild
solution for some classes of fractional for partial functional and neutral functional differen-
tial evolution equations with finite and infinite state-dependent delay involving the Caputo’s
fractional derivative order!.

Using the alternative of Leary-Schauder type for contraction maps given by Frigon and
Granas in Banach space (see [52]), combined with the semi-group theory.

To our Knowledge, there are very few papers devoted to fractional differential equations with
delay. By using a fractional version of Gronwall’s inequality, we demonstrate the existence of
the unique mild solution in section 2.2 for the following class of fractional evolution equations
with finite state-dependent delay

Diy(t) = At)y(t) + [t Yptty) O0<a<lae teJ=1I00 (2.1)

y(t) =p(t), te H=[-r0], (2.2)

where b > 0, 0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0, 1),
f:JxC(H;E)— E, p: JxC(H;E) = R and ¢ € C(H; E) are given functions and {A(t) }1es
is a family of linear closed (not necessarily bounded) operators from E into E that generates
an evolution system of bounded linear operators {U(t, s)}1.s)cuxs for s <t

An extension of this problem is given in section 2.3 for the following class of fractional
neutral evolution equations with finite state-dependent delay

‘Dilyt) — 9(t, Ypry)] = A®)y(t) + f(t, Ypry)): O0<a<1l ae teJ (2.3)

y(t) = (t), teH, (2.4)

where A(+), f and ¢ are as in the above problem (2.1) — (2.2) and g : J x C(H; E) — E'is a
given function.

1[12] D. Aoued, S. Baghli-Bendimerad and M. Benchohra, Fractional partial functional and neutral func-
tional evolution equations with infinite state-dependent delay, submitted.
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30 Chapter 2. UNIQUENESS OF MILD SOLUTIONS

In section 2.4, we study the fractional evolution equations with infinite state-dependent
delay
Diy(t) = At)y(t) + f(t, Ypw), O0<a<lae telJ (2.5)

where B is an abstract phase space to be specified later, “Df is the standard Caputo’s fractional
derivative of order a € (0,1), f: Jx B — E,p:J x B — IR and ¢ € B are given functions
and {A(t) }ies is a family of linear closed (not necessarily bounded) operators from FE into E
that generates an evolution system of operators {U (%, s)},s)csxs for s <t.

An extension of this problem is given in section 2.5 for the following class of fractional
neutral evolution equations with infinite state-dependent delay

Dyly(t) = gt Ypean))] = A () + [ (L Ypeyn), 0<a <l ae ted (27

Yo =0 € B, (2.8)

where A(-), f and ¢ are as in problem (2.5) — (2.6) and g : J x B — E is a given function.
Finally, section 2.6 is devoted to examples illustrating the abstract theory considered in provious
sections.

2.2 Partial Problem with Finite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
fractional problem (2.1) — (2.2).

Lemma 2.2.1. The system (2.1) — (2.2) is equivalent to the nonlinear integral equation

y(t) = p(0) + 1) / (t — 5 1 A(s)y(s) d8+ﬁ / (t— ) f (s, upons) ds. (2.9)

NG
In other words, every solution of the integral equation (2.9) is also mild solution of the system

(2.1) — (2.2) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(2.1) — (2.2), and using some classical results from fractional calculus to get (2.9).

Definition 2.2.1. We say that the function y(-) : [—r,b] — E is a mild solution of (2.1) — (2.2)
if y(t) = @(t) for all t € [—r,0] and y satisfies the following integral equation

y(t) = U(t,0) ¢(0) + L /t(t —s5)* L U(t, $)f(S, Yp(sws)) ds  for each t € J. (2.10)
0

I(a)
Set
Rp™) ={p(s,¢) : (s,0) € I x C(H; E), p(s, ) < 0}.
We always assume that p: J x C(H; E) — R is continuous. Additionally, we introduce the
following hypothesis:

(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £? : R(p~) — (0,00) such that

lloell < L2(t)]|@|| for every t € R(p™).
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We will need to introduce the following hypothesis which are assumed thereafter :

(H1) There exists a constant M > 1 such that
1U(t, )|l sy < M for every (t,s) € A= {(t,s) € Jx J:0<s<t<b}.

(H2) There exist two functions p,q € L; (J;R,) such that

loc

|f(t,u)] < p(t)+q(t) ||u||g for a.e. t € J and each u € C(H; E).

(H3) For all R > 0, there exists I € L{,.(J;R,) such that

loc

[f(t,u) = [t 0)] < La(t) [u—wvll
for all u,v € C(H; E) with [ju]| < R and |jv]] < R.
Theorem 2.2.1. Assume that the hypotheses (H,) and (H1) — (H3) hold and moreover

MU b

where p* = supp(s), ¢* = supq(s) and I = supl,(s). Then the fractional evolution problem
(2.1) — (2.2) has a unique mild solution on [—r,b].

Proof. Transform the problem (2.1) — (2.2) into a fixed-point problem. Consider the
operator N : C([—r,b]; E) — C([—r,b]; E) defined by :
o(t), ifte H;

N(y)(t) = (2.12)

U(t,0) ¢(0) + %a)/o (t—8)* "N U,8) f(S, Ypisy.)) ds, ift e J.

Clearly, fixed points of the operator N are mild solutions of the problem (2.1) — (2.2).

Let y be a possible solution of the problem (2.1) — (2.2). Given ¢t < b, then from (H1),
(H2), (H,) and Lemma 5.2.1, we have for each ¢ € [0, ]

y(t)| < HU(t,O)HBwW(O)Hﬁ / (t = )71 UG, 9) ey 1£(5: Upton)] ds
i

< Hlell + 55 / (t = )7 [p(s) + 4() oo

]ds

It follows that

— Aqu*ba ]\//Tq* /t .
+ L?|p|| < Ml|p|| + L?||e|| + + o 5

Set
M p*b*

= (M + ¢ —r7
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We consider the function i defined by
pu(t) :=sup { [y(s)| + L?l¢]| - 0<s<t}, 0<t<b

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get
My’ /t(t ) u(s)ds  for t € [0,0]
— s u(s)ds r bl
I'(e) Jo

p(t) < 6+

If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

]\/J\q*ba
H < I A Y
O R ey b

Since ||y|| < w(t), we have |ly|| < max{||¢|,As} := O,. Since for every ¢t € [0,b], we have
[yl < max{[[ell, Ao} := O

Set
Y = {yeC(-rtlE) : sup{ly(t)] :0<t<b}<6,+1}

Clearly, Y is a closed subset of C'([—r,b]; E).

We shall show that N : Y — C([—r,b]; F) is a contraction operator.
Indeed, consider y,7 € Y, thus using (H1) and (H3) for each ¢ € [0, 0]

_ 1 ! o _
IN)(t) = N@@)| < m/{) (t =) U ) sz |5 Yptswn) = F(8:Tps))| ds
]/\4\ ! a—1 —
< i | =) Wt =T
Using (H,) and Lemma 5.2.1, we obtain
— ]/W\l;; ! a—1 -
IN()(t) - N@@®)| < (t—=9)"""ly(s) —7(s)| ds
L(a) Jo
< MYy, g
= Tla+nW Y
Therefore,
Mlxbe
“N@I < —/—2" ||y —7ll.
IN(y) = N@| < F(O[Jrl)Hy yll

So by (6.16), the operator N is a contraction. From the choice of Y there is no y € 9Y™"
such that y = A N(y), A € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold.
The nonlinear alternative of Frigon and Granas shows that (C1) holds. Thus, we deduce that
the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(2.1) — (2.2).
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2.3 Neutral Problem with Finite Delay

We give here an extension to previous results for the neutral case (2.3) — (2.4). Firstly, we
define its mild solution.

Lemma 2.3.1. The system (2.3) — (2.4) is equivalent to the nonlinear integral equation

y(t) = [p(0) —g(0,0)] + 9(t, Yp(a)) + ﬁ/o (t—s)* TA(s)y(s) ds (2.13)

1 /t .
+ — t—5)" f(8,Ypsws)) ds  t € J
F(O&) 0( ) ( P(y))

In other words, every solution of the integral equation (2.13) is also solution of the system
(2.3) — (2.4) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(2.3) — (2.4), and using some classical results from fractional calculus to get (2.13).

Definition 2.3.1. We say that the function y(-) : [—r,b] — E is a mild solution of (2.3) — (2.4)
if y(t) = @(t) for all t € H and y satisfies the following integral equation

1 t ol
m/ov (t o 8) U<t7 S)f(‘S?yp(s,ys)) ds.

(2.14)

y(t) = U(t,0)[p(0) — g(0,0)] + g(t, Yp(ty)) +

We consider the hypotheses (H,), (H1) — (H3) and we need to introduce the following
assumptions :

(H4) There exists a constant My > 0 such that
||A_1(t)||B(E) S MO for all t e J.

1
(H5) There exists a constant 0 < L < 7 such that
0

|A(t) g(t, )| < L (|lp]| +1) for all t € J and p € C(H; E).

(HG6) There exists a constant L, > 0 such that
[A(s)g(s, ) = A(S)g(5,9)| < Li (Is =5 + [lo — 2l
for all p, o € C(H; E).
Theorem 2.3.1. Suppose that the hypotheses (H1) — (Hb5) are satisfied and moreover

ML b

e 1 (2.15)

where p* = supp(s), ¢* = supq(s)and I} = supl,(s). Then the problem (2.3) — (2.4) has a
unique mild solution on [—r,b)].
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Proof. Transform as below the neutral problem (2.3) — (2.4) into a fixed point problem by
considering the operator N : C([—r,b]; E) — C([—r,b]; E) defined by :

o(t), ift € H;
Ny)t)y=_ U <t’10) £ (0) = 9(0,)] + 9t Yoie) (2.16)
+m/ﬂ (t— 3)0171 U(t, $)f(8: Yp(s)) ds, ift € J.

Clearly, the fixed points of the operator N are mild solutions of the problem (2.3) — (2.4).

Let y be a possible solution of the problem (2.3) — (2.4). Given t < b. Then, using
(H1) — (H2) and (H4) — (H5) , (H,) and Lemma 5.2.1, we have for each t € [0, D]

@) < U 0)[p(0) = 90, o)l + 9t Yote.we))|

n ﬁ/ot(t = 8)" 7L UL, 8)f (5, Yp(spn)) ds

< AT ON AW i) + Mgl + 1U(0) ey 147 O)] |A©)g(0, )|
. % / (= 7 [p(s) + 0(5) 9ptem ] ds

< Mgl + TL (Igpten | + 1) + ML (] + 1)

. % / (= 57 [p(s) + 08 ptom ] ds

Since el < ly(t)] + £2e]] we obtain

_ — — S ]\/J\p*ba
(@) < MoL(ly@)] + L?el]) + Mlp]|(1 + MoL) + MMoL + = ————
I'(a+1)
]/w\q* /t .
+ (t—=s)" (ly(s)| + L[el]) ds
L) Jo
Then
(L= MoD)ly(t) < [MoLL? + M(1+ MoL) ||<p||+1\4z\4‘0L+M
- F(a+1)
]/\Zq* /t .
+ = t—s)” y(s)| + L?||¢]|) ds
Foy = Q)+ 22l
Set
M()L,C‘P + M(l + M0L>i| WOL ]/\Zp*ba .
By = — el + ——= = + L7 ||
Thus

M\q*
(1— ML

@O+ Lolell < B+

)T () / (=) (y(s)l + L7el) ds.
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We consider the function p defined by
ult) = sup { [y(s)| + L7l - 0<s<t}, 0<t<h

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get

]\//Tq*
(1 —MyL

pt) < B+ T(a) /Ot(t —5)* P p(s)ds  for t € [0,b].

If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant 3, = f,(«) such that

M q b
1—MyL)(a+1)

= Ab

p(t) < By x

1+(

Since [ly]| < au(t), we have [|y]| < max{[¢], Ay} := ©.

Now, we shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,y € Y, thus using (H1) and (H3) — (H4) for each t € [0, b]

INW(E) = N@DO < 19t Ypsn) = 9E Doyl
I o _
+ —/ (t—S) IHU(t?S)HB(E) ‘f(s,yp(s,ys))_f<57yp(5,y5))| ds
F(a) 0
< AT ONA® G Ypeye)) — AL GE T ()]
]\7 t
— [ (t—s)*""1, ) — T ds.
i T ) I = Tl
Using (H,) and Lemma 5.2.1, we obtain
. - _ ML b
Nt — N@) ()| < MoL.|y(t) — 5(t)| + ——2"|ly — 7
IN(y)(t) @) < MoLy(t) y()\+r(a+l)|!y gl
_ ML* b
< | M,L, n 7
[ 0 “Lr( =y ly — 7
Therefore,
~ ~ — ML* b
N@) — N@)|| < | ML, + —=>"| |ly — 7.
N (y) (y)ll_[ 0 +F(a+1) ly =7l

So, for an appropriate choice of MyL,, L and b* such that

ML b

MyL, + ———
[ R Y Py

the operator N is a contraction . From the choice of Y there is no y € dY™ such that y = A N(y)
for some A\ € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. A consequence
of the nonlinear alternative of Frigon and Granas shows that (C'1) holds. We deduce that
the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(2.3) — (2.4).
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2.4 Partial Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
fractional problem (2.5) — (2.6).

Lemma 2.4.1. The system (2.5) — (2.6) is equivalent to the nonlinear integral equation

0(t) = 00) + s [ (=9 A) ds+ s [ = ) ds (207

In other words, every solution of the integral equation (2.17) is also solution of the system
(2.5) — (2.6) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(2.5) — (2.6), and using some classical results from fractional calculus to get (2.17).

Definition 2.4.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (2.5)—(2.6)
if y(t) = o(t) for allt <0 and y satisfies the following integral equation

y(t) =U(t,0) ¢(0) + ! ] /0 (t =) U(t, 8)f(S,Yp(sye)) ds  for eacht € J.  (2.18)

(o)

Set
R(p™) ={p(s;9) : (s,¢) € J x B, p(s,¢) < 0}.

We always assume that p: J x B — R is continuous. Additionally, we introduce the following
hypothesis:

(H,) The function t — ¢, is continuous from R(p~) into B and there exists a continuous and
bounded function £ : R(p~) — (0, 00) such that

lolls < L2 élls  for every t € R(p™).

We will need to introduce the following hypothesis which are assumed thereafter :

(HO01) There exists a constant M > 1 such that

|U(t, )| By < M for every (t,s) € A.

(H02) There exist two functions p,q € L}, (J;R,) such that

loc

|f(t,u)| < p(t) +q(t) ||u|lg for a.e. t € J and each u € B.

(H03) For all R > 0, there exists [r € L .(J;R,) such that

loc

|f(tvu) - f(t,l))| < lR(t) Hu - ?}H

for all u,v € B with ||u| < R and [|v| < R.
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We define in C((—o0, b]); E) the semi-norms by :

[yll == sup { [y(t)] : t € [0,6] }

Consider the following space
Q= {y:(—00,b] = E:y|_g € B and y|py is continuous },
Theorem 2.4.1. Assume that the hypotheses (H,) and (HO1) — (HO03) hold and moreover

K, Mlzb®
— <1 2.1

Tlat1) (2.19)
where I, = supl,(s). Then the problem (2.5) — (2.6) has a unique mild solution on (—o0,b.

Proof. We transform the problem (2.5) — (2.6) into a fixed-point problem. Consider the
operator N : 2 — (2 defined by :

o(t), ift <0;
N(y)(t) = 1t » . (2.20)
U(t,0) $(0) + —— / (=) Ut 5)f (5, ypo) ds, i1 €T
I'(@) Jo
Clearly, fixed points of the operator N are mild solutions of the problem (2.5) — (2.6).
For ¢ € B, we will define the function z(.) : (—o0,b] — E by
(t), if t < 0;
(t) =
U(t,0) ¢(0), if teld
Then xy = ¢. For each function z € €, set
y(t) = 2(t) + x(t)
It is obvious that y satisfies (2.18) if and only if z satisfies zp = 0 and
1 t
2(t) = —/ (t—8)* P U(t,8) f(S, Zp(s,20tws) T Tp(soatay)) A5 fort € J.
I'(a) Jo 7 ’
Let
Q' ={2€Q:2 =0}.
Define the operator F': Q° — Q° by :
1 t
F(2)(t) = m/ (t =)V U, 8) F(S, 2p(s,00420) T Tp(s,zeias)) ds  for t € J. (2.21)
0

Obviously the operator N has a fixed point is equivalent to F' has one, so it turns to prove that
F has a fixed point.
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Let z € Q° be be a possible fixed point of the operator. By the hypotheses (H01) and
(H02), we have for each ¢ € [0, 0]

1 t o
|Z(t)| < m/o (t— S) 1||U(ta S)”B(E) |f(S7ZP(572's+$s) +xp(8,zs+xs))’ ds

o~

M t o
) / (t— )0 [p(5) + 4(5) | Fpnmnsms) + Toommsmn 1] ds

<
- N

From (H,), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, b]

B

Hzp(S,zs—i-xs) Bt Hmp(S,zs+xs) B

K| 2(s)| + (My + L2)[|z0]l8 + Kplz(s)| + (M + L) 205
Ky|2(3)] + K||U(s,0) || 3y | 6(0)] + (M + L) || 5
Ky|2(s)] + KoM (0)] + (M, + £2)] ]|

H Zp(s,zs+ws) T Lp(s,zat1s)

IA A IA

IN

Using (i7), we get

5 < Kpl2(s)| + KyMH||o|s + (M, + L£)]¢]15
< Kyl2(s)| + (My + £° + K,MH)| 6|5

‘ | Zp(s,zstws) T Lp(s,zat1s)

Set ¢ := (M, + L2 + KyMH)||¢||s. Tt follows that

]\//Tp*ba ]\/Zq*

Ol = 7T T T

/Ot(t —5)> ! <Kb\z(s)| + (My + L% + Kb]/\/[\H)HqSHB> ds

Then, we have

]\/Zp*b“ ]\/Zq*
t) <
=0l = ['a+1) * I'(a)

/0 (t— )" (Ky|2(s)| + ) ds

where p* = sup p(s), ¢* = sup ¢(s) Then

K, Mp*b® Kﬁﬂi/ »
K, < - —35)” K, ds.
olz(t)| +a < Tla+1) +cp + o) O(t s) (Kplz(s)| + ) ds
Set
5 = Kb]/\ip*ba
b Nla+1) b

We consider the function p defined by
w(t) :=sup { Kplz(s)|+¢e : 0<s<t}, 0<t<b.
Let t* € [0,t] be such that u(t) = K|2(t*)| + ¢, By the previous inequality, we have

be\/f\q*

pt) < &+ W

/Ot(t —5)* !t p(s)ds  for t €[0,b].
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If t* € (—o0,0], then u(t) = ||¢| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant § = d(«) such that

Kb]/\iq*ba

pt) < o x Tatl)

1+ Z:Ab

Since ||z|| < u(t), we have ||z|| < max{||¢||, Ay} := O.

Set
Z={2€Q" : sup |z(t)| <Oy +1}.

0<t<b

Clearly, Z is a closed subset of Q.

We shall show that F': Z — QU is a contraction operator.
Indeed, consider z,Z € Z, thus using (H01) and (H03) for each t € [0, b]

F()() - FE)(1)| < ﬁ / (t = )N ) o) |F(5: Zmnrens) + Tpansran)

_f(sagp(S,szr:rs) + ajp(S,stﬁs))‘ ds
M

t
< = t— ol ln 8,2s+Ts -z S$,2s+T
—_ F(a) \/U ( 8) (8) HZP( ,Z2s+ .5) Zﬂ( ,Zs+ s)

B ds.

Using (Hy) and Lemma 1.7.2, we obtain

M [t . _
[F(2)(t) = F(Z)(0)] < . / (t =)7K, |2(s) = Z(s)| ds
I'(a) Jo
Ky M1 b*
< ——||2(¢) — z(t)]|.
< o -l
Therefore,
Ky M1 b*
F(z)-F@)|| < =—/—2—z—-7z|.
IF() = FEI < Ty e =
K, MI3b®
So, for ﬁ < 1 the operator F' is a contraction. From the choice of Z there is no
o

z € 0Z™ such that z = XA F(z), A € (0,1). Then the statement (C2) in Theorem 1.10.4 does
not hold. The nonlinear alternative of Frigon and Granas shows that (C'1) holds. Thus, we
deduce that the operator F' has a unique fixed-point z*. Then y*(t) = z*(¢) + x(t), t € (—o0, b
is a fixed point of the operator N, which is the unique mild solution of the problem (2.5)—(2.6).

2.5 Neutral Problem with Infinite Delay

We give here an extension to previous results for the neutral case (2.7) — (2.8). Firstly, we
define its mild solution.

Lemma 2.5.1. The system (2.7) — (2.8) is equivalent to the nonlinear integral equation

y(t) = [0(0) = 9(0,0)] + gt Yp(ryn) + ﬁ/o (t—s)* " Als)y(s) ds (2.22)
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1 t
i W/o (t = 8)* 7 f (5, Yp(sn)) ds.

In other words, every solution of the integral equation (2.22) is also solution of the system

(2.7) — (2.8) .

Proof. It can be proved by applying the integral operator to both sides of the system
(2.7) — (2.8), and using some classical results from fractional calculus to get (2.22).

Definition 2.5.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (2.7)—(2.8)
if y(t) = o(t) for allt <0 and y satisfies the following integral equation

I _
y(t) =U(,0)[¢(0) = g(0, 0)] + g(t, Yprue)) + m/g (t =) U, 5)f (5, Yp(s)) ds, tEJ.
(2.23)
We consider the hypotheses (Hy), (H01) — (H03) and we need the following assumptions :

(H04) There exists a constant M, > 0 such that

IA ()| ey < Mo forall t e J.

1
(H05) There exists a constant 0 < L < — I such that
0%

|A(t) g(t, )] < L (||¢]] + 1) for all t € J and ¢ € B.
(H06) There exists a constant L, > 0 such that
[A(s)g(s,0) — A(3)g(5,0)| < L (|s — 3| + ¢ — ¢]))
for all ¢, ¢ € B.
Theorem 2.5.1. Suppose that the hypotheses (HO1) — (HO5) are satisfied and moreover

MEK,L:b™

Tar (2.24)

[MOL*Kb +

where [ = supl,(s). Then the problem (2.7) — (2.8) has a unique mild solution on (—oo, b.
Proof. Consider the operator N : Q — Q defined by :
o(t), if ¢ < 0;

Nyt =4 U (t,10) [£(0) = 9(0. &) + 9(t. Yo(e.) (2.25)
+m/0 (t—s)* ' Ut $) (8, Yp(swe)) ds, if L€ J.

Then, fixed points of the operator N are mild solutions of the problem (2.7) — (2.8).
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For ¢ € B, we consider the function z(.) : (—oo, b] — FE defined as below by

{ o(t), if ¢<0;

x(t) =

U(t,0) ¢(0),  if te .

Then xy = ¢. For each function z € (), set

y(t) = =(t) + (1)

It is obvious that y satisfies (2.23) if and only if z satisfies zy = 0 and

Z(t> = g(ta Zp(t,yt) + xp(t,w)) - U(t> 0)9(07 ¢)
1 /t 1
+ = (t - 8)a U(t7 S)f<S7Z $,Ys +x 8,Ys )ds
F(Oz) o p(5,ys) p(8,Ys)
Let
A ={2e€Q:2 =0}.
Define the operator F': Q20 — QO by

F(Z) (t) = g(t, Zp(t,tyt) + xp(t,yt)) - U(ta O)g(ov (b)

1 o
+—F(oz) /0 (t—s) 1U(Tf, s)f(s, Zp(sys) T xp(s,ys))ds-

(2.26)

Obviously the operator N has a fixed point is equivalent to F has one, so it turns to prove that
F" has a fixed point.

Let z € Q° be be a possible fixed point of the operator. Then, using (H01) — (H06), we
have for each ¢ € [0, 0]

|2(2)]

IA

’g(t7 'Zp(t,yt) + xp(t,yt))’ =+ |U(t7 0)9(07 ¢)’

1 t o
() /0 (t —s) 1 Ult,s)f(s, Zp(s,ys) T $p(s,ys))ds

JAT )| JA)g(t, 2pt,20420) + Zottzetan)) |+ U (EO) By JATH(0)]] [A(0)g(0, ¢)|
Mot -

F(a) /O (t — 5) 1 [p<5) + q(S)HZp(s,ys) + Tp(s,ys)

MOL (“Zp(t,zri-xt) + I,D(t,zri—xt)HB + 1) —+ MM()L (H¢HB + 1)
Mot 1

+ I'(a) /0 (t—s)*" [P(S) + q(8) |2p(s.50) F Tp(s.pe)

IN -+

+

}ds

IN

}ds

Since || Zyt,y0) + Tpt o) I8 < Kp|2(t)| + ¢ we obtain

e o Mo b
20 < MoL(=(0)] + e+ 1) + MMoL(lols + 1)+ F5

—
*

+Ié>A@—W“<MMW+@d5
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where p* = supp(s), ¢* = supq(s) Then

B - L Npbe
1— MoLK < MoL(cy+ 1) + MM,L 1)+ —— "
( oLEKy)[2(t)] < MoL(cy+1) + oL(||olls + )+F(a+1)
]/\Zq* /t 1
+ (t =) (K|2(s)] + ) ds
(o) Jo
Set
5 oy Kl L(e + 1) + Ky MMoL(|$lls + 1) Ky Mp*be
b (1 — MoLEK,)T(a+1) (1 - MoLK,)T(a+1)
Thus

Kb]\/Zq* t -
(1 - MoLK,)T(a) /O(t_5> (Ky|2(s)] + cp) ds.

We consider the function i defined by

Kzt +c < 6+

pu(t) = sup { Kplz(s)[+cp: 0<s<t}, 0<t<b

Let t* € (—oo, ] be such that u(t) = Ky|z(t*)| + c. If t* € [0,b], by the previous inequality, we
get

K, Mg’
(1 - MyLK,

p(t) < 0y + () /Ot(t —5)* 1 u(s)ds  for t €[0,0].

If t* € (—o0,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

Kbﬁq*ba

Hl) < o e T b D)

1+

Since [|2] < ju(t), we have ||| < max{[¢]|, Ay} := ©,.

Now, we shall show that F: 7 — Q% is a contraction operator.
Indeed, consider z,z € Z, thus for each t € [0, b

|F(y)(t) — F(y)(t)] < Ig (t, Zo(tye) + Totye) — 9 Zpttan) + Tt
)A (t— ) U )l 1S 2o

+xﬂ 8,Ys )) f(s, Zp(s,ys) T Tp(s,ys) )|ds
< ”A_ (75)||\A( )g(t, Zp(ty) + Tp(t, yt)) A(t)g(tazp(t,yt) + xp(t,yt))’

M . _
b [0 9770 16) Vo~ sl
< MoLuZpe) = Zptenlls
M ! a—1 =
+m i (t —8)*7 1n(8) Zp(s.s) — Zp(s.ws) 5 ds.
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Since || Zpty,) — Zptan) |8 < Kpl2(t) — Z(t)| we obtain

ME,L* b

IN@W)(t) = N@) )| < MoLJ||=(t) — z(8)]| + 1(t) — (1)

['(a+1)
_ ME, L b
< |MyL,Ky+ —"— t)—Z(t
< [0 b+rw+wlwo 20)
Therefore,
~ ~ — MK, L* b
Fly)—F@)| < |MyL,Ky + ———=—|z — z|| | .
IE() @w_lo o+ T e M]
So, for an appropriate choice of MyL,, L and b* such that
— MEK,L;b®
MoL, K, + ———| <1,
[0 P Tt 1)

the operator F is a contraction. From the choice of Z there is no z € 92" such that z = \ F(z)
for some A € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. A consequence
of the nonlinear alternative of Frigon and Granas shows that (C'1) holds. We deduce that the

operator F' has a unique fixed-point z*. Then y*(¢) = 2*(t) + z(t), t € (—o0, b] is a fixed point
of the operator N, which is the unique mild solution of the problem (2.7) — (2.8).

2.6 Examples

We give in this section four examples to illustrate the previous results.
Example 1. Consider the partial differential equation

( 0%u(t,§)

CD?u(t> 5) = 8—52 + Go(t, £>u(t> 5)
0 ™
+/UMw%wF—mwm(/@wmwww@@}m
_r 0
0<t<b, &el0,n], (2.27)
u(t,0) = u(t,7) =0, 0<t<y,
[ u(8,€) = uo(8,6), —r<0<0, £€[0,7],

where a(t, ) is a continuous function and is uniformly Hélder continuous in ¢
O<a<lja :[-r0 —=Rj;a:[0,71] > R;p :[0,] > R fori= 1,2 are continuous
functions. To study this system, we consider the space £ = L*(|0,7],R) and the operator
A:D(A) C E — FE given by Aw = w” with

D(A)={weF :w ek wl=wn =0}

It is well known that A is the infinitesimal generator of an analytic semigroup {7'(t) }scp5 on £,
with compact resolvent. On the domain D(A), we define the operators A(t) : D(A) C E — E
by

A(t)x(€) = Az(8) + ao(t, §)z(8).
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By assuming that ag(.,.) is continuous and that ag(t,&) < —d¢ (69 > 0) for every ¢ € [0,b],£ €
[0, 7], and specific case a = 1 it follows that the system

u'(t) = A)u(t) t>s; u(s)=xz€E,

has an associated evolution family given by

Uit s)e(6) = |70t = pean ( [ ol ar ) o (©.

From this expression, it follows that U(t, s) is a compact linear operator and that
|U(t,s)|| < e 9009 for every (t,5) € [0,b] x [0,0] ; s <t

Theorem 2.6.1. Let ¢ € C(H;E). Assume that the condition (H,) holds, the functions
pi + 10,0 = R fori=1,2, a1 :[-7,0] = R and ay : [0,7] — R are continuous. Then there
exists a unique mild solution of (2.27).

Proof. From the assumptions, we have that

F(t0) () = / ax(s)(s, £)ds,

'

o) == pe ([ a@)lv0.0Pw)

are well defined functions, which permit to transform system (2.27) into the abstract system
(2.1) — (2.2). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 2.2.1. From Remark
1.7.1, we have the following result.

Corollary 2.6.1. Let ¢ € C(H; E) be continuous and bounded. Then there exists a unique
mild solution of (2.27) on [—r,b].

Example 2. Consider the partial differential equation

p |utt.6) - [ aals — D) (5= mtome ([ aw@lute.opas) <) as

_ %g@ ot ult €
+ [ s =0 (s o0 ([ @ oa0) ) s, (2.39)

0<t<b £€0,),

(

v(t,0) = wv(t,m) =0, 0<t<,
v(8,€) = w(0,), —r <0 <0, {€[0,7],
where a3 : [-7,0] — R is a continuous function

Theorem 2.6.2. Let ¢ € C(H;E). Assume that the condition (H,) holds, the functions
pi 1 [0,0] = R fori=1,2; aj,a3 : [-r,0) = R and ay : [0, 7] — R are continuous. Then there
exists a unique mild solution of (2.28).
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Proof. From the assumptions, we have that

F(t0)(E) = / ax(8)(s, €)ds,

r

0

ot 0)(€) = / as(s)(s, €)ds,

T

p(5,0) = 5 — pr()ps ( I a2<9>|w<o,5>\2d9) ,

are well defined functions, which permit to transform system (2.28) into the abstract system
(2.3) — (2.4). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 2.3.1. From Remark
1.7.1, we have the following result.

Corollary 2.6.2. Let ¢ € C(H; E) be continuous and bounded. Then there exists a unique
mild solution of (2.28) on [—r,b].

Example 3. Consider the partial differential equation

( 82
cDou(t,€) = % + ao(t, §)u(t, §)

+ /OOO ar(s —t)u {S = p1(t)p2 (/07r as(0)|u(t, 9)|2d0) ,g} ds,
0<t<b, §e[0,7], (2.29)

u(t,0) = u(t,m) =0, 0<t<p,

[ u(0,8) = uo(6,6), —00 < 0<0, &0,
where a; : (—00,0] — R is a continuous functions.

Theorem 2.6.3. Let B= BUC(R_; E) and ¢ € B. Assume that the condition (Hy) holds, the
functions p; : [0, +o0[— R fori=1,2; a; : (—00,0] — R and as : [0,7] = R are continuous.
Then there exists a unique mild solution of (2.29).

Proof. From the assumptions, we have that

St 0)(E) = / ax(s)0(s, €)ds,

—0o0

o) == e ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (2.29) into the abstract system
(2.5) — (2.6). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 2.4.1. From Remark
1.7.2, we have the following result.

Corollary 2.6.3. Let ¢ € B be continuous and bounded. Then there exists a unique mild
solution of (2.29) on (—o0,b.
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Example 4. Consider the partial differential equation

'CDgP@@)—/ifgs—wu<s—mawb<AWMWHMu@mw)@)d%
Pu(t,§)

- 8—52 + ao(t, §)u(t, &)
0

n /_Oo ar(s —t)u (s — pi(t)ps (/OW ax(0) |u(t, 9)\2619) >€> ds, (2.30)

0<t<b, £€|0,7],

v(t,0) = v(t,m) =0, 0<t<hb,

where a3 : (—00,0] — R is a continuous function.

Theorem 2.6.4. Let ¢ € B. Assume that the condition (H,) holds, the functions p; : [0,b] = R
fori=1,2;ay,a3: (—00,0] = R and ay : [0, 7] = R are continuous. Then there exists a unique
mild solution of (2.30).

Proof. From the assumptions, we have that

F(t0)(E) = / ax(s)(s, £)ds,

—0o0

g1, 0)(€) = / as(s)(s, £)ds,

— 00

p(s,8) = 5 — () ( I a2<e>|w<o,5>|2de) ,

are well defined functions, which permit to transform system (2.30) into the abstract system
(2.7) — (2.8). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 2.5.1. From Remark
1.7.2, we have the following result.

