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Notations
Q: Bounded domain in R¥.
I': Topological boundary of €.
x = (21,21, ..., vy ):Generic point of RY.
dr = dxidx;...dry: Lebesgue measuring on €.
Vu: Gradient of w.
Awu: Laplacien of u.
St f7 imax(f,0), max(—f,0).
a.e: Almost everywhere.
p: Conjugate of p, i.e ]lp + z% =1.
D(Q): Space of differentiable functions with compact support in €.
D'(€Q): Distribution space.
Ck(2): Space of functions k-times continuously differentiable in 2.

9

(Q): Space of continuous functions null board in €.

LP(Q): Space of functions p-th power integrated on 2 with measure of dz.

= ( [ rf<ac>rp)’i

wWrr(Q) = {u e LP(Q),Vu € ( 1.
WhP(Q): The closure of D(Q) in Wlp(Q).
[ull1p = (|!u|\p+\|Vqu)

Wy (Q): The closure of D(Q) in W(Q).
Wo_l’p/(Q): The dual space of W, 7(Q).

H: Hilbert space.

Hy = Wy*(9).

If X is a Banach space, we denote

T
Lr(0,7;X) = {f :(0,T) — Xis measurable;/ | f ()5 dt < oo} .
0

L>0,T;X) = {f : (0,7) — Xis measurable; sup esst(t)Hg(} :

te(0,7)
C*([0,T); X): Space of functions k-times continuously differentiable for [0,T] — X.
D([0,T]; X): Space of functions continuously differentiable with compact support in [0, 7.
Bx = {z € X;||z|| < 1}: unit ball.
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Introduction

This thesis is devoted to the study of global existence and asymptotic behavior in time
of solutions to nonlinear evolutions equations and systems of hyperbolic and parabolic type.
The decreasing of classical energy plays a crucial role in the study of global existence and
in the stabilization of various systems. In this thesis, the main objective is to give a global
existence and stabilization results. This work consists in three chapters. The first one is
concerned preliminaries. The second one, for wave equations with a time-varying delay term.
The third one, Decay Property For Solutions In Elastic Solids Without Mechanical Damp-
ing.

Chapter 1: Global existence and Asymptotic stability for a coupled viscoelastic
wave equation with a time-varying delay term

In this chapter, we consider the following viscoelastic coupled wave equation with a delay

term

¢
Uy — Liu — / g1(t — s)Lyu(s)ds + prug(z,t) + poug(z, t — (1)) + fi(u,v) =0,
0

¢
Uy — Lov — / g2(t — s)Lav(s)ds + ayvg(w,t) + agv(z, t — 12(t)) + fo(u,v) =0,
0

in a bounded domain. Under appropriate conditions on g1, pe, o and oy, we prove global
existence of the solutions by combining the energy method with the Faedo-Galerkin’s pro-
cedure. Furthermore, we study the asymptotic stability in using an appropriate Lyapunov
functional. Finally, we show that the decay rates are the same as those obtained in [23].

Chapter 2: Decay Property For Solutions In Elastic Solids Without Mechan-
ical Damping

In this chapter, we investigate the Cauchy problem for a system of elastic solids with thermal
effect. The heat conduction is given by the type III theory of Green and Naghdi. We prove
that the dissipation induced by the heat conduction is responsible to the system stabilization,
but with slow decay rate.



Chapter 1

Preliminary

In this chapter, we will introduce and state without proofs some important materials needed

in the proof of our results,

1.1 Banach Spaces-Definition and properties

We first review some basic facts from calculus in the most important class of linear spaces ”

Banach spaces”.

Definition 1.1.1. . A Banach space is a complete normed linear space X. Its dual space X'
1s the linear space of all continuous linear functional f : X — R.

Proposition 1.1.1. ([33]) X' equipped with the norm ||.||x: defined by

1 fllxr = sup{|f(w)] : lul <1}, (1.1.1)
is also a Banach space. We shall denote the value of f € X' at u € X by either f(u) or
<f> u)X’,X—

Remark 1.1.1. From X'we construct the bidual or second dual X" = (X')'. Furthermore,
with each u € X we can define p(u) € X" by o(u)(f) = f(u), f € X'. This satisfies clearly
lo(@)|| < ||ul|. Moreover, for each u € X there is an f € X' with f(u) = ||u|| and || f]| = 1.
So it follows that ||p(z)]| = ||ul.

Definition 1.1.2. . Since ¢ is linear we see that
o: X — X",

is a linear isometry of X onto a closed subspace of X", we denote this by

X — X",



Preliminary

Definition 1.1.3. . If ¢ is onto X" we say X is reflexive, X = X",

Theorem 1.1.2. (/34]). Let X be Banach space. Then X is reflexive, if and only if,
By={reX: |z <1},

is compact with the weak topology o(X,X"). (See the next subsection for the definition of
o(X,X")).

Definition 1.1.4. . Let X be a Banach space, and let (u,)nen be a sequence in X. Then

U, converges strongly to u in X if and only if
lim ||u, —ul|x =0,
and this is denoted by w, — w, or lim, . U, = u.

Definition 1.1.5. The Banach space E is said to be separable if there exists a countable
subset D of E which is dense in E, i.e. D = E.

Proposition 1.1.3. If E is reflexive and if F is a closed vector subspace of E, then F is

reflexive.

Corollary 1.1.4. The following two assertions are equivalent: (i) E is reflexive; (ii) E' is

reflexive.

1.1.1 The weak and weak star topologies
Let X be a Banach space and f € X’. Denote by

Qpr - X —-R

v oy(a), (1.1.2)

when f cover X', we obtain a family () rex of applications to X in R.

Definition 1.1.6. The weak topology on X, denoted by o(X, X'), is the weakest topology on

X for which every (¢y)fex: is continuous.

We will define the third topology on X', the weak star topology, denoted by (X', X).
For all z € X. Denote by

or: X' =R
[ = eu(f) = ([ 2)xx,

when z cover X, we obtain a family (¢,).cxs of applications to X’ in R.

(1.1.3)

8



1.1 Banach Spaces-Definition and properties

Definition 1.1.7. . The weak star topology on X' is the weakest topology on X' for which

every (Qg)zex: iS continuous.

Remark 1.1.2. ([34]) Since X C X", it is clear that, the weak star topology o(X', X) is
weakest then the topology o(X', X"), and this later is weakest then the strong topology.

Definition 1.1.8. A sequence (u,) in X is weakly convergent to x if and only if

T f () = ()
for every f € X', and this is denoted by u,, — u
Remark 1.1.3. (/34])

1. If the weak limit exist, it is unique.

2. If u, — u € X(strongly) then u, — u(weakly).

3. If dimX < 400, then the weak convergent implies the strong convergent.

Proposition 1.1.5. On the compactness in the three topologies in the Banach space X :

1. First, the unit ball
B ={xe X : |zl <1}, (1.1.4)

in X is compact if and only if dim(X) < oco.

2. Second, the unit ball B' in X'( The closed subspace of a product of compact spaces) is
weakly compact in X' if and only if X is reflexive.

3. Third, B’ is always weakly star compact in the weak star topology of X'.
Proposition 1.1.6. (/34]) Let (f,) be a sequence in X'. We have:
L [fo =" fino(X', X)] & [fu(z) = f(z), Vo € X].

2. If f. — f(strongly) then f, — f,in o(X', X"),
If fo = fino(X', X"), then f, —=* f,in o(X', X).

3. If fr, =" fino(X', X) then || f,.|| is bounded and || f|| < liminf || f,||.

4. If fr, =" fin o(X', X) and x, — z(strongly) in X, then f,(x,) — f(z).



Preliminary

1.1.2 Hilbert spaces

Now, we give some important results on these spaces here.

Definition 1.1.9. A Hilbert space H is a vectorial space supplied with inner product (u,v)
such that ||u|| = \/{u,u) is the norm which let H complete.

Theorem 1.1.7. (Riesz). If (H;(.,.)) is a Hilbert space, {.,.) being a scalar product on H,
then H' = H in the following sense: to each f € H' there corresponds a unique x € H such

that f = (z,.) and ||y = l|z[|a-

Remark 1.1.4. From this theorem we deduce that H" = H. This means that a Hilbert space

18 reflexive.

Theorem 1.1.8. ([34]) Let (un)nen is a bounded sequence in the Hilbert space H, it posses

a subsequence which converges in the weak topology of H.

Theorem 1.1.9. (/34]) In the Hilbert space, all sequence which converges in the weak topol-
oqy 18 bounded.

Theorem 1.1.10. ([34]) Let (u)nen be a sequence which converges to u, in the weak topology
and (Vy)nen 1S an other sequence which converge weakly to v, then

lim (v, u,) = (v, u) (1.1.5)
Theorem 1.1.11. ([34]) Let X be a normed space, then the unit ball
B ={rxeX:|z|] <1}, (1.1.6)

of X" is compact in o(X', X).

1.2 Functional Spaces

1.2.1 The L?(Q2) spaces

Definition 1.2.1. Let 1 < p < oo and let  be an open domain in R™, n € N. Define the
standard Lebesque space LP () by

LP(Q2) = {f : Q — R is measurable and / |f(z)Pdx < oo} : (1.2.1)
Q

10



1.2 Functional Spaces

Notation 1.2.1. If p = 0o, we have

L>(Q2) ={f : Q — R is measurable and there exists a constant C such that
|f(z)| < C a.ein Q}.

