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Introduction

Fractional calculus has its origin in the question of the extension of meaning.
A well known example is the extension of meaning of real numbers to complex
numbers, and another is the extension of meaning of factorials of integers to
factorials of complex numbers. In generalized integration and di�erentiation
the question of the extension of meaning is: Can the meaning of derivatives
of integral order dny

dxn
be extended to have meaning where n is any number

irrational, fractional or complex ?
Leibnitz invented the above notation. Perhaps, it was naive play with

symbols that prompted L'Hospital to ask Leibnitz about the possibility that
n be a fraction. "What if n be 1

2
? " , asked L'Hospital. Leibnitz in

1695 replied, "It will lead to a paradox." But he added prophetically, "From
this apparent paradox, one day useful consequences will be drawn." In 1697,
Leibnitz, referring to Wallis's in�nite product for �

2
, used the notation d

1

2y
and stated that di�erential calculus might have been used to achieve the same
result. In 1819 the �rst mention of a derivative of arbitrary order appears in
a text. The French mathematician, S. F. Lacroix ,published a 700 page text
on di�erential and integral calculus in which he devoted less than two pages
to this topic. Starting with y = xn , n a positive integer, he found the mth
derivative to be

dmy

dxm
=

n!

(n�m)!
xn�m:

Using Legendre's symbol r which denotes the generalized factorial, and by
replacing m by 1

2
and n by any positive real number a, in the manner typical

of the classical formalists of this period, Lacroix obtained the formula

d
1

2y

dx
1

2

=
�(a+ 1)

�(a+ 1
2
)
xa�

1

2

which expresses the derivative of arbitrary order 1
2
of the function x . He
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gives the example for y = x and gets

d
1

2

dx
1

2

(x) =
2
p
xp
�

because �(3
2
) = 1

2
�(1

2
) = 1

2

p
� and �(2) = 1 . This result is the same

yielded by the present day Riemann-Liouville de�nition of a fractional deriva-
tive. It has taken 279 years since L'Hospital �rst raised the question for a
text to appear solely devoted to this topic5 . Euler and Fourier made mention
of derivatives of arbitrary order but they gave no applications or examples.
So the honor of making the �rst application belongs to Niels Henrik Abel
in 1823. Abel applied the fractional calculus in the solution of an integral
equation which arises in the formulation of the tautochrone problem. This
problem, sometimes called the isochrone problem, is that of �nding the shape
of a frictionless wire lying in a vertical plane such that the time of slide of
a bead placed on the wire slides to the lowest point of the wire in the same
time regardless of where the bead is placed. The brachistochrone problem
deals with the shortest time of slide.

Abel's solution was so elegant that it is my guess it attracted the attention
of Liouville who made the �rst major attempt to give a logical de�nition of
a fractional derivative. Hepublished three long memoirs in 1832 and several
more through 1855.

Liouville's starting point is the known result for derivatives of integral
order

Dmeax = ameax

which he extended in a natural way to derivatives of arbitrary order

D�eax = a�eax:

He expanded the function f(x) in the series

f(x) =
1X
n=0

cne
anx;

and assumed the derivative of arbitrary order f(x) to be

D�f(x) =
1X
n=0

cna
�
ne

anx;
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This formula is known as Liouville's �rst de�nition and has the obvi-
ous disadvantage that � must be restricted to values such that the series
converges. Liouville's second method was applied to explicit functions

of the form x�a; a > 0. He considered the integral

I =

Z 1

0

ua�1e�xudu:

The transformation xu = t gives the result

x�a =
1

�(1)
I:

Then after operating on both sides with D� , the result

D�x�a =
(�1)��(a+ �)

�(a)
x�a��:

Liouville was successful in applying these de�nitions to problems in po-
tential theory. The �rst de�nition is restricted to certain values of � and
the second method is not suitable to a wide class of functions. Between
1835 and 1850 there was a controversy which centered on two de�nitions of
a fractional derivative. George Peacock favored Lacroix's generalization of a
case of integral order. Other mathematicians favored Liouville's de�nition.
Augustus De Morgan's judgement proved to be accurate when he stated that
the two versions may very possibly be parts of a more general system. In
1850 William Center observed that the discrepancy between the two versions
of a fractional derivative focused on the fractional derivative of a constant.
According to the Peacock-Lacroix version the fractional derivative of a con-
stant yields a result other than zero while according to Liouville's formula
the fractional derivative of a constant equals zero because �(0) =1.

The state of a�airs in the mid-nineteenth century is now cleared up.
Harold Thayer Davis states, "The mathematicians at that time were aiming
for a plausible de�nition of generalized di�erentiation but, in fairness to them,
one should note they lacked the tools to examine the consequences of their
de�nition in the complex plane."

Riemann in 1847 while a student wrote a paper published posthumously
in which he gives a de�nition of a fractional operation. It is my guess that
Riemann was inuenced by one of Liouville's memoirs in which Liouville
wrote, "The ordinary di�erential equation

5
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dny

dxn
= 0:

has the complementary solution

yc = c0 + c1x+ c2x
2 + :::+ cn�1xn�1:

Thus
d�

dx�
f(x) = 0:

Should have a corresponding complementary solution." So, I am inclined to
believe Riemann saw �t to add a complementary function to his de�nition
of a fractional integration:

I�f(x) =
1

�(�)

Z x

c

(x� t)��1f(t)dt+  (x):

Cayley remarked in 1880 that Riemann's complementary function is of
indeterminate nature. The development of mathematical ideas Ls not with-
out error. Peacock made several errors in the topic of fractional calculus
when he misapplied the Principle of the Permanence of Equivalent Forms
which is stated for algebra and which did not always apply to the theory of
operators. Liouville made an error when he failed to note in his discussion
of a complementary function that the specialization of one of the parameters
led to an absurdity. Riemann became hopelessly entangled with an inde-
terminate complementary function. Two di�erent versions of a fractional
derivative yielded di�erent results when applied to a constant. Thus, I sug-
gest that when Oliver Heaviside published his work in the last decade of the
nineteenth century, he was met with haughty silence and disdain not only
because of the hilarious jibes he made at mathematicians but also because
of the distrust mathematicians had in the general concept of fractional op-
erators. The subject of notation cannot be minimized. The succinctness of
notation of fractional calculus adds to its elegance. In the papers that follow
in this text, various notations are used. The notation Iprefer was invented
by Harold T. Davis. All the information can be conveyed by the symbols

cI
�
x f(x) ; � � 0:

Denoting integration of arbitrary order along the x-axis. The subscripts c
and x denote the limits (terminals) of integration of a de�nite integral which

6
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de�nes fractional integration. The adjoining of these subscripts becomes a
vital part of the operator symbol to avoid ambiguities in applications.

Probabilistic functional analysis is an important mathematical are a of
research due to its applications to probabilistic models in applied problems.
Random operator theory is needed for the study of various classes of random
equations. Indeed,in many cases the mathematical models or equations used
to describe phenomena in the biological, physical, engineering, and systems
sciences contain certain parameters or coe�cients which have speci�c inter-
pretations, but whose values are unknown. Therefore, it is more realistic to
consider such equations as random operator equations. These equations are
much more di�cult to handle mathematically than deterministic equations.
Important contributions to the study of the mathematical aspects of such
random equations have been undertaken in [25,80,95] among others.

In this thesis, we shall be concerned by the existence of solutions to the
random system of fractional equations . Our results are based upon very
recently �xed point theorems in vector metric space.
This thesis is structured in 4 chapters and each chapter contains more sec-
tions. It is arranged as follows:
In chapter 1 we give some basic concepts about Special functions ( Euler's
Gamma function , the Beta function and Mittag-Le�er function ) and Frac-
tional Calculus :notations, de�nitions, lemmas and theorems which are used
throughout this thesis , and several approaches of Fractional Derivatives and
Integrals , (Riemann-Liouville , Caputo and Hadamard ).
We study the �xed point in Vector metric space , we mention that for gen-
eralized metric space, the notation of open subset, closed set, convergence,
Cauchy sequence and completeness are similar to those in usual metric spaces.

In chapter 2 , we prove the existence of solutions to the system of frac-
tional discrete equation. More precisely, we will consider the following prob-
lem,8>><>>:

��
��1x(k) = f1(k + �� 1; x(k + �� 1); y(k + �� 1)); k 2 N0(b)

��
��1y(k) = f2(k + �� 1; x(k + �� 1); y(k + �� 1)); k 2 N0(b);

���1
��1x(0) = x0

���1
��1y(0) = y0;

(0.0.1)
where k 2 N0 = f0; 1; :::; b+1g; 0 < � � 1; and f1; f2 : N��1(b)�R�R! R
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are given functions.

In chapter 3 , we prove the existence of solutions to the random system
of fractional di�erential equations:8>><>>:

D�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [0; b];
D�y(t; !) = g(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [0; b];
x(0; !) = x0(!); ! 2 

y(0; !) = y0(!); ! 2 
;

(0.0.2)

where f; g : [0; b] � R
m � R

m � 
 ! R
m, (
;A) is a measurable space and

x0; y0 : 
! R
m are a random variable. D�x is the Caputo fractional deriva-

tive of x with respect to the variable t 2 [0; b] with b > 0:

In chapter 4 , we prove the existence of solutions to the random fractional
di�erential equations via the Hadamard fractional derivative . We consider
the system of Hadamard-type fractional di�erential equations:8>><>>:

CHD�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [1; b];
CHD�y(t; !) = g(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [1; b];
x(1; !) = x0(!); ! 2 
;
y(1; !) = y0(!); ! 2 
;

(0.0.3)

where f; g : [1; b]� Rm � Rm � 
 ! R
m, (
;F) is a measurable space and

x0; y0 : 
! R
m are random variables. CHD�x is the Caputo-modi�cation of

the Hadamard fractional derivative.

8



Chapter 1

Fractional Calculus

In this chapter, we introduce notations, de�nitions, lemmas and theorems
which are used throughout this thesis, and several approaches to the gener-
alization of the notion of di�erentiation and integration are considered. The
choice has been reduced to those de�nitions which are related to applications.

1.1 Special functions

1.1.1 Euler's Gamma function

In the study of special functions a fundamental cornerstone is given by
Euler's Gamma function. The reason herein lies in the fact that this function
can be encountered in nearly all parts of the subject and furthermore many
special functions can be expressed in term of the Gamma functions directly or
by contour integration. Before we give a formal de�nition of Euler's Gamma
function we need an additional de�nition, which will be used in the proofs
for some properties of the Gamma function.

De�nition 1.1.1. The Euler constant  is given by

 = lim
n�!1

(
nX

k=1

1

n
� ln(n)) = 0:5772156649: (1.1.1)

The Euler constant is also known as Euler-Mascheroni constant.
There are a number of ways, how Euler's Gamma function can be de�ned.
We give the one, which will be most useful for our later considerations in
fractional calculus.

9



Fractional Calculus

De�nition 1.1.2. For z 2 IC n f0;�1;�2;�3; : : :g Euler's Gamma function
�(z) de�ned as

�(z) =

8><>:
Z 1

0

tz�1e�tdt if Re(z) > 0

�(z + 1)

z
if Re(z) � 0; z 6= 0;�1;�2;�3; : : :

(1.1.2)

Euler's Gamma function is de�ned in the whole complex plane except
zero and negative integers, where Euler's Gamma function has poles; the
values in (�1; 0) are uniquely given by the ones from (0, 1), the values in
(�2; 1) are uniquely de�ned by the ones in (�1; 0) and so on. Next we state
some properties of Euler's Gamma function, which will become useful in later
chapters.

Theorem 1.1.1. [65] , [67] Euler's Gamma function satis�es the following
properties:

(1) For Re(z) > 0 , the �rst part of de�nition (1.1.2) is equivalent to

�(z) =

Z 1

0

(ln(
1

t
))z�1dt:

(2) For z 2 IC n f0;�1;�2;�3; : : :g
�(z + 1) = z�(z):

(3) For n 2 N
�(n+ 1) = (n� 1)!:

(4) For z 2 IC n f0; 1; 2; 3; : : :g
�(1� z) = �z�(�z):

(5) (Limit representation) For Re(z) > 0 the following limit holds:

�(z) = lim
n�!1

n!nz

z(z + 1)(z + 2)(z + 3) : : : (z + n)
: (1.1.3)

The Limit representation is equivalent to Euler's in�nite product, given
by

1

z

1Y
n=1

(1 + 1
n
)z

1 + z
n

:

10



1.1 Special functions

(6) (Weierstrass de�nition) Let z 2 ICnf0;�1;�2;�3; : : :g . Then Euler's
Gamma function can be de�ned by

1

�(z)
= zez

1Y
n=1

(1 +
z

n
)e�

z
n :

where g is the Euler constant (1.1.1) .

(7) Euler's Gamma function is analytic for all z 2 IC n f0;�1;�2;�3; : : :g
.

(8) Euler's Gamma function is never zero.

(9) (Reection Theorem) For all non-integer z 2 IC,

�(z)�(1� z) =
�

sin(�z)
and �(z)�(�z) = � �

z sin(�z)
:

(9) For half-integer arguments , �(n
2
); n 2 N has the special form

�(
n

2
) =

(n� 2)!!
p
�

2
n�1
2

;

where n!! is the double factorial :

n!! =

8><>:
n:(n� 2) : : : 5:3:1 if n > 0 n odd

n:(n� 2) : : : 6:4:2 if n > 0 n even

1 if n = 0 ;�1
:

1.1.2 The Beta function

A special function, which is connected to Euler's Gamma function in a direct
way, is given by the Beta function, de�ned as follows :

De�nition 1.1.3. The Beta function B(a; b) in two variables a; b 2 C is
de�ned by

B(a; b) =
�(a)�(b)

�(a+ b)
(1.1.4)

Again we state some properties of this special function, which we will use
later on. Especially the Beta integral in the following theorem will be used
for examples in the chapter on fractional calculus.

11



Fractional Calculus

Theorem 1.1.2. [65] , [67] The Beta function possesses the following prop-
erties :

(1) For Re(z); Re(w) > 0 , the relationship (1.1.4) is equivalent to

B(a; b) =

Z 1

0

ta�1(1� t)b�1dt =
Z 1

0

ta�1

(1 + t)a+b
dt: (1.1.5)

B(a; b) = 2

Z �
2

0

(sin t)2a�1(cos t)2b�1dt: (1.1.6)

(2) B(a+ 1; b+ 1) is the solution of the Beta Integral :Z 1

0

ta(1� t)bdt = B(a+ 1; b+ 1):

(3) The following identities hold :

(a) B(a; b) = B(b; a)

(b) B(a; b) = B(a+ 1; b) +B(a; b+ 1)

(c) B(a; b+ 1) = b
a
B(a+ 1; b) = b

a+b
B(a; b)

1.1.3 Mittag-Le�er function

De�nition 1.1.4. For z 2 IC the Mittag-Le�er Function E�(z) is de�ned
by :

E�(z) =
1X
k=0

zk

�(�k + 1)
; � > 0 (1.1.7)

and the generalized Mittag-Le�er Function E�;�(z)by

E�;�(z) =
1X
k=0

zk

�(�k + �)
; �; � > 0: (1.1.8)

In the following theorem we state some of the properties of the Mittag-
Le�er function, which will be of some use later on in the analysis of ordinary
as well as partial di�erential equations of fractional order.

12



1.1 Special functions

Theorem 1.1.3. [65] , [67] The Mittag-Le�er function possesses the fol-
lowing properties:

(1) For jzj < 1 the generalized Mittag-Le�er function satis�esZ 1

0

e�tt��1E�;�(t
�z)dt =

1

z � 1
:

(2) For jzj < 1, the Laplace transform of the Mittag-Le�er function
E�(z

�) is given by Z 1

0

e�ztE�(z
�)dt =

1

z � z1��
:

(3) The Mittag-Le�er function (1.1.7) converges for every z 2 IC.

(4) For special values a the Mittag-Le�er function is given by :

(a) E0(z) =
1

z�1

(b) E1(z) = ez

(c) E2(z
2) = cosh(z)

(d) E2(�z2) = cos(z)

(5) The generalized Mittag-Le�er function possesses the following prop-
erties:

(i) E�;�(z) = zE�;�+�(z) +
1

�(�)
:

(ii) E�;�(z) = �E�;�+�(z) + �z d
dz
E�;�+1(z):

(iii)

E�;�(z) =
1

2�i

Z
�

����e�

�� � z
d�

where � is a contour which starts and ends at �1 and encircles the disc
j�j � jzj 1� counterclockwise. If 0 < � < 1; � > 0; then the asymptotic
expansion of E�;� as z !1 is given by

13



Fractional Calculus

E�;�(z) =

8<:
1
�
z1�� exp

�
z
1

�

�
+ E�;�(z); for jarg(z)j � 1

2
��;

E�;�(z); for jarg(�z)j � (1� 1
2
)��;

where

E�;�(z) = �
n�1X
k=1

z�k

�(� � �n)
+O(jzj�n) as z !1:

Set

1.2 Fractional Derivatives and Integrals

1.2.1 Riemann-Liouville Integrals

De�nition 1.2.1. Let � 2 R+ and let f be continuous function on [a; b] .
The operator I�a , de�ned on L1[a; b] by

I�a f(x) =
1

�(�)

Z x

a

(x� t)��1f(t)dt (1.2.1)

for a < x < b , is called the Riemann-Liouville fractional integral operator of
order � .

For � = 0 , we set I0a = I, the identity operator.

The de�nition for � = 0 is quite convenient for future manipulations.
It is evident that the Riemann-Liouville fractional integral coincides with
the classical de�nition of I�a in the case � 2 N, except for the fact that we
have extended the domain from Riemann integrable functions to Lebesgue
integrable functions (which will not lead to any problems in our develop-
ment).Moreover, in the case � � 1 it is obvious that the integral I�a f(x) ex-
ists for every x 2 [a; b] because the integrand is the product of an integrable
function f and the continuous function (x � t)��1 . In the case 0 < � < 1
though, the situation is less clear at �rst sight. However, the following result
asserts that this de�nition is justi�ed. All the results of this section, can be
found in [1, 27, 32{34,57,67,90].
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1.2 Fractional Derivatives and Integrals

Theorem 1.2.1. Let f 2 L1[a; b] and � > 0 . Then, the integral I�a f(x)
exists for almost every x 2 [a; b] . Moreover, the function I�a f itself is also
an element of L1[a; b].

Proof. We write the integral in question asZ x

a

(x� t)��1f(t)dt =
Z 1

�1
�1(x� t)�2(t)dt

where

�1(u) =

(
u��1 for 0 < u < b� a

0 else
:

and

�2(u) =

(
f(u) for a < u < b

0 else
:

By construction , �j 2 L1(R) for j = 1; 2 , and thus by a classical result on
lebesgue integration .

Theorem 1.2.2. Let �; � > 0 and � 2 L1[a; b]. Then,

I�a I
�
a � = I�+�a �: (1.2.2)

holds almost everywhere on [a; b] . If additionally � 2 C[a; b] or � + � > 1 ,
then the identity holds everywhere on [a; b] .