Corollary 2.6.4. Let ¢ € B be continuous and bounded. Then there exists a unique mild
solution of (2.30) on (—oo, b].



Chapter 3

Fractional Integrodifferential Evolution
Equations with State-Dependent Delay

3.1 Introduction

Our attention in this chapter is to look for sufficient conditions for the existence of the
unique mild solution for some classes of fractional order for partial functional and neutral
functional integrodifferential evolution equations with finite and infinite state-dependent delay.
Our analysis is based upon the nonlinear alternative of Frigon-Granas for contraction maps [52]
combined with semigroup theory and the fractional version of Gronwall’s inequality.

The existence of the unique mild solution is demonstrated in section 4.2 for the following
class of fractional integrodifferential evolution equations with finite state-dependent delay

°Dgy(t) = A(t)y(t) —|—/0 K(t,s)f(s,Yptsys))ds, O0<a<lae teJ=]I[00 (3.1)

y(t) = ¢(t), teH=[-r0] (3:2)

where 0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0,1),
K:JxJ—=E f:JxCH;E)— E,p:JxC(H;E) - Rand ¢ € C(H; E) are given
functions and {A(t)}ics is a family of linear closed (not necessarily bounded) operators from
E into E that generates an evolution system of operators {U(%, s)},s)csxs for s < t.

An extension of this problem is given in section 4.3, we consider the following fractional
neutral integrodifferential evolution equations with finite state-dependent delay

“DEy(t) — g, Ypw)] = Alt)y(t) —|—/O KC(t,8)f(s, Ypswe))ds, O0<a<l ae telJd (3.3

y(t) = (), teH, (3.4)
where A(-), f and ¢ are as in problem (3.1)—(3.2) and g : J xC(H; E) — E'is a given function.

In section 4.4 we study the following class of fractional integrodifferential evolution equations
with infinite state-dependent delay

¢
“Dyy(t) = A(t)y(t) +/ K(t,8)f(s:Ypsy))ds, O0<a<lae telJ (3.5)
0

47
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where K : J x J — E, B is an abstract phase space to be specified later, D is the standard
Caputo’s fractional derivative of order aw € (0,1), f: JxB — E,p: JxB — IR and ¢ € B are
given functions and {A(t)}scs is a family of linear closed (not necessarily bounded) operators
from E into E that generates an evolution system of operators {U(t, 5)} ¢ s)csxs for s < t.

An extension of this problem is given in section 4.5, we consider the following fractional
neutral integrodifferential evolution equations with infinite state-dependent delay

D[ () — gt Y] = A@)(E) + /0 Kt ) (5, upoun)ds, 0<a<l ae teld (37)

Yo = ¢ € B, (3.8)

where A(+), f, K and ¢ are as in problem (3.5) — (3.6) and g : J x B — FE is a given function.
Finally, section 4.6 is devoted to examples illustrating the abstract theory considered in previous
sections.

3.2 Partial Problem with Finite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear evolution problem (3.1) — (3.2).

Lemma 3.2.1. The system (3.1) — (3.2) is equivalent to the nonlinear integral equation

y(t) = o(0) + ﬁ / (t— ) A(s)y(s) ds + ﬁ / (t— s / K5, 7)F (7 i ).

(3.9)
In other words, every solution of the integral equation (3.9) is also solution of the system
(3.1) — (3.2) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(3.1) — (3.2), and using some classical results from fractional calculus to get (3.9).

Definition 3.2.1. We say that the function y(-) : [—r,b] — E is a mild solution of (3.1) — (3.2)
if y(t) = @(t) for all t € [—r,0] and y satisfies the following integral equation

y(t) =U(t,0) ¢(0) + ﬁ/o (t—s5)*"tU(t,s) /OSIC(S,T)f(T, Yp(ry))dT ds  for each t € J.
(3.10)

Set
R(p™) ={p(s, ) : (s,9) € J x C(H; E), p(s,p) < 0}.

We always assume that p: J x C(H; E) — R is continuous. Additionally, we introduce the
following hypothesis:

(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £?: R(p~) — (0,00) such that

lloell < L2(t)]|@|| for every t € R(p™).
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We will need to introduce the following hypothesis which are assumed thereafter :

(H1) There exists a constant M > 1 such that
IU(t, )| sy < M for every (t,s) € A.

(H2) There exist two functions p,q € L} (J;R,) such that

loc

lf(t,u)| < p(t) + q(t) ||u||p for a.e. t € J and each u € C(H; E).

(H3) For all R > 0, there exists Ir € Li,.(J;R,) such that

loc
|[f(t,u) = [t 0)] < Lg(t) [lu—vl|
for all u,v € C(H; E) with [ju]| < R and |jv]] < R.
(H4) For each t € J K(t,s) is measurable on [0,t] and
K(t) = esssup{|K(t,s);0 < s <t}
is bonded on [0, b]; let Sy, := sup K(¢)
Theorem 3.2.1. Assume that the hypotheses (H,) and (H1) — (H4) hold and moreover

MIzbts,

T < 1 (3.11)

where p* = supp(s), ¢* = supq(s) and lj = suply(s). Then the problem (3.1) — (3.2) has a
unique mild solution on [—r,b).

Proof. Transform the problem (3.1) — (3.2) into a fixed-point problem. Consider the
operator N : C([—r,b]; E) — C([—r,b]; E) defined by :
o(t), if t € H;
N(y)(t) = 1 . ’ ,
U(t,0) o(0) + m/ (t—s)* Ult, s)/ K(s,7) f(T, Yp(ryn))dT ds, ift e J.
0 0
(3.12)
Clearly, fixed points of the operator N are mild solutions of the problem (3.1) — (3.2).

Let y be a possible solution of the problem (3.1)—(3.2). Given ¢t < b, then from (H1)—(H2),
(H4), (H,) and Lemma 5.2.1, we have for each ¢ € [0, b]

()| < uv<t,o>uB<E>rw<o>\+ﬁ / (t = 5)* ™ UGt ) ey /OS\’C(S,T)f(wp(ﬂyf))dﬂ s

Mol + % / / (= ) K, )] [pl5) + 0() e

}ds

It follows that

o Mp* ba+1 Sb /\q*bSb ; )
¥ <M ¥ _ a—1 ®
(0) + £2llel < Wl + £l + st + T [ =9 () + £ el s
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Set

— ]/\/Tp*ba—HSb
0p := (M + L¥ _.
o= (T + L)l + s
We consider the function i defined by

pu(t) :=sup { [y(s)| + L?l¢]l - 0<s<t}, 0<t<b

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we

get

]\/Jq*bSb
INE)!

t
u(t) < o+ / (t—s)*t u(s)ds  fort €[0,b].
0
If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

]/W\q*ba-i-l Sb

pt) < o x (o +1)

1+

Since |ly|| < w(t), we have |ly|| < max{||¢||, Ay} := O,. Since for every t € [0,b], we have
lyll < max{llel], A} := .

Set
V={yeC(-nrb;E) : sup{ly(t)]: 0 <t <b} <O+ 1}.

Clearly, Y is a closed subset of C'([—r,b]; E).

We shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,7 € Y, thus using (H1) and (H3) for each ¢ € [0, 0]

1 t o1
iﬂﬁé<ww>|ww@nx

XA!U&ﬂHﬂﬂwww—f@Emmﬂdms

IN()() = N@)(@)] <

MbS, [ B
= t—s)" ) =T ds.
- DN /0 (t—s) b(8) 1Wn(s.e) = Up(sgo)ll ds

Using (H,) and Lemma 5.2.1, we obtain

MIEbS, [! _ N
IN(y)(t) - N@)(t)| < bb/ﬁ—ﬂ”@@—%ﬂds
F(a) 0
MG S0y, g
Tat1 WY
Therefore, -
B M b+1S _
IN(y) = N@)|| < ®lly — 7.

Mla+1)
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So, the operator N is a contraction. From the choice of Y there is no y € 0Y™ such that
y = A N(y), A € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. The
nonlinear alternative of Frigon and Granas shows that (C1) holds. Thus, we deduce that
the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(3.1) — (3.2).

3.3 Neutral Problem with Finite Delay

We give here an extension to previous results for the neutral case (3.3) — (3.4). Firstly, we
define its mild solution.

Lemma 3.3.1. The system (3.3) — (3.4) is equivalent to the nonlinear integral equation

y(t) = [p(0) = 9(0,90)] + gt Yo(eyn) + ﬁ/o (t —5)* L A(s)y(s) ds (3.13)
1 L
+ m/o (t=s) /0 K(s, 7) f(T, Yp(ryr))dTds.

In other words, every solution of the integral equation (3.22) is also solution of the system
(3.3) — (3.4) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(3.3) — (3.4), and using some classical results from fractional calculus to get (3.22).

Definition 3.3.1. We say that the function y(-) : [—r,b] — E is a mild solution of (3.3) — (3.4)
if y(t) = p(t) for allt € H and y satisfies the following integral equation

y(t) =Tt 0)p(0) = 9(0,0)] + 9t Ype0))

1 ol E
—i—m/o (t—s) U(t,s)/o K(3,7) f(T, Yp(ryn) ) dTds.

We consider the hypotheses (H,), (H1) — (H4) and we need to introduce the following
assumptions :

(3.14)

(H5) There exists a constant L, > 0 such that
[A(s)g(s, ) = A(S)g(5,9)| < Li (Is =5 + [l = 2l
for all ¢, € C(H; E).
(H6) There exists a constant M, > 0 such that

IA ()| gy < Mo forall te J.

1
(HT7) There exists a constant 0 < L < = I such that
0%y

|A(t) g(t, )| < L (||l¢|| +1) forall t € J and ¢ € C(H; E).
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Theorem 3.3.1. Suppose that the hypotheses (H1) — (HT) are satisfied and moreover

_ ML;be+L S,
MoL, + —"——1 <1 3.15
[ T T ] (3:15)
where p* = supp(s), ¢* = supq(s)and lj = suply(s). Then the problem (3.3) — (3.4) has a
unique mild solution on [—r,b].

Proof. Transform as below the neutral problem (3.3) — (3.4) into a fixed point problem by
considering the operator N : C([—r,b]; E) — C([—r,b]; E) defined by :

#(t), ifte H,;
N(y)(t) = U(t,0) [p(0) = g(0,90)] + g(t, Yp(t.yn) (3.16)
1 t s
+W/0 (t — S)a—lU(t,s)/O K(8,7) f(T, Yp(ryny)drds, ift € J.

Clearly, the fixed points of the operator N are mild solutions of the problem (3.3) — (3.4).

Let y be a possible solution of the problem (3.3) — (3.4). Given ¢t < b. Then, using
(H1) — (H5), (H,) and Lemma 5.2.1, we have for each t € [0, ]

ly(®)]

IN

19(t, Ypiewo))| + [U(t,0)[0(0) — g(0, ¢)]|
1 ' a—1 °

o / (t— )2 Ut s) / K (5, 7) £ (7, ptng )

A7 A@ v0)| + 10O ) A7 O] 1400,
S, [* 1

Tt [ =97 ) + ) e

M@l + MoL (|[ypeg0 |l +1) + MMoL (||| +1)

— s, [t B
]I\{(bco /0 (t — s)° [p(s) + q<3)||?/p(svys)

IN +

]ds

+

IN

]ds

Since [[ypunll < [y(0)] + L] ¢]| we obtain

- o o o o ]/\Zp*ba+1sb
O < Tl (ly(t)] + £2lell) + M1+ FoL) + ML + =222
['a+1)
]\//Tq*bSb t a—1 0
Tt [ Qo+ £olel) s
Then

—-— — — _ o~ ]/\jp*baﬁ-lsb
1—MyL < |MyLLY +M(1+ MyL MMyL 4+ ————
(1 =WL)ly@)| < [FIoLe? + M1+ ML) il + ML+ o=

]\//Tq*bSb
(o)

/0 (t— 9" (ly(s)] + Lolgll) ds
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Set
) |1 = MoLL# + M(1— MoL)| VT, Ty betis,
= — + — — .
’ (1 —MyL) Il (1—=MoL) (1—MoL)T(a+1)
Thus
]/\/[\q*bSb /t -1
)|+ L% < + — t—s)” + L¥ ds.
O+ L7l <t gt [ (o) £l ds

with 6(, = ESOHQOH + (Sb.
We consider the function p defined by

pu(t) :=sup { |y(s)| + L?¢|| - 0<s<t}, 0<t<b.

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get

]\//.Tq*bSb
(1 - MyL)T

p(t) < Bp+ @ /Ot(t —5)* 1 u(s)ds  for t € [0,b].

If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

]/\Zq*ba-i-l Sb

bt (1 —MyL)I'(a +1)

pt) < Byx

Since [lyl| < pu(t), we have [[y] < max{[le], Ay} = O,

Now, we shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,7 € Y, thus for each t € [0, ]

~ ~ _ 1 t o
IN()(E) = N@® < 19t Ypep) —g(t,yp<t,yt)>l+m/o (t =) MU, 8)]| x
P tr) = Ty s
< AT ONAB 9 Yoitge) — A GE Ty
]\/J\nSb t 1
t—s)ly — 7 ds.
it [T ) I~ Tl
Using (H,) and Lemma 5.2.1, we obtain
N _ _ B MLibets _
IN(W)(#) —N@@)| < MoL.y(t) — ()] +F((’;—+1)blly—y\l
_ MLbe+LS,
< —b = -7
< [MOL*+ Mo i D) ly =7
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Therefore,
MLbtLS,

IN(y) — N@)|| < [MOL* +

So, for an appropriate choice of ML,, Ly and b* such that

_ MLpbe+1s,
ML, + o ovl
[ obx ¥ r(a+1)] ’

the operator N is a contraction. From the choice of Y there is no y € 0Y™ such that y = A N(y)
for some A\ € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. A consequence
of the nonlinear alternative of Frigon and Granas shows that (C'1) holds. We deduce that

the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(3.3) — (3.4).

3.4 Partial Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear evolution problem (3.5) — (3.6).

Lemma 3.4.1. The system (3.5) — (3.6) is equivalent to the nonlinear integral equation

y(t) = ¢(0) + ﬁ/o (t — 5)*TA(s)y(s) ds + ﬁ/o (t —s)>* /OS]C(S, ) F (T, Yp(ry,) )dTds.

(3.17)
In other words, every solution of the integral equation (3.17) is also solution of the system
(3.5) — (3.6) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(3.5) — (3.6), and using some classical results from fractional calculus to get (3.17).

Definition 3.4.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (3.5)—(3.6)
if y(t) = o(t) for allt <0 and y satisfies the following integral equation

y(t) =U(t,0) ¢(0) + ﬁ/ﬁ (t—s)* 1 U(t,s) /05 K(s,7)f(T, Yp(ry))dT ds  for each t € J.
(3.18)

Set
R(p™) ={p(s,;9) : (s,0) € J x B, p(s,¢) < 0}.

We always assume that p : J x B — R is continuous. Additionally, we introduce the following
hypothesis:

H,) The function t — ¢; is continuous from R p~ ) into B and there exists a continuous and
)
bounded function £? : R(p~) — (0, 00) such that

lells < L2 @lls  for every t € R(p™).

We will need to introduce the following hypothesis which are assumed thereafter :
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(HO01) There exists a constant M > 1 such that
|U(t,8)|| 5y < M for every (t,s) € A.

(H02) There exist two functions p,q € L}, (J;R,) such that

loc

|f(t,w)| < p(t) + q(t) ||u||p for a.e. t € J and each u € B.

(HO03) For all R > 0, there exists [g € L .(J;R,) such that

loc

() = £, 0)] < Talt) = o]
for all u,v € B with |ju|| < R and |v|| < R.
(H04) For each t € J K(t, s) is measurable on [0, ¢] and
K(t) = ess sup{|K(t, )]0 < s < £}

is bonded on [0, b]; let Sy, := sup K(¢)

Consider the following space
Q= {y:(-00,b] = E:y|_g € B and y|pyis continuous },
Theorem 3.4.1. Assume that the hypothesis (H,) and (HO01) — (H03) hold and moreover

Ky Mo+ s,

T(a+1) (3.19)

where p* = supp(s), ¢* = supq(s) and lj = suply(s). Then the problem (3.5) — (3.6) has a
unique mild solution on (—oo,b].

Proof. We transform the problem (3.5) — (3.6) into a fixed-point problem. Consider the
operator N : 2 — 2 defined by :

N (t) - : ,
/ U(t,0) ¢(0) + L/O (t—s)* U, s)/o K(s,7) f(T, Yp(ry,))dT ds, ift e J

[(a)
(3.20)
Clearly, fixed points of the operator N are mild solutions of the problem (3.5) — (3.6).
For ¢ € B, we will define the function z(.) : (—o0,b] — E by
(1), if t€10,0];
U(t,0) ¢(0), if ¢t € (—o0,0].

x(t) =

Then xg = ¢. For each function 2z € €Q, set
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It is obvious that y satisfies (3.18) if and only if z satisfies zp = 0 and

1 t s
A1) = _/ (t—s)L U(t, s)/ K(s,7) f(T, 2p(r,24ar) + Tp(r,z4ary)dTds  fort e J.
(@) Jo 0

Let
A ={2€Q:2 =0}.

Define the operator F': Q° — QO by :

t s
F(2)(t) = ﬁ/ (t—s)*t U4, s)/ K(s,7) f(T, 2p(r,204ar) + Tp(r,zr4a,y)dTds  fort € J.
’ ’ (3.21)
Obviously the operator N has a fixed point is equivalent to F' has one, so it turns to prove that
F' has a fixed point.
Let z € Q° be be a possible fixed point of the operator. By the hypotheses (H01) and
(H02), we have for each ¢ € [0, b]

1 t
] < —— [ (t—s)* Ut
0] < Foar | =9 Ui
MbS, [ o
o= [006) ) i+ o]
I'(a) Jo

/ K(s,7) f(T, Zp(rizr+zr) T mp(T,zr+xT)) drds
0

From (H,), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, b]

Hzp(S,szrxs) Bt Hmp(S,szr:rs) B

Ky 2(s)| + (My + L2)[|z0]l5 + Kolz(s)| + (M + L) 205
Ky|2(3)] + K||U(s,0) || 3y | 6(0)] + (M, + L) || 5
Ky|2(s)| + Ko M|6(0)] + (My + £2) ] ¢l

Hzp(s,zSerS) + Tp(s,zs+xs) |1 B

VANVANVAN

IN

Using (i), we get

Ko|2(s)| + KoM H| 0|5 + (My + L) 6]l
Fol2()| + (My + £° + Ky MH)||¢||5

IN

‘|Zp(8,zs+ms) T Tp(s,zs+zs) 1B

N

It follows that

Mp*b°o+lS,  Mg*bS,
['(a+1) I'(«@)

E0] / (t=5)"" (Kul=(s)| + (My + £° + KM H)|[6]s) ds

Set ¢ == (M + L2 + K,MH)||¢||5. Then, we have

Mpbe+S,  Mg*bS,

t
_ a1
(0 < St Tt [t (o) + ) ds
Then
Kb]\/f\p*bo‘HSb Kbﬂq*bSb t 1
< 0P 7 b ik St _ 5 ,
Kp|lz(t)|+ ¢ < Mo+ 1) +cp + o) /O(t s) (Kplz(s)| + ) ds
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Set
. Kbﬁp*b“+15b

%= T 1)

+ Cp.

We consider the function p defined by
p(t) :==sup { Kplz(s)|+c : 0<s<t}, 0<t<b.
Let t* € [0,t] be such that u(t) = K|2(t*)| + ¢, By the previous inequality, we have
K,Mqbs, [*
% /0 (t —s)* u(s)ds  for t € [0,b].

If t* € (—o0,0], then u(t) = ||¢| and the previous inequality holds. And Lemma 1.8.1 implies

that there exists a positive constant d, = d,(«) such that

K, Mg bot1s,
I'(a+1)

pt) < o+

pt) < G x |1+

Since |ly|]| < w(t), we have ||y| < max{||¢|,As} := ©,. Since for every t € [0,b], we have
lyll < max{lll], A} := .

Set

Z={2€Q" : sup |z(t)] <O+ 1}.
0<t<b

Clearly, Z is a closed subset of Q.

We shall show that ' : Z — QU is a contraction operator.
Indeed, consider z,Z € Z, thus using (H01) and (H03) — (H04) for each ¢ € [0, 0]

_ 1 t o s
FEO - FEOI £ o [ =9 o) [ 1 x
(@) Jo 0
X ‘f(T’ Zp(rzr+ar) T xp(T,zT—&-ocT)) — f(r, Zp(rzrtar) T xp(ﬂzf—s-:cf))l drds
MbS,

t
TN t— aill $,2s+T -z 8,2s+T d
e K (O) ETNSREC N P

Using (Hy) and Lemma 1.7.2, we obtain

- F(z J\/ZbSblZ t —5)* ! z(s) —z(s)| ds
= FEOL < T [t 1ate) - 300)
Ky Mz TLS, _
SESR) -20).
Therefore, -
IF() - PR < St .

So, the operator F' is a contraction. From the choice of Z there is no z € dZ™ such that
z = X F(2), A € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. The
nonlinear alternative of Frigon and Granas shows that (C1) holds. Thus, we deduce that the
operator F' has a unique fixed-point z*. Then y*(¢) = 2*(t) + z(t), t € (—o0, b] is a fixed point
of the operator N, which is the unique mild solution of the problem (3.5) — (3.6).
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3.5 Neutral Problem with Infinite Delay

We give here an extension to previous results for the neutral case (3.7) — (3.8). Firstly, we
define its mild solution.

Lemma 3.5.1. The system (3.7) — (3.8) is equivalent to the nonlinear integral equation

y() = [600) = (0. 0) + 9{t. Ypr) + )/O(t—S)“‘lA(S)y(S) ds — (3.22)

()

1 t a—1 °
+ m/o (t o S) /0' IC(S7 T)f<7-7 yp(T,yT))dT ds.

In other words, every solution of the integral equation (3.22) is also solution of the system
(3.7) — (3.8) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(3.7) — (3.8), and using some classical results from fractional calculus to get (3.22).

Definition 3.5.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (3.7)—(3.8)
if y(t) = o(t) for all t <0 and y satisfies the following integral equation

y(t) = U 0)[$(0) = 9(0,0)] + g(t: Ypirn)
1 ' a—1 s
+m/0 (t—s)*U(t, S)/O K(s,7)f(, yp(T,yT))dT ds.

We consider the hypotheses (H,), (H01) — (H04) and we need the following assumptions

(3.23)

(H05) There exists a constant L, > 0 such that
[A(s)g(s, ) = A(S)g(5,9)| < Li (Is =5 + [lp = 2l
for all ¢, € C(H; E).
(H06) There exists a constant My > 0 such that

||A_1<t)||B(E) S MO for all t e J.

1
(HO07) There exists a constant 0 < L < — I such that
08y

|A(t) g(t, ) < L (|l¢|| +1) for all t € J and ¢ € C(H; E).

Theorem 3.5.1. Suppose that the hypotheses (HO01) — (HO7) are satisfied and moreover

ME,Libe+1S,

ML, K,
S VY

<1 (3.24)

where p* = supp(s), ¢* = supq(s)and I = suply(s). Then the problem (3.7) — (3.8) has a
unique mild solution on (—o0,b).
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Proof. Consider the operator N : Q — Q defined by :

o), if t <0;
Nty =4 U <t710> [9(0) = 9(0. )] + 9t yp1.40) .
—|—m/0 (t—s)* 1 U(t, s)/ﬂ K(s,7) f(T,Yp(ry,y)drds, ift € J.

Then, fixed points of the operator N are mild solutions of the problem (3.7) — (3.8).
For ¢ € B, we consider the function x(.) : (—o0,b] — E defined as below by
o(t), if t<o0;
z(t) =
U(t,0) ¢(0), if teJ

Then xg = ¢. For each function 2z € (), set

y(t) = 2(t) + (1)

It is obvious that y satisfies (3.23) if and only if z satisfies zp = 0 and
Z(t> = g(t, Zp(t,yt) + xp(t,l,h:)) - U(ta 0)9(07 ¢)

1 t s
i _/ (t— 8)* UL, s)/ K(s,7) (T, 2p(r,2+a2) + Tp(r,20 42, )ATdS.
I'(a) Jo 0

Let
Q" ={2€Q:2 =0}.

Define the operator F : Q0 — QO by :

ﬁ(Z)(t) = g(t> Zp(t,tyt) + xp(t,yt)) - U(ta 0)9(07 ¢)
1 S
+_/ (t — ) 1U(t, s) / K(s,7) f(T, 2p(r 2 +ar) + Tp(r,204a,))dTdS.
L(a) Jo 0

Obviously the operator N has a fixed point is equivalent to F has one, so it turns to prove that
F' has a fixed point.

Let z € Q° be be a possible fixed point of the operator. Then, using (H01) — (H04), we
have for each t € [0, b

(3.26)

2] < 19, Zpiege) + Towo)| + [U(E,0)9(0, )
1 t s
+ —/ (t— 3)a_1 Ult, s) / K(s,7)f(T, Zp(r,2r+3r) T xp(T,ZTJr:ET))deS
L(a) Jo 0
< AT TAW® G Zo(t,z420) + Tpzran)| + 1T 0) |5 [IAT0)]] [A(0)g(0, 6)]
1 t S
n _/ (t — s) 1 Ut s)/ KC(s,7) f(T, 2p(r 20 42r) + Tp(r,204ar))dTdS
L(a) Jo 0
< ML (“Zp(t,Zz-i-:Bt) + xp(t,zt—l-:ct)HB + 1) + MM,L (H¢HB + 1)
MbS, [* o
st [ =9 )+ a5 e + ]
L(a) Jo
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Since || Zp(t,y0) + Tpt o) llB < Kp|2(t)| + c» we obtain

o o ]/\Z*ba—HS
20 < MoL(Kal2(t)] + e+ 1) + MMoL(lolls +1) + Fr—
MqbS, [
f [ = () + ) ds
Then
(1 — MoLKy)|z(t)] < MoL(cy + 1)+ MMyL(||¢|| +1)+m
0 b =~ 0 b 0 B F(a—|—1)
Mq*bS, /t »
t— st (K d
(o) 0( $)* (Kl2(s)| + ) ds
Set
5 oy K MoL(e, 1) + Ky MMoL(||||5 + 1) Ky Mp*bot1S,
b (1 — MoLK,)T(a+1) (1 — MoLK,)T(a+1)
Thus
Kb]\/iq*bSb /t —1
Kzt +¢p < 6+ —2 t— st (K + ) ds.
bz +c0 < 0 (1 —3,LEy)T (o) 0( ) (Kolz(s)[ + ) ds

We consider the function i defined by
p(t) :==sup { Kplz(s)|+e: 0<s<t}, 0<t<b.

Let t* € (—o0,t] be such that u(t) = Kp|2(t*)| + . If t* € [0, ], by the previous inequality, we
get

Kb]/\iq*bsb
(1 — MyLK,)l

p(t) < 0y + @) /Ot(t —5)* 1t u(s)ds  for t €[0,0)].

If t* € (—00,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

Kbﬂq*ba+lsb
(1 — MoLK)T'(a+1)

1+ I—Ab

u(t) < oy x

Since ||z|| < u(t), we have ||z]| < max{||¢||, As} := Op.

Now, we shall show that F: 7 — Q% is a contraction operator.
Indeed, consider z,%z € Z, thus for each ¢ € [0, b]
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[F)() = F@® < 19t 2oty + Tpiey) = 9 Zpieye) + oty
1 Oi
¥ F—/ = O [ U2 + )
E (Ty2r4xr) +xp(7'z7—+a:7—) } drds
< ”A ( MA@ g(2, Zp(tyn) T xﬁ(tyt)) At)g(t, Zp(tar) T Tp(t, yt))’

+ _F(a)/o (t— ) YU, s ||/ (s, )| | (T, 2o(r,r0) + Tp(r,zr b))

—f(r, Zp(r, ZT—I—xT) + Tp(rzr+ar) } drds

< ML, ||Zp(tyt — Zp(tye) ||B
MbS, o _
b B L= ) o — Bl s
Since ||zt 8 < Kp|2(t)| + c» we obtain
- - _ ME,L;be+1S,
F(y)(t) — F@)t)| < MoLk|z(t) —z(t b t) —=(t
[F(y)(t) = F@)@)] < MoLdk|z(t) —z@)[ + Mo+ 1) 12(t) = Z(8)]
— Mk, L5, _
< | MoL,Ky+ —=— 221 ||2(t) — Z(¢
< [ oLy + TR | ate) ~Z0)

Therefore,

~ ~ - ]/\ZK L*ba+18 B
1E(y) = F@) < [MOL*Kﬁ — ”] Iz ==

['a+1)

So, for an appropriate choice of ML, L; and b* such that

_ MK, L*b*+1S
[MOL*KW el b] 1,

['(a+1)

the operator F is a contraction. From the choice of Z there is no z € 92" such that z = A ﬁ(z)
for some A\ € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. A consequence
of the nonlinear alternative of Frigon and Granas shows that (C'1) holds. We deduce that the
operator F' has an unique fixed-point z*. Then y*(t) = z*(t) + z(t), t € (—00, b] is a fixed point
of the operator N, which is the unique mild solution of the problem (3.7) — (3.8).
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3.6 Examples

We give in this section four examples to illustrate the previous results.
Example 1. Consider the partial differential equation

( O*u(t,
Dyult,§) = 55 + b, utt. ¢
t 0 iy
t [ ater) [ asts = o s = paron ([ oatOtutt 0)Pa0) ¢ aras
-r -r 0
0<t<b, £el0,7], (3.27)
u(t,0) = u(t,m) =0, 0<t<hb,
\ u(07€): u0(67§)7 _T<0§07 56 [Ovﬂ-]v
where a1 (t, ) is a continuous function and is uniformly Hélder continuous in ¢
O<a<lj;a :[-r0 = R;a:[0,71] > R;p :[0,b] > R fori= 1,2 are continuous
functions.

To study this system, we consider the space F = L*([0, 7], R) and the operator A : D(A) C
E — FE given by Aw = w” with

DA)={wekFE v eFE, w0 =wr)=0}

It is well known that A is the infinitesimal generator of an analytic semigroup {7'(t) }scpo.5 on E,
with compact resolvent. On the domain D(A), we define the operators A(t) : D(A) C E — E

by A(t)z(£) = Az(§) + ao(t, §)z(§).
By assuming that ag(.,.) is continuous and that ao(t,£) < —dg (09 > 0) for every t €
[0,0],¢ € [0, 7], and specific case a = 1 it follows that the system

u'(t) =At)u(t) t>s; u(s)=xz€EFE,

has an associated evolution family given by

t
0(t.912(6) = |10 = yean ( [ aor €107 ) o] (©)
From this expression, it follows that U(t, s) is a compact linear operator and that
|U(t,s)|| < e300 for every (t,5) € [0,b] x [0,0] ; s <t

Theorem 3.6.1. Let ¢ € C(H;E). Assume that the condition (H,) holds, the functions
pi  [0,0] = R fori=1,2; a1 :[-r,0] = R and as : [0,7] — R are continuous. Then there
exists a unique mild solution of (3.27).

Proof. From the assumptions, we have that

K(t,s) =nl(t,s)
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p(s,16) = 5 — () ( I azwww,@ﬁde) ,

are well defined functions, which permit to transform system (3.27) into the abstract system
(3.1) — (3.2). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 3.2.1. From Remark
1.7.1, we have the following result.

Corollary 3.6.1. Let ¢ € C(H; E) be continuous and bounded. Then there exists a unique
mild solution of (3.27) on [—r,b.

Example 2. Consider the partial differential equation

(CD?P@@)—/%@@—ﬂu&—pﬂﬁh(Aiﬂ@@@@ﬁ%)@)%]

-Tr

= S it utr o
+ [ teen) [t =t (s = it ([t opas) ) amas, g
0<t<b, £€l0,7],
o(t,0) = v(t,7) =0, 0<t<b,
[ v(0,8) = w(0,9), —r<0<0, £€10,7],
where a3 : [~r,0] — R is a continuous function.

Theorem 3.6.2. Let ¢ € C(H;E). Assume that the condition (H,) holds, the functions
pi + [0,0] = R fori=1,2; a; : [-r,0] = R fori=1,3 and as : [0,7] — R are continuous.
Then there exists a unique mild solution of (3.28).

Proof. From the assumptions, we have that

K(t,s) =nl(t,s)

0

£t 6)(E) / ax(8)(s, €)ds,
g1, 0)() / (s, £)d

as( s,

'

o) == e ([ a@)lv0.0Pw)

are well defined functions, which permit to transform system (3.28) into the abstract system
(3.3) — (3.4). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 3.3.1. From Remark
1.7.1, we have the following result.

Corollary 3.6.2. Let ¢ € C(H; E) be continuous and bounded. Then there exists a unique
mild solution of (3.28) on [—r,b].
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Example 3. Consider the partial differential equation

[ Dputt,) = S5+ ot utt o
T /_; n(t, 7) /_(; ar(s — t)u {s — (D)o (/OW a(0) ut, 8)|2d8) ,g} drds,
0<t<b €07, (3.29)
u(t,0) = u(t,m) =0, 0<t<b,
06,6 = w(0.6) o< 8<0, £c o]

where a; : (—00,0] — R is continuous function.

Theorem 3.6.3. Let B= BUC(R_; E) and ¢ € B. Assume that the condition (H,) holds, the
functions p; : Ry — R fori=1,2; a; : R_ — R and ay : [0,7] — R are continuous. Then
there exists a unique mild solution of (3.29) on | — 00, b].

Proof. From the assumptions, we have that

K(t,s) =n(t,s)

F(t)(E) = / ax(s)(s, €)ds,

—0o0

o) == pope ([ a@)lv0.0Pw)

are well defined functions, which permit to transform system (3.29) into the abstract system
(3.5) — (3.6). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 3.4.1. From Remark
1.7.2, we have the following result.