Also, we denote by
1l = {C, 1) < C ae in 0}, (12.2)

Notation 1.2.2. Forp € R and 1 < p < 0o, we denote by q the conjugate of p i.e. }—17—1—% = 1.
Theorem 1.2.3. (/34]) LP(QY) is a Banach space for all 1 < p < oc.

Remark 1.2.1. In particularly, when p =2, L*(Q)) equipped with the inner product

Fahoiey = [ f@oa)de, (123)
18 a Hilbert space.

Theorem 1.2.4. (/34]) For 1 < p < oo, LP(Q) is a reflexive space.

1.2.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.2.5. (/34] Holder’s inequality). Let 1 < p < oco. Assume that f € LP(Q2) and
g € L), then fg € LP(2) and

/ Faldz < 171l
Q

Lemma 1.2.6. ([34] Young’s inequality). Let f € LP(R) and g € LI(R) with 1 < p < oo
and%:%%—%—lzo. Then f g€ L"(R) and

1f * gllrwy < I flle@)llgll o)
Lemma 1.2.7. (/34]) Let 1 <p <r <gq, % = % + I’Ta, and 1 < o <1. Then

lullzr < Hlullg llul "

Lemma 1.2.8. (/34]) If u(Q) < 00, 1 < p < q < o0, then LY — LP and
Jullr < ()7 4 [|ul| o

11



Preliminary

1.2.3 The W™P(Q2) spaces

Proposition 1.2.9. Let Q be an open domain in RY. Then the distribution T € D'(Q) is
in LP(QY) if there exists a function f € LP(Q2) such that

(T.) = [ 1@)e@yds, for all g € D),
Q
where 1 < p < oo and it’s well-known that f is unique.

Now, we will introduce the Sobolev spaces: The Sobolev space W*?(Q) is defined to be
the subset of LP such that function f and its weak derivatives up to some order k have a

finite L” norm, for given p > 1.
Whe(Q) = {f e LP(Q); D°f € LP(Q). Va; |a| < k}

With this definition, the Sobolev spaces admit a natural norm:

1/p
f — HfHWk’p(Q) = Z HDaf”ip(Q) ) for p < 400
la<m
and
f— Hf”W’“vOO(Q) = Z | D% fllLee () » for p = +o0
laj<m
Space WHP(Q) equipped with the norm || . ||yy»» is a Banach space. Moreover is a reflexive

space for 1 < p < oo and a separable space for 1 < p < oco. Sobolev spaces with p = 2 are
especially important because of their connection with Fourier series and because they form
a Hilbert space. A special notation has arisen to cover this case:

Wh2(Q) = H¥(Q)
the H* inner product is defined in terms of the L? inner product:

(f, 9 k) = Z (D*f, D*g)r2q) -

lal<k

The space H™(2) and W¥P?(Q) contain C®(Q2) and C™(Q2). The closure of D(Q) for the
H™(Q) norm (respectively W™?(Q) norm) is denoted by H'(Q) (respectively WP (Q)).
Now, we introduce a space of functions with values in a space X (a separable Hilbert space).
The space L?(a, b; X) is a Hilbert space for the inner product

() = [ (7090 de

12



1.2 Functional Spaces

We note that L>(a,b; X) = (L'(a,b; X))". Now, we define the Sobolev spaces with values in
a Hilbert space X. For k € N, p € [1, 0], we set:

WHP(a,b; X) = {v € LP(a,b; X); v

€T

€ LP(a,b; X). Vi< k‘} ,

The Sobolev space W¥P(a, b; X) is a Banach space with the norm

1 lvwrtn a,:) (
=

k

83:1

ov
ox;

/p
, for p < 400
LP(a,b;X)

, for p = +o0

[ fllwoo o) =

= L (a,b;X)

The spaces W*?2(a, b; X) form a Hilbert space and it is noted H*(0,T; X). The H*(0,T; X)
inner product is defined by:

k b
ou Ov
(U, V) (a s x) = ;/a (%, %>th :

Theorem 1.2.10. Let 1 < p < n, then

WhP(R™) C LP"(R™)
where p* is given by i* = to1 (where p = n,p* = c0). Moreover there exists a constant
C =C(p,n) such thaf b

|ul| L < C|\Vul[ro@ny, Yu e WhP(R™).
Corollary 1.2.11. Let 1 < p < n, then
WH(R") C LY(R"), Vg € [p,p]
with continuous imbedding.
For the case p = n, we have
Wwhtm(R™) c LYR™), Vq € [n, +oo]

Theorem 1.2.12. Let p > n, then

WHP(R") C L®(R")
with continuous imbedding.

13



Preliminary

Corollary 1.2.13. Let Q a bounded domain in R™ of C* class withT = 9Q and 1 < p < oo.
We have ] 1
if 1<p<oo, then WHP(Q) C L¥" () where — = — — —.
P n
if p=mn, then W'P(Q) C LY(Q),Vq € [p, +o0].
if p>mn, then W'?(Q) C L>(Q)

with continuous imbedding. Moreover, if p > n we have

1
p

Yu € Wl’p(Q), lu(z) —u(y)| < Clo —y|*||ullwir@) a.ez,y €

n
with @« = 1 — — > 0 and C is a constant which depend on p,n and 2. In particular
p

wtr(Q) c C(Q).
Corollary 1.2.14. Let Q a bounded domain in R™ of C! class with T’ = 9Q and 1 < p < oo.

We have

1 1 1
if p<mn, then W' (Q) C LY(Q)Vq € [1,p*[ where E = 23 —

n
if p=mn, then WHP(Q) C LY(Q),Vq € [p, +o0l.
if p>n, then WH(Q) C C(Q

\_/

with compact imbedding.

Remark 1.2.2. We remark in particular that
WhP(Q) C LY(Q)
with compact imbedding for 1 < p < oo and for p < q < p*.

Corollary 1.2.15.

1 1
>0, then W™P(R") C LYR") where — = — — m
g p n

=0, then W™P(R™) c LY(R"),Vq € [p, +o0].

=
|
:IS:IS:IS

~.
s

<0, then W™P(R"™) C L>(R")

~.
\
@IH@IH@I»—‘

with continuous imbedding.

Lemma 1.2.16. (Sobolev-Poincarés inequality)

2
If 2<q<—5n>3 and ¢>=2n=12,
n_

then
ully < Clg, Q)| Vully,  Vu e Hy().

14



1.2 Functional Spaces

Remark 1.2.3. For all p € H*(Q)), Ap € L*(Q) and for T sufficiently smooth, we have

Proposition 1.2.17. ([34] Green’s formula) For all u € H*(Q), v € H'(Q) we have

—/Auvdac:/VuVUd:r— @Uda,
Q Q

0 on

where — is a normal derivation of u at I'.

on

1.2.4 The L?(0,T, X) spaces
Let X be a Banach space, denote by LP(0,T, X) the space of measurable functions

Definition 1.2.2.

f:10,T[— X
o F(b). (1.2.4)
such that

r :

(/ ||f(t)”7)’(dt> = || fllr0,1,x) < 00, for 1 < p < o0, (1.2.5)
0
If p = o0,
[ fllzeorx) = sup ess|| f(t)] x- (1.2.6)
t€]0,T[

Theorem 1.2.18. (/34]) The space L*(0,T, X) is complete.

We denote by D'(0,T, X) the space of distributions in ]0, 7'[ which take its values in X
and let us define
D'(0,T,X) = £(D]0,T[, X),

where £(¢, ) is the space of the linear continuous applications of ¢ to ¢. Since u €
D'(0,T, X), we define the distribution derivation as

8u< ) dy
[ES— P _u [ES—
ot '\’ dt
and since u € LP(0,T, X ), we have

>,Vw€D®J®,

wwzéwmmw Ve € D(0. 7)),

We will introduce some basic results on the LP(0,T, X) space. These results, will be very

useful in the other chapters of this thesis.

15



Preliminary

0
Lemma 1.2.19. (/34]) Let f € LP(0,T,X) and 8_{ € LP(0,T,X), (1 <p < o0), then the
function f is continuous from [0,T] to X. i.e. f € CY(0,T,X).

Lemma 1.2.20. (/34]). Let ¢ =]0,T[xQ an open bounded domain in R x R", and g,,,g are
two functions in L9(]0,T[, L9(2)), 1 < ¢ < oo such that

|\ 9ullLagorpLa)) < C,Vu € N (1.2.7)
and g, =g in ¢, theng, =g in Li(p).

Theorem 1.2.21. ([34]). LP(0,T,X) equipped with the norm ||.||Leqor;x), 1 <p < 00 is a

Banach space.

Proposition 1.2.22. (/34]) Let X be a reflexive Banach space, X' it’s dual, and 1 < p,q <
0, % + % = 1. Then the dual of LP(0,T, X) is identify algebraically and topologically with
L0, T, X").

Proposition 1.2.23. (/34]) Let X,Y be Banach space, X C'Y with continuous embedding,
then we have

LP(0,T,X) C LP(0,T,Y),
with continuous embedding.

The following compactness criterion will be useful for nonlinear evolution problem, espe-

cially in the limit of the nonlinear terms.

Proposition 1.2.24. (/30]) Let By, B, By be Banach spaces with By C B C B;. Assume
that the embedding By — B is compact and B — By are continuous. Let 1 < p,q < 0.
Assume further that By and By are reflexive. Define

W= {u e LP(0,T, By) : u' € LU0, T, Bl)}. (1.2.8)

Then, the embedding W — LP(0,T, B) is compact.