Proof. The neutral element of semigroup is ascertained by de�nition 1.2.1 .
Therefore we only need to prove this relation holds almost every where . By
de�nition of the fractional integral have

I�a I
�
a �(x) =

1

�(�)�(�)

Z x

a

(x� t)��1
Z t

a

(x� s)��1�(s)dsdt:

We may interchange the order of integration, obtaining

I�a I
�
a �(x) =

1

�(�)�(�)

Z x

a

Z x

s

(x� t)��1(t� s)��1�(s)dtds

=
1

�(�)�(�)

Z x

a

�(s)

Z x

s

(x� t)��1(t� s)��1dtds

The substitution t = s+ �(x� s) yields

15
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I�a I
�
a �(x) =

1

�(�)�(�)

Z x

a

�(s)

Z 1

0

[(x� t)(1� �)]��1 � [�(t� s)]��1(x� s)d�ds

=
1

�(�)�(�)

Z x

a

�(s)(x� s)�+��1
Z 1

0

(1� �)��1���1d�ds

The term
R 1
0
(1� �)��1���1d�ds is the Beta function , and thus

I�a I
�
a �(x) =

1

�(� + �)

Z x

a

�(s)(x� s)�+��1ds = I�+�a �(x):

holds almost everywhere on [a; b]:

Corollary 1.2.3. Under the assumptions of theorem 1.2.12,

I�a I
�
a � = I�a I

�
a �:

There is an algebraic way to state this result.

Theorem 1.2.4. The operators fI�a : L1[a; b] �! L1[a; b];� > 0g form a
commutative semigroup with respect to concatenation. The identity operator
I0a is the neutral element of this semigroup.

Theorem 1.2.5. Let � > 0 . Assume that (fk)
1
k=1 is a uniformly convergent

sequence of continuous functions on [a; b] . Then we may interchange the
fractional integral operator and the limit process, i.e.

(I�a lim
k�!1

fk)(x) = ( lim
k�!1

I�a fk)(x):

In particular, the sequence of functions (I�a fk)
1
k=1 is uniformly convergent.

Proof. For the �rst statement we utilize the well known fact, that if f denotes
the limit of the sequence (fk), the function f is continuous. For � = 0 the
stated result follows directly from the uniform convergence and for � > 0 we
can deduce

j I�a fk(x)� I�a f(x) j � 1

�(�)

Z x

a

j fk(t)� f(t) j (x� t)��1dt

� 1

�(� + 1)
k fk � f k1 (b� a)�

The last term converges uniformly to zero as k �!1 for all x 2 [a; b].

16



1.2 Fractional Derivatives and Integrals

1.2.2 Riemann-Liouville Derivatives

Having established these fundamental properties of Riemann -Liouville in-
tegral operators, we now come to the corresponding di�erential operators.

De�nition 1.2.2. Let � 2 R+ , n = d�e+1 and let f be continuous function
on [a; b] . The operator D�

a , de�ned by

D�
a f(x) = DnIn��a f(x) =

1

�(n� �)

�
d

dx

�n Z x

a

(x� t)n���1f(t)dt (1.2.3)

for a � x � b is called the Riemann-Liouville di�erential operator of order
� . For � = 0, we set D0

a = I, the identity operator.

Lemma 1.2.6. Let � 2 R+ and let n 2 N such that n > �. Then,

D�
a = DnIn��a :

Proof. The assumption on n implies that n � d�e. Thus,

DnIn��a = Dd�eDn�d�eIn�d�ea Id�e��a = Dd�eId�e��a = D�
a :

in view of the semigroup property of fractional integration and the fact that
ordinary di�erentiation is left-inverse to integer integration.

De�nition 1.2.3. By ACn or ACn[a; b] we denote the set of functions with
an absolutely continuous (n� 1)st derivative, i.e. the functions f for which
there exists (almost everywhere) a function g 2 L1[a; b] such that

f (n�1)(x) = f (n�1)(a) +
Z x

a

g(t)dt:

In this case we call g the (generalized) nth derivative of f , and we simply
write g = f (n).

Lemma 1.2.7. Let f 2 AC1[a; b] and 0 < a < 1. Then D�
a exists almost

everywhere in [a; b]: Moreover, D�
a 2 Lp[a; b] for 1 � p < 1

n
and

D�
a f(x) =

1

�(1� �)

�
f(a)

(x� a)�
+

Z x

a

(x� t)��f 0(t)dt
�
: (1.2.4)

17
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Classical di�erential operators fDn : n 2 N0g exhibit a semigroup prop-
erty, which follows immediately from their de�nition. Furthermore, we have
proven in Theorem 1.2.12 that the Riemann-Liouville integral operators also
form a semigroup. The following theorem yields a similar result for the
Riemann-Liouville di�erential operator

Theorem 1.2.8. Assume that �; � � 0 . Moreover, let g 2 L1[a; b] and
f = I�+�a g . Then

D�
aD

�
af = D�+�

a f: (1.2.5)

Proof. By our assumption on f and the de�nition of the Riemann-Liouville
di�erential operator,

D�
aD

�
af = D�

aD
�
aI

�+�
a g = Dd�eId�e��a Dd�eId�e��a I�+�a g:

The semigroup property of the integral operators allows us to rewrite this
expression as

D�
aD

�
af = Dd�eId�e��a Dd�eId�e+�a g

= Dd�eId�e��a Dd�eId�ea I�a g

By the fact that the classical di�erential operator is left inverse to integer
integration and the fact that the orders of the integral and di�erential oper-
ators involved are natural numbers the expression is equivalent to

D�
aD

�
af = Dd�eId�e��a I�a g = Dd�eI�a g:

where we have once again used the semigroup property of fractional integra-
tion. Again applying the integer di�erential operator as left inverse of the
integral we �nd that

D�
aD

�
af = g:

The proof that D�+�
a f = g: goes along similar lines.

Theorem 1.2.9. Let � > 0 . Assume that (fk)
1
k=1 is a uniformly convergent

sequence of continuous functions on [a; b]; and that D�
a fk exists for every k.

Moreover, assume that (D�
a fk)

1
k=1 converges uniformly on [a+ �; b] for every

� > 0 . Then, for every x 2 (a; b] , we have

(D�
a lim
k�!1

fk)(x) = ( lim
k�!1

D�
a fk)(x):

18



1.2 Fractional Derivatives and Integrals

Theorem 1.2.10. Let f and g be two functions de�ned on [a; b] such that
D�

a f and D�
a g exist almost everywhere. Moreover, let c1; c2 2 R. Then,

D�
a (c1f + c2g) exists almost everywhere, and

D�
a (c1f + c2g) = c1D

�
a f + c2D

�
a g:

Proof. This linearity property of the fractional di�erential operator is an
immediate consequence of the de�nition of D�

a .

Having de�ned both, the Riemann-Liouville integral and the di�erential
operator, we can now state results on the interaction of both. A �rst result
is concerned with the inverse property of the two operators:

Theorem 1.2.11. Let � > 0 . Then , for every f 2 L1[a; b] ,

D�
a I

�
a f = f: (1.2.6)

almost everywhere . If furthermore there exists a function g 2 L1[a; b] such
that f = I�a g then

I�aD
�
a f = f

almost everywhere.

Proof. Let n = d�e + 1 . Then, by the de�nition of D�
a and the semigroup

property of fractional integration and the left inverse of the classical di�er-
ential operator,

D�
a I

�
a f(x) = DnIn��a I�a f(x) = DnIna f(x) = f(x):

The second statement is an immediate consequence of the previous result:
We have,that

I�aD
�
a f = I�a [D

�
a I

�
a g] = I�a g = f:

Theorem 1.2.12. Assume that � � 0 and n = d�e+ 1 and f 2 ACn[a; b].
Then

I�aD
�
a f(x) = f(x)�

n�1X
k=0

(x� a)��k�1

�(�� k)
lim

z�!a+
Dn�k�1In��f(z): (1.2.7)

Speci�cally, for 0 < � < 1 we have

I�aD
�
a f(x) = f(x)� (x� a)��1

�(�)
lim

z�!a+
I1��f(z):
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Corollary 1.2.13. (Taylor expansion for Riemann-Liouville derivatives) Let
� � 0 and n = d�e + 1 , . Assume that f is such that In��f 2 ACn[a; b] .
Then

f(x) =
(x� a)��n

�(�� n+ 1)
lim

z�!a+
In��f(z)+

n�1X
k=0

(x� a)k+��n

�(k + �� n+ 1)
lim

z�!a+
Dk+��n

a f(z)+I�aD
�
a f(x):

A more complex result in the classical case was given by Leibniz' formula
as generalized product rule. For Riemann-Liouville derivatives a similar re-
sult can be obtained:

Theorem 1.2.14. (Leibniz' formula for Riemann-Liouville operators) Let
� > 0, and assume that f and g are analytic on (a� h; a+ h): Then,

D�
a (fg) (x) =

d�eX
k=0

�
�
k

��
Dkf

�
(x)
�
D��k

a g
�
(x)+

1X
k=d�e+1

�
�
k

��
Dkf

�
(x)
�
Ik��a g

�
(x)

(1.2.8)

for a < x < a+
h

2
.

1.2.3 Caputo operator

In 1967 Caputo was published, where a new de�nition of a fractional deriva-
tive was used. In this section we state the de�nition and some properties of
this new operator, today called Caputo fractional derivative and most impor-
tantly show its connection to the fractional Riemann-Liouville integral and
di�erential operators. We begin with a formal de�nition:

De�nition 1.2.4. Let � 2 R+ and n = d�e+1. The operator CD
�
a , de�ned

by

CD
�
a f(x) = In��a Dnf(x) =

1

�(n� �)

Z x

a

(x� t)n���1(
d

dx
)nf(t)dt (1.2.9)

for a � x � b, is called the Caputo di�erential operator of order �.

Theorem 1.2.15. Let � � 0 and n = d�e+1 . Moreover, assume that D�
a f

exists and f possesses (n - 1) derivatives at a. Then,

CD
�
a f(x) = D�

a

"
f �

n�1X
k=0

(x� a)k

k!
Dkf(a)

#
almost everywhere .
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1.2 Fractional Derivatives and Integrals

Another way to express the relation between both fractional di�erential
operators is given by the following lemma:

Lemma 1.2.16. Let � � 0 and n = d�e + 1 . Assume that f is such that
both D�

a f and CD
�
a f exist . Then,

CD
�
a f(x) = D�

a f(x)�
n�1X
k=0

Dkf(a)

�(k � � + 1)
(x� a)k��:

An immediate consequence of this Lemma is

Lemma 1.2.17. Let � � 0 and n = d�e + 1. Assume that f is such that
both D�

a f and CD
�
a f exist. Moreover, let Dkf(x0) = 0 for k = 0; 1; : : : ; n� 1

(i.e. we assume f to have an n-fold zero at x0). Then,

D�
a f =C D

�
a f:

This is especially important in view of di�erential equations of fractional
order. It basically states, that those equations formulated with Riemann-
Liouville derivatives coincide with those formulated with Caputo derivatives,
if the initial condition(s) are homogeneous.
Considering the interaction of Riemann-Liouville integrals and Caputo dif-
ferential operators, we �nd that the Caputo derivative is also a left inverse
of the Riemann-Liouville integral:

Theorem 1.2.18. If f is continuous and � > 0 , then

CD
�
a I

�
a f = f:

Theorem 1.2.19. Assume that � � 0 and n = d�e+1 , and f 2 ACn[a; b]
. Then

I�a (CD
�
a f(x)) = f(x)�

n�1X
k=0

Dkf(a)

k!
(x� a)k:

Corollary 1.2.20. (Taylor expansion for Caputo derivatives) Let � � 0 and
n = d�e: Assume that f is such that f 2 ACn[a; b] . Then

f(x) =
n�1X
k=0

Dkf(a)

k!
(x� a)k + I�a (CD

�
a f(x)) :
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A comparison of this result with Taylor's expansion in case of Riemann-
Liouville di�erential operators given in (1.2.7) will - apart from the simpler
structure in the Caputo case .
In terms of derivation rules for the Caputo derivative of composed functions,
we can �nd similar, but not identical, results to those for the Riemann-
Liouville derivative. We start with the linearity

Theorem 1.2.21. Let f and g be two functions de�ned on [a; b] such that

CD
�
a f and CD

�
a g exist almost everywhere. Moreover, let c1; c2 2 R. Then,

CD
�
a (c1f + c2g) exists almost everywhere, and

CD
�
a (c1f + c2g) = c1 (CD

�
a f) + c2 (CD

�
a g) :

Theorem 1.2.22. (Leibniz' formula for Caputo operators) Let 0 < � < 1 ,
and assume that f and g are analytic on (a� h; a+ h): Then,

CD
�
a (fg) (x) =

(x� a)��

�(1� �)
g(a) (f(x)� f(a)) + (CD

�
a g(x)) f(x)

+
1X
k=1

�
�
k

��
CD

k
af
�
(x)
�
Ik��a g(x)

�
The next two results on the Caputo di�erential operator establish another

signi�cant di�erence between Riemann-Liouville and Caputo derivatives.

Lemma 1.2.23. Let � > 0; � 62 N and n = d�e + 1 . Moreover, assume
that f 2 Cn[a; b] . Then, CD

�
a f is continuous on [a, b] and CD

�
a f(a) = 0.

We may relax the conditions on f slightly to obtain the following result:

Lemma 1.2.24. � > 0; � 62 N and n = d�e + 1 . Moreover, let that
f 2 An[a; b] and assume that CD

�̂
a f 2 C[a; b] for some �̂ 2 (�; n). Then,

CD
�
a f is continuous on [a; b] and CD

�
a f(a) = 0:

1.2.4 Hadamard fractional calculus

In this section we introduce some notations and de�nitions from the fractional
calculus. For the notation, de�nitions and lemmas of this section, we cite
[39,52,56].
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1.2 Fractional Derivatives and Integrals

De�nition 1.2.5. The Hadamard fractional integral of order � 2 R+ of a
function f : [a; b]! R

m; 0 < a < b � 1; is de�ned by

J�f(t) =
1

�(�)

Z t

a

�
ln
t

s

���1
f(s)

ds

s

where �(�) is the Euler-Gamma function.

De�nition 1.2.6. The Hadamard derivative of order � 2 [n � 1; n); of the
function f : [a; b]! R

m; 0 < a < b � 1; is given by

HDf(t) = �n(Jn��f)(t) =
1

�(n� �)

�
t
d

dt

�n Z t

a

�
ln
t

s

�n���1
f(s)

ds

s

where � := t d
dt
; �0f(t) = f(t); and n = [�] + 1 with [�] denoting the smallest

integer greater than or equal to �:

De�nition 1.2.7 ( [52]). For an n�times di�erentiable function and c > 0.
The Caputo type Hadamard fractional derivative of order � > 0 of a function
f : [a;1)! R

m is

CHD�
c+f(t) =

1

�(n� �)

Z t

c

�
ln
t

s

�n���1
�ng(s)

ds

s
= Jn��a �nf(t);

where � < n � � + 1, i.e., n = [�] + 1, provided that the right-hand side
exists.

The Hadamard fractional derivative is the left-inverse operator to the
Hadamard fractional integral in the space Lp[a; b], 1 � p � 1, that is
HD�J�f = f:

Also, de�ne

ACn
� ([a; b]) = ff : [a; b]! R

m : �nf 2 ACn([a; b])g:

The Caputo-type modi�cation of the left-sided and right-sided Hadamard
fractional derivatives are de�ned respectively by

CHD�f(t) = HD�

"
f(t)�

n�1X
k=0

�k(a)

k!

�
ln
t

a

�k
#
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and

CHD�f(t) = HD�

"
f(t)�

n�1X
k=0

�k(b)

k!

�
ln
b

t

�k
#
:

In particular, if 0 < � < 1; then

CHD�f(t) = HD� [y(t)� f(a)] ;

and
CHD�f(t) = HD� [y(t)� f(b)] :

Lemma 1.2.25. , Let � > 0 and � > 0: Then, given 0 < a < b < 1 and
1 � p <1, for every f 2 Lp(a; b),

D�J�f = J���f and J�J�f = J�+�f:

Lemma 1.2.26. Let � > 0; n = [�] + 1 and f 2 C[a; b]. Then
CHD�J�f(t) = f(t) t 2 [a; b]:

Lemma 1.2.27. Let � > 0; n = [�]+1, and f 2 ACn
� [a; b] or f 2 Cn([a; b]).

Then,

J� CHDf(t) = f(t)�
n�1X
k=0

�k(a)

k!

�
ln
t

a

�k

:

Properties 1.2.28. [56,101] If � > 0; � > 0 , and 0 < a < b <1 , then
we have:

(1) �
HJ

�
a+(ln

t

a
)��1

�
(x) =

�(�)

�(� + �)
(ln

x

a
)�+��1:

(2) �
HD

�
a+(ln

t

a
)��1

�
(x) =

�(�)

�(� � �)
(ln

x

a
)����1:
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1.3 Random variable on fractional calculus

1.3 Random variable on fractional calculus

Let (
;A) be a measurable space; that is, a set 
 with a �-algebra of subsets
of 
. A probability measure P is a measure on with P(
) = 1 . Then
(
;A;P) is called a probability space. In the following, assume that (
;A;P)
is a complete probability space. Let X be a metric space, B(X) will be the
�-algebra of all Borel subsets of X. A measurable function x : 
 �! X is
called a random element in X. A random element in X is called a random
variable.
Let X; Y are two locally compact, metric spaces and f : 
 � X ! Y . By
C(X; Y ) we denote the space of continuous functions from X into Y endowed
with the compact-open topology.

Lemma 1.3.1. [76] f is a Carath�eodory function if and only if ! ! r(!)(:) =
f(!; :) is a measurable function from 
! C(X; Y ):

Proof. First assume thatf(�; �) is Carath�eodory. Let B be a basis element
for C(X; Y ) with compact-open topology. Then B = fg(:) 2 C(X; Y ) :
g(K) � V g where K � X is compact, V � Y is open. We need to show that
r�1(B) 2 �. Let fxngn>1 be dense in K: Then we have

r�1(B) = f! 2 
 : r(!)(�) 2 Bg

= f! 2 
 : r(!)(K) � V g

= fw 2 
 : f(!;K) � V g

=
T

n�1f! 2 
 : f(!; xn) 2 V g 2 �:

Since by hypothesis f(�; �) is Carath�eodory.
Now assume that ! �! r(!)(�) = f(!; �) is measurable from 
 into

C(X; Y ). Let (r; Id) : 
�X �! C(X; Y )�X be de�ned by (r; Id)(!; x) =
(r(!)(�); x). Clearly this is measurable. Let e be the evaluation map on
C(X; Y ) �! X. We know that e(�; �) is continuous. Consider the map u :

�X �! Y de�ned by u = e�[(r; Id)] . Then u(!; x) = e[(r(!)(x)(�); x)] =
r(!)(x) = f(w; x) =) r(�; �) = f(�; �) . But u(�; �) is a Carath�eodory
function. Hence so is f(�; �):

Let ([0; b]; L; �) be a Lebesgue-measure space, where b > 0 and let x :
[0; b]� 
 �! R

m be a product measurable function. We say that x(:; :) is
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sample path Lebesgue integrable on [0; b] if x : [0; b] �! R
m is Legesgue

integrable on [0; b] for a.e. w 2 
.
Let � > 0. If x : [0; b] � 
 �! R

m is sample path Lebesgue integrable on
[0; b] then we can consider the fractional integral

I�x(t; !) =
1

�(�)

Z t

0

(t� s)��1x(s; !)ds: (1.3.1)

which will be called the sample path fractional integral of x; where � is the
Euler's Gamma function.