Corollary 3.6.3. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(3.29) on | — o0, b].

Example 4. Consider the partial differential equation

“Dg [u(t,g) - /(; as(s — t)u (s — p(t)pe (/OW a2(0)|u(t,9)|2d9) ,g) ds}

(

= % +ao(t, &)ul(t, §)
w [ aten) [ ats—ou (st ([ ora) ) as g
0<t<b, £€l0,7,
v(t,0) = v(t,m) =0, 0<t¢<0,
L v(0,8) = v(0,9), —00<0<0, £e0,n],

where as : (—o00,0] — R is a continuous function.
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Theorem 3.6.4. Let ¢ € B. Assume that the condition (Hy) holds, the functions p; : [0,b] — R
fori=1,2;a;:(—00,0] = R fori=1,3 and ay : [0, 7] — R are continuous. Then there exists
a unique mild solution of (3.30).

Proof. From the assumptions, we have that

K(t,s) =nl(t,s)

F(E0)(E) = / ax(s)(s, £)ds,

—00
0

gt 0)(€) = / as(s)(s, €)ds,

—0o0

o) == e ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (3.30) into the abstract system
(3.7) — (3.8). Moreover, the function f is bounded linear operator. Now, the existence of the
unique mild solution can be deduced from a direct application of Theorem 3.5.1. From Remark
1.7.2, we have the following result.

Corollary 3.6.4. Let ¢ € B be continuous and bounded. Then there exists a unique mild
solution of (3.30) on (—o0,b.
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Chapter 4

Perturbed Evolution Equations with
State-Dependent Delay

4.1 Introduction

In this chapter, we will demonstrate the existence of mild solutions for some classes of first
order of partial functional and neutral functional differential perturbed evolution equations
with infinite state-dependent delay on Fréchet spaces!, then we will show the existence of
mild solutions for some classes of Caputo’s fractional derivative order for partial functional and
neutral functional perturbed evolution equations with finite and infinite state-dependent delay?
by using the nonlinear alternative of Avramescu for the sum of contraction and completely
continuous operators on Banach spaces.

The existence of mild solutions on the real positif interval is demonstrated in section 3.2 for
the following class of perturbed evolution equations with infinite state-dependent delay

y'(t) = A)y(t) + F(t Ypewo) + Mt Ypyn),  ae. t2>0, (4.1)

Yo=0€hbB (4.2)

where B is an abstract phase space to be specified later, f,h: RT" x B — E,p: Rt x B = IR
and ¢ € B are given functions and {A(t)}o<i<1oo is a family of linear closed (not neces-
sarily bounded) operators from E into E that generates an evolution system of operators
{U(t,5) }t,5)ert xr+ for s < t.

An extension of this problem is given in section 3.3, we consider the following class of neutral
perturbed evolution equations with infinite state-dependent delay

d
a[y(t) - g(tﬂp(t,yt))] = A(t)y(t) + f(t, yp(t,yt)) + h(t>yp(t,yt))v a.e. t>0, (4.3)

Yo=¢€B (44)
where A(-), f, h and ¢ are as in problem (4.1) — (4.2) and g : Rt x B — E is a given function.

1[10] D. Aoued and S. Baghli-Bendimerad, Mild solutions for perturbed evolution equations with infinite
state-dependent delay, Flectronic Journal of Qualitative Theory of Differential Equations 2013, No. 59, 1-24.

2[13] D. Aoued, S. Baghli-Bendimerad and M. Benchohra, Fractional perturbed partial functional and
neutral functional evolution equations with infinite state-dependent delay, submitted.

67
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In section 3.4, we give the existence of the unique mild solution of the following class of
fractional perturbed evolution equations with finite state-dependent delay

‘Dyy(t) = A@®)y(t) + f(E, Yptn) + Mt Ypityey), ae. t€J=][0,b], (4.5)
y(t) =p(t), teH=[-r0], (4.6)

where 0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0,1),
fih: JxC(H;E) = E,p:JxC(H;E) - R and ¢ € C(H;FE) are given functions and
{A(t) }1e is a family of linear closed (not necessarily bounded) operators from E into F that
generates an evolution system of operators {U(t, s)}.s)csxs for s <t.

An extension of this problem is given in section 3.5, we consider the following class of
fractional neutral perturbed evolution equations with finite state-dependent delay

CD(? [y(t) - g(ta yp(t,yt))] = A(t)y(t) + f(ta yp(t,yt)) + h’(ta yp(t,yt))7 a.e. t€ Ja (47)
y(t) =¢(t), teH, (4.8)
where A(-), f and ¢ are as in problem (4.5) —(4.6) and g : J xC(H; E) — E is a given function.

In section 3.6, we investigate the existence of mild solutions of the following class of fractional
perturbed evolution equations with infinite state-dependent delay

“‘Diy(t) = A)y(t) + f(t, Ypew) + P Ypy), ace. t e, (4.9)
Yo=0¢€B (4.10)

where B is an abstract phase space to be specified later, D is the standard Caputo’s fractional
derivative of order « € (0,1), f,h: Jx B — E,p:J x B — IR and ¢ € B are given functions
and {A(t)}ies is a family of linear closed (not necessarily bounded) operators from E into E
that generates an evolution system of operators {U (¢, s)},s)csxs for s <t.

An extension of this problem is given in section 3.7, we consider the following class of
fractional neutral perturbed evolution equations with infinite state-dependent delay

CDg[y(t) - g(t7 yp(tyz))] = A(t)y(t) + f(tv yp(t7yt)) + h(ta yp(t,’yt))? a.e. te J? (411)
yo=0€bB (4.12)

where A(+), f and ¢ are as in problem (4.9) — (4.10) and ¢g : J x B — FE is a given function.
Finally, in section 3.8 we give examples to illustrate the abstract theory presented in previous
sections.

4.2 Partial Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of a mild solution of
the perturbed semilinear evolution problem (4.1) — (4.2).

Definition 4.2.1. We say that the function y : R — E is a mild solution of (4.1) — (4.2) if
y(t) = ¢(t) for allt <0 and y satisfies the following integral equation

y(t) = U(t,0) ¢(0) +/0 U(t,s) (5, Yptswn) + (8, Yp(sy))] s ace. t =0 (4.13)
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Set
R(p™) ={p(s,0) : (s,0) € R x B, p(s,$) < 0}.

We always assume that p : RT™ x B — R is continuous. Additionally, we introduce the following
hypothesis

(H,) The function t — ¢ is continuous from R(p~) into B and there exists a continuous and
bounded function £ : R(p~) — (0, 00) such that

¢ells < L2 @lls  for every t € R(p™).

We will need to introduce the following hypothesis which are assumed thereafter

(HO) U(t,s) is compact for t — s > 0.
(H1) There exists a constant M > 1 such that

1U(t,9)||Be) < M for every 0 < s <t < +o0.

(H2) There exists a function p € L}, .(J;R,) and a continuous nondecreasing function 1) :
R4 — (0,00) and such that

|f(t,u)| < p(t) ¥(||ul|g) for a.e. t > 0 and each u € B.

(H3) For all R > 0, there exists Ig € Lj, (RT; R ) such that

loc

[f(t,u) = f(t0)] < La(t) [[u—vlls
for all u,v € B with |Ju||z < R and ||v|[g < R.
(H4) There exists a function € L'(J, R, ) such that

|h(t,u) — h(t,v)| < n(t) |lu—v|g ae teJ et YuveB.

Consider the following space
Biw = {y :R = E : y| continuous for 7' > 0 and y, € B} ,
where y|jo 7 is the restriction of y to the real compact interval [0, 7).
Let us fix 7 > 1. For every n € N, we define in B, ,, the semi-norms by

lylln = sup { &7 & Jy(t)] - ¢ € [0,n] }
t
where L (t) = / I,(s) ds , 1,(t) = K,MlL,(t) and 1, is the function from (H3).
0
Then B, is a Fréchet space with the family of semi-norms || - ||,en-
Proposition 4.2.1. By (H,), and Lemma 1.7.2 and the assumption (A1), we have for each
t€[0,n] andn e N
[Ypan ll < Knly(®)] + (M + L7) [[yoll5
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Theorem 4.2.1. Assume that the hypotheses (Hy), (HO) — (H2) and (H4) hold and moreover
for all n € N, we have

to ds ("
/(,n st u(s) K"M/O max(p(s); n(s)) ds. (4.14)

with oy = (M, + £ + K, MH)||¢||5 + KnM\/ |h(s,0)| ds. Then the problem (4.1) — (4.2)
0

has a mild solution on (—o00,+00).

Proof. We transform the problem (4.1) — (4.2) into a fixed-point problem. Consider the
operator N : B, — By, defined by

( o(t), ifte R™;

N(y)(t) = U(t0) ¢(0) + /0 U(t,5) f(5, Yp(s.ue)) ds,

+/ U(ta 8) h(sayp(s,ys)) dS, if ¢ Z 0.
0

Clearly, fixed points of the operator N are mild solutions of the problem (4.1) — (4.2).
For ¢ € B, we will define the function z(.) : R — E by

(1), if t<0;
z(t) =
" { U(t,0) ¢(0),  if t>0.

Then xg = ¢. For each function z € B, set
y(t) = 2(t) + x(t)

It is obvious that y satisfies (4.13) if and only if z satisfies zp = 0 and

A =

/t
t

+ | v,
0

Ul(t,s) f(s, Zp(s,zstas) T mp(S,szrxs)) ds
(t S) h(s, Zp(s,zs+ms) T xp(S,zs-i-xs)) ds.

Let
Bl ={2€ By :2 =0}.

Define the operators F,G : B — BY_ by

t
F(Z)<t) - /0' U(ta S) f(sa Zp(s,zs—i—a:s) + xp(s,zs—&—ms)) ds
and

t
G(2)(t) = /0 Ul(t,s) h(s, Zp(s,zs+ms) T xp(S,zs-i-xs)) ds.
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Obviously the operator N has a fixed point is equivalent to '+ G has one, so it turns to prove
that F' + G has a fixed point.

First, show that F is continuous and compact.
Step 1 : F continuous. Let (z,)nen a sequence in B} such that z, — z in BY_. By the
hypothesis (H1), we have

[F'(20)(8) = F(2)(8)] <

t
< / ||U<t7 3)||B(E)|f<37 Znp(s,zns+xs) T xp(57zns+xs)) — f(s, Zp(s,zs+s) T xp(87z5+x5))|d3
0

t
< M/ }f(S, Znp(s,zns+Ts) + Ip(s,zns-‘rxs)) - f(su Zp(s,zs+Ts) + Iﬂ(syzs+$s))| ds.
0

Since f is continuous, by dominated convergence theorem of Lebesgue, we get
|F(z,)(t) — F(2)(t)] — 0 when n — +o0

So F'is continuous.
Step 2 : Show that I transforms any bounded of BY_ in a bounded set. For each d > 0,

there exists a positive constant ¢ such that for all z € By = {z € B : [|z]|, < d} we get
| F(2)]|n < &. Soit z € By, from assumption (H1) and (H2), we have for each ¢ € [0, n]

t
|F(2)(t)] < / “U(taS)HB(E) |f(3azp(8,zs+xs) +xp(5,25+$s))| ds
0

t
< M/ p(S) w(”'zp(s,zs—&-acs) + Tp(s,z5+as) B) ds.
0

From (H,), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, n]

HZp(S,zs-&-xs) + (s zetas) B S HZ/J(S,ZS-H&S) B+t pr(s,zs—&-xs) B
< Kul2()] 4+ (M + L) 20]|5 + Kl (s)] + (M + L£2) |20l
< Kpl2(s)] + KallU (s, 0)[laem) [6(0)] + (M, + L) || 6]|5
< Kul2(s)| + K MI9(0)] + (M + £9)]0]15

Using (i1), we get

5 < Kul2(s)| + K,MH|o||s + (M, + £)[|¢]15
< Kplz(s)| + (M, + L% + K,MH)||¢|5

| Zp(s,25+ws) T Tp(s,zs+as)

Set ¢, 1= (M, + L£® + K, MH)||¢||s and 6, := K,d + ¢,. Then
HZp(S,zs-i-xs) + Ip(s,zs-&-a:s)HB < Kul2(s)| + ¢n < 0y (4.15)
Using the nondecreasing character of ¢, we get for each ¢ € [0, n]
[F(2)()] < M(6)|[pllzr == o

So there is a positive constant g such that ||F(z)|, < o. Then F(B,) C B,.
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Step 3 : F maps bounded sets into equi-continuous sets of B?roo. We consider By as in
Step 2 and we show that F'(B,) is equi-continuous. Let 7,75 € J with 7y < 75 and z € By.

[E(2)(12) = F(2)(m)] < /0 |U(72,8) = U1, 8) |30y [(85 Zp(s.zatan) + Tp(s.zatan))| ds

T2
i / 10 (ras ) L5061 (5s 2ntormntony + Totormnron)] ds.

T1

Then by (5.41) and the nondecreasing character of ¢ we get

[F(2)(72) — F(2)(m)] < 1/1(<5n)/0T1 |U(72,8) = U, 8)ll ey p(s) ds

+ () / © () ds.

T1

Noting that |F(z)(12) — F(2)(m1)| — 0 tends to zero as 7 — 71 — 0 independently of z € Bj.
The right-hand of the above inequality tends to zero as 7 — 7 — 0, since U(t, s) is a strongly
continuous operator and the compactness of U(t,s) for t > s, implies the continuity in the
uniform operator topology (voir |7, 90]). As a consequence of Steps 1 to 3 together with the
Arzela-Ascoli theorem it suffices to show that the operator F maps B, into a precompact set
in F.

Let t € J be fixed and let ¢ be a real number satisfying 0 < ¢ < t. For z € By we define

F(2)(t) = U(t,t —e) /0 T Ul — &, 8)Cunra(s) ds.

Since U(t, s) is a compact operator, the set Z.(t) = {F.(2)(t) : z € By} is pre-compact in E
for every €, 0 < ¢ < t. Moreover, using the definition of w, we get

t
[F2)(t) — Fz(2)(8)] < / IU(E s)l| sy [F(8: Zps,zatan) + Tpis,zatan)] ds
t—e

Therefore the set Z(t) = {F(2)(t) : z € By} is totally bounded.
Hence the set {F(2)(t) : z € Bq}. So, we deduce from Steps 1, 2 and 3 that F'is a compact
operator.

Step 4 : G is a contraction. Let z,Z € B}_. By the hypotheses (H1) and (H4), we get
for each t € [0,n] and n € N

G()() = GE)()] <

t
< /0 HU(tv S)HB(E) | h(5> Zp(s,zs+xs) T xp(5123+33s)) - h(svgp(&zs—l-xs) + Ip(&zs—&-ﬂcs)) | ds

t
< M/ 77(3) ”ZP(S,stcs) F Tp(s,za+zs) = Zp(s,zstas) — Lp(s,zetas)||B ds
0

t
< M/ n(s) |‘Zp(5735+x5) — Zp(s,25+5) |IB ds.
0
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Use the inequality (4.15), to get

t

G() (1) = GE)()] < M K, n(s) |2(s) = (2)(s)] ds

t

[L.(s) eTL;(S)} [e_TLZ(S) 12(s) — z(s)|] ds

t T L%(s) /
[6 } ds ||z — 7|
-

e 12O ||z = 2.

IN

IN

IA
=S — S — S—

Therefore 1
1G(2) = GE)ln = = NIz = Zlla.

Then the operator G is a contraction for all n € N.

Step 5 : For applying Theorem (1.10.2), we must check (Av2) : i.e. it remains to show
that the set

Y= {z € Bl 2= AF(2)+ )G (§> for some A €]0, 1[} :

is bounded.
Let z € ¥. By (H1) — (H2) and (H4), we have for each ¢ € [0,n)]

1 t
SOl < [0Sy [£(5 3 + )]

t oo 1)
o [ 10 ee [ (5 D) 5,00+ his,0)] ds
< M/ |Zp(s zotas) T Tp(s,zs+as) )HB ds)

A

Use Proposition 4.2.1 and inequality (4.15)

ZS +1's)

t
ds—i—M/ |h(s,0)| ds.
B 0

1
—zt < ]\/[/ Y(Ky|2(s)| + ¢,) ds
+ M/ (—| )|—|—cn> ds+M/ h(s,0)| ds.
We consider the function u(t) := sup |z(f)|. The use of nondecreasing character of ¢ gives
0€(0,t]

with the fact that 0 < A < 1

K, K
Tu(t) +cn < e+ K M/ (Tnu(s) + cn> ds

+ KM/ ( )—i—cn) ds+M/ h(s,0)| ds.
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Set 0, := ¢, + Kn]\/f\/ |h(s,0)| ds. Then, we have
0

—u(t) +c, < o+ K, M/ (KTu()Jrcn) ds

+ KM/ ( )+cn) ds.

We consider the function p defined by
u(t) = sup {Kyu(s)+c, : 0<s<t}, 0<t<+00

Let t* € [0,¢] such that u(t) = K,u(t*) + ¢,. From the previous inequality, we have for all
t €10,n]

0) < o+ KT [ p(o)outs)ds + KT [ (o),
Let us take the right-hand side of the above inequality as v(t). Then, we have
p(t) <wo(t) Vtelo,n].
From the definition of v, we have

v(0) =0, and '(t) = K, M [p(O)¢(u(t)) +nt)ut)] ae. te[0,n]

Using the nondecreasing character of ) we get

V(t) < K M) (o(t) +no(®)] ae. t € [0,n]

This implies that for each ¢ € [0,n] and using (4.14), we get

v(t) ds p ]/\4\ ' )
_ < N '
/an s+u(s) — " ; max(p(s);n(s)) ds

< KT [ max(pls)in(s) ds

o ds
<[

Thus, for every ¢t € [0,n], there exists a constant A,, such that v(t) < A,, and hence
u(t) < A,. Since ||z||, < u(t), we have ||z]|,, < A,. This shows that the set ¥ is bounded. Then
the statement (Av2) in Theorem 1.10.2 does not hold. The nonlinear alternative of Avramescu
implies that (Avl) is satisfied, we deduce that the operator F' 4+ G has a fixed point z*. Then

y*(t) = 2*(t) + x(t), t €] — 00, +0o0] is a fixedpoint of the operator N which is a mild solution
of the problem (4.1) — (4.2).

4.3 Neutral Problem with Infinite Delay

In this section, we give an existence result of mild solution for the problem (4.3) — (4.4).
Firstly, we define the concept of the mild solution for that problem.
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Definition 4.3.1. We say that the function y(-) : R — E is a mild solution of (4.3) — (4.4) if
y(t) = ¢(t) for allt <0 and y satisfies the following integral equation

y(t) =U(t,0)[0(0) — g(0,0)] + g(t, Ypttyn) +/0 U(t,s)A(s) 9(5,Yp(se)) ds

. (4.16)
_'_/ U(tv 3) [f(s, yp(S,ys)) + h<3>yp(s,ys))] ds vVt >0.
0

We consider the hypotheses (H,), (H0) — (H4) and we need the following assumptions

(H5) There exists a constant M, > 0 such that

AT ()| pmy < Mo for all ¢ > 0.

1
(H6) There exists a constant 0 < L < — i such that
0fin

|A(t) g(t,0)| < L (||¢]|lg + 1) for all t > 0 and ¢ € B.
(HT) There exists a constant L, > 0 such that
[A(s) g(s,0) — AB5) 9(5.0)| < L (|Is = 5] + |6 — ¢l1)
for all 5,5 > 0 and ¢, ¢ € B.

(H8) The function g is completely continuous and for any bounded set Q) C B the set
{t — g(t, zpty))} is equi-continuous in B.

Theorem 4.3.1. Suppose that the hypotheses (Hy,), (HO) — (H8) are satisfied and moreover
for all n € N, we have

/5003+d12(5) 1—M0LK / max(L +1(s), p(s)) ds (4.17)

with ¢, = (M, + £ + K,MH)||¢||z and

(1\7+ 1) MoL + MLn + M,L (cn + J\?) ¢l + 1\7/ Ih(s,0)| ds
0
| — M,LK,

gnzcn—i_Kn

Then the problem (4.3) — (4.4) has a mild solution.

Proof. Consider the operator N: B, — B, defined by

[ o(t), ifteR;
U(t,0) [¢(0) — g(0,0)] + 9(t, Yu(t.u))
" / U(t, $)A(3) (5 Uptany) 5.

¢
"’/ Ul(t,s) [ﬂsvyp(svys)) + h(s, yp(svys)ﬂ ds if ¢t > 0.
0
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Then, fixed points of the operator N are mild solutions of the problem (4.3) — (4.4),

For ¢ € B, we consider the function z(.) : R — E defined as below by

o(t), if ¢<0;
z(t) =
) { U(t,0) ¢(0), if +t>0.

Then xg = ¢. For each function z € B, set
y(t) = 2(t) + x(t)
It is obvious that y satisfies (4.16) if and only if z satisfies zp = 0 and

2(t) g(f o(s,2e+a) T Lp(s, Zt+It)) —U(t,0)9(0,9)

—I—/ Ul(t 98, Zp(s,5+2s) T Tp(s,zetas)) dS
0
+/ Ut (85 2p(s,25+25) T Tp(s,z,+as)) dS
0
+/ U(t,8) h(8, 2p(s,z0twa) T Tp(s,zatas)) dS-
0

Let

BY . ={2 € Byoo : 20 =0}.

Define the operators F, G BY. — BY by

t
F(Z)<t) = /0 U(t7 S) f(S, Zp(s,zs+Ts) + xp(s,zs-i-ars)) ds

And
G(Z) <t> t Zp(s,zt+e) + Lp(s, Zf"l‘-'ﬂf)) - U(tv 0)9(07 ¢)
/ U t S (S Zp(s,zs+xs) + Lp(s, Z&+$a)) ds

/ U t S h(S Zp(s Zg+$s) +pr(5 Zs+l's)) d :

Obviously the operator N has a fixed point is equivalent to '+ G has one, so it turns to prove
that F'+ G has a fixed point.

We have shown that the operator F' is continuous and compact as in Section 3.2 Remains
to show that the operator GG is a contraction.
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Let z,Z € BY . By (H1), (H4), (H5) and (HT), we have for each t € [0,n] and n € N

|G(2)(t) = G(Z)()] <
< ]g(t, Zp(t,ze+xe) T xp(t72t+$t)) - g(t, Zp(t,ztar) T xp(t,zt—&-xt))’

¢
"’/ ”U(t» S)HB(E) |A(3)[g(3a Zp(s,zstms) T mp(s,szracs)) - g(svzp(s,zsﬂcs) + xp(S,szr:Jcs))]l ds
0

t
+/ ||U(t7 S)”B(E) |h(37 Zp(s,zs+as) T xp(S,zs-i-xs)) - h(svzp(&zs—&-xs) + xp(8,25+zs)>| ds

0
<A™ ) sm) 1AWG) I, 2o(t,20400) + Tptzeran)) — A IE Zotr ztm0) + Tp(tzpran))|

t
"’/ M [A(s)g(s, Zp(s,zstas) T xp(S,szra:s)) - A(S)g(svgp(&zsﬂ:s) + xp(S,zs+zs))| ds
0
t
+/ M |h(s’ Zp(s,zs+xs) T xp(s,zs—&-xs)) - h(sazp(S,zs—I—xs) + xp(8,25+ars))| ds
0

t
< MOL*HZp(t,zt—&-xt) - Ep(t,zﬁmf,)HB ""/ ML*HZP(S,zs—l-wS) - Ep(S,stﬂs)HB ds
0

t

s [ M epteiran — Zsran s ds.
0

Use the inequality (4.15), we get

G) () =GR < ML Ku|=(t) = 2(t)] + | ML.Ky|=(s) —Z(s)| ds

< MK, n(s)|=(s) = Z(s)| ds
< MoL.K,|=(t) — z(t)| + 0 ME,[Ls + n(s)]|2(s) — 2(s)| ds.

Set 1,,(t) = ]/W\Kn[L* + n(t)] for the family of semi-norms {|| - ||en}, then

G0 =GR < MoL.K, |Z(15)—5(15)|+/0 In(s) |2(s) — Z(s)|ds
< [MoL.K, € L;(t)] [e™™ L |2(8) — 2(1)]]
+ /0 [1,(s) e Ln@] e L) |2(s) — 2(s)|] ds
L ) tler Li()7/
< MoL.K, e "0 Hz—z\ln+/0 [ ] ds ||z = Z|ln

_ 1 .
< [MOL*KH + —} em L 1z =z,
T

Therefore .
16:) = Gl < | WL, + 2] =)

Let us fix 7 > 0 and assume that

— 1
MyL. K, + - <1,
T
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then the operator G is a contraction for all n € N.

For applying Theorem (1.10.2), we must check (Av2) i.e. it remains to show that the set

is bounded.

:{zeBioo : z:)\F(z)+)\é(§> pour0</\<1}.

Let z € 5. By (H1) — (H2), we have for each t € [0, 7]

2@l
)

+

+

+

M/ ) |2p(s,zs+xs) T Tp(s,zs+s)

AT ONADIE, 2ot 01200 + Tptaeerw)| + MIIATH(0)][|A0)g(0, )]

M/ |A (S Zp(s,zs+ws) T Lp(s,ze+as) >| ds

)ds

S SJFIS — "
( uxp(s’z;m)) —h(s,O)‘ ds+M/0 Ih(s,0)| ds.

Using assumptions H5) (H6) and (H4)

[z®)]
)

_|_

+

t
MOL”zp(t,ZHr:rt) + Tp(t,ze+a0) s+ ML/ Hzp(S,szr:Es) + Tp(s,zs+1s)
0

OL(“ZP(t72t+IBt) + xﬁ(t72t+mt)HB + 1) + MMOL(“¢"B + 1)

t
ML/ (Hzp (s,zs+5) T Lp(s,25+as) 1B T 1) ds

M/ Hzp (s,zs+xs) T Lp(s,z5+as) B) ds

[k

(77 + 1) ToL + MIn+ MoL|6lls + J\?/ Ih(s,0)| ds
0

zs +$a)
+ QZP(&%S_HCS)

t
’ ds+M/ Ih(s,0)| ds
B 0

BdS

M/ Hzp (s,zs+xs) T Lp(s,z5+as) B) ds

[k

Zs +$s)

:Cp(&%s_’_xs) ’B ds.

Use Proposition (4.2.1) and inequality (4.15) for get

A

ZP(‘g?ZTS“Fa;s)

xP('svaS‘f'xs)

1
PNIRACS S| zp(s’%'ms)HB

K, M, + £
PR
(9] + KallU (s, 0) L |#(0) | + (M + £) 16l

IN - IA

IA
>/|N>/|N>/|N

“J2(s)] + KnMH| 6]l + (Mo + £°) [ ]|

IA

“[2(s)] + (Mo + £° + K MH) [6]ls.

20lls + Kz ()] + (M + L) ||zolls
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Hence

z
57275 Ts Kn
) < S229)] + n

Use the function u(-) and the nondecreasing character of ¢ to get

T xp(S’ZTSHS) B

¢ - o o P . m
%lg @MJw%L+Mm+MM@WM+M/\MwM®
0

+ ML (Knu(t)+cn)+]\7L/0t (Knu(s)+c,) ds

+ M/ K,u(s) +cp) ds+M/ (%u(s)%—cn) ds.
Then
@ < (H+1)MOL+J\7Ln+MOL [Mn+£¢+ﬁ(1+KnH)} 19|15
+ M/ 30|d$—|—M0LKTu()—i—J/\/[\L/Olt (%u(s)jtcn) ds
+ M/ (—u( )~|—cn) ds+M/ (s) (%u(sﬂ—cn) ds.
Set

79

(4.18)

(o = (1\7+1> MoL + MLn + MoL [Mn+£‘f’+ﬂ7(1+KnH)} ||¢||B+J\7/ |h(s,0)| ds.
0

So
K, — [t K,
T(l—MoLK Jut) < Kul+ K.M [L + n(s)] Tu( s)+ec, | ds
t ’ K
+ K,M p(s) ¥ (T ( )—I—cn) ds
0
Set &, == ¢, + nGn Then
1— MoLK
K K, M t K,
—_ < S — L — d
)\u(t)+cn < 5n+1—M0LKn i [L +n(s)] ()\u()+cn) s
K, M t K,
+ m ; p(S) w (TU<S> + Cn> ds.

We consider the function p defined by

K,
pi(t) = sup {7u<s)+cn : ogsst}, 0<t<+o0

Ky L :
Let t* € [0,t] be such that u(t) = Tu(t*) + ¢,. By the previous inequality, we have for

t € [0,n]

K, M ¢ K, M t

w(t) < &0+ —=m [ (L4 (s)] pls) ds + ——— [ p(s) v (u(s)) ds.

1—-MyLK, Jo 1 - MyLK,
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Let us take the right-hand side of the above inequality as v(t). Then we have
p(t) <wo(t) Vtelo,n].
From the definition of v, we get v(0) = &, and

K, M K,M
"(t) = ——=——— [L+n(t )+ ——— p(t t e. tel0,n].
V() = T B 0] n0) e p0) () ae e[
Using the nondecreasing character of ¢/ we have
K, M K, M
"(t) < ———— [L+n(t )+ ————— p(t t e. tel0,n].
V() < g (L] o) £ e ) (D) ae e 0]

This implies that for each ¢ € [0,n] and using (4 17) we get

v(t) dS
_v» < (L+ ds
/gn st o(s) = 1—M0LK /max n(s), p(s))

M
< m/{) max(L + n(s),p(s)) ds

+oo ds
B /g S+ (s)

Thus, for every ¢t € [0,n], there exists a constant A,, such that v(t) < A, and hence
1(t) < Ay. Since ||z]|n < pu(t), we have ||z]l, < A,. This shows that the set 3 is bounded. Then
the statement (Av2) in Theorem 1.10.2 does not hold. The nonlinear alternative of Avramescu
implies that (Avl) is satisfied. we deduce that the operator F' + G has a fixed point z*. Then
y*(t) = 2*(t) + x(t), t €] — 00, 400[ is a fixed point of the operator N which is a mild solution
of the problem (4.3) — (4.4).

4.4 Fractional Partial Problem with Finite Delay

Before stating and proving the main result, we give first the definition of the unique mild
solution of the perturbed fractional problem (4.5) — (4.6).

Lemma 4.4.1. The system (4.5) — (4.6) is equivalent to the nonlinear integral equation

1 /t . 1 t .
Fat [ =97 A 6) dst s [ =9 5 )+ BBt .
T(a) Jy T(a) J, p(s,ys) p(s,ys)

(4.19)
In other words, every solution of the integral equation (4.19) is also solution of the system
(4.5) — (4.6) and vice versa.

y(t) = ¢(0) +

Proof. It can be proved by applying the integral operator to both sides of the system
(4.5) — (4.6), and using some classical results from fractional calculus to get (4.19).

Definition 4.4.1. We say that the function y(-) : [—r,b] — E is a mild solution of (4.5) — (4.6)
if y(t) = p(t) for allt € H and y satisfies the following integral equation

y(t) =U(t,0) ¢(0)+ L/0 (t—s8)*" L U(t, s)[f(s, Yp(sws)) + (S, Ypswo))] ds  for each t € J.

I'(e)
(4.20)
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Set
R(p™) ={p(s, ) : (s,9) € I x C(H; E), p(s,p) < 0}.

We always assume that p : J x C'(H; E) — R is continuous. Additionally, we introduce the
following hypothesis:

(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £?: R(p~) — (0,00) such that

el < L2()]Je]l - for every t € R(p™).
We will need to introduce the following hypothesis which are assumed thereafter
(H'0) Ul(t,s) is compact for t — s > 0.
(H'1) There exists a constant M > 1 such that

|U(t,3)||Br) < M for every s < t.

(H'2) There exist two functions p,q € L} _(J; R,) such that

loc

|f(t,u)| < p(t) + q(t) ||u||p for a.e. t € J and each u € C'(H; E).

(H'3) For all R > 0, there exists [z € L} .(J;R,) such that

[f(t,u) = f(t,0)| < Lgr(t) |lu— v
for all u,v € C(H; E) with [ju]| < R and |jv]| < R.

(H'4) There exists a function n € L'(J,R,) such that

|h(t,u) — h(t,v)| <n(t) [lu—v| ae ted et Yu,ve C(H;E).

Theorem 4.4.1. Assume that the hypotheses (H,), (H 0) — (H'4) hold and moreover for all
n €N,
M(I; 4 n)b*
['(a+1)

where p* = supp(s), ¢* = supq(s) and n* = supn(s). Then the problem (4.5) — (4.6) has a
mild solution on [—r,b].

<1 (4.21)

Proof. We transform the problem (4.5) — (4.6) into a fixed-point problem. Consider the
operator N : C([—r,b]; E) — C([—r,b]; E) defined by
( (1), ift € H;

N(y)(t) = U(t,0) ¢(0)+ﬁ /O (t =) Ut ) f (5 Yps,e)) ds,

1 ¢ . .
\ +F(04) /0 (t =) U(t, s)h(s, Yp(ss)) ds, ift € J.
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Clearly, fixed points of the operator N are mild solutions of the problem (4.1) — (4.2).

Let y be a possible solution of the problem (4.5)—(4.6). Given ¢ < b, then from (H'1)—(H'4),
(H,) and Lemma 5.2.1, we have for each t € [0, 0]

y(t)] < |rU<t,o>uB<E>|so<o>|+ﬁ / (t— ) U 9)|mmy 1F(5: Ypion)| ds

1 t
—— [ (t—9)* MUt h ] ds.
= | =TS e | ) s

—

— M t
< M|l +—/t—s°‘_1ps—|—qs Yp(syo) |l | ds
el F(a)o( )27 [p(s) + a(8) 1Yp(sp0 ]
J/\/[\/t »
+ — t—5)""0(8)||Yp(s.ws) | ds.
F(O./) 0 ( ) ()“ p(y)
It follows that
Py Mp*ba ]/\4\ t
® < (M ® _ o)1 ®
O+ £llell < (7 + L)l + Fams + g [, (097 a(o) )] + £2lel] ds

+ / (t = )" n(s)([y(s)] + L2 ll)ds

Set
M p*b*

= (T + )] + 2P0
by = (T + L)l + pr

We consider the function p defined by
pu(t) ==sup { [y(s)| + L?l¢]l - 0<s<t}, 0<t<b

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get

u(t) < o+ o) ) /0 (t—s)* "t u(s)ds  fort €0,b].