1.2.5 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them
here.

Lemma 1.2.25. (/34] The Cauchy-Schwartz’s inequality) FEvery inner product satisfies the
Cauchy-Schwartz’s inequality
(o1, @2) < llan 2]l (1.2.9)

The equality sign holds if and only if x1 and x1 are dependent.

16



1.3 Integral Inequalities

Lemma 1.2.26. ([34/Young’s inequalities). For all a,b € RY, we have

1
b < aa®+ —b? 1.2.10
ab < aa +4a ( )

where o 1S any positive constant.

Lemma 1.2.27. (/3}]) For a,b > 0, the following inequality holds

P
ab< =+ = (1.2.11)
p q

1,1
where, = + = = 1.
’p+q

1.3 Integral Inequalities

We will recall some fundamental integral inequalities introduced by A. Haraux, V. Komornik

and A.Guesmia to estimate the decay rate of the energy.

1.3.1 A result of exponential decay

The estimation of the energy decay for some dissipative problems is based on the following

lemma:

Lemma 1.3.1. (/35]) Let E : Ry, — Ry be a non-increasing function and assume that
there is a constant A > 0 such that

+oo
— / B(r)dr < %E(t). (1.3.1)
t
Then we have
vt >0, E(t) < E(0) e~ (1.3.2)

Proof of Lemma 1.3.1.
The inequality (1.3.2) is verified for ¢ < &, this follows from the fact that E is a decreasing
function. We prove that (1.3.2) is verified for t > %. Introduce the function

+oo
h:R, — Ry, h(t) = / E(7)dr.
¢

It is non-increasing and locally absolutely continuous. Differentiating and using (1.3.1) we
find that
vt >0, K(t)+ Ah(t) <O0.

17



Integral inequalities

Let
To = sup{t, h(t) >0}, (1.3.3)
For every t < T, we have
h'(t)
< -A
ht) =
thus ]
h(0) < e < ZE(O) e for 0<t<T,. (1.3.4)

Since h(t) = 0 if ¢t > Tp, this inequality holds in fact for every t € R,. Let ¢ > 0. As F is

positive and decreasing, we deduce that

¢
1
Vit>e, E(t)< —/ E(r)dr < gh(t — &)< —E(0) et e,
t—e

: _ 1
Choosing € = 4,

The proof of Lemma 1.3.1 is now completed.

1.3.2 A result of polynomial decay

Lemma 1.3.2. (/20]) Let E : Ry — Ry (Ry = [0,+00)) be a non-increasing function and
assume that there are two constants ¢ > 0 and A > 0 such that

+00 1
vt >0, / Eq“(T)dTgZEq(O)E(t). (1.3.5)
t
Then we have
1+q \"°
Vi>0, E(t)<E0)[|—— 1.3.6
>0 50 < B0 (145) (1.36)

Remark 1.3.1. It is clear that Lemma 1.3.1 is similar to Lemma 1.3.2 in the case of ¢ = 0.

Proof of Lemma 1.3.2.
If £(0) =0, then £ = 0 and there is nothing to prove. Otherwise, replacing the function E

by the function we may assume that F(0) = 1. Introduce the function

E(0)
iR, — R, h(t):/ME(T)dT.

It is non-increasing and locally absolutely continuous. Differentiating and using (1.3.5) we
find that
Vvt >0, —h' > (Ah)
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where
Ty = sup{t, h(t) > 0}.

Integrating in [0, t] we obtain that
V0 <t < Ty, h(t)™ — h(0)™7 > ow' e,
hence
0<t<Ty h(t)< (h9(0)+qA*er) ", (1.3.7)
Since h(t) = 0 if ¢ > Tp, this inequality holds in fact for every t € R, . Since

1 1
< = I4q — —
- AE(()) A’

by (1.3.5), the right-hand side of (1.3.7) is less than or equal to:

h(0)

e 1
(h7(0) + qA™ 1) T < (L4 Agt) e, (1.3.8)

From other hand, E being nonnegative and non-increasing, we deduce from the definition of

h and the above estimate that:

1 g+1 1 %-}-(q—&—l)s
Vs >0, E (= +(qg+1)s <—/ E(r
208 (G+Gens) < (
A A 1
< “ (14 Ags)
o) < s (1 Aus)

a+t gr

LN

<
— 14 Ags

hence
1

1
> — <
VS > 0, E<A+(q+1>5>_(1+Aq8)1/q

1
Choosing t = il (1 + g)s then the inequality (1.3.6) follows. Note that letting ¢ — 0 in
this theorem we obtain (1.3.6).

1.3.3 New integral inequalities of P. Martinez

The above inequalities are verified only if the energy function is integrable. We will try to
resolve this problem by introducing some weighted integral inequalities, so we can estimate

the decay rate of the energy when it is slow.

Lemma 1.3.3. (/35]) Let E : R, — R, be a non-increasing function and ¢ : Ry — R, an
increasing C* function such that

#(0)=0 and ¢(t) = +oo when t— +oo. (1.3.9)
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Integral inequalities

Assume that there exist ¢ > 0 and A > 0 such that

+oo 1
/ E(t)q+l¢'(t) dt < 1 E0)E(S), 0<85< 4. (1.3.10)
s
then we have
_1+q
14+ qAp(t)

if ¢ =0, then E(t) < E(0)e' =490 vt >0,

ifg>0, then E(t) gE(O)( > Vit > 0,

Proof of Lemma 1.3.3.
This Lemma is a generalization of Lemma 1.3.1. Let f : R, — R, be defined by f(x) :=
E(¢~'(z)), (we notice that ¢! has a meaning by the hypotheses assumed on ¢). f is non-
increasing, f(0) = E(0) and if we set x := ¢(t) we obtain f is non-increasing, f(0) = E(0)
and if we set x = ¢(t) we obtain for 0 < S < T < 400

&(T) &(T) T
[t = [ p @) de= [ B0
#(5) #(5) S

1 . 1 ;
< 5 B0)E(S) = 5 B(0)'f(4(S)).

Setting s = ¢(.5) and letting 7' — +o0, we deduce that

vs>0, | fa)ds < % E(0)7f(s).

S

Thanks to Lemma 1.3.1, we deduce the desired results.

1.3.4 Generalized inequalities of A. Guesmia
Lemma 1.3.4. (/20]) Let E : R, — R, differentiable function, X\ € Ry and ¥V : R, — R,

convex and increasing function such that W(0) = 0. Assume that

/ BB dt < B(s), ¥s>0.
E'(t) < \E(t), Vt>0.
Then E satisfies the estimate
E(t) < e Tog-1 <6A(t‘h(t))\11<¢‘1<h(t) + w(E(O))>>>, vt >0,
where

w(t):/tlﬁds, V>0,
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() if A=0,
vt >0,

d(t) - t
/O\I’(S)ds if A>0,

S

K-N(D(t), if t>T,
h(t>:{ 0 if tel0,Ty,
o (t +¢(E(0))) Y
(7Lt +0(E(0)))

K(t) = D(t) + vt >0,

t
D(t) :/ eMds, Yt>0,
0

E(O)) T_{o, if t > T,
0T L, ifte 0, Tyl

Remark 1.3.2. If A = 0 (that is £ is non increasing), then we have

E@t) < w”(h(t) n w(E(O))>, vt >0 (1.3.11)
where (1) :/tlﬁs),ds fort >0, h(t)=0for 0 <t < % and
) v (t+ u(B(0)
R (t) =t + t>0.

w (v (t+0(E0))

This particular result generalizes the one obtained by Martinez ([35]) in the particular case
of W(t) = dtP™ with p > 0, d > 0 and improves the one obtained by Eller, Lagnese and
Nicaise ([36]).

Proof of Lemma 1.3.4.
Because E'(t) < AE(t) imply E(t) < )0 E(ty) for all t > t; > 0, then, if E(ty) = 0 for
some tg > 0, then E(t) = 0 for all t > ¢y, and then there is nothing to prove in this case. So
we assume that E(t) > 0 for all ¢ > 0 without loss of generality. Let:

L(s) = / W@ b Vs> o0

We have, L(s) < E(s), for all s > 0. The function L is positive, decreasing and of class
CY(R,) satisfying
—L'(s) =¥(FE(s)) > V(L(s)), Vs>0.
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Integral inequalities

The function v is decreasing, then

(wL) = g 2 1 ¥ =0
Integration on [0, t], we obtain
Y(L(t)) > t+¢(E0)), Vt>0. (1.3.12)

Since W is convex and W(0) = 0, we have
U(s) < U(1)s, Vs € [0,1] and W(s) > U(1)s, Vs > 1,
then lim; 0 ¥ (t) = 400 and [¢(E(0)), +oo[C Image (v)). Then (1.3.12) imply that
L(t) < ¢! <t + 1/1(E(0))>, vt > 0. (1.3.13)

Now, for s > 0, let
t
fy=e [nan vz

The function f; is increasing on [s, +oo[ and strictly positive on |s, +o00[ such that
fs(s)=0 and fl(t)+Nfs(t)=1, Vt>s2>0,
and the function d is well defined, positive and increasing such that:
d(t) < W(t) and Md(t)=AU(t), Vt>0,

then
- (fs(T)d(E(T))) = fU(r)d(E(T)) + fo(1)E' (1)d' (E(T))
< (1 - )\fs(T))\I/(E(T)) FL()U(E(T))
=U(E(r)), VYr>s2>0.