Remark 1.3.1. If x(:; !) : [0; b] �! R
m is Lebesgue integrable on [0; b]

for each w 2 
 , then t 7�! I�x(t; w) is also Lebesgue integrable on [0; b] for
each w 2 
.

De�nition 1.3.1. A function x : [0; b] � 
 �! R
m is said to be a

Carath�eodory function if t 7�! x(t; w) is continuous for a.e. w 2 
 and
w 7�! x(t; w) is measurable for each t 2 [0; b]:We recall that a Carath�eodory
function is a product measurable function .

Proposition 1.3.2. If x : [0; b] � 
 �! R
m is a Carath�eodory function,

then the function (t; w) 7�! I�x(t; w) is also a Carath�eodory function.

Proof. Clear that I� : C([0; b];Rm) ! R
m is a continuous operator, let L :


 ! C([0; b];Rm) de�ned by L(!)(:) = x(:; !) . From lemma 1.3.1, L(:) is
measurable. Then the operator ! ! (I� � L)(!)(:) is measurable. Since the
function t ! I�x(t; !) is continuous function. Hence (t; !) ! I�x(t; !) is a
Carath�eory function.

De�nition 1.3.2. A function x : [0; b]�
 �! R
m is said to have a sample

path derivative at t 2 [0; b] if the function t 7�! x(t; w) has a derivative at
t for a.e. w 2 
: We will denote by d

dt
x(t; w) or by x0(t; w) the sample path

derivative of x(:; w) at t. We say that x : [0; b]� 
 �! R
m is sample path

di�erentiable on [0; b] if x(:; :) has a sample path derivative for each t 2 [0; b]
and possesses a one-sided sample path derivative at the end points 0 and b:

Proposition 1.3.3. If x : [0; b]� 
 �! R
m is said to have a sample path

derivative at t 2 [0; b] is a sample path absolutely continuous on [0; b] (that
is, t 7�! x(t; w) is absolutely continuous on [0; b] for a:e: w 2 
 ) , then
the sample path derivative x0(t; !) exists for �-a.e. t 2 [0; b]:
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De�nition 1.3.3. Let x : [0; b] � 
 �! R
m be a sample path absolutely

continuous on [0; b] and let � 2 (0; 1]: Then, for �-a.e.t 2 [0; b] and for
a:e: w 2 
, we de�ne the Caputo sample path fractional derivative of x by:

D�x(t; w) = I1��x(t; w) =
1

�(1� �)

Z t

0

(t� s)��x0(s; w)ds: (1.3.2)

Proposition 1.3.4. If x : [0; b] � 
 �! R
m is sample path di�erentiable

on [0; b] and t 7�! x0(t; w) is continuous on [0; b] ; then D�x(t; w) exists for
every t 2 [0; b] and t 7�! D�x(t; w)is continuous on [0; b]:

Proposition 1.3.5. If x : [0; b] � 
 �! R
m is a Carath�eodory function

then :

D�I�x(t; w) = x(t; w) (1.3.3)

for all t 2 [0; b] and a.e. w 2 
:

Proposition 1.3.6. If x : [0; b] � 
 �! R
m is sample path absolutely

continuous on [0; b] then:

I�D�x(t; w) = x(t; w)� x(0; w) (1.3.4)

for all t 2 [0; b] and a.e. w 2 
:

Proposition 1.3.7. If x : [0; b] � 
 �! R
m is sample path absolutely

continuous on [0; b] then :

t 7�! h(t; w) =
1

�(1� �)

Z t

0

(t� s)��x(s; w)ds:

is also sample path absolutely continuous on [0; b]. Moreover, for �-a.e. t 2
[0; b] and a.e. w 2 
, we have that

h0(t; w) =
d

dt

1

�(1� �)

Z t

0

(t� s)��x(s; w)ds = D�x(t; w) +
x(0; w)

�(1� �)
t��:

(1.3.5)

For the de�nitions and propositions of this section we see Diethelm [32],
Kilbas et al [57], Samko et al [90] and Podlubny [82].
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1.4 Discrete Fractional Calculus

In this section, we recall from the literature some notations, de�nitions, and
auxiliary results that will be used throughout this paper. All the results of
this section, can be found in [3, 4, 14, 15,17,18].
Notations

Na = fa; a+ 1; : : :g; a 2 R; (1.4.1)

Na(b) = fa; a+ 1; : : : a+ b+ 1g; a 2 R; b� a � 0; a� b 2 Z: (1.4.2)

and
N0(b) = f0; 1; : : : b+ 1g; b 2 N: (1.4.3)

De�nition 1.4.1. ( The Falling Function ) Let t 2 R ; � > 0 we de�ne the
Falling function by :

t� = t(t� 1)(t� 2)(t� 3)(t� 3) ::: (t� � + 1): (1.4.4)

Lemma 1.4.1. For � > 0

t� =
�(t+ 1)

�(t� � + 1)
(1.4.5)

Proof we have :

t� = t(t� 1)(t� 2)(t� 3)(t� 3) ::: (t� � + 1)

we �nd that

t� =
t(t� 1)(t� 2)(t� 3)(t� 4) ::: (t� � + 1)�(t� � + 1)

�(t� � + 1)

Then :

t� =
�(t+ 1)

�(t� � + 1)
:

Theorem 1.4.2. (Power Rule). The following formula holds :

�t� = �t��1:

Lemma 1.4.3. For k 2 N+
0 , we have :

s=kX
s=0

(k � s+ �� 1)��1 =
�(k + � + 1)

��(k + 1)
: (1.4.6)
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1.4 Discrete Fractional Calculus

Proof we have :

s=kX
s=0

(k � s+ �� 1)��1 =
s=kX
s=0

�(k � s+ �)

�(k � s+ 1)

and

s=kX
s=0

(k � s+ �� 1)��1 =
s=k�1X
s=0

�(k � s+ �)

�(k � s+ 1)
+ �(�)

we �nd that

s=kX
s=0

(k � s+ �� 1)��1 =
s=k�1X
s=0

1

�
[
�(k � s+ � + 1)

�(k � s+ 1)
� �(k � s+ �)

�(k � s)
] + �(�)

then

s=kX
s=0

(k � s+ �� 1)��1 =
1

�
[
�(k + � + 1)

�(k + 1)
� �(� + 1)

�(1)
] + �(�)

then
s=kX
s=0

(k � s+ �� 1)��1 =
�(k + � + 1)

��(k + 1)
:

Lemma 1.4.4. For k 2 N+
0 , we have :

s=kX
s=0

�(k � s+ �)

�(�)�(k + s)
=

�(k + � + 1)

�(� + 1)�(k + 1)
: (1.4.7)

Proof we have :

s=kX
s=0

(k � s+ �� 1)��1 =
�(k + � + 1)

��(k + 1)

and

(k � s+ �� 1)��1 =
�(k � s+ �)

�(k � s+ 1)
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then
s=kX
s=0

�(k � s+ �)

�(k � s+ 1)
=

�(k + � + 1)

��(k + 1)

we get that : ��(�) = �(� + 1) , then

s=kX
s=0

�(k � s+ �)

�(k � s+ 1)
=

�(�)

�(� + 1)
� �(k + � + 1)

�(k + 1)

then
s=tX
s=0

�(k � s+ �)

�(�)�(k � s)
=

�(k + � + 1)

�(� + 1)�(k + 1)
:

We de�ne the forward di�erence operator by

(�')(t) = '(t+ 1)� '(t); t 2 Na; a 2 R:

De�nition 1.4.2. Let ' : Na �! R and � > 0. Then the � � th order
fractional sum of ' started at a is de�ned by

(���
a ')(t) =

1

�(�)

t��X
s=0

(t� s� 1)(��1)'(s): (1.4.8)

where ���
a ' is de�ned for t 2 Na+� . Moreover, we additionally de�ne

(��0
a ')(t) = '(t) for t 2 Na:

For � = 1 , formula (1.3.5) takes the form

(��1
a ')(t) =

t�1X
s=0

'(s) =

Z t

a

'(s)ds

which is the delta integral of ' on the set [a; t] \ N0:

De�nition 1.4.3. Let � 2 (0; 1] . Then the di�erence operator is de�ned as

(���
a ')(t) = (�(��(1��)

a '))(t); t 2 Na+1��: (1.4.9)

where (�')(t) = '(t+ 1)� '(t) and ' : Na �! R:
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Theorem 1.4.5. Let ' be a real- valued function de�ned on Na and let
�; � > 0: Then the following equalities hold :

(���
�+�(�

��
a '))(t) = (��(�+�)

a ')(t) = (���
a+�(�

��
a '))(t):

Theorem 1.4.6. For any � > 0 the following holds :

(���
a (�'))(t) = (�(���)

a '))(t)� (t� a)(��1)

�(�)
'(a) (1.4.10)

where ' is de�ned on Na:

Lemma 1.4.7. Let a 2 R and p > 0 . Then

�(t� a)(p) = p(t� a)(p�1) (1.4.11)

for any t for which both sides are well-de�ned . Furthermore , for � > 0

���
a+p(t� a)(p) = p(��)(t� a)(p+�); t 2 Na+p+�: (1.4.12)

and
��

a+p(t� a)(p) = p(�)(t� a)(p��); t 2 Na+p+1��:

Equation (1.4.12) can be also transformed as follows let '(s) = (s� a+

p)(p); then for s 2 Na , (�
��
a ')(s+�) =

�(p+ 1)

�(p+ � + 1)
(k+p+�)(p+�); s = a+k:

Theorem 1.4.8. Let � 2 (0; 1] . Then for t 2 Na and U : Na�1 �! R the
following formula holds :

(���
0 (��

��1U))(t) = U(t)� (t)(��1)

�(�)
U(�� 1); t 2 Na (1.4.13)

Theorem 1.4.9. For any � > 0 and U : Na �! R , the following equality
holds :

���
a �U(t) = ����

a U(t)� (t� a)(��1)

�(�)
U(a); t 2 Na: (1.4.14)

Theorem 1.4.10. For any real number � and any positive integer p and
U : Na �! R, following equality :

���
a �pU(t) = �p���

a U(t)�
p�1X
k=0

(t� a)(��p+k)

�(� + k � p+ 1)
�kU(a); t 2 Na:
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Lemma 1.4.11. Let � 6= �1 and assume � + � + 1 is not a non positive
integer. Then :

���
a t(�) =

�(� + 1)

�(� + � + 1)
t(�+�):

Lemma 1.4.12. : Let 0 � N � 1 < � � N . Then

�����x(t) = x(t) + C1t
��1 + C2t

��2 + :::+ CN t
��N

for some Ci 2 R with 1 � i � N .

1.5 Some inequalities

Theorem 1.5.1. ( H�older's Inequality) : Let p > 1 and p and q be conjugate
exponents. If x 2 lp and y 2 lq , then

1X
n=1

j xnyn j�
 1X

n�1
j xn jp

! 1

p
 1X

n=1

j yn jq
! 1

q

where x = (xn) , y = (yn): and
1
p
+ 1

q
= 1.

Theorem 1.5.2. (Jensen's Inequality) : Let f(x) be a convex function de-
�ned on an interval I. If x1; x2; x3; :::; xN 2 I and �1; �2; �3; :::; �N 2 (0; 1)
with

PN

i=1 �i = 1, then

f

 
NX
i=1

�ixi

!
�

NX
i=1

�if(xi):

Alternatively, if f(x) is a convex function and X 2 fxi : 1; 2; :::; Ng is a
random variable with probabiliites P (xi) where

P
P (xi) = 1 , then

f(EfXg) � Eff(X)g

f

 
NX
i=1

xiP (xi)

!
�

NX
i=1

f(xi)P (xi):
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Theorem 1.5.3. (Markov's Inequality) : For a nonnegative random vari-
able, X : 
 �! R where X(s) � 0 for all s 2 
, for any positive real
number a > 0:

P (X � a) � E(X)

a
:

Lemma 1.5.4. [3] Let p; q; f; u : Na ! R+ are nonnegative functions such
that

u(k) � p(k) + q(k)
l=k�1X
l=a

f(l)u(l); for all k 2 Na:

Then

u(k) � p(k) + q(k)
l=k�1X
l=a

p(l)f(l)
�=k�1Y
�=l+1

(1 + q(�)f(�)):

Lemma 1.5.5. Let v : [0; b] ! [0;1) be a real function and w(�) is a non-
negative, locally integrable function on [0; b]: Assume that there are constants
a > 0 and 0 <  < 1 such that

v(t) � w(t) + a

Z t

0

v(s)

(t� s)
ds;

then,there exists a constant K = K(�) such that

v(t) � w(t) +Ka

Z t

0

w(s)

(t� s)
ds;

for every t 2 [0; b]:

We recall Gronwall's lemma for singular kernels, whose proof can be found
in Lemma 7.1.1 of [61].

Lemma 1.5.6. Let v; a; �a : [1; b] ! [0;1) be continuous functions. If, for
any t 2 [1; b],

v(t) � a(t) +

Z t

1

�
log

t

s

���1
v(s)

s
ds;

then there exists a constant K = K(�) such that

v(t) � a(t) + �a(t)

Z t

1

" 1X
k=1

(�a(t)�(�))k

�(k�)

�
log

t

s

���1
a(s)

#
ds

s
;

for every t 2 [1; b]:
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1.6 Vector metric space

In this section, we recall from the literature some notations, de�nitions, and
auxiliary results which will be used throughout this section .We refer the
reader to the monographs [92]
If, x; y 2 Rn; x = (x1; : : : ; xn); y = (y1; : : : ; yn); by x � y we mean xi � yi for
all i = 1; : : : ; n:Also jxj = (jx1j; : : : ; jxnj);max(x; y) = (max(x1; y1); : : : ;max(xn; yn))
and Rn

+ = fx 2 Rn : xi > 0g: If c 2 R; then x � c means xi � c for each
i = 1; : : : ; n:

De�nition 1.6.1. Let X be a nonempty set. By a vector-valued metric on
X we mean a map d : X �X ! R

n with the following properties:

(i) d(u; v) � 0 for all u; v 2 X; if d(u; v) = 0 then u = v;

(ii) d(u; v) = d(v; u) for all u; v 2 X;

(iii) d(u; v) � d(u;w) + d(w; v) for all u; v; w 2 X:

We call the pair (X; d) a generalized metric space with d(x; y) :=

0B@ d1(x; y)
...

dn(x; y)

1CA :

Notice that d is a generalized metric space on X if and only if di; i =
1; : : : ; n are metrics on X:

For r = (r1; : : : ; rn) 2 Rn
+; we will denote by

B(x0; r) = fx 2 X : d(x0; x) < rg = fx 2 X : di(x0; x) < ri; i = 1; : : : ; ng
the open ball centered in x0 with radius r and

B(x0; r) = fx 2 X : d(x0; x) � rg = fx 2 X : di(x0; x) � ri; i = 1; : : : ; ng
the closed ball centered in x0 with radius r. We mention that for gen-

eralized metric space, the notation of open subset, closed set, convergence,
Cauchy sequence and completeness are similar to those in usual metric spaces.

Let (X; d) be a generalized metric space we de�ne the following metric

spaces: Let Xi = X; i = 1; : : : ; n: Consider
nY
i=1

Xi with �d:

�d((x1; : : : ; xn); (y1; : : : ; yn)) =
nX
i=1

di(xi; yi):
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The diagonal space of
nY
i=1

Xi de�ned by

eX =

(
(x; : : : ; x) 2

nY
i=1

Xi : x 2 X; i = 1; : : : ; n

)
:

Thus it is a metric space with the following distance

d�((x; : : : ; x); (y; : : : ; y)) =
nX
i=1

di(x; y); for each x; y 2 X:

It is clear that eX is closed set in
nY
i=1

Xi:

This is showed in the following result.

Lemma 1.6.1. [92] Let (X; d) be a generalized metric space. Then there

exists h : X ! eX homeomorphism map.

De�nition 1.6.2. A square matrix of real numbers is said to be convergent
to zero if and only if its spectral radius �(M) is strictly less than 1: In other
words, this means that all the eigenvalues of M are in the open unit disc i.e.
j�j < 1; for every � 2 C with det(M � �I) = 0; where I denote the unit
matrix of Mn�n(R):

A classical result in matric analysis is the following theorem (see [9, 87,
98]).

Theorem 1.6.2. Let M 2Mn�n(R+). The following assertions are equiva-
lent:

(i) M is convergent towards zero;

(ii) Mk ! 0 as k !1;

(iii) The matrix (I �M) is nonsingular and

(I �M)�1 = I +M +M2 + : : :+Mk + : : : ;

(iv) The matrix (I � M) is nonsingular and (I � M)�1 has nonnegative
elements.
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De�nition 1.6.3. Let (X; d) be a generalized metric space. An operator
N : X ! X is said to be contractive if there exists a convergent to zero
matrix M such that

d(N(x); N(y)) �Md(x; y) for all x; y 2 X:

For n = 1 we recover the classical Banach's contraction �xed point result.

De�nition 1.6.4. We say that a non-singular matrix A = (aij)1�i;j�n 2
Mn�n(R+) has the absolute value property if

A�1jAj � I;

where
jAj = (jaijj)1�i;j�n 2Mn�n(R+):

Some examples of matrices convergent to zero A 2Mn�n(R), which also
satis�es the property (I � A)�1jI � Aj � I are:

1) A =

�
a 0
0 b

�
; where a; b 2 R+ and max(a; b) < 1

2) A =

�
a �c
0 b

�
; where a; b; c 2 R+ and a+ b < 1; c < 1

3) A =

�
a �a
b �b

�
; where a; b; c 2 R+ and ja� bj < 1; a > 1; b > 0:

De�nition 1.6.5. Let Q 2 M2�2(R) is said to be order preserving (or pos-
itive) if p1 � p0; q1 � q0 imply

Q

�
p0
q0

�
� Q

�
p1
q1

�
:

in the sense of components.

Lemma 1.6.3. Let

Q =

�
a �b
�c d

�
where a; b; c; d � 0 and detQ > 0. Then Q�1 is order preserving.
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1.7 Fixed point theorems

Theorem 1.7.1. [81], [45] Let (X; d) be a complete generalized metric space
and N : X ! X a contractive operator with Lipschitz matrix M: Then N
has a unique �xed point x� and for each x0 2 X we have

d(Nk(x0); x�) �Mk(I �M)�1d(x0; N(x0)) for all k 2 N:
Theorem 1.7.2. [45] Let (E; k � k) be a generalized Banach space and N :
E ! E is a continuous compact mapping. Moreover assume that the set

A = fx 2 E : x = �N(x) for some � 2 (0; 1)g
is bounded. Then N has a �xed point.

Denote by P(X) = fY � X : Y 6= ;g, Pcl(X) = fY 2 P(X) : Y closedg,
Pb(X) = fY 2 P(X) : Y boundedg: Let (X; d) and (Y; �) be two metric
spaces and F : X ! P(Y ) be a multi-valued mapping. Then F is said to be
lower semi-continuous (l.s.c.) if the inverse image of V by F

F�1(V ) = fx 2 X : F (x) \ V 6= ;g
is open for any open set V in Y . Equivalently, F is l.s.c. if the core of V by
F

F+1(V ) = fx 2 X : F (x) � V g
is closed for any closed set V in Y .

Likewise, the map F is called upper semi-continuous (u.s.c.) on X if for
each x0 2 X the set F (x0) is a nonempty, closed subset of X, and if for each
open set N of Y containing F (x0), there exists an open neighborhood M of
x0 such that F (M) � Y: That is, if the set F�1(V ) is closed for any closed
set V in Y . Equivalently, F is u.s.c. if the set F+1(V ) is open for any open
set V in Y .

The mapping F is said to be completely continuous if it is u.s.c. and, for
every bounded subset A � X, F (A) is relatively compact, i.e., there exists a
relatively compact set K = K(A) � X such that

F (A) =
[
fF (x) : x 2 Ag � K:

Also, F is compact if F (X) is relatively compact, and it is called locally
compact if for each x 2 X, there exists an open set U containing x such that
F (U) is relatively compact.
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Theorem 1.7.3. Let F : X ! Pcp(Y ) be a closed locally compact multifunc-
tion. Then F is u:s:c: ( See , [45,58] ).
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Chapter 2

Fractional di�erence equations

In this chapter, we prove the existence of solutions and the compactness of
solution sets of a system of fractional discrete equation.
More precisely , we consider the system of Caputo-type fractional di�erence
equations:8>><>>:

��
��1x(k) = f1(k + �� 1; x(k + �� 1); y(k + �� 1)); k 2 N0(b)

��
��1y(k) = f2(k + �� 1; x(k + �� 1); y(k + �� 1)); k 2 N0(b);

���1
��1x(0) = x0

���1
��1y(0) = y0;

(2.0.1)
where k 2 N0(b) = f0; 1; :::; b+1g; 0 < � � 1; and f1; f2 : N��1(b)�R�R!
R are given functions.

The chapter is organized as follows . In Section 2.1 , we prove the ex-
istence and uniqueness and continuous dependence of solution to problem
(2.0.1). The existence and compactness of solutions set to the problem (2.0.1)
is investigated in Section 2.2.

2.1 Existence and Uniqueness

Before stating the results of this section we consider the following spaces.

C(N��1(b);R) =
n
x : N��1(b)! R j x continuous

o
:
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It is clear that C(N�(b);R) is a Banach space with norm

kxk1 = sup
t2N��1(b)

jx(t)j:

Let f1; f2 : N�(b)�R�R! R are a continuous functions which satis�es the
following assumptions:

(H1) There exist L1; L2; K1; K2 > 0 such that

j f1(k; x; y)� f1(k; x; y) j� L1 j x� x j +L2 j y � y j;
and

j f2(k; x; y)� f2(k; x; y) j� K1 j x� x j +K2 j y � y j
for any x; y; x; y 2 R:

From (1.4.14) , we can easily prove the following auxiliary lemma.

Lemma 2.1.1. A function x : N��1(b) ! R is a solution of the following
problem �

��
��1x(k) = f(k + �� 1); k 2 N0(b)

���1
��1x(0) = x0;

(2.1.1)

if and only if x is solution of the following discrete equation

x(k + �� 1) =
(k + �� 1)(��1)

�(�)
x0 +

kX
s=0

(k + �� s� 2)(��1)

�(�)
f(s+ �� 1):

For our main consideration of Problem (2.0.1), a Preov �xed point is
used to investigate the existence and uniqueness of solutions for system of
nonlinear fractional discrete equations.

Theorem 2.1.2. Assume that hypotheses (H1) holds. If0BBBB@
bX

s=0

�1(s)L1

bX
s=0

�1(s)L2;

bX
s=0

�1(s)K1

bX
s=0

�1(s)K2

1CCCCA 2M2�2(R+)

where

�1(s) = max
k2N0(b)

�(k � s+ �� 1)

�(�)�(k � s)

be a matrix converge to zero. Then the Problem (2.0.1) has a unique solution.
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2.1 Existence and Uniqueness

Proof. LetN : C(N��1(b);R)�C(N��1(b);R) �! C(N��1(b);R)�C(N��1(b);R)
be de�ned by,

N(x; y) = (N1(x; y); N2(x; y)); (x; y) 2 C(N��1(b);R)� C(N��1(b);R);

where

N1(x(t); y(t)) =
t��X
s=0

(t� s� 1)(��1)

�(�)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
t(��1)

�(�)
x0; t 2 N��1(b);

and

N2(x(t); y(t)) =
t��X
s=0

(t� s� 1)(��1)

�(�)
f2(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
t(��1)

�(�)
y0; t 2 N��1(b):

Let (x; y); (x; y) 2 C(N��1(b);R) � C(N��1(b);R), then for every t 2
N��1(b); t = k + �� 1; k 2 N0(b) we have

jN1(x(t); y(t))�N1(x(t); y(t))j �
t��X
s=0

(t� s� 1)(��1)

�(�)
j

f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

�f1((s+ �� 1); x(s+ �� 1); y(s+ �� 1))j;

From the de�nition t(��1), we get

jN1(x(t); y(t))�N1(x(t); y(t))j �
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
j

f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

� f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))j:
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Hence

k N1(x; y)�N1(x; y) k1�
bX

s=0

�1(s)[L1 k x� x k1 +L2 k y � y k1]:

Similarly,

k N2(x; y)�N2(x; y) k1�
bX

s=0

�1[K1 k x� x k1 +K2 k y � y k1]:

Thus

k N(x; y)�N(x; y) k1�
�
a1 a2
a3 a4

��k x� x k1
k y � y k1

�
;

where

�1(s) = max
k2N0(b)

�(k � s+ �� 1)

�(�)�(k � s)
; ai =

bX
s=0

�1(s)Li; and ai+2 =
bX

s=0

�1(s)Ki; i = 1; 2:

From theorem 1.7.1, the operatorN has a unique �xed (x; y) 2 C(N��1(b);R)�
C(N��1(b);R) which is unique solution of problem (2.0.1).

Theorem 2.1.3. Assume the following conditions

(H2) There exist nonnegative functions �i; i : N0(b)! R+ for each i = 1; 2� jf1(k; x; y)� f1(k; x; y)j � �1(k)jx� xj+ �2(k)jy � yj
jf2(k; x; y)� f2(k; x; y)j � 1(kjx� xj+ 2(k)jy � yj

for all x, y, x, y 2 R.
(H3) h1; h2 : Na � R� R �! R be functions such that

jhi(k; x; y)j � �i(k); i = 1; 2;

where �i are a nonnegative functions de�ned on Na:

Then, for the solutions (x(k; x0); y(k; y0)) and (u(k; u0); v(k; v0)) on N0(b) of
the initial value problem ( 2.0.1) and
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8>>>>>><>>>>>>:

��
��1u(k) = h1(k + �� 1; u(k + �� 1); v(k + �� 1))

+f1(k + �� 1; u(k + �� 1); v(k + �� 1));
��

��1v(k) = h2(k + �� 1; u(k + �� 1); v(k + �� 1))
+f2(k + �� 1; u(k + �� 1); v(k + �� 1));

���1
��1u(0) = u0;

���1
��1v(0) = v0;

(2.1.2)

where k 2 N0(b) , 0 < � � 1 , and k + � 2 N�(b).

the following inequality holds

(H4)

jx(k; x0)� u(k; u0)j � L

 
jx0 � u0j+ jy0 � v0j+

l=kX
l=0

�(l)

!
l=kY
l=0

(1 + �(l)):

and

jy(k; x0)� v(k; v0)j � L

 
jy0 � v0j+ jx0 � u0j+

l=kX
l=0

�(l)

!
l=kY
l=0

(1 + �(l)):

where

�(k) = �1(k) + �2(k) + 1(k) + 2(k); �(k) = �1(k) + �2(k); k 2 N(0):

Proof. The solutions of problems (2.0.1) and (2.1.2) are equivalent to8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

x(k + �� 1) =
kX

s=0

(k + �� s� 2)(��1)

�(�)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
(k + �� 1)(��1)

�(�)
x0

y(k + �� 1) =
kX

s=0

(k + �� s� 2)(��1)

�(�)
f2(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
(k + �� 1)(��1)

�(�)
y0
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and8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

u(k + �� 1) =
kX

s=0

(k + �� s� 2)(��1)

�(�)

� [h1((s+ �� 1); u(s+ �� 1); v(s+ �� 1))

+f1(s+ �� 1; u(s+ �� 1); v(s+ �� 1))] +
(k + �� 1)(��1)

�(�)
u0

v(k + �� 1) =
kX

s=0

(k + �� s� 2)(��1)

�(�)

� [h2((s+ �� 1); u(s+ �� 1); v(s+ �� 1))

+ f2(s+ �� 1; u(s+ �� 1); v(s+ �� 1))] +
(k + �� 1)(��1)

�(�)
v0:

Hence8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

x(k + �� 1) =
�(k + �)

�(k)�(�)
x0+

kX
s=0

�(k + �� s� 1)

�(k � s)�(�)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1));

y(k + �� 1) =
�(k + �)

�(k)�(�)
y0

+
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
f2(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

and8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

u(k + �� 1) =
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
� [h1((s+ �� 1); u(s+ �� 1); v(s+ �� 1))

+f1(s+ �� 1; u(s+ �� 1); v(s+ �� 1))] +
�(k + �)

�(k)�(�)
u0;

v(k + �� 1) =
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
� [h2((s+ �� 1); u(s+ �� 1); v(s+ �� 1))

+f2(s+ �� 1; u(s+ �� 1); v(s+ �� 1))] +
�(k + �)

�(k)�(�)
v0:
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Then, we get

x(k + �� 1)� u(k + �� 1) =
�(k + �)

�(k)�(�)
(x0 � u0) +

kX
s=0

�(k + �� s� 1)

�(k � s)�(�)

�[f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))� f1(s+ �� 1; u(s+ �� 1); v(s+ �� 1))]

�
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
h1(s+ �� 1; u(s+ �� 1); v(s+ �� 1));

and

y(k + �� 1)� v(k + �� 1) =
�(k + �)

�(k)�(�)
(y0 � v0) +

kX
s=0

�(k + �� s� 1)

�(k � s)�(�)

�[f2(s+ �� 1; x(s+ �� 1); y(s+ �� 1))� f2(s+ �� 1; u(s+ �� 1); v(s+ �� 1))]

�
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
h2(s+ �� 1; u(s+ �� 1); v(s+ �� 1)):

This implies that

j x(k + �� 1)� u(k + �� 1) j �
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
� [�1(s+ �� 1) j x� u j

+�2(s+ �� 1) j y � v j] + �(k + �)

�(k)�(�)
j x0 � u0 j

+
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
�1(s+ �� 1);

and

j y(k + �� 1)� v(k + �� 1) j �
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
� [1(s+ �� 1) j x� u j

+2(s+ �� 1) j y � v j] + �(k + �)

�(k)�(�)
j y0 � v0 j

+
kX

s=0

�(k + �� s� 1)

�(k � s)�(�)
�2(s+ �� 1):
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Then8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

j x(k + �� 1)� u(k + �� 1) j � L2

kX
s=0

[�1(s+ �� 1) j x� u j +
�2(s+ �� 1) j y � v j]

+L2

kX
s=0

�1(s+ �� 1) + L1 j x0 � u0 j

j y(k + �� 1)� v(k + �� 1) j � L2

kX
s=0

[1(s+ �� 1) j x� u j
+2(s+ �� 1) j y � v j]

+L2

kX
s=0

�2(s+ �� 1) + L1 j y0 � v0 j;

where

L1 = max
k2N0(b)

�(k + �)

�(k)�(�)
; and L2 = max

k2N(b)
max
s2N0(b)

�(k + �� s� 1)

�(k � s)�(�)
:

Set

w(:) = jx(:)�u(:)j+jy(:)�v(:)j; �(:) = �1(:)+�2(:)+1(:)+2(:) and L = max(L1; L2):

From above inequality, we obtain

w(k + �� 1) � L

"
jx0 � u0j+ jy0 � v0j+

k+��1X
l=��1

�(l)w(l) +
k+��1X
l=��1

�(l)

#
:

Hence

w(k + �� 1) � L

 
jx0 � u0j+ jy0 � v0j+

k+��1X
l=��1

�(l)

!
k+��1Y
l=��1

(1 + �(l)):

So
jx(k + �� 1; x0)� u(k + �� 1; u0)j

� L

 
jx0 � u0j+ jy0 � v0j+

l=k+��1X
l=��1

�(l)

!
l=k+��1Y
l=��1

(1 + �(l)):
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and

jy(k + �� 1; x0)� v(k + �� 1; v0)j

� L

 
jy0 � v0j+ jx0 � u0j+

l=k+��1X
l=��1

�(l)

!
l=k+��1Y
l=��1

(1 + �(l)):

2.2 Existence and Compactness results

Let (E; j � j) be a Banach space, we denote the space of continuous functions
on N��1(b) by

C(N��1(b); E) = fy : N��1(b)! E; is continuousg

with norm

kyk1 = sup
t2N��1(b)

jy(t)j

is Banach space. Now we set the discrete Arzela-Ascoli Theorem.

Theorem 2.2.1. [30] Let F be a closed subset of C(N��1(b); E). If F is
uniformly bounded and the set

fy(k + �� 1) : y 2 Fg

is relatively compact for each k 2 N0(b), then F is compact.

Theorem 2.2.2. Let f1; f2 : N��1(b)�R�R �! R are continuous functions.
Assume that condition :

(H5) There exist p1; p2; �p1; �p2 2 C(N(0; b� 1);R+) such that for any (x; y) 2
R� R and k 2 N��1(b), we have

jf1(k + �� 1; x; y)j � p1(k + �� 1)(jxj+ jyj) + �p1(k + �� 1);

and

jf2(k + �� 1; x; y)j � p2(k + �� 1)(jxj+ jyj) + �p2(k + �� 1):
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holds. Then the problem (2.0.1) has at least one solution. Moreover, the
solution set S(x0; y0) is compact and the multivalued map S : (x0; y0) (
S(x0; y0) is u:s:c:

Proof. Clearly, the �xe point of N are solutions to (2.0.1), we �rst show that
N is completely continuous. The proof will be given in several steps.

� Step 1. N is continuous.
Let (xm; ym) be a sequence such that (xm; ym)! (x; y) 2 C(N��1(b);R)�
C(N��1(b);R) as m!1. Then

jN1(xm(t); ym(t))�N1(x(t); y(t))j =

�����
t��X
s=0

�(t� s)

�(�)�(t� s� � + 1)
[

f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

� f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))]j

�
kX

s=0

�(t� s)

�(�)�(t� s� � + 1)
j

f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

� f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1)) j :

Then

kN1(xm; ym)�N1(x; y)k1 �
bX

s=0

�1(s) j [
f1(k + �� 1; xm(s+ �� 1); ym(s+ �� 1))

� f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1)) j]:

Similarly

kN2(xm; ym)�N2(x; y)k1 �
bX

s=0

�1(s)[j
f2(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))
�f2(s+ �� 1; x(s+ �� 1); y(s+ �� 1)) j];
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where

�1(s) = max
t2N��1

�(t� s)

�(�)�(t� s� � + 1)

Since f1; f2 are continuous functions, we get

k N1(xm; ym)�N1(x; y) k1�! 0 as m �!1
and

k N2(xm; ym)�N2(x; y) k1�! 0 as m �!1:

� Step 2. N maps bounded sets into bounded sets in C(N��1(b);R) �
C(N��1(b);R). Indeed, it is enough to show that for any q > 0 there
exists a positive constant l such that for each (x; y) 2 Bq = f(x; y) 2
C(N��1(b);R)� C(N��1(b);R) : kxk1 � q; kyk1 � qg, we have

kN(x; y)k1 � l = (l1; l2):

Then for each k 2 N0 and t = k + �� 1, we get

jN1(x(t); y(t))j �
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
j f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1)) j

+
�(k + �)

�(k)�(�)
jx0j

� �(k + �)

�(k)�(�)
[jx0j+

kX
s=0

j f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1)) j]

Therefore

kN1(x; y)k1 � L1[jx0j+
k+��1X
l=��1

2(qp1(l) + �p1(l))] := l1:

Similarly,

kN2(x; y)k1 � L2[jy0j+
k+��1X
l=��1

(2qp2(l) + �p2(l))] := l2:
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where

L1 = max
k2N��1(b)

�(k + �)

�(k)�(�)
; and L2 = max

k2N(b)
max

s2N��1(b)
�(k + �� s� 1)

�(k � s)�(�)
:

Moreover, for each k 2 N0(b), we have

fN1(x(k+��1); y(k+��1)) : (x; y) 2 Bqg; fN2(x(k+��1); y(k+��1)) : (x; y) 2 Bqg

are relatively compact in R. Then from theorem 2.2.1 we conclude that
N(Bq �Bq) is compact in C(N��1(b);R)�C(N��1(b);R). As a consequence
of Steps 1 to 2 , N : C(N��1(b);R) � C(N��1(b);R) ! C(N��1(b);R) �
C(N��1(b);R) is completely continuous.

Step 3. It remains to show that

A = f(x; y) 2 C(N��1(b);R)�C(N��1(b);R) : (x; y) = �N(x; y); � 2 (0; 1)g

is bounded.
Let (x; y) 2 A. Then x = �N1(x; y) and y = �N2(x; y) for some 0 < � < 1.
Thus, for k 2 N0(b), we have

jx(k + �� 1)j � L[jx0j+
k+��1X
l=��1

jf(l; x(l); y(l))j]

� L[jx0j+
k+��1X
l=��1

�p1(l) +
k+��1X
l=��1

p1(l)(jx(l)j+ jy(l)j)];

and

jy(k + �� 1)j � L[jy0j+
k+��1X
l=��1

�p2(l) +
k+��1X
l=��1

p2(l)(jx(l)j+ jy(l)j)]:

Therefore

jx(k + �� 1)j+ jy(k + �� 1)j � L[jx0j+ jy0j+
k+��1X
l=��1

(�p1(l) + �p2(l))

+
k+��1X
l=��1

p(l)(jx(l)j+ jy(l)j)];
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where

L = max(L1; L2); p(k) = p1(k)+p2(k); �p(k) =
k+��1X
l=��1

(�p1(l)+�p2(l)) k 2 N��1(b):

By theorem 2.1.3, we have

jx(k + �� 1)j+ jy(k + �� 1)j � L

 
jx0j+ jy0j+

b+��1X
l=��1

�p(l)

!
� 

1 +
k+��1X
l=��1

p(k)
k+��1Y
l+1

(1 + p(�))

!
:

Hence

kxk1+kyk1 � L

 
jx0j+ jy0j+

b+��1X
l=��1

�p(l)

! 
1 +

k+��1X
l=��1

p(k)
k+��1Y
l+1

(1 + p(�))

!
:

This shows that A is bounded. As a consequence of Theorem 1.7.2 we deduce
that N has a �xed point (x; y) which is a solution to the problem (2.0.1).

Step 4: Compactness of the solution set. For each (x0; y0) 2 R� R; let
S(x0; y0) = f(x; y) 2 C(N��1(b);R)�C(N��1(b);R) : (x; y) is a solution of (2:0:1)g:

From Step 3, there exists fM such that for every (x; y) 2 S((x0; y0)); we have

kxk1 � fM ; kyk1 � fM:

SinceN is completely continuous, N(S(x0; y0)) is relatively compact in (x; y) 2
C(N��1(b);R)�C(N��1(b);R): Let (x; y) 2 S(x0; y0)); then (x; y) = N(x; y)
hence S(x0; y0) � N(S(x0; y0)): It remains to prove that S(x0; y0) is a closed
subset in (x; y) 2 C(N��1(b);R)�C(N��1(b);R): Let f(xm; ym) : m 2 Ng �
S(x0; y0) be such that (xm; ym)m2N converges to (x; y): For every m 2 N; and
k 2 N0(b), we have

xm(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
x0
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and

ym(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
y0:

Set

z1(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
x0

and

z2(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
y0:

Since f1 and f2 are continuous functions, we can prove that

xm ! z1; ym ! z2; as m!1:

Thus, we concluded,

x(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
x0; k 2 N��1(b);

and

y(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
y0; k 2 N��1(b):
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Therefore (x; y) 2 S(x0; y0) which yields that S(x0; y0) is closed, hence com-
pact subset in C(N��1(b);R)� C(N��1(b);R): Finally, we prove that S(:) is
u:s:c: by proving that the graph of S

�S := f(�x; �y; x; y) : (x; y) 2 S(�x; �y)g

is closed. Let (�xm; �ym; xm; ym) 2 �S be such that (�xm; �ym; xm; ym)! (�x; �y; x; y)
as m!1. Since (xm; ym) 2 S(�xm; �ym), then

xm(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
xm

and

ym(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
ym:

Arguing as in Step 2, we can prove that

x(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
�x;

and

y(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
�y:

53



Fractional di�erence equations

Thus, (x; y) 2 S(�x; �y): Now, we show that S maps bounded sets into
relatively compact sets of C(N��1(b);R)�C(N��1(b);R). LetB be a bounded
set in R� R and let f(xm; ym)g � S(B). Then there exists f(�xm; �ym)g � B
such that

xm(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
�xm

and

ym(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; xm(s+ �� 1); ym(s+ �� 1))

+
�(k + �)

�(k)�(�)
�ym:

Since f(�xm; �ym)g is a bounded sequence, there exists a subsequence of f(�xm; �ym)g
converging to (�x; �y): As in Step 2, we can show that f(xm; ym) : m 2 Ng is
uniformly bounded. Then there exists a subsequence of f(xm; ym)g converg-
ing to (x; y) in C(N��1(b);R) � C(N��1(b);R). By the continuity of f1 and
f2, we can prove that

x(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
�x

and

y(k + �� 1) =
kX

s=0

�(k � s+ �� 1)

�(�)�(k � s)
f1(s+ �� 1; x(s+ �� 1); y(s+ �� 1))

+
�(k + �)

�(k)�(�)
�y:

Thus, (x; y) 2 S(B). Then S(:) is u:s:c:
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Chapter 3

Random fractional di�erential

equations

In this chapter, we prove the existence of solutions to the random system of
fractional di�erential equations:8>><>>:

D�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [0; b];
D�y(t; !) = g(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [0; b];
x(0; !) = x0(!); ! 2 

y(0; !) = y0(!); ! 2 
;

(3.0.1)

where f; g : [0; b] � R
m � R

m � 
 ! R
m, (
;A) is a measurable space

and x0; y0 : 
 ! R
m are random variable. D�x is the Caputo fractional

derivative of x with respect to the variable t 2 [0; b] with b > 0:

The chapter is organized as follows. In Section 3.1, we prove the existence
and uniqueness and compactness of solutions set for a system of fractional
random di�erential equations with initial condition. In Section 3.2, we give
an example .

3.1 Existence and Uniqueness

De�nition 3.1.1. A random operator T : 
�X ! X is said to be contin-
uous at x0 2 X
if limn!1 kxn � x0k = 0 implies limn!1 kT (!; xn)� T (!; x)k = 0 a.s.
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Random fractional di�erential equations

Theorem 3.1.1. [92] Let (
;F ; �) be a probability space, X be a real sepa-
rable generalized Banach space and F : 
�X ! X be a continuous random
operator, and let M(!) 2 Mn�n(R+) be a random variable matric such that
M(!) converge to 0 a:s: and

d(F (!; x1); F (!; x2)) �M(!)d(x1; x2) for each x1; x2 2 X; ! 2 
:

then there exists any random variable x : 
! X which is the unique random
�xed point of F:

Theorem 3.1.2. [92] Let (
;F) be a measurable space, X be a real separable
generalized Banach space and F : 
 � X ! X be a continuous random
operator, and let M(!) 2 Mn�n(R+) be a random variable matric such that
for every ! 2 
 the matrix, M(!) converge to 0 and

d(F (!; x1); F (!; x2)) �M(!)d(x1; x2) for each x1; x2 2 X; ! 2 
:

then there exists any random variable x : 
! X which is the unique random
�xed point of F:

Theorem 3.1.3. [92] Let X be a separable generalized Banach space and let
F : 
�X ! X be a completely continuous random operator. Then, either

(i) the random equation F (!; x) = x has a random solution, i.e., there is
a measurable function x : 
 ! X such that F (!; x(!)) = x(!) for all
! 2 
, or

(ii) the set M = fx : 
 ! X is measurable = �(!)F (!; x) = xg is un-
bounded for some measurable � : 
! X with 0 < �(!) < 1 on 
:

De�nition 3.1.2. A function f : [0; b] � R
m � 
 ! R

m is called random
Carath�eodory if the following conditions are satis�ed:

(i) the map (t; !)! f(t; x; !) is jointly measurable for all x 2 Rm,

(ii) the map x! f(t; x; !) is continuous for all t 2 [0; b] and ! 2 
.

De�nition 3.1.3. A Carath�eodory function f : [0; b]�Rm�
! R
m is called

random L1-Carath�eodory if for each real number r > 0 there is a measurable
and bounded function hr 2 L1([0; b];R+) such that

kf(t; x; !)k � hr(t; !); a.e. t 2 [0; b]

for all ! 2 
 and x 2 R with kxk � r:
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Lemma 3.1.4. Concerning the problem :�
D�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1
x(0; !) = x0(!); ! 2 


(3.1.1)

If (t; w) 7�! f(t; x(t; !); y(t; !); !) is product measurable and t 7�!
f(t; x(t; !); y(t; !); !) is Lebesgue integrable on [0; b] for a.e. w 2 
 then, the
function x : [0; b]� 
 �! R

m is a solution for (3.1.1) if and only if

x(t; w) = x0(w) +
1

�(�)

Z t

0

(t� s)��1f(s; x(s; !); y(s; !); !)ds

for all t 2 [0; b] and for a.e. w 2 
; 0 < � < 1:

Proof. We have:

D�x(t; !) = f(t; x(t; !); y(t; !); !):

Then

I�D�x(t; !) = I�f(t; x(t; !); y(t; !); !)

From proposition 1.3.5, we get

I�D�x(t; !) = x(t; w)� x(0; w):

Thus
x(t; w)� x(0; w) = I�f(t; x(t; !); y(t; !); !):

Next, the de�nition of I�, we have:

x(t; w)� x(0; w) =
1

�(�)

Z t

0

(t� s)��1x(s; w)ds:

Hence

x(t; w) = x(0; w) +
1

�(�)

Z t

0

(t� s)��1x(s; w)ds:

We can state the solution for the problem (3:1:1) :

x(t; w) = x0(w) +
1

�(�)

Z t

0

(t� s)��1f(s; x(s; !); y(s; !); !)ds:
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Random fractional di�erential equations

Similarly we have

y(t; w) = y0(w) +
1

�(�)

Z t

0

(t� s)��1g(s; x(s; !); y(s; !); !)ds:

Our main �rst result is the existence and uniqueness of random solution
of the problem (3.0.1).

Theorem 3.1.5. Let f; g : [0; b]�Rm�Rm�
! R
m are two Carath�eodory

functions. Assume that the following condition

(L1) There exist p1; p2; p3; p4 : 
! R+ are random variable such that

kf(t; x; y; !)�f(t; ex; ey; !)k � p1(!)kx�exk+p2(!)ky�eyk; 8 x; y; ex; ey; Rm

and

kg(t; x; y; !)�g(t; ex; ey; !)k � p3(!)kx�exk+p4(!)ky�eyk; 8 x; y; ex; ey; Rm

holds. If for every ! 2 
, fM(!) converge to 0, where

fM(!) =

 
b�p1(!)
�(�+1)

b�p2(!)
�(�+1)

b�p3(!)
�(�+1)

b�p4(!)
�(�+1)

!
:

Then the problem (3.0.1) has unique random solution.

Proof. Consider the operatorN : C([0; b];Rm)�C([0; b];Rm)�
! C([0; b];Rm)�
C([0; b];Rm),

(x(:; !); y(:; !); w) 7! (N1(t; x(t; !); y(t; !); !); N2(t; x(t; !); y(t; !); !))

where

N1(x(t; !); y(t; !); !) = x0(w) +
1

�(�)

Z t

0

(t� s)��1f(s; x(s; !); y(s; !); !)ds

and

N2(x(t; !); y(t; !); !) = y0(w) +
1

�(�)

Z t

0

(t� s)��1g(s; x(s; !); y(s; !); !)ds:
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First we show that N is a random operator on C([0; b];Rm) � C([0; b];Rm).
Since f and g are Carath�eodory functions, then ! ! f(t; x; y; !) and ! !
g(t; x; y; !) are measurable maps in view of proposition 1.3.2 we concluded
that, the maps

! ! N1(x(t; !); y(t; !); !); ! ! N2(x(t; !); y(t; !); !)

are measurable. As a result, N is a random operator on C([0; b];Rm) �
C([0; b];Rm)� 
 into C([0; b];Rm)� C([0; b];Rm):

We show thatN satis�es all the conditions of theorem 3.1.1 on C([0; b];Rm)�
C([0; b];Rm): Let (x; y); (ex; ey) 2 C([0; b];Rm)� C([0; b];Rm); then

kN1(t; x(t); y(t); !)�N1(t; ex(t); ey(t); !)k
�

1
�(�)

R t
0
(t� s)��1kf(s; x(s; x); y(s; !); !)� f(s; ex(s; !); ey(s; !); !)kds

�
1

�(�)

R t
0
(t� s)��1p1(!)kx(s; !)� ex(s; !)kds+ 1

�(�)

R t
0
(t� s)��1p2(!)ky(s; !)� ey(s; !)kds

�
p1(!)t�

�(�+1)
kx(:; !)� ex(:; !)k1 + t�p2(!)

�(�+1)
ky(:; !)� ey(:; !)k:

Then

kN1(:; x; y; !)�N1(t; ex; ey; !))k1 � kx�exk1p1(!) b�

�(� + 1)
+ky�eyk1p2(!) b�

�(� + 1)
:

Similarly, we obtains

kN2(x; y; !)�N2(ex; ey; !)k1 � kx�exk1p3(!) b�

�(� + 1)
+ky�eyk1p4(!) b�

�(� + 1)
:

Hence

d(N(x(:; !); y(:; !); !); N(ex(:; !); ey(:; !); !)) � fM(!)d((x(:; !); y(:; !)); (ex(:; !); ey(:; !)));
where

d(x; y) =

� kx(:; !)� y(:; !)k1
kx(:; !)� y(:; !)k1

�
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Random fractional di�erential equations

and

fM(!) =

0BB@
b�

�(� + 1)
p1(!)

b�

�(� + 1)
p2(!)

b�

�(� + 1)
p3(!)

b�

�(� + 1)
p4(!)

1CCA :

Since for every ! 2 
; fM(!) 2 M2�2(R+) converge to zero, then from
theorem 3.1.2 there exists unique random solution of problem (3.0.1).

Next, we present existence result without Lipschitz conditions. We con-
sider the following hypotheses:

(L2) For every ! 2 
; the functions f(:; :; :; !) and g(:; :; :; !) are continuous
and ! ! f(:; :; :; !); ! ! g(:; :; :; !) are measurable.

(L3) There exist a measurable and bounded functions 1; 2 : 
! R+ such
that

kf(t; x; y; !)k � 1(!)(kxk+ kyk); kg(t; x; y; !)k � 2(!)(kxk+ kyk);

for all t 2 [0; b]; ! 2 
 and x; y 2 Rm:

Now,we give prove of the existence result of problem (3:0:1) by using
Leary-Schauder random �xed point theorem type in generalized Banach
space.

Theorem 3.1.6. Assume that the hypotheses (L2) and (L3) hold. Then
the problem (3.0.1) has a random solution de�ned on [0; b]: Moreover, the
solution set

S(x0; y0) = f(x; y) : 
! C([0; b];Rm)�C([0; b];Rm) : (x(:; !); y(:; !)); ! 2 


is solution of (3:0:1)g
is compact.

Proof. Let N : C([0; b];Rm)�C([0; b];Rm)�
! C([0; b];Rm)�C([0; b];Rm)
be a random operator de�ned in Theorem 3.1.5

In order to apply theorem 3.1.3, we �rst show that N is completely con-
tinuous. The proof will be given in several steps.
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� Step 1. N(:; :; !) = (N1(:; :; !); N2(:; :; !)) is continuous.
Let (xn; yn) be a sequence such that (xn; yn)! (x; y) 2 C([0; b];Rm)�
C([0; b];Rm) as n!1. Then

kN1(xn(:; !); yn(:; !); !)�N1(x(:; !); y(:; !); !)k1
� b�

�(� + 1)
kf(:; xn(:; !); yn(:; !); !)� f(:; x(:; !); y(:; !); !)k:

Since f is a continuous function. Thus

kN1(xn(:; !); yn(:; !); !)�N1(x(:; !); y(:; !); !)k1 ! 0 as n!1:

kN2(xn(:; !); yn(:; !); !)�N2(x(:; !); y(:; !); !)k1
� b�

�(� + 1)
kg(:; xn(:; !); yn(:; !); !)� g(:; x(:; !); y(:; !); !)k1:

Then

kN2(xn(:; !); yn(:; !); !)�N2(x(:; !); y(:; !); !)k1 ! 0 as n!1:

Thus N is continuous.

� Step 2. N maps bounded sets into bounded sets in C([0; b];Rm) �
C([0; b];Rm). Indeed, it is enough to show that for any q > 0 there
exists a positive constant l such that for each (x; y) 2 Bq = f(x; y) 2
C([0; b];R)� C([0; b];R) : kxk1 � q; kyk1 � qg, we have

kN(x; y; !)k1 � l = (l1; l2):

Then for each t 2 [0; b]; we get

kN1(x(t; !); y(t; !); !)k =

x0(!) + 1

�(�)

Z t

0

(t� s)��1f(s; x(s; !); y(s; !); !)ds


� kx0(!)k+ 1(!)

�(�)

Z b

0

kf(s; x(s; !); y(s; !); !)kds:

From (L3) we get

kN1(x(:; !); y(:; !); !)k1 � kx0(!)k+ 2b�q

�(� + 1)
1(!) := l1:
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Similarly, we have

kN2(x(:; !); y(:; !); !)k1 � ky0(!)k+ 2b�q

�(� + 1)
2(!) := l2:

� Step 3. N maps bounded sets into equicontinuous sets of C([0; b];Rm)�
C([0; b];Rm):
Let Bq be a bounded set in C([0; b];Rm) � C([0; b];Rm) as in Step 2.
Let r1; r2 2 J; r1 < r2 and u 2 Bq. Thus we have

kN1(x(r2; !); y(r2; !); !)�N1(x(r1; !); y(r1; !); !)k
�

2q1(!)
�(�)

hR r2
r1
(r2 � s)��1ds+

R r1
0

�
(r1 � s)��1 � (r2 � s)��1

�
ds
i
:

Hence

kN1(x(r2; !); y(r2; !); !)�N1(x(r1; !); y(r1; !); !)k � 4q1(!)

�(� + 1)
(r2 � r1)

�:

and

kN2(x(r2; !); y(r2; !); !)�N2(x(r1; !); y(r1; !); !)k � 4q2(!)

�(� + 1)
(r2 � r1)

�:

The right-hand term tends to zero as jr2 � r1j ! 0. As a consequence
of Steps 1 to 3 together with the Arzela-Ascoli, we conclude that N
maps Bq into a precompact set in C([0; b];R)� C([0; b];R).

� Step 4. It remains to show that

A(!) = f(x(:; !); y(:; !)) 2 C([0; b];Rm)� C([0; b];Rm) :

(x(:; !); y(:; !)) = �(!)N(x(:; !); y(:; !); !); �(!) 2 (0; 1)g
is bounded.
Let (x; y) 2 A. Then x = �(!)N1(x; y) and y = �(!)N2(x; y) for some
0 < � < 1. Thus, for t 2 [0; b], we have

kx(t; !)k � kx0(!)k+ 1

�(�)

Z t

0

(t� s)��1kf(s; x(s; !); y(s; !); !)kds

� kx0(!)k+ 1

�(�)

Z t

0

1(!)(t� s)��1(kx(s; !)k+ ky(s; !)k)ds:
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3.1 Existence and Uniqueness

Hence

kx(t; !)k � kx0(!)k+ 1(!)

�(�)

Z t

0

(t� s)��1(kx(s; !)k+ ky(s; !)k)ds

and

ky(t; !)k � ky0(!)k+ 2(!)

�(�)

Z t

0

(t� s)��1(kx(s; !)k+ ky(s; !)k)ds:

Therefore

kx(t; !)k+ ky(t; !)k � c+

�
1(!)

�(�)
+
2(!)

�(�)

�
�Z t

0

(t� s)min(�;�)�1(kx(s; !)k+ ky(s; !)k)ds;

where
c = kx0(!)k+ ky0(!)k:

By lemma 1.5.5, there exists K(min(�; �)) > 0 such that

kx(t; !)k+ ky(t; !)k � c+ c

�
1(!)

�(�)
+
2(!)

�(�)

�Z t

0

(t� s)min(�;�)�1ds:

Hence

kx(:; !)k1 + ky(:; !)k1 � c+ cbmin(�;�)

�
1(!)

�(�)
+
2(!)

�(�)

�
:= K�:

Consequently
kxk1 � K� and kyk1 � K�:

This shows that A is bounded. As a consequence of Theorem 3.1.3 we
deduce that N has a random �xed point ! ! (x(:; !); y(:; !)) which is
a solution to the problem (3:0:1):

� Step 5: Compactness of the solution set. Let f(xn; yn)gn2N � S(x0; y0)
be a sequence. For every n 2 N and for �xe ! 2 
, we get

xn(t; !) = x0(w) +
1

�(�)

Z t

0

(t� s)��1f(s; xn(s; !); yn(s; !); !)ds

63



Random fractional di�erential equations

and

yn(t; !) = y0(w) +
1

�(�)

Z t

0

(t� s)��1g(s; xn(s; !); yn(s; !); !)ds:

As in Steps 3, 4, we can prove that subsequence f(xnk ; ynk)gk2N of
f(xn; yn)gn2N converge to some (x(:; !); y(:; !)) 2 C([0; b];Rm)�C([0; b];Rm);
such that

! ! x(t; !); ! ! y(t; !)

are measurable functions. Since f(:; :; :; !) and g(:; :; :; !) are continuous
functions, then

x(t; !) = x0(w) +
1

�(�)

Z t

0

(t� s)��1f(s; x(s; !); y(s; !); !)ds; t 2 [0; b];

and

y(t; !) = y0(w) +
1

�(�)

Z t

0

(t� s)��1g(s; x(s; !); y(s; !); !)ds; t 2 [0; b]:

So S(x0; y0) is compact.

3.2 An example

Let 
 = R be equipped with the usual �� algebra consisting of Lebesgue
measurable subsets of (�1; 0) and J := [0; 1].
Consider the following random di�erential equation system.8>>><>>>:

D�x(t; !) = t!2x2(t;!)
(1+!2)(1+x2(t;!)+y2(t;!))

; � 2 (0; 1)

D�y(t; !) = t!2y2(t;!)
(1+!2)(1+x2(t;!)+y2(t;!))

; � 2 (0; 1);

x(0; !) = sin!; ! 2 

y(0; !) = cos!; ! 2 
:

(3.2.1)

Here

f(t; x; y; !) =
t!2x2

2(1 + !2)(1 + x2 + y2)

g(t; x; y; !) =
t!2y2

2(1 + !2)(1 + x2 + y2)
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Clearly, the map (t; !) 7! f(t; x; y; !) is jointly continuous for all x; y 2
[1;1): The same for the map g. Also the maps x 7! f(t; x; y; !) and y 7!
f(t; x; y; !) are continuous for all t 2 J and ! 2 
: Similarly for the maps
corresponding to function g. Thus the functions f and g are Carath�eodory
on J � [1;1) � [1;1) � 
. Firstly, we show that f and g are Lipschitz
functions. Indeed, let x; y 2 R, then

jf(t; x; y; !)� f(t; ex; ey; !)j =

���� t!2x2

2(1 + !2)(1 + x2 + y2)
� t!2x2

2(1 + !2)(1 + ex2 + ey2)
����

=

����t!2[(1 + ex2 + ey2)x2 � (1 + x2 + y2)ex2
2(1 + !2)(1 + x2 + y2)(1 + ex2 + ey2)

����
� !2

2(1 + !2)
jx� exj+ !2

2(1 + !2)
jy � eyj

Then

jf(t; x; y; !)� f(t; ex; ey; !)j � !2

2(1 + !2)
jx� exj+ !2

2(1 + !2)
jy � eyj:

Analogously for the function g, we get

jg(t; x; y; !)� g(t; ex; ey; !)j � !2

2(1 + !2)
jx� exj+ !2

2(1 + !2)
jy � eyj:

We take,

p1(!) = p2(!) = p3(!) = p4(!) =
!2

2(1 + !2)

and

M(!) =

 
!2

2(1+!2)
!2

2(1+!2)
!2

2(1+!2)
!2

2(1+!2)

!
:

We remark that

j�(M(!))j = !2

2(1 + !2)
< 1;

then
M(!); converge to 0:

Therefore, all the conditions of theorem 3.1.5 are satis�ed. Hence the problem
(3.2.1) has a unique random solution.
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Chapter 4

Random Hadamard Fractional

Di�erential Equations

In this chapter, we prove the existence of solutions and the compactness of
solution sets of a random system of fractional di�erential equations via the
Hadamard-type derivative. The existence, modi�cation and stochastically
continuity of an M2�solution are also proved.

We consider the system of Hadamard-type fractional di�erential equa-
tions:8>><>>:

CHD�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [1; b];
CHD�y(t; !) = g(t; x(t; !); y(t; !); !); 0 < � < 1; t 2 [1; b];
x(1; !) = x0(!); ! 2 
;
y(1; !) = y0(!); ! 2 
;

(4.0.1)

where f; g : [1; b]�Rm �Rm � 
! R
m, (
;A)) is a measurable space and

x0; y0 : 
! R
m are random variables. CHD�x is the Caputo-modi�cation of

the Hadamard fractional derivative.

We say that x(�; �) : [1; b] � 
 ! R
m is sample path Lebesgue integrable

on [1; b] if x(�; !) : [1; b] �! R
m is Legesgue integrable on [1; b] for a.e.

! 2 
.
Let � > 0. If x : [1; b] � 
 �! R

m is sample path Lebesgue integrable
on [1; b], then we can consider the fractional integral

J�x(t; !) =
1

�(�)

Z t

1

�
ln
t

s

���1
x(s; !)

ds

s
: (4.0.2)
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4.1 Existence and Uniqueness

which will be called the sample path fractional integral of x; where � is the
Euler's Gamma function.

4.1 Existence and Uniqueness

In this section, we prove some existences results and the compactness of the
solution set.

Lemma 4.1.1. Consider the problem,8<:
D�x(t; !) = f(t; x(t; !); y(t; !); !); 0 < � < 1;
x(1; !) = x0(!); ! 2 
; (4.1.1)

If (t; !) 7! f(t; x(t; !); y(t; !); !) is product measurable and t 7! f(t; x(t; !); y(t; !); !)
is Lebesgue integrable on [1; b] for a.e. ! 2 
; then, the function x : [1; b] �

 �! R

m is a solution of (4.1.1) if and only if

x(t; !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s

for all t 2 [1; b] and for a.e. ! 2 
:

Proof. We have:

CHD�x(t; !) = f(t; x(t; !); y(t; !); !):

Then
J�D�x(t; !) = J�f(t; x(t; !); y(t; !); !):

From Lemma 1.2.27, we get

J�CHD
�
x(t; !) = x(t; !)� x(1; !):

Thus
x(t; !)� x(1; !) = J�f(t; x(t; !); y(t; !); !):

Next, from the de�nition of J�, we have:

x(t; !)� x(1; !) =
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s
:
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Random Hadamard Fractional Di�erential Equations

Hence

x(t; !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s
:

The converse is straightforward.

Our �rst main result is the existence and uniqueness of a random solution
of the problem (4.0.1).

Theorem 4.1.2. Let f; g : [1; b]�Rm�Rm�
! R
m be two Carath�eodory

functions. Assume that the following conditions holds

(h1) There exist p1; p2; p3; p4 : 
! R+ random variables such that

kf(t; x; y; !)�f(t; ex; ey; !)k � p1(!)kx�exk+p2(!)ky�eyk; 8 x; y; ex; ey 2 Rm; ! 2 
;

and

kg(t; x; y; !)�g(t; ex; ey; !)k � p3(!)kx�exk+p4(!)ky�eyk; 8 x; y; ex; ey 2 Rm; ! 2 
:

If for every ! 2 
, fM(!) converges to 0, where

fM(!) =

 
(ln b)�p1(!)
�(�+1)

(ln b)�p2(!)
�(�+1)

(ln b)�p3(!)
�(�+1)

(ln b)�p4(!)
�(�+1)

!
;

then problem (4.0.1) has unique random solution.

Proof. Consider the operatorN : C([1; b];Rm)�C([1; b];Rm)�
! C([1; b];Rm)�
C([1; b];Rm) de�ned by

(x(�; !); y(�; !); !) 7! (N1(x(t; !); y(t; !); !); N2(x(t; !); y(t; !); !))

where

N1(x(t; !); y(t; !); !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s

and

N2(x(t; !); y(t; !); !) = y0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
g(s; x(s; !); y(s; !); !)

ds

s
:
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4.1 Existence and Uniqueness

First we show that N is a random operator on C([1; b];Rm) � C([1; b];Rm).
Since f and g are Carath�eodory functions, then ! ! f(t; x; y; !) and ! !
g(t; x; y; !) are measurable maps in view of Proposition 1.3.2, and we con-
clude that the maps

! ! N1(x(t; !); y(t; !); !); ! ! N2(x(t; !); y(t; !); !)

are measurable. As a result, N is a random operator on C([1; b];Rm) �
C([1; b];Rm)� 
 into C([1; b];Rm)� C([1; b];Rm):

We now show that N satis�es all the conditions of Theorem 3.1.2 on
C([1; b];Rm)�C([1; b];Rm): Let (x(�; !); y(�; !)); (ex(�; !); ey(�; !)) 2 C([1; b];Rm)�
C([1; b];Rm); ; then

kN1(t; x(t); y(t); !)�N1(t; ex(t); ey(t); !)k
=
 1
�(�)

R t
1

�
ln t

s

���1
(f(s; x(s; !); y(s; !); !)� f(s; ex(s; !); ey(s; !); !)) ds

s


� 1

�(�)

R t
1

�
ln t

s

���1 kf(s; x(s; !); y(s; !); !)� f(s; ex(s; !); ey(s; !); !)kds
s

� 1
�(�)

R t
1

�
ln t

s

���1
p1(!)kx(s; !)� ex(s; !)kdss

+ 1
�(�)

R t
1

�
ln t

s

���1
p2(!)ky(s; !)� ey(s; !)kdss

� p1(!)
�(�)

R t
1

�
ln t

s

���1 ds
s
kx(:; !)� ex(:; !)k1 + p2(!)

�(�)

R t
1

�
ln t

s

���1 ds
s
ky(:; !)� ey(:; !)k1

= p1(!)
�(�)

R ln t
0

(ln t� s)��1dskx(�; !)� ex(�; !)k1
+p2(!)

�(�)

R ln t
0

(ln t� s)��1dsky(:; !)� ey(:; !)k1
� p1(!)(ln t)�

�(�+1)
kx(�; !)� ex(�; !)k1 + p2(!)(ln t)�

�(�+1)
ky(�; !)� ey(�; !)k1:

Consequently,

kN1(x(�; !); y(�; !); !)�N1(ex(�; !); ey(�; !); !))k1
� kx(�; !)� ex(�; !)k1p1(!) (ln b)�

�(�+1)
+ ky(�; !)� ey(�; !)k1p2(!) (ln b)�

�(�+1)
:

Similarly, we obtain

kN2(x(�; !); y(�; !); !)�N2(ex(�; !); ey(�; !); !)k1
� kx(�; !)� ex(�; !)k1p3(!) (ln b)�

�(�+1)
+ ky(�; !)� ey(�; !)k1p4(!) (ln b)�

�(�+1)
:

Hence

d(N(x(�; !); y(�; !); !); N(ex(�; !); ey(�; !); !)) � fM(!)d((x(�; !); y(�; !)); (ex(�; !); ey(�; !)));
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Random Hadamard Fractional Di�erential Equations

where

d(x(�; !); y(�; !)) =
� kx(�; !)� y(�; !)k1
kx(�; !)� y(�; !)k1

�
:

Since for every ! 2 
; fM(!) 2 M2�2(R+) converges to zero, then from
Theorem 3.1.2, there exists a unique random �xed point of N which is a
solution of problem (4.0.1).

Next, we present an existence result without Lipschitz conditions. We
consider the following hypotheses:

(h2) For every ! 2 
; the functions f(�; �; �; !) and g(�; �; �; !) are continuous,
and ! ! f(�; �; �; !); ! ! g(�; �; �; !) are measurable.

(h3) There exist measurable and bounded functions 1; 2 : 
 ! R+ such
that

kf(t; x; y; !)k � 1(!)(kxk+ kyk); kg(t; x; y; !)k � 2(!)(kxk+ kyk);

for all t 2 [1; b]; ! 2 
 and x; y 2 Rm:

Now,we prove an existence result for problem (4:0:1) by using a Leary-
Schauder type random �xed point theorem in generalized Banach spaces.

Theorem 4.1.3. Assume that the hypotheses (h2) and (h3) hold. Then the
problem (4.0.1) has a random solution de�ned on [1; b]:Moreover, the solution
set

S(x0; y0) = f(x; y) : 
! C([1; b];Rm)� C([1; b];Rm) : (x(�; !); y(�; !));
! 2 
 is a solution of (4:0:1)g

is compact (i.e. for every (xn; yn)n2N � S(x0; y0) there exists a subsequence
of (xn; yn)n2N converging to some element (x; y) 2 S(x0; y0)):

Proof. Let N : C([1; b];Rm)�C([1; b];Rm)�
! C([1; b];Rm)�C([1; b];Rm)
be a random operator de�ned in Theorem 4.1.2.

In order to apply Theorem 3.1.3, we �rst show that N is completely
continuous. The proof will be given in several steps.
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4.1 Existence and Uniqueness

� Step 1 N(�; �; !) = (N1(�; �; !); N2(�; �; !)) is continuous.
Let (xn; yn) be a sequence such that (xn; yn)! (x; y) 2 C([1; b];Rm)�
C([1; b];Rm) as n!1. Then

kN1(xn(�; !); yn(�; !); !)�N1(x(�; !); y(�; !); !)k1
� (ln b)�

�(�+1)
kf(�; xn(�; !); yn(�; !); !)� f(�; x(�; !); y(�; !); !)k1:

Since f is a continuous function, we get

kN1(xn(�; !); yn(�; !); !)�N1(x(�; !); y(�; !); !)k1 ! 0 as n!1:

Similarly

kN2(xn(�; !); yn(�; !); !)�N2(x(�; !); y(�; !); !)k1
� (ln b)�

�(�+1)
kg(�; xn(�; !); yn(�; !); !)� g(�; x(�; !); y(�; !); !)k1:

Then

kN2(xn(�; !); yn(�; !); !)�N2(x(�; !); y(�; !); !)k1 ! 0 as n!1:

Thus N is continuous.

� Step 2. N maps bounded sets into bounded sets in C([1; b];Rm) �
C([1; b];Rm). Indeed, it is enough to show that for any q > 0 there
exists a positive constant l such that for each (x; y) 2 Bq = f(x; y) 2
C([1; b];R)� C([1; b];R) : kxk1 � q; kyk1 � qg, we have

kN(x; y; !)k1 � l = (l1; l2):

Then for each t 2 [1; b]; we get

kN1(x(t; !); y(t; !); !)k
=

x0(!) + 1
�(�)

R t
1
(ln t

s
)��1f(s; x(s; !); y(s; !); !)ds

s


� kx0(!)k+ 1(!)

�(�)

R b
1
kf(s; x(s; !); y(s; !); !)kds

s
:

From (h3); we get

kN1(x(�; !); y(�; !); !)k1 � kx0(!)k+ 2(ln b)�q

�(� + 1)
1(!) := l1:

Similarly, we have

kN2(x(�; !); y(�; !); !)k1 � ky0(!)k+ 2(ln b)�q

�(� + 1)
2(!) := l2:
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Random Hadamard Fractional Di�erential Equations

� Step 3. N maps bounded sets into equicontinuous sets of C([1; b];Rm)�
C([1; b]; Rm):
Let Bq be a bounded set in C([1; b];Rm) � C([1; b];Rm) as in Step 2.
Let r1; r2 2 J; r1 < r2 and u 2 Bq. Thus we have

kN1(x(r2; !); y(r2; !); !)�N1(x(r1; !); y(r1; !); !)k
� 2q1(!)

�(�)

h R r2
r1

�
ln r2

s

���1 ds
s
+
R r1
1

� �
ln r2

s

���1 � �ln r2
s

���1 �ds
s

i
:

Hence

kN1(x(r2; !); y(r2; !); !)�N1(x(r1; !); y(r1; !); !)k
� 2q1(!)

�(� + 1)
(ln r2 � ln r1)

� +
2q1(!)

�(� + 1)

h
(ln r2)

� � (ln r1)
�
i
;

and

kN2(x(r2; !); y(r2; !); !)�N2(x(r1; !); y(r1; !); !)k
� 2q1(!)

�(� + 1)
(ln r2 � ln r1)

� +
2q1(!)

�(� + 1)

h
(ln r2)

� � (ln r1)
�
i
:

The right-hand term tends to zero as jr2 � r1j ! 0. As a consequence
of Steps 1 to 3 together with the Arzel�a-Ascoli theorem, we conclude
that N maps Bq into a precompact set in C([1; b];R)� C([1; b];R).

� Step 4. It remains to show that

A(!) = f(x(�; !); y(�; !)) 2 C([1; b];Rm)� C([1; b];Rm) :

(x(�; !); y(�; !)) = �(!)N(x(�; !); y(�; !); !); �(!) 2 (0; 1)g
is bounded.

Let (x; y) 2 A. Then x = �(!)N1(x; y) and y = �(!)N2(x; y) for some
0 < � < 1. Thus, for t 2 [1; b], we have

kx(t; !)k � kx0(!)k+ 1

�(�)

Z t

1

�
ln
t

s

���1
kf(s; x(s; !); y(s; !); !)kds

s

� kx0(!)k+ 1

�(�)

Z t

1

1(!)
�
ln
t

s

���1
(kx(s; !)k+ ky(s; !)k)ds

s
:

Hence

kx(t; !)k � kx0(!)k+ 1(!)

�(�)

Z t

1

�
ln
t

s

���1
(kx(s; !)k+ ky(s; !)k)ds

s
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and

ky(t; !)k � ky0(!)k+ 2(!)

�(�)

Z t

1

�
ln
t

s

���1
(kx(s; !)k+ ky(s; !)k)ds

s
:

Therefore

kx(t; !)k+ ky(t; !)k � c+ c

Z t

1

�
ln
t

s

��1
(kx(s; !)k+ ky(s; !)k)ds

s
;

where

c = kx0(!)k+ ky0(!)k+ 1(!)

�(�)
+
2(!)

�(�)
;  = min(�; �):

By Lemma 1.5.6, we have

kx(t; !)k+ ky(t; !)k � c+ c

Z t

1

" 1X
k=1

(c�())k

�(k)

�
ln
t

s

�k�1#
ds

s

� c+ c
1X
k=1

(c�())k

�(k + 1)
(ln t)k

� c

"
1 +

1X
k=1

(c�() (ln t))
k

�(k + 1)

#

� c

"
1 +

1X
k=1

(c�() (ln b))
k

�(k + 1)

#
= cE (c�() (ln b)

) :

Hence

kx(�; !)k1 + ky(�; !)k1 � cE (c�() (ln b)
) := K�:

Consequently
kxk1 � K� and kyk1 � K�:

This shows that A is bounded.

As a consequence of Theorem 3.1.3 we deduce that N has a random
�xed point ! ! (x(�; !); y(�; !)) which is a solution to the problem
(4:0:1):
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� Step 5: Compactness of the solution set. Let f(xn; yn)gn2N � S(x0; y0)
be a sequence. For every n 2 N and for �xed ! 2 
, we get

xn(t; !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; xn(s; !); yn(s; !); !)

ds

s

and

yn(t; !) = y0(!) +
1

�(�)

Z t

1

(ln
t

s
)��1g(s; xn(s; !); yn(s; !); !)

ds

s
:

As in Steps 3 and 4, we can prove that the subsequence f(xnk ; ynk)gk2N
of f(xn; yn)gn2N converges to some (x(�; !); y(�; !)) 2 C([1; b];Rm) �
C([1; b];Rm); such that

! ! x(t; !); ! ! y(t; !)

are measurable functions. Since f(�; �; �; !) and g(�; �; �; !) are continu-
ous functions,

x(t; !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s
; t 2 [1; b];

and

y(t; !) = y0(!) +
1

�(�)

Z t

1

(ln
t

s
)��1g(s; x(s; !); y(s; !); !)

ds

s
; t 2 [1; b]:

So S(x0; y0) is compact.

4.2 M
2-Solution

Our objective in this section is to apply the new concept of M2� solution
to Problem (4.0.1); for this we need some preliminary results which will be
used throughout this section.

Let (
;F ;P) be a complete probability space with a �ltration (F = Ft)t�0
satisfying the usual conditions (i.e. right continuous and F0 containing all
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4.2 M2-Solution

P-null sets). For a stochastic process x : [1; b] � 
 ! R
m we will write x(t)

(or simply x when no confusion is possible) instead of xt(!) = x(t; !). We
say x(�; �) is jointly measurable if the map (t; !) ! x(t; !) is measurable as
a map B([1; b]

NF) ! B(Rm): For ! 2 
, the path t ! x(t; !) is called
left-continuous if for each t 2 [1; b]

xs(!)! xt(!) s " t:
A process x(t; !) is stochastically continuous at a point s 2 [1; b] if for each
� > 0

lim
t!s

P f! 2 
 : kx(t; !)� x(s; !)k > �g = 0:

Theorem 4.2.1. [77] If x is a stochastic process with state space Rm and
all the paths of x are left-continuous (or right-continuous), then x is jointly
measurable.

If x and y are stochastic processes, we say that x is a modi�cation of y if
for each t 2 [1; b]

P(f! 2 
 : xt(!) = yt(!)g = 1:

Theorem 4.2.2. (Kolmogorov continuity theorem) [77] Suppose that (
;F ;P; (xt)t�0);
is a stochastic process with state space Rm: If there are ��; ��; � > 0 such that

Ekxt � xsk�� � �jt� sj1+��; t; s 2 R+;

then the stochastic process has a continuous modi�cation.

We introduce the notations:

� Denote by Lp(
;F ;P;Rm), p > 0, the linear space of random variables
(equivalence classes) x : 
! R

m such that

Ekxkp <1:

� Mp(1; b) : the space of (equivalence classes of) progressively measurable
processes x : [1; b]� 
! R

m such thatZ b

1

kxtk2dt <1; P; p.s ! 2 
; if p = 0

and

E

�Z b

1

kxtk2dt
� p

2

<1; if p > 0:
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Note that the property of progressive measurability is independent of the
choice of an element in an equivalence class x, and for every p � 0;

Mp(1; b) � Lp(
;F ;P; Lp(1; b;Rm));

as a closed linear subspace. Hence, for each p 2 [1;1) the space Mp(1; b) is
a Banach space with respect to the norm

kxkMp =

 
E

�Z b

1

kxtk2dt
� p

2

! 1

p

:

Moreover the space M2(1; b) is a Hilbert space.

De�nition 4.2.1. A pair x; y 2 M2 is called an M2�solution of problem
(4.0.1) if

x(t; !) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); !)

ds

s
;P; p.s ! 2 
; t 2 [1; b];

and

y(t; !) = y0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
g(s; x(s; !); y(s; !); !)

ds

s
;P; p.s ! 2 
; t 2 [1; b]:

4.2.1 Existence and uniqueness of M 2
�solutions

In this part we investigate the existence, uniqueness, modi�cation continuity
and stochastically continuity of M2�solution. Let us now introduce the fol-
lowing hypotheses which will be basic tools in the treatment ofM2�solutions.
(h4) Let f; g : [1; b] � R

m � R
m � 
 ! R

m be two functions such that,
! ! f(�; �; �; !); g(�; �; �; !) are measurable, t ! f(t; �; �; �); g(t; �; �; �)
are continuous and

kf(�; 0; 0; �)kM2 <1; kg(�; 0; 0; �)kM2 <1:

(h5) There exist positive real numbers c1; c2; c3; c4 such that

kf(t; x; y; !)�f(t; ex; ey; !)k � c1kx�exk+c2ky�eyk; 8 x; y; ex; ey 2 Rm; ! 2 
;

and

kg(t; x; y; !)�g(t; ex; ey; !)k � c3kx�exk+c4ky�eyk; 8 x; y; ex; ey 2 Rm; ! 2 
:
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4.2 M2-Solution

In this section we assume that �; � 2 (1
2
; 1) and Ekx0k2 < 1; Eky0k2 <

1. Now we are in the position to present the �rst result of this section.

Theorem 4.2.3. Assume that the conditions (h4) and (h5) hold and the

matrix fM� 2M2�2(R+) de�ned by

fM� =

 
(ln b)�

p
2bc1p

2��1�(�)
(ln b)�

p
2bc2p

2��1�(�)
(ln b)�

p
2bc3p

2��1�(�)
(ln b)�

p
2bc4p

2��1�(�)

!
converges to zero. Then problem (4.0.1) has unique solution in M2(1; b).

Proof. Consider the operator N :M2(1; b)�M2(1; b)!M2(1; b)�M2(1; b),
de�ned by

(x(�; !); y(�; !)) 7! (N1(x(t; !); y(t; !)); N2(x(t; !); y(t; !)))

where

N1(x(t; !); y(t; !)) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); w)

ds

s

and

N2(x(t; !); y(t; !)) = y0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
g(s; x(s; !); y(s; !); w)

ds

s
:

First we show that N is a random operator on M2(1; b)�M2(1; b). Since f
and g are Carath�eodory functions, then ! ! f(t; x; y; !) and ! ! g(t; x; y; !)
are measurable maps in view of Proposition 1.3.2, and we conclude that the
maps

! ! N1(x(t; !); y(t; !)); ! ! N2(x(t; !); y(t; !))

are measurable.
Also, R b

1
kN1(x(s; !); y(s; !))k2ds

=
R b
1

�x0(!) + 1
�(�)

R t
1

�
ln t

s

���1
f(s; x(s; !); y(s; !); !)ds

s

2� dt
� 2

�2(�)

R b
1

� R t1 �ln t
s

���1
f(s; x(s; !); y(s; !); !)ds

s

2� dt+ 2
R b
1
kx0(!)k2dt

� 2(b� 1)kx0(!)k2 + b(ln b)2�

(2��1)�2(�)
R b
1
kf(s; x(s; !); y(s; !); !)k2ds

� 2(b� 1)kx0(!)k2 + 2b(ln b)2�

(2��1)�2(�)
R b
1
kf(s; 0; 0;!)k2ds

+ 2b(ln b)2�

(2��1)�2(�)
R b
1
[c21kx(s; !)k2 + c22ky(s; !)k2]ds:
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Therefore R b
1
kN1(x(s; !); y(s; !))k2ds

� 2(b� 1)kx0(!)k2 + 2b(ln b)2�

(2��1)�2(�)
R b
1
kf(s; 0; 0;!)k2ds

+ 2b(ln b)2�

(2��1)�2(�)
R b
1
[c21kx(s; !)k2 + c22ky(s; !)k2]ds <1:

Consequently,

E
R b
1
kN1(x(s; !); y(s; !))k2ds

� 2(b� 1)Ekx0(!)k2 + 2b(ln b)2�

(2��1)�2(�)E
R b
1
kf(s; 0; 0;!)k2ds

+ 2b(ln b)2�

(2��1)�2(�)E
R b
1
[c21kx(s; !)k2 + c22ky(s; !)k2]ds <1:

Similarly, we obtain R b
1
kN2(x(s; !); y(s; !))k2ds

� 2(b� 1)ky0(!)k2 + 2b(ln b)2�

(2��1)�2(�)
R b
1
kg(s; 0; 0; !)k2ds

+ 2b(ln b)2�

(2��1)�2(�)
R b
1
[c23kx(s; !)k2 + c24ky(s; !)k2]ds <1;

and

E
R b
1
kN2(x(s; !); y(s; !))k2ds

� 2(b� 1)Eky0(!)k2 + 2b(ln b)2�

(2��1)�2(�)E
R b
1
kg(s; 0; 0; !)k2ds

+ 2b(ln b)2�

(2��1)�2(�)E
R b
1
[c23kx(s; !)k2 + c24ky(s; !)k2]ds <1:

So, N is a random operator on M2(1; b)�M2(1; b) into M2(1; b)�M2(1; b):

We show that N satis�es all the conditions of Theorem 1.7.1 onM2(1; b)�
M2(1; b): Let (x(�; !); y(�; !)); (ex(�; !); ey(�; !)) 2M2(1; b)�M2(1; b); then

kN1(t; x(t); y(t; !))�N1(t; ex(t); ey(t; !))k2
=
 1
�(�)

R t
1

�
ln t

s

���1 h
f(s; x(s; !); y(s; !); w)� f(s; ex(s; !); ey(s; !); w)ids

s

2
� 2c2

1

�2(�)

R t
1

�
ln t

s

�2��2 ds
s2
ds
R t
1
kx(s; !)� ex(s; !)k2ds

+
2c2
2

�2(�)

R t
1

�
ln t

s

�2��2 ds
s2

R t
1
ky(s; !)� ey(s; !)k2ds

=
2c2
1

�2(�)

R ln t
0

(ln t� s)2��2 ds
es

R t
1
kx(s; !)� ex(s; !)k2ds

+
2c2
2

�2(�)

R ln t
0

(ln t� s)2��2 ds
es

R t
1
ky(s; !)� ey(s; !)k2ds

� 2c2
1
(ln t)2�

(2��1)�2(�)
R t
1
kx(s; !)� ex(s; !)k2ds+ 2c2

2
(ln t)2�

(2��1)�2(�)
R t
1
ky(s; !)� ey(s; !)k2ds:
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4.2 M2-Solution

Then R b
1
kN1(x(s; !); y(s; !))�N1(ex(s; !); ey(s; !))k2ds
� 2bc2

1
(ln b)2�

(2��1)�2(�)
R b
1
kx(s; !)� ex(s; !)k2ds

+
2bc2

2
(ln b)2�

(2��1)�2(�)
R b
1
ky(s; !)� ey(s; !)k2ds:

Consequently,

E

�R b
1
kN1(x(s; !); y(s; !))�N1(ex(s; !); ey(s; !))k2ds�
� 2bc2

1
(ln b)2�

(2��1)�2(�)E
�R b

1
kx(s; !)� ex(s; !)k2ds�

+
2bc2

2
(ln b)2�

(2��1)�2(�)E
�R b

1
ky(s; !)� ey(s; !)k2ds� :

Similarly, we obtain

E

�R b
1
kN1(x(s; !); y(s; !))�N1(ex(s; !); ey(s; !))k2ds�
� 2bc2

3
(ln b)2�

(2��1)�2(�)E
�R b

1
kx(s; !)� ex(s; !)k2ds�

+
2bc2

4
(ln b)2�

(2��1)�2(�)E
�R b

1
ky(s; !)� ey(s; !)k2ds� :

Hence �
E

�R b
1
kN1(x(s; !); y(s; !))�N1(ex(s; !); ey(s; !))k2ds�� 1

2

�
p
2bc1(ln b)�p
(2��1)�(�)

�
E

�R b
1
kx(s; !)� ex(s; !)k2ds�� 1

2

+
p
2bc2(ln b)�p
(2��1)�(�)

�
E

�R b
1
ky(s; !)� ey(s; !)k2ds�� 1

2

;

and �
E

�R b
1
kN1(x(s; !); y(s; !))�N1(ex(s; !); ey(s; !))k2ds�� 1

2

�
p
2bc3(ln b)�p
(2��1)�(�)

�
E

�R b
1
kx(s; !)� ex(s; !)k2ds�� 1

2

+
p
2bc4(ln b)�p
(2��1)�(�)

�
E

�R b
1
ky(s; !)� ey(s; !)k2ds�� 1

2

:
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Therefore

d(N(x; y); N(ex; ey) � fM�d((x; y); (ex; ey);
where

d(x; y) =

� kx� ykM2

kx� ykM2

�
:

Since fM� 2 M2�2(R+) converges to zero, then from Theorem 1.7.1 there
exists a unique M2�solution of problem (4.0.1).

Theorem 4.2.4. Assume that (h4) and (h5) hold. Then for each x; y 2
M2(1; b), the processes

zt(!) = x0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
f(s; x(s; !); y(s; !); w)

ds

s
;

1

2
< � < 1;

and

�zt(!) = y0(!) +
1

�(�)

Z t

1

�
ln
t

s

���1
g(s; x(s; !); y(s; !); w)

ds

s
;

1

2
< � < 1;

have continuous modi�cations. Moreover t! zt; �zt are stochastically contin-
uous.

Proof. Let x; y 2M2(1; b) and t; r 2 [1; b]; r < t. By the Jensen and H�older
inequalities, we have

p
kzt(!)� zr(!)k �

s
1

�(�)

Z r

1

h�
ln
t

s

���1
�
�
ln
r

s

���1 i
kf(s; x(s; !); y(s; !); !)kds

s

+

s
1

�(�)

Z t

r

�
ln
t

s

���1
kf(s; x(s; !); y(s; !); !)kds

s

� 1

�(�)

Z r

1

h�
ln
t

s

���1
�
�
ln
r

s

���1 ids
sZ r

1

kf(s; x(s; !); y(s; !); w)kds

+
1

�(�)

Z t

r

�
ln
t

s

���1
ds

s

Z t

r

kf(s; x(s; !); y(s; !); !)kds:
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4.2 M2-Solution

Then

p
kzt(!)� zr(!)k � 2

�(� + 1)
j(ln t� ln r)�j

Z b

1

h
c1kx(s; !)k+ c2ky(s; !)k

i
ds

+
2

�(� + 1)
j(ln t� ln r)�j

Z b

1

kf(s; 0; 0; !)kds

+
1

�(� + 1)
j(ln t)� � (ln r)�j

Z b

1

h
c1kx(s; !)k+ c2ky(s; !)k

i
ds

+
1

�(� + 1)
j(ln t)� � (ln r)�j

Z b

1

kf(s; 0; 0; !)kds

By H�older's inequality, we obtain that

p
kzt(!)� zr(!)k � 2b

�(� + 1)
j(ln t� ln r)�j

Z b

1

h
c21kx(s; !)k2 + c22ky(s; !)k2

i
ds

+
2b

�(� + 1)
j(ln t� ln r)�j

Z b

1

kf(s; 0; 0; !)k2ds

+
b

�(� + 1)
j(ln t)� � (ln r)�j

Z b

1

h
c21kx(s; !)k2 + c22ky(s; !)k2

i
ds

+
b

�(� + 1)
j(ln t)� � (ln r)�j

Z b

1

kf(s; 0; 0; !)k2ds

and

p
k�zt(!)� �zr(!)k � 2b

�(� + 1)

���(ln t� ln r)�
��� Z b

1

h
c23kx(s; !)k2 + c24ky(s; !)k2

i
ds

+
2b

�(� + 1)

���(ln t� ln r)�
��� Z b

1

kg(s; 0; 0; !)k2ds

+
b

�(� + 1)

���(ln t)� � (ln r)�
��� Z b

1

h
c23kx(s; !)k2 + c24ky(s; !)k2

i
ds

+
b

�(� + 1)

���(ln t)� � (ln r)�
��� Z b

1

kg(s; 0; 0; !)k2ds:
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Consequently

E

p
kzt(!)� zr(!)k � 2b

�(� + 1)
j(ln t� ln r)�j

h
c21kxk2M2 + c22kyk2M2

i
+

2b

�(� + 1)
j(ln t� ln r)�j kf(�; 0; 0; �)k2M2

+
b

�(� + 1)
j(ln t)� � (ln r)�j

h
c21kxk2M2 + c22kyk2M2

i
+

b

�(� + 1)
j(ln t)� � (ln r)�j kf(�; 0; 0; �)k2M2

and

E

p
k�zt(!)� �zr(!)k � 2b

�(� + 1)

���(ln t� ln r)�
��� hc23kxk2M2 + c24kyk2M2

i
+

2b

�(� + 1)

���(ln t� ln r)�
��� kg(�; 0; 0; �)k2M2

+
b

�(� + 1)

���(ln t)� � (ln r)�
��� hc23kxk2M2 + c24kyk2M2

i
+

b

�(� + 1)

���(ln t)� � (ln r)�
��� kg(�; 0; 0; �)k2M2 :

Since r < t; this implies that

j(ln t)� � (ln r)�j = (ln t)� � (ln r)�

=

�
ln t� ln r

2
+
ln t+ ln r

2

��

� (ln r)�

Using the fact that �� is a convex function on (0; ln b], we obtain

(ln t)� � (ln r)� � 1

2
(ln t� ln r)� +

1

2
(ln t+ ln r)� � (ln r)�

=
1

2
(ln t� ln r)� +

2�

2

�
ln t

2
+
ln r

2

��

� (ln r)�

� (ln t� ln r)�

2
+
(ln t)�

22��
+
(ln r)�

22��
� (ln r)�

� (ln t� ln r)�

2
+
(ln t)�

2
� (ln r)�

2
:
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4.2 M2-Solution

Hence

(ln t)� � (ln r)� � (ln t� ln r)�:

Applying, the Finite Increment Theorem to ln t� ln r; r; t 2 [1; b], we get

E

p
kzt(!)� zr(!)k � 2b

�(� + 1)
jt� rj�

h
c21kxk2M2 + c22kyk2M2

i
+

2b

�(� + 1)
jt� rj� kf(�; 0; 0; �)k2M2

+
b

�(� + 1)
jt� rj�

h
c21kxk2M2 + c22kyk2M2

i
+

b

�(� + 1)
jt� rj� kf(�; 0; 0; �)k2M2

and

E

p
k�zt(!)� �zr(!)k � 2b

�(� + 1)
jt� rj�

h
c23kxk2M2 + c24kyk2M2

i
+

2b

�(� + 1)
jt� rj� kg(�; 0; 0; �)k2M2

+
b

�(� + 1)
jt� rj�

h
c23kxk2M2 + c24kyk2M2

i
+

b

�(� + 1)
jt� rj� kg(�; 0; 0; �)k2M2 :

Hence there exist C; �C > 0 such that

E

p
kzt(!)� zr(!)k � C jt� rj1+� (4.2.1)

and

E

p
k�zt(!)� �zr(!)k � C jt� rj1+� : (4.2.2)

So, from Kolmogrov's Theorem 4.2.2, zt and �zt have continuous modi�cation.

Now we show that z and �z are stochastically continuous. Indeed, let
t; s 2 [1; b]; and � > 0, then

P(f! 2 
 : kzt(!)� zr(!)k > �g) = P(f! 2 
 :
p

kzt(!)� zr(!)k >
p
�g):
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Using Markov's inequality, we obtain that

P(f! 2 
 : kzt(!)� zr(!)k > �g) � 1p
�
E(
p

kzt(!)� zr(!)k)

and

P(f! 2 
 : k�zt(!)� �zr(!)k > �g) � 1p
�
E(
p
k�zt(!)� �zr(!)k):

Hence, (4.2.1) and (4.2.2), implies that

P(f! 2 
 : kzt(!)� zr(!)k > �g) � Cp
�
jt� rj1+� ! 0 as t! r

and

P(f! 2 
 : k�zt(!)� �zr(!)k > �g) � 1p
�
jt� rj1+� ! 0 as t! r:

As a consequence of above theorem we can easily prove the following
result.

Corollary 4.2.5. Under the conditions of Theorem 4.2.3, every M2-solution
of problem (4.0.1) has a continuous modi�cation and is stochastically contin-
uous..

For the existence of modi�cation of anM2-solution of the problem (4.1.1),
we assume in addition to the Lipschitz condition (H5) the hypothesis:

(h6) There exist positive constants �ci > 0; i = 1; : : : ; 6 such that

kf(t; x; y; !)k2 � �c1kxk2+�c2kyk2+�c3; kg(t; x; y; !)k2 � �c4kxk2+�c5kyk2+�c6;
for each x; y 2 Rm; t 2 [1; b]; P a.e. ! 2 
:

By some simple modi�cations of the proof of Theorem 4.2.3, we present
the following result.

Theorem 4.2.6. Suppose that (h5) and (h6) hold. Then every M2-solution
of problem (4.0.1) has a continuous modi�cation and is stochastically contin-
uous.
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Conclusion and Perspectives

In this thesis, we prove some random �xed point theorems in generalized
Banach spaces. We establish a random version of a Krasnosel'skii type �xed
point theorem for the sum of a contraction random operator and a compact
operator. The results are used to prove to the existence of solutions to
the random system of fractional di�erential equations , then we shall be
concerned with the existence and uniqueness of solutions for some classes of
system of fractional discrete equation.

85



Bibliography

[1] S. Abbas, M. Benchohra and G.M. N'Gu�er�ekata, Topics in Fractional
Di�erential Equations, Springer, New York, 2012.

[2] S. Abbas, M. Benchohra and G.M.N'Gu�er�ekata , Avanced Fractional
Di�erential and Integral Equations, Nova Science Publishers, New York,
2015.

[3] R. P. Agarwal, Di�erence Equations and Inequalities. Theory, Methods,
and Applications, Second edition. Monographs and Textbooks in Pure
and Applied Mathematics, 228. Marcel Dekker, Inc., New York, 2000.

[4] R.P. Agarwal and D. O'Regan, Di�erence equations in abstract spaces,
J. Austr. Math. Soc. Ser. (A) 64 (1998), 277{284.

[5] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solutions
of a system of integral equations with integrable singularities, J. Integral
Equations Appl., 19 (2007), 117-142.

[6] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solu-
tions for singular systems of Fredholm integral equations,Math. Methods
Appl. Sci., 33 (2010), 1783-1793.

[7] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solutions
for systems of singular integral equations of Hammerstein type, Math.
Comput. Modelling, 50 (2009), 999-1025.

[8] H. D. Thang and P. T. Anh, Random �xed points of completely random
operators. Random Oper. Stoch. Equ. 21 (2013), no. 1, 1{20.

[9] G. Allaire and S.M. Kaber, Numerical Linear Algebra; ser. Texts in
Applied Mathematics, Springer, New York, 2008.

86



BIBLIOGRAPHY

[10] J. Andres and L. G�orniewicz, Topological Fixed Point Principles for
Boundary Value Problems, Kluwer, Dordrecht, 2003.

[11] T. N. Anh, Some general random coincidence point theorems, New
Zealand J. Math. 41 (2011), 17-24.

[12] J. Andres and L. G�orniewicz, Topological Fixed Point Principles for
Boundary Value Problems, Kluwer, Dordrecht, 2003.

[13] A. Arunchai and S. Plubtieng, Random �xed point theorem of Kras-
noselskii type for the sum of two operators, Fixed Point Theory and
Applications , 2013, pp10

[14] F.M. Atici and P.W. Eloe, A transform method in discrete fractional
calculus, Int. J. Di�erence Equ. 2 (2007), 165{176.

[15] F.M. Atici and P.W. Eloe, Initial value problems in discrete fractional
calculus, Proc. Am. Math. Soc. 137 (2009), 981{989.

[16] F.M. Atici, P.W. Eloe, Linear systems of fractional nabla di�erence
equations, Rocky Mt. J. Math. 41 (2011), 353{370.

[17] F.M. Atici and P.W. Eloe, Two-point boundary value problems for �nite
fractional di�er- ence equations, J. Di�erence Equ. Appl. 17 (2011),
445{456.

[18] F.M. Atici and P.W. Eloe, Gronwall's inequality on discrete fractional
calculus, Comput. Math. Appl. 64 (2012), 3193{3200.

[19] A. Benaissa and M. Benchohra, Functional di�erential equations with
state-dependent delay and random e�ects. Rom. J. Math. Comput. Sci.
5 (2015), 84{94.

[20] A. Benaissa, M. Benchohra and J.R. Graef, Functional di�erential equa-
tions with delay and random e�ects, Stoch. Anal. Appl. 33 (2015), 1083{
1091.

[21] I. Beg and N. Shahzad, Some random approximation theorems with
applications, Nonlinear Anal. 35 (1999), 609-616.

87



BIBLIOGRAPHY

[22] I. Beg and N. Shahzad, Applications of the proximity map to random
�xed point theorems in Hilbert spaces, J. Math. Anal. Appl. 196 (1995),
606-613.

[23] I. Bihari, A generalisation of a lemma of Bellman and its application
to uniqueness problems of di�erential equations, Acta Math. Acad. Sci.
Hungar.,7 (1956), 81-94.

[24] O. Bolojan-Nica, G. Infante and R. Precup, Existence results for systems
with coupled nonlocal initial conditions, Nonlinear Anal., 94 (2014),
231-242.

[25] A. T. Bharucha-Reid, Random Integral Equations, New York, Academic
Press, 1972.

[26] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis,
Bull. Amer. Math. Soc. 82 (1976), 641-657.

[27] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Compositions of Hadamard-
type fractional integration operators and the semigroup property, J.
Math. Anal. Appl. 269 (2002), 387{400.

[28] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the
Mellin setting and Hadamard-type fractional integrals, J. Math. Anal.
Appl. 269 (2002), 1{27.

[29] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Mellin transform analysis and
integration by parts for Hadamard-type fractional integrals, J. Math.
Anal. Appl. 270 (2002), 1{15.

[30] S. S. Cheng, W. T. Patula, An existence theorem for a nonlinear di�er-
ence equation, Nonlinear Anal. 20 (1993) 193-203.

[31] S. Das, Functional Fractional Calculus Springer-Verlag Berlin Heidel-
berg, 2011.

[32] K. Diethelm, The Analysis of Fractional Di�erential Equations,
Springer, Braunschweig, Germany, 2004.

[33] K. Diethelm and N.J. Ford, Analysis of fractional di�erential equations,
J. Math. Anal. Appl. 265 (2002), 229{248.

88



BIBLIOGRAPHY

[34] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional
order di�erential equations used in the modeling of viscoplasticity, in
Scienti�ce Computing in Chemical Engineering II-Computational Fluid
Dynamics, Reaction Engineering and Molecular Properties (F. Keil, W.
Mackens, H. Voss, and J. Werther, Eds.), pp. 217{224, Springer-Verlag,
Heidelberg, 1999.

[35] B.C. Dhage, On global existence and attractivity results for nonlinear
random integral equations, Panamer. Math. J. 19 (2009), 97{111.

[36] B.C. Dhage, On n-th order nonlinear ordinary random di�erential equa-
tions, Nonlinear Oscil. 13 (2011) no.4, 535{549.

[37] B.C. Dhage, S.V. Badgire and S.K. Ntouyas, Periodic boundary value
problems of second order random di�erential equations, Electron. J.
Qual. Theory Di�er. Equ. 21 (2009), 114.

[38] R. Edsinger, Random Ordinary Di�erential Equations, Ph.D. Thesis,
Univ. of California (Berkeley), 1968.

[39] Y.Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, On Caputo mod-
i�cation of the Hadamard fractional derivatives Adv. Di�erence Equ.
2014, (2014), 12 pp.

[40] L. Gaul, P. Klein and S. Kempe, Damping description involving frac-
tional operators, Mech. Systems Signal Processing 5 (1991), 81{88. 68
(1995), 46{53.

[41] J. Garcia-Falset, Existence of �xed points for the sum of two operators,
Math. Nachr. 12 (2010) 1726-1757.

[42] J. Garcia-Falset, K. Latrach, E. Moreno-G�alvez and M. A Taoudi,
Schaefer-Krasnoselskii �xed points theorems using a usual measure of
weak noncompactness, J. Di�erential Equations 352 (2012), no. 4, 3436-
3452.

[43] J. Garcia-Falset and O. Mu~niz-P�erez, Fixed point theory for 1-set weakly
contractive and pseudocontractive mappings. Appl. Math. Comput. 219
(2013), no. 12, 6843-6855.

89



BIBLIOGRAPHY

[44] W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach
of self-similar protein dynamics, Biophys. J. 68 1995, 46-53.

[45] J.R. Greaf,J. Henderson and A. Ouahab, Topological Methods for Dif-
ferential Equations and Inclusions. Baca Raton.

[46] J. Hadamard, Essai sur l'�etude des fonctions donnees par leur develop-
ment de Taylor, J. Mat. Pure Appl. Ser. 8 (1892), 101{186.

[47] O. Han�s, Random operator equations, Proc. 4th Berkeley Sympos. Math.
Statist. and Prob., Univ. California Press, Berkeley, Calif., (1961), II
185{202.

[48] O. Han�s, Random �xed point theorems. 1957 Transactions of the �rst
Prague conference on information theory, statistical decision functions,
random processes held at Liblice near Prague from November 28 to 30,
1956 pp. 105{125 Publishing House of the Czechoslovak Academy of
Sciences, Prague.

[49] O. Han�s and A. �Spacek, Random �xed point approximation by di�er-
entiable trajectories. 1960 Trans. 2nd Prague Conf. Information Theory
pp. 203{213 Publ. House Czechoslovak Acad. Sci., Prague, Academic
Press, New York.

[50] J. Henderson, S. K. Ntouyas and I. K. Purnaras, Positive solutions for
systems of second order four-point nonlinear boundary value problems,
Commun. Appl. Anal., 12 (2008), 29-40.

[51] R. Hilfer, Applicatiopns of Fractional Calculus in Physics, World Scien-
ti�c, 2000.

[52] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modi�cation of
the Hadamard fractional derivatives, Adv. Di�erence Equ. 2012, (2012),
8 pp.

[53] M. A. Krasnosel'skii, Some problems of nonlinear analysis, Amer. Math.
Soc. Transl. Ser. (2) 10 (1958), 345-409.

[54] A.A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc.
38 (2001), 1191{1204.

90



BIBLIOGRAPHY

[55] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applica-
tions of Fractional Di�erential Equations, North-Holland Mathematics
Studies, 204, Elsevier Science B. V. Amsterdam, 2006.

[56] A.A. Kilbas and J.J. Trujillo, Hadamard-type integrals as G-transforms,
Integral Transforms and Special Functions 14 (2003), 413{427.

[57] A.A. Kilbas,H.M. Srivastava, and J.J. Trujillo, Theory and Applications
of Fractional Di�erential Equations. North-Holland Mathematics Stud-
ies, vol. 204. Amsterdam: Elsevier Science B.V. 2006.

[58] M. Kisielewicz, Di�erential Inclusions and Optimal Control, Kluwer,
Dordrecht, The Netherlands, 1991. 397-403.

[59] G.S. Ladde and V. Lakshmikantham, Random Di�erential Inequalities,
Academic Press, New York, 1980.

[60] V. Lupulescu, S.K. Ntouyas, Random fractional di�erential equations,
Int. Electron. J. Pure Appl. Math. 4 (2012), 119-136.

[61] S.Y. Lin, Generalized Gronwall inequalities and their applications to
fractional di�erential equations, J. Inequal. Appl. 2013 (2013), No. 549,
9 pp.

[62] V. Lupulescu and S.K. Ntouyas, Random fractional di�erential equa-
tions, Int. Electron. J. Pure Appl. Math. 4 (2012), 119{136.

[63] V. Lupulescu, D. O'Regan and G. Rahman, Existence results for random
fractional di�erential equations, Opuscula Math. 34 (2014), 813{825.

[64] F. Mainardi, Fractional calculus: Some basic problems in continuum and
statistical mechanis, in Fractals and Fractional Calculus in Continuum
Mechanics (A. Carpinteri and F. Mainardi, Eds.), pp. 291{348, Springer-
Verlag, Wien, 1997.

[65] Marc Welibeer, E�cient Numertical Methods for Fractional Di�erential
Equations and their Analytical Background (2005 ).

[66] A.B. Malinowska and D.F.M. Torres, Introduction to the Fractional Cal-
culus of Variations. Imperial College Press, London, 2012.

91



BIBLIOGRAPHY

[67] A.M. Mathai, Hans J. Haubold : Special functions for Applied Scientists.
Springer (2008 ).

[68] F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation
in �lled polymers: A fractional calculus approach, J. Chem. Phys. 103
(1995), 7180{7186.

[69] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and
Fractional Di�erential Equations, Wiley, New York, 1993.

[70] A. Mukherjea, Transformations al�eatoires separables. Th�eor�eme du
point �xe alatoire, C. R. Acad. Sei. Paris S�er. A-B 263 (1966), 393-
395.

[71] A. Mukherjea, Random Transformations of Banach Spaces; Ph. D. Dis-
sertation, Wayne State Univ. Detriot, Michigan, 1968.

[72] A. Ouahab, Some Pervo's and Krasnosel'skii type �xed point results and
application, Comm. Appl. Nonlinear Anal., 19 (2015), 623-642.

[73] B. Oldham and J. Spanier, The Fractional Calculus, Theory and Appli-
cations of Di�erentiation and Integration to Arbitrary Order, Elsevier
Science, 1974.

[74] D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture
Notes in Electrical Engineering, 84. Springer, Dordrecht, 2011.

[75] D. O'Regan, N. Shahzad and R. P. Agarwal, Random �xed point theory
in spaces with two metrics, J. Appl. Math. Stoch. Anal. 16 (2003), 171-
176.

[76] N.S. Papageorgiou, Random �xed point theorems for measurable multi-
functions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507{514.

[77] E. Pardoux and A. Rascanu, Stochastic Di�erential Equations, Back-
ward SDEs, Partial Di�erential Equations, Stochastic Modelling and
Applied Probability, 69. Springer, Cham, 2014.

[78] P.K. Palamides, Positive and monotone solutions of an m-point bound-
ary value problem, Electron. J. Di�erential Equations 18 (2002) 1-16.

92



BIBLIOGRAPHY

[79] B. L. S. Prakasa Rao, Stochastic integral equations of mixed type II. J.
Mathematical and Physical Sci. , 7, (1973), 245-260.

[80] W. Padgett and C. Tsokos, Random Integral Equations with Applica-
tions to Life Science and Engineering, Academic Press, New York, 1976.

[81] A.I. Perov, On the Cauchy problem for a system of ordinary di�erential
equations, Pviblizhen. Met. Reshen. Di�er. Uvavn., 2, (1964), 115-134
(in Russian).

[82] I. Podlubny, Fractional Di�erential Equations, Academic Press, San
Diego, 1999.

[83] I.R. Petre and A. Petrusel, Krasnoselskii's theorem in generalized Ba-
nach spaces and applications, Electron. J. Qual. Theory Di�er. Equ.,
(2012), No. 85, 20 pp.

[84] R. Precup, Componentwise compression-expansion conditions for sys-
tems of nonlinear operator equations and applications. Mathematical
models in engineering, biology and medicine, 284-293, AIP Conf. Proc.,
1124, Amer. Inst. Phys., Melville, NY, 2009.

[85] R. Precup, Existence, localization and multiplicity results for positive
radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352
(2009), 48-56.

[86] R. Precup, The role of matrices that are convergent to zero in the study
of semilinear operator systems, Math. Comp. Modelling 49 (2009), 703-
708.

[87] I. A. Rus, Principles and Applications of the Fixed Point Theory. Dacia:
Cluj-napoca, 1979.

[88] L. E. Rybinski, An application of the continuous selection theorem of
the study of �xed point of multivalued mapping, J. Math. Anal. Appl.
153 (1990), 391-396.

[89] N. Shahzad, Random �xed point theorems for various classes of 1-set-
ontractive maps in Banach spaces, J. Math. Anal. Appl. 203 (1996),
712718.

93



BIBLIOGRAPHY

[90] S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and
Derivatives. Theory and Applications, Gordon and Breach, Yverdon,
1993.

[91] M. Seghier, A. Ouahab and J .Henderson, Random solutions to a system
of fractional di�erential equations via the Hadamard fractional deriva-
tive, Eur. Phys. J. Special Topics, 226, (2017), 3525-3549 .

[92] M.L. Sinacer, J. J Nieto and A. Ouahab, Random �xed point theorem in
generalized Banach space and applications, Random Oper. Stoch. Equ.
24 (2016), 93{112.

[93] T.T. Soong, Random Di�erential Equations in Science and Engineering,
Academic Press, New York, 1973.

[94] J.L Strand, Random Ordinary Di�erential Equations, Reidel, Boston,
1985.

[95] A. Skorohod, Random Linear Operators, Reidel, Boston, 1985.

[96] J. M. A. Toledano, T. D. Benavides, and G. L. Azedo, Measures of
Noncompactness in Metric Fixed Point Theory, Birkhauser, Basel, 1997.

[97] C. P. Tsokos and W. J. Padgett, Random Integral Equations with Appli-
cations in Life Sciences Engineering, New York, Academic Press, 1974.

[98] R.S. Varga, Matrix iterative analysis. Second revised and expanded
edition. Springer Series in Computational Mathematics, 27. Springer-
Verlag, Berlin, 2000.

[99] H. Vu, N.N. Phung and N. Phuong, On fractional randomdi�erential
equations with delay, Opuscula Math. 36 (2016), 541{556.

[100] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary
value problems: a uni�ed approach, J. London Math. Soc., 74 (2006),
673-693.

[101] Yusuf Y Gambo , Fahd Jarad , Dumitru Baleanu and Thabet Abdel-
jawad . On Caputo modi�cation of the Hadamard fractional derivatives
.Gambo et al. Advances in Di�erence Equations 2014, 2014:10.

94



BIBLIOGRAPHY

[102] Y. Zhou, Basic theory of fractional di�erential equations World Scien-
ti�c Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.

95