If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.7.2 implies
that there exists a positive constant d, = d,(«) such that

M(q* + n*)b™

pt) < 0 x (o + 1)

1+

— A
Since ||y, < wp(t), we have ||ly|l, < max{||¢l|, Ay} := O,. Since for every ¢t € [0,b], we have
[ylln < max{[[e]l, Ap} := O

Set
V={yeC(-rb;E) : sup{ly(t)]: 0 <t <b} <O+ 1}.
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Clearly, Y is a closed subset of C'([—r,b]; E).

We shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,7 € Y, thus using (H'1) and (H'3) — (H'4) for each t € [0, b]

IN@w)(E) - NG| < %Q) / (t— ) U S)sE) |F vutem) — £ Tag)] d
" ﬁ / (t = 87U )y |B(5: Yptons)) — 15, Tooy)| s

t
< — [ (t—9)"""1 su) — T ds.
< gy =0 ) Bt =T

t
om0 Tty = Tl 0
T'(a) Jy p(5,Ys) p(s,ys)
Using (H,) and Lemma 5.2.1, we obtain

. M0 [ s .
N - NGOl < SEED [ )~ ds

—~

M(ly + 0" )b

S Tatn ly — 7l

Therefore,

M(I; 4 77)b°
['(a+1)
So, the operator N is a contraction. From the choice of Y there is no y € 0Y™ such that

= A N(y), A € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. The
nonlinear alternative of Frigon and Granas shows that (C'1) holds. Thus, we deduce that

the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(4.5) — (4.6).

IN(y) = N@)lln < 1y = Ylln-

4.5 Fractional Neutral Problem with Finite Delay

Before stating and proving the main result, we give first the definition of a mild solution of
the perturbed semilinear evolution problem (4.7) — (4.8).

Lemma 4.5.1. The system (4.7) — (4.8) is equivalent to the nonlinear integral equation

918) = [6(0) = 900.6)) 0. p0) + Ty [ (097 ) ds (4.22)

1 t .
+m/0 (t—s) l[f(37yp(8,ys)) + (S, Yp(s,ys))] ds.

In other words, every solution of the integral equation (4.22) is also solution of the system
(4.7) — (4.8) and vice versa.
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Proof. It can be proved by applying the integral operator to both sides of the system
(4.7) — (4.8), and using some classical results from fractional calculus to get (4.22).

Definition 4.5.1. We say that the function y : [—r,b] — E is a mild solution of (4.7) — (4.8)
if y(t) = @(t) for allt € H and y satisfies the following integral equation

y(t) = U(t,0)[¢(0) — g(0, )] + g(t; Yp(tpn))
1

m/; (t o S)a_l U(t’ S)[f(sv yp(s,ys)) + h(S, yﬂ(s,ys))] ds

(4.23)

We consider the hypotheses (H,), (H' 0) — (H'4) and we need the following assumptions
(H'5) There exists a constant L, > 0 such that
[A(s)g(s, ) = A(S)g(5,9)| < Li (Is =5 + [lp = 2l

for all ,p € C(H; E).

(H'6) There exists a constant M > 0 such that

||A_1<t)||B(E) S MO for all t € J.

/ 1
(H'7) There exists a constant 0 < L < = such that
0

|A(t) g(t, )| < L (|lp]| +1) for all t € J and p € C(H; E).

Theorem 4.5.1. Suppose that the hypotheses (Hy), (H 0) — (H'7) are satisfied and moreover
M(L; +1*)b°

ML,
obx ¥ ['(a+1)

<1 (4.24)
where p* = supp(s), ¢¢ = supq(s) and n* = supn(s). Then the problem (4.7) — (4.8) has a
unique mild solution on [—r,b).

Proof. Transform as below the neutral problem (4.7) — (4.8) into a fixed point problem by
considering the operator N : C([—r,b]; E) — C([—r,b]; E) defined by :

20, ift e H;
Ny ={ V0 [%0t<0> = 9(0,0)] + 9t Yotea)
+ﬁ/o (t=5)"7U(t,s) [f(5:Yptswn) + 1S Ypisw))] ds it €T

Clearly, the fixed points of the operator N are mild solutions of the problem (4.7) — (4.8).
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Let  be a possible solution of the problem (4.7) — (4.8). Given ¢t < b. Using (H'1) — (H'2),
(H'6) — (H'7), (H,) and Lemma 5.2.1, we have for each ¢ € [0, ]

Yy < 19t Ypean)| + [U(E 0)[p(0) — g(0, 9)]|

1/ a1
+ ‘m/ﬂ (t — S) U(t, S)f(‘S?yP(S»ys)) ds
I a1
+ ‘m/ﬂ (t—s) Ult, S)h(sayp(svys)) ds
< H{I(UH |A®)g(t, Yp(an) | + 1U(E,0) sy ATH0)] [A(0)g(0, 0)]|
+ % / (t = )°7 [p(s) + a(s) Yo ] ds

ds.

t
t — a—1 s
o [ =
Since a0 < ly(0)] + £7]gl, we obtain

]\//Tp*bo‘

O < ML (ly®] +LNlel) + Ml + MoL) + zro= 5

. % / (6= 51 a(s) (9(s)] + LNl ds
+ % / (t—)*"n(s) (ly(s)] + Lllell) ds

Then
M b

(1= MoL)y(t)| < [WOLDP +M(1 +M0L)} eIl + Tat1)

T T

/0 (t— 5" (jy(s)| + L7l ll) ds

Set

[MOLN +M(1+ MOL)]
(1— ML)

M\p*bo‘
(1—M,L)I'(a+1)

8 = L] + lloll +

Thus

o~

M(q* +n*)
t LY < 4 N
ly()] + Ll < &+ 10D

5 [ G 2ol ds

We consider the function p defined by
pu(t) = sup { [y(s)| + L7[ef| - 0<s<t} 0<t<b.

Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get

M(q* + 1)
(1 — MoL)T'(

p(t) < &+ o /Ot(t —5)* ! u(s)ds  fort € [0,b].
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If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

—~

M(q* +n*)b°
(1—MyL)I'(a +1)

p(t) < g x |1+
Since ||y|| < u(t), we have ||y|| < max{||¢]|, Ay} := Oy,

Now, we shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider 3,7 € Y, thus for each ¢ € [0, b]

IN()(t) = N@)(t)]

(VAN
Q
—~
\S‘F
<
B
~
~
<
S
N2
~

|

e
—~
\.C*
<

)

~

~

<

=

N>
~—

1 ! o _
= e [ =TIV [ te) = R T

< AT ONAGIE Vo) — ABGE Y]

Mot 1
JR— t_ (e l . = d
* IN()) /0( ) o(s) Hyﬂ( ws) — Yplsys) Il @S
_]\/4\ ' a—1
b [ =9 ) Ny~ Tl

Using (H,) and Lemma 5.2.1, we obtain

—~

~ M(L; + n*)b°

X)) = N0 < MoLuly 3l + =175 Iy~
< [mm% Iy =1

Therefore,

o~

MLy + n*)b”
INa+1)

IN(y) = N@)ll < [Miﬁ ly =7

So, for an appropriate choice of ML, Ly, n* and 0 such that

—~

M(LG +n7)b"
['a+1)

Y

[MOL* +

the operator N is a contraction. From the choice of Y there is no y € dY™ such that y = A N(y)
for some A\ € (0,1). Then the statement (C2) in Theorem 1.10.4 does not hold. A consequence
of the nonlinear alternative of Frigon and Granas shows that (C'1) holds. We deduce that
the operator N has a unique fixed-point y* which is the unique mild solution of the problem
(4.7) — (4.8).
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4.6 Fractional Partial Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of a mild solution of
the perturbed semilinear evolution problem (4.9) — (4.10).

Lemma 4.6.1. The system (4.9) — (4.10) is equivalent to the nonlinear integral equation

y(t) = 6(0) + ﬁ / (t — 5)* ' A(s)y(s) ds (4.25)

1 t
+m/o (¢~ S)ail[f(s’ yﬂ(svys)) + h(s7yp(s,ys))] ds.

In other words, every solution of the integral equation (4.25) is also solution of the system
(4.9) — (4.10) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(4.9) — (4.10), and using some classical results from fractional calculus to get (4.25).

Definition 4.6.1. We say that the function y(-) : (—o00,b] — E is a mild solution of (4.9) —
(4.10) if y(t) = @(t) for all t <0 and y satisfies the following integral equation

y(t) = U(t,0) ¢(0) + L /0 (t—s)* 1 UL, s)[f(s, Yp(sys)) T (S, Yp(sys))] ds  for each t € J.

()
(4.26)

Set
Rip™) ={p(s,¢): (s,¢) € J x B, p(s,¢) < 0}.
We always assume that p: J x B — R is continuous. Additionally, we introduce the following
hypothesis

(H,) The function t — ¢ is continuous from R(p~) into B and there exists a continuous and
bounded function £ : R(p~) — (0, 00) such that

glls < L2 élls  for every t € R(p™).
We will need to introduce the following hypothesis which are assumed thereafter
(H'0) Ul(t,s) is compact for t — s > 0.
(H'01) There exists a constant M > 1 such that

|U(t, )| sy < M for every (t,s) € A.

(H'02) There exist two functions p,q € L. _(J;R,) such that

loc

lf(t,u)| < p(t)+ q(t) ||u||p for a.e. t € J and each u € B.

(H'03) For all R > 0, there exists Iz € L. (J;R,) such that

loc

|f(tvu) - f(t,’l))| < lR(t) ||u - UH

for all u,v € B with ||u|| < R and [|v| < R.
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(H'04) There exists a function n € L*(J,R,) such that

\h(t,u) — h(t,v)] <n(t) [lu—v|s aete et Vuveb.

Consider the following space
Q= {y:(—00,b] = E:y|(_g € B and y|pyis continuous },

Theorem 4.6.1. Assume that the hypotheses (Hy), (H'0) — (H'04) hold and moreover for all
n €N,

Ky Mn*b®

['(a+1)
where p* = supp(s), ¢ = supq(s) and n* = supn(s). Then the problem (4.9) — (4.10) has a
unique mild solution on (—oo,b).

<1 (4.27)

Proof. We transform the problem (4.9) — (4.10) into a fixed-point problem. Consider the
operator N : Q — () defined by

(1), if t € R

N(y)(t) = 4 Ut,0) ¢<o>+ﬁ / (t = )" Ult,5) £ (5. Ypison) .

1

t
| T /0 (t=5)*" Ut $)h(s, Ypom) ds, ifte..

Clearly, fixed points of the operator N are mild solutions of the problem (4.9) — (4.10).
For ¢ € B, we will define the function z(.) : (—o0,b] — E by
(%), if ¢ € (—o0,0];
{ U(t,0) ¢(0), if ¢te0,0].

x(t) =

Then xg = ¢. For each function z € €Q, set

y(t) = 2(t) + (1)
It is obvious that y satisfies (4.26) if and only if z satisfies zy = 0 and

I _
Z<t> = m/o (t - 8>a ! U<t7 S)f(87 Zp(s,zs-i-acs) + xp(s7zs+x5)) ds

1 t 3
+ () /0 (t— )7 U(t, $)M(S, Zo(s zutas) + Lo(s,zutar)) 5.

Let
D ={2€Q:2=0}.

Define the operators F,G : Q° — QY by

t
F(Z) (t) = —/0 (t - 8)a_1 U(t7 S)-f(s’ Zp(s,zs+ms) + xp(swzs‘i’ws)) dS.
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and

1 t o
G(2)(t) = m/o (t—s) 1 U(t, s)h(S, 2p(s,2stas) + Tp(s,zstas)) AS-

Obviously the operator N has a fixed point is equivalent to F'+ G has one, so it turns to prove
that F'+ G has a fixed point.
First, show that F is continuous and compact.

Step 1 : F continuous. Let (2,)nen a sequence in Q° such that z, — 2 in QY. By the hypothesis
(H1), we have

|F(2,)(t) — F(2)(t)] < ﬁ /0 |t =) NU R, 5) ] m)

X ’f(s’ Znp(s,zns+s) T xp(syzn5+$5)) — f(s, Zp(s,zs+as) T xp(8,25+xs))|d5

< MOIFCs 2+ 2p0,0) = FLo 200+ Tp(,0)
- I(a+1)

| o

[E(2)(t) = FZ)(1)] < ﬁ /0 (t =) THNUE ) By | F(5 2npsenetas) T Totsznetas)

—f(s, Zp(s,zstas) T xp(S,zs+zs))| ds

MO f(- 2np) T () = F( 20,0+ o)) lloo
I'a+1) '

Since f is continuous, by dominated convergence theorem of Lebesgue, we get

<

|F(2,)(t) — F(2)(t)] — 0 when n — +o0

So F'is continuous.

Step 2 : Show that F transforms any bounded of Q° in a bounded set. For each d > 0,
there exists a positive constant ¢ such that for all 2 € By = {z € Q° : ||z]|, < d} we get
| E(2)|ln < €. Soit z € By, from assumption (H 01) and (H'02), we have for each ¢ € [0, b]

1

t
’F(Z)(tﬂ < F—/ (t_5>a_1||U(ta S)HB(E) |f<572p(8,zs+ms) +xp(8,zs+xs))| ds
(@) Jo

o~

M t
< g [P () a6 e+ ]
(@) Jo

From (Hy), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, b]

Hzp(S,zs-Hﬁs) + Tp(s,zs+as) Hzp(&zs—i—xs) B+ pr(S,zs-I-xs)

B S B
< Klz(8)| + (My 4+ L£9)||20]|8 + K|z ()] 4+ (My + L) | 05
< Kyl2(s)| 4+ Ky ||U(s,0)| 5oy o(0)] + (M, + L2)] |65
< Kylz(s)| + KyM|¢(0)] + (M + L?) |9l

Using (i7), we get

Ko|2(s)| + KoM H| 0|5 + (My + L) 6]l
Fol2(s)| + (My + £° + K, MH)||¢||5

IN

HZP(S,zs+xs) T Tp(s,zs+xs) 1B

A
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Set ¢, :== (M, + L + Kb]/\/[\H)H¢HB and 0, := Kpd + ¢;. Then
1Zp(s z0tw0) + Tp(s,zatan) |8 < Kol 2(s)| + ¢4 < Oy (4.28)

For each ¢ € [0, b], it follows that
]\/Zp*bo‘ ]\/Zq* t 1

t—s)* K, d
T i =t o)+ a) ds
Mba(p* +q*5b)
- I'a+1)

[F(z)0)] <

Mba( +q'0y)
Fe ) < HEE )

So there is a positive constant ¢ such that ||F(2)||, < o. Then F(By) C B,.

Step 3 : F maps bounded sets into equi-continuous sets of Q°. We consider By as in Step 2
and we show that F'(By) is equi-continuous. Let 71,79 € J with 3 < 75 and z € Bj.

1 Tl a—1 a—1
|F(2)(2) — F(2)(m1)| < m/o (2 = 8)*7 = (11 = ) |[|[U(72, ) = U(71,9) || (E)
|f(8 Zp(s,zs+Ts) +$p(s Zs+a:s))|

1 [ .
+ —/ (12 = $)* MU (72, )| BE) 1£(S: 2p(s,20400) + To(s,zeta0))| A
() Joy
Then by (5.41) we get

|F(2)(12) = F(z)(m)] < [(r2 = )7 = (11 = )" H||U (72, 5) = U(m1,9) | ey

[(a) Jo
p(s) + als)r)ds

" /72 [(r2 = 5)*7H| [p(s) + a(s)d] ds.

) J,,

Noting that |F(z)(72) — F(z)(m1)| — 0 tends to zero as 7 — 3 — 0 independently of
z € By. The right-hand of the above inequality tends to zero as 7 — 71 — 0, since U(t, s) is
a strongly continuous operator and the compactuness of U(t, s) for t > s, implies the continuity
in the uniform operator topology (voir 7, 90]). As a consequence of Steps 1 to 3 together with
the Arzela-Ascoli theorem it suffices to show that the operator F' maps B, into a precompact

set in F.
Let t € J be fixed and let ¢ be a real number satisfying 0 < ¢ < t. For z € By we define

FL(2)(t) = ﬁU(t,t —¢) /0 (= 80 Ut — £, 8)Ctasa(s) ds.

Since U(t, s) is a compact operator, the set Z.(t) = {F.(2)(t) : z € By} is pre-compact in E
for every €, 0 < ¢ < t. Moreover, using the definition of w, we get

1 t
[E(2)(1) = Fe(2)(1)] < () /t_a (t =) NUE 5)l B 11 (5, 2o,z T To(s.zetan))| d
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Therefore the set Z(t) = {F(2)(t) : z € By} is totally bounded. Hence the set {F(2)(t) :
z € By}. So we deduce from Steps 1, 2 and 3 that F' is a compact operator.

Step 4 : G is a contraction. Let z,Z € Q°. By the hypotheses (H'01) and (H 04), we
get for each ¢ € [0,b] and n € N

1 t o
< —F( ) /0 (t —s)* U, B | B(S; 2p(s z+20) + Tp(s zo0s))

—h(Sazp(s,zs—l—ws) + xp(S,stﬂs)) ‘ ds

]/\4\ t
< t— ot $,zs+T szetr) = Zo(s.zedas) — Szt d
~ () /0 (t = 5)7n(8) l|2p(s,z0tas) T Tp(s,zetwa) = Zpls,zatas) — Tp(s,zetas) |5 dS
]/\4\ ! oa— —
< g | =) Bt = Ftesrmle .

Use the inequality (4.28), for get

—

GEO-CEOl < o [ (6 ) () |+() — 2(5)] ds
< %uz@)—w)u
Therefore -
I6() - G < g g 40 — =)

Then the operator G is a contraction.

Step 5 : For applying Theorem (1.10.2), we must check (Av2) : i.e. it remains to show
that the set

Y= {ZGQO tz2=AF(2) + \G (;) for some)\E]O,l[}.

is bounded.
Let z € X. By (H'01) — (H'02) and (H'04), we have for each ¢ € [0, b]

1 I o
X|Z<t)| m /0 (t - S) ! HU(t7 S)HB(E) ‘f(s7 Zp(57zs+73s) + xP(S,Zs+xs))| dS

1 Zp(s,%“r:rs)

N m/ot(t—s)a—1||U<t,s>||B<E> ‘h (Sf) —h(s,0)+h(s,0)‘ ds

IN

o~

M t
F(Oé) /O [p(cf") + Q(5)||Zp(s,zs+acs) + xP(S,Zs-i-xs)HB} ds

" m/ (t— 5" 'n(s)

IN

P — '
p(s,zf-‘rms) M / a—1
——|| d —_— t— h(s,0)| ds.

)\ 5 S+F(Oé> 0 ( 8) ’ (87 )’ S
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Use Proposition (4.2.1) and inequality (4.15) to get

L) < Fﬂ(ipfj)+rﬂé) ARG (KT z<s>|+cb) ds

¥ % [=srte (Tl +a) ds+% [e=or o) s

We consider the function u(t) := sup |z(f)| and use the fact that 0 < A\ < 1
0€[0,t]

—~

K, K,Mp b KM /t _1 K,
_— < — g)¢ —_—
3 u(t)+e < o+ Tla+1) + T /s (t—s)*""q(s) 3 z(s)|+ ¢ | ds

o~ o~

KyM t i EZS . . K, M b e )
T(a) /U(t—s) 1(s) ()\ (s)] + b) a5+ Ty /O(t )1 h(s,0)| ds.

—~

Kbﬁp*ba KbM
+
MNa+1) (o)

b
Set oy, 1= ¢ + / (t —5)* ' |h(s,0)| ds. Then, we have
0

—~

Buwra < ool [e—s o) (Saol+a) o

—

B [ spmtn) (St ) s

We consider the function p defined by

K,
u(t):sup{Tbu(s)—l—cb :0<s<t}) 0<t<b

K,
Let t* € [0,t] such that u(t) = Tbu(t*) + ¢p. From the previous inequality, we have

Kb]/\iq* t a—1 Kb]/\f\n* t B -
() /0 (t—5)"" pu(s)ds + (o) /0 (t — )% pu(s)ds.

If t* € (—00,0], then pu(t) = ||¢]| and the previous inequality holds. And Lemma 1.8.1
implies that there exists a positive constant §, = d,(«) such that

u(t) < oy +

K{)M(q« +77*)ba
['(a+1)

Since ||z|| < w(t), we have ||z]] < max{||@]|, Ay} := Op. Since for every ¢ € [0,b], we have
2] < max{|], Ay} = O,

Since ||z|| < w(t), we have ||z|]] < Ap. This shows that the set ¥ is bounded. Then the
statement (Av2) in Theorem 1.10.5 does not hold. The nonlinear alternative of Avramescu
implies that (Avl) is satisfied, we deduce that the operator F' 4+ G has a fixed point z*. Then
y*(t) = z*(t) + x(t), t €] — 00,b] is a fixed point of the operator N which is a mild solution of
the problem (4.9) — (4.10).
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4.7 Fractional Neutral Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of a mild solution of
the perturbed semilinear evolution problem (4.11) — (4.12).

Lemma 4.7.1. The system (4.11) — (4.12) is equivalent to the nonlinear integral equation

y(t) = [6(0) = 9(0,9)] + 9(t, Ypts)) + ﬁ/o (t =) As)y(s) ds (4.29)

1 ¢ .
—i_m/ov (t - S)ai [f<s7yp(.9,ys)) + h(S, yp(S,ys))] ds.

In other words, every solution of the integral equation (4.29) is also solution of the system
(4.11) — (4.12) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(4.11) — (4.12), and using some classical results from fractional calculus to get (4.29).

Definition 4.7.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (4.11) —
(4.12) if y(t) = o(t) for all t <0 and y satisfies the following integral equation

y(t) =U(t,0)[0(0) — g(0,0)] + g(t, Yp(en)) (4.30)

1 t .
_'_m/o <t - S)Oli U<t’ 3)[f(8, yp(s,ys)) + h(S, yp(s,ys))] dS

We consider the hypotheses (Hy), (H'0) — (H'04) and we need the following assumptions
(H'05) There exists a constant L, > 0 such that
[A(s)g(s. ¢) — A(5)9(5.0)| < L (Is — 5]+ ll¢ — o)
for all ¢, € B.
(H'06) There exists a constant My > 0 such that

IA ()| gy < Mo forall te J.

/ 1
(H 07) There exists a constant 0 < L < — I such that
048

|A(t) g(t,0)| < L (||¢]| +1) for all t € J and ¢ € B.

Theorem 4.7.1. Suppose that the hypotheses (Hy), (H 0) — (H'02) and (H 04) — (H'07) are
satisfied and moreover
Mkbﬂ*ba

Ta+D) <1 (4.31)

[MOL*KI) +

where p* = supp(s), ¢* = supq(s) and n* = supn(s). Then the problem (4.11) — (4.12) has a
unique mild solution on (—o0,b).
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Proof. Consider the operator N : Q — Q defined by
o(t), ifteR™;

Ny =4 VB0 [¢fo> — 9(0,6)] + 9(t. Ypr.0)
+ﬁ/o (t =) 7Tt s) [f(5Yptswn) T 18, Ypsp)] ds i€ J.

Then, fixed points of the operator N are mild solutions of the problem (4.11) — (4.12).
For ¢ € B, we consider the function z(.) : (—oo, b] — F defined as below by
o(t), if t<0;
z(t) =
U(t,0) ¢(0), it ted

Then zy = ¢. For each function z € €, set

y(t) = 2(t) + x(t)
It is obvious that y satisfies (4.30) if and only if z satisfies zp = 0 and

Z<t) = g<t7 Zp(sizz-l-zt) + xﬂ(S,Zt-I-.Tt)) - U(t7 O>g(07 ¢)

1 .

+—F(oz) /0 (t— UL s) (s, Zp(s.ratas) + Tp(szetas)) A5
1 t .

+F(O{> /(; (t - S) 1U(t7 S) h(s, Zp(S,Zs+1's) + xP(S,ZS—‘rCES)) dS.

Let

' ={2€Q:2=0}.
Define the operators F, G : Q0 — Q0 by

t
F(Z>(t) = m/o (t - S>a_1U<t7 8) f(sv Zp(s,zs-l-ars) + xp(s,zs—i—xs)) ds

And _
G(Z) (t) = g<t7 Zp(8%2t+$t) + ajp(syzt+1t)) - U(t’ O)g(ov ¢)

1 —
+_F(a) /0 (t = 8)* UL, ) h(S, Zp(s,eetas) + Tp(seatas)) AS.

Obviously the operator N has a fixed point is equivalent to F'+ G has one, so it turns to prove
that F'+ G has a fixed point.
We have shown that the operator F' is continuous and compact as in Section 3.6 Remains

to show that the operator GG is a contraction.
Let 2,7 € Q0. By (H'01) and (H 04) we have for each t € [0, 0]

G(2)(t) = GZ)()] < |g(t, Zp(t,zi+ai) T xp(t,Zt-l-:ct)) - g(t7zp(t,2t+xt) + xp(t,zt+xt))|

1 t
=7 ~ t— ol Ut h S,2s+Ts S,zs+xs -
el AR O P CEMISEE AR

(s, Zp(s,z420) + Tp(s,zatan))| A

||A_1(t)|| A(t)g(t, Zp(tys) T xp(tyyt)) - A(t)g(t’zp(t’yt) + xp(t’yt)”
M o[t o -

b o [ = 0t ~ oo

IN

B ds.
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Use the inequality (4.15), and (H'05) — (H 06), we get

G0 - GEO| < MoLuKl=() —20)] + f‘ff—jf) [ =5 e) =20 as
ng@MW@—WM+ﬁmmw() Z(t)
— ]/\Zk?bn*ba _
< [MOL*Kb + m] 12(t) = Z(8)]].

Therefore

IG(2) = Gl < [MOL*Kb+ %kbn )] 12(8) = (@)

So, for an appropriate choice of MyL,, n* K, and b* such that

m:bn*ba] n

ML, Ky + ———
[0 " et )

operator GG is a contraction.

For applying Theorem (1.10.2), we must check (Av2) i.e. it remains to show that the set

i:{zEBS]FOO : z:)\F(z)+)\é<§> p0u7"0<)\<1}.

is bounded.
Let z € ¥. By (H'01) — (H'02), we have for each ¢ € [0, b]
&;N < gt Zptean) + Totea)| + U (£, 0)g(0, 9)|
+ ﬁ /Ot“ = 5) U )5y [1(5: Zpts.204w0) + Totozotan)| ds
+ ﬁ /Ot(t — ) MUt 9) s |h (57 Zp(s’?%)) ~ e 0)+ h(s’o)‘

< AT O TAWD 9, Zpezirz + Tptezran)| + 1UE O sy 1A (0)]] [A0)g(0, )]

i W/O (t =) [p(s) + a(s)l 250 T Toiswo ] ds

t
+ —/ (t—s)* (s
(@) J !
Using assumptions (H 04), (H 06) and (H 07)

EOIR
Il <

z zs
pls 5 +as)
N ()

t
‘ ds+M/ Ih(s,0)| ds.ds
B 0

MOL(||ZP(t7Zt+fEt) + xp(t,ZtHct)”B + 1) + MMOL(||¢||B + 1)

M [t o
+ —)/O(t—S) Hp(8) + a9 Zp(s.ge) T Totsa ] ds

N Te(se)

t
' ds+M/ Ih(s,0)| ds.
B 0
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Use Proposition (4.2.1) and inequality (4.15) for get

Z (g zs
P(& 5Y +xs) g

X\ ps 3t |

IN

1
by H"’p(x%&m) s H%(s,%m)HB

K M, ¢

K
—b!Z( )|+ KllU (s, 0) |5y |¢(0)] + (My + £°) [|¢lls

IN

l20lls + Kslax(s) + (M + L) [|l2olls

IN

IN

K _
7|2(8)| + Ky MH||9llg + (M + L?) | ¢]15

K, —
“La(s)] + (My+ L2 + K MH ) |65

IN

Hence
2o(o 5 )

K,
A\ + xp(s,%ﬂgs) < _|Z(5)| + Cp. (4.32)

5 A

Use the function u(-) to get

MO < MoL(Kphu(t)] + ) + oL (14 (o] + 1))
]\/I\p*bo‘ M t o1 M ! a1
R i L 0 s+ s [ ate) (Guts) + ) ds
b [ (R +a) as
Then
M < ML) + )+ Mok (L4 T+ 1) + s
T b 7 t
+ %/0 (t — ) [i(s,0)| ds+%/0 (t— ) q(s) (%u(s)m,) ds
- %/0 (t—s)*"'n(s) (%U(S)Jr%) ds.
Set
G = MoLey + Mol (1+ M(llg]l + 1)) + rﬁpfi) + r](\i) /O (t — 5)° (s, 0)| ds.
So
% (1 - MoLKy)ut) < K@+ KbM/ 5)*1q(s) (%u(s) + cb) ds

K M K,
+ b / (t—s)"n (Tbu(s)+cb> ds.
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Set & = ¢, + & Then
(1 — MoLKy)
K, KyM /t . (Kb )
u) e < &+ —— t—s)" “Puls)+ e ) d
cult)Ha < & 0L ) (t=5)"als)  Tuls) +e | ds

o~

(1- M}jzj\fib)F(a) /Ot(t —5)"7'n(s) (%U(s) + cb) ds.

We consider the function i defined by

K,
p(t) = sup {Tbu(s)—l—cb : Ogsgt}, 0<t<d

K,
Let t* € [0,¢] be such that u(t) = Tbu(t*) +¢p. By the previous inequality, we have for ¢ € [0, b]
KM(q" +17')

pt) < 5b+(1_mLKb)F(

) /0 (t—s)* " u(s)ds  fort € [0,b].

If t* € (—o0,0], then u(t) = ||¢| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

Kb]\/j(q* + n*)b*
1
T Tt

pt) < 6 x

Since ||z]| < w(t), we have ||z|]| < max{||¢|,As} := ©s. Since for every t € [0,b], we have
2] < max{{[¢][, Ay} := Oy

Since ||z]| < w(t), we have ||z|| < Ap. This shows that the set ¥ is bounded. Then the
statement (Av2) in Theorem 1.10.5 does not hold. The nonlinear alternative of Avramescu
implies that (Avl) is satisfied, we deduce that the operator F' 4+ G has a fixed point z*. Then
y*(t) = 2*(t) + x(t), t €] — o0, b] is a fixed point of the operator N which is a mild solution of
the problem (4.11) — (4.12).

4.8 Examples

To illustrate the previous results, we give in this section six examples.
Example 1. Consider the partial differential equation

ou _D%u(t,€)
E(taf) =T oe + ao(t, §)u(t, )

+/0 ay(s —t)u [3 — p1(t)p2 /07r as(0)|u(t, 0)[2d6 74 ds

— o0

( )
+/0 az(s —t)u {s — p1(t)p2 (/0” az(0)[u(t, 9)|2d9) 74 ds, (4.33)
0

—0o0

u(t,0) = u(t,m) =0, t>0,

\ U(@,f): u0(07§)7 —o0 < 0 <0, 56[0,%].
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where ag(t, ) is a continuous function and is uniformly Hélder continuousin t ; aj,a3 : R — R
and as : [0,7] — R, p; : [0,400[— R are continuous functions i = 1, 2.

To study this system, we consider the space E = L*([0, 7], R) and the operator A : D(A) C
E — F given by Aw = w"” with

D(A)={weF :w ek wl0=wn =0}

It is well known that A is the infinitesimal generator of an analytic semigroup {7'(¢)}:>o on E,
with compact resolvent. On the domain D(A), we define the operators A(t) : D(A) C E — E
by

A(t)z(8) = Ax(§) + ao(t, §)x(8).

By assuming that ag(., .) is continuous and that ay(t,£) < —dg (69 > 0) forevery t € R, £ € [0, 7],
and specific case a = 1 it follows that the system

u(t) =A{t)u(t) t>s; u(s)=x€kF,

has an associated evolution family given by

t
0(t.912(6) = |10~ yeap ( [ aor €107 ) o] (©)
From this expression, it follows that U(t, s) is a compact linear operator and that
|U(t,s)|| < e~ for every (t,5) € RY x RY ; s <t

Theorem 4.8.1. Let B = BUC(R_;E) and ¢ € B. Assume that the condition (Hy) holds,
pi - Ry — R, i = 1,2, are continuous and the functions a;,a3 : R_ — R and ay : [0,7] — R
are continuous. Then there exists a mild solution of (4.33) on | — oo, +o0l.

Proof. From the assumptions, we have that

F(t0) () = / ax(s)(s, £)ds,

'

Wt 0)(€) = / a3(s) (s, €)ds,

-r

p(s,6) = 5 — () ( I azwww,@ﬁde) ,

are well defined functions, which permit to transform system (4.33) into the abstract system
(4.1) — (4.2). Moreover, the function f and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.2.1.

From Remark 1.7.2, we have the following result

Corollary 4.8.1. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(4.33) on | — oo, +00l.
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Example 2. Consider the partial differential equation

B [ 00~ [ ats=tu(s = mtten ( [ wmieora).c) o

_ JPu(t,§)
= 8—52 + ao(t, §)u(t, &)

0
+/ ar(s—t)u|s— pi(t < |ut9|d9),§ ds

Lot (s (o )
+/_Ooa3(s—t)u(s—p1 (/0 a(0 ut&d@),2

5 (4.34)
>0, £€[0,7],
v(t,0) = v(t,m) =0, t>0,
v(6,8) = (0, ), —00 <0 <0, {e0,7].

as : R_ — R is a continuous function.

Theorem 4.8.2. Let B = BUC(R_; E) and ¢ € B. Assume that the condition (H,) holds,
d:[0,7] = E, pi : Ry — R fori=1,2, aj,a3,a4 : R_ — R and ay : [0,7] — R are
continuous. Then there exists a mild solution of (4.34) on | — 0o, 400].

Proof. From the assumptions, we have that

o) == e ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (4.34) into the abstract system
(4.3) — (4.4). Moreover, the function f, g and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.3.1.

From Remark 1.7.2, we have the following result

Corollary 4.8.2. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(4.34) on | — oo, +00l.



100 Chapter 4. EXISTENCE OF MILD SOLUTIONS

Example 3. Consider the partial differential equation

Dt = T+ aolr, utt o
0
—I—/ aj(s —t)u {s—pl ( |ut9|d9>,§]ds
— — 6)|°do d
+/_Ta3(5 t) |:S pl ( o a’2 IU‘t ’ )7 :| S, (435)
€ [0, 7],
u(t,0) = u(t,m) =0, 0<t<hb,
u(6,€) = (6, ), —r <0<0, £€[0,7],
where ay, a3 : [—r,0] — R is a continuous function.

Theorem 4.8.3. Let ¢ € C(H,E) . Assume that the condition (H,) holds, p; : Ry — R, i =
1,2, are continuous and the functions ay,az : [-r,0] = R and ay : [0,7] = R are continuous.
Then there exists a mild solution of (4.35) on | —1,b].

Proof. From the assumptions, we have that

F(E0)(E) = / ax(s)(s, €)ds

r

Wt 0)(€) = / as(s) (s, €)ds,

—-r

p(s,6) = 5 — () ( I azwww,@ﬁde) ,

are well defined functions, which permit to transform system (4.35) into the abstract system
(4.1) — (4.2). Moreover, the function f and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.4.1.

From Remark 1.7.1, we have the following result

Corollary 4.8.3. Let ¢ € C(H,E) be continuous and bounded. Then there erists a mild
solution of (4.35) on | —1,b].

Example 4. Consider the partial differential equation

D5 [utt.9)~ [ asts =00 (5= puoops [ astote.orpan) ) s

:
82
- T s autn u)

oo (st ([ asmieoran) )i
|

-
/_Tag(s—t)u(s—pl ( e |ut9|d9),£>d,

v(t,0) = wv(t,m) =0, 0<t<hb,

(4.36)

, § €10,7],

U<97€>: UU(Q7§)7 —r<0<0, {e [O,ﬂ'].
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where a4 : [—7,0] — R is a continuous function.

Theorem 4.8.4. Let ¢ € C(H,E). Assume that the condition (H,) holds, d : [0,7] — E,
pi Ry — R fori=1,2, aj,as,a4 : [-7,0] = R and ay : [0,7] — R are continuous. Then
there exists a mild solution of (4.36) on | —r,b].

Proof. From the assumptions, we have that

plot) == pope ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (4.36) into the abstract system
(4.3) — (4.4). Moreover, the function f, g and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.5.1.

From Remark 1.7.1, we have the following result

Corollary 4.8.4. Let ¢ € C(H,E) be continuous and bounded. Then there erists a mild
solution of (4.36) on | —r,b].

Example 5. Consider the partial differential equation

( 82
“Diult,§) = S5 + b, u(t ¢

0

— — 6)|°do d

+/_80a1(s t)u[s p1(t (/0 as(0)|u(t, ) ),ﬁ} s
+/ 6L3(S—t)U|:S—p1 (/ as(0 |ut9|d9),}dts, (4.37)
—00 0 '

0, 7],
u(t,0) = u(t,m) =0, 0<t<p,
( u(0,€) = uo(0,9), —00 <0 <0, €0,

where ay, a3 : (—00,0] — R are continuous functions.

Theorem 4.8.5. Let B = BUC(R_;E) and ¢ € B. Assume that the condition (Hy) holds,
pi - Ry — R, i = 1,2, are continuous and the functions ay,a3 : R_ — R and ay : [0,7] — R
are continuous. Then there exists a mild solution of (4.37) on | — oo, b].

Proof. From the assumptions, we have that

£t 6)(€) = / ax(s)(s, £)ds,

—00
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h(t, )(€) = / as(s)b(s, €)ds

—00

p(s,16) = 5 — () ( I a2<e>|¢<o,§>|2de) ,

are well defined functions, which permit to transform system (4.37) into the abstract system
(4.1) — (4.2). Moreover, the function f and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.6.1.

From Remark 1.7.2, we have the following result

Corollary 4.8.5. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(4.37) on ] — 00, b].

Example 6. Consider the partial differential equation

‘Do [u(t,g) _ /0 as(s — P <s (B </Oﬂ a2(0)|u(t,0)\2d0> ,g) ds}

o h
- T s auinut.)

+/_(;a1(8—t)u<s—p1 (/0 |ut9|d9)7§>ds
+/_ioa3(s—t)u (S_pl </0 as(0)|u(t, 0)| d&) 7§> ds, (4.38)

, £ (0,7,
v(t,0) = wv(t,m) =0, 0<t<b,
v(0,€) = v(0,8), —00 <0 <0, £el0,m].

where a4 : (—00,0] — R is a continuous function.

Theorem 4.8.6. Let B = BUC(R_;E) and ¢ € B. Assume that the condition (H,) holds,
d:[0,7] = E, pj : Ry — R fori=1,2, aj,a3,a4 : R_ — R and ay : [0,7] = R are
continuous. Then there exists a mild solution of (4.38) on | — 00, b].

Proof. From the assumptions, we have that

0

£t )(€) = / ax(s)(s, £)ds,

—00

g1, 0)(€) = / as(s)(s, £)ds,

o) == pope ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (4.38) into the abstract system
(4.3) — (4.4). Moreover, the function f, g and h is bounded linear operator. Now, the existence
of mild solutions can be deduced from a direct application of Theorem 4.7.1.

From Remark 1.7.2, we have the following result
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Corollary 4.8.6. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(4.38) on | — 00, b].
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Chapter 5

Controllability Results for Evolution
Equations with State-Dependent Delay

5.1 Introduction

In this chapter, we will prove the controllability of mild solutions for some classes of first
order of partial functional and neutral functional differential evolution equations with infinite
state-dependent delay in Fréchet spaces!, then we will show the controllability of mild solutions
for some classes of Caputo’s fractional derivative order of partial functional and neutral func-
tional differential evolution equations with finite and infinite state-dependent delay? by using
the nonlinear alternative of Avramescu for the sum of contraction and completely continuous
operators on Banach spaces.

The controllability of mild solutions on the real positif interval is demonstrated in section
5.2 for the following class of evolution equations with infinite state-dependent delay :

Y () = Aty (t) + Cult) + f(t, Yotea)), a-e. t>0 (5.1)

where B is an abstract phase space to be specified later, f : Rt x B — E,p: Rt x B — IR
and ¢ € B are given functions, the control function u(.) is given in L?(J; E), the Banach space
of admissible control function with F is a real separable Banach space with the norm |- |, C
is a bounded linear operator from E into E and {A(t) }o<t<1oo is a family of linear closed (not
necessarily bounded) operators from E into E that generates an evolution system of operators
{U(t, 3)}(t,s)eR+><R+ for s <.

An extension of this problem is given in section 5.3, we consider the following class of neutral
evolution equations with infinite state-dependent delay

S0 — ot )] = ADYD) + Cult) + [ gpan), ne 120 (53)

Yo =9 € B, (5.4)

1[11] D. Aoued and S. Baghli-Bendimerad, Controllability of mild solutions for evolution equations with
infinite state-dependent delay, Europian Journal of Pure and Applied Mathematics, 9 (4), 2016, 383-401.

2[14] D. Aoued, S. Baghli-Bendimerad and M. Benchohra, Controllability of mild solutions for fractional
partial functional and neutral functional evolution equations with state-dependent delay, submitted.
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where A(-), f, ¢ and C' are as in problem (5.1) — (5.2) and ¢g : R* x B — FE'is a given function.

In section 5.4, we give the controllability of the unique mild solution of the following class
of fractional evolution equations with finite state-dependent delay

‘Dgy(t) = At)y(t) + Cult) + f(t, Ypry)), ae teJ =100 (5.5)

y(t) =p(t), te H=[-r0], (5.6)

where 0 < r < +o00, °Df is the standard Caputo’s fractional derivative of order a € (0, 1],
f:JxCH;E)— E,p:JxC(H;E)— R and ¢ € C(H; F) are given functions, the control
function u(.) is given in L*(J; E), the Banach space of admissible control function with F is a
real separable Banach space with the norm |- |, C'is a bounded linear operator from E into £
and {A(t) }o<t<p is a family of linear closed (not necessarily bounded) operators from E into £
that generate an evolution system of operators {U(t, s)},sesxs for 0 < s <t <b.

An extension of this problem is given in section 5.5, we consider the following class of
fractional neutral evolution equations with finite state-dependent delay

“Dily(t) = 9(t Yol = AWY(1) + Cult) + FE Yoieyn), e L€ (5.7)

y(t) = o(t), teH, (5.8)
where A(-), f, u, C" and ¢ are as in problem (5.5) — (5.6) and g : J x C(H; E) — E'is a given

function.

In section 5.6, we investigate the controllability of mild solutions of the following class of
fractional evolution equations with infinite state-dependent delay

“Dyy(t) = At)y(t) + Cu(t) + [t Ypey), ae. t€J (5.9)

Yo =0 € B, (5.10)

where °D{* is the standard Caputo’s fractional derivative of order o € (0,1], f : J x B — E
and ¢ € B are given functions, the control function u(.) is given in L?(J; F), the Banach space
of admissible control function with E is a real separable Banach space with the norm |- |, C
is a bounded linear operator from E into E and {A(t)}o<i<p is a family of linear closed (not
necessarily bounded) operators from E into F that generate an evolution system of operators
{U(t,5) }tsyeaxs for 0 <s <t <b.

An extension of this problem is given in section 5.7, we consider the following class of
fractional neutral evolution equations with infinite state-dependent delay

“Dily(t) — 9t Ypean)] = AR)y(t) + Cult) + f(t, Ypy), ae. teJ (5.11)

Yo = ¢ € B, (5.12)

where A(:), f, u, C and ¢ are as in problem (5.11) — (5.12) and g : J x B — E is a given
function. Finally, section 5.8 is devoted to examples illustrating the abstract theory considered
in previous sections.
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5.2 Partial Problem with Infinite Delay

Before stating and proving our first main result, we define firstly the corresponding mild solu-
tion of the semilinear evolution problem (5.1)—(5.2) then we define the concept of controllability
for that problem and finally we expose the properties of state-dependent delay.

Definition 5.2.1. We say that the function y : R — E is a mild solution of (5.1) — (5.2) if
y(t) = o(t) for all t <0 and y satisfies for each t > 0 the following integral equation

y(t) = U(t,0)9(0) + /Ot U(t,s)Cu(s)ds + /Ot U(t,s) f(S, Yp(s,))ds. (5.13)

Definition 5.2.2. The evolution problem (5.1) — (5.2) is said to be controllable if for every
initial function ¢ € B, y* € E and for some n € N, there is some control u € L*([0,n]; E) such
that the mild solution y(-) of (5.1) — (5.2) satisfies the terminal condition y(n) = y*.

Set R(p~) = {p(s,¢) : (s,0) € J x B, p(s,$) < 0}. We always assume that p: J x B — R
is continuous. Additionally, we introduce the following hypothesis:

H,) The function ¢ — ¢, is continuous from R(p~) into B and there exists a continuous and
¢ P
bounded function L? : R(p~) — (0, +00) such that

llpells < L¢(t)]|¢\|3 for every t € R(p™).

Lemma 5.2.1. ([70]) If y : (—o0,b] — E is a function such that yo = ¢, then
lyslls < (My + L?)|6ll5 + Ky sup{[y(0)]: 0 € [0,maz{0,s}]}, s € R(p™) U J,

where L = sup L?(t).
teER(p™)

Proposition 5.2.1. From (Hy), (A1) and Lemma (5.2.1), for all t € [0,n] and n € N we have

Yot l5 < Knly(O)] + (M + L) |6
We will need to introduce the following hypothesis which are assumed thereafter :
(HO0) U(t,s) is compact for t — s > 0.
(H1) There exists a constant M > 1 such that NU(t,s)|BE) < M for every (t,s) € A.

(H2) There exists a function p € L (J;R,) and a continuous nondecreasing function ¢ :
R4 — (0, +00) and such that

|f(t, )| < p(t) (||u||g) for a.e. t € J and each u € B.

(H3) For all R > 0, there exists lp € L},.(J;R,) such that

loc

[f(t,u) = f(t,0)| < Lg(t) lu—vls

for all u,v € B with ||u||z < R and ||v||z < R.



108 Chapter 5. CONTROLLABILITY OF MILD SOLUTIONS
(H4) For each n € N, the linear operator W : L*([0,n]; E) — E is defined by
Wu = / U(n,s)Cu(s)ds,
0

has a pseudo invertible operator W~" which takes values in L?([0,n]; E)/ker W and there
exists positive constants M and M such that ||C|| < M and ||W™!|| < M.

For the construction of W~! see the paper of Carmichael et al. [38].

Consider the following space B, = {y :R = E : y|y continuous for b > 0 and y, € B} ,
where [ is the restriction of y to the real compact interval [0, b].

Let us fix 7 > 1. For every n € N, we define in B, ., the semi-norms by :

lylla = sup ™™ L2 Jy(2)]
te[0,n]
t_ - —~
where L (t) = / ln(s) ds, 1,(t) = K,Ml,(t) and [, is the function from (H3).
0
Then B, is a Fréchet space with the family of semi-norms || - ||,en-

Theorem 5.2.1. Assume that the hypotheses (Hy) and (HO0) — (H4) hold and moreover for
each n € N, there exists a constant M} > 0 such that
Mn
—————" > 1, (5.14)
ap + Ko M(MMMn + 1) (M) [pll

with o, = K, MMMn|y*| + [Mn + L%+ K,MH (ﬁﬂﬁln+ 1)} |plls. Then the evolution
problem (5.1) — (5.2) is controllable on R.

Proof. We transform the problem (5.1) — (5.2) into a fixed-point problem. Consider the
operator N : B, ., — B, defined by :

Nw)t) = : :
’ U(t,0) ¢(0) +/O Ul(t,s) C uy(s)ds +/O U(t,s) f(s,Ypsy))ds, iftel

Clearly, fixed points of the operator N are mild solutions of the problem (5.1) — (5.2).

Using assumption (H4), for arbitrary function y(-), we define the control

uy(t) = ! [y* - U0) 600 [ U7 F(r ) dﬂ (0).
Applying (H2), we get
() < I, [ry*r + BEH o+ 37 [ p(r) wuryp(f,yf)nwdﬂ . (5.15)

We shall show that using this control the operator N has a fixed point y(-). Then y(-) is a
mild solution of the evolution system (2.1).
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and

For ¢ € B, we will define the function z(.) : R — E by z(t) = ¢(t) for t < 0
=0, we

x(t) = U(t,0) ¢(0) for t € J. Then xy = ¢. For each function z € B, with z(0)
denote by Z the function defined by Z(t) = 0 for t < 0 and Z(t) = z(t) for t € J.

If y(-) satisfies (5.13), we can decompose it as y(t) = z(t) + x(t), t > 0, which implies
Yy = 2t + x4, for every t € J and the function z(-) satisfies for ¢t € J

t t
Z(t) = / U(tv S) O uz-‘rac(s)ds +/ U(ta S) f(S’ Zp(s,zs-i-xs) + Q:p(s,zs-&-xs))ds-
0 0

Let B = {2 € Biow: 20 =0€ B}. For any z € B} we have ||z|100 = sup|z(s)|.

s>0

Thus (Bl - [l+e0) is a Banach space. We define the operators F,G : BEOO — BY_ by
t

F(2)(t) = / U(t,s) C u,..(s)ds and G(z)(t) = / U(t,8) f(S, 2Zp(s zetas) T Tp(s,zotas))dS.

Obviousfy the operator N has a fixed point is 0equivalent to F'+ GG has one, so it turns to
prove that '+ G has a fixed point. The proof will be given in several steps. First we show
that F'is continuous and compact.

Step 1 : F'is continuous. Let (z,),eny be a sequence in B?roo such that z, — z in B?roo. By
(H1), (H4) and (5.15), we get for every t € [0, n]

[F(20)(t) = F(2)(#)] < 1\71\7/0 |z 0(8) = Uzt (s)]ds

e t n
S MQMMl/ / |f(7—7 np(T,2nr+or) + 'ij(T,Zn-,-+m7—))
0 JO
_f<7_7 Zp(T,z-r+m7-) + l‘p(77z7_+x7_)) |d7—d8

< MQMMln/ |f(37 Znp(s,znstas) T xp(57zns+ws)> - f<57 Zp(s,zs4ws) T xp(s7zs+zs)>|ds‘
0

Since f is continuous, we obtain by the Lebesgue Dominated Convergence theorem
|F(2,)(t) — F(2)(t)] = 0 as n — +oo.

Thus F' is continuous.

Step 2 : F maps bounded sets of B} into bounded sets. For any d > 0, there exists a positive
constant ¢ such that for each z € By = {z € BY : ||z|l» < d} one has ||F(2)|, < ¢. Let
z € By. By (H1), (H2) and (5.15), we have for each t € [0, n]

—~ t/‘\—/ —
[F()(0)] < MM | M [|gl+ MH|o|s
0

VT [ 000) 00t + e ) ] s
0

< SR |71+ ST ol + 37 [ 9) 00t tossren s
0

Using Proposition (5.2.1), we get

12p(s,0r20) + Tpszranlls < Kalz(s)] + (M + L2)l|20]l5 + Kalz(s)] + (M + L£7)l|z0]l5
< Kaulz2(s)| + KullU (s, 0)[l5(5)|¢(0)] + (Mo + L) 6]15
< Kala(s)| + (M + £7 + K, MH)||¢)|s.
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Set ¢, := (M, + L? + Kn]\//TH)HqﬁHB, then we obtain

||Z,0(57zs+ws) + Tp(s,z0ta0) lB < Kulz(s)] + cp. (5.16)
Since z € By, then we have for ¢, :== K,d+ ¢,
HZp(S,zs-H&s) + Tp(s zetaa) 1B < Knlz(s)] +cn < 0p. (5.17)

Using the nondecreasing character of ¢, we get for each t € [0, n]
[F(2)(t) < MMMn [[7] + MH|olls + M) Ipllu: | == o

Thus there exists a positive number p such that ||F(2)]|, < o. Hence F(By) C B,.
Step 3 : F maps bounded sets into equi-continuous sets of BROO. We consider B, as in Step 2
and we show that F(By) is equi-continuous. Let 7,7 € J with 75 > 7y and z € B;. Then

[F(2)(72) = F(2)(m)] < /OT1 |U(72,8) = U, 8)| 5y |C1[[uz12(5)] ds

w10 e 1€ (o) ds.

T1

By the inequalities (5.15) and (5.16) and using the nondecreasing character of ¢, we get
usat)] < 30, [ly*] + STH |6l + BT 054) lplla] o= (519)

Then
[F(2)(r2) = F(2)(m)| < |IClls w/oﬁ |U (72, s) = U(m1,5)|| B ds

T2
+ 1Clam @ [ 10 5) e ds.
T1

Noting that |F(z)(m2) — F(2)(m1)| tends to zero as 75 — 7, — 0 independently of z € Bj.
The right-hand side of the above inequality tends to zero as 75 — 13 — 0. Since U(t, s) is a
strongly continuous operator and the compactness of U(t, s) for ¢t > s implies the continuity in
the uniform operator topology (see |7, 90]). As a consequence of Steps 1 to 3 together with the
Arzela-Ascoli theorem it suffices to show that the operator F maps B, into a precompact set
in F.

Let t € J be fixed and let € be such that 0 < € < t. For z € B; we define

F()() = Ultt—e) /0 Ut —e5) C uya(s) ds.

Since U(t, s) is a compact operator, the set Z.(t) = {F.(2)(t) : z € By} is pre-compact in £
for every e sufficiently small, 0 < ¢ < t. Moreover using (5.18), we have

[F(2)(t) = F(2)(t)] < /t_ 1T )|y ICN [uerals)] ds

t
guammw/rwwmmm%
t—e
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Therefore there are precompact sets arbitrary close to the set {F(2)(t) : z € By}. Hence the
set {F(z)(t) : z € By} is precompact in E. So we deduce from Steps 1, 2 and 3 that F' is a
continuous compact operator.

Step 4 : We shall show now that the operator G is a contraction. Indeed, consider z,Z € B9roo
By (H1), (H3) and (5.17), we get for each t € [0,n] and n € N

t
G(2)(t) - GZ)()] < /0 M 1,(s) HZp(S,szra:s) — Zp(s,ze+s) Bds
t
< / N K, 1(s) |2(s) — 2(s)|ds

< / lTa(s) O] [ |2(s) — =(s)]] ds

eT L (s)
s‘/{ ] ds |12 — 2|}
0 T
1 *
< Lono 4,
:

Therefore,
_ 1 _
1G(2) = GE)ln < — NIz = Zlln.

So, the operator G is a contraction for all n € N.
Step 5 : To apply Theorem (1.10.2), we must check (C2) : i.e. it remains to show that the

following set is bounded £ = {z eBl: z=AF(z)+ )G (;) for some 0 < \ < 1} :

Let z € £. By (5.15), we have for each t € [0, 7]

z(t ——— N
201 < I8N [j91+ ol

+ M2MM1n/ p(S) (Hzp 5 Zs+$s) + xp(s,zs+xs)|’3) dS

Z ZS“FIS)
+ M Hp 4+ Sﬁw.)>ds.
/ )\ p(,)\-f— .s) B

Using the first inequality in (5.16), we get

Zp(s, 2 +ws) K.lz(s)| M, + L?
R T s PN *
+ Kulz(s)| + (M + L£2) ||zl
K, |z(s
< BlCN L i 0. 0) e lot0) + (M, -+ £) [0l
K, —~
< @ + (KnMH + M, + ﬁ’) ¢]l5-
Then, we get
Zp(s, 5t tws) K, |z(s)|
+ + Tp(s, 22 ta) ‘B s —5 to (5.19)
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By the previous inequality and the nondecreasing character of ¢, we obtain

ﬁ@-sﬁﬂﬂ@4m+ﬂﬂwmpﬂPﬁﬁm/%@wmumm+w@
0

+ ]\/Z/Otp(s) W (@—l—cn) ds.

Consider the function u(t) := supge(o 4 [2(f)]. Then by the nondecreasing character of ¢, we
get for A < 1 and for ¢ € [0, n]

- B - . K
# < MMDMn [\y[+MHHq§HB}+M(MMM1n+1>/ p(s)w(wwn) ds.
0

We consider the function p defined by u(t) = sup K%js) + ¢, for t € J. Let t* € [0,t] be
s€0,t]

Knu(®) 4 cn. If t € [0,n], by the previous inequality and the nondecreasing

such that u(t) = =*{—
character of v, we have for o, := ¢, + K, MM M;n |:|@\| + ]\/4\Hl|¢||3}

u(t) < ap + KM (1\7]\7]\7171 + 1) /0 " o(s) $lu(s)) ds.

Consequently,

[ -
-+ KoM (MMM 4 1) (|2l Il 2

Then by the condition (5.14), there exists a constant M such that u(t) < M]. Since
|zlln < p(t), we have ||z||, < M. This shows that the set £ is bounded, i.e. the statement
(C2) in Theorem (1.10.2) does not hold. Then the Avramescu’s nonlinear alternative ([18])
implies that (C1) holds : i.e. the operator F + G has a fixed-point z*. Then, there exists
at least y*(t) = 2*(t) + z(t), t € R which is a fixed point of the operator N, which is a mild
solution of the problem (5.1) — (5.2). Thus the evolution system (5.1) — (5.2) is controllable on
R. Then, the proof is complete.

5.3 Neutral Problem with Infinite Delay

Before stating and proving our second main result, we define firstly the corresponding mild
solution then we define the concept of controllability for that problem.

Definition 5.3.1. We say that the function y(-) : R — E is a mild solution of (5.3) — (5.4) if
y(t) = o(t) for allt <0 and y satisfies the following integral equation

y(t) ZU(t,O)[aﬁ(O)—9(0,¢)]+9(t,yp<t,yt>)+/0 Ul(t, s)A(8)g(S, Yp(s,e))ds

¢ ¢ (5.20)
—I—/ U(t75)0u(s)ds+/ U(t,s) (S, Yp(sy))ds  for each t > 0.
0 0
Definition 5.3.2. The neutral evolution problem (5.3) — (5.4) is said to be controllable if for
every initial function ¢ € B, y* € E and n € N, there is some control u € L*([0,n]; E) such
that the mild solution y(-) of (5.3) — (5.4) satisfies y(n) = y*.
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We consider the function p : J x B — R satisfies the hypothesis (Hy) and the Lemma
(5.2.1). We assume here that the hypotheses (H0) — (H4) hold and we need the following

assumptions :

(H5) There exists a constant Mo > 0 such that ||A~(¢)|| g < Mo for all t € J.

1
(H6) There exists a constant 0 < L < ———, such that
0 n

|A(t) g(t,0)] < L (||¢]ls+1) for all t € J and ¢ € B.

(HT) There exists a constant L, > 0 such that
[A(s) g(s,0) — A3) 9(5.0)| < L (|Is = 5] + [l¢ — ¢l1)
for all 5,5 € J and ¢, ¢ € B.

(H8) The function g is completely continuous and for each bounded sub-set () C B, the mapping
{t — g(t, zp(sy.))} is equicontinous in C(J, E).

Theorem 5.3.1. Suppose that the hypotheses (HO) — (H8) are satisfied and moreover
M**

_ >1, (521
bt (RINEMn + 1) [+ ()] (=) K]
YLLK, ! L
where ((t) = max(L;p(t)) and v, = (M, + L? + K, MH)quﬁH + _ Hnbn with
) n n n B 1 —M()LK”

—~————~—

B, = [(]\/4\ +1)MoL + M\Ln] [MMMm + 1} + MMMn (1+ K, ML) [7]
+ [(MMMn+1) MoL |M + My + £2] + MH (MMM + MoLK,) | [6]ls.
Then the neutral evolution problem (5.3) — (5.4) is controllable on R.
Proof. Consider the operator N : B, — B, defined by :
(1), if + < 0;
t
N(y)t) =< U(t0) [¢(0) — g(0, )] + g(t, Yp(t,)) +/0 U(t, s)A(s)9(8, Yp(s,y.))ds

¢ t
+/ U(t,s)Cu(s)ds + / U(t, s)f(5, Yp(s,ys))dS, ifteJ.
\ 0 0

Then, fixed points of the operator N are mild solutions of the problem (5.3) — (5.4).
Using assumption (H4), for arbitrary function y(-), we define the control

(@(0) = 9(0,9)) = 9(n, Yop(nyn))

u,(t) =W [y* = U(n,0)
- / U(,7) A()g (7, Yoy T — / U, 7) (7, Yt )7 | (£):
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Noting that by (H1), (H2), (H4), (H5) and (H7) we get

lu, (1) < M, [Iy*! + M (H + MoL) ||¢||5 + (]/\4\+ 1) ML + ]\/ZLn]
+ NENMoLllypngn s + ML IL / - (5.92)

IS VAY / S(1Yp(rm )7

Using this control the operator N has a fixed point y(-). Then y(-) is a mild solution of the
neutral evolution system (5.3) — (5.4).

For ¢ € B, we will define the function z(.) : R — E by z(t) = ¢(t) for ¢ < 0 and
xz(t) = U(t,0) ¢(0) for t € J. Then xy = ¢. For each function z € By, with z(0) = 0
denote by Z the function defined by Z(t) = 0 for t < 0 and zZ(t) = 2(¢t) for t € J.

If y(-) satisfies (5.20), we decompose it as y(t) = z(t)+x(t), t > 0, which implies y, = 2+,
for every t € J and the function z(-) satisfies zy = 0 and for ¢ € J, we get

Z(t) = g(ta Zp(t,ZrHEt) + $P(t72t+wt)) - U(tv 0)9(07 Qb)

t t
+ / Ult,s)A(s)g(s, Zp(s,zs+ws) T xp(&zs-l—xs))ds + / U(t, s)Cu.y(s)ds
0 0

t
+ / Ul(t,s)f(s, Zp(s,zs+s) T xp(57zs+$s))d5'
0

Let us define the operators F, G : B — BY__ by

F(Z)(t) t Zp(t,ze+xt) + Tp(t, Zt+CCt)) - U(ta 0)9(07 Qb)

¢
/ Ult,s) (85 Zp(s,25+25) +xp(57zs+xs))ds+/ U(t,s)Cusyq(s)ds
0

t
and G(Z)(t) = / U(ta S)f(S, Zp(s,zs-i—xs) + 'rp(s,zs+a:s))d5'
0

Obviously the operator N has a fixed point is equivalent to F + G has one, so it turns to
prove that F'+ G has a fixed point.

We can show as in Section 3 that the operator F is continuous and compact and the
operator GG is a contraction. For applying Avramescu’s nonlinear alternative, we must check
(C2) in Theorem (1.10.2): i.e. it remains to show that the following set

gz{zEBgoo: z:)\ﬁ(z)—l—)\G(;) forsomeO<>\<1}

is bounded.



5.2 Neutral Evo. Equa. with Infinite S.D.D. 115

Let z € €. Then, using (H1) — (H6) and (5.22), we have for each ¢ € [0,n]

t L B
FOL < [ + )JoL + MLn| [FINNn + 1] + FENTRmi)

+

B [W1 (NEN My + 1) + MM NG| (6]

+

MMMIMOL”H%W%%—%) T Tp(n,zn+an) |5

BdS

+

t
MOLHZp(t,ZHrwt) + Tp(t,zi+a) ||B + ML/ Hzp(S,szr:Jcs) T Tp(s,z5+as)
0

+

M2MM1L”/ I (zp(r.2r20)) + Totr,zrban |5 AT
0
* IPMMin / () Ol Gptronsony) + Tpirsan 18) d7

+M/ >ds

By Proposition (5.2.1), we obtain ||Z,(m 2n+2n) + Zpmentan I8 < Knly| + (M, + L2)||¢]|5. Using
the inequalities (5.16) and (5.19), we have

zﬂ(s “p(s, 5 +s)

)\ + Lp(s,2 =t

t s P
|Z<)\)| < [+ O)MoL + MLn| [MMMn +1] + MAMMnj

+

W [Wo1 (NIN My + 1) + MMAnH] (6]
MMM, MoLn (K,[j] + (M, + £2)]1¢]5)
ML (Kn|z(t)| + (M, + L%+ KnﬁH)chHB)

+ o+

+

t o n
ML/ (Knlz(s)| + cn) d3+M2MM1Ln/ (Ku|z(7)| + cn) dr
0

0

v A?MMm/n () & (Ko 2(7)| + ) dr

o [ o (B

We consider the function u(t) := sup |z(#)| then by the nondecreasing character of 1,
0€[0,t]

we obtain for 3, := [(]/\/[\+ 1)MyL + ]/\/[\Ln} []/\/[\MMW + 1] + ]\/ZMMW (1 + KHMOL) [yl +
[(1\7]\71\7171 + 1) Mol [z\?+ M, + m] v MH (A?MﬁlnmLKn)] 6]l5 and for A < 1,

()

\ ; X\

+ M (J\?J\?Mln + 1) /Onp(s) " <K”a(s) + cn> ds.

A
K,u(s)

We consider the function p defined by p(t) = sup +c,forte J.

s€[0,t]
Let t* € [0,t] be such that u(t) = K"+(t*) + ¢,,. By the previous inequality, we have for , :=
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Knﬁn

—————— then we obtain for ¢ € [0, n]
1—MyLK,

Cn

KM
plt) < 7+ (

e (W8N -+ 1) [ E(s) + pls) ()] ds
Set ((t) := max(L; p(t)) for t € [0,n]. Consequently, we get
12l

(ﬁﬂﬁln + 1) [zl + 9 lzln)] DC)ICH 2

<1

K, M
1 - MyLK,

Then by the condition (5.21), there exists a constant M} such that p(t) < M],. Since
I2]ln < pu(t), we have ||z[,, < M™. This shows that the set € is bounded, i.e. the statement
(C2) in Theorem (1.10.2) does not hold. Then the nonlinear alternative due to Avramescu
([18]) implies that (C'1) holds : i.e. the operator F' 4+ G has a fixed-point z**. Then, there
exists at least y**(t) = 2**(t) + x(t), t € R which is a fixed point of the operator N, which is a
mild solution of the problem (5.3) — (5.4). Thus the neutral evolution system (5.3) — (5.4) is
controllable on R. Then, the proof is complete.

Tn +

5.4 Fractional Partial Problem with Finite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear evolution problem (5.5) — (5.6).

Lemma 5.4.1. The system (5.5) — (5.6) is equivalent to the nonlinear integral equation

y(t) = ¢(0)+ﬁ/0 (t—s)“ltA(S)y(s) dHﬁ/o (t = )" Cu(s)ds (529
+ﬁ/® (t—S)a_lf(Sayp(s,ys)> ds.

In other words, every solution of the integral equation (5.33) is also solution of the system
(5.5) — (5.6) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(5.5) — (5.6), and using some classical results from fractional calculus to get (5.33).

Definition 5.4.1. We say that the function y(-) : [—r,b] — E is a mild solution of (5.5) — (5.6)
if y(t) = @(t) for all t € H and y satisfies the following integral equation

y(t) = U(t,0) ¢(0) + ﬁ/@ (t — )*7 U (t, 5)Cu(s)ds

1

*@/0 (t =) U(t,5)f (5, Yp(s) ds t € J.

(5.24)

Set
Rp™) ={p(s,¢) : (s,0) € J x C(H; E), p(s, ) < 0}.
We always assume that p : J x C(H; E) — R is continuous. Additionally, we introduce the
following hypothesis:
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(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £? : R(p~) — (0,00) such that
leel| < L2()]J]l - for every t € R(p™).

We will need to introduce the following hypothesis which are assumed thereafter :

(H'1) There exists a constant M > 1 such that
NU(t,s)|BE) < M for every (t,s) € A.

(H'2) There exist two functions p,q € L}, .(J;R,) such that

loc

|f(t,u)] < p(t)+q(t) ||u||g for a.e. t € J and each u € C(H; E).

(H'3) For all R > 0, there exists [z € L} .(J;R,) such that

loc

[f(tu) = f(E0)] < Lr(t) lu— vl
for all u,v € C(H; FE) with |Ju|| < R and |[v|| < R.
(H'4) The linear operator W : L?(J; E) — E is defined by

Wu = /b U(b, s)Cu(s)ds,

has an induced invertible operator W~! which takes values in L?(.J; E)/ker W and there
exists positive constants M and M; such that

IC|| <M and WY < M,.

Theorem 5.4.1. Suppose that the hypotheses (H'1) — (H'4) are satisfied and moreover there
exists a constant M, > 0 such that

M,

YTy Sy > 1 (5.25)
g, 1 Mo DINOG +T@)]
al'(a)
with
— KyMMDM;b — Kb]\/Zp*ba[oz]\/ZM]f\Zb—i—F(a)}
b = (V4 £2) el + =5 [l + Mol + T -

Then the problem (5.5) — (5.6) has a unique controllable mild solution on [—r,b.

Proof. Transform the problem (5.5) — (5.6) into a fixed-point problem. Consider the
operator N : B, — By, defined by :

20, if € [, 0];
N0 = { U0 @0+ g [ (=910 €y (s) ds 50
\ +ﬁ/0 (¢ =8)* U (L 5) f(5,Yp(se)) ds, if t € J.
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Using assumption (H'3), for arbitrary function y(-), we define the control

%®=ﬁfﬂm—vwmwmwfﬁgﬁu—ﬁalwaﬁﬂaWWMdﬂwy

Noting that, we have
luy O] < W Il + U, 0)l| 5y 0(0))]

1 ’ a—1
s /0 (t— ) ||U<b,f>||B<E)|f<T,yp(wmﬂ_

From (H'2), we get
B < M
‘uy( )| = 1 F(a)

Clearly, fixed points of the operator N are mild solutions of the problem (5.5) — (5.6).

—~ Mot o
il + MH|olls + =~ /0 (t =) [p(T) + a(T)|Yp(rgn 18] d8] (5.27)
Let y be a possible solution of the problem (5.5) — (5.6). Given ¢ < b, then from (H'1),
(H'2), (H,) and Lemma 5.2.1, we have for each t € [0, ]

@) < [UE0)l[Bz|e(0)] +ﬁ/o (t =) U 8)lsem) 1£(5: Ypispn)| ds

1 t o1
N ﬁ@ﬁﬁ@:@ U (¢, 9) |5y 1] [uy(s)] ds
< m@\u% /0 (t =) [p(s) + a(5)[Yp(spll] ds
MMt
*iﬂﬁl“;a uy(5)] ds
< MWWH%%A@—QWJW@+ﬂ@me]“

MM /f — ~
+ Ty [ M [l + M|
I'(a) Jo

+%/0 (t —s)> ! [P(T) + q<T>H?/p(T,yT)HdT}] ds

It follows that
MM M;b
(a)
Mbp*(T(r) + MM M;b)
al?(«)

Mq*(T(a) + MMMb) [* - .
r2(a) /O(t—8> [ly(s) + L£7]|¢ll] ds

y®)]+Lollel < Mol + Lol + [la] + 371161
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Set
Mbep*(T () + MM M;b)

MM Myb —
MH
|y1’ + ||¢HB + Q&F2(Ot)

I(a)

We consider the function p defined by

8y i= (M + L2 || +

p(t) =sup { [y(s)[ + L[] : 0<s<t}, 0<t<b.

Let t* € [—r, b] be such that u(t) = |y(t*)| + L?||¢]. If t* € [0,b], by the previous inequality, we

get

Mq*(T(a) + MMM,
()

p(t) < &+ ) /Ob(t —5)* ! u(s)ds  for t € [0,b].

If t* € [—r,0], then u(t) = ||| and the previous inequality holds. Consequently,
121l

Mg MMM, +T'(a)]
al'(a)?

Then by (5.25), there exists a constant M* such that p(t) < M* Since ||y|| < p(t),Since for
every t € [0,b] we have |ly|| < max{||¢|, M*} := ©,.

< 1.

2]l b

0y +

Set
V={yeC(-rb;E) : sup{ly(t)]: 0 <t <b} <O+ 1}.

Clearly, Y is a closed subset of C([—r,b]; E).
We shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,% € Y, thus using (H'1) and (H'3) for each ¢ € [0, b]

INw)(®) = N@®)| < %/0 (t =) U 8)lse) |£(5,Yntsi)) = F(5,Tpan)| ds
1

a)
t
_— t_ a—1 Ut C o d
+ () /0( s) U, )| By |1C]] uy(s) — ugl| ds
Moot
< _— t_ a—1 l . = d
- I(«a) /0( 5) b(8) 1Wn(siwe) = Vp(swo | d8
MM

t b
— [ t—-s)*"'M M ;
+ F(Oz) /0 ( S) 1 A |f(7_7 Yo( 7yq—))
- f(Ta yp(T,yT))l dr ds

Using (H,) and Lemma 5.2.1, we obtain

NGO =N < g [ =97 o) =70 ds
MMM, [ - _
+ m/o (t —/\S)NN\ZJ(S)—Z/(SN ds
< MY gy MMM
= T+ )" "N T Paryr@" Y
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Therefore,

IN(y) = N@)|n < Mi;b> (D (o) + MMM,)

< e Pl -l

MI:b*(D(er) + MM M,)
I'a+1)(«)

of Y there is no y € 9Y" such that y = A N(y), A € (0,1). Then the statement (C2) in

Theorem 1.10.4 does not hold. The nonlinear alternative of Frigon and Granas shows that

(C1) holds. Thus, we deduce that the operator N has a unique fixed-point y* which is the

unique controllable mild solution of the problem (5.5) — (5.6).

So, for < 1 the operator N is a contraction . From the choice

5.5 Fractional Neutral Problem with Finite Delay

In this section, we give controllability result for the neutral functional fractional differential
evolution problem with infinite delay (5.7) — (5.8). Firstly, we define its mild solution.

Lemma 5.5.1. The system (5.7) — (5.8) is equivalent to the nonlinear integral equation

y(t) = [p(0) —g(0,0)] + 9(t, Ypa)) + ﬁ/o (t—s)* TA(s)y(s) ds (5.28)

1 /t I _
+ —— [ U(t,s)Cu(s)ds + —/ (t —8)* (8, Yp(sys)) ds.
T(a) Jo L) Jo e
In other words, every solution of the integral equation (5.28) is also solution of the system
(5.7) — (5.8) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(5.7) — (5.8), and using some classical results from fractional calculus to get (5.28).

Definition 5.5.1. We say that the function y(-) : [—r,b] — E is a mild solution of (5.7) — (5.8)
if y(t) = @(t) for allt € H and y satisfies the following integral equation

y(t) =U(t0)[p0) =90, 0)] + gt Yprp)) + ﬁ/o (t =) U(t,8)f(5, Ypsip) ds
1

+m/o (t —s)*'U(t,s)Cu(s)ds  for eacht € J.
(5.29)

Definition 5.5.2. The neutral evolution problem (5.7) — (5.8) is said to be controllable on
[—r,b] if for every initial function p € C(H; E) and y, € E there exists a control u € L*(J; E)
such that the mild solution y(-) of (5.7) — (5.8) satisfies y(b) = yy.

We consider the hypotheses (H,), (H1) — (H3) and we need the following assumptions
(H'5) There exists a constant L, > 0 such that
[A(s)g(s, ) = A(S)g(5,9)| < Li (Is =5 + [lp = 2l

for all ¢, € C(H; E).
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(H'6) There exists a constant M > 0 such that

||A_1(t)||B(E) S MO for all t e J.

/ 1
(H'7) There exists a constant 0 < L < — such that
MoKy

|A(t) g(t, )| < L (||p|]| +1) for all t € J and ¢ € C(H; E).

(H'8) The function g is completely continuous and for any bounded set @ C B the set
{t = g(t,z;) : € Q} is equi-continuous in C(J; E).

Theorem 5.5.1. Suppose that the hypotheses (H'1) — (H'8) are satisfied and moreover there
exists a constant M** > 0 with
M**
Mg MMM+ T(a)]
al'(a)?

> 1, (5.30)

/Bb + M*‘k ba

4
where B, = L?||p]| + ﬂ——bMOL) and

§: = MMoLly| + M|l + MoL (L£?||¢| + 1) + MMoL (||| + 1)
MMDM,b — Mbep*(T (o) + MMM, b)
- MH .

F(Oz) |y1| + ||QO||B + OZFQ(Oz>

Then the neutral evolution problem (5.7) — (5.8) has a unique controllable mild solution on
[_T7 b]

Proof. Consider the operator N : By — By defined by :

(

o(t), if t € [-r,0];
U(t,0) [¢(0) — g(0,0)] + g(t, Yp(tpn))

L N ) O uls) ds (5.31)
i | =T C ) a

1 ) )
- ya— ’ |
+F(oz) /0 (t—s)*U(t,s) f(57yp(s,ys)) ds, ifteJ

\

Using assumption (H'4), for arbitrary function y(-), we define the control

uy(t) = W' [y1 = U(b,0) (¢(0) = 9(0,9)) — g(b, Yp(o))

1 b ol
B m/o(t—8> U(b,8) f (8, Yp(se))ds| (£)-
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Noting that

luy ()] < I ol + 1U(E 0) sy (1(0)] + [IA7(0)[11A(0)(0, ©)])
HIATO)AD) 9D, Yoo.u))]
10 .
+m/0 (t—=s)* U, 7) f(T, Yp(ry,))dT

My | |ya| + MH| || + MMoL(lell + 1) + MoL(|ypo0) | + 1))

IN

+ %/ﬂ (t =) [p(T) + a(M)Ypiram ll] -

we get
)] < My |yl + M (H + MoL) ol + (M + 1) MoL| + MyMoL |
]/\Zﬁlp*ba ]/\Zﬁlq* /b 1
t—s)” s
F(O{+1) + F(O{) 0 ( S) Hyp( :ys)

We shall show that using this control the operator N has a fixed point y(-), which is a mild
solution of the neutral evolution system (5.7) — (5.8).

(5.32)
ds

Let y be a possible solution of the problem (5.7)—(5.8). Givent < b, then from (H'1)—(H'2),
(H'4) — (H'7), (H,) and Lemma 5.2.1, we have for each t € [0, ]

] < 19 Ypan) | + (U 0)[0(0) — (0, 9)]|

1

" m/o (t =) U s)ll B 1F(5 Yotspn)] ds

1

+ m /O(t—s)a—1||U(t,s)||B(E) IC| |uy(s)| ds

A7 O A@)E v + 1Oy 14700 140)9(0.2)
n % / (t — )2 [p(s) + a(5) 9o ] ds

IN

MM [t -
+ m/ﬂ(t—s) luy(s)| ds

ly@®)] < Mol + MoL (|ypeynll + 1) + MMoL (| + 1)
M /t )

+ = [ t=3)"" |p(s) + a(8)[|Yp(s.s

F(a) o [ o(8:ys)

]ds

MM [t~ - _ - o
+ mr |V [l + B (H + TooL) gl + (M +1) Tl
F(a) 0
b [ o) + a0 e ]|
L(a) Jo ke
+  MiMoL|[yppu

Since [|ypy0ll < ly(6)] + L?]|¢l], we have
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(1=DoD)ly(t)] < MMoLlys| + M|l + MoL (L] + 1) + MMoL (]| + 1)
MMM,b — Mbp*(T'(a) + MM M;b)
—_— MH
+ F(Oé) ’yl‘ + ”QOH] + O[IQ(@)
]/W\q* T'(a) + MMMb) [ o
o S [ st ) + £ ol ds

Set

8 : = MMoLly| + Mgl + MoL (L?||]| + 1) + MMoL (||io]| + 1)

MMM;b —~ Mbep*(T (o) + MM M;b)
M0 MH ] .

Then

Mq*(T'(a) + MMMb) [ - .
[ ) + 7l s

(1= MoL)ly(t)] < &+

9

ith g, = L¥ + —
with = £l + s

Then
Mg (F(a) + J\?MMI;)
(1 — MoL)I'?(ar)

b
@O+ Lolell < B+ /O(t—S)al ly(s) + L7 [lell] ds

We consider the function p defined by
p(t) = sup { |y(s)[ + L lpll - 0<s<t}, 0<t<b

Let t* € [—r,b] be such that u(t) = |y(t*)| + L?||¢]|. If t* € [0, b], by the previous inequality, we
get

Mq*(T(c) + MM M;b)

pt) < B+ (= MoL)(a)

/Ob(t —5)* ' u(s)ds  for t € [0,b].

If t* € [—r,0], then u(t) = ||¢|| and the previous inequality holds. Consequently,
[yl
Mg [MMMb +T(a)]
al'(a)?

<1

lyll o

By +

Then by (5.30), there exists a constant M** such that u(t) < M**, thus ||y|| < wu(t). Since for
every t € [0,b], we have ||y|| < max{||p||, M} := Op.

Set
Y = {yeC(-rblE) : sup{ly(®)] :0<t<b}<6,+1}

Clearly, Y is a closed subset of C'([—r,b]; E).
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We shall show that N : Y — C([—r,b]; E) is a contraction operator.
Indeed, consider y,7 € Y, thus using (H'1) and (H'3) for each ¢ € [0, 1], we get

INW)(®) = N@ B < 19 Yotewn) = 9 Tpie )]

+ ﬁ/o (t = 8) U ) By |5 Ypswe) = F(5:Tps)| ds

1 t ol
= I0Es ae 1O fuy(s) — ugl ds

< 9 Ypean) — 9 U pign)]

M

t
—_— t—s)* 11 su) — Y d
i [ =) I = T s

]’W\M t PN b
+ —/ (t - S)a 1M1M/ ’f(T7 yp(T,yr)) - f(T7 yp(T,yT)>| dr ds
I'(a) Jo 0

Using (H,) and Lemma 5.2.1, we obtain

IN(W)(&) = NGO < 1A ONABIE Yotrwn) — AB)IEGpir )]
Mi;

t

+ /t—salys—gs ds

Ia) 0( )4 y(s) —H(s)]

MMM ;6> [ . _

— b (t—)® - d

e | = ) — (e ds

_ Mizbe M2M M, b
< MoLy(t) —5()] + —2" ||y = Flln + o 2” |y — 5
< MoL.Jy(t) —9( )!+F<a+1>\|y yll +P<&+1)F(Q)|Iy yll

Therefore,
Mizbe <F(a) + ]\7]\7]\7[1>
T(a + )I(a) Iy =l

IN(y) = N@)lln < | MoL, +

MIzb™(T () + MM M,)
INCESINEY
choice of Y there is no y € dY™ such that y = A N(y), A € (0,1). Then the statement (C2)
in Theorem 1.10.4 does not hold. The nonlinear alternative of Frigon and Granas shows that

(C1) holds. Thus, we deduce that the operator N has a unique fixed-point y* which is the
unique controllable mild solution of the problem (5.7) — (5.8).

So, for |MyL, +

< 1, the operator N is a contraction. From the

5.6 Fractional Partial Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear evolution problem (5.9) — (5.10).

Lemma 5.6.1. The system (5.9) — (5.10) is equivalent to the nonlinear integral equation
1

y(t) = ¢(0) + m/o (t —8)* LA(s)y(s) ds + ﬁ/o (t —8)* 'Cu(s)ds
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1 ¢ o1
+m/0 (t—5)* (8, Yp(s,)) ds. (5.33)

In other words, every solution of the integral equation (5.33) is also solution of the system
(5.9) — (5.10) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(5.9) — (5.10), and using some classical results from fractional calculus to get (5.33).

Definition 5.6.1. We say that the function y(-) : (—oo0,b] — E is a mild solution of (5.9) —
(5.10) if y(t) = @(t) for all t <0 and y satisfies the following integral equation

y(t) = U(t,0) ¢(0) + ﬁ/o (t —8)*'U(t, 8)Cu(s)ds

L (5.34)
+ m/o (t—s)a—l U(t,s)f(S, Yp(se)) ds t € J.

Definition 5.6.2. The neutral evolution problem (5.9) — (5.10) is said to be controllable on
[—00,b] if for every initial function ¢ € B and y; € E there exists a control u € L*(J; E) such
that the mild solution y(-) of (5.9) — (5.10) satisfies y(b) = y;.

Set
R(p™) ={p(s;¢) : (s,¢) € J x B, p(s,¢) < 0}.

We always assume that p: J x B — R is continuous. Additionally, we introduce the following
hypothesis

Hy) The function t — ¢, is continuous from R(p~) into B and there exists a continuous and
@
bounded function £ : R(p~) — (0, 00) such that

l¢ells < L2(t)l|¢lls  for every t € R(p7).

We will need to introduce the following hypothesis which are assumed thereafter
(HO01) There exists a constant M > 1 such that

1U(t, )| 5y < M for every (t,s) € A.

(H02) There exist two functions p,q € L}, (J;R,) such that

loc

|f(t,w)|] < p(t) + q(t) ||u||g for a.e. t € J and each u € B.

(H03) For all R > 0, there exists [g € L}, .(J;R,) such that

loc

[f(t,u) = [t 0)] < La(t) [u— vl

for all u,v € B with ||u| < R and [jv|| < R.

Consider the following space

Q= {y:(—00,b] = E:y|(_g € B and y|pyis continuous },
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(HO04) The linear operator W : L?(J; E) — FE is defined by
b
Wu —/ U(b, s)Cu(s)ds,
0

has an induced invertible operator W' which takes values in L2(J; E)/ker W and there
exists positive constants M and M, such that

IO <M and W] < M.
Remark 5.6.1. For the construction of W and WL see the paper by Carmichael and Quinn
[538].

Theorem 5.6.1. Suppose that the hypotheses (HO1) — (HO04) are satisfied and moreover there
exists a constant M, > 0 such that

M,
KyMq*[MMDM, +T -1 (5:35)
1y Kbl 0T T
al'(«)
K, MMMyb — Ky Mp*b*[aMMMb+ T
with oy == cy+ —— ||y | + MHHngB] TR o — i (a)]‘ Then the problem
() al'(a)

(5.9) — (5.10) is controllable on (—oo,b].

Proof. Transform the problem (5.9) — (5.10) into a fixed-point problem. Consider the
operator N : B, — By, defined by :

((90); if t € (—oo,0];
N0 = { V(0 00) + 7 [ (0= 910 103) C ) ds -
\ +ﬁ/o (8= )" Ut ) f(5: Upsn)) ds; ift e

Using assumption (H03), for arbitrary function y(-), we define the control

u, (1) = [y ~ U(b,0) 6(0) - ﬁ / (t = 5)°™ U(b,5) F(5. Yp(ean) ds] (1).

Noting that, we have

uy )] < IW 7 Il + 10 050 |6(0)]

1 ’ a—1
s /0 (t— ) ||U<b,7>||B<E)|f<T,yp(wmcﬂ_

From (H02), we get

_ _ T
luy ()| < My ||yl + MH|[¢lls + =7 /O(f—T)“1 [p(7) + a(T)|Yp(rym 18] dS] (5.37)

I(a)
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Clearly, fixed points of the operator N are mild solutions of the problem (5.9) — (5.10).

For ¢ € B, we will define the function z(.) : (—o0,b] — E by

(1), if € (—o0,0;

a(t) =

U(t,0) ¢(0), if teJ

Then xg = ¢. For each function z € B, set
y(t) = 2(t) + x(t). (5.38)

It is obvious that y satisfies (5.34) if and only if z satisfies zo = 0 and for ¢t € J, we have

) = ﬁ /0 (t— ) Ut 5) C uasals) ds

1 t
t_ ailUt S,z X S.2 xT d
+ F(Oz) /0 ( 5) ( 75) f(szp( zetas) T LTp(s,ze+ S)) S

Let
B} ={2€ By:2=0}.
For any z € BY we have
llzlls = sup{ |2(t)] : t € J }+ ||z0llzg =sup{ |2(t)| : t€J}.
Thus (BY, ] - ||») is a Banach space.

Define the operators F,G : BY — B} by :

F2)(t) = ﬁ /0 (t— ) Ut 5) C uara(s) ds (5.39)
and
G(2)(t) = ﬁ /o (t —8)* 7 U(t,8) f(S, Zp(s,20tis) T Tp(soatas)) ds  for t € J. (5.40)

Obviously the operator N has a fixed point is equivalent to F' + GG has one, so it turns to
prove that F'+ G has a fixed point. The proof will be given in several steps.

Let us first show that the operator F' is continuous and compact.

Step 1 : F'is continuous.
Let (z,)n be a sequence in By such that z, — z in BY. Then using (5.37), we get

|F(20)(t) = F(2)(#)] < ﬁ /O(t—s)a_1||U(t>3)||B(E) 1O [we, (s) — u(s)| ds
MM [ g
< m/0 (t — $)*~ N0 %

b
X / |f(7—7 an(T,zT—i-wT) + :'Up(T,Z7—+$7—)) - f(T, Zo(T,2r411) + l’p(&zT_;,_xT))‘ dr ds
0
M\2M]T/[“lba+1
['(a+1)

b
X / | f (s, Znp(s,zstas) T xp(S,zs—&-:cs)) — f(s, Zp(s,zs+as) T IP(5725+x5))| ds
0
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Since f is L'-Carathéodory, we obtain by the Lebesgue dominated convergence theorem
|F(2,)(t) — F(2)(t)] = 0 as n — +oo.
Thus F'is continuous.

Step 2 : F maps bounded sets of By into bounded sets. For any d > 0, there exists a
positive constant ¢ such that for each z € By = {z € B} : ||z, < d} one has ||F ()], < .

Let z € By. By (5.37), we have for each t € J

F()0)] < ﬁ / (t = ) U ) e O] [usra(s)] ds

< /O<t—s> uzpa(s)] ds

TR .
< o [ M |lwl + MH
< Ty | 0 [l + 3710l

g | =9 ) a0 e )+ trnalr] | s
(@) Jo

MM M;b — Mp*t®
< — MH -

M [t .
X + / (t - S)Q_ q(S)HZ s,2s4ws) T Lp(s,zs+s
F(a) : p( ) p( )

From (Hy), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, b]

ds]
HZ,O(S,ZS-HCS) B+ pr(S,zs-Hr:s) B
Kyl 2(8)| + (My + L) || 20|58 + Ko|z(s)| + (My 4+ L) 0]
Ky|2(s)| + K| U(s,0)[| 5y ¢(0)| + (M + L) || 9|5
Ky|2(5)| + Ky M| (0)| + (My, + L) |9l 5

1Zp(s,20+20) + To(s,ze+a0) |8

IAIAIA

IN

Using (i), we get

5 < Kylz2(s)| + Ko MH| |5 + (My+ L£)|6]5
< Kb’Z(S)l+(Mb+£¢+KbMH)H¢HB

HZp(S,Zs-i-xs) + Tp(s,z5+xs)

Set Cy := (My + L¢ + K,MH)||¢||s and &, := Kyd + Cy. Then

|’ZP(5723+$3) + Zp(s,zetaa) 1B S Kb|z(5)’ + Cp < Oy, (5-41)

For each ¢ € [0, b], it follows that

]/\Zba<p* + q*(sb)
['(a+1)

MMM;b —
_— MH

[F(2)(1)] <
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Thus there exists a positive number ¢ such that
1F ()]0 < L.

Hence F(By) C Ba.
Step 3 : F maps bounded sets into equi-continuous sets of BY. We consider By as in Step 2
and we show that F(By) is equi-continuous.

Let 71,7 € J with 5 > 7 and z € By. Then

1 " a—1 a—1
[F(2)(12) = F(2)(m)] < W/o (2 = 8)*7" = (1 = 8)"||U (72, 8) = Uy, 8| %

1 [m B
X[[CNl fuzsz(s)| ds + m/ |(r2 = 8)* U (72, 8)llse) IC] [uzta(s)] ds.

By the inequalities (5.37) and (5.41) we get

]/\Zba(p* +q*5b>

s ()] < My ||+ MHIGlls + =57 (5.42)
Then
— F(2)(r —HCHB(E)w k Ty —8)* = (g —s)* ! T9,8) — U(7, 8)||ds
|F(2)(m2) = F(2)(n)| < I(o) /0 (72 = s) (1 = 8)* U (72, 8) = U(m, 8)||d

C w [
+ Hﬂ%/ (12 = ) H||U (72, 5) || B(myds.

T1

Noting that |F(z)(7s) — F(z)(71)| tends to zero as 7 — 77 — 0 independently of z € B;. The
right-hand side of the above inequality tends to zero as 75 — 73 — 0. Since U(t, s) is a strongly
continuous operator and the compactness of U(t,s) for ¢ > s implies the continuity in the
uniform operator topology (see |7, 90]). As a consequence of Steps 1 to 3 together with the
Arzela-Ascoli theorem it suffices to show that the operator F' maps By into a precompact set
in E.

Let t € J be fixed and let € be a real number satisfying 0 < € < t. For z € B; we define

1 t—e

F(z)(t) = =—=U(t,t— e)/ (t—8)*'U(t —€,8) C u,i(s) ds
() 0

Since U(t, s) is a compact operator, the set Z.(t) = {F.(2)(t) : z € By} is pre-compact in E

for every e sufficiently small, 0 < € < t. Moreover using (5.42), we have

1 t o—1
|[F(2)(t) = Fe(2)()] < m/t_e(t—s) 1U (¢, 8)|l By [IC [uzra(s)] ds
1O () w

< R [ s e

Therefore there are precompact sets arbitrary close to the set {F(2)(t) : z € By}. Hence the
set {F(z)(t) : z € By} is precompact in E. So we deduce from Steps 1, 2 and 3 that F' is a
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compact operator.

Step 4 : G is a contraction. Let z,z € Q°. By the hypotheses (H01) and (H03), we get
for each ¢ € [0, ]

G - G0 < ﬁ / (t = 8 UL ) 50z %

X ’ f(57 Zp(s,zstas) T xp(S,zs—&-ms)) - f(svzp(S,zs+rs) + xp(S,zs—&-rs)) ‘ ds

M t
< — t — a_ll S$,2s+Ts S.2e+Ts —Z Szedr.) — 6.2t d
= F(O{) \/0' ( 8) b(S) ”ZP( ,2s+ ‘5) +xp( ,Zs+ .5) Zp( Zs+ 6) xp( et ‘5) B S
M ¢
= t— aill S,2s+T -z 8,25+ d .
- F(O{)/O ( S) b<8) HZP( Zs+ s) Zp( Zs+ S)HB S

Use the inequality (5.41), for get

—~

G0 =GR < p [ (=) Kls) 265 ()] ds
< %Mw—z(wu
Therefore
16() = Gl < %nz@) —30)l.

Then the operator G is a contraction.

Step 5 : For applying Theorem (1.10.2), we must check (Av2) : i.e. it remains to show
that the set
z

Y= {ZGQO :z:/\F(z)+)\G<)\

) for some \ €]0, 1[} :

is bounded.
Let z € ¥. By (HO01) — (H02) and (H04), we have for each ¢ € [0, b]

1 1 ¢
FEOL < m/o(t—S)O‘_lHU(t,s)HB(E)HC|| lsra(s)| ds
1 t
+ m/o(t—s)aluU(t,S)HB(E) ‘f(s,zp(&%sﬂs)+xp<s’%s+xs))‘ ds
MM M;b _
< Shay Ll + IOl

X + %/ﬂ (t = )" [p(T) + a(7) | 2pr,) + Tp(r || dT] ds]

—~

+ % /Ot(t —5)* ! [p(s) + Q(S)Hzp(s,%sms) T xﬂ(&zfﬂs)HB] s
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Lemma 1.7.2 and inequality (5.41)

1 MM Mb —
() < —|——— [ MH ]
Lol < 2208 (1 Taol
MEMDMb [ .
+ —21 / (t - 3) ! [p(s) + Q(S)HZ,O(S,ZSHCS) + Tp(s,zotas)
F(Oz) 0

B} ds

—~

+ % /Ot(t — )t [p(s) + Q(S)HZP(S,ZTSHS) T xp(saz*f”s)”lg} ds

We consider the function u(t) := sup |z(f)| and use the fact that 0 < A < 1

0€[0,b]
K Ky MM M;b — Ky Mp*b*[aMMMyb + T'(a)]
—u(t)+C, < Chp+ ————— MH
() + G < Gyt =l + MH] 0l | + Ty
K, M?MM, /b . (Kb )
+ —— t—8)*"q(s) | —|z(s)|+ Cp | ds
Tt [ (S
KM [t K
+ I‘?a) /o (t—s)*q(s) (Tb|z(s)] + C’b> ds
K, MM M;b — Ky Mp*b®[aMMM,b+ T
Set 0y 1= Cy + —— e [|y1\ + MHHqﬁHB] 4 =P o — il (a)]. Then, we have
() al'(«)
K, K,M2MM, [* K,
Lut)y+Cy, < oy b—21 / (t—s5)*q(s) (—b z(s)| + cb> ds
A I'(a) 0 A

o~

Sl [t (Beton+an) as

0

We consider the function p defined by

K,
u(t):sup{Tbu(s)—i—C’b :0<s<t} 0<t<b

K,
Let t* € [0,¢] such that pu(t) = Tbu(t*) + Cp. From the previous inequality, we have for all
t 0,0

be/[\QMJ\Zq* b 1 Kb]\//—Tq* ’ -1
ut§0+—/ t—s)* u(s)ds + /t—sa 1(s)ds.
) < ot S [Tty + S [ ot

Then, we have

Ky Mg (MMM, +T()] [* o
(o) /O(t—s) w(s)ds.

pu(t) < oy +

Consequently,

Lzl <1
Kqu*[MMMl +F(Oé)] N

op + z||,, b
b e
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Then by (5.35), there exists a constant M* such that ||z, # M*. Set

U={zeB) : ||z]l. < M*+11}.
Clearly, U is a closed subset of By. From the choice of U there is no z € U such that
z = AF(2) + \G (E> some A € (0,1). Then the statement (C2) in Theorem 1.10.5 does not

A
hold. As a consequence of the nonlinear alternative of Avramescu ([18]), we deduce that (C1)

holds : i.e. the operator F' 4+ G as a fixed-point z*. Then y*(t) = 2*(t) + x(t), t € (—o0,b] is a
fixed point of the operator N, which is a mild solution of the problem (5.9) — (5.10). Thus the
evolution system (5.9) — (5.10) is controllable on (—o0, b].

5.7 Fractional Neutral Problem with Infinite Delay

In this section, we give controllability result for the neutral functional fractional differential
evolution problem with infinite state-dependent delay (5.11) —(5.12). Firstly, we define its mild
solution.

Lemma 5.7.1. The system (5.11) — (5.12) is equivalent to the nonlinear integral equation

y(t) = [</>(0)—g<0,¢)]+g<t,yp<t,yt)>+ﬁ /0 (t— 80 Als)y(s) ds  (5.43)

1 t 1 t -
+ W/O U(t, S)CU(S)CZS + m/o (t — S) f(s’ y/)(S,ys)) ds.

In other words, every solution of the integral equation (5.43) is also solution of the system
(5.11) — (5.12) and vice versa.

Proof.It can be proved by applying the integral operator to both sides of the system (5.11)—
(5.12), and using some classical results from fractional calculus to get (5.43).

Definition 5.7.1. We say that the function y(-) : (—oo,b] — E is a mild solution of (5.11) —
(5.12) if y(t) = o(t) for all t <0 and y satisfies the following integral equation

y(t) = U(t0)[6(0) = 9(0,0)] + 9(t, Ypien)) + ﬁ/o (t =) U(t,9)£(5, Yp(sp) ds

1 ' a—1
+m/0 (t— )" U(t,s)Cu(s)ds for each t € J.
(5.44)

Definition 5.7.2. The neutral evolution problem (5.11) — (5.12) is said to be controllable on
the (—o0,b] if for every initial function ¢ € B and y; € E there exists a control u € L*(J; E)
such that the mild solution y(-) of (5.11) — (5.12) satisfies y(b) = y;.

We consider the hypotheses (H,), (H01) — (H03) and we need the following assumptions
(H05) There exists a constant L, > 0 such that
[A(s)g(s, 6) — A(5)9(5,0)| < L (s — 5] + [lo — ¢]l)
for all ¢, ¢ € B.
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(H06) There exists a constant My > 0 such that

||A_1(t)||B(E) S MO for all ¢ e J

1
(HO7) There exists a constant 0 < L < = I such that
0%y

|A(t) g(t, )] < L (||¢]lz+ 1) for all t € J and ¢ € B.

(H08) The function g is completely continuous and for any bounded set Q C B the set {t —
g(t,xy) : x € Q} is equi-continuous in C(J; E).

Theorem 5.7.1. Suppose that the hypotheses (H01) — (HO8) are satisfied and moreover there
exists a constant M** > 0 with

M**
Ky M (MMM + T(a + 1))
(1 — MoLK)I2(a + 1)

> 1, (5.45)

(Sb + [q* bOé M**}

where Oy, := Ob+(1_%)+l(}>). and
oy = Ky,MoL(Cy+ 1+ M(||6|lz+1))
Lpd MY M (H + ML (M 1>ML]
b ) Ll M (H 4 BIL) s + (37 4+ 1) W,
Ky MM M, b ML
K, M, + L?
+ Tatl) (Kb|ya| + (M + L?)[| 9] 8)
Ky Mp b [T (v + 1) + MM My Myb°]
I'?(a+1) '

_|_

Then the neutral evolution problem (5.11) — (5.12) is controllable on (—oo, b).

Proof. Consider the operator N : By — By, defined by :

;

o(t), if t € (—o0,0];
U(t,0) [#(0) = 9(0, )] + 9(t, Ypir.a))

1 ot
+m/0 (t—=s5)*"U(t,s) C uy(s) ds

1 /t 1 :
+— t—5)"U(t,s) f(5,Ypsys)) ds, ift € J
F(Oé) 0( ) ( ) ( P( y))

(5.46)

\

Using assumption (H3), for arbitrary function y(-), we define the control

uy(t) = Wy = U(5,0) (6(0) = 9(0.9)) = 9(b, Yp(o))

1 b ol
" T(a) /O (t =) U (b, 8)f (5, Yp(se) s | (£).
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Noting that

uy )] < W[yl + U, 0) ey (16(0)] + 1A (0)]]]1A(0)g(0, 6)1)
+HAT O NA®)(b; Yoo,

1 b a—1
+m/0 (= 5)* U b, 7) (T, Yp(ry,) )T

My [ r@m + MH||8]ls + MMoL(|6]ls + 1) + MoL(lypon 1 + 1]
MlM

IN

P(7) + () [Yp(rpo 1] -

u, (0 < [ || + 37 (H + VoL )||¢||B+(M+1)MOL}

MMlp be MMlq

M, M,L t—5)°71 [|yp(s
L N T

(5.47)

Bds

We shall show that using this control the operator N has a fixed point y(-), which is a mild
solution of the neutral evolution system (5.11) — (5.12).

For ¢ € B, we will define the function z(.) : (—o0,b] — E by
o(t), if t € (—o0,0];
x(t) =
U(t,0) ¢(0), if teJ

Then xg = ¢. For each function z € B, set

y(t) = z(t) + x(t). (5.48)

[t is obvious that y satisfies (5.44) if and only if z satisfies 2y = 0 and for t € J, we get
t
2(t) = g(t,z +x) = U(t,0)9(0,0) +/ U(t,s)A(s)g(s, 25 + x5)ds
0

= [ vtacu s+ [ U+ ads

Define the operators F, G : B — BY by :

F(Z)(t> = g<t7 Zp(t,ze+xt) + xp(t,zt—l-zt)) - U(tv 0)9(07 ¢)
1

b [ .9 C ) o

t
GO = a7 [ =97 V(E5) F6 2t + Ttesin) .

(cv

Obviously the operator N has a fixed point is equivalent to F + G has one, 8o it turns
to prove that F + G has a fixed point. We can show as in Section 3 that the operator Fis
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continuous and compact and G is a contraction. To apply Theorem 1.10.5, we must check (C2),
i.e., it remains to show that the set

Y= {zEQO c 2= AF(2) + \G (;) for Some)\E]O,l[}.

is bounded.
Let z € ¥. By (HO01) to (H05) and (5.47), we have for each ¢t € J

@ = LA O TA@R)G(E, Zotz1400) + Toezran) | + 1T (E 0)l| 5y AT (0)]] |A0)g(0, 0)|

I N
4 m/o(t—g Ut )5 IO Ntssa(s)] ds

1 t
" W/o (t =) U 5l ‘f(s’zp(s,%sm) + xﬂ(s,%ms))‘ ds

< ML (||Zp(t,Zt+xt) + 'xp(t7zt+$t)||8 + 1) + MML(||¢]ls+1)

MMM, b® _ _ _ .

el L M (H + M, L (M 1) M L]
g D) Ll (4 B0L) ol + (M + 1) 3y

Mﬁﬁlbaﬂolz ]\//.Tp*bo‘[F(Oz + ]_) + Mﬂﬁlﬁlba]
+ 120.) + Tobu) |l + 0+ 1)

Fa+1)

PN
T(AT (A 1) t— o s,zs+T s,zs+x

* [(a)T(a+1) /0 (6= 8)* () 2p(s.z000) + Tp(s,zatas)

—~

_M ' a—1
* oy €T e et

Bds

Noting that we have ||z,0.4,) + Zpu lls < Kbly1| + (M, + L?)||¢]|s and using the first
inequality |||2py,) + Zpe) 8 < Kp|2(t)| + Cp we obtain

K _ P
SO < K MoL(Kyl2(t)] + Cy + 1) + K MMoL(|16]15+ 1)
Kbﬂﬁﬂlba[ - — — J—
i eiibai M (H + ML (M 1>ML]
T T |l M H ML) [lls + (M +1) My
K, MMM, b M, L
K M, + L?
+ Mo+ 1) (Ko|yr] + (My + L?)||#]|5)
. Ky Mp b [T (v + 1) + MM M, M, b°]
M(a+1)

Kb/M\Qﬁﬂlba b -

+ m/o (t— )1 g()(Ky|2(3)] + Ch)ds
KM t - K,

b B s gl B2eto] + s




136 Chapter 5. CONTROLLABILITY OF MILD SOLUTIONS

We consider the function u(t) :=

sup |z(#)] and use the fact that 0 < A < 1 Then, we have
6<[0,b]

K, —|u(t)|  K,MZEMM,be /b B K,
Zhut) < KM, L t—5)° L d
N ) < ot KMol + T(a)T(a+1) 0< )7 als) (Il +e ) ds

b Lot (S a) as

Set:

op = KyMoL(Cy+1+ ]/\4\(H¢”B +1))

DA MR M (H + MoL (M 1) M L}
Fard) Ll + M (H o T00L) ol + (34 1)
Ky MMM, b MoL KyMp b°[[(a + 1) + MMM, M;b%]
K, M, + L?
Then
K — K, M2 M M, b
7”(1 — MoL)u(t) < Kyop+ — 1

' -1
" T@rat+ 1) /O (t =) a(s)(Kpuls) + Cy)ds

—

KM [! ot K,
Féa) / (t—s) q(s)(Tbu(s) + Cy)ds

0

+

with 51, = Cb + (1i(bﬁagL)? thus

K, Kb@j\\jﬁlba b a—1
DTG < %t e e e T 1) /0 (E=5)" ale) (Kiuls) + Ch)ds

(1— %l;]\;[)r(a) /0 (t—s)*" Q(S)(%U(S) + Cy)ds

We consider the function p defined by

_|_

plt) o= sup { (o) +Cy s 0<s <),

0<t<b
Ky, o :
Let t* € [0,¢] be such that u(t) = T|u(t )|+ Cy. If t € J, by the previous inequality, we
have for t € J
KoM(MMMb +T(a+1)) [ o
u) < o+ SIEEE L HOE D) [l gyt g(spusyis
(1—MoL)T'(a)(a+1) Jo
Consequently,

[
KyM (MMM +T(a + 1)) el
(1 — MoL)T2(a + 1) ’

IN
—

b+
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Then by (5.45), there exists a constant M** such that ||z||, # M**. Set

U={z2eB : |zl < M™+1}.

Clearly, U is a closed subset of BY. From the choice of U there is no z € OU such that
2 = X\ F(z) for some A € (0,1). Then the statement (C2) in Theorem 1.10.5 does not hold.
As a consequence of the nonlinear alternative of Avramescu ([18]), we deduce that (C1) holds :
i.e. the operator F' has a fixed-point z*. Then y*(t) = 2*(t) + z(t), t € (—o0, ] is a fixed point
of the operator N, which is a mild solution of the problem (5.11) — (5.12). Thus the fractional
neutral evolution system (5.11) — (5.12) is controllable on (—o0, b].

5.8 Examples

To illustrate the previous results, we give in this section six examples.

Example 1. Consider the partial differential equation

( 2

0.9 = T8 L a9u0 + alt. 200,

0 s
+/ ai(s —1t)z [s — p1(t)p2 (/ ag(G)]z(t,9)|2d0) ,f} ds,

oo 0

fort>0, &€|0,m], (5.49)

2(t,0) = z(t,m) =0, for t > 0,
Z(67£>: 20(07€>7 for _OO<8§07 ge[oaﬂ-]u

where a : R x [0,7] — R is a continuous function and is uniformly Hoélder continuous in
t;ap: R x[0,7r] > R;a : RT = Rj;a:[0,7] >Rj;p R = Rfori=1,2;
2o : R_ x [0,7] - R and d : Ry — E are continuous functions. u(-) : Ry — FE is a given
control.

To study this system, we consider the space E = L?([0, 7|,R) and the operator A : D(A) C
E — FE given by Aw = w” with D(A) ={w e E :w" € E, w(0) = w(r) =0 }. It is well
known that A is the infinitesimal generator of an analytic semigroup {7'(¢)}:>o on E. Further-
more, A has discrete spectrum with eigenvalues —n?, n € N, and corresponding normalized

eigenfunctions given by z,(§) = %ﬁ In addition, {z, : n € N} is an orthonormal basis of

E and T(t)z = Y72 e ™! (x, 2,)2, for x € E and t > 0. Tt follows from this representation
that T'(¢) is compact for every ¢ > 0 and that ||T(¢)|| < e™* for every ¢t > 0. On the domain
D(A), we define the operators A(t) : D(A) C E — E by

A(t)x(§) = Ax(§) + ao(t, §)z(E).

By assuming that a(.,.) is continuous and that ao(t,£) < —dy (09 > 0) for every t € R, €
[0, 7], it follows that the system

u(t)=At)u(t) t>s; u(s)=z€E,

has an associated evolution family given by U(t, s)z(§) = [T(t — s)exp (fst ao(T, f)dr) x} (€).
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From this expression, it follows that U(t, s) is a compact linear operator and that
|U(t, )| < e”OF00E=5) for every (¢, s) € A.

Let B = BUC(R_; E) the space of bounded uniformly continuous functions defined from
R_ to E endowed with the uniform norm ||¢|| = sup [¢(0)].
OeR_

Theorem 5.8.1. Let ¢ € B. Assume that the condition (Hy) holds and the functions d : Ry —
E, pi:Ry 2R i=1,2,a;:R™ = R and ay : [0,7] = R are continuous. Then the evolution
system (5.49) is controllable on (—o0,+00).

Proof. From the assumptions, we have that

F(E0)(E) = / ax(s)0(s, €)ds,

—0o0

p(s,6) = 5 — () ( I azwwm,@\?de) ,

are well defined functions and let C' € L(R; E) be defined as :
Cu(t)(§) = d(&u(t), t 20, £=>0, ueR, d(§) € E,
which permit to transform system (5.49) into the abstract system (5.1) — (5.2). Moreover,
the function f is a bounded linear operator. Now, the controllability of mild solutions can be
deduced from a direct application of Theorem (1.10.2). Thus, the conclusion of our theorem
hold.

From Remark (1.7.2), we have the following result.

Corollary 5.8.1. Let ¢ € B be continuous and bounded. Then the evolution problem (5.49) is
controllable on R.

Example 2. Consider the partial differential equation

(2wt [ asts—ou (5= mtres ([ wonute.opas) ) as

D*ul(t, &
_ % + ag(t, Eult, €)

+/OO ai(s —t)u (s — p1(t)po </07r a2(0)|u(t,9)|2d9) ,5) ds, (5.50)
fort>0, £€l0,7],

v(t,0) = v(t,m) =0, fort >0,

L v(0,8) = vo(6,8), for —oco<60<0, £€0,n],

where a3 : R~ — R is a continuous function and a, a; for « = 0,1,2, p; for i = 1,2, 2y, d and
u(-) are defined as in (5.49).

Theorem 5.8.2. Let B= BUC(R_; E) and ¢ € B. Assume that the condition (Hy) holds and
the functions d : R, — E, p; : Ry - Ry, i =1,2, aj,a3 : R— — R and as : [0,71] — R are
continuous. Then the evolution system (5.50) is controllable on (—oo, +00).
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Proof. From the assumptions, we have that

F(t ) () = / ax(s)(s, €)ds,

—00

g1, 0)(€) = / as(s)(s, £)ds,

—0o0

p(5,0) = 5 — pr()ps ( I a2<9>|w<o,5>\2d0) ,

Cu(t)(&) = d(&u(t), t €10,b], € €]0,7], ueR, d(&) € E.

which permit to transform system (5.50) into the abstract system (5.3) — (5.4). Moreover,
the function f is a bounded linear operator. Now, the controllability of mild solutions can be

deduced from a direct application of Theorem (5.3.1). Thus, the conclusion of our theorem
hold.
From Remark (1.7.2), we have the following result.

Corollary 5.8.2. Let ¢ € B be continuous and bounded. Then there exists a unique mild
solution of (5.50) on R.

Example 3. Consider the partial differential equation

( 0?u(t, §)

Dyutt, &) = P8 4 a@yutt) + ettt €
+ [ ants =t [s = ptops [ asote.orran) ] as
0<t<b, £€l0,m, (5.51)
u(t,0) = u(t,®) =0, 0<t<b,
u(6,6) = w(6,). <00, €€ 0.7

where a; : (—o00,0] — R is a continuous function.

Theorem 5.8.3. Let ¢ € C(H; E). Assume that the condition (H,) holds, p; : [0,b] = R for
i = 1,2 are continuous and the functions ay : [—r,0] = R; as : [0, 7] — R are continuous. Then
the problem (5.51) is controllable on [—r,b].

Proof. From the assumptions, we have that
0

F(t0) () = / ax(s)(s, £)ds,

T

plovi) =5 = (o ([ ax@lut0.90Pw)
Finally let C' € B(R; E) be defined as
Cu(t)(&) = d(&u(t), t €1[0,b], £ €]0,7], u€eR, d(&) € E.

are well defined functions, which permit to transform system (5.51) into the abstract system
(5.5) — (5.6). Moreover, the function f is bounded linear operator. Now, the controllability of
mild solutions can be deduced from a direct application of Theorem 5.4.1. From Remark 1.7.1,
we have the following result.
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Corollary 5.8.3. Let ¢ € C(H; E) be continuous and bounded. Then the problem (5.51) is
controllable on [—r,b].

Example 4. Consider the partial differential equation

Dy lu(t £) — (s —t)u ( —pu(t ( W 2(0)|u(t,9)|2d0) ,5) ds]

&ult,
= +d(£)U() a(t,E)ul,

+/_0 ay (s — t)u (s — pat (/0 az(6)|u(t, )| ‘w) ’5) ds, (5.52)

0<t<b, £e[0,7],

v(t,0) = wv(t,m) =0, 0<t<hb,

U<97§>: UO(Q7§)7 _T<9§07 fe [O,'ﬂ'],
where a3 : [—7,0] — R is a continuous function

Theorem 5.8.4. Let ¢ € C(H; E). Assume that the condition (H,) holds, p; : [0,b] = R for
i = 1,2 are continuous and the functions ay,az : [—r,0] = R; as : [0,7] — R are continuous.
Then the problem (5.52) is controllable on [—r,b].

Proof. From the assumptions, we have that

F(t0) () = / ax () (s, £)ds,

—r
0

9t 0)(€) = / as(s)p(s, €)ds,

T

o5, ) = 5 — pr(s)pe ( [ a2<9>w<o,5>|2d9) ,
Cu(t)(€) = d(E)u(t), t € [0,8], € € [0,7], u R, d(¢) € E.

are well defined functions, which permit to transform system (5.52) into the abstract system

(5.7) — (5.8). Moreover, the function f is bounded linear operator. Now, the controllability of

mild solutions can be deduced from a direct application of Theorem 5.5.1. From Remark 1.7.1,
we have the following result.

Corollary 5.8.4. Let ¢ € C(H; E) be continuous and bounded. Then the problem (5.52) is
conntrollable on [—r,b].

Example 5. Consider the partial differential equation

“Dhutt, ) = S5 dleut) + aolt. ult. &

+ /_; a(s —t)u {5 — p1(t)p2 ( Oﬂ as(0)|ult, 9)|2d9) ,5} ds,
0<t<b £el0,7], (5.53)

u(t,0) = u(t,m) =0, 0<t<hb,

\ U(@,f) = u0(97§>7 —00 <0< 0, 5 S [Ovﬂ-]v
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where a; : (—00,0] — R is a continuous function.

Theorem 5.8.5. Let ¢ € B. Assume that the condition (Hy) holds, p; : [0,b] = R fori=1,2
are continuous and the functions a; : (—00,0] = R; ag : [0,7] — R are continuous. Then the
problem (5.53) is controllable on [—r,b].

Proof. From the assumptions, we have that

F(t ) () = / ax(s)i(s, €)ds,

—00

plot) == pe ([ a@)lv0.0Pw)
Finally let C' € B(R; E) be defined as
Cu(t)(€) = d(€)u(t), t € [0,b], € € [0,7], ucR, d) € E.

are well defined functions, which permit to transform system (5.53) into the abstract system
(5.9) — (5.10). Moreover, the function f is bounded linear operator. Now, the controllability of
mild solutions can be deduced from a direct application of Theorem 5.6.1. From Remark 1.7.2,
we have the following result.

Corollary 5.8.5. Let ¢ € B be continuous and bounded. The problem (5.53) is controllable on
<_007 b] :
Example 6. Consider the partial differential equation

4 0

“Dg [u(t,g) —/OO as(s — thu (s — pr(t)ps </0W a2(9)|u(t,9)|2d0) ,g) ds}
Pu(t,€)

_ 0@7 + d(&)u(t) + ao(t, u(t,§)

n /_OO ar(s —t)u (s — pi(t)ps (/07r ax(0) |u(t, 9)\2619) ,£> ds, (5.54)

0<t<b, £€|0,7],

v(t,0) = v(t,m) =0, 0<t<b,

where a3 : (—00,0] — R is a continuous function.

Theorem 5.8.6. Let ¢ € B. Assume that the condition (Hy) holds, p; : [0,b] = R fori=1,2
are continuous and the functions ay,az: R_ — R and as : [0,7] — R are continuous. Then the
problem (5.54) is controllable on (—o0,b].

Proof. From the assumptions, we have that

£t 6)(€) = / ax(s)(s, £)ds,

—00
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ot 9)(€) = / as(s)(s, €)ds,

—0o0

o5, ) = 5 — pr(s)pe ( / ' a2<e>|w<o,g>|2de) ,
Cu(t)(&) = d(&u(t), t €1]0,b], £ €]0,7], u€eR, d(&) € E.

are well defined functions, which permit to transform system (5.54) into the abstract system
(5.11) — (5.12). Moreover, the function f is bounded linear operator. Now, the controllability
of mild solutions can be deduced from a direct application of Theorem 5.7.1. From Remark
1.7.2, we have the following result.

Corollary 5.8.6. Let ¢ € B be continuous and bounded. Then the problem (5.54) is controllable
on (—oo, bl.



Chapter 6

Fractional Evolution Inclusions with
State-Dependent Delay

6.1 Introduction

In this chapter, we will give sufficient conditions for the existence of mild solutions for some
classes of Caputo’s fractional derivative order of partial functional and neutral functional dif-
ferential evolution inclusions with finite and infinite state-dependent delay’.

Using the alternative of Frigon for multivalued contraction maps in Banach space (see [50]),
combined with the semi-group theory.

The existence of the mild solutions is demonstrated in section 6.2 for the following class of
fractional evolution inclusion with finite state-dependent delay

‘Diy(t) € At)y(t) + F(t, Ypity)), ae. t€J=10,0] (6.1)
y(t) =p(t), teH=][-r0], (6.2)

where 0 < r < 400, °D§ is the standard Caputo’s fractional derivative of order a € (0,1),
F:JxC(H;E) — P(F) is a multivalued map with nonempty compact values, P(E) is the
family of all subsets of E, p : J x C(H;FE) — R and ¢ € C(H; E) are given functions and
{A(t)}+>0 is a family of linear closed (not necessarily bounded) operators from E into E that
generates an evolution system of operators {U(t, s)},s)ecsxs for s <t.

An extension of this problem is given in section 6.3, we consider the following class of
fractional neutral evolution inclusion with finite state-dependent delay

“Dyy)[yt) — 9t Ypewn)) € AR Y(E) + F(E, Ypryy)), ae t€J (6.3)

y(t) = (), teH, (6.4)
where A(-), F and ¢ are as in problem (6.1) — (6.2) and g : J x C(H;E) — E is a given
function.

In section 6.4, we study the following class of fractional evolution inclusion with infinite
state-dependent delay

‘Diy(t) € A)y(t) + F(t, Ypty)), ae. ted (6.5)

![15] D. Aoued, S. Baghli-Bendimerad and M. Benchohra, Multivalued fractional partial functional and
neutral functional fractional evolution equations with state-dependent delay, submitted.
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where B is an abstract phase space to be specified later, F': J x B — E,p:J x B — IR and
¢ € B are given functions and {A(t) }1e, is a family of linear closed (not necessarily bounded)
operators from F into E that generates an evolution system of operators {U (¢, s)}(ns)ejxj for
s <t.

An extension of this problem is given in section 6.5, we consider the following class of
fractional neutral evolution inclusion with infinite state-dependent delay

“Dyy(t)[y(t) — 9(t, Ypry)] € A Y(E) + F(t Ypiry,)), ae. teJ (6.7)

where A(-), F and ¢ are as in problem (6.5) — (6.6) and ¢g : J x B — E is a given function.
Finally, section 6.6 is devoted to examples illustrating the abstract theory considered in previous
sections.

6.2 Partial Multivalued Problem with Finite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear evolution problem (6.1) — (6.2).

Lemma 6.2.1. The system (6.1) — (6.2) is equivalent to the nonlinear integral equation

y(t) :¢(0>+ﬁ /0 (t — 5)™1 A(s)y(s) ds+ﬁ /O (t— )1 f(s) ds.  (6.9)

In other words, every solution of the integral equation (6.9) is also solution of the system
(6.1) — (6.2) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(6.1) — (6.2), and using some classical results from fractional calculus to get (6.9).

Definition 6.2.1. We say that the function y(-) : [—r,b] — E is a mild solution of (6.1) — (6.2)
if y(t) = @(t) for all t € [—r,0] and y satisfies the following integral equation

Definition 6.2.2. We say that the function y(-) : [—r,b] — E is a mild solution of the evolution
system (6.1) — (6.2) if y(t) = @(t) for all t € H and the restriction of y(-) to the interval J is
continuous and there exists f(-) € L'(J; E) : f(t) € F(t,Ypy,)) a-e. in J such that y satisfies
the following integral equation :

y(t) =U(t,0) p(0) + ! ) /Ot(t —8)* L U(t,s)f(s) ds  for each t € J. (6.10)

I(a)
Set
R(p™) ={p(s,0): (s,0) € J x C(H; E), p(s, ) < 0}.

We always assume that p : J x C(H; E) — R is continuous. Additionally, we introduce the
following hypothesis:
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(H,) The function t — ¢ is continuous from R(p~) into C'(H; E) and there exists a continuous
and bounded function £? : R(p~) — (0,00) such that

ol < L2(t)||¢ll  for every t € R(p™).

We need to introduce the following hypothesis

(H1) There exists a constant M > 1 such that

IU(t,s)|| sz < M for every (t,s) € A.

(H2) The multifunction F : J x C(H; E) — P(E) is L, .-Carathéodory with compact and

convex values for each u € C(H; E) and there exist a function p € L}, (J;R,) and such
that

| F(t,u)|lpe) < p(t) +q(t) ||ul|g for a.e. t € J and each u € C(H; E).

(H3) For all R > 0, there exists Ir € Li,.(J;R,) such that
Hy(F(t,u) = F(t,0)) < lg(t) lu—of
for each t € J and for all u,v € C(H; E) with |ju]| < R and ||v]| < R and

d(0, F(t,0)) < Ip(t) ae. teJ.

Theorem 6.2.1. Assume that the hypotheses (H,) and (H1) — (H3) hold and moreover

Mizbe

where p* = supp(s), ¢ = supq(s) and [ = suply(s). Then the problem (6.1) — (6.2) has at
least mild solution on [—r,b].

Proof. Transform the problem (6.1) — (6.2) into a fixed-point problem. Consider the
multivalued operator N : C([—r,b]; E) — P(C(|—r,b]; E)) defined by :

p(t), if t € H;
N@y) =< heC(-rb:;E):hit)= U (tlo) #(0)
+m/0 (t—s)* " U(t,s)f(s) ds, ifte J.

where f € Sp, ={ve L' (J;E) : v(t) € F(t,Ypty) for ae.t € J}.

Clearly, fixed points of the operator N are mild solutions of the problem (6.1) — (6.2). We
remark also that, for each y € C([—r,b]; E), the set Sg, is nonempty since, by (H2), F has a
measurable selection (see [40], Theorem II1.6).

Let y be a possible fixed point of the operator N. Given t < b, then y should be solution
of the inclusion y € A N(y) for some A € (0,1) and there exists f € Spy < f(t) € F(t, Yot y,))
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such that, for each t € J. So, from (H1), (H2), (H,) and Lemma 5.2.1, we have for each
t € 10,0

)] < [[UE 0[5 [#(0)] +ﬁ/0 (t =) Ut 8)lle) 1f(s)] ds

< el + % / (t = )°" [p() + a() Yoo

—

]ds

It follows that

t ¢ <M v t—s) v d
()] + Llll < Mlll| + L[|l + TosD T J, (t =s)* lly(s) + L7]lell] ds

Set

— ]\//Tp*bCY
= (M ks _.

by 1= (0T + L)l + fray

We consider the function i defined by

p(t) :==sup { |y(s)| + Lgl| : 0<s<t}, 0<t<D
Let t* € [—r,t] be such that u(t) = |y(t*)| + L?]|¢||. If t* € [0, b], by the previous inequality, we
get

p(t) < 0y + -4 /t(t —5)* 1 u(s)ds  for t €[0,b].

If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

]\/J\q*ba

p(t) < 0y x m

1+

Since |ly|| < w(t), we have |ly|| < max{||¢||, Ay} := O,. Since for every ¢t € [0,b], we have
[yl < max{[[ell, As} := Oy

Set Y ={yeC([-rb;E) : sup{ly(t)| : 0 <t < b} < O, + 1}. Clearly, Y is a closed
subset of C'([—7,b]); E).

We shall show that N : Y — P(C([-r,b]; E)) is a contraction and an admissible operator.
First, we prove that N is a contraction ; Let y,y € C([-r,b]; E) and h € N(y). Then there
exists f(t) € F(t,Ypuy,)) such that for each t € [0, b]

1

h(t) = U(6.0) 9(0) + s /0 (t— )" Ut s) f(s) ds.

From (H3) it follows that

Ha(F(, Yp(t0)s EC G pa0)) < W) 1Y) = Goten Il
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Hence, there is 0 € F(t,7,.,,)) such that

|f(t) - Q’ < lb(t) ”yp(t,yt) - yp(t,yt)H? te [07 b]

Consider U, : [0,b] — P(E), given by

Ue=1p € B FE) = pl < ) 1Ypt) = Yo I}

Since the multivalued operator V(t) = U.(t) N F(t,Y,4,,)) is measurable (in [40], see

Proposition I11.4), there exists a function f(t), which is a measurable selection for V. So,
f(t) € F(t,Yy,,) and we obtain for each ¢ € [0, ]

1F(E) = FO < () 1Yot — Totea

Using (H,) and Lemma 5.2.1, we obtain

[f(t) = FOI < b(t) ly(t) —5(t)]

(t)lly =7l

IA A

Let us define, for each t € [0, b

1

h(t) = U(t,0) p(0) + m/o (t—s)* U, s) f(s) ds

Then, we can show as that we have for each ¢ € [0, 0]

_ 1 t
h(t) = h(t)] < —— [ (t—s)* Y U(t d
) =0 < s [ =9I o 176 =) ds
]\/4\ t
< 2 [ty — gl d
< g | =T el T ds
< MH _—H
= T+ Y
Therefore, we have
_. Mt
IIh—hIIS—Hy yll-
I'(a+1)

By an analogous relation, obtained by interchanging the roles of y and 7, it follows that

Hy(N(y), N@)) < %Hy 7l

Mizbe

f T
So, for Mo+ 1)

< 1, N is a contraction.
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It’s remains to show that N is an admissible operator. Let y € C(|—r,b]; F) and consider
the operator N : C([—r,b]; E) — P(C([—r,b]; E), given by

o(t), ift e H;
Ny = {he O-rt, B) - hipy = {7000
1 /t . .
+=— t—s)"U(t,s) f(s) ds, itt € 10,0,
| =0 10 0.1
where f € Sg, = {ve L'([0,b]; E) : v(t) € F(t,yp(ty) for a.e.t €[0,0]}.
From (H1) — (H3) and since F' is a multivalued map with compact values, we can prove
that for every y € C([-7,0]; E), N(y) € Pep(C([—7,0]; E)) and there exists y, € C([-r,b]; E)

such that y, € N(y.). Let h € C([-r,b]; E), 7 € Y and € > 0. Assume that y, € N(7), then
we have

15() = v < [[5(8) = AOI + lly.(t) = h@)]
< 7= N@I + lly(t) = ~()]l.

Since h is arbitrary, we may suppose that
h € B(ye,€) ={h € C([-r0; E) : |h — y.| < €}.

Therefore,
17—yl <[y = N@)| + e

If y is not in N(7), then ||y, — N(7)|| # 0. Since N(7) is compact, there exists z € N(7)
such that ||y, — N(@)| = ||y« — z||. Then we have

[5(t) = =)l [5(t) =A@ + [lz(2) = h(@D)]]
17 = N@) + llz(t) = h(D)]]-

IAINA

Thus,
7=zl <[y - N®@ +e

So, N is an admissible operator contraction. From the choice of Y there is no y € Y™ such
that y = A N(y) for some A € (0,1). Then the statement (C2) in Theorem 1.10.6 does not
hold. A consequence of the nonlinear alternative of Frigon that (C'1) holds, we deduce that the
operator N has a fixed point y* which is a mild solution of the fractional evolution inclusion
problem (6.1) — (6.2).

6.3 Neutral Multivalued Problem with Finite Delay

We give here an extension to previous results for the neutral case (6.3) — (6.4). Firstly, we
define its mild solution.

Lemma 6.3.1. The system (6.3) — (6.4) is equivalent to the nonlinear integral equation

y(t) = [p(0) —g(0,0)] + g(t, Ypey)) + %04)/0 (t—s)* T A(s)y(s) ds (6.12)
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+ ﬁ/{) (t— )1 f(s) ds.

In other words, every solution of the integral equation (6.12) is also solution of the system

(6.3) — (6.4) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(6.3) — (6.4), and using some classical results from fractional calculus to get (6.12).

Definition 6.3.1. We say that the function y(-) : [-r,b] — E is a mild solution of the neutral
functional evolution system (6.3) — (6.4) if y(t) = p(t) for allt € H and the restriction of y(-)
to the interval J is continuous and there exists f(-) € L*(J; E) : f(t) € F(t, Ypity)) a-€. in J
such that y satisfies the following integral equation

y(t) = U(t,0)[p(0) — g(0,0)] + g(t, Yp(tye)) + ﬁ/o (t—s)*"" U(t,s)f(s) ds.

We consider the hypotheses (H,), (H1) — (H3) and we need to introduce the following
assumptions :

(H4) There exists a constant L, > 0 such that
|A(s)g(s, ¢) — A(5)g(5,9)| < Ly (Is — 5[+ [l —2])
for all ¢, € C(H; E).
(H5) There exists a constant Mg > 0 such that

IA ()| ey < Mo forall t e J.

1
(H6) There exists a constant 0 < L < T such that
0

|A(t) g(t,p)| < L (|lp]| +1) for all t € J and p € C(H; E).

Theorem 6.3.1. Suppose that the hypotheses (H1) — (H6) are satisfied and moreover

MLbe

e 1 (6.13)

[MOL* +

where p* = sup p(s), ¢* = supq(s)and I} = suply(s). Then the problem (6.3) — (6.4) has a least
mild solution on [—r,b].

Proof. Transform as below the neutral problem (6.3) — (6.4) into a fixed point problem by
considering the multivalued operator N : C([—r,b]; E) — P(C([—r,b]; E)) defined by :

o(t), ifte H;

N(y)={ heC([-rb;B):h(t) =S U <t,10) p(0) = 90, 2)] + 9(t, Ypie)

o / (t — )2 Ut 8)f(s) ds, ifte

[e=]



150

Chapter 6. EXISTENCE OF MILD SOLUTIONS

where f € Sp, ={ve L' (J;E) 1 v(t) € F(t,Ypty) for a.e.t € J}.

Clearly, the fixed points of the operator N are mild solutions of the problem (6.3) — (6.4).
We remark also that, for each y € C([—r,b]; E), the set S, is nonempty since, by (H2), F has
a measurable selection (see [40], Theorem IIL.6).

Let y be a possible fixed point of the operator N. Given t < b, then y should be solution
of the inclusion y € A N(y) for some A € (0,1) and there exists f € Spy < f(t) € F(t, Yot y,))
such that, for each t € J, by using (H1) — (H2), and (H5) — (H6) we have for each t € [0, b]

@] < 19t Yoewn)| + 1UE 0)[0(0) — g(0, ¢)]]
1 /t .
+ |= t—35)"" " U(t,s)f(S, Yp(sy.)) ds
F(O./) 0( ) ( ) ( ,0( y))
< AT A®) 9 Ypie )] + Ml + U 0) 5y [AT(0)] [A0)g(0, 0)]
M /t B
+ — t—5)""" |p(s) + q(s)||Ypsyo)ll | ds
< Mol +MoL ([[Ypynll + 1) + MMoL (o] +1)
M [ .
+ —/ t—5)""" |p(s) +q(s)||Ypsyo)ll | ds
Since [lyp e | < [y(2)] + £#]o]] we obtain
y®)| < MoL(ly(t)| + L%l + 1)+ M]| ||(1+ML)+M
Y = oY ¥ 2 0 T(at 1)
]/\Iq* /t .
+ t—s)* y(s)| + L? ds
wl [ e= et e+ 2o
Then
- Mollyo) < [MoLe + T+ Tob)] ol + ol + 220
- I(a+1)
]/\Zq* /t .
+ t—s)* y(s)| + L?||el]) ds
w =t e+ 2o
Set
MOL,C‘F’ + ]\7(1 + M()L)i| e M\p*ba
Gy = L[|l + = [l + MoL + —— :
(1 —MyL) (1—-MyL)'(a+1)
Thus
]/\/[\q*

)]+ L7l < o +

(1 - MoL)T(a) /o(t_s)a_l (Iy(s)| + £2el) ds.

We consider the function p defined by

u(t) = sup { Jy(s)| + Lole]l : 0<s<t}, 0<t<b
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Let t* € [—r,t] be such that u(t) = |y(t*)| + L?||¢||. If t* € [0,b], by the previous inequality, we
get

]\//Tq*
(1 - MyL

t
p(t) < &+ / (t—s)* u(s)ds  fort €[0,b].
() Jo
If t* € [-r,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant 0, = d,(a) such that

]\/Zq*ba

u(t) < 6 x (1— MoL)[(a+1)

1+

= A
Since [|y|| < u(t), we have ||y|| < max{||¢]|, Ay} := Oy,

We can show as in the previous section that N is an admissible operator and we shall prove
now that N : Y — P(C([—r,b]; E)) is a contraction.

Let 4,57 € C([—r,b]; E) and h € N(y). Then there exists f(t) € F(t,Yp(y,)) such that for
each t € [0,b], we have

h(t) = U(t,0)[9(0) = 9(0,9)] + g(t, Yp(t.w) + ﬁ/g (t—s)*" Ult,s)f(s) ds
From (H3) it follows that

Ha(F( Ypt)s G o)) < W) 1Y) = Voten Il

Hence, there is 0 € F'(¢,7,,,)) such that

’f(t) - Ql < lb(t) ”yp(t,yt) - yp(t,yt)H te [07 b]

Consider U, : [0,b] — P(E), given by

Ue={o e E:|f({E) = of <5t [Ypttan) = Yo I}

Since the multivalued operator V(t) = U.(t) N F(t,7,,,,)) is measurable (in [40], see

Proposition I11.4), there exists a function f(¢), which is a measurable selection for V. So,
f(t) € F(t,Y,,,), and we obtain for each t € [0, D]

(&) = FO < () 1Yot — Totea

Using (H3), (H,) and Lemma 5.2.1, we obtain

[F(8) = F@O] < U(t) [y(t) —7(t)]
Let us define, for each ¢ € [0, ]

h(t) = U(t,0)[(0) = 9(0,9)] + g(t. Gpir) + ﬁ/g (t— )" 'U(t, 5)f(s)ds
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Then, by (H1), (H3) and (H4), we have for each ¢ € [0, 0]

n(t) = ()] < 190t Yptew) = 9 Tor)|

I _ _
+ —/ (t =) U )y (5 Ypow) = F(8:Tpsyo)] ds
I'(a) Jo
< AT ONAD 9, Yoiew) — ADIE T e )]
M\ t
— [ (=851 sy) — U ds.
g =) I = Ty s
Using (H,) and Lemma 5.2.1, we obtain
_ _ ML
h(t) —h(t)] < MoLJy(t) —g(t)] + ——2—|ly — 7
|h(t) = h(t)] < MoL.|y(t) y()|+r(a+1)||y |
— ML;be
< |MyL, + ——2— T
< [ oLt T 1) ly — 7
Therefore,
— — ML;b
h(t) — h(t)| < |MoL, + —2— -7l
(1) <>|_[ oLt o | Iy =7

By an analogous relation, obtained by interchanging the roles of y and 7, it follows that

ML;be
['(a+1)

Hd(N(y)v N(y)) < [MOL* + Hy - y“

So, for an appropriate choice of Cy, Lj and b* such that

_ MLb®

MoL, + ——7 | <1,
R P

The operator N is a contraction and an admissible operator. From the choice of Y there is
no y € dY" such that y = A N(y) for some A € (0,1). Then the statement (C2) in Theorem
1.10.6 does not hold. By the nonlinear alternative due to Frigon we get that (C'1) holds, we

deduce that the operator N has a fixed point y* which is a mild solution of the fractional neutral
evolution inclusion problem (6.3) — (6.4).

6.4 Partial Multivalued Problem with Infinite Delay

Before stating and proving the main result, we give first the definition of mild solution of the
semilinear fractional evolution problem (6.5) — (6.6).

Lemma 6.4.1. The system (6.5) — (6.6) is equivalent to the nonlinear integral equation

1

y(t) = #(0) + m/() (t —5)* TA(s)y(s) ds + ﬁ/o (t —s)* 1 f(s) ds. (6.14)

In other words, every solution of the integral equation (6.14) is also solution of the system
(6.5) — (6.6) and vice versa.
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Proof. It can be proved by applying the integral operator to both sides of the system
(6.5) — (6.6), and using some classical results from fractional calculus to get (6.14).

Definition 6.4.1. We say that the function y(-) : (—o0,b] — E is a mild solution of (6.5)—(6.6)
if y(t) = o(t) for allt € (—o0,0] and y satisfies the following integral equation

Definition 6.4.2. We say that the function y(-) : (—oo,b] — E is a mild solution of the
evolution system (6.5) — (6.6) if y(t) = ¢(t) for all t € (—o0,0] and the restriction of y(-) to the
interval J is continuous and there exists f(-) € L'(J; E) : f(t) € F(t, Ypty)) a-e. in J such
that y satisfies the following integral equation :

1

y(t) =U(t,0) ¢(0) + m/o (t—s)* 1 U(t,s)f(s)ds  foreachte J. (6.15)

Set
R(p") = {p(5,0) : (5,0) € J x B, p(s,8) < 0}.

We always assume that p: J x B — R is continuous. Additionally, we introduce the following
hypothesis:

(H,) The function ¢t — ¢ is continuous from R(p~) into B and there exists a continuous and
bounded function £ : R(p~) — (0, 00) such that

l¢ells < L2(t)llglls  for every ¢t € R(p7).

We will need to introduce the following hypothesis which are assumed thereafter :

(HO01) There exists a constant M > 1 such that

NU(t,s)|BE) < M for every (t,s) € A.

(H02) The multifunction F' : J x B — P(E) is L} -Carathéodory with compact and convex
values for each u € B and there exist a function p € L] (J;R,) and such that

loc

| F(t,u)|lpe) < p(t) +q(t) ||ul|g for a.e. t € J and each u € B.

(H03) For all R > 0, there exists [z € L},.(J;R,) such that
Hy(F(t,u) = F(t,0)) < lr(t) [u— vl
for each t € J and for all u,v € B with ||u|| < R and |jv| < R and

d(0, F(t,0)) < Ip(t) ae. teJ.

Consider the following space

Q= {y:(-00,b] = E:y|(_g € B and y|pyis continuous },
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Theorem 6.4.1. Assume that the hypotheses (H,) and (HO1) — (HO03) hold and moreover

Mizbe
" 6.16
Tl+a) (6.16)

where p* = supp(s), ¢ = supq(s) and I = suply(s). Then the problem (6.5) — (6.6) has at
least mild solution on [—r,b].

Proof. Transform the problem (6.5) — (6.6) into a fixed-point problem. Consider the
multivalued operator N : Q@ — P(2) defined by :

(1), if t <0;
Ny)={heQ:hit)= U (t,lo) ¢(0)
—l—m/o (t—s)* 1 U(t,s)f(s) ds, ifteJ

where f € Spy, ={ve L'(J;E) 1 v(t) € F(t,Ypy) for ae.t € J}.

Clearly, fixed points of the operator N are mild solutions of the problem (6.5) — (6.6). We
remark also that, for each y € Q, the set Sp, is nonempty since, by (H2), F' has a measurable
selection (see |40|, Theorem II1.6).

For ¢ € B, we will define the function z(.) : (—o0,b] — E by
(1), if ¢ [0,0];
z(t) =
U(t,0) ¢(0), if te (—o0,0l.
Then xy = ¢. For each function z € (), set
y(t) = 2(t) + x(t)

It is obvious that y satisfies (6.15) if and only if z satisfies zp = 0 and

A(t) = F—>/o (t— )" Ut,s) f(s) ds fort e J.

(c
where f(t) € F(t, zpty) + Tpty)) a-e tE€J

Let
Q' ={2€Q:2 =0}.

Define the operator F : Q° — P(Q°) by :

1

F(z) = {h €N:h(t) = m/{:(t —5)* P U(t,s) f(s)ds forte J.} (6.17)

Obviously the operator N has a fixed point is equivalent to F' has one, so it turns to prove that
F has a fixed point.
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Let z € Q° be a possible fixed point of the operator. By the hypotheses (H01) and (H02),
we have for each t € [0, b]

1 ' a—1
0 < g [ = s 17(5) s
< i [ )+ a0t + o] s

From (Hy), Lemma 1.7.2 and Assumption (A1), we have for each ¢ € [0, b]

HZP(S,szrxs) B+ pr(S,szrws) B
Kz(s)] + (My + L2120l + Kol (s)| + (My + L?)||z0]|5
Ky|2(s)] + K3||U (s, 0) || 3y | 6(0)] + (M + L) ||| 5

Ky|2(s)| + K, M|6(0)] + (My + £2)] ]|

Hzp(s,zSJr:rS) + Tp(s,zs+xs) 1B

IANIAIA

IN

Using (i7), we get

Ky|2(s)| + KoM H||¢||5 + (My + L) 6|5
Ky|z(s)| + (My + L2 + KyMH)||0| 5

IN

Hzp(s,szr:Jcs) T Tp(s,zs+as) 1B

N

It follows that

]\//Tp*ba ]/\J\q*

Ol = ot T T

/Ot(t = )27 (Kola(s)] + (My + L2+ KM H)|6]1s) ds

Set ¢ = (M + L2 + K,MH)| ¢||5. Then, we have

M\p*ba ]\/ZC]* /t -1
t t—s)” K, d
|2(t)] F(a+1)+F(a) 0( s) (Kb|z(s)] + ) ds
Then
K, Mp*b® K,Mq* /t »
Kplz(t < == — t—s)® K ds.
plz(t)| +c < TatrD "7 T 0( 5)* (Kblz(s)| + ) ds
Set
KT
b = F(Oj+1) +Cb.

We consider the function 1 defined by
w(t) :=sup { Kplz(s)|+¢e : 0<s<t}, 0<t<b.
Let t* € [0,t] be such that u(t) = K|2(t*)| + ¢, By the previous inequality, we have

be\/f\q*

pt) < &+ W

/Ot(t —5)* !t p(s)ds  for t €[0,b].
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If t* € (—o0,0], then u(t) = ||¢| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

Kbﬂq*b“

pt) = 0 x T(a+1)

1+

— A,

Since ||z]| < w(t), we have ||z|| < max{||¢|,As} := ©s. Since for every t € [0,b], we have
[zl < max{|[¢]|, As} := O

Set
Z={2€Q" : sup |2(t)| <O +1}.

0<t<b

Clearly, Z is a closed subset of Q°.

We shall show that N : Z — P(Q°) is a contraction and an admissible operator. First,
we prove that F is a contraction ; Let 2,z € QY and h € F(z). Then there exists f(t) €
F(t, Zp(t40) + Tp(ty,)) such that for each t € [0, b]

h(t) = U(t,0) ¢(0)+%a> /0 (t— )™ U(t,s) f(s) ds.

From (HO03), it follows that
Hy(F(t, Zp(tyr) T xﬂ(t»yt))7 F(tvzﬂ(t,yt) + xp(tvyt)) < Iy(t) ||Zp(t7yt) - zp(tvyt)H‘
Hence, there is 0 € F(t,7,,,)) such that

|f(t) - Q| < lb(t)”ZP(tyyt) - z,O(If,yt)Hv le [07 b]

Counsider U, : [0,b] — P(FE), given by

Ue={p e E:|f@) = pl <) [Zp000 = Zptanl}-

Since the multivalued operator V(t) = U.(t) N F(t,Z,uy,)) is measurable (in [40], see
Proposition I11.4), there exists a function f(¢), which is a measurable selection for V. So,
f(t) € F(t,Zpy,)) and we obtain for each ¢ € [0, b]

| f(t) — ?(t)’ < (1) [[2p(t50) — Zottn) |

Using (Hy) and Lemma 1.7.2, we obtain

[f(t) = FO] < b(t) |2(t) — Z(t)|

L)z ==

IA A

Let us define, for each ¢ € [0, D]

h(t) = U(t,0) p(0) + FL/O (t—s8)*tU(t,s) f(s) ds.



6.4 Frac. Evo. Incl. with Infinite S.D.D.

Then, we can show that, we have, for each t € [0, ]

— 1 ¢
h(t)—h(t)] < — [ (t—s)*U(t d
) =0 < o [ =9I o 176 = T(0)] ds
M /t »
< == t—8)""" L(s)||z —Z| ds
i [ = bl -
< BTy
- D(a+1) vy
Therefore, we have
— Mlbe
Ih =Rl < <=z —Z].
[(ar+1)
By an analogous relation, obtained by interchanging the roles of y and 7, it follows that
MIb®
HyN(@y),N@)) < —>—|lz—7Z|.
a(N(y), (y))_r(aH)HZ Z|l
Mizb®
So, for ——2— < 1, N is a contraction.
['(a+1)

Now we show that F'is an admissible operator. Let z € Q° . Set, the space
QM ={2€0:2 =0}
and let us consider the multivalued operator F': Q° — P(QP)

F(z):{hGQ:h(t):ﬁ/o(t—s)a_l Ul(t,s) f(s) ds fortEJ.}

where f € S, = {v € L'([0,0]; E) : v(t) € F(t,Ypty,) for a.e.t € [0,0]}.
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(6.18)

From (HO01) — (H03) and since F' is a multivalued map with compact values, we can prove

that for every z € Q°) F(z2) € P, (Q°) and there exists z, € Q0 such that 2z, € F(z,).

heQ 7€YY and € > 0. Assume that z, € F(Z), then we have

IZ(8) = 2l < N12() = R + [|2(8) = (D))
< 7= NEI+ [20) = h@D)]-

Since h is arbitrary, we may suppose that
h € Bz, e) ={h € C([-r,b; E) : ||h — z|| <€}

Therefore,
IZ— 2z < 2= N@)| + e

Let

If z is not in F'(Z), then ||z, — F(Z)]| # 0. Since F(Z) is compact, there exists z € F(Z) such

that ||z, — F(Z)|| = ||z« — z||- Then we have

[Z(t) ==@l < 1Z2@) = hO] + [l2() = ~{D)]
< zZ=F@I+ =) = h@)].
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Thus,
IZ—z|| < [I7 - FE)|| +e

So, F'is an admissible operator contraction. From the choice of z there is no z € 92" such
that z = A F(z) for some A € (0,1). Then the statement (C2) in Theorem 1.10.6 does not
hold. A consequence of the nonlinear alternative of Frigon that (C'1) holds, we deduce that the
operator F' has a fixed point y* which is a mild solution of the fractional evolution inclusion
problem (6.5) — (6.6).

6.5 Neutral Multivalued Problem with Infinite Delay

We give here an extension to previous results for the neutral case (6.7) — (6.8). Firstly, we
define its mild solution.

Lemma 6.5.1. The system (6.7) — (6.8) is equivalent to the nonlinear integral equation

y(t) = [¢><o>—g<o,¢>1+g<t,yp<t,yt>>+ﬁ / (t— s A(s)y(s) ds  (6.19)

1 [ oot
+ m/o(t—s) f(s) ds.

In other words, every solution of the integral equation (6.19) is also solution of the system
(6.7) — (6.8) and vice versa.

Proof. It can be proved by applying the integral operator to both sides of the system
(6.7) — (6.8), and using some classical results from fractional calculus to get (6.19).

Definition 6.5.1. We say that the function y(-) : (—oo,b] — E is a mild solution of the
fractional neutral functional evolution system (6.7) — (6.8) if y(t) = ¢(t) for all t <0 and the
restriction of y(+) to the interval J is continuous and there exists f(-) € L'(J;E) : f(t) €
F(t,Ypty,)) a-e. in J such that y satisfies the following integral equation

y(t) = U(t,0)[¢(0) — g(0,8)] + 9(t, Yp(t.ye) + ﬁ/o (t — )P U(t,s)f(s) ds (6.20)

We consider the hypotheses (Hy), (H01) — (H03) and we need to introduce the following
assumptions :

(H04) There exists a constant L, > 0 such that
[A(s)g(s, 6) — A(5)9(5,0)| < L (s — 5] + [lo — o))
for all s,5€ J, ¢, ¢ € B.
(HO05) There exists a constant M, > 0 such that

||A_1(t)||B(E) S MO for all t e J.



6.5 Frac. Neutral Evo. Incl. with Infinite S.D.D. 159

1
(H06) There exists a constant 0 < L < — I such that
08y

|A(t) g(t,o)| < L (||¢]| +1) for all ¢t € J and ¢ € B.

Theorem 6.5.1. Suppose that the hypotheses (H01) — (HO06) are satisfied and moreover

MLbe

[WOL* +

where p* = supp(s), ¢ = supq(s)and [} = suply(s). Then the problem (6.7) — (6.8) has at least
mild solution on (—o0,b].

Proof. Transform as below the neutral problem (6.7) — (6.8) into a fixed point problem by
considering the multivalued operator N : Q — P(Q) defined by :

o(t), if t < 0;
N(y) = he:h(t) =1 Ut0)[6(0) = g(0.0)] + gt Yoru)
+ﬁ/{) (t—s8)* U, s)f(s)ds, iftel

where f € Sp, ={ve L' (J;E) : v(t) € F(t,Ypty) for ae.t € J}.
Clearly, the fixed points of the operator N are mild solutions of the problem (6.7)—(6.8). We

remark also that, for each y € ), the set Sp, is nonempty since, by (H02), F' has a measurable
selection (see [40], Theorem IIL.6).

For ¢ € B, we consider the function z(.) : (—oo, b] — F defined as below by
o(t), if t<0;

x(t) =
U(t,0) ¢(0), if tedJ

Then xy = ¢. For each function z € (), set

y(t) = 2(t) + x(t)
It is obvious that y satisfies (6.20) if and only if z satisfies zy = 0 and

2(t) = 9(t, 2oy + Tpuy) — U(t,0)9(0, 0) + L/0 (t —s)*'U(t,s)f(s)ds.

()
where f(t) € F(t, 2puy,) + Tpty)) a€ t€J
Let
D ={2€Q:2=0}.

Define the operator F : Q0 — P(Q°) by :

ﬁ(z) = {h € Qt: h(t) = g(ta Zp(t,yt) + xp(t,yt)) - U(tv 0)9(07 Qb)
1

—l—m/o (t—s)*'U(t,s)f(s)ds.}

(6.22)
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Obviously the operator N has a fixed point is equivalent to F has one, so it turns to prove that
F has a fixed point.

Let z € Q° be be a possible fixed point of the operator. Then, using (H01) — (H02),
(HO05) — (H06) we have for each t € [0, D]

20 < [9(t 2ot + Tpan)| + U, 0)g(0, 0)]

1 ¢ "

+ I'(a) /0 (t— )L UL, s)f(s, Zp(se) F Tp(sye))ds ds

< AT O] 1A@E: Ztmn + T+ IUCE O ) 47 0)]1A0)g(0.)
1 t o\

+ F(O{) /O (t - 8) 1 U(ta S)f(s, ZP(S,ys) —|— IP(S,yS))dS dS

S MOLO‘ZP(t,Zt-FZEt) + xp(tvzt+$t)||8 + 1) + MMOL(H(ZﬁHg 4 1)

J\?/t .
+ —— [ (t—=5)""" |p(s) + q(s)|2p(s.m0) + Tp(s.us
F(a) ; [() ()Hp(y) p(8,ys)

}ds

Since || Zp(t,y0) + Tptyo) llB < Kp|2(t)| + c» we obtain

- - Mp*be
201 < ML) + e +1) + MoLM(Iol] +1) + P
Kb]/\jq* /t a—1
fa) J, (t —s) (|z(s)| + ¢p) ds
Then
(1= MoLKy)|2(t)] < MoL(cy + 1) + MoLM(||¢]| + 1) + M
ol = oSG 0 T(a+1)
Kb]\/f\q* /t —1
t_ (0%
Mo J, (t—=s)*" ([2(s)] + ) ds
Set
o Bt DM +D)
b= Cp (1 — MoLKy)D(a+ 1) (1= MLK)(a+1)
Thus
Kb]/\/Tq*

Kb|Z(t)|+Cb S (Sb—l-m

t
[ =9 aleto)] + ) ds
0
We consider the function i defined by
pu(t) == sup { Kplz(s)[+cp: 0<s<t}, 0<t<b

Let t* € (—o0,t] be such that u(t) = Kp|2(t*)| + . If t* € [0, ], by the previous inequality, we
get

Kb]\/f\q*
(1 — MyLK,

p(t) < &+ (o) /Ot(t —5)*t pu(s)ds  for t €[0,b].
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If t* € (—00,0], then u(t) = ||¢|| and the previous inequality holds. And Lemma 1.8.1 implies
that there exists a positive constant d, = d,(«) such that

Kb]/\/[\q*bo‘
(1 — MoLK)T(a+1)

p(t) < 6 x |1+
Since ||z|| < u(t), we have ||z|| < max{||¢||, Ay} := O.

We can show as in the previous section that N is an admissible operator and we shall prove
now that N : Z — P(Q°) is a contraction.

Let 2,z € Q0 and h € F(z). Then there exists f(t) € F(t, Zp(tye) + Tp(ty,)) such that for
each t € [0, 0]
1 [ _
B(1) = U(0)6(0) = 5(0.0)] + (0. 200+ Ty0) + 5 | (=97 V(E:5) 1) ds
From (HO03) it follows that

Ha(F(t, Zo(tg) T Tottwn))> F (& Zpan) + o) < (8 [12oan) — Zotewn -
Hence, there is o € F(t,Z)ty,) + Tp(ty,)) such that

(@) = ol < (®) [2pt) = Zpagn |l € [0,0].

Counsider U, : [0,b] — P(FE), given by

U.={e€ E:[f(t) = o <) [Zptm0) = Zptam I}
Since the multivalued operator V(&) = U.(t) N F(t,Zpt,y,) + Tp(t,y,)) is measurable (in [40],
see Proposition 111.4), there exists a function f(t), which is a measurable selection for V. So,
F(t) € F(t,Zppu) + Tpuyn))s and we obtain for each ¢ € [0, ]

() = O < 1(t) 2030 — Zotean |
Using (H03), (H,) and Lemma 1.7.2, we obtain

() = JO < (1) |2(t) — Z(1)]
Let us define, for each ¢ € [0, ]
_ 1 ¢ B _
h(t) = U(t,0)[¢(0) — g(0, )] + g(t, Zotyn) + Tpitan)) + T(a) /0 (t—s)""'U(t,5)f(s)ds
Then, by (H01), (H03) and (H04), we have for each ¢ € [0, 0]
‘h’(t> - E(t)‘ < |g<t7 Zp(s,ys) + xp(s,ys)) - g(tvzp(t,yt) + xp(t,yt))l

1 t i
[ (t—s)* Ut _ p
+ F(a)/o ( s) H (7S>HB(E) ‘f(s) f(s)‘ S
< HAil(tNHA(t)g(t, Zp(tye) T mp(tyyz)) - A(t)g(tazp(t,yt) + fL’p(t,yt))‘
1 t B
= [ (t—s)* Ut _ J
+ r(a)/o (t =) MUt 9) s |f(s) = F(s)] ds
— M ‘
< Molloan = Zoeol + 7oy / (t =) 7" 1(3) ll2p(s00) = Zotso) || ds-
(@) Jo
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Using (Hy) and Lemma 1.7.2, we obtain
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_ _ ML
— < MyL,|z-z T Yy — 7
|h(t) = h(t)] < MoL.||2 ZII+F(Q+1)|12 Z||
— ML b
< |\ MyL, + —=2" |||z -7z
< [ 0 +F(a+1) |z —Z]

Therefore,

_ — ML
h(t) — h(t)| < [MOL*+ b

m] |z —Z]|.

By an analogous relation, obtained by interchanging the roles of z and Zz, it follows that

Hy(N(2), N(z) < MLy

[HOL* +

I'(a+1)

So, for an appropriate choice of M,L,, L; and b* such that

ML;be

— <1
[Na+1) ’

[MOL* +

] 2.

The operator N is a contraction and an admissible operator. From the choice of Z there is no
z € 0Z" such that z = X\ N(z) for some A € (0,1). Then the statement (C2) in Theorem 1.10.6
does not hold. By the nonlinear alternative due to Frigon we get that (C'1) holds, we deduce
that the operator N has a fixed point z* which is a mild solution of the fractional neutral

evolution inclusion (6.7) — (6.8).

6.6 Examples

To illustrate the previous results, we give in this section four applications:

Example 1. Consider the partial differential inclusion

M + Go(ta f)u(ta 5)

“Dyu(t.€) € “ge

u(t,0) = u(t,7) =0,

\ U(Q,g) = UO(Q,g),

* /_0 ax(s — t)u {8 = pi(t)p2 (/Oﬂ a(0)|u(t, 9)]%19) ,g] ds,

_TStSba gE[O,ﬂ'L

(6.23)

—r <t<b,

—-r<60<0, {e0,7],

where a1 (t, ) is a continuous function and is uniformly Hélder continuous in ¢

O<a<lj;a :[-r0—=R;a:[0,7] >R;uye€ C(H;FE)

3 P1

[0,400) — R are continuous

functions ; ps : [0,4+00) — P(R) is a multivalued map with compact convex values.
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To study this system, we consider the space E = L*([0, 7], R) and the operator A : D(A) C
E — E given by Aw = w” with

DA)={weFE :w" ek w0 =wr)=0}

It is well known that A is the infinitesimal generator of an analytic semigroup {7'(¢) }scj05 on E,
with compact resolvent. On the domain D(A), we define the operators A(t) : D(A) C E — E
by

A(t)x(§) = Ax(§) + ao(t, §)z(E).

By assuming that a(., .) is continuous and that ay(t,£) < —dg (69 > 0) forevery t € R, £ € [0, 7],
and specific case a = 1 it follows that the system

u(s) =z € B,

has an associated evolution family given by

U(t, 5)a(€) = {T(t ~ s)eap ( / ao(r, §)d7> :c] ©).
From this expression, it follows that U(t, s) is a compact linear operator and that
|U(t,s)|| < e 9009 for every (t,5) € [0,b] x [0,0] ; s <t
Theorem 6.6.1. Let ¢ € C(H; E). Assume that the condition (H,) holds, py : [0,4+00) — R is
a continuous function, py : [0,+00) — P(R) is a multivalued map with compact convezr values

and the functions ay : [—r,0] = R and as : [0, 7] — R are continuous. Then there exists a mild
solution of (6.23).

Proof. From the assumptions, we have that

F(t,)(€) = / ax(s)(s, £)ds,

-r

p(s,) = 5 — () ( I a2<e>|¢<o,§>\2de) ,

are well defined functions, which permit to transform system (6.23) into the abstract system
(6.1) — (6.2). Moreover, the function F' is bounded linear operator. Now, the existence of mild
solutions can be deduced from a direct application of Theorem 6.2.1.

From Remark 1.7.1, we have the following result.

Corollary 6.6.1. Let ¢ € C(H; E) be continuous and bounded. Then there exists a mild
solution of (6.23) on [—r,b].
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Example 2. Consider the partial differential inclusion
0

“Dg [u(t,g) —/ as(s — t)u (s — (B (/OW a2(0)|u(t,9)|2d0) ,5) ds}

Oul(t, € -
e % T aolt, €)ult,€)

4 /_ ai(s — t)u (s — p1(t)pa (/07r az(0)|u(t, 9)|2d9) 75) ds, (6.24)

—r<t<0, £€0,n],

v(t,0) = wv(t,m) =0, —r <t <0,
\ U<97€>: U0(67§)7 _T<0§07 fE [O,’ﬂ'],
where a3 : [—7,0] — R is a continuous function.

Theorem 6.6.2. Let ¢ € C(H; E). Assume that the condition (H,) holds, py : [0,400) = R is
a continuous function, py : [0,4+00) — P(R) is a multivalued map with compact conver values

and the functions ay,as : [—r,0] — R and ay : [0, 7] — R are continuous. Then there exists a
mild solution of (6.24).

Proof. From the assumptions, we have that

F(t,0)(€) = / ax(s)(s, €)ds,

-r

g1, 0)(€) = / as(s) (s, £)ds,

T

o) == e ([ a@)lv0.0Pa)

are well defined functions, which permit to transform system (6.24) into the abstract system
(6.3) — (6.4). Moreover, the function F' is bounded linear operator. Now, the existence of mild
solutions can be deduced from a direct application of Theorem 6.3.1.

From Remark 1.7.1, we have the following result.

Corollary 6.6.2. Let ¢ € C(H; E) be continuous and bounded. Then there exists a mild
solution of (6.24) on [—r,b].

Example 3. Consider the partial differential inclusion

4 2
Deult,£) ¢ %g@ + aolt, E)u(t, €)

+/_(; a (s — t)u [5 — p1(t)pa (/07r a2(9)|u(t,9)|2d9) 74 ds,
0<t<b Ee i, (6.25)

u(t,0) = u(t,m) =0, 0<t<p,

[ ul0,€) = uo(6,), —00 <0 <0, £€0,7],

where a; : (—o00,0] — R is a continuous function.
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Theorem 6.6.3. Let ¢ € B. Assume that the condition (Hy) holds, py : [0,4+00) = R is a
continuous function, psy : [0,400) — P(R) is a multivalued map with compact convexr values

and the functions a; : (—00,0] — R and as : [0,7] — R are continuous. Then there exists a
mild solution of (6.25).

Proof. From the assumptions, we have that

F(t,)(€) = / ax () (s, €)ds,

—00

p(s,6) = 5 — () ( I azwwm,@ﬁde) ,

are well defined functions, which permit to transform system (6.25) into the abstract system
(6.5) — (6.6). Moreover, the function F'is bounded linear operator. Now, the existence of mild
solutions can be deduced from a direct application of Theorem 6.4.1.

From Remark 1.7.2, we have the following result.

Corollary 6.6.3. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(6.25) on (—o0, b].

Example 4. Consider the partial differential inclusion

4 0

g |utt.) = [ a0 (s = o [ an(@luteoPas) ) s

0%ul(t, &
c % + ap(t, E)u(t, €)

+ [ aits=ou (s it ([ asolute.opan) ) as, (6.26)

0<t<b, £€0,q],

v(t,0) = v(t,m) =0, 0<1t<b,

L v(0,8) = vo(6,€), —00 < 0<0, ¢e|0,m7],
where a3 : (—00,0] — R is a continuous functions.

Theorem 6.6.4. Let ¢ € B. Assume that the condition (Hy) holds, py : [0,+00) = R is a
continuous function, py : [0,+00) — P(R) is a multivalued map with compact convex values

and the functions aq, a3 : (—00,0] = R and ay : [0, 7] — R are continuous. Then there ezists a
mild solution of (6.26).

Proof. From the assumptions, we have that

F(t,)(€) = / ax(s)i(s, €)ds,

—00

9t 0)(€) = / as(s)(s, €)ds,

—00
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o(s,) = 5 — () ( I a2<e>w<o,£>\2de) ,

are well defined functions, which permit to transform system (6.26) into the abstract system
(6.7) — (6.8). Moreover, the function F'is bounded linear operator. Now, the existence of mild
solutions can be deduced from a direct application of Theorem 6.5.1.

From Remark 1.7.2, we have the following result.

Corollary 6.6.4. Let ¢ € B be continuous and bounded. Then there exists a mild solution of
(6.26) on (—o0, b].



Conclusion

In this thesis, we have present some results of existence, even uniqueness and controlla-
bility of mild solutions on a bounded and unbounded interval for different classes of firt order
and Caputo’s fractional derivative order of differential and integrodifferential, perturbed and
nonperturbed,partial functional and neutral functional evolution equations and inclusions with
finite and infinite state-dependent delay using various nonlinear alternatives on Fréchet and
Banach spaces depending on the fixed point argument and combined with semigroups theory.

We have generalized the various evolution problems in the thesis of Baghli [20] for the Ca-
puto’s fractional derivative order and we have considered the case when the delay is depending
on the solution following the paper of Baghli-Benchohra-Nieto |?] and Baghli [19].

QOur first work, in this thesis was proving the existence of mild solutions on unbounded
interval for the first order perturbed evolution equations with infinite state-dependent delay
with the Theorem 3.5, page 8 of our first paper [10| and we have extended the result to the
first order neutral perturbed evolution equations with infinite state-dependent delay with the
Theorem 4.2, page 14 of our first paper [10].

Then in our second work, we have give in this thesis the controllability of mild solutions on
unbounded interval for the first order evolution equations with infinite state-dependent delay
on the Theorem 2, page 388 of our second paper [11] and we have extended the result to the
first order neutral evolution equations with infinite state-dependent delay with the Theorem 3,
page 394 of our first paper [11].

The others results about fractional evolution equations and inclusions are submitted or in
preparation.
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Perspectives

Our perspectives are to study the existence, even uniqueness and the controllability of mild
solutions on the whole positif real line for the different classes of fractional evolution equations
studied in this thesis when the delay is finite and infinite and also is depending on the solution.

We look also for the existence and the controllability of mild solutions for fractional per-
turbed and nonperturbed evolution inclusions with finite and infinite state-dependent delay.
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