Integrating on [s, t], we obtain
L(s) > /t\IJ(E(T)) dr > fs(t)d(E(t)), Vt>s>0. (1.3.14)

Since lim;_, 1o d(s) = +00, d(0) = 0 and d is increasing, then (1.3.13) and (1.3.14) imply

y ( (s wwm»))
E(t)<d inf , Vt>0. (1.3.15)

s€[0,¢] fs(t)
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Now, let t > T and
v (s + w(B()))
fs(t) ’

The function J is differentiable and we have

T(s) = £ [ (s + w(B(0)) = L0 (7 (s + v (EW0)) .

J(s) = Vs € [0,t].

Then
J(s)=0 & K(s)=D(t) and J'(s)<0 & K(s) < D(T).
E
Since K(0) = %, D(0) = 0 and K and D are increasing (because 1! is decreasing

and s ﬁ), s > 0, is non increasing thanks to the fact that ¥ is convex). Then, for
s

t> To,

inf J(s) = J(K—l(D<t))) = J(h(t)).

s€[0,t]
Since h satisfies J'(h(t)) = 0, we conclude from (1.3.15) our desired estimate for t > Tj.
For t € [0, Ty, we have just to note that E'(t) < AE(t) and the fact that d < ¥ implies

E(t) < ME(0) < ST E(0) < Tyt (e”\l’(E(O))) < e*TOd—l(eW(E(O))).

Remark 1.3.3. Under the hypotheses of Lemma 1.3.4, we have lim; , ., F(t) = 0. In-
deed, we have just to choose s = it in (1.3.15) instead of h(¢) and note that d~*(0) = 0,

limt_,_;'_oo @Dil(t) =0 and hmt_>+oo f%t(t) > 0.

Lemma 1.3.5. (/Guesmia 20]) Let E : Rt — R" be a differentiable function, a : Rt —
R*™ and A : Rt — R two continuous functions. Assume that there exist r > 0 such that

/+OO E™ 1 (t)dt < a(s)E(s),Vs >0 (1.3.16)
B < \OE({), V>0 (1.3.17)
Then E satisfies for allt > 0,
- - h(t)
Bt) < %w(h(t)expwt) ~ R (h(®))exp(— /0 w(r)dr), if r =0

and
—1/r

(20 /O“”WW] >0

where  A(t) = /t A(T)dT.
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Proof of Lemma 1.3.5.
If E(s) =0 or a(s) = 0 for one s > 0, the first inequality implies E(t) = 0 for ¢ > s,then we
can suppose that E(t) > 0 and a(t) > 0 for ¢t > 0.

1 oo
By putting w = — and ¥(s) = / E"(t)dt, we have
a S

U(s) < E(s), Vs>0. (1.3.18)

The function ¥ is decreasing, positive and of class C' on R* and verifies:

U (s) = —E"(s) < —(w(s)¥(s)) ", V¥s>0

then
U(s) < W(0)exp (/OSW(T)CZT) < f(((()))) exp (/OSW(T)dT) ifr=20 (1.3.19)
w s -1/r
U(s) < ((%)r +/0 (w(T))H_ldT) if r>0 (1.3.20)
Now we put for all s > 0,
£5(t) = exp(—(r + DA®)) / t exp((r+ DX(7))dr, Vt>s (1.3.21)

where fi(s) =0 and fi(t) + (r + 1)A(t)fs(t) =1, Vt > s > 0. Under the second hypothesis
in the lemma, we deduce

E™ ) > 0,(fs()E™(t); Vt>, s>0 (1.3.22)
hence o0
v > [ B0 2 L) E ) vs>0 (1.3.23)

where g : RT — R™ with I,(g(s)) = 0 and I, is defined by

1.(t) = (w(s)™! / exp((r + )X(r))dr

Let t > ¢(0) and s = h(t) where

w = [0 i 1e0g00)
| maxg~'(t) if ¢ €]g(0),+oof
Hence we have g(s) =t and we deduce from (1.3.23) that for all £ > ¢(0), we have

t ~

P(h(B) = Sun (E™ () = (ew(—(r + DA®)) / el mmm) B (1)
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We conclude from (1.3.19) and (1.3.20) that for all ¢ > g(0), we obtain

Bt) < E((g)) exp(A(E) ( /h t exp(X<T))dT) . (— /0 h(t)w(T)dT) =0

w (t)

and
—1

B(0) < eapl30) | ;) capl(r+ DM r)

h(t) T
(L9 + r/ W) dr | ifr>0
0

The fact that I}, = I(g(s)) = 0, we get the result of the lemma for ¢t > g(0). If
t € [0, g(0)] the second inequality of the lemma implies that

E(t) < E(0)exp(A(t))

Since h(t) = 0 on [0, g(0)] then E(0)exp(A(t)) is identically equal to the left hand side of the
results of the lemma.That conclude the proof.

Lemma 1.3.6. ([Guesmia 35]) Let E : RT — R* be a differentiable function, ai,as € R™
and az, \,7,p € RT such that

asA\(r+1) <1 andforall 0<s<T < +o0,

/ : E"THt)dt < ai(s)E(s) + aaEPT(s) + as E"TH(T),
E'(t) < XE(t), Vt>0
Then there exist two positive constants w and ¢ such that for all t > 0,
E(t) <ce ™™, ifr=0
Et)<c(1+t)7Y" ifr>0 and \=0

—1

Et)<c(l+t)@D, ifr>0 and A >0
Proof of Lemma 1.3.6
We show that E verifies the inequality (1.3.16). Applying the lemma (1.3.5), we have
T
a5 (T = a / E™ (0)dt + as B (s)

T
< as(r+1) / NE™ L (0)dt + as B (s)
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Integral inequalities

Under (1.3.16), we obtain:
+o0
/ E™ 1 (t)dt < b(s)E(s), Vs>0 (1.3.24)

where
a1+ aaEP(s) +azE"(s)

>
1 —azA(r+1) AL

b(s)

We consider the function fy defined in (1.3.21)and integrating on [0, s] the inequality
E™H(t) 2 a(fo(E™(E), VE=0

we obtain under (1.3.24)
b(0)E(0) > / E (t)dt > fo(s)E™(s), Vs >0
0

then

on the other hand, the conditions of the lemma implies that

E(s) < E(0)exp(A(s), Vs>0

Hence
E(s) < min {E(O)exp(X(s), <M> m} =d(s), Vs>0

d is continuous and positive and

aj + as(d(s))P + az(d(s))"
1—azA(r+1) ’

b(s) < Vs >0

Hence we can conclude from (1.3.24) the first inequality (1.3.16) of the lemma (1.3.5) with

a1 + a(d(s))? + as(d(s))"
1 —asA(r+1) ’

a(s) = Vs > 0.

This completes the proof.
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1.4 Existence Methods

1.4 Existence Methods

1.4.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product (.,.) and the associated norm ||.| .

u'(t) + A(tyu(t) = f(t), t€[0,T]
(P) { (z,0) = up(x), u'(z,0) = uy(x);

where v and f are unknown and given function, respectively, mapping the closed interval
[0,7] C R into a real separable Hilbert space H. A(t) (0 < t < T ) are linear bounded
operators in A acting in the energy space V C H.
Assume that (A(t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t;.,.) is a bilinear
continuous in V. The problem (P) can be formulated as: Found the solution wu(t) such that

B uwe C(0,T);V),u € C([0,T]; H)
(P) (u"(t),v) + alt; u(t), v) = (f,v) in D'(]0,T])
ug €V, uy € H;

This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let V,, a sub-space of V' with the finite dimension d,,, and let {w,,, } one basis of V;,, such that

1. V,, cV(dimV,, < x),¥m e N

2. V,, = V such that, there exist a dense subspace ¥ in V' and for all v € 1 we can get

sequence {Um }men € Vi and u,, — u in V.
3. Vi C Vi1 and UpenVy, = V.

we define the solution w,, of the approximate problem

/ dm

U (t) = Z 9; () wjm
j=1

twm € C([0,T]; Vi)l € C0,T); Vi) s um € L0, T V)

(Fr) (U (1), W)+ (85 (1), i) = (o0}, 1< j <
dm dm
Um(0) = ) &) wjm , up,(0) = 1j(t)wjm,
0 j=1 =1
where
dm
Zﬁj(t)wjm — up in Vas m — o0
=1
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Integral inequalities

dm
an(t)wjm — uy in Vas m — o0
i=1

By virtue of the theory of ordinary differential equations, the system (P,,) has unique local
solution which is extend to a maximal interval [0,¢,,[ by Zorn lemma since the non-linear
terms have the suitable regularity. In the next step, we obtain a priori estimates for the
solution, so that can be extended outside [0, t,,] to obtain one solution defined for all ¢ > 0.

1.4.2 A priori estimation and convergence

Using the following estimation

T
||um|12+||u:nr|2sc{||um<o>||2+||u;n<o>||2+ / Hf(s)||2ds}; 0<t<T

and the Gronwall lemma we deduce that the solution w,, of the approximate problem (P,,)
converges to the solution u of the initial problem (P). The uniqueness proves that u is the

solution.

1.4.3 Gronwall’s lemma

Lemma 1.4.1. Let T > 0, g € L'(0,T), g > 0 a.e and ¢, co are positives constants. Let
0 € LY0,T) ¢ >0 a.e such that gp € L*(0,T) and

o(t) <c + 02/0 g(s)p(s)ds a.e in (0,T).

then, we have

(1) < creap <02 /0 t g(s)ds) a.c in (0,T).

1.4.4 Semigroups approach

Definition 1.4.1. (/37]). Let X be a Banach space. A one parameter family T(t) for
0 <t < oo of bounded linear operators from X into X is a semigroup bounded linear
operator on X if

o T(0) =1, (I is the identity operator on X ).
o T(t+s)=T(t).T(s) for every t,s > 0 (the semigroup property).
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A semigroup of bounded linear operators, T(t), is uniformly continuous if
lim | 7(1) — 1]| = 0.
The linear operator A defined by
T(t)x —
D(A) = {SB € X;limM em’sts}
t—0 t

and - T
Az = lim Wz —a = (t)x| s
t—0 t dt t=0

is the infinitesimal generator of the semigroup T(t) and D(A) is the domain of A.

Vx € D(A)

Theorem 1.4.2. ([37])(Lumer-Phillips) Let A be a linear operator with dense domain D(A)
in X

o If A is dissipative and there is a N\g > 0 such that the range , R(A\gI — A) = X, then A

1s the infinitesimal generator of a Cy semigroup of contraction on X.

o [f A is the infinitesimal generator of a Cy semigroup of contractions on X then
RNl —A) =X, VYA>0 and A is dissipative.
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Chapter 2

Global existence and Asymptotic
stability for a coupled viscoelastic
wave equation with a time-varying
delay term

2.1 Introduction

Our main interest lies in the following system of viscoelastic equations :

wi = L= [ gt = )Laus)ds + e, 1)
+pou(z, t — Tol(t)) + fi(u,v) =0, in Q x (0,00),
vy — Lov — / go(t — s)Lav(s)ds + ayvy(z, t)
Fanvy(a, t = (1)) + folu,0) =0, in Q x (0, 00), (2.1.1)
(x,t) =0, v(z,t) =0, on 0 x (0,+00),
u(z,0) = up(x), v(z,0) = vo(z), x € (),
u(x,0) = ui(x), v(z,0) = vy(z), x €,
u(x,t —7(t)) = po(x,t — 11(t)), reQ, t>0,
\ Ut(x7t_7-2(t>> :¢1<x7t_72(t))7 TQ(t) 7é07 T C QJ tzo

Where
N ou ou ou
Liu = —div(A;Vu) = — Z (Gu,j(@")%) ) o Z (a”’j(@%w’

and

N
. _a a a
LQU — —dw(AQVU) = — Z (CLQ@j(.T) a;) 3 a—:j = Z(GQi,j(m) a;) V;.



2.1 Introduction

Here Q is a bounded domain in R™, n € N*, with a smooth boundary 92 and g1, g : R™ —
RT, ¢i(.,.) : R2 = R i = 1,2, are given functions which will be specified later. Moreover
To(t) > 0 is a time delay, where p1, aq, s, o are positive real numbers and the initial data
(wo, u1, ¢o), (v, U1, ¢1) belonging to a suitable space. Here u and v denote the transverse
displacements of waves. This problem arises in the theory of viscoelasticity and describes
the interaction of two scalar fields (see [15]).

To motivate our work, let us start with the wave equation proposed by the Authors of
[3]. They considered the following coupled system of quasilinear viscoelastic equation in

canonical form without delay terms in 2 x (0, +00)

t
e Pu — Au — y1Auy + / 91t — s)Au(s)ds + fi(z,u) =0,
0, (2.1.2)
|ug|Pog — Av — Y Avy + / g2(t — s)Av(s)ds + fo(x,u) =0,
0

where  is a bounded domain in R" (n > 1)with a smooth boundary 0€2,7;,v2 > 0 are

constants and p is a real number such that 0 < p < (n2f2) ifn>3o0rp>0ifn=12 The
functions wug, u1, vy and vy are given initial data. The relaxations functions ¢g; and g, are
continuous functions and fi(u,v), fo(u, v) represent the nonlinear terms. The authors proved
the energy decay result using the perturbed energy method. Many authors considered the

initial boundary value problem in 2 x (0, +00) as follows

uy — Au + / g1(t — s)Au(s)ds + hi(u) = fi(z, u),
0 (2.1.3)

vy — Av + /t G2(t — s)Av(s)ds + ho(vy) = fo(x, u),
0

when the viscoelastic terms g; (i = 1, 2.) are not taken into account in (2.1.3). Rammaha
and Sakatusathian [4] obtained several results related to local and global existence of a
weak solution. By using the same technique as in [5], they showed that any weak solution
blow-up in finite time with negative initial energy. Later Said-Houari [6] extended this
blow up result to positive initial energy. Conversely, in the presence of the memory term
(g: # 0,7 =1,2.), there are numerous results related to the asymptotic behavior and blow up
of solutions of viscoelastic systems. For example, Liang and Gao [7] studied problem (2.1.3)
with hy(u;) = —Auy, he(vy) = —Auy. They obtained that, under suitable conditions on the
functions g;, f;,2 = 1, 2, and certain initial data in the stable set, the decay rate of the energy
functions is exponential. On the contrary, for certain initial data in the unstable set, there are
solutions with positive initial energy that blow-up in finite time. For hy(u;) = |us|™ tu; and
ha(vy) = |vg|" 'vy, Hun and Wang [8] established several results related to local existence,
global existence and finite time blow-up ( the initial energy E(0) < 0).
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Global existence and Asymptotic stability for a coupled
viscoelastic wave equation with a time-varying delay term

This latter has been improved by Messaoudi and Said-Houari [14] by considering a larger
class of initial data for which the initial energy can take positive values. On the other hand,
Muhammad I. Mustafa [26] considered the following problem in §2 x (0, +00)

w = dut [t = 9 dul)ds + fio.0) =0 o

t
vy — Av + / go(t — s)Auv(s)ds + fa(v,u) =0,
0

and proved the well-posedness and energy decay result for wider class of relaxation functions.
The author in [24] have studied the following problem in € x (0, 4+00)

t
uy — Au + / g(t = s)Au(s)ds + (Jul® + [v]7) Jue| ™ u = fi(v,u),
9, (2.1.5)
vy — Av + / h(t — s)Av(s)ds + (Jul’ + v]°) Jve]" " o = falv, ),
0

with degenerate damping and source terms in a bounded domain. Under some assumptions
on the relaxation functions, degenerate damping and source terms, he obtained the decay
rate of the energy function for certain initial data.

It is widely known that delay effects, which arise in many practical problems, source of
some instabilities, in this way Datko and Nicaise ( [11, 20, 21]) showed that a small delay
in a boundary control turns a well-behave hyperbolic system into a wild one which in turn,
becomes a source of instability, where they proved that the energy is exponentially stable
under the condition

o < 1.

Motivated by the previous works, in the present paper, we analyze the influence of the
viscoelastic, damping and delay terms on the solutions to (2.1.1). Under suitable assumptions
on the functions g;(.), fi(.,.) (¢ = 1.2), the initial data and the parameters in the equations,
to the best of our knowledge, there is no result concerning coupled system with the presence
of delay term and elliptic operator. We establish several results concerning local and global
existence, asymptotic stability and the boundedness of the solutions to (2.1.1).

Our work is organized as follows. In section 2, we present the preliminaries and some lemmas.

In section 3, the existence result is obtained. Finally in section 4, decay property is derived.

2.2 Preliminary Results

In this section, we present some material and asumptions for the proof of our results. We
will use embedding Hi(Q) < L4(Q) for 2 < ¢ < 2 if n > 3 and ¢ > 2, if n = 1,2; and

n—2"
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2.2 Preliminary Results

L™(Q) — L), for ¢ < r. We will use, in this case, the same embedding constant denoted
by ¢, such that
Wllg < cllVulla, Ivlly < clvlle for v e Hy().

For studying the problem (2.1.1) we will need the following assumptions. For the relaxation
function g; for i« = 1,2. We assume
(Ag) : g1(t), g2(t): [0,00) — [0, 00) are of class C* and satisfying, for s > 0

91(0) = g10 >0, 1 - / gi(s)ds =11 >0, g2(0) =go >0, 1 — / ga(s)ds =l > 0,
0 0
and there exist a nonincreasing functions (;(¢) and (3(t) such that

91(t) £ =Gt)a(t), g:(t) < —G(t)ga(t), Yt = 0. (2.21)

(Ay) : The matrix A; = (ay;;(2)), A2 = (ag;(x)), where ay; ;, az; € C*(Q2), are symmetric
and there exists a constants ag, age > 0 such that for all z € Q and n=n,..nN) € RYN we

have
N N
Z ayi () > ao|n)?, Z agi ()11 > aga|n)*. (2.2.2)
J=1 ig=1

(Az) - We take fi1(u,v), fo(u,v) as in [23]

Filu,v) = alu+ v~ (u+v) + blul"T |v]"T u, (2.2.3)
Folu,v) = alu + v|P~ (w+v) + bo|"T [u] " v. (2.2.4)
With a, b > 0. Further, one can easily verify that
whi(,0) + vfa(u, v) = (p+ VF(u,0), ¥, v) € R,
Where
1 » OF oF
F(u,v) = TR <a|u + Pt + 2b|uv|%1> . filu,v) = rm fo(u,v) = 5
And there exists C', such that
’gﬁ (u,v)‘ + 'gfz (w,0)| < C (Juf~"+[v[™), i=1,2 where 1<p<6.
u v
(As) :
ifn=12, p>3 ifn=3 p=3. (2.2.5)
(Ay) : 7 is a function such that
7 € W*([0,T)), VT >0, i=1,2, (2.2.6)
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0<m STZ(t) <m, Vt>0,
() <d<1, nn(t) <d <1,

where 79 and 7, are two positive constants.
(A5) .
M2 <V 1- d,ula

ay < V1—do.

As in [28] we choose & and & such that

2 2

<& <2 — ———,
-4 & Hi T—d
B2 <2y - 22

Vi—d

i—d

(2.2.7)
(2.2.8)

(2.2.9)
(2.2.10)

(2.2.11)

(2.2.12)

Lemma 2.2.1. ([23]) Suppose that (2.2.5) holds. Then there exists p > 0 such that for any

(u,v) € (H}(Q))?, we have

p+1 B 2 2\ TE
[+ vlpin + 2luell 2 < p (Wl Vull; + B Vollz) =
Lemma 2.2.2. (/23]) There exist two positive constants ¢y and ¢y such that
co[ul ™ + ol ™) < Fu,v) e (Jul ™+ ol*), V(uw) € R2

Remark 2.2.1. for seeking of simplicity, we take a =b =1 in (2.2.3) — (2.2.4).

2.3 Global existence

In order to prove the existence of solutions of problem (2.1.1), we introduce the new variables

21, 22 as in [28]

Zl<$,l€1,t) = Ut<l’,t - Tl(t)kl), T e Q, ]{71 S (O, 1),

2o(x, ko, t) = vy(x, t — To(t)ks), z € k€ (0,1),

which implies that

71 ()21 (2, by, t) + (1 — 74 (8)) 2k, (2, k1, 8) =0, in Q2 x (0,1) x (0,00),

To(t) 200 (, ko, t) + (1 — 79(t)) 2k, (, ko, t) =0, in Q x (0,1) x (0, 00),

therefore, problem (2.1.1) is equivalent to

34



2.3 Global existence

e t
uy — Lyu + / g1(t — s)Lyu(s)ds
0
+ugug(z,t) + pozi(x, 1,t) + fi(u,v) =0, in 0 x (0,00),
t
vy — Lov + / go(t — 8)Lov(s)ds
0
+ajv(x,t) + agza(z, 1,t) + fo(u,v) =0, in Q x (0,00),
T1(t)z1e(x, by, t) + (1 —71(t)) 2k, (2, k1, 8) = 0, in Q2 x (0,1) x (0, 00), (2.3.1)
To(t)zo(x, ko, t) + (1 — 75(t)) 2k, (2, ko, t) = 0, in Q2 x (0,1) x (0, 00), -
21(2,0,t) = uy(x,t), z € Q, t >0,
29(2,0,t) = v(x,t),x € Q, t>0,
Zl(x7 kho) = qu(xa _7_2( ) ) T € Q,
ZQ(QZ', k’g,O) = ¢1(I’, —7'2( ) ) x € Q,
u(z,0) = up(x), ur(z,0) = uy (), x €,
v(z,0) = vo(x), v (z,0) = vy (), x € €,
L u(z,t) =0,v(z,t) =0, z € 09, t>0.

In the following, we will give sufficient conditions for the well-posedness of problem (2.3.1)
by using the Fadeo-Galerkin’s method.

Theorem 2.3.1. Let (ug,vo) € (HL(Q)NH2Q)), (ur,v1) € (HLQ)? and (¢, d1) €
(L2(£2 x (0, 1))2 satisfying the compatibility conditions

¢0('70):u1a ¢1('7O):Ul-

Assume that the hypotheses (Ag) — (As) hold. Then there exists a unique weak solution
((u, 21), (v, 29)) of (2.3.1) such that for T > 0 we have

uw,v € C ([=1(0), T); H(Q) N HL(Q)) N C* ([=m(0), T); LX),

ug, vy € L? ([—72(0), T); Hy(2)) N L? ([—72(0), T] x Q).
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Proof. We use Faedo-Galerkin’s method to construct approximate solution. Let T > 0 be
fixed and denote by V,, the space generated by the set {w,,n € N} is a basis of H*(Q2) N
Hi (). We define also for 1 < j < n, the sequence p;(z,n) as follows ¢;(z,0) = w;(x). Then
we may extend p;(z,0) by ¢;(z,n) over L*(2x 0, 1]) and denote Z,, to be the space generated
by {1, @nt, (n=1,2,3...). We construct approximate solutions (u"(t), z}(t), v™(t), 25 (t))
(n=1,2,3...) in the form

w0 = Y ung(ui(e), () =D s Op (k)

V(1) =Y vngOue), B0 =Y s (O ka),

where ((u"(t), 27(t)), (v™(t), 25(t))) are the solutions of the following approximate problem
corresponding to (2.3.1) then ((u™(t), 27(t)), (v"™(t), 25(t))) verify the following system of
ODEs:

()15 + (" (0) ;) + < [ o= 9avw s WJ’>Q 2.3.2)

+ <M1u?(xvt)’ wj)Q + <M2Z{L(l‘> 1vt)7wj>ﬂ + <f1(un(t)’ Un(t))’ wj)Q = Oa

and

(U (t), wj) o + as(V™(t), w;) + </0 g2(t — ) A VU™ (s)ds, ij>g (2.3.3)

v (@, ), wi)q + (o2 (2, 1, 1), wy)g + (fo(u (1), v" (1)), ws)g = 0,

for j = 1.....n. More specifically

Zun] Jwj, v ZUHJ Jwy, ui(0)
= Zu;,j(o)wﬁvf(o) = Zvé,j(o)wj,
j=1 Jj=1

(2.3.4)

where
w™(0) = (u°, wy),v™(0) = (0°,wy), v (0) = (V' w;), v (0) = (V' wy),

j=1,....,n. Obviously, u™(0) — u° v™(0) — 0" strongly in H}(2), u?(0) — u', v*(0) — v*

strongly in L?(Q2) as n — oo.

<7_2 th Z, kl? ) + (1 - Té(t)>z711k1 (ZIZ’, k17t)7 90]>Q =0, (235)
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2.3 Global existence

<7'2(t>23t(13, k27 t) + (1 o Té(t))ng(.%, k?v t)v ¢]>Q =0, (236>
21(0) = 2 — ¢o, 25(0) = 25 — ¢y in L* (2 x (0,1)). (2.3.7)
For j =1.....n. Where

e Z oo %0 = [ 4vutocas
as (1 ; / (i j(z ax] aggy /Q Ay V() p(t)d.

By using hypothesis (A;), we verify that the bilinear forms a; (., .), as(.,.) : H}(Q)x H} () —
R are symmetric and continuous. On the other hand, from (2.2.2) for { = V4, we get

o lr

(.00 2 an | Z ool do = an VU] (239
a 2

as( (1), >a02/”21 a;i dz = aga|[ V(@)% (2.3.9)

Which implies that aq(.,.), as(.,.) are coercive. We will utilize a standard compactness
argument for the limiting procedure and it suffices to derive some a priori estimates for
(u™(t), 27 (t), v"™(t), z5(t)) such that n € N.

Estimate 1. Multiplying equation (2.3.2) by wu;, ;(t) and the equation (2.3.3) by vy, ;(t) then

summing with respect to j, we obtain

ld nea 2 npy |12 n n n n
2 dt [Hut Oz + [[vf @ONl5 + a1 (u™(t), ui' (t)) + azx(v" (1), v (t))}

1d H1p n Yy, n
i o Il @113 + o @)1l

+ o / 21 (e, 1, Oyl () da + / 2o, 1,000 (2, £)da (2.3.10)
Q Q

F(u™(t),v"(t))dx +

- /0 "t — ) /Q ALV (5) V(£ deds
— /Ot g2(t —s) /Q Ao (s)Vuy(t)dxds = 0.

Note that 1 d
(0" (1), 07 (1) = & s (w0, 1), (23.11)
as(V(t), v} (t)) = %%ag(vn(t),vn(t)). (2.3.12)
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Following the same technique as in [31], we can obtain

/tgl(t—S)/thu (s)Vul(t)dxds
= Z/ /91 $)a1;, m)ag;is) agi(f)dxds

5 om0

_Z;/O le(t—S)au,j(x) (81(;’;?) — 6?;(;)) ag;;(it)dxds

i E //O:glas) (é%al(t"(t),u“it»dsz N -
3 [t (Gt — w00 - wr(onas)

:%% /Otgl(t—s)al(u”(t),u"(t) ds

50000 0) + 5 [ = D) =060 (0) = o (5)ds
:;C%%(glou")(m§<gt;ou"><t> 1
Fyap |00 @:00) [ (6)ds| = GOt 0.0,
where
(grou™)(t) = /0 g1(t — s)ay (u"(t) — u™(s),u"(t) — u"(s))ds. (2.3.14)

In the same way

/ggt—s /szv (s)Vvt()dxds—%%( ov”)(t)+%(g§ov”)(t)
o (2.3.15)
by a0 0.0 [ n(6)ts] - Lan(taater .o,
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2.3 Global existence

Inserting (2.3.11)- (2.3.15) in (2.3.10) and integrating over (0,t), we get

@I + 31t @1 + | Pl o)

+; (1 — /ot (s)ds) ap(u”(t),u"(t))

= (1t— / g2<s>ds) an("(0), 0" (1)) + 5 (rou")(0) + §<gzov"><t>
+1 /

[Jug (s ||2ds+a1/||v ||2ds+u2// (2,1, s)u”(s)dxds

// (2.1, 5)v )dxds+2/t0 u(8)ar (w2 (1), ul())ds

s / n(s)an(vf (1), 07 O)ds = 5 [ (o) s)as =5 [ ghoum)(s)ds =0,

(2.3.16)

Now, we multiply (2.3.5) by & (t)e ¥172(®) 2, (), summing with respect to j and integrating
over €2 x (0,1) to obtain

ekt // 2027 (w, ky, t)dkdx ( |
2.3.17
M// (1 — 75(t)ky) a(zl (27(x, k1, 1))? dkyda.

Consequently,

(et b, 1)) dkrd
dt 21 r,kq,t 14T

- #/ /ak 7—2(t>k1) _klm(t)( (ZL‘ k?l, )) dkldl’
0 JQ 1

1
+M/ /(Z?(I7 kht))Qdkldl’ (2318)
0 Q
- élQ(t) /{; [(Z?(.f, 07 t))2 - (Z?(I‘, 1,t))2} eiTQ(t)dw

ry()e-2 ((t)e i@
RGOl /(z’f(x,l,t))zdx—l— %/ /(2?(% ki,t)) dkyda.
Q 0 Q

In the same way for (2.3.6), we obtain

—szz
- ('52 / / 22 (x, kg, t) dkgdx)

= /Q[(Zz(x 0,1))* = (25 (2, 1,0))*] e >Vdx (2.3.19)

7 (t)eT2(t /t —hk2m2(t) !
=100 10l /(z;‘(x,l,t))de+ %/ /(23(96, k2, 1)) dkyde.
Q 0 Q
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Due to Young’s inequality, we have

V1= d 2
1.t t ONE 4+ 2 (e, 1t 2.3.20
MA%@aJ%@) r—JtUM+ 5l (@, Ll ( )
n n Q2 2 Qo 1—d n 2
1, tdr < —— t _ 1,t)]5. 2.3.21
o [ 100 e < Pl + 2 g L0l 321

Under the fact that

t t
[rowis<o. [ o <o
0 0

we conclude that

(o)) = [ (Ghouis +

t

g1(s)ay(uy(t),uy(t))ds > 0, (2.3.22)

t

g2(s)az(vy(t), vy (t))ds > 0. (2.3.23)

Nc\

t
(g20u)0) = [ (gh0e)(s)ds +
0
Summing (2.3.16), (2.3.18), (2.3.19), (2.3.20), (2.3.21), (2.3.22) and (2.3.23),we get

t)—i-m/ || (s \|2d5+a2/ v (s)||5ds

I, 1, 8)|3ds + o4 / |5, 1, 5)|2ds

(giou)(s)ds—k%/o g1(s)ar(u(s),u(s))ds (2.3.24)
[ Go@as+ 5 [ aaatols), vis)as

Wﬁm+ﬂmh+/F(®) @MﬂZEWD

o= (=L 1 (a0 -n®)  pVT-d
1= | M 5 ) 3 = 5 5 ’

_ (Oq _ & L) b (52(1 ) %m).

\_/

Such that

2 2
Where E(t) is the energy of the solution defined by the following formula

B0 = Sl @l + 1ot 01 + 5 (1= [ (o)ds) anter 0,070
% (1 - [ <s>ds) 07 (1), 0" (1)) + §<glou”><t>

—kq7o(t 1

2
,kzm(t){z(t) 22 z, kg, t) dedx+/ (t))d.

(2.3.25)



2.3 Global existence

We shall prove that the problem (2.3.2)—(2.3.6) admits a local solution in [0, t,,), 0 < ,,, < T,
for an arbitrary 7" > 0. The extension of the solution to the whole interval [0,7] is a
consequence of the estimates below.

Estimate 2. As in [26] replacing w; by —Aw; in (2.3.2)-(2.3.6), multiplying the equation
(2.3.2) by uy, ;(t) and equation (2.3.3) by v, ;(t), summing over j from 1 to n then using
(2.3.13)and (2.3.15), we get

o 1701+ an (1= [ o)) 1800+ (o))
F5aOIaw O — 5 (giodu)(6) + LT ()3 (23.26)
+M2/z?(x,1,t)Au?(t)dx+/fl(u”(t),vn(t))Au”(t)dx:O,

Q Q

N | >—‘&| QL

and
- [wauz . (1 - gz(S)dS) 1AV O]+ (g20A07)()
)80 (1) — 3 (ghode) (1) + T[Ty (1)]3 (2.3.27)

+a2/ﬂz§(x,1,t)Avf(t)da:+/Qfg(u”(t),vn(t))Av”(t)dx:O.

Replacing ¢; by —Ag; in (2.3.5)-(2.3.6), multiplying (2.3.5) by 21, ;(t), summing over j, it
follows that

<2(1+(§2t)k1)) %HW?@)H% ;dk IV=p ()5 = 0. (2.3.28)

Then

35 (T2 1901 - 5 (T ) IV OB+ 7 V=01 = 0. (2329

In the same way for (2.3.6)
1d TQ(t) 1 Tz(t) ! 2 1 2

—= | o =0. (2.3.
33 (e Iv0I) -5 (=20 ) 1901+ IV30I8 0. (2330

Using Young’s inequality, summing (2.3.26), (2.3.29) and (2.3.30) then integrating over (0, t),
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we get
1 ) t -
2 [V (t )3+ Vo )]ls +ao (1 — ; gi1(s)ds | ||Au"(t)]]5
To(t " 1 [t ) .
+/0 T 0% _ii(i)klHVzlt(a:,kht)HQLz(Q)dkl - 5/0 (gh0Av™)(s)ds

%me b Dl L (gaodom) (1)

1= [ s ) 1A OIf + S(arodu")(0

()| A (s >szs+1/t o (8) 180 ()]s

(ghoAv™)( ds—l——/ |IVul(s Hst—i——/ Vor(s)||5ds
+M2/ /|Vz1 (x,1,5)] dsdx+u2/ |Vu(s)|5ds

+a2/ /yvz2 (2.1,5)] dsd:c+a2/ IVor(s)|2ds
fiu™, o) Au™ — fi(u®,v°) Au®
")

+
o\;
—_

-
S
o
no

\O\Q

+

(2.3.31)

< dx

O\ fo(u™, v")Av™ — fo(u®, v°)Av°
2 fi(u, oM ut Aut 4 2 fr(un, o)l Au®

/ / dxds
—l—avfg(u” vl A" + 2 o (um, v o Au”
T n n
[ / (12 ) 193t )t + B
) (

Ll (=i

+ [ 1wl + / Vo ()lds + 51 Tu 3+ 5I7u

IV 23, (2, o, ) 1720y dR2 + | A0™ 13

Where ¢ = 3||Vu'™(|34 5| Vo™||3 + || Au!|]3 + || Av'™||3 is a positive constant. We just need
to estimate the right hand terms of (2.3.31). Applying Holder’s inequality and Sobolev’s

embedding theorem inequality, we infer

< [ (s e o ) s
Q

/fl(un LU (6)Au” (t)dx
3(p+
(HUNH —+ anH + HunHE‘(p 1) “ anH ) HAunH2
(2.3.32)
< O (Va5 + 1Vl + [ Va3 [Vorfls? )HAu”Hz
< C ([Aau™3 + [IVum5? + [Vor 57 + IV 5 Vur |57
< O||Au"|2 + .

YRS
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2.3 Global existence

Likewise, we obtain

/Q o (), 0" (1)) Av™ (1) dz| < ClAVY2 + c. (2.3.33)

0
Now we estimate [ = / a—fl(u”(t),U”(t))uf(t)Au”(t)dx, then, by (As) and Young’s in-
o Jdu
equality, we get

n|p—1 n|p—1 n n
1| gc/Q(\u P o) Jug || Au” | da (2.3.34)

< cllupllafluml5, I Au™ 12 + 1”15, e |2l Au” |2

Then ) )
11| < c(IVurlls™ + [Vorlls) IVupllal| Au™|
< || Vupl2||Au”||y < ef|Au||3 + el Vu |3

Then, we infer from (2.3.32) — (2.3.35) and using Gronwall’s lemma, we deduce that

IV @13 + VR (015 + aon (1—/0 gl(S)dS) 1A ()]13

raa (1= [ s ) lavr o)

(2.3.35)

1
TQ@) n 2
*:A <Tjjg6ﬁz)ﬂv%ﬂxﬁhiﬂh%mdh
L () . 2.3.36
# [ (T ) 19t bl (2350
< e ([Vur(0)[13 + [[Vor(0)]3 + [[Au™(0)|I5 + [|Av™(0)]13)

) Té(t)kl
cT TQ(t) \V4 n ks 0 2 dk
+e ) —1—7’(t)k2 1V 25 (@, ko, )||L2(Q) 2 )
2

we have also from (2.3.24)

luf (5 + o D13 + [IVur (O3 + Vo (015 + (grou™)(E)
/ /zl x,1,s dxds—i—/ /z2 z, 1, s)dxds + (g200™)(t) (2.3.37)

/ / (x, k1, s dxds+/ / (z, ks, s) dmds—l—/F(u,v)cmgCl,

where C} is a positive constant depending on the parameter E(0).

(
! To(t
vt ([ (520 ) IV, Oy )

Estimate 3. First, we estimate (u, (0)) and (v, (0)) in (2.3.2)-(2.3.3) and taking ¢t = 0,
we obtain

luf )13 + vf ()3 < llaor w13 + pua lu™ |5 + paf| 22" 5
Hapa[[0™[[3 + on [0 |3 + ol 25715 < aou[|u® 13 + g fJul (I3 + pall27 13 (2.3.38)
+aoz||[V°[f3 + aa [V + ezl 2313 < C.
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Where C' is a positive constant. Now, differentiating (2.3.2) and (2.3.3) with respect to t,

we have
<Z_: a1ij() </t g1(t — s)Vu"(t ij>
+ <M1 (u(z, 1)) ,wj>Q + (upty (), wi) g, + ar (W (t), w;) (2.3.39)
+ <u2 (27 (2, 1,t)) ,wj>Q (D fr(u™ (), 0" (), w;)g =
and
<”Z1 agij () (/0 92(t — S)an(t)ds) ,ij>9
(2.3.40)

(V1) w5) + (v (1), w5) + (aa W (2,8)) )

+ (o (5 (0, 1,0) ;) + (D), 0" (1) wy)g = 0.
Multiplying (2.3.39) by uy, ;(¢) and (2.3.40) by vy, ;(t) , summing over j from 1 to n, it follows
that
1d n 2 n n n 2 n n
5%”“&@)”2 + ar(ug (t), ug (t) + pflui D13 + p2 (ui (1), 21 (2, 1,1))q
d
—91(0) A (VU (1), Vi () g + 91.(0)ar (uf (1), uz' (1)

ft (2.3.41)
— 0 [ A= 9) (Fu6), Va0 ds + (DA 0, (). 0

/0 A19'1/ (t =) (Vug(s), Vui'(t) o ds + g1 (0) (A1 Vi (1), Vi (t))

and
RO + ax(0f (0,07 (0) + ull RO + s ((0), (0, 1, )
—02(0) {2V (0, Vo () + 920 (0] (1), 7(0)
0 (2.3.42)
~ i | Aagllt = ) (T2, Ve O) ds + (DR 0.7 (0). v (1) 0

/0 A0 8) (T2, T ) s+ 40) (AT 1), T )

Differentiating (2.3.5) with respect to ¢, we get
)

To(t " To(t n o, .
(e ) A0+ 0 stuld) + g I = (23.43)
Multiplying (2.3.43) by 21, ;(t), summing over j from 1 to n, it follows that
Tg(t) ' 2 1 Tg(t) 1 d
— L(t N = 0. 2.3.44
(720 ) 100+ 5 (=50 ) FIAOB + 3 @B =0 @340
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Then, we have

5 (T ) 10l + 5.5 (T2 I OIE) + 5 L@ =0, (23.5)

T T (

In the same way for (2.3.6), we get

%(1_Ti§2;)k2) ”th(t)‘|3+%di( Tigg)k I St(t)l\ﬁ) ;di |25(1)]|2 = 0.  (2.3.46)

Taking the sum of (2.3.41), (2.3.42), (2.3.44) and (2.3.46), we obtain

Q‘l&.

N~ N — <+

)13+ 013 + an (0, (4) + a0, v 0]
& (] 1= ) ol + a1 + a1
i [ (20 ) 10l + a0 (a0, 0)

dt
n n 1 n 2 1 n 2
+92(0)az (v’ (8), v/ (1)) + S llani(z, Loz + Sz (z, 1, 1)l

- / 1 (%) 25, (6) B+ 5 1)

5 [ (20 ) Il + ol o
DA, (1), 0 1)g + (DL (1) 0" (1), VD)

+01(0) 5 (A T (1), T (1)) + 2(0) 5 (AT (), Vi (1)

() <A1wt< V(e / Mg (t— 5) (V" (s), Vul (£)) o ds

+ DO | —

+

-2 Aggza — 5) (Vo (s), Vor () ds — gh(0) (AWl (1), Vol ())g
- / Azg;’ (t — 5) (V0" (5), Vi (t)) g ds — iz (s (), 24,1, D)

B %/0 Avgi(t — 5) (Vul'(s), Ve (t))gy ds — as (W (8), 28 (2, 1, 1))

Using Holder, Young’s inequalities and the same technique as in [29], we conclude the fol-
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lowing estimates

G (0) A (Vu (1), Vg (1)) = Zg'<0>am<x><a“"“) a“?<t>>ﬂ

dx; Oy
<3 @O [ ag% ’ dzmz/

(9ut
2
3,7=1 K 2,7=1

d
81’1 &
< WOR |7y (1)[3 + 21 max Z||amu2>uw<t>||§

alw [E

(2.3.48)

1<i<N

10
GLOP 7 (1) (12 + 2a 1l Vul (£)]|2,

where
N N
o= o (ol ) = g (Lt
1<i<N 1<i<N
j=1 Jj=1
And

(042 (900, Vi) < LOLI0 1 + 20 p 0, (23.99)

t

Argi(t — s) (Vu'(s), Vui' (t))q ds

S—

:/ Za“ﬂ z)gy (t — s) (Vu"(s), Vui(t)), ds
< Zaﬂ/ dx+2€||gi’||u§:/t/ )

11

< — Vi@l + 2¢llgf ||L1/ IV (s)[2ds,

(2.3.50)

2
dxds

8@

t

" n n a n
[ Aagl = 9 (900, Vep ) ds| < Ve o3

(2.3.51)
T2l / 170" (s)|3ds.

Using (A2) and the Sobolev’s embedding, gives us

D e (), 0" (1) (ol < C [ =+ o= o]

O [(Jla P+ o P D)o 2] (2.352)
n 1 n 2 1 n n n n

< C [l 3270 + o 3770 + a3 + orll] el < s 3 + .

where c is a positive constant. In the same way, we obtain
(D fa(u(t), 0" (1))vi)al < lluglls +c. (2.3.53)
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2.3 Global existence

Replacing (2.3.48)-

\_/
/\

2.3.53) in (2.3.47), we get
=i (013 + a3 + ar (1), w (4) + aawy (8), 07 (1)

1d 1 7'2( ) 9 1 )
-4 n o L
3 dt/ (1 Tg(t)kl) 121 (O)l2dky + S ll21(, 1, 613
ld 72(t) 1, .
+§E/ ( — )k ) |23, (¢ )H%de + §||2’2t($,1,t)||%

+91(0)ars (ug' (1), uf' (1)) + g2(0)aga (v (1), v} (1))

< el ()2 + e[ ()] + ¢ (/01 (#2(3%1) IIZ?t(t)Hgd’fl)

Le (/01 <%) ||z§t(t)||§dk2> + 2puag Vo (t)|3

O 711 + 2 |9 01 + w0

DO | —
&lg‘

+
" ! " n 2 ai n 2
+ell gy Il .2 i Augi (8 = s)lIVu (s)llads + == [ Vuy (1)
t
n a n
rellgfll | Aaghte = 5)[Te(s) s + 22|V o)
0

A191 (t = 5) (Vui(s), Vui (t)) g ds + gl(O)i‘h (Vu"(t), Vi ()

Cdt dt
jt i Aggo(t — 5) (VU (s) VU (t)),, ds + 92(0)%142 (Vo' (t), Vui(t))q -
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Integrating the last inequality over (0,¢) and using Gronwall’s lemma, we get

g (013 + || g ||2 +an(u (1), u (1)) + as(vf (1), v} (1))

/o ( ) It ok + 1 (%) |22, (1)l12dk;

< [luz(0)]12 + ||Utt (0112 + a1 (w (0), u7' (0)) + ax(vr'(0), v;'(0))

/ol<1—72 )HZuxkl, adks + g1(0)ar (u” (), wi (1)

_|_

+

+

O\»NN

(1 o) I, Ok + n(0)as(e"(0). o710
gi t = 5)A1 (Vug(s), Vi (s))g ds — g1(0)as (ug (0), uf' (0))
g (t — 5) Ay (VO (5), VO (1)), ds — g2(0)as(v(0), u(0)) (2.3.55)

1 /
=+ 08 [+ (£+28) [ o

t
+<e+e||gl||i1> / IV (s) [3ds + (c + cllgallZ) / IV (s)12ds

+
N

+

_l’_
\N%

||u I3 + 10 ()15 + a1 (uf (s), uf (s)) + az(vi (s), v1(s))) ds

([ () et b ) s
0 </( 222);@)”Z%@’kms)lr%d@) ds

+

We have to estimate the right hand side of (2.3.55)

0 (0) Ay (V' (8), V(1) = 3 91 (0)ary (@) <aun<t) o >

In the same way

< Oz; axi
i,7=1
N
(91(0))? []o / ) Quit
< d +2 i d
_i,jzzl 20 Q ax ) ILLZ]ZI alj ) 31’1 ! (2.3.56)
< LVt + 2 max (Zl !Iam\ﬁo) IV ()15
p
< WOy (8) 3 + 2an | Vg (£) 13-
n n g ;
(0) (700 9 (0 < L 900 + 2 V27 O (2.357)
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2.3 Global existence

as previously, we can obtain

t

i gi(t = 5) A1 (VU (s), Vg (t)) o ds| < €| Vg (t)]3

t (2.3.58)
+a11||gl||ié||gl||ll°°/ ||vun(8)||§d87
0
t
| bt = 94 (907(5), Ve () ds| < VoL (D)
0 (2.3.59)

t
+a22||92||L1||92||L00/ HVU”(S)Hgds
de 0

Replacing (2.3.56)-(2.3.59) in (2.3.55), after choosing € small enough and using Gronwