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General Introduction

The general framework presented in this thesis is the estimation of the parame-
ters of an autoregressive process. We divided our whole work into four chapters.

The first chapter explains the basic notions and highlights some of the objectives
of time series analysis, it also recalls the estimation of the auto-covariance function,
and then it discusses autoregressive moving average processes (ARMA, in short)
along with autoregressive processes in Hilbert spaces. Finally, a framework has been
provided that may potentially be useful when facing the problem of analyzing a data
set in practice.

In the second chapter, a new concentration inequality and complete conver-
gence of weighted sums for arrays of row-wise linearly negative quadrant dependent
(LNQD, in short) random variables has been established, we also obtained a result
dealing with complete convergence of first-order autoregressive processes with iden-
tically distributed LNQD innovations which has been introduced in the article en-
titled "Tail probabilities and complete convergence for weighted sequences of LNQD
random variables with application to first-order autoregressive processes model" (8).

In the third chapter we demonstrate almost complete convergence of dependant
random variables sequences with application to non-linear autoregressive processes
model which is defined by

Xi = gθ(Xi−1, · · · , Xi−p) + ζi, i ≥ 1,

where ζ = (ζt, t ∈ Z) is an extended negatively dependent error(END, in short).

The last chapter is concerned with the almost complete convergence of the value
of the process of autoregressive Hilbertian of order one (ARH(1)), which directly
stems from works of Serge Guillas, Denis Bosq, that is defined by

Xt = ρ(Xt−1) + ζt; t ∈ Z

where the random variables are all Hilbertian, ρ is a linear operator on a space of
separable Hilbert and ζt which constitute a widley orthant dependent error (WOD,
in short) after recalling some results on the finite-dimensional model of this type, we
introduce the mathematical and statistical tools which will be used afterwards. Then
we build an estimator of the operator and we establish its asymptotic properties.
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Chapitre 1

Introduction

A time series can be defined as an ordered sequence of values of a variable at
time intervals which are equally spaced.

1.1 Basic Concepts in Time Series

1.1.1 Introduction and Examples

The first definition clarifies the notion of time series analysis.

Definition 1.1.1 (Time Series). Let T 6= ∅ be an index set, conveniently being
thought of as "time". A family (Xt, t ∈ T ) of random variables (random functions)
is called a stochastic process. A realization of (Xt, t ∈ T ) is called a time series. We
will series use the notation (xt, t ∈ T ) in the discourse.

The most common choices for the index set T include the integers Z = {0,±1,±2, · · · },
the positive integers N = {1, 2, · · · }, the nonnegative integers N0 = {0, 1, 2, · · · }, the
real numbers R = (−∞,+∞) and the positive halfline R+ = [0,∞). This class is
mainly concerned with the first three cases which are subsumed under the notion
discrete of time series analysis.

Oftentimes the stochastic process (Xt, t ∈ T ) is itself described to as a time series,
in the sense that a realization is identified with the probabilistic generating mecha-
nism. The objective of time series analysis is to gain knowledge of this underlying
random phenomenon through examining one (and typically only one) realization.
This separates time series analysis from, say, regression analysis for independent
data.

In the following a number of examples are given emphasizing the multitude of pos-
sible applications of time series analysis in various scientific fields.

Example 1.1.2 (Wölfer’s sunspot numbers) In figure 1.1, the number of suns-
pots (that is, dark spots visible on the surface of the sun) observed annually are
plotted against time. The horizontal axis labels time in years, while the vertical axis
represents the observed values xt of the random variable

9



Xt = ]of sunspots at time t, t = 1700, · · · , 1994.

Figure 1.1 – Wölfer’s sunspot from 1700 to 1994.

The figure is called a time series plot. It is a useful device for a preliminary ana-
lysis. Sunspot numbers are used to explain magnetic oscillations on the sun surface.

Example 1.1.3 (Canadian lynx data). The time series plot in Figure (1.2) comes
from a biological data set. It contains the annual returns of lynx at auction in Lon-
don by the Hudson Bay Company from 1821 − 1934 (on a log10 scale). These are
viewed as observations of the stochastic process

Xt = log10 (number of lynx trapped at time 1820 + t), t = 1, · · · , 114.

Figure 1.2 – Number of lynx trapped in the MacKenzie River district between 1821 and
1934.

The data is used as an estimate for the number of all lynx trapped along the
MacKenzie River in Canada. This estimate, in turn, is often taken as a proxy for
the true population size of the lynx.

Example 1.1.4 (Treasury bills). Another important field of application for time
series analysis lies in the area of finance. To hedge the risks of portfolios, investors
commonly use short-term risk-free interest rates such as the yields of three-month,
six-month, and twelve-month Treasury bills plotted in Figure 1.3. The (multivariate)
data displayed consists of 2, 386 weekly observations from July 17, 1959, to December
31, 1999. Here,

Xt = (Xt,1, Xt,2, Xt,3), t = 1, · · · , 2386,

10



where Xt,1, Xt,2 and Xt,3 denote the three-month, six-month, and twelve-month yields
at time t, respectively. It can be seen from the graph that all three Treasury bills are
moving very similarly over time, implying a high correlation between the components
of Xt.

Figure 1.3 – Yields of Treasury bills from July 17, 1959, to December 31, 1999.

Example 1.1.5 (S&P500). The Standard and Poor’s 500 index (S&P500) is a
value-weighted index based on the prices of 500 stocks that account for approximately
70% of the U.S. equity market capitalization. It is a leading economic indicator and
is also used to hedge market portfolios. Figure 1.4 contains the 7, 076 daily S&P500
closing prices from January 3, 1972, to December 31, 1999, on a natural logarithm
scale. It is consequently the time series plot of the process

Xt = ln( closing price ofS&P500 at time t), t = 1, · · · , 7076.

Figure 1.4 – S & P 500 from January 3, 1972, to December 31, 1999.
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Note that the logarithm transform has been applied to make the returns directly
comparable to the percentage of investment return.

There are countless other examples from all areas of science. To develop a theory
capable of handling broad applications, the statistician needs to rely on a mathema-
tical framework that can explain phenomena such as
• trends (apparent in Example (1.1.5)) ;
• seasonal or cyclical effects (apparent in Examples (1.1.2) and (1.1.3)) ;
• random fluctuations (all Examples) ;
• dependence (all Examples).

The classical approach taken in time series analysis is to postulate that the
stochastic process (Xt : t ∈ T ) under investigation can be divided into deterministic
trend and seasonal components plus a centered random component, giving rise to
the model

Xt = mt + st + Yt, t ∈ T (1.1)

where (mt, t ∈ T ) denotes the trend function ("mean component"), (st, t ∈ T ) the
seasonal effects and (Yt, t ∈ T ) a (zero mean) stochastic process. After an appropriate
model has been chosen, the statistician may aim at
• estimating the model parameters for a better understanding of the time series ;
• predicting future values, for example, to develop investing strategies ;
• checking the goodness of fit to the data to confirm that the chosen model is

appropriate.
Estimation procedures and prediction techniques are dealt with in detail in later
sections of the notes.

1.1.2 Stationary Time Series

Our goal is to introduce a concept that keeps some of the desirable properties
of independent and identically distributed random variables ("regularity"), but that
also considerably enlarges the class of stochastic processes to choose from by allo-
wing dependence as well as varying distributions. Dependence between two random
variables X and Y is usually measured in terms of the covariance function

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

and the correlation function

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

With these notations at hand, the classes of strictly and weakly dependent stochastic
processes can be introduced.

Definition 1.1.6 (Strict Stationarity). A stochastic process (Xt : t ∈ T ) is called
strictly stationary if, for all t1, · · · , tn ∈ T and h such that t1 + h, · · · , tn + h ∈ T ,
it holds that

(Xt1 , · · · , Xtn)=D(Xt1+h, · · · , Xtn+h)

12



That is, the so-called finite-dimensional distributions of the process are invariant
under time shifts. Here =D indicates equality in distribution.

The definition in terms of the finite-dimensional distribution can be reformulated
equivalently in terms of the cumulative joint distribution function equalities

P (Xt1 ≤ x1, · · · , Xtn ≤ xn) = P (Xt1+h ≤ x1, · · · , Xtn+h ≤ xn)

holding true for all x1, · · · , xn ∈ R, t1, · · · , tn ∈ T and h such that t1+h, · · · , tn+h ∈
T . This can be quite difficult to check for a given time series, especially if the genera-
ting mechanism of a time series is far from simple, since too many model parameters
have to be estimated from the available data, rendering concise statistical statements
impossible. A possible exception is provided by the case of independent and identi-
cally distributed random variables.

To get around these difficulties, a time series analyst will commonly only specify
the first- and second-order moments of the joint distributions. Doing so then leads
to the notion of weak stationarity.

Definition 1.1.7 (Weak Stationarity). A stochastic process (Xt; t ∈ T ) is called
weakly stationary if
• the second moments are finite : E[X2

t ] <∞ for all t ∈ T ;
• the means are constant : E[Xt] = m for all t ∈ T ;
• the covariance of Xt and Xt+h depends on h only :

γ(h) = γX(h) = Cov(Xt, Xt+h), h ∈ T such that t+ h ∈ T,

is independent of t ∈ T and is called the auto-covariance function (ACV F ).
Moreover,

ρ(h) = ρX(h) =
γ(h)

γ(0)
, h ∈ T,

is called the autocorrelation function (ACF ).

Remark 1.1.8 If (Xt : t ∈ T ) is a strictly stationary stochastic process with finite
second moments, then it is also weakly stationary. The converse is not necessarily
true. If (Xt : t ∈ T ), however, is weakly stationary and Gaussian, then it is also
strictly stationary. Recall that a stochastic process is called Gaussian if, for any
t1, · · · , tn ∈ T , the random vector (Xt1 , · · · , Xtn) is multivariate normally distribu-
ted.

This subsection is concluded with examples of stationary and non-stationary stochas-
tic processes.

Example 1.1.9 (White Noise). Let (Zt, t ∈ Z) be a sequence of real-valued, pair-
wise uncorrelated variables with E[Zt] = 0 and 0 < V ar(Zt) = σ2 <∞ for all t ∈ Z.
Then (Zt : t ∈ Z) is called white noise, abbreviated by (Zt : t ∈ Z) ∼ WN(0, σ2). It
defines a centered, weakly stationary process with ACV F and ACF given by

γ(h) =

{
σ2, h = 0,
0, h 6= 0,

and ρ(h) =

{
1, h = 0,
0, h 6= 0,

13



respectively. If the (Zt : t ∈ Z) are moreover independent and identically distributed,
they are called iid noise, shortly (Zt : t ∈ Z) ∼ IID(0, σ2). The left panel of Figure
1.5 displays 1000 observations of an i.i.d. noise sequence (Zt : t ∈ Z) based on
standard normal random variables.

(a)

(b)

Figure 1.5 – 1000 simulated values of i.i.d N (0, 1) noise (left panel) and a random walk
with i.i.d N (0, 1) innovations (right panel).

Example 1.1.10 (Cyclical Time Series). Let A and B be uncorrelated random
variables with zero mean and variances V ar(A) = V ar(B) = σ2, and let λ ∈ R be a
frequency parameter. Define

Xt = A cos(λt) +B sin(λt), t ∈ R.

The resulting stochastic process (Xt : t ∈ R) is then weakly stationary. Since sin(λt+
ϕ) = sin(ϕ) cos(λt) + cos(ϕ) sin(λt), the process can be represented as

Xt = R sin(λt+ ϕ), t ∈ R,

so that R is the stochastic amplitude and ϕ ∈ [−π, π] the stochastic phase of a
sinusoid. Some computations show that one must have A = R sin(ϕ) and B =

14



R cos(ϕ). In the left panel of Figure 1.6, 100 observed values of a series (Xt)t∈Z
are displayed. Therein, λ = π/25 was used, while R and ϕ were random variables
uniformly distributed on the interval (−.5, 1) and (0, 1), respectively. The middle
panel shows the realization of R, the right panel the realization of sin(λt+ϕ). Using
cyclical time series bears great advantages when seasonal effects, such as annually
recurrent phenomena, have to be modeled.

(a) (b)

(c)

Figure 1.6 – 100 simulated values of the cyclical time series (left panel), the stochastic
amplitude (middle panel), and the sine part (right panel).

Example 1.1.11 (Random Walk). Let (Zt : t ∈ N) ∼ WN(0, σ2). Let S0 = 0 and

St = Z1 + · · ·+ Zt, t ∈ N.

The resulting stochastic process (St : t ∈ N0) is called a random walk and is the most
important non-stationary time series. Indeed, it holds here that, for h > 0,

Cov(St, St+h) = Cov(St, St +Rt,h) = tσ2,

where Rt,h = Zt+1 + · · ·+ Zt+h, and the ACV F obviously depends on t.

15



Section 1.3 discusses in detail so-called autoregressive moving average processes
which have become a central building block in time series analysis. They are construc-
ted from white noise sequences by an application of a set of stochastic difference
equations similar to the ones defining the random walk (St : t ∈ N0) of Example
(1.1.11).
In general, the true parameters of a stationary stochastic process (Xt : t ∈ T ) are
unknown to the statistician. Therefore, they have to be estimated from a realization
x1, · · · , xn. The following set of estimators will be used here. The sample mean of
x1, · · · , xn is defined as

x =
1

n

n∑
t=1

xt

The sample auto-covariance function (sample ACV F ) is given by

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x)(xt − x), h = 0, 1, · · · , n− 1. (1.2)

Finally, the sample autocorrelation function (sample ACF ) is

ρ̂(h) =
γ̂(h)

γ̂(0)
, h = 0, 1, · · · , n− 1. (1.3)

Example 1.1.12 Let (Zt : t ∈ Z) be a sequence of independent standard normally
distributed random variables (see the left panel of Figure 1.5 for a typical realization
of size n = 1, 000). Then, clearly, γ(0) = ρ(0) = 1 and γ(h) = ρ(h) = 0 whe-
never h 6= 0. Table 1.1 gives the corresponding estimated values γ̂(h) and ρ̂(h) for
h = 0, 1, · · · , 5.

h 0 1 2 3 4 5

γ̂(h) 1.069632 0.072996 −0.000046 −0.000119 0.024282 0.0013409

ρ̂(h) 1.000000 0.068244 −0.000043 −0.000111 0.022700 0.0012529

Table 1.1 – Estimate ACV F and ACF for selected values of h.

The estimated values are all very close to the true ones, indicating that the esti-
mators work reasonably well for n = 1, 000. Indeed it can be shown that they are
asymptotically unbiased and consistent. Moreover, the sample autocorrelations ρ̂(h)
are approximately normal with zero mean and variance 1/1000. See also Theorem
1.1.13 below.

Theorem 1.1.13 Let (Zt : t ∈ Z) ∼ WN(0, σ2) and let h 6= 0. Under a gene-
ral set of conditions, it holds that the sample ACF at lag h, ρ̂(h), is for large n
approximately normally distributed with zero mean and variance 1/n.

Theorem 1.1.13 and Example 1.1.12 suggest a first method to assess whether or
not a given data set can be modeled conveniently by a white noise sequence : for

16



a white noise sequence, approximately 95% of the sample ACF s should be within
the the confidence interval ±2/

√
n. Using the data files on the course webpage, one

can compute with R the corresponding sample ACF s to check for whiteness of the
underlying time series. The properties of the sample ACF are revisited in section
1.2.

1.1.3 Eliminating Trend Components

In this subsection three different methods are developed to estimate the trend of
a time series model. It is assumed that it makes sense to postulate the model (1.1)
with st = 0 for all t ∈ T , that is,

Xt = mt + Yt, t ∈ T (1.4)

where (without loss of generality) E[Yt] = 0. In particular, three different methods
are discussed, (1) the least squares estimation of mt, (2) smoothing by means of
moving averages and (3) differencing.
Method 1 (Least squares estimation) It is often useful to assume that a trend

component can be modeled appropriately by a polynomial,

mt = b0 + b1t+ · · ·+ bp t
p, p ∈ N0.

In this case, the unknown parameters b0, · · · , bp can be estimated by the least
squares method. Combined, they yield the estimated polynomial trend

m̂t = b̂0 + b̂1t+ · · ·+ b̂pt
p, t ∈ T,

where b̂0, · · · , b̂p denote the corresponding least squares estimates. Note that
the order p is not estimated. It has to be selected by the statistician – for
example, by inspecting the time series plot. The residuals Ŷt can be obtained
as

Ŷt = Xt − m̂t = Xt − b̂0 + b̂1 t+ · · ·+ b̂p t
p, t ∈ T,

How to assess the goodness of fit of the fitted trend will be subject of subsection
1.1.5 below.

Example 1.1.14 (Level of Lake Huron). The left panel of Figure 1.7 contains
the time series of the annual average water levels in feet (reduced by 570) of Lake
Huron from 1875 to 1972. It is a realization of the process

Xt = (Average water level of Lake Huron in the year 1874+t)−570, t = 1, · · · , 98.

There seems to be a linear decline in the water level and it is therefore reasonable
to fit a polynomial of order one to the data. Evaluating the least squares estimators
provides us with the values

b̂0 = 10.202 and b̂1 = −0.0242

for the intercept and the slope, respectively. The resulting observed residuals ŷt =

Ŷt(ω) are plotted against time in the right panel of Figure 1.7. There is no apparent
trend left in the data. On the other hand, the plot does not strongly support the
stationarity of the residuals. Additionally, there is evidence of dependence in the
data.

17



(a) (b)

Figure 1.7 – Annual water levels of Lake Huron (left panel) and the residual plot obtained
from fitting a linear trend to the data (right panel).

Method 2 (Smoothing with Moving Averages) Let (Xt : t ∈ Z) be a stochastic
process following model 1.4. Choose q ∈ N0 and define the two-sided moving
average

Wt =
1

2q + 1

q∑
j=−q

Xt+j, t ∈ Z. (1.5)

The random variables Wt can be utilized to estimate the trend component mt

in the following way. First note that

Wt =
1

2q + 1

q∑
j=−q

mt+j +
1

2q + 1

q∑
j=−q

Yt+j ≈ mt,

assuming that the trend is locally approximately linear and that the average
of the Yt over the interval [t − q, t + q] is close to zero. Therefore, mt can be
estimated by

m̂t = Wt, t = q + 1, · · · , n− q.

Notice that there is no possibility of estimating the first q and last n− q drift
terms due to the two-sided nature of the moving averages. In contrast, one can
also define one-sided moving averages by letting

m̂1 = X1, m̂t = aXt + (1− a)m̂t−1, t = 2, · · · , n.

Figure 1.8 contains estimators m̂t based on the two-sided moving averages for
the Lake Huron data of Example 1.1.14. for selected choices of q (upper panel)
and the corresponding estimated residuals (lower panel).
More general versions of the moving average smoothers can be obtained in
the following way. Observe that in the case of the two-sided version Wt each
variable Xt−q, · · · , Xt+q obtains a "weight" aj = (2q + 1)−1. The sum of all
weights thus equals one. The same is true for the one-sided moving averages

18



(a) (b) (c)

(d) (e) (f)

Figure 1.8 – The two-sided moving average filters Wt for the Lake Huron data (upper
panel) and their residuals (lower panel) with bandwidth q = 2 (left), q = 10 (middle) and
q = 35 (right).

with weights a and 1−a. Generally, one can hence define a smoother by letting

m̂t =

q∑
j=−q

ajXt+j, t = q + 1, · · · , n− q, (1.6)

where a−q + · · · + aq = 1. These general moving averages (two-sided and one-
sided) are commonly referred to as linear filters. There are countless choices for
the weights. The one here, aj = (2q+1)−1, has the advantage that linear trends
pass undistorted. In the next example, a filter is introduced which passes cubic
trends without distortion.

Example 1.1.15 (Spencer’s 15-point moving average). Suppose that the filter
in display 1.6 is defined by weights satisfying aj = 0 if | j |> 7, aj = a−j and

(a0, a1, · · · , a7) =
1

320
(74, 67, 46, 21, 3,−5,−6,−3).

Then, the corresponding filters passes cubic trends mt = b0 + b1t+ b2t
2 + b3t

3 undis-
torted. To see this, observe that

7∑
j=−7

aj = 1 and

7∑
j=−7

jraj = 0, r = 1, 2, 3.
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Now apply Proposition 1.1.16 below to arrive at the conclusion.

Proposition 1.1.16 A linear filter (1.6) passes a polynomial of degree p if and only
if ∑

j

aj = 1 and
∑
j

jraj = 0, r = 1, · · · , p.

Proof 1 It suffices to show that
∑
j

aj(t + j)r = tr for r = 0, · · · , p. Using the

binomial theorem, write

∑
j

aj(t+ j)r =
∑
j

aj

r∑
k=0

(
r
k

)
tkjr−k

=
r∑

k=0

(
r
k

)
tk

(∑
j

ajj
r−k

)
= tr

for any r = 0, · · · , p if and only if the above conditions hold.

(a) (b)

Figure 1.9 – Time series plots of the observed sequences (∇xt) in the left panel and (∇2xt)
in the right panel of the differenced Lake Huron data described in Example 1.1.14

Method 3 (Differencing) A third possibility to remove drift terms from a given
time series is differencing. To this end, introduce the difference operator ∇ as

∇Xt = Xt −Xt−1 = (1−B)Xt, t ∈ T,

where B denotes the backshift operator BXt = Xt−1. Repeated application of
∇ is defined in the intuitive way :

∇2Xt = ∇(∇Xt) = ∇(Xt −Xt−1) = Xt − 2Xt−1 +Xt−2
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and, recursively, the representations follow also for higher powers of∇. Suppose
that the difference operator is applied to the linear trend mt = b0 + b1t, then

∇mt = mt −mt−1 = b0 + b1t− b0 − b1(t− 1) = b1

which is a constant. Inductively, this leads to the conclusion that for a polyno-

mial drift of degree p, namely mt =

p∑
j=0

bj t
j, ∇pmt = p!bp and thus constant.

Applying this technique to a stochastic process of the form (1.1.14) with a
polynomial drift mt, yields then

∇pXt = p!bp +∇pYt, t ∈ T.

This is a stationary process with mean p! bp. The plots in Figure 1.9 contain
the first and second differences for the Lake Huron data.

The next example shows that the difference operator can also be applied to a
random walk to create stationary data.

Example 1.1.17 Let (St : t ∈ N0) be the random walk of Example 1.1.15. If the
difference operator ∇ is applied to this stochastic process, then

∇St = St − St−1 = Zt, t ∈ N.

In other words, ∇ does nothing else but recover the original white noise sequence
that was used to build the random walk.

1.1.4 Eliminating Trend and Seasonal Components

Recall the classical decomposition (1.1),

Xt = mt + st + Yt, t ∈ T,

with E[Yt] = 0. In this subsection, three methods are discussed that aim at estima-
ting both the trend and seasonal components in the data. As additional requirement
on (st : t ∈ T ), it is assumed that

st+d = st,

d∑
j=1

sj = 0,

where d denotes the period of the seasonal component. (If dealing with yearly data
sampled monthly, then obviously d = 12). It is convenient to relabel the observations
x1, · · · , xn in terms of the seasonal period d as xj,k = xk+d(j−1).

In the case of yearly data, observation xj,k thus represents the data point observed
for the kth month of the jth year. For convenience the data is always referred to in
this fashion even if the actual period is something other than 12.
Method 1 (Small trend method) If the changes in the drift term appear to

be small, then it is reasonable to assume that the drift in year j, say, mj is
constant. As a natural estimator one can therefore apply

m̂j =
1

d

d∑
k=1

xj,k.
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To estimate the seasonality in the data, one can in a second step utilize the
quantities

ŝk =
1

N

N∑
j=1

(xj,k − m̂j),

where N is determined by the equation n = Nd, provided that data has been
collected over N full cycles. Direct calculations show that these estimators
possess the property ŝ1 + · · · + ŝd = 0 (as in the case of the true seasonal
components st). To further assess the quality of the fit, one needs to analyze
the observed residuals

ŷj,k = xj,k − m̂j − ŝk.

Note that due to the relabeling of the observations and the assumption of a
slowly changing trend, the drift component is solely described by the "annual"
subscript j, while the seasonal component only contains the "monthly" sub-
script k.

Example 1.1.18 (Australian Wine Sales). The left panel of Figure 1.10 shows
the monthly sales of red wine (in kiloliters) in Australia from January 1980 to Octo-
ber 1991. Since there is an apparent increase in the fluctuations over time, the right
panel of the same figure shows the natural logarithm transform of the data. There
is clear evidence of both trend and seasonality. In the following, the log transformed
data is studied. Using the small trend method as described above, the annual means
are estimated first. They are already incorporated in the right time series plot of
Figure 1.10. Note that there are only ten months of data available for the year 1991,
so that the estimation has to be adjusted accordingly. The detrended data is shown
in the left panel of Figure 1.11. The middle plot in the same figure shows the esti-
mated seasonal component, while the right panel displays the residuals. Even though
the assumption of small changes in the drift is somewhat questionable, the residuals
appear to look quite nice. They indicate that there is dependence in the data (see
Subsection 1.1.5 below for more on this subject).

(a) (b)

Figure 1.10 – Time series plots of the red wine sales in Australia from January 1980 to
October 1991 (left) and its log transformation with yearly mean estimates (right).

Method 2 (Moving average estimation) This method is to be preferred over
the first one whenever the underlying trend component cannot be assumed
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(a) (b) (c)

Figure 1.11 – The detrended log series (left), the estimated seasonal component (center)
and the corresponding residuals series (right) of the Australian red wine sales data.

constant. Three steps are to be applied to the data.

• 1st Step : Trend estimation. At first, focus on the removal of the trend
component with the linear filters discussed in the previous subsection. If
the period d is odd, then one can directly use m̂t = Wt as in (1.5) with
q specified by the equation d = 2q + 1. If the period d = 2q is even, then
slightly modify Wt and use

m̂t =
1

d
(0.5xt−q + xt−q+1 + · · ·+ xt+q−1 + 0.5xt+q), t = q + 1, · · · , n− q.

• 2nd Step : Seasonality estimation. To estimate the seasonal component, let

µk =
1

N − 1

N∑
j=2

(xk+d(j−1) − m̂k+d(j−1)), k = 1, · · · , q,

µk =
1

N − 1

N−1∑
j=1

(xk+d(j−1) − m̂k+d(j−1)), k = q + 1, · · · , d.

Define now

ŝk = µk −
1

d

d∑
l=1

µl, k = 1, · · · , d,

and set ŝk = ŝk−d whenever k > d. This will provide us with deseasonalized
data which can be examined further. In the final step, any remaining trend
can be removed from the data.

• 3rd Step : Trend Re-estimation. Apply any of the methods from Subsection
1.1.3.

Method 3 (Differencing at lag d) Introducing the lag−d difference operator ∇d,
defined by letting

∇dXt = Xt −Xt−d = (1−Bd)Xt, t = d+ 1, · · · , n,

and assuming model (1.1), one arrives at the transformed random variables

∇dXt = mt −mt−d + Yt − Yt−d, t = d+ 1, · · · , n.
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Note that the seasonality is removed, since st = st−d. The remaining noise
variables Yt−Yt−d are stationary and have zero mean. The new trend component
mt−mt−d can be eliminated using any of the methods developed in subsection
1.1.3.

Example 1.1.19 (Australian wine sales). Revisit the Australian red wine sales
data of Example 1.1.18 and apply the differencing techniques just established. The left
plot of Figure 1.12 shows the the data after an application of the operator ∇12. If the
remaining trend in the data is estimated with the differencing method from Subsection
1.1.3, the residual plot given in the right panel of Figure 1.12 is obtained. Note that
the order of application does not change the residuals, that is, ∇∇12xt = ∇12∇xt.
The middle panel of Figure 1.12 displays the differenced data which still contains the
seasonal component.

(a) (b) (c)

Figure 1.12 – The differenced observed series ∇12xt (left), ∇xt (middle) and ∇∇12xt =
∇12∇xt (right) for the Australian red wine sales data.

1.1.5 Assessing the Residuals

In this subsection, several goodness-of-fit tests are introduced to further analyze
the residuals obtained after the elimination of trend and seasonal components. The
main objective is to determine whether or not these residuals can be regarded as
obtained from a sequence of independent, identically distributed random variables
or if there is dependence in the data.
Throughout Y1, · · · , Yn denote the residuals and y1, · · · , yn a typical realization.
Method 1 (The sample ACF ) It could be seen in Example 1.1.12 that, for j 6=

0, the estimators ρ̂(j) of the ACF ρ(j) are asymptotically independent and
normally distributed with mean zero and variance n−1, provided the underlying
residuals are independent and identically distributed with a finite variance.
Therefore, plotting the sample ACF for a certain number of lags, say h, it
is expected that approximately 95% of these values are within the bounds
±1.96/

√
n. (See Theorem 1.1.13).

Method 2 (The Portmanteau test) The Portmanteau test is based on the test
statistic

Q = n

h∑
j=1

ρ̂2(j).
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Using the fact that the variables
√
nρ̂(j) are asymptotically standard normal,

it becomes apparent that Q itself can be approximated with a chi-squared
distribution possessing h degrees of freedom. The hypothesis of independent
and identically distributed residuals is rejected at the level α if Q > χ2

1−α(h),
where χ2

1−α(h) is the 1 − α quantile of the chi-squared distribution with h
degrees of freedom. Several refinements of the original Portmanteau test have
been established in the literature. We refer here only to the papers Ljung and
Box (1978), and McLeod and Li (1983) for further information.

Method 3 (The rank test) This test is very useful for finding linear trends. Denote
by

Π = ]{(i, j) : Yi > Yj, i > j, i = 2, · · · , n}
the random number of pairs (i, j) satisfying the conditions Yi > Yj and i > j.

There are
(
n
2

)
= 1

2
n(n − 1) pairs (i, j) such that i > j. If Y1, · · · , Yn are

independent and identically distributed, then P (Yi > Yj) = 1/2 (assuming
a continuous distribution). Now it follows that µΠ = E[Π] = 1

4
n(n − 1) and,

similarly, σ2
Π = V ar(Π) = 1

72
n(n−1)(2n+5). Moreover, for large enough sample

sizes n, Π has an approximate normal distribution with mean µΠ and variance
σ2

Π. Consequently, the hypothesis of independent, identically distributed data
would be rejected at the level α if

P =
| Π− µΠ |

σΠ

> z1−α/2,

where z1−α/2 denotes the 1−α/2 quantile of the standard normal distribution.
Method 4 (Tests for normality) If there is evidence that the data are generated

by Gaussian random variables, one can create the qq plot to check for normality.
It is based on a visual inspection of the data. To this end, denote by Y(1) <
· · · < Y(n) the order statistics of the residuals Y1, · · · , Yn which are normally
distributed with expected value µ and variance σ2. It holds that

E[Y(j)] = µ+ σE[X(j)], (1.7)

where X(1) < · · · < X(n) are the order statistics of a standard normal distri-
bution. According to display (1.7), the resulting graph will be approximately
linear with the squared correlation R2 of the points being close to 1. The as-
sumption of normality will thus be rejected if R2 is "too" small. It is common
to approximate E[X(j)] ≈ Φj = Φ−1((j − 0.5)/n) (Φ being the distribution
function of the standard normal distribution). The previous statement is made
precise by letting

R2 =

[
n∑
j=1

(Y(j) − Y )Φj

]2

n∑
j=1

(Y(j) − Y )2

n∑
j=1

Φ2
j

,

where Y = 1
n
(Y1 + · · · + Yn). The critical values for R2 are tabulated and can

be found, for example in Shapiro and Francia (1972).
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1.2 The Estimation of Covariances

In this brief second section, some results concerning asymptotic properties of the
sample ACV F are collected. Throughout, (Xt : t ∈ Z) denotes a weakly stationary
stochastic process with ACV Fγ. In Subsection 1.2.1 it was shown that such a process
is completely characterized by these two quantities. The mean 1

4
was estimated by

the sample mean x, and the ACV Fγ by the sample ACV F γ̂ is defined in Subsection
(1.2.1). In the following, some properties of these estimators are discussed in more
detail.

1.2.1 Estimation of the Auto-covariance Function

This section deals with the estimation of the ACV F and ACF at lag h . Recall
from equation (1.2) that the estimator

γ̂(h) =
1

n

n−|h|∑
t=1

(Xt+|h| −Xn)(Xt −Xn), h = 0,±1, · · · ,±(n− 1), (1.8)

may be utilized as a proxy for the unknown γ(h). As estimator for the ACF ρ(h),

ρ̂(h) =
γ̂(h)

γ̂(0)
, h = 0,±1, · · · ,±(n− 1), (1.9)

was identified. Some of the theoretical properties of ρ̂(h) are briefly collected in the
following. They are not as obvious to derive as in the case of the sample mean, and
all proofs are omitted. Note also that similar statements hold for γ̂(h) as well.

• The estimator ρ̂(h) is generally biased, that is, E[ρ̂(h)] 6= ρ(h). It holds, however,
under non-restrictive assumptions that

E[ρ̂(h)]→ ρ(h) (n→∞). (1.10)

This property is called asymptotic unbiasedness.
• The estimator ρ̂(h) is consistent for ρ(h) under an appropriate set of assumptions,

that is, V ar(ρ̂(h)− ρ(h))→ 0 as n→∞.

It was already established in Subsection 1.1.5 how the sample ACF ρ̂ can be used to
test if residuals consist of white noise variables. For more general statistical inference,
one needs to know the sampling distribution of ρ̂. Since the estimation of ρ(h) is
based on only a few observations for h close to the sample size n, estimates tend
to be unreliable. As a rule of thumb, given by Box and Jenkins (1976), n should at
least be 50 and h less than or equal to n/4.

Theorem 1.2.1 Form ≥ 1, let ρm = (ρ(1), · · · , ρ(m))T and ρ̂m = (ρ̂(1), · · · , ρ̂(m))T ,
where T denotes the transpose of a vector. Under a set of suitable assumptions, it
holds that √

n(ρ̂m − ρm) ∼ AN(0,Σ) (n→∞), (1.11)

where ∼ AN(0,Σ) stands for approximately normally distributed with mean vector
0 and covariance matrix Σ = (σij) given by Bartlett’s formula
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σij =
∞∑
k=1

[ρ(k + i) + ρ(k − i)− 2ρ(i)ρ(k)][ρ(k + j) + ρ(k − j)− 2ρ(j)ρ(k)]. (1.12)

The subsection is concluded with two examples. The first one recollects the results
already known for independent, identically distributed random variables, the second
deals with the autoregressive process of Example (1.2.2).

Example 1.2.2 Let (Xt : t ∈ Z) ∼ IID(0, σ2). Then, ρ(0) = 1 and ρ(h) = 0 for all
h 6= 0. The covariance matrix Σ is therefore given by

σij = 1 if i = j and σij = 0 if i 6= j. (1.13)

This means that Σ is a diagonal matrix. In view of Theorem (1.2.1) it holds thus
that the estimators ρ̂(1), · · · , ρ̂(k) are approximately independent and identically dis-
tributed normal random variables with mean 0 and variance 1/n. This was the basis
for Methods 1 and 2 in subsection 1.2.1 (see also Theorem 1.1.13).

Example 1.2.3 Reconsider the autoregressive process (Xt : t ∈ Z) defined by :

Xt = φ(Xt−1) + Zt.

Dividing γ(h) by γ(0) yields that

ρ(h) = φ|h|, h ∈ Z. (1.14)

Now the diagonal entries of Σ are computed as

σii =
∑

[ρ(k + i) + ρ(k − i)− 2ρ(i)ρ(k)]2

=
i∑

k=1

φ2i(φ−k − φk)2 +
∞∑

k=i+1

φ2k(φ−i − φi)2

= (1− φ2i)(1 + φ2)(1− φ2)−1 − 2iφ2i.

1.3 ARMA processes

In this section autoregressive moving average processes are discussed. They play
a crucial role in specifying time series models for applications. As the solutions of
stochastic difference equations with constant coefficients and these processes possess
a linear structure.

1.3.1 Introduction to ARMA

Definition 1.3.1 (ARMA processes)
(a) A weakly stationary process Xt : t ∈ Z is called an autoregressive moving average

time series of order p, q, abbreviated by ARMA(p, q), if it satisfies the difference
equations

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q, t ∈ Z, (1.15)

where φ1, · · · , φp and θ1, · · · , θq are real constants, φp 6= 0 6= θq, and (Zt : t ∈
Z) ∼ WN(0, σ2).
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(b) A weakly stationary stochastic process Xt : t ∈ Z is called an ARMA(p, q) time
series with mean µ if the process Xt − µ : t ∈ Z satisfies the equation system.

A more concise representation of (1.15) can be obtained with the use of the backshift
operator B. To this end, define the autoregressive polynomial and the moving average
polynomial by

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp, z ∈ C,

and
θ(z) = 1 + θ1z + θ2z

2 + · · ·+ θqz
q, z ∈ C,

respectively, where C denotes the set of complex numbers. Inserting the backshift
operator into these polynomials, the equations in (1.15) become

φ(B)Xt = θ(B)Zt, t ∈ Z. (1.16)

Example 1.3.2 Figure 1.13 displays realizations of three different autoregressive
moving average time series based on independent, standard normally distributed
(Zt : t ∈ Z). The left panel is an ARMA(2, 2) process with parameter specifica-
tions φ1 = 0.2, φ2 = −0.3, θ1 = −0.5 and θ2 = 0.3. The middle plot is obtained
from an ARMA(1, 4) process with parameters φ1 = .3, θ1 = −0.2, θ2 = −0.3, θ3 =
0.5, and θ4 = 0.2, while the right plot is from an ARMA(4, 1) with parameters
φ1 = −0.2, φ2 = −0.3, φ3 = 0.5 and φ4 = 0.2 and θ1 = 0.6. The plots indicate that
ARMA models can provide a flexible tool for modeling diverse residual sequences.
It will turn out in the next subsection that all three realizations here come from
(strictly) stationary processes.

Figure 1.13 – Realizations of three autoregressive moving average processes.

Some special cases covered in the following two examples have particular relevance
in time series analysis.

Example 1.3.3 (AR Processes) If the moving average polynomial in (1.16) is
equal to one, that is, if θ(z) ≡ 1, then the resulting (Xt : t ∈ Z) is referred to as
autoregressive process of order p, AR(p). These time series interpret the value of the
current variable Xt as a linear combination of p previous variables Xt−1, · · · , Xt−p
plus an additional distortion by the white noise Zt. Figure (1.14) displays two AR(1)
processes with respective parameters φ1 = −0.9 (left) and φ1 = 0.8 (middle) as well
as an AR(2) process with parameters φ1 = −0.5 and φ2 = 0.3.
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Figure 1.14 – Realizations of three autoregressive processes.

Example 1.3.4 (MA Processes) If the autoregressive polynomial in (1.16) is
equal to one, that is, if φ(z) ≡ 1, then the resulting (Xt : t ∈ Z) is referred to
as moving average process of order q, MA(q). Here the present variable Xt is obtai-
ned as superposition of q white noise terms Zt, · · · , Zt−q. Figure (1.15) shows two
MA(1) processes with respective parameters θ1 = 0.5 (left) and θ1 = −0.8 (middle).
The right plot is observed from an MA(2) process with parameters θ1 = −0.5 and
θ2 = 0.3.

Figure 1.15 – Realizations of three moving average processes.

For the analysis upcoming in the next sections, we now introduce moving average
processes of infinite order (q = ∞). They are an important tool for determining
stationary solutions to the difference equations (1.15).

Definition 1.3.5 Linear processes
A stochastic process (Xt : t ∈ Z) is called linear process or MA(∞) time series

if there is a sequence (ψj : j ∈ N0) with
∞∑
j=0

| ψj |<∞ such that

Xt =
∞∑
j=0

ψjZt−j, t ∈ Z, (1.17)

where (Zt : t ∈ Z) ∼ WN(0, σ2).

Moving average time series of any order q are special cases of linear processes.
Just pick ψj = θj for j = 1, · · · , q and set ψj = 0 if j > q. It is common to introduce
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the power series

ψ(z) =
∞∑
j=0

ψjz
j, z ∈ C,

to express a linear process in terms of the backshift operator. Display (1.17) can
now be rewritten in the compact form

Xt = ψ(B)Zt, t ∈ Z.

With the definitions of this subsection at hand, properties of ARMA processes, such
as stationarity and invertibility, are investigated in the next subsection. The current
subsection is closed giving meaning to the notation Xt = ψ(B)Zt. Note that one is
possibly dealing with an infinite sum of random variables. For completeness and later
use, in the following example the mean and ACV F of a linear process are derived.

Example 1.3.6 Mean and ACV F of a linear process
Let (Xt : t ∈ Z) be a linear process according to Definition (1.3.5). Then, it holds

that

E[Xt] = E

[
∞∑
j=0

ψjZt−j

]
=
∞∑
j=0

ψjE [Zt−j] = 0, t ∈ Z.

Next observe also that

γ(h) = Cov(Xt+h, Xt)

= E

[
∞∑
j=0

ψjZt+h−j

∞∑
k=0

ψkZt−k

]

= σ2

∞∑
k=0

ψk+hψk <∞

by assumption on the sequence (ψj : j ∈ N0) .

1.3.2 Causality and Invertibility

While a moving average process of order q will always be stationary without condi-
tions on the coefficients θ1, · · · , θq, some deeper thoughts are required in the case of
AR(p) and ARMA(p, q) processes. For simplicity, we start by investigating the au-
toregressive process of order one, which is given by the equations Xt = φXt−1 + Zt
(writing φ = φ1). Repeated iterations yield that

Xt = φXt−1 + Zt = φ2Xt−2 + Zt + φZt−1 = · · · = φNXt−N +
N−1∑
j=0

φjZt−j. (1.18)

Letting N →∞, it could now be shown that, with probability one,

Xt =
∞∑
j=0

φjZt−j (1.19)

is the weakly stationary solution to the AR(1) equations, provided that | φ |< 1.
These calculations would indicate moreover, that an autoregressive process of order
one can be represented as linear process with coefficients ψj = φj.
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Example 1.3.7 Mean and ACV F of an AR(1) process
Since an autoregressive process of order one has been identified as an example of

a linear process, one can easily determine its expected value as

E[Xt] =
∞∑
j=0

φjE[Zt−j] = 0, t ∈ Z. (1.20)

For the ACV F , it is obtained that

γ(h) = Cov(Xt+h, Xt)

= E

[
∞∑
j=0

φjZt+h−j

∞∑
k=0

φkZt−k

]

= σ2

∞∑
k=0

φk+hφk = σ2φh
∞∑
k=0

φ2k =
σ2φh

1− φ2
,

where h ≥ 0. This determines the ACV F for all h using that γ(−h) = γ(h). It
is also immediate that the ACF satisfies ρ(h) = φh. See also Example 1.3.2 for
comparison.

Example 1.3.8 Non Stationary AR(1) Processes
In Example 1.1.11 we have introduced the random walk as a non-stationary time

series. It can also be viewed as a non-stationary AR(1) process with parameter φ = 1.
In general, autoregressive processes of order one with coefficients | φ |> 1 are called
explosive for they do not admit a weakly stationary solution that could be expressed as
a linear process. However, one may proceed as follows. Rewrite the defining equations
of an AR(1) process as

Xt = −φ−1Zt+1 + φ−1Xt+1, t ∈ Z. (1.21)

Apply now the same iterations as before to arrive at

Xt = φ−NXt+N −
N∑
j=1

φ−jZt+j, t ∈ Z. (1.22)

Note that in the weakly stationary case, the present observation has been descri-
bed in terms of past innovations. The representation in the last equation however
contains only future observations with time lags larger than the present time t. From
a statistical point of view this does not make much sense, even though by identical
arguments as above we may obtain

Xt = −
∞∑
j=1

φ−jZt+j, t ∈ Z, (1.23)

as the weakly stationary solution in the explosive case.

The result of the previous example leads to the notion of causality which means
that the process (Xt : t ∈ Z) has a representation in terms of the white noise (Zs :
s ≤ t) and that is hence uncorrelated with the future as given by (Zs : s > t). We
give the definition for the general ARMA case.
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Definition 1.3.9 Causality
An ARMA(p, q) process given by (1.15) is causal if there is a sequence (ψj : j ∈

N0) such that
∞∑
j=0

| ψj |<∞ and

Xt =
∞∑
j=0

ψjZt−j, t ∈ Z. (1.24)

Causality means that an ARMA time series can be represented as a linear process.
It was seen earlier in this subsection how an AR(1) process whose coefficient satisfies
the condition | φ |< 1 can be converted into a linear process. It was also shown that
this is impossible if | φ |> 1. The conditions on the autoregressive parameter φ can
be restated in terms of the corresponding autoregressive polynomial φ(z) = 1−φz as
follows. It holds that

| φ |< 1 if and only if φ(z) 6= 0 for all | z |≤ 1,
| φ |> 1 if and only if φ(z) 6= 0 for all | z |≥ 1

It turns out that the characterization in terms of the zeroes of the autoregressive
polynomials carries over from the AR(1) case to the general ARMA(p, q) case. Mo-
reover, the ψ-weights of the resulting linear process have an easy representation in
terms of the polynomials φ(z) and θ(z). The result is summarized in the next theo-
rem.

Theorem 1.3.10 Let (Xt : t ∈ Z) be an ARMA(p, q) process such that the polyno-
mials φ(z) and θ(z) have no common zeroes. Then (Xt : t ∈ Z) is causal if and only
if θ(z) 6= 0 for all z ∈ C with | z |≤ 1. The coefficients (ψj : j ∈ N0) are determined
by the power series expansion

ψ(z) =
∞∑
j=0

ψjz
j =

φ(z)

θ(z)
, | z |≤ 1. (1.25)

A concept closely related to causality is invertibility. This notion is motivated with
the following example that studies properties of a moving average time series of order
1.

Example 1.3.11 Let (Xt : t ∈ N) be an MA(1) process with parameter θ = θ1. It
is an easy exercise to compute the ACV F and the ACF as

γ(h) =

 (1 + θ2)σ2, h = 0
θσ2, h = 1
0 h > 1,

ρ =

 1 h = 0.
θ(1 + θ2)−1 h = 1.
0 h > 1.

(1.26)

These results lead to the conclusion that ρ(h) does not change if the parameter θ is
replaced with θ−1. Moreover, there exist pairs (θ, σ2) that lead to the same ACV F ,
for example (5, 1) and (1/5, 25). Consequently, we arrive at the fact that the two
MA(1) models

Xt = Zt +
1

5
Zt−1, t ∈ Z, (Zt : t ∈ Z) ∼ iidN (0, 25) (1.27)
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and
Xt = Ẑt + 5Ẑt−1, t ∈ Z, (Ẑt : t ∈ Z) ∼ iidN (0, 1) (1.28)

are indistinguishable because we only observe Xt but not the noise variables Zt and
Ẑt.

For convenience, the statistician will pick the model which satisfies the invertibility
criterion which is to be defined next. It specifies that the noise sequence can be
represented as a linear process in the observations.

Definition 1.3.12 Invertibility
An ARMA(p, q) process given by 1.15 is invertible if there is a sequence (πj : j ∈

N0) such that
∞∑
j=0

| πj |<∞ and

Zt =
∞∑
j=0

πjXt−j, t ∈ Z. (1.29)

Theorem 1.3.13 Let (Xt : t ∈ Z) be an ARMA(p, q) process such that the polyno-
mials φ(z) and θ(z) have no common zeroes. Then (Xt : t ∈ Z) is invertible if and
only if θ(z) 6= 0 for all z ∈ C with | z |≤ 1. The coefficients (πj)j∈N0 are determined
by the power series expansion

π(z) =
∞∑
j=0

πjz
j =

φ(z)

θ(z)
, | z |≤ 1. (1.30)

From now on it is assumed that all ARMA sequences specified in the sequel are causal
and invertible unless explicitly stated otherwise. The final example of this subsection
highlights the usefulness of the established theory. It deals with parameter redundancy
and the calculation of the causality and invertibility sequences (ψj : j ∈ N0) and
(πj : j ∈ N0).

Example 1.3.14 Parameter Redundancy
Consider the ARMA equations

Xt = 0.4Xt−1 + 0.21Xt−2 + Zt + 0.6Zt−1 + 0.09Zt−2, (1.31)

which seem to generate an ARMA(2, 2) sequence. However, the autoregressive and
moving average polynomials have a common zero :

φ̃(z) = 1− 0.4z − 0.21z2 = (1− 0.7z)(1 + 0.3z),

θ̃(z) = 1 + 0.6z + 0.09z2 = (1 + 0.3z)2.

Therefore, one can reset the ARMA equations to a sequence of order (1, 1) and
obtain

Xt = 0.7Xt−1 + Zt + 0.3Zt−1. (1.32)

Now, the corresponding polynomials have no common roots. Note that the roots of
φ(z) = 1 − 0.7z and θ(z) = 1 + 0.3z are 10/7 > 1 and −10/3 < −1, respectively.
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Thus theorems 1.3.10 and 1.3.13 imply that causal and invertible solutions exist. In
the following, the corresponding coefficients in the expansions

Xt =
∞∑
j=0

ψjZt−j and Zt =
∞∑
j=0

πjXt−j, t ∈ Z, (1.33)

are calculated. Starting with the causality sequence (ψj : j ∈ N0). Writing, for | z |≤
1,

∞∑
j=0

ψjz
j = ψ(z) =

θ(z)

φ(z)
=

1 + 0.3z

1− 0.7z
= (1 + 0.3z)

∞∑
j=0

(0.7z)j, (1.34)

it can be obtained from a comparison of coefficients that

ψ0 = 1 and ψj = (0.7 + 0.3)(0.7)j−1 = (0.7)j−1, j ∈ N. (1.35)

Similarly one computes the invertibility coefficients (πj : j ∈ N0) from the equation
∞∑
j=0

πjz
j = π(z) =

φ(z)

θ(z)
=

1− 0.7z

1 + 0.3z
= (1− 0.7z)

∞∑
j=0

(−0.3z)j (1.36)

(| z |≤ 1) as

π0 = 1 and πj = (−1)j(0.3 + 0.7)(0.3)j−1 = (−1)j(0.3)j−1. (1.37)

Together, the previous calculations yield to the explicit representations

Xt = Zt +
∞∑
j=1

(0.7)j−1Zt−j and Zt = Xt +
∞∑
j=1

(−1)j(0.3)j−1Xt−j. (1.38)

In the remainder of this subsection, a general way is provided to determine the
weights (ψj : j ≥ 1) for a causal ARMA(p, q) process given by φ(B)Xt = θ(B)Zt,
where φ(z) 6= 0 for all z ∈ C such that | z |≤ 1. Since ψ(z) = θ(z)/φ(z) for these
z, the weight ψj can be computed by matching the corresponding coefficients in the
equation ψ(z)φ(z) = θ(z), that is,

(ψ0 + ψ1z + ψ2z
2 + · · · )(1− φ1z − · · · − φpzp) = 1 + θ1z + · · ·+ θqz

q. (1.39)

Recursively solving for ψ0, ψ1, ψ2, · · · gives
ψ0 = 1,

ψ1 − φ1ψ0 = θ1,
ψ2 − φ1ψ1 − φ2ψ0 = θ2,

and so on as long as j < max{p, q + 1}. The general solution can be stated as

ψj −
j∑

k=1

φkψj−k = θj, 0 ≤ j < max{p, q + 1}, (1.40)

ψj −
p∑

k=1

φkψj−k = 0, j ≥ max{p, q + 1}, (1.41)

if we define φj = 0 if j > p and θj = 0 if j > q. To obtain the coefficients ψj one
therefore has to solve the homogeneous linear difference equation (1.41) subject to
the initial conditions specified by (1.40).

For more this subject, see (23) section 3.6 and (27) section (3.3).
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1.3.3 Parameter Estimation

Let (Xt : t ∈ Z) be a causal and invertible ARMA(p, q) process with known orders
p and q, possibly with mean µ. This section is concerned with estimation procedures
for the unknown parameter vector

β = (µ, φ1, · · · , φp, θ1, · · · , θq, σ2)T . (1.42)

To simplify the estimation procedure, it is assumed that the data has already been
adjusted by subtraction of the mean and the discussion is therefore restricted to zero
mean ARMA models.

In the following, three estimation methods are introduced. The method of moments
works best in case of pure AR processes, while it does not lead to optimal estimation
procedures for general ARMA processes. For the latter, more efficient estimators are
provided by the maximum likelihood and least squares methods which will be discussed
subsequently.
Method 1 (Method of Moments) Since this method is only efficient in their case,

the presentation here is restricted to AR(p) processes

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, t ∈ Z, (1.43)

where (Zt : t ∈ Z) ∼ WN(0, σ2). The parameter vector β consequently reduces
to (φ, σ2)T with φ = (φ1, · · · , φp)T and can be estimated using the Yule-Walker
equations

Γpφ = γp and σ2 = γ(0)− φTγp, (1.44)

where Γp = (γ(k − j))k,j=1,··· ,p and γp = (γ(1), · · · , · · · (p))T . Observe that the
equations are obtained by the same arguments applied to derive the Durbin-
Levinson algorithm in the previous subsection. The method of moments suggests
to replace every quantity in the Yule-Walker equations with their estimated
counterparts, which yields the Yule-Walker estimators

φ̂ = Γ̂−1
p γ̂p = R̂−1

p ρ̂p (1.45)

σ̂2 = γ̂(0)− γ̂Tp Γ̂−1
p γ̂p = γ̂(0)[1− ρ̂Tp R̂

−1
p ρ̂p]. (1.46)

Therein, R̂p = γ̂(0)−1γ̂p and ρ̂p = γ̂(0)−1Γ̂p with γ̂p(h) defined as in (1.2).
Using γ̂(h) as estimator for the ACV F at lag h, a dependence on the sample
size n is obtained in an implicit way. This dependence is suppressed in the
notation used here. The following theorem contains the limit behavior of the
Yule-Walker estimators as n tends to infinity.

Theorem 1.3.15 If (Xt : t ∈ Z) is a causal AR(p) process, then
√
n(φ̂− φ)→D N(0, σ2Γ−1

p ) and σ̂2 →P σ2 (1.47)

as n→∞, where −→P indicates convergence in probability.

Corollary 1.3.16 If (Xt : t ∈ Z) is a causal AR(p) process, then
√
nφ̂hh −→D Z → (n→∞) (1.48)

for all h > p, where Z stands for a standard normal random variable.
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Example 1.3.17 (Yule-Walker estimates for AR(2) processes). Suppose that
n = 144 values of the autoregressive process Xt = 1.5Xt−1 − .75Xt−2 + Zt have
been observed, where (Zt : t ∈ Z) is a sequence of independent standard normal
variate. Assume further that γ̂(0) = 8.434, ρ̂(1) = 0.834 and ρ̂(2) = 0.476 have been
calculated from the data. The Yule-Walker estimators for the parameters are then
given by

φ̂ =

(
φ̂1

φ̂2

)
=

(
1.000 0.834
0.834 1.000

)−1(
0.834
0.476

)
=

(
1.439
−0.725

)
(1.49)

and

σ̂2 = 8.434

[
1− ( 0.834 0.476 )

(
1.439
−0.725

)]
= 1.215. (1.50)

To construct asymptotic confidence intervals using Theorem 1.3.15, the unknown
limiting covariance matrix σ2Γ−1

p needs to be estimated. This can be done using the
estimator

ρ̂2Γ̂−1
p

n
=

1

144

1.215

8.434

(
1.000 0.834
0.834 1.000

)−1

=

(
0.0572 −0.003
−0.003 0.0572

)
. (1.51)

Then, the 1−α level confidence interval for the parameters φ1 and φ2 are computed
as

1.439± 0.057z1−α/2 and − 0.725± 0.057z1−α/2, (1.52)

respectively, where z1−α/2 is the corresponding normal quantile.

Method 2 (Maximum Likelihood Estimation) The innovations algorithm of
the previous subsection applied to a causal ARMA(p, q)
process (Xt : t ∈ Z) gives

X̂i+1 =
i∑

j=1

θij(Xi+1−j − X̂i+1−j)b, 1 ≤ i < max{p, q}, (1.53)

X̂i+1 =

p∑
j=1

φjXi+1−j +

q∑
j=1

θij(Xi+1−j − X̂i+1−j), i ≥ max{p, q}, (1.54)

with prediction error
Pi+1 = σ2Ri+1. (1.55)

In the last expression, σ2 has been factored out due to reasons that will be-
come apparent from the form of the likelihood function to be discussed below.
Recall that the sequence (Xi+1 − X̂i+1 : i ∈ Z) consists of uncorrelated ran-
dom variables if the parameters are known. Assuming normality for the er-
rors, we moreover obtain even independence. This can be exploited to define
the Gaussian maximum likelihood estimation (MLE) procedure. Throughout,
it is assumed that (Xt : t ∈ Z) has zero mean (µ = 0). The parameters of
interest are collected in the vectors β = (φ, θ, σ2)T and β′ = (φ, θ)T , where
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φ = (φ1, · · · , φp)T and θ = (θ1, · · · , θq)T . Assume finally that we have obser-
ved the variables X1, · · · , Xn. Then, the Gaussian likelihood function for the
innovations is

L(β) =
1

(2πσ2)n/2

(
n∏
i=1

R
1/2
i

)
exp

(
− 1

2σ2

n∑
j=1

(Xj − X̂j)
2

Rj

)
. (1.56)

Taking the partial derivative of lnL(β) with respect to the variable σ2 reveals
that the MLE for σ2 can be calculated from

σ̂2 =
S(φ̂, θ̂)

n
, S(φ̂, θ̂) =

n∑
j=1

(Xj − X̂j)
2

Rj

. (1.57)

Therein, φ̂ and θ̂ denote the MLEs of φ and θ obtained from minimizing the
profile likelihood or reduced likelihood

`(φ, θ) = ln

(
S(φ, θ)

n

)
+

1

n

n∑
j=1

ln(Rj). (1.58)

Observe that the profile likelihood `(φ, θ) can be computed using the innova-
tions algorithm. The speed of these computations depends heavily on the quality
of initial estimates. These are often provided by the non-optimal Yule-Walker
procedure. For numerical methods, such as the Newton-Raphson and scoring
algorithms, see (27).

The limit distribution of the MLE procedure is given as the following theorem.
Its proof can be found in (23) Section 8.8.

Theorem 1.3.18 . Let (Xt : t ∈ Z) be a causal and invertible ARMA(p, q) process
defined with an i.i.d sequence (Zt : t ∈ Z) satisfying E[Zt] = 0 and E[Z2

t ] = σ2.
Consider the MLE β̂′ of β′ that is initialized with the moment estimators of Method
1. Then,

√
n(β̂′ − β′)→D N(0, σ2Γ−1

p,q) (n→∞). (1.59)
The result is optimal. The covariance matrix Γp,q is in block form and can be eva-
luated in terms of covariances of various autoregressive processes.

Method 3 (Least Squares Estimation) An alternative to the method of moments
and the MLE is provided by the least squares estimation (LSE). For causal
and invertible ARMA(p, q) processes, it is based on minimizing the weighted
sum of squares

S(φ, θ) =
n∑
j=1

(Xj − X̂j)
2

Rj

(1.60)

with respect to φ and θ, respectively. Assuming that φ̃ and θ̃ denote these LSEs,
the LSE for σ2 is computed as

σ̃2 =
S(φ̃, θ̃)

n− p− q
. (1.61)

The least squares procedure has the same asymptotic as the MLE.
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Theorem 1.3.19 The result of Theorem 1.3.18. holds also if β̂′ is replaced with β̃′.

1.4 Autoregressive Hilbertian Processes

In this section, we note some results of functional autoregressive processes theory
introduced by Bosq (1991) (7). We are interested in estimating autocorrelation opera-
tor defining autoregressive processes structure. First, we refer the estimation results
in case where the operator is defined in Hilbert space.
Let H Hilbert real separable space muni with scalar product <,> related to the norm
‖ . ‖, and its borelien tribe B. Let ρ linear bounded operator on H such that

‖ ρ ‖j0< 1 for some j0 ≥ 1,

and ζ = (ζt, t ∈ Z) sequence of independents random variables identically distributed
to value in H, such that

0 < E ‖ ζt ‖2= σ2 < +∞ and E(ζt) = 0.

Hilbertian stable autoregressive processes of first order, note that ARH(1), is unique
stable solution of equation :

Xt = ρ(Xt−1) + ζt, t ∈ Z (1.62)

The general method to estimate ρ consists to use covariance operators and cross-
covariance of processes.
Covariance operator of X0 is a symmetric positive atomic (nuclear)operator from H
to H defined by :

C(x) = E[< X0, x > X0], x ∈ H.
Cross-covariance operator is :

D(x) = E[< X0, x > X1], x ∈ H.

The operators C and D satisfy
D = ρC (1.63)

Then, to estimate ρ in view of observations (X1, · · · , Xn) we start by estimating C
and D we put :

Cn(x) =
1

n

n∑
i=1

< Xi, x > Xi ;

and

Dn(x) =
1

n− 1

n−1∑
i=1

< Xi, x > Xi+1.

Since Cn is not reversible in general, we are brought to project the observations on
space generated by kn eigenvectors of C, or if they are unknown, on space generated
by kn eigenvectors of Cn.
Let (λj) set of eigenvectors of C and Hkn space engendered by v1, · · · , vkn the eigen-
vectors C, where (kn) is an integer sequence such that kn ≤ n, n ≥ 1, and kn −→∞.
Assume that :
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(i) E | X0 |4<∞,
(ii) λj > 0, for all j ≥ 1,

(iii) P(< X0; vj >= 0) = 0, for all j ≥ 1.

we distinct two cases :
(a) If the (vj) are known, we can replace Cn by :

Ĉn =
∞∑
j=1

λ̂jn < vj, . > vj

where λ̂jn =
1

n

n∑
i=1

< Xi, vj >
2, j ≥ 1, n ≥ 1,

with
∞∑
j=1

λ̂jn =
1

n

∞∑
j=1

n∑
i=1

< Xi, vj >
2=

1

n

n∑
i=1

‖Xi‖2 <∞.

which proves that Ĉn is nuclear.
Now Ĉn reversible in Hkn, then the estimator of ρ is :

ρ̂n(x) = (πknDnĈ
−1
n πkn)(x), x ∈ H

where Ĉ−1
n =

kn∑
j=1

λ̂−1
jn < ., vj > vj and πkn denotes the orthogonal projector on

Hkn.
(b) If the (vj) are unknown, Hkn is replaced by H̃kn space engendered by v1n, · · · , vknn

the eigenvectors of Cn. In this case, we put the following assumptions
(i1) λ1 > λ2 > · · · > λj > · · · > 0,

(i2) λknn > 0, n ≥ 1 (a.s.).

Now define C̃n = π̃knCn =
kn∑
j=1

λjn < vjn, . > vjn Then the estimator of ρ is

written :
ρ̃n(x) = (π̃knDnC̃

−1
n π̃kn)(x), x ∈ H (1.64)

where C̃−1
n =

kn∑
j=1

λ−1
jn < ., vjn > vjn and π̃kn denotes the orthogonal projector

of H̃kn.

1.4.1 Asymptotic normality and convergence of operator estimator of
ARH(1) : in case ζ = (ζt, t ∈ Z) are i.i.d.

Let (Xt, t ∈ Z) an ARH(1). We consider the general case where the (vj) are
unknown. Bosq has shown the convergence a.s. of estimator (1.64) in linear norm
by considering the following notations

A1 = 2
√

2(λ1 − λ2) if λ1 6= λ2 ;

and
Aj = 2

√
2 max[(λj−1 − λj)−1, (λj − λj+1)−1].

with the following assumption :
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(H1) X is a standard ARH(1) with dimH <∞,
(H2) E ‖ X0 ‖4<∞,
(H3) (ζt) is a strong white noise,
(H4) C = CX0 is a reversible operator,
(H5) Cn is an almost sure reversible operator for n ≥ k.
D. Bosq has found that the convergence is almost sure of the estimator ρ̂n of para-
meter ρ of ARH(1).

Theorem 1.4.1 (D. Bosq (7)) If (H1), (H2), (H3), (H4) and (H5) are holds, then

n
1
4

(lnn)β
‖ ρ̂n − ρ ‖L−→ 0 a.s, β >

1

2
(1.65)

(with ‖L= sup‖x‖≤1 ‖ l(x) ‖, l ∈ L = class the bounded operators).

Theorem 1.4.2 (D. Bosq (7)) If (H1), (H2), (H3), (H4), (H5) holds and ‖ X0 ‖
is bounded then, for all ε1 > 0,

P {‖ ρ̂n − ρ ‖L≥ ε1} ≤ 16 exp

(
− nλ2

kε
2
2

a+ bλkε2

)
(1.66)

with
ε2 = min

(
ε1,

ε1

‖ D ‖L‖ C−1 ‖L
, 2

)
, a > 0, b > 0,

depend only on the distribution of the process X.

Theorem 1.4.3 Assume that (i), (i1) and (i2) hold and ρ is Hilbert Schmidt opera-
tor. Then if for β > 1

λ−1
kn

kn∑
j=1

Aj = O(n1/4(log n)−β).

we have :
‖ ρ̂n − ρ ‖L−→ 0 a.s.

Moreover if ‖ X0 ‖ is bounded, then

P(‖ ρ̂n − ρ ‖L≥ η) ≤ c1(η) exp

(
−c2(η)nλ2

kn(
kn∑
j=1

Aj)
−2

)
,

where η > 0, n ≥ η(n) and c1(η), c2(η) are positive constants.
Thus

nλ2
kn

lnn(
kn∑
j=1

Aj)
2

−→∞ =⇒‖ ρ̂n − ρ ‖L−→ 0 a.s.

Guillas (2001) has introduced a slight changes on estimator ρ̂n to give fast
convergence of E ‖ ρ̂n − ρ ‖2

L. He considered the following assumption
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(H) : There exist a sequence (An) which satisfies :

∃0 < β < 1, 0 < An ≤ βλkn , n ∈ N.

The sequence (An) allows knowing better the variance of eigenvalues of Cn . In
fact, if the eigenvalues get close fastly to 0, it becomes difficult to master behavior
of C−1

n and the speed of convergence degrades. By assumption (H) then we use esti-
mator :

ρ̂n(x) = (π̃knDnC̃
−1
n,Aπ̃kn), x ∈ H (1.67)

where

C̃n,A =
∞∑
j=1

max(λ̃jn, An) < vjn, . > vjn.

Theorem 1.4.4 Guillas (2001) : Assume that (i), (ii) and (i1) hold, there exist
α > 0, 0 < β < 1, ε < 1/2 and τ ≥ 1 such that

α
λτkn
nε
≤ An ≤ βλkn

then

E ‖ ρ̂n − ρ ‖2
L= O

(
Λ2
kn

n(1−2ε)λ
2(1+τ)
kn

)
+O(λ2

kn)

where Λkn = supj=1,...,kn
1

λj−λj+1
.

Mas (1999) has established the following result on asymptotic normality esti-
mator of ρ :

Theorem 1.4.5 Suppose that :

• (i), (i1) and (i2) hold,

• C−1
n exist over H̃kn,

• E ‖ C−1(ζ0) ‖2<∞,

• nλ4
kn
−→∞, n−1

kn∑
j=1

Ajλ
−2
j <∞,

• λjλ−1
jn

in probability is bounded for each j.

Then : √
n(ρ̂n − π̃knρ)

D−→ N,

where the limit is taken in S and N is Gaussian random S-valued operator (S :
space of Hilbert-Schmidt operators over H).
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Chapitre 2

Tail probabilities and complete
convergence for weighted sequences
of LNQD random variables with
application to first-order
autoregressive processes model

Abstract

In this chapter, we establish a new concentration inequality and complete conver-
gence of weighted sums for arrays of row-wise linearly negative quadrant dependent
(LNQD, in short) random variables and obtain a result dealing with complete conver-
gence of first-order autoregressive processes with identically distributed LNQD in-
novations.

2.1 Introduction and preliminaries

The concept of complete convergence of a sequence of random variables was in-
troduced by Hsu and Robbins (24) as follows. A sequence {Xn, n ≥ 1} of random
variables converges completely to the constant C if

∞∑
n=1

P(|Xn − C| > ε) <∞ for all ε > 0.

By the Borel-Cantelli lemma, this implies Xn → C almost surely (a.s.), and the
converse implication is true if the {Xn, n ≥ 1} are independent. Hsu and Robbins
(24) proved that the sequence of arithmetic means of independent and identically
distributed (i.i.d.) random variables converges completely to the expected value if the
variance of the summands is finite. Erdö (11) proved the converse. The Hsu and
Robbins- Erdös [(11), (24)] result may be formulated as follows. This result has been
generalized and extended in several directions and carefully studied by many authors
(see, Pruitt (25), Rohatgi (29), Gut (12), Wang and el. (14), Kuczmaszewska and
Szynal.(2), Ghosal and Chandra (30), Hu and al (38), Ahmed and al (31)).
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Complete convergence for sequence of random variables plays a central role in the
area of limit theorems in probability theory and mathematical statistics. Conditions
of independence and identical distribution of random variables are basic in historic
results due to Bernoulli, Borel and Kolmogorov. Since then, serious attempts have
been made to relax these strong conditions. For example, independence has been
relaxed to pairwise independence or pairwise negative quadrant dependence or, even
replaced by conditions of dependence such as mixing or martingale. In particular,
many authors showed that many results could be obtained by replacing i.i.d. condition
by uniformly bounded condition. We recall that an array {Xni, 1 ≤ i ≤ n, n ≥ 1}
of random variables is said to be stochastically dominated by a nonnegative random
variable X (write {Xni ≺ X}) if there exists a constant C > 0 such that

P(|Xni| > t) ≤ CP(X > t) ∀ t > 0 , n ≥ 1, 1 ≤ i ≤ n. (2.1)

The main purpose of this paper, is to discuss the complete convergence for sums
of rowwise linearly negative quadrant dependent (LNQD, in short) random variables
under suitable conditions, since independent and identically random variables are a
special case of linearly negative quadrant dependent random variables. The expo-
nential inequality plays an important role in various proofs of limit theorems. In
particular, it provides a measure of the complete convergence for partial sums. The
exponential inequality for negatively associated (NA, in short) random variables has
been studied by many authors ; see, for example, (12),(24), (38), (15), (35), and
so forth. The main purpose of this work is to extend the exponential inequality for
NA random variables to the case of LNQD random variables. In addition, we ob-

tain the complete convergence for Sn =
n∑
i=1

Xi, which improves on the corresponding

ones of (12),(24) and (38). Lehmann (17) introduced a simple and natural defini-
tion of negative dependence : A sequence {ζi, 1 ≤ i ≤ n} of random variables is
said to be pairwise negative quadrant dependent (pairwise NQD) if for any real
εi, εj and i 6= j,P(ζi > εi, ζj > εj) ≤ P(ζi > εi)P(ζj > εj) : Much stronger
concept than NQD was considered by Joag-Dev and Proschan (15) : A sequence
{ζi, 1 ≤ i ≤ n} is said to be negatively associated(NA) if for any disjoint subsets,
A,B ⊂ {1, 2, · · · , n} and any real coordinatewise increasing functions f on RA and g
on RB, Cov(f(ζi, i ∈ A), g(ζi, i ∈ B)) ≤ 0. Instead of negative association, Newman
(22) noticed that his method of proof yielding the central limit theorem for negatively
associated sequence requires only that positive linear combinations of the random va-
riables are NQD, i.e., the random variables are linearly negative quadrant dependent
(LNQD). This notion of negative dependence was formulated by Newman (22) as
follows : {ζi, i ∈ N} is a sequence of LNQD random variables if for any disjoint
subsets A, B of N and positive ri, the random vector (

∑
i∈A

riζi;
∑
i∈B

riζi) is NQD. Ne-

gatively associated sequences are LNQD and LNQD sequences are not necessarily
NA, as it can be seen from examples in Newman (22) or Joag-Dev (15).
We note also that negative association and its weaker concepts are of considerable
use in probability and statistics (cf. Joag-Dev and Proschan (15), Newman (22) and
the references there in). Newman(22) was first to establish a central limit theorem
for LNQD random variables, Zhang (53) proved a functional central limit theorem
for LNQD random fields and Kim and al (36) derived a general central limit theo-
rem for weighted sum of LNQD random variables.
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Firstly, we will recall the definitions of negatively associated, negative quadrant de-
pendent and linearly negative quadrant dependent sequence.

Definition 2.1.1 (Cf. Joag-Dev and Prochan (15)). A finite collection of random
variables ζ1, ζ2, · · · , ζn is said to be negatively associated (NA, in short) if for every
pair of disjoint subsets A1, A2 of {1, 2, · · · , n}

Cov(f(ζi : i ∈ A1), g(ζj : j ∈ A2)) ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance exists.
An infinite sequence {ζn, n ≥ 1} is NA if every finite subcollection is NA.

Definition 2.1.2 (Cf. Lehmann (17)). Two random variables ζ1 and ζ2 are said to
be negative quadrant dependent (NQD, in short) if for any ε1, ε2 ∈ R,

P(ζ1 < ε1, ζ2 < ε2) ≤ P(ζ1 < ε1)P(ζ2 < ε2). (2.2)

A sequence {ζn, n ≥ 1} of random variables is said to be pairwise NQD if ζi and ζj
are NQD for all i, j ∈ N+ and i 6= j.

Definition 2.1.3 (Cf. Newman (22)). A sequence {ζn, n ≥ 1} of random variables
is said to be linearly negative quadrant dependent (LNQD, in short) if for any
disjoint subsets A,B ⊂ Z and positive r′js,∑

k∈A

rkζk and
∑
j∈B

rjζj are NQD.

Remark 2.1.4 It is easily seen that if {ζn, n ≥ 1} is a sequence of LNQD random
variables, then {aζn+b, n ≥ 1} is still a sequence of LNQD random variables, where
a and b are real numbers.

Lemma 2.1.5 (Cf. Lehmann (17)). Let random variables X and Y be NQD. Then

(i) E(XY ) ≤ E(X)E(Y ) ;

(ii) P(X > x, Y > y) ≤ P(X > x)P(Y > y) ;

(iii) If f and g are both nondecreasing (or both nonincreasing) functions, then f(X)
and g(Y ) are NQD.

The following lemmas play an essential role in our main result.

Lemma 2.1.6 (Cf. Wang and Zhang (41), Lemma 3.4). Suppose that {Xn, n ≥ 1}
is a LNQD sequence of random variables with E(Xn) = 0. Then for any p > 1,
there exists a positive constant D such that

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ DE

(
n∑
i=1

X2
i

)p/2

, n ≥ 1 (2.3)
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Lemma 2.1.7 Let {Xn, n ≥ 1} be a sequence of LNQD random variables and
t > 0, then for each n ≥ 1,

E

[
n∏
i=1

exp(tXi)

]
≤

n∏
i=1

E(exp(tXi)) (2.4)

Proof 2

For t > 0, it is easy to see that tXi and t

n∑
j=i+1

Xj are NQD by the definition

of LNQD, which implies that exp(tXi) and exp(t
n∑

j=i+1

Xj) are also NQD for i =

1, 2, · · · , n−1 by Lemma2.1.5(iii). It follows from Lemma2.1.5(i) and induction that

E

[
n∏
i=1

exp(tXi)

]
= E

[
exp(tX1) exp

(
n∑
i=2

tXi

)]

≤ E [exp(tX1)]E

[
exp

(
n∑
i=2

tXi

)]

= E [exp(tX1)]E

[
exp(tX2) exp

(
n∑
i=3

tXi

)]

≤ E [exp(tX1)]E [exp(tX2)]E

[
exp

(
n∑
i=3

tXi

)]

≤
n∏
i=1

E(exp(tXi)).

This completes the proof of the lemma.
Throughout the paper, let {Xni, 1 ≤ i ≤ n, n ≥ 1} be a sequence of random va-

riables defined on a fixed probability space (Ω,F ,P). Denote Sn =
n∑
i=1

Xni and

B2
n =

n∑
i=1

E(X2
ni) for each 1 ≤ i ≤ n and n ≥ 1.

2.2 Main results and their proofs

With the preliminary lemmas, we now state and prove our main result. In this
paper we consider arrays of random variables.
Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be a sequence of random variables and some strictly
increasing sequence {cn, n ≥ 1} of constants positive. Define for 1 ≤ i ≤ n, n ≥ 1

Lemma 2.2.1 Let α > 0 constants and 0 < β ≤ α2

eα − 1− α
. Then

exp(x)− 1− x ≤ x2

β
(2.5)
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for all 0 ≤ x ≤ α

Proof 3

Consider the function

Ψ(x, β) = ln(1 + x+
x2

β
)− x.

We need to prove that Ψ(x, β) ≥ 0 for all 0 < β ≤ α2

eα − 1− α
and 0 ≤ x ≤ α.

Take the derivative
∂Ψ(x, β)

∂x
= −x(x− (2− β))

β(1 + x+
x2

β
)

.

Hence, Ψ is increasing in x on the interval (0, 2− β) and decreasing on the interval

(2− β, α). Note that Ψ(0, β) = 0 and Ψ(α, β) ≥ 0 since 0 < β ≤ α2

eα − 1− α
Let

X1,ni = −anI{Xni<−an} +XniI{|Xni|≤an} + anI{Xni>an},
X2,ni = (Xni − an)I{Xni>an}, X3,ni = (Xni + an)I{Xni<−an}. (2.6)

Here, and in the sequel, IA denotes the indicator function of the A set in the braces,
that is, it takes value 1 or 0 according to whether or not the sample point belongs to
the set.
It is easy to check that X1,ni + X2,ni + X3,ni = Xni for 1 ≤ i ≤ n, n ≥ 1 and
X1,n1, X1,n2, · · · , X1,nn are bounded by an for each fixed n ≥ 1.
If {Xni, n ≥ 1} are LNQD random variables, then {Xp,ni, 1 ≤ i ≤ n}, p = 1, 2, 3 are
also LNQD random variables for each fixed n ≥ 1

Theorem 2.2.2 Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be a sequence of row-wise identically
distributed LNQD random variables and {Xp,ni, 1 ≤ i ≤ n, n ≥ 1}, p = 2, 3, be
defined by (2.6). Assume that there exists a τ > 0 satisfying sup|µ|≤τ E(eµX11) ≤ Aτ <

∞, where Aτ is a positive constant depending only on τ ,
n∑
i=1

b2
ni = O((log n)−1).

Then for any ε > 0 and µ ∈ (0, τ ],

P

(
|

n∑
i=1

bni(Xp,ni − EXp,ni)| ≥ ε

)
≤ Φ(µ, ε, τ, a)

1

na/2 log n
, p = 2, 3. (2.7)

Where Φ(µ, ε, τ, a) =
2a+1aae−aDD

′
Aτ

µ2+aKa
1 (E(X11)2)a/2ε2

, choosing a > 2

Proof 4
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For p = 2, by Markov’s inequality and lemma2.1.6, we can see that

P

(
|

n∑
i=1

bni(X2,ni − EX2,ni)| ≥ ε

)
≤ 1

ε2
E|

n∑
i=1

bni(X2,ni − EX2,ni)|2

≤ D

ε2
E(

n∑
i=1

b2
ni(X2,ni − EX2,ni)

2)

=
D

ε2

n∑
i=1

E(bni(X2,ni − EX2,ni))
2

=
D

ε2

n∑
i=1

b2
ni(E(X2,ni)

2 − (EX2,ni)
2)

≤ D

ε2

n∑
i=1

b2
niE(X2,ni)

2

=
D

ε2
E
(
X11 −

K1Bn

2

)2

I{X11>
K1Bn

2
}

(
D
′

log n

)
=

D

ε2

[
−
∫ +∞

K1Bn
2

(
x11 −

K1Bn

2

)2

dFX11(x11)

](
D
′

log n

)
, FX11(x11) = P(X11 > x11)

= −D
ε2

∣∣∣∣(x11 −
K1Bn

2
)2FX11(x11)

∣∣∣∣+∞
K1Bn

2

(
D
′

log n

)
+

D

ε2

∫ +∞

K1Bn
2

2

(
x11 −

K1Bn

2

)
FX11(x11) dx11

(
D
′

log n

)
(integrating by parts)

≤ D

ε2

∫ +∞

K1Bn
2

2

(
x11 −

K1Bn

2

)
FX11(x11) dx11

(
D
′

log n

)
≤ 2DAτ

ε2µ

∫ +∞

K1Bn
2

(
x11 −

K1Bn

2

)
e−µx11 dx11

(
D
′

log n

)
(by Markov’s inequality)

=
2DAτ
ε2µ

∫ +∞

K1Bn
2

e−µx11 dx11

(
D
′

log n

)
=

2DAτ
ε2µ2

e−µ
K1
√
n(E(X2

11))
1
2

2

(
D
′

log n

)
≤ 2a+1aae−aDD

′
Aτ

µ2+aKa
1 (E(X11)2)a/2ε2

1

na/2 log n

(using the elementary inequality, exp(−y) ≤
(
a

ey

)a
for all a > 0, choosing a > 2).

For p = 3, the proof is similar to the case p = 2 and is omitted.
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Lemma 2.2.3 If {Xn, n ≥ 1} is a sequence of LNQD random variables and {fn, n ≥
1} is a sequence of Borel functions all of which are monotone increasing (or all mo-
notone decreasing), then {fn(Xn), n ≥ 1} is a sequence of LNQD random variables.

Lemma 2.2.4 Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise LNQD random
variables with EXni = 0, and {an, n ≥ 1} a sequence of positive constants. Suppose
that

(i)
∞∑
n=1

exp{−βε
2

4an
} <∞ for some 0 < β ≤ α2

eα − 1− α
and |Xni| ≤ α.

(ii)
n∑
i=1

E(X2
ni) = O(an),

Then
n∑
i=1

Xni converges completely to zero.

Proof 5

From the inequality exp(x) ≤ 1 + x+
x2

β
for all 0 ≤ x ≤ α and 0 < β ≤ α2

eα − 1− α
(see lemma 2.2.1), we have by (i) that for any λ > 0

E exp(λXni) ≤ E
{

1 + λXni +
1

β
λ2|Xni|2

}
= 1 +

1

β
λ2E|Xni|2

≤ exp

{
1

β
λ2E|Xni|2

}

The second inequality follows by the fact that 1 + t ≤ et for all real number t. It
follows by Markov’s inequality, Lemma 2.1.7, and (i) that for any λ > 0,

P

(
n∑
i=1

Xni > ε

)
≤ e−λεE exp(λ

n∑
i=1

Xni)

≤ e−λε
n∏
i=1

E exp(λXni)

≤ e−λε exp

{
1

β
λ2

n∑
i=1

E|Xni|2
}

≤ e−λε exp

{
1

β
λ2O(an)

}
= exp

{
−λε+

1

β
λ2O(an)

}
.
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Choosing λ =
εβ

2O(an)
, we have that for all large n,

P

(
n∑
i=1

Xni > ε

)
≤ exp

{
−ε2 β

2O(an)
+

ε2β2

4β(O(an))2
O(an)

}
= exp

{
−ε2 β

4O(an)

}
≤ exp

{
−ε2 β

4an

}
.

Thus by (i)
∞∑
n=1

P

(
n∑
i=1

Xni > ε

)
<∞. (2.8)

Since {−Xni, 1 ≤ i ≤ n, n ≥ 1} is still an array of row-wise LNQD random variables
by Lemma 2.2.3, we can replace Xni by −Xni from the above statement. That is,

∞∑
n=1

P

(
n∑
i=1

Xni < −ε

)
<∞. (2.9)

The result follows by (2.8) and (2.9).
Now we state and prove our main result.

Theorem 2.2.5 Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise identically
distributed LNQD random variables such that EXni = 0 satisfying E|X11|γ+1 < ∞
for some γ ≥ 1. Assume that {bni, 1 ≤ i ≤ n, n ≥ 1} is an array of constants
satisfying

max
1≤i≤n

|bni| = O(c−δn ), 0 < cn ↑ ∞, for all any δ > 0 and anc−δn ≤ 1, (2.10)

n∑
i=1

b2
ni = O

(
1

log n

)
. (2.11)

Then
n∑
i=1

bniXni converges completely to zero.

Proof 6

Note that bni = b+
ni− b−ni , where b+

ni = max{0, bni} and b−ni = max{0,−bni}. To prove
the result, it suffices to show that, for any ε > 0,

∞∑
n=1

P

(∣∣∣ n∑
i=1

b+
niXni

∣∣∣ > ε

)
<∞

and
∞∑
n=1

P

(∣∣∣ n∑
i=1

b−niXni

∣∣∣ > ε

)
<∞.
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So, without loss of generality, we may assume that bni > 0. Moreover, we may assume
that max1≤i≤n bni ≤ c−δn . By Remark 2.1.4 and (2.6) , for any ε > 0 and δ > 0, we
have

∞∑
n=1

P

(∣∣∣ n∑
i=1

bniXni

∣∣∣ > ε

)
≤

∞∑
n=1

P

(∣∣∣ n∑
i=1

bniX1,ni

∣∣∣ > ε/3

)
+
∞∑
n=1

P

(∣∣∣ n∑
i=1

bniX2,ni

∣∣∣ > ε/3

)

+
∞∑
n=1

P

(∣∣∣ n∑
i=1

bniX3,ni

∣∣∣ > ε/3

)
= I1 + I2 + I3.

Since {X1,ni, 1 ≤ i ≤ n} are monotone transformations of {Xni, 1 ≤ i ≤ n}, {X1,ni, 1 ≤
i ≤ n} is an array of row-wise LNQD random variables by Lemma 2.2.3.Moreover,
{bniX1,ni, 1 ≤ i ≤ n} is also an array of rowwise LNQD random variables, since
bni > 0. We first show that I1 < ∞. To do this, we will apply Lemma 2.2.4 to the
array {bni(X1,ni − EX1,ni), 1 ≤ i ≤ n, n ≥ 1} and sequence {1/ log n, n ≥ 1}. Noting
that |bni(X1,ni − EX1,ni)| ≤ 2

an
cδn
≤ 2 since anc−δn ≤ 1, condition (i) holds trivially by

choosing α ≥ 2 and ε >
2√
β
. By Remark 2.1.4 and (2.11),

E
∣∣∣ n∑
i=1

bni(X1,ni − EX1,ni)
∣∣∣2 ≤ E

[
n∑
i=1

(bni(X1,ni − EX1,ni))
2

]
+ 2

∑
1≤i<j≤n

bnibnjE[(X1,ni − EX1,ni)(X1,nj − EX1,nj)]

≤
n∑
i=1

E(bni(X1,ni − EX1,ni))
2

+ 2
∑

1≤i<j≤n

E(bni(X1,ni − EX1,ni))E(bnj(X1,nj − EX1,nj))

=
n∑
i=1

E(bni(X1,ni − EX1,ni))
2

≤
n∑
i=1

b2
niE(X2

1,ni)

=
n∑
i=1

b2
niE(X2

11)

≤ E(X2
11)D

′
(

1

log n

)
.

Hence condition (ii) holds. Thus by Lemma 2.2.4

∞∑
n=1

P

(∣∣∣ n∑
i=1

bni(X1,ni − EX1,ni)
∣∣∣ > ε

3

)
<∞.
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To show that I1 <∞, it remains to show that

n∑
i=1

bniEX1,ni → 0 as n→∞. (2.12)

In view of EXni = 0,

E|Xni|γ+1I{
|Xni|>

K1
√
n
√

EX2
11

2

} ≥
(
K1

√
n
√

EX2
11

2

)γ

E|Xni|I{
|Xni|>

K1
√
n
√

EX2
11

2

}

and Markov’s inequality, we obtain

∣∣∣∣∣
n∑
i=1

bniEX1,ni

∣∣∣∣∣ =
∣∣∣ n∑
i=1

bniEX1,niI{
|Xni|≤

K1
√
n
√

EX2
11

2

}

+
n∑
i=1

bniEX1,niI{
|Xni|>

K1
√
n
√

EX2
11

2

}∣∣∣
≤

∣∣∣ n∑
i=1

bniEX1,niI{
|Xni|≤

K1
√
n
√

EX2
11

2

}∣∣∣
+

∣∣∣ n∑
i=1

bni

(
K1

√
n
√

EX2
ni

2

)
E I{

|Xni|>
K1
√
n
√

EX2
11

2

}∣∣∣
=

∣∣∣ n∑
i=1

bniEX1,niI{
|Xni|≤

K1
√
n
√

EX2
11

2

}∣∣∣
+

(
K1

√
n
√
EX2

11

2

)
n∑
i=1

|bni|P

(
|Xni| >

K1

√
n
√
EX2

11

2

)

≤ 1(
K1

√
n
√

EX2
11

2

)γ

n∑
i=1

|bni|E|Xni|γ+1I{
|Xni|>

K1
√
n
√

EX2
11

2

}

+

(
K1

√
n
√
EX2

11

2

)
1(

K1

√
n
√
EX2

11

2

)γ+1

n∑
i=1

|bni|E|Xni|γ+1
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≤ 2(
K1

√
n
√

EX2
11

2

)γ

n∑
i=1

|bni|E|Xni|γ+1

≤ 2(
K1

√
n
√

EX2
11

2

)γE|X11|γ+1(
n∑
i=1

b2
ni)

1/2n1/2 (by Hölder’s inequality)

≤ 2γ+1CE|X11|γ+1

Kγ
1 (EX2

11)γ/2
1

nγ/2−1/2(log n)1/2
→ 0

as n→∞, since γ ≥ 1. Hence (2.12) holds.
Finally, we show that I2 <∞ and I3 <∞. Thus by theorem 2.2.2

∞∑
n=1

P

(∣∣∣ n∑
i=1

bni(X2,ni − EX2,ni)
∣∣∣ > ε

3

)
<∞.

To show that I2 <∞, it remains to show that

n∑
i=1

bniEX2,ni → 0 as n→∞. (2.13)

In view of elementary inequality∣∣∣ n∑
i=1

bniEX2,ni

∣∣∣ ≤ n∑
i=1

|bni|E|X2,ni|

and Cauchy-Schwarz’s inequality

E|X2,ni| ≤ (E|X2,ni|2)1/2

≤ EX2
2,ni.

We obtain ∣∣∣ n∑
i=1

bniEX2,ni

∣∣∣ ≤ n∑
i=1

|bni|DAτe−
µ
√
n(EX2

11)
1/2K1

2

≤ max
1≤i≤n

|bni|nDAτe−
µ
√
n(EX2

11)
1/2K1

2

≤ K2c
−δ
n e−

µ
√
n(EX2

11)
1/2K1

2

≤ K246nDAτ
cδnµ

4e4n2(EX2
11)2K4

1

→ 0 as n→∞,

(by the inequality e−y ≤
(
a
ey

)a
, choosing a = 4), since δ > 0. Hence (2.13) holds.

Similar to I2, we have I3 <∞.
We complete the proof of the theorem.
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2.3 Applications to the results to AR(1) model

The basic object of this section is applying the results to first-order autoregressive
processes(AR(1)).

2.3.1 The AR(1) model

We consider an autoregressive time series of first order AR(1) defined by

Xn+1 = θXn + ζn+1, n = 1, 2, · · · , (2.14)

where {ζn, n ≥ 0} is a sequence of identically distributed LNQD random variables
with ζ0 = X0 = 0, 0 < Eζ4

k < ∞, k = 1, 2, · · · and where θ is a parameter with
|θ| < 1. Here, we can rewrite Xn+1 in (2.14) as follows :

Xn+1 = θn+1X0 + θnζ1 + θn−1ζ2 + · · ·+ ζn+1. (2.15)

The coefficient θ is fitted least squares, giving the estimator

θ̂n =

n∑
j=1

XjXj−1

n∑
j=1

X2
j−1

(2.16)

It immediately follows from (2.14) and (2.16) that

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

(2.17)

We start with the following basic lemma.

Lemma 2.3.1 If {ζn, n ≥ 1} is a sequence of identically distributed LNQD random

variables such that |ζ1|4 < α, then for any R > 0 real, ε̃ >
Eζ2

1

R2
and 0 < β <

α

eα − α− 1

P(
∣∣∣ n∑
j=1

(ζ2
j − Eζ2

j )
∣∣∣ ≥ (R2ε̃− Eζ2

1 )n) ≤ 2 exp

{
−β (R2ε̃− Eζ2

1 )2n

36

}
+ 2

Φ̃(ε̃, τ, a)

na/2+1
.

(2.18)
Where

Φ̃(ε̃, τ, a) = 9
2a+1aae−aDD

′
Aτ

µa+2Ka
1 (Eζ4

1 )a/2(R2ε̃− Eζ2
1 )2

Proof 7
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Xnj = ζ2
j . Then E|Xnj|2 < α2 < +∞. Further let bnj = 1

n
for n ≥ 1. Then {bnj}

satisfies conditions (2.10) and (2.11). So the result follows by theorem 2.2.2 and
lemma 2.2.4, since

P(
∣∣∣ n∑
j=1

(ζ2
j − Eζ2

j )
∣∣∣ ≥ (R2ε̃− Eζ2

1 )n) ≤ P(
∣∣∣ n∑
j=1

(ζ2
1,j − Eζ2

1,j)
∣∣∣ ≥ (R2ε̃− Eζ2

1 )n

3
)

+ P(
∣∣∣ n∑
j=1

(ζ2
2,j − Eζ2

2,j)
∣∣∣ ≥ (R2ε̃− Eζ2

1 )n

3
)

+ P(
∣∣∣ n∑
j=1

(ζ2
3,j − Eζ2

3,j)
∣∣∣ ≥ (R2ε̃− Eζ2

1 )n

3
)

≤ 2P(
1

n

n∑
j=1

ζ̃1,j ≥
(R2ε̃− Eζ2

1 )

3
) + 2

Φ̃(ε̃, τ, a)

na/2+1

where ζ̃1,j = ζ2
1,j − Eζ2

1,j

≤ 2 exp{−β (R2ε̃− Eζ2
1 )2n

36
}+ 2

Φ̃(ε̃, τ, a)

na/2+1
.

Theorem 2.3.2 Let the conditions of lemma 2.3.1 be satisfied then for any
(Eζ2

1 )1/2

R2
<

ε̃ positive, we have

P(
√
n|θ̂n − θ| > R) ≤ 2 exp{−β (R2ε̃2 − Eζ2

1 )2n

36
}+ 2

Φ̃(ε̃2, τ, a)

na/2+1

+ exp{−1

2
n

(T1 − nε̃2)2

T2

} (2.19)

where T1 = E(X2
i ) <∞, T2 = E(X4

i ) <∞.

Proof 8

Firstly, we notice that :

θ̂n − θ =

n∑
j=1

ζjXj−1

n∑
j=1

X2
j−1

.

It follows that

P(
√
n|θ̂n − θ| > R) = P


∣∣∣∣∣∣∣∣∣∣
1/
√
n

n∑
j=1

ζjXj−1

1/n
n∑
j=1

X2
j−1

∣∣∣∣∣∣∣∣∣∣
> R
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By virtue of the probability properties and Hölder’s inequality, we have for any ε̃
positive

P(
√
n|θ̂n − θ| > R) ≤ P(

1

n

n∑
j=1

ζ2
j ≥ R2ε̃2) + P(

1

n2

n∑
j=1

X2
j−1 ≤ ε̃2)

= P(
n∑
j=1

ζ2
j ≥ (R2ε̃2)n) + P(

n∑
j=1

X2
j−1 ≤ n2ε̃2)

= I1n + I2n.

Next we estimate I1n and I2n.

I1n = P(
n∑
j=1

ζ2
j ≥ (R2ε̃2)n)

= P(
n∑
j=1

(ζ2
j − Eζ2

j + Eζ2
j ) ≥ (R2ε̃2)n)

= P(
n∑
j=1

(ζ2
j − Eζ2

j ) ≥ (R2ε̃2 − Eζ2
1 )n)

≤ P(
∣∣∣ n∑
j=1

(ζ2
j − Eζ2

j )
∣∣∣ ≥ (R2ε̃2 − Eζ2

1 )n)

≤ 2 exp

{
−β (R2ε̃2 − Eζ2

1 )2n

36

}
+ 2

Φ̃(ε̃2, τ, a)

na/2+1
(by lemma 2.3.1). (2.20)

We will bound now, the second probability of the right-hand side of the expression
I2n.According to the Markov’s inequality, it follows for any λ positive

I2n = P

(
1

n2

n∑
j=1

X2
j−1 ≤ ε̃2

)

= P

(
n2ε̃2 −

n∑
j=1

X2
j−1 ≥ 0

)
= E

(
I{nε2−∑n

j=1X
2
j−1≥0}

)
≤ E

(
expλ

(
n2ε̃2 −

n∑
j=1

X2
j−1

))
(λ > 0)

≤ eλn
2ε̃2E

(
exp−λ

n∑
j=1

X2
j−1

)

≤ eλn
2ε̃2

n∏
j=1

E
(
exp−λX2

j−1

)
.
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Since

I2n ≤ eλn
2ε̃2

n∏
j=1

E
(
exp−λX2

j−1

)
.

we put
X̃ = λX2

j−1,

we first claim that for x ≥ 0

e−x ≤ 1− x+
1

2
x2. (2.21)

To see this let ψ(x) = e−x and φ(x) = 1 − x + 1
2
x2, (ψ′(x) = −e−x) and recall that

for every x

ex ≥ 1 + x ∀x, (2.22)

so that ψ′(x) = −e−x ≤ −1 + x = φ′(x). Since ψ(0) = 1 = φ(0) this implies
ψ(x) ≤ φ(x) for all x ≥ 0 and (2.21) is claimed.
From (2.21) and (2.22) it follows that for λ > 0

eλnε
2

n∏
j=1

E
(
exp(−λX2

j−1)
)
≤ eλn

2ε̃2
(

1− λT1 +
λ2

2
T2

)n
≤ eλn

2ε̃2
(

exp

(
−λT1 +

λ2

2
T2

))n
≤ eλn

2ε̃2 exp

(
−nλT1 +

λ2

2
nT2

)
where T1 = E(X2

j ) <∞, T2 = E(X4
j ) <∞.

Hence

I2n = P

(
n∑
i=1

X2
j−1 ≤ n2ε̃2

)
≤ exp

[
λ
(
n2ε̃2 − nT1

)
+
nλ2T2

2

]
. (2.23)

With h(λ) = λ(n2ε̃2 − nT1) + nλ2T2
2

and λ > 0, the equation h
′
(λ) = 0 has the

unique solution λ =
T1 − nε̃2

T2

which minimize h(λ). Hence

P

(
n∑
j=1

X2
j−1 ≤ n2ε̃2

)
≤ exp

{
−1

2
n

(T1 − nε̃2)2

T2

}
(2.24)

Then for every R > 0, T1 <∞, T2 <∞, and by the assumption

P(
√
n|θ̂n − θ| > R) ≤ 2 exp{−β (R2ε̃2 − Eζ2

1 )2n

36
}+ 2

Φ̃(ε̃2, τ, a)

na/2+1

+ exp{−1

2
n

(T1 − nε̃2)2

T2

}. (2.25)

These complete the proof.
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Corollary 2.3.3 The sequence (θ̂n)n∈N defined in (2.16) completely converges to
the parameter θ of the first-order autoregressive process.

Proof 9

The complete convergence follows from the inequality (2.19). Indeed, applying the
Cauchy’s rule on the positive real term sequences Un where the general term is defined
by

Un = 2 exp{−β (R2ε̃2 − Eζ2
1 )2n

36
}+ 2

Φ̃(ε̃2, τ, a)

na/2+1
+ exp{−1

2
n

(T1 − nε̃2)2

T2

}.

By using the elementary inequality exp{−y} ≤ 4e−2

y2
for all y > 0, it follows that

+∞∑
n=

P(
√
n|θ̂n − θ| > R) < +∞ . (2.26)

which yields to the result.

Remark 2.3.4 The inequalities (2.19) give us the possibility to construct a confi-
dence interval for the parameter of the first-order autoregressive process. For large
R, such as R = ε̃

√
n, it follows

lim
n→+∞

Un = 2 exp{−β (nε̃4 − Eζ2
1 )2n

36
}

+ 2
Φ̃(ε̃2, τ, a)

na/2+1
+ exp{−1

2
n

(T1 − nε̃2)2

T2

} = 0

which means, for a given level %, we can found a natural integer n% such as

∀n ≥ n% we have Un ≤ %. (2.27)

Consequently,
P(|θ̃n% − θ| < ε̃) ≥ 1− %. (2.28)
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Chapitre 3

Almost complete convergence of
sequences of dependent random
variables, non-linear auto-regressive
models applications.

3.1 Introduction

It is well known that the probability inequality plays an important role in various
proofs of limit theorems. In particular, it provides a measure of convergence rate for
the strong law of large numbers. The main purpose of the article is to provide some
probability inequalities for extended negatively dependent (END) sequence, which
contains independent sequence, NA sequence, and NOD sequence as special cases.
These probability inequalities for END random variables are mainly inspired by Fa-
koor and Azarnoosh (39) and Asadian et al. (20). Using the probability inequalities,
we can further study the moment inequalities and asymptotic approximation of in-
verse moment for END sequence.
First, we will recall the definitions of NOD and END sequences.

Definition 3.1.1 (cf. Joag-Dev and Proschan (15)). A finite collection of random
variables X1, X2, · · · , Xn is said to be negatively upper orthant dependent (NUOD)
if for all real numbers x1, x2, · · · , xn,

P (Xi > xi, i = 1, 2, · · · , n) ≤
n∏
i=1

P ({Xi > xi}) , (3.1)

and negatively lower orthant dependent (NLOD) if for all real numbers x1, x2, · · · , xn,

P (Xi ≤ xi, i = 1, 2, · · · , n) ≤
n∏
i=1

P ({Xi ≤ xi}) , (3.2)

A finite collection of random variables X1, X2, · · · , Xn is said to be negatively orthant
dependent (NOD) if they are both NUOD and NLOD.
An infinite sequence {Xn, n ≥ 1} is said to be NOD if every finite sub-collection is
NOD.

59



Definition 3.1.2 (cf.Liu (18)). We call random variables {Xn, n ≥ 1} END if
there exists a constant M > 0 such that both

P (X1 > x1, X2 > x2, · · · , Xn > xn) ≤M

n∏
i=1

P ({Xi > xi}) , (3.3)

and

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤M

n∏
i=1

P ({Xi ≤ xi}) , (3.4)

Lemma 3.1.3 (cf. Liu (19)) Let random variablesX1, X2, · · · , Xn be END.
(i) Let random variables {f1, f2 · · · , fn} re all nondecreasing (or non-increasing)

functions, then random variables f1(X1), f2(X2), · · · , fn(Xn), are END.
(ii) For each n ≥ 1, there exists a constant M > 0 such that

E

(
n∏
i=1

X+
i

)
≤M

n∏
i=1

E{X+
i }.

Lemma 3.1.4 Let {Xn, n ≥ 1} be a sequence of END random variables and
{tn, n ≥ 1} be a sequence of nonnegative numbers (or nonpositive numbers), then
for each n ≥ 1, there exists a constant M > 0 such that.

E

(
n∏
i=1

exp{tiXi}

)
≤M

n∏
i=1

E exp{tiXi}.

As a by product, for any t ∈ R,

E

(
n∏
i=1

exp{tXi}

)
≤M

n∏
i=1

E exp{Xi}.

Suppose that {Xi, i = 0,±1,±2, · · · } is a sequence of strictly stationary real ran-
dom variables satisfying real random variables satisfying the nonlinear autoregressive
model of order p.

Xi = gθ(Xi−1, · · · , Xi−p) + ζi, i ≥ 1, (3.5)

for some θ = (θ1, · · · , θq)′ ∈ Θ ⊂ Rq, where gθ, θ ∈ Θ, is a family of known
measurable functions from Rq → R. Also the ζ ′i’s are i.i.d. random variables with
mean zero, finite variance σ2 and common density f . Moreover, we assume that
Xi−1, · · · , Xi−p are independent of {ζi, i = 1, 2, · · · }.
Let θ̂ = (θ̂1, · · · , θ̂q)′ be an estimator for θ, and let

ζ̂i = Xi − gθ̂(Xi−1, · · · , Xi−p) + ζi, i ≥ 1, (3.6)

denote the residuals. Based on these residuals, we construct a kernel type estimator
of the error density f as follows :

f̂n(t) :=
1

n

n∑
i=1

Khn(t− ζ̂i), t ∈ R,
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where Kh(t) = 1
h
K( 1

h
), hn is a sequence of positive numbers tending to zero, and K

is the kernel density function. We also need to define the kernel error based on the
true errors (which we can not observe) ζ1, ζ2, · · · , ζn :

fn(t) :=
1

n

n∑
i=1

Khn(t− ζi), t ∈ R.

Notations 3.1.5 • Ai =

q∑
j=1

(Y 2
ij − E(Y 2

ij)), Bi =

q∑
j=1

q∑
k=1

(Z2
ijk − E(Z2

ijk)),

• Ci =

q∑
j=1

(Y 4
ij − E(Y 4

ij)), Di =

q∑
j=1

q∑
k=1

(Z4
ijk − E(Z4

ijk)),

for each n ≥ 1.

• An =
n∑
i=1

E(A2
i ) =

q∑
j=1

n∑
i=1

V (Y 2
ij), Bn =

n∑
i=1

E(B2
i ) =

q∑
j=1

q∑
k=1

n∑
i=1

V (Z2
ijk),

• Cn =
n∑
i=1

E(C2
i ) =

q∑
i=1

n∑
i=1

V (Y 4
ij), Dn =

n∑
i=1

E(D2
i ) =

q∑
i=1

n∑
i=1

V (Z4
ijk).

• Φ1 = nh2nε

a(

n∑
i=1

k′2(
t− εi
hn

))
1
2

−
∑q

j=1

n∑
i=1

E(Y 2
ij),

• Φ2 = n1/2h
3/2
n ε

2a2(

n∑
i=1

k′2(
t− εi
hn

))
1
2

−
q∑
j=1

q∑
k=1

n∑
i=1

E(Zijk)
2,

• Φ3 = n1/2h
5/2
n ε

4a2q(

n∑
i=1

k′′2(ηi(t)))
1
2

−
q∑
j=1

n∑
i=1

E(Y 4
ij),

• Φ4 = n1/2h
5/2
n ε

a4q2(

n∑
i=1

k
′′2(ηi(t)))

1
2

−
q∑
j=1

q∑
k=1

n∑
i=1

E(Z4
ijk).

Basic assumptions 3.1.6 (H1) E(Aij) = E(Bijk) = E(Cij) = E(Dijk) = 0,
(H2)

∣∣Aij∣∣ ≤ α,
∣∣Bijk

∣∣ ≤ β,
∣∣Cij∣∣ < γ,

∣∣Dijk

∣∣ < δ for each i ≥ 1, where α, β, γ, δ are
a positive constant.

(H3) An = Bn = Cn = Dn = O(n),

(H4) The estimator θ̂ = (θ̂1, · · · , θ̂q)′ for θ satisfies that there exists a constant
C1(0 < C1 <∞) such that

lim sup
n→∞

√
n

log log n

∣∣∣θ̂ − θ∣∣∣ ≤ C1 a.s.,

where
∣∣∣θ̂ − θ∣∣∣ =

√√√√ q∑
j=1

(θ̂j − θj)2.
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(H5) K is a continuous bounded symmetric kernel, K and K ′ have a compact sup-
port ; K ′′′ exists and is bounded ; (K ′)2, (K ′′)2 are integrable.

(H6) hn → 0, n
1
2 h

5/2
n

log logn
→∞.

3.2 Main result and its proof

Theorem 3.2.1 Assume that (H1) and (H2) hold. Then, for any Φl > 0, l =
1, · · · , 4, there exist positive constants Ml such that.

P
(√

nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣ > ε

)
≤ M1 exp

{
−
(

Φ1

2α

)
arcsinh

(
αΦ1

2An

)}
+M2 exp

{
−
(

Φ2

2β

)
arcsinh

(
βΦ2

2Bn

)}
+M3 exp

{
−
(

Φ3

2γ

)
arcsinh

(
γΦ3

2Cn

)}
+M4 exp

{
−
(

Φ4

2δ

)
arcsinh

(
δΦ4

2Dn

)} (3.7)

Proof 10 By 3.5 , 3.6 and Taylor’s expansion, it follows that

ζ̂i − ζi = gθ̂(Xi−1, · · · , Xi−p)− gθ(Xi−1, · · · , Xi−p)

=

q∑
j=1

(θ̂j − θj)Yij +
1

2
(θ̂ − θ)′Zi(θ̂ − θ)

=

q∑
j=1

(θ̂j − θj)Yij +
1

2

q∑
j=1

q∑
k=1

(θ̂j − θj)(θ̂k − θk)Zijk.

where Yij := ∂
∂θj
gθ(Xi−1, · · · , Xi−p) and Zi is a q × q matrix with the jth row

and kth column element Zijk := ∂2

∂θj∂θk
gθ(Xi−1, · · · , Xi−p) and evaluated at θ∗ :=

θ + λ(θ̂ − θ), λ ∈ (0, 1), i.e., θ̂ takes place of θ in 10

Under the assumptions and the fact that (a1 + a2 + · · · + am)2 ≤ m(a2
1 + a2

2 +
· · · + a2

m) for any positive integer m and real numbers a1, a2, · · · , am, we have that
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P
(√

nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1
nhn

n∑
i=1

[
K

(
t− ζ̂i
hn

)
−K

(
t− ζi
hn

)]∣∣∣∣∣ > ε√
nhn

)

= P

(∣∣∣∣∣ 1
nhn

n∑
i=1

[
ζi − ζ̂i
hn

K ′
(
t− ζi
hn

)
+

(ζi − ζ̂i)2

2h2
n

K ′′(ηi(t))

]∣∣∣∣∣ > ε√
nhn

)

≤ P


∣∣∣∣∣∣∣
q∑
j=1

(θ̂j − θj)
n∑
i=1

YijK
′
(
t− ζi
hn

)∣∣∣∣∣∣∣
nh2

n
> ε

4
√
nhn



+P


∣∣∣∣∣∣∣
q∑
j=1

q∑
k=1

(θ̂j − θj)(θ̂k − θk)

n∑
i=1

ZijkK
′
(
t− ζi
hn

)∣∣∣∣∣∣∣
2nh2

n
> ε

4
√
nhn



+P


q

q∑
j=1

(θ̂j − θj)2
n∑
i=1

Y 2
ij

∣∣K ′′(ηi(t))∣∣
nh3

n
> ε

4
√
nhn



+P


q2

q∑
j=1

q∑
k=1

(θ̂j − θj)2(θ̂k − θk)2
n∑
i=1

Z2
ijk

∣∣K ′′(ηi(t))∣∣
4nh3

n
> ε

4
√
nhn


= I + II + III + IV,

where ηi(t) is a random quantity between t−ζ̂i
hn

and t−ζi
hn

. Now we begin to deal with
them, respectively. As to I, notice that :

P


∣∣∣∣∣∣∣
q∑
j=1

(θ̂j − θj)
n∑
i=1

Yijk
′(
t− εi
hn

)

∣∣∣∣∣∣∣
nh2

n
> ε

4
√
nhn


≤ P

 q∑
j=1

∣∣θ̂j − θj∣∣
[

(

n∑
i=1

Y 2
ij)

1
2 (

n∑
i=1

k′2(
t− εi
hn

))
1
2

]
>
n1/2h

3/2
n

4


≤ P

(

q∑
j=1

(θ̂j − θj)2)
1
2

[
(

n∑
i=1

Y 2
ij)

1
2 (

n∑
i=1

k′2(
t− εi
hn

))
1
2

]
>
n1/2h

3/2
n

4



≤ P


q∑
j=1

(

n∑
i=1

Y 2
ij)

1
2 >

nh2
nε

a(

n∑
i=1

k′2(
t− εi
hn

))
1
2

 ≤ P


q∑
j=1

n∑
i=1

Y 2
ij >

n1/2h
3/2
n ε

4a(

n∑
i=1

k′2(
t− εi
hn

))
1
2



= P


n∑
i=1

q∑
j=1

[
Y 2
ij − E(Y 2

ij)
]

︸ ︷︷ ︸
Ai︸ ︷︷ ︸

Sn1

>
nh2

nε

a(

n∑
i=1

k′2(
t− εi
hn

))
1
2

−
q∑
j=1

n∑
i=1

E(Y 2
ij)

︸ ︷︷ ︸
Φ1


= P (Sn1 > Φ1)
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For all, ν1 > 0 and Φ1 > 0, we have

P (Sn1 > Φ1) ≤ e−ν1Φ1E(eν1§n1) = M1 exp

{
ν1

(
An

sinh(ν1α)

α
− Φ1

)}
(3.8)

Taking ν1 = 1
α

arcsinh
(
αΦ1

2An

)
in the right-hand of 3.8, we can see that An ν1αα = Φ1

2

and

P (Sn1 > Φ1) ≤M1 exp

{
−
(

Φ1

2α

)
arcsinh(

αΦ1

2An
)

}

For II, note that

P



∣∣∣∣∣
q∑
j=1

q∑
k=1

(θ̂j − θj)(θ̂k − θk)

n∑
i=1

Zijkk
′(
t− εi
hn

)

∣∣∣∣∣
2nh2

n

>
ε

4
√
nhn


≤ P

 q∑
j=1

q∑
k=1

∣∣θ̂j − θj∣∣ ∣∣θ̂k − θk∣∣
[

(

n∑
i=1

Z2
ijk)

1
2 (

n∑
i=1

k′2(
t− εi
hn

))
1
2

]
>
n1/2h

3/2
n ε

2
ε



≤ P


q∑
j=1

q∑
k=1

(

n∑
i=1

Z2
ijk)

1
2 >

n1/2h
3/2
n ε

2a2(

n∑
i=1

k′2(
t− εi
hn

))
1
2



≤ P

∑q
j=1

∑q
k=1

∑n
i=1 Z

2
ijk >

n1/2h3/2
n ε

2a2(

n∑
i=1

k′2(
t− εi
hn

))
1
2



= P


n∑
i=1

q∑
j=1

q∑
k=1

[
Z2
ijk − E(Z2

ijk)
]

︸ ︷︷ ︸
Bi︸ ︷︷ ︸

Sn2

>
n1/2h

3/2
n ε

2a2(

n∑
i=1

k′2(
t− εi
hn

))
1
2

−
q∑
j=1

q∑
k=1

n∑
i=1

E(Zijk)2

︸ ︷︷ ︸
Φ2


= P (Sn2 > Φ2) ≤ e−ν1Φ1E(eν1§n1) ≤M2 exp

{
ν2

(
Bn

sinh(ν2β)

β
− Φ2

)}
≤M2 exp

{
−
(

Φ2

2β

)
arcsinh(

βΦ2

2Bn
)

}
.

For III
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P


q

q∑
j=1

(θ̂j − θj)2
n∑
i=1

Y 2
ij

∣∣k′′
(ηi(t))

∣∣
nh3

n
> ε

4
√
nhn


≤ P

 q∑
j=1

(θ̂j − θj)2

[
(

n∑
i=1

Y 4
ij)

1
2 (

n∑
i=1

k
′′2(ηi(t)))

1
2

]
>
n1/2h

5/2
n ε

4q



≤ P


q∑
j=1

(

n∑
i=1

Y 4
ij)

1
2 >

n1/2h
5/2
n ε

4a2q(

n∑
i=1

k′′2(ηi(t)))
1
2

 ≤ P


q∑
j=1

n∑
i=1

Y 4
ij >

n1/2h
5/2
n ε

4a2q(

n∑
i=1

k′′2(ηi(t)))
1
2



= P


n∑
i=1

q∑
j=1

[
Y 4
ij − E(Y 4

ij)
]

︸ ︷︷ ︸
Ci︸ ︷︷ ︸

Sn3

>
n1/2h

5/2
n ε

4a2q(

n∑
i=1

k′′2(ηi(t)))
1
2

−
q∑
j=1

n∑
i=1

E(Y 4
ij)

︸ ︷︷ ︸
Φ3


= P (Sn3 > Φ3) ≤ e−ν3Φ3E(eν3§n3) ≤M1 exp

{
ν3

(
Cn

sinh(ν3γ)

γ
− Φ3

)}
≤M3 exp

{
−
(

Φ3

2γ

)
arcsinh

(
γΦ3

2Cn

)}
.

For IV

P


q2

q∑
j=1

q∑
k=1

(θ̂j − θj)2(θ̂k − θk)2
n∑
i=1

Z2
ijk

∣∣k′′
(ηi(t))

∣∣
4nh3

n
> ε

4
√
nhn


≤ P

 q∑
j=1

q∑
k=1

(θ̂j − θj)2(θ̂k − θk)2(

n∑
i=1

Z4
ijk)

1
2 (

n∑
i=1

k
′′2(ηi(t)))

1
2 >

n1/2h
5/2
n ε

q2



≤ P


q∑
j=1

q∑
k=1

(

n∑
i=1

Z4
ijk)

1
2 >

n1/2h
5/2
n ε

a4q2(

n∑
i=1

k
′′2(ηi(t)))

1
2

≤ P


q∑
j=1

q∑
k=1

n∑
i=1

Z4
ijk >

n1/2h
5/2
n ε

a4q2(

n∑
i=1

k
′′2(ηi(t)))

1
2



≤ P


n∑
i=1

q∑
j=1

q∑
k=1

[
Z4
ijk − E(Z4

ijk)
]

︸ ︷︷ ︸
Di︸ ︷︷ ︸

Sn4

>
n1/2h

5/2
n ε

a4q2(

n∑
i=1

k
′′2(ηi(t)))

1
2

−
q∑
j=1

q∑
k=1

n∑
i=1

E(Z4
ijk)

︸ ︷︷ ︸
Φ4


= P (Sn4 > Φ4) ≤ e−ν4Φ4E(eν4§n4) ≤M4 exp

{
ν4

(
Dn

sinh(ν4δ)

δ
− Φ1

)}
≤M4 exp

{
−
(

Φ4

2δ

)
arcsinh

(
δΦ4

2Dn

)}
.

Then for (I), (II), (III) and (IV )
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P
(∣∣∣f̂n(t)− fn(t)

∣∣∣ > ε
)
≤ M1 exp

{
−
(

Φ1

2α

)
arcsinh

(
αΦ1

2An

)}
+M2 exp

{
−
(

Φ2

2β

)
arcsinh

(
βΦ2

2Bn

)}
+M3 exp

{
−
(

Φ3

2γ

)
arcsinh

(
γΦ3

2Cn

)}
+M4 exp

{
−
(

Φ4

2δ

)
arcsinh

(
δΦ4

2Dn

)}
Theorem 3.2.2 Assume that (H1), (H2) and (H3) hold. If (H3) is satisfied then
√
nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣ → 0 completely and in consequence

√
nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣ → 0

a.s.for each n ≥ 1.

Proof 11 For any ε > 0, we have by Theorem 3.2.1 that

P
(∣∣∣f̂n(t)− fn(t)

∣∣∣ > ε√
nhn

)
≤M1 exp

{
−
(

Φ1

2α

)
arcsinh

(
αΦ1

2An

)}
+M2 exp

{
−
(

Φ2

2β

)
arcsinh

(
βΦ2

2Bn

)}
+M3 exp

{
−
(

Φ3

2γ

)
arcsinh

(
γΦ3

2Cn

)}
+M4 exp

{
−
(

Φ4

2δ

)
arcsinh

(
δΦ4

2Dn

)}
≤M1 exp{−nL1}+M2 exp{−nL2}+M3 exp{−nL3}+M4 exp{−nL4}
≤M exp{−nL}

where L = min{L1, L2, L3, L4} (Li(i = 1, · · · , 4) are positive constants), M =

max{M1,M2,M3,M4} and a = Op(
√

log logn
n

). Therefore,

∞∑
n=1

P

(∣∣∣f̂n(t)− fn(t)
∣∣∣ > ε√

nhn

)
<∞,

which implies that
√
nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣→ 0 completely and in consequence

√
nhn

∣∣∣f̂n(t)− fn(t)
∣∣∣→ 0 a.s. by Borel-Cantelli Lemma. The proof is completed.
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Chapitre 4

Complete convergence of the
operator estimator of first-order
autoregressive in Hilbert space
generated by WOD errors

4.1 Introduction

Let {Xn, n ≥ 1} be a sequence of random variables that is defined on a fixed
probability space (Ω,F,P). As known that there are many results on probability limit
theorems for independent random variables. In fact, the independence assumption is
not always appropriate in applications.

So many authors introduced some dependent structure and mixing structure. Wi-
dely orthant dependent structure was one of the newest dependence structure that has
attracted the interest of probabilists and statisticians, this structure contains most of
negatively dependent random variables, some positively dependent random variables
and some other random variables. The concept of widely orthant dependent random
variables was introduced by Wang et al. (16) as follows.
Definition 4.1.1 For {Xn, n ≥ 1} a sequence of random variables :
(i) if there exists a sequence of real numbers {gu(n), n ≥ 1} such that for each n ≥ 1

and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n ;

P

(
n⋂
i=1

{Xi > xi}

)
≤ gu(n)

n∏
i=1

P ({Xi > xi}) ,

Then we say that the random variables {Xn, n ≥ 1} are widely upper orthant
dependent (WUOD) with dominating coefficients gu(n), n ≥ 1 ;

(ii) if there exists a sequence of real numbers {gl(n), n ≥ 1} such that for each n ≥ 1
and for all

P

(
n⋂
i=1

{Xi ≤ xi}

)
≤ gl(n)

n∏
i=1

P ({Xi ≤ xi}) ,

Then we say that the random variables {Xn, n ≥ 1} are widely lower orthant
dependent (WLOD) with dominating coefficients gl(n), n ≥ 1 ;
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(iii) If {Xn, n ≥ 1} are both WUOD and WLOD, then we say that the random
variables {Xn, n ≥ 1} are widely orthant dependent (WOD) with dominating
coefficients gu(n) and gl(n), n ≥ 1.

(iv) An array {Xni, i ≥ 1, n ≥ 1} is said row-wise WOD random variables, if for
each n ≥ 1, {Xni, i ≥ 1} is a sequence of WOD random variables.

Recall that when gl(n) = gu(n) = M for some positive constant M , the ran-
dom variables {Xn, n ≥ 1} are called extended negatively upper orthant dependent
(ENUOD, in short) and extended negatively lower orthant dependent (ENLOD, in
short), respectively. If they are both ENUOD and ENLOD, then we say that the
random variables {Xn, n ≥ 1} are extended negatively orthant dependent (END, in
short). The concept of END random variables was proposed by Liu (18), and fur-
ther promoted by Chen et al. (48), Shen (32), Wang and Wang (33), Wu and Guan
(52), Qiu et al. (9), Wang et al. (44)-(45), and so forth. When gl(n) = gu(n) = 1
for any n ≥ 1, the random variables {Xn, n ≥ 1} are called negatively upper orthant
dependent (NUOD, in short) and negatively lower orthant dependent (NLOD,in
short), respectively. If they are both NUOD and NLOD, then we say that the ran-
dom variables {Xn, n ≥ 1} are negatively orthant dependent (NOD, in short). The
concept of NOD random variables was introduced by Ebrahimi and Ghosh (21) and
carefully studied by Joag and Proschan (15), Bozorgnia and al. (1), Taylor and al.
(28), Wang and al. (47), Sung (34), Qiu and al. (10), Wu (43), Wu and Jiang (26),
Shen ((4),(5)), and so on. Joag and Proschan (15) pointed out that NA random
variables are NOD. Hu (13) introduced the concept of negatively super-additive de-
pendence (NSD, in short) and pointed out that NSD implies NOD. Christofides
and Vaggelatou (37) indicated that NA implies NSD. By the statements above, we
can see that the class of WOD random variables contains END random variables,
NOD random variables, NSD random variables, NA random variables and inde-
pendent random variables as special cases. Hence, studying the probability limiting
behavior of WOD random variables is a great interest.

The concept of WOD random variables was introduced by Wang et al. (16) and
many applications have been found subsequently. See, for example, Wang et al. (16)
provided some examples which showed that the class of WOD random variables
contains some common negatively dependent random variables, some positively de-
pendent random variables and some others ; in addition, they studied the uniform
asymptotic for the finite-time ruin probability of a new dependent risk model with a
constant interest rate. Wang and Cheng (50) presented some basic renewal theorems
for a random walk with widely dependent increments and gave some applications.
Wang and al. (51) studied the asymptotic of the finite-time ruin probability for a ge-
neralized renewal risk model with independent strong sub-exponential claim sizes and
widely lower orthant dependent inter-occurrence times. Liu (42) gave the asympto-
tically equivalent formula for the finite-time ruin probability under a dependent risk
model with constant interest rate. Chen et al. (49) considered uniform asymptotic for
the finite-time ruin probabilities of two kinds of nonstandard bi-dimensional renewal
risk models with constant interest forces and diffusion generated by Brownian mo-
tions. Shen (3) established the Bernstein type inequality for WOD random variables
and gave some applications, Wang et al. (46) studied the complete convergence for
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WOD random variables and gave its applications in nonparametric regression mo-
dels. Yang et al. (40) established the Bahadur representation of sample quantiles for
WOD random variables under some mild conditions.

Definition 4.1.2 Let an array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive constant
C so that

P(| Xni |) ≤ CP(| X |) (4.1)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

Let {Xn, n ≥ 1} be a sequence of WOD random variables with dominating coeffi-
cients gu(n), gl(n), n ≥ 1 and {Xni, i ≥ 1, n ≥ 1} be an array of row-wise WOD
random variables with dominating coefficients gu(n), gl(n), n ≥ 1 in each row. De-
note g(n) = max{gu(n), gl(n)}. I() denotes the indicator function, with C a positive
constant, which value may be different places.

Lemma 4.1.3 (i) Let random variables {Xn, n ≥ 1} be WOLD (WUOD) with
dominating coefficients gl(n), n ≥ 1 (gu(n), n ≥ 1). If {fn(.), n ≥ 1} are
nondecreasing, then {fn(Xn), n ≥ 1} are still WLOD (WUOD) with domi-
nating coefficients gl(n), n ≥ 1 (gl(n)), n ≥ 1) ; if {fn(.), n ≥ 1} are non-
increasing, then {fn(Xn), n ≥ 1} are WUOD (WLOD) with dominating coef-
ficients gl(n), n ≥ 1 (gl(n), n ≥ 1).

(ii) If {Xn, n ≥ 1} are nonnegative WUOD with dominating coefficients gu(n), n ≥
1, then for each n ≥ 1,

E exp

(
t

n∑
i=1

Xi

)
≤ gu(n)

n∏
i=1

E exp{tXi}.

Particularly, if {Xn, n ≥ 1} areWUOD with dominating coefficients gu(n), n ≥
1, then for each n ≥ 1 and any t > 0

E exp

(
t

n∑
i=1

Xi

)
≤ gu(n)

n∏
i=1

E exp{tXi}.

Wang et al. (46) obtained the following corollary by Lemma 4.1.3.

Corollary 4.1.4 Let {Xn, n ≥ 1} be a sequence of WOD random variables.

(i) If fn(.) are all nondecreasing (or non-increasing), then {fn(Xn), n ≥ 1} are still
WOD.

(ii) For each n ≥ 1 and any t ∈ R,

E exp

(
t

n∑
i=1

Xi

)
≤ g(n)

n∏
i=1

E exp{tXi}.
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4.2 Principal results

Theorem 4.2.1 (See Avanissian (6), pp 314− 315) Let (vj)j∈I orthonormal family
in Hilbert space H ; the following conditions are equivalents :
(a) The family (vj)j∈I is maximal (i.e. is hilbertian base).
(b) All x ∈ H is written in unique way

x =
∑
j∈I

xjvj where xj =< x, vj >

(c) For any x ∈ H the following statement is hold

‖ x ‖=
∑
j∈I

| xj |2 .(Parseval relation) (4.2)

Theorem 4.2.2 Let (ζt, t ∈ Z) sequence of identically distributed widely orthant
dependent (WOD, in short) random variables, of mean zero (i.e Eζt = 0,∀t ∈ Z)
and hold sup

j∈Z
‖ ζt ‖≤ b <∞, indeed if, for any ε < E | ζn | ∀n ∈ Z. Then

P
{
| ζ1 + . . .+ ζn

n
|> ε

}
≤ g(n)e−(A2−A1)n

where A1 = E|ζ|
b

(
ε

E|ζ| − 1
)
and A2 = ε

b
log
(

ε
E|ζ|

)
.

Proof 12 we notice that{
| ζ1 + . . .+ ζn

n
|
}
⊆
{
| ζ1 | + . . .+ | ζn |

n

}
we obtain the following inequality valid for each λ, ε > 0 :

Ĩ = P
{
| ζ1 + . . .+ ζn

n
| > ε

}
≤ E

[
exp

(
λ

(
n∑
j=1

| ζj | −nε

))]

= e−λnεE

[
exp

(
λ

n∑
j=1

| ζj |

)]

= e−λnεE

[
n∏
j=1

eλ|ζj |

]
We use lemma 4.1.3 and the corollary 4.1.4 we have

Ĩ ≤ e−λnεg(n)
n∏
j=1

E
[
eλ|ζj |

]
assumption sup

j∈Z
‖ ζj ‖≤ b < ∞ of theorem and the elementary inequality ext ≤

1 + x(et − 1), 0 ≤ x ≤ 1, t > 0 then allow to bounded Ĩ by :

e−λnεg(n)
n∏
j=1

E
[
1 +
| ζj |
b

(eλb − 1)

]
. (4.3)
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On another hand, for ε, λ > 0, we have :

Ĩ ≤ e−λnεg(n)
n∏
j=1

[
1 + E | ζj |

(
eλb − 1

b

)]

≤ e−λnεg(n)
n∏
j=1

exp

(
E | ζj |

(
eλb − 1

b

))
(using1+ x≤ ex,∀x ∈ R)

(4.5)

= e−λnεg(n) exp

(
nE | ζj |

(
eλb − 1

b

))
= g(n) exp

(
nE | ζj |

(
eλb − 1

b

)
− λnε

)
.

The equation ∂Λ(λ)
∂λ

=
∂

(
nE|ζj |

(
eλb−1
b

)
−λnε

)
∂λ

= 0 has a unique solution λ =
ln

(
ε

E|ζj |

)
b

that minimizes Λ(λ). Then

P
{
| ζ1 + . . .+ ζn

n
| > ε

}
≤ g(n)e−n(A2−A1)

where A1 = E|ζ|
b

(
ε

E|ζ| − 1
)
and A2 = ε

b
ln
(

ε
E|ζ|

)
. that concludes our Theorem.

Remark 4.2.3 (a) e−n(A2−A1) ≤ 4e−2

(A2−A1)2n2 (using the inequality : e−x ≤ 4e−2

x2
,∀x >

0).

(b) P
{
| ζ1+...+ζn

n
|> ε

}
≤ A3

+∞∑
n=1

nγ

n2
< +∞

where A3 = 4e−2

(A2−A1)2
and g(n) = O(nγ), (0 ≤ γ < 1).

Lemma 4.2.4 (t1)
r∑
j=1

j−1 ≤ 1 + ln r,

(t2)
r∑
j=1

jκ−1 ≤ κ−1rκ, 0 < κ < 1,

(t3)
+∞∑
j=r+1

j−1−ω ≤ ω−1r−ω.

Proof 13 • With reference to (τ1) : if 0 < j ≤ k, then

k−1 ≤ j−1

and ∫ k

k−1

k−1dj ≤
∫ k

k−1

j−1d j = ln k − ln(k − 1) so
t∑

j=1

k−1 ≤ 1 + ln r.
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• As to (τ2) : if 0 < j ≤ k, then
kκ−1 ≤ jκ−1

and∫ k

k−1

Kκ−1dj ≤
∫ k

k−1

jκ−1dj = κ−1(kκ− (k−1)κ)so
r∑
j=1

kκ−1 ≤ κ−1rκ, 0 < κ < 1.

• As to (t3) : if 0 < j ≤ k, then
k−1−ω ≤ j−1−ω

and ∫ k

k−1

K−1−ωdj ≤
∫ k

k−1

j−1−ωdj = −ω−1(k−ω − (k − 1)−ω)

therefor
+∞∑
j=r+1

k−1−ω ≤ ω−1r−ω, 0 < k < 1.

Theorem 4.2.5 Let X = (Xt, t ∈ Z) hilbertian autoregressive processes of first
order (ARH(1)). Assume that sup

t∈Z
‖ ζt ‖≤ b < ∞ where (ζt) are widely orthant

dependent noise (WOD) and (λj, j ≥ 1) are eigenvalues of operator C = Cx0. Then

P
{
‖ Sn
n
‖ > ε

}
≤ η(t+ 1)g(n)e−(A

′
2−A

′
1)n +

g(n)

δε2

∑
j>η

λj. (4.5)

where

A
′

2 =
ε
√

1− δ
(t+ 1)

√
ηb

ln

[
ε
√

1− δ
(t+ 1)

√
ηE |< Φt,k, vj >|

]
and

A
′

1 =
E |< Φt,k, vj >|

b

(
ε
√

1− δ
(t+ 1)

√
ηE |< Φt,k, vj >|

− 1

)
, 1 ≤ j ≤ η.

Proof 14 Let (vj, j ≥ 1) eigenvectors of operator C that form an orthonormal base
of H.
For each δ ∈]0, 1[ we can write

I = P
{
‖ Sn
n
‖ > ε

}
= P

{
‖ Sn
n
‖

2

> ε2
}

= P

{∑
j≥1

| < Sn
n
, vj >

2 | > ε2

}
.

Using ‖ Sn
n
‖

2

=
∑
j≥1

| xj |2, Sn
n

=
∑
j≥1

xjvj, xj =< Sn
n
, vj > we deduce

I ≤ P

{
η∑
j=1

<
Sn
n
, vj >

2≥ (1− δ)ε2
}

+ P

{∑
j>η

<
Sn
n
, vj >

2≥ δε2

}
,
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we obtain the following bounded-up

I1 = P

{
η∑
j=1

<
Sn
n
, vj >

2> (1− δ)ε2
}

I1 ≤
η∑
j=1

P
{
<
Sn
n
, vj >≥ ε

√
1− δ
√
η

}
(4.6)

we have P{T 2
1 + . . .+ T 2

η ≥ K} ≤ P{T 2
1 ≥ K

η
}+ . . .+ P{T 2

η ≥ K
η
}.

We put I ′1 = P
{
< Sn

n
, vj >≥ ε

√
1−δ√
η

}
where Sn

n
=

n∑
t=1

Xt

n
,

Xt = ζt + ρ(ζt−1) + . . .+ ρt−1(ζ1), ‖ ρ ‖< 1 and (ζt) are H −W.O.D.
So

I ′1 = P

{
1

n

n∑
t=1

< Xt, vj >≥ ε

√
1− δ
√
η

}

= P

{
1

n

n∑
t=1

<
t+1∑
k=1

ρk−1(ζt−(k−1)), vj >≥ ε

√
1− δ
√
η

}

= P

{
1

n

n∑
t=1

t+1∑
k=1

< ρk−1(ζt−(k−1)), vj >≥ ε

√
1− δ
√
η

}

≤ P

{
1

n

n∑
t=1

< ζt, vj >≥
ε
√

1− δ
(t+ 1)

√
η

}
+ P

{
1

n

n∑
t=1

< ρ(ζt−1), vj >≥
ε
√

1− δ
(t+ 1)

√
η

}
+

+ . . .+ P

{
1

n

n∑
t=1

< ρt(X0), vj >≥
ε
√

1− δ
(t+ 1)

√
η

}
we put

I
′

k,1 = P

 1

n

n∑
t=1

< ρk−1(ζt−(k−1))︸ ︷︷ ︸
Φt,k

, vj >≥
ε
√

1− δ
(t+ 1)

√
η

 .

By applying lemma 4.2.2 on (< Φt,k, vj >, t ∈ Z) we achieve

I
′

k,1 ≤ g(n)e−(A
′
2−A

′
1)n, ∀1 ≤ k ≤ t+ 1,

thus we conclude that

I
′

1 ≤ (t+ 1)I
′

k,1 ≤ g(n)(t+ 1)e−(A
′
2−A

′
1)n,∀1 ≤ k ≤ t+ 1 (4.7)

From (4.7) and (4.6) we find :

I1 ≤
η∑
j=1

I
′

1 ≤
η∑
j=1

(t+ 1)I
′

k,1 ≤ η(t+ 1)g(n)e−(A
′
2−A

′
1)n (4.8)
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where

A
′

2 =
ε
√

1− δ
(t+ 1)

√
ηb

ln

[
ε
√

1− δ
(t+ 1)

√
ηE |< Φt,k, vj >|

]
and

A
′

1 =
E |< Φt,k, vj >|

b

(
ε
√

1− δ
(t+ 1)

√
ηE |< Φt,k, vj >|

− 1

)
, 1 ≤ j ≤ η.

On another hand, from Markov inequality

P

{∑
j>η

<
Sn
n
, vj >

2≥ δε2

}
≤ g(n)

δε2

∑
j>η

[
E <

Sn
n
, vj >

2

]
.

Since (
1

n

η∑
t=1

< Xt, vj >

)2

≤ 1

n

η∑
t=1

< Xt, vj >
2,

we obtain

P

{∑
j>η

<
Sn
n
, vj >

2≥ δε2

}
≤ g(n)

δε2

∑
j>η

[
E < X0, vj >

2
]
.

≤ g(n)

δε2

∑
j>η

λj. (4.9)

Finally, from (4.8) and (4.9), we have :

I = P
{
‖ Sn
n
‖> ε

}
≤ η(t+ 1)g(n)e−(A

′
2−A

′
1)n +

g(n)

δε2

∑
j>η

λj.

Thus the result.

Corollary 4.2.6 Indeed, if ∃a > 0, β > 1 and g(n) = O(nγ)(0 ≤ γ < 1) such that∑
j>η

λj ≤
∑
j>n

λj (n > η) (4.10)

and
λj ≤ aj−1−β ∀j ≥ 1. (4.11)

Then

+∞∑
n=1

P
{
‖ Sn
n
‖> ε

}
≤ η(t+ 1)

+∞∑
n=1

nγe−(A
′
2−A

′
1)n +

a

βδε2

+∞∑
n=1

nγ−β <∞. (4.12)

(i.e. Sn
n
→ 0 completely almost when n → +∞ with Sn

n
is an element of Hilbert

space H).
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Proof 15 From theorem we have that

P
{
‖ Sn
n
‖> ε

}
≤ η(t+ 1)g(n)e−(A

′
2−A

′
1)n +

g(n)

δε2

∑
j>η

λj︸ ︷︷ ︸
Ĩ

.

The expression Ĩ be bounded up by 1
δε2
aβ−1nγn−β using lemma 4.2.4

Finally, from (4.10) and (4.11) we deduce

+∞∑
n=1

P
{
‖ Sn
n
‖> ε

}
≤ η(t+ 1)

+∞∑
n=1

nγe−(A
′
2−A

′
1)n +

a

βδε2

+∞∑
n=1

nγ−β <∞.

That is to say that
Sn
n

converges almost completely to 0 when n tends to ∞.
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Perspectives

In this section, we sketch some perspectives for possible future researches.

For chapter 2

1. see what are the conditions for obtaining a similar result for :

(a) autoregressive processes of order p (AR(p), p > 1).
(b) autoregressive Hilbertian processes ARH(1).
(b) autoregressive processes in Banach spaces ARB(1).

2. study the cases of the models ARMA and GARCH.
For chapter 4

All the results have not been stated since we replace the Hilbert space by the space
of continuous functions on a compact ([0, 1]).
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Abstract
The dissertation is composed of four chapters. In the first chapter, we explain

the basic notions and highlight some of the objectives of time series analysis. In
chapter two, we study a a new concentration inequality and complete convergence
of weighted sums for arrays of row-wise linearly negative quadrant dependent ran-
dom variables, then in chapter three we demonstrate almost complete convergence
of dependant random variables sequences with application to non-linear autoregres-
sive processes model. Regarding the fourth and last chapter, we discuss the almost
complete convergence of the value of the process of autoregressive Hilbertian of order
one.
Keywords : autoregressive process, complete convergence, estimation, tail proba-
bilities, linearly negative quadrant dependent (LNQD) sequence, random variables,
weighted sums, nonlinear autoregressive models, extended negatively dependent
(END) sequence, exponential inequality, autoregressive Hilbertian process, widely
orthant dependent (WOD) random variables,
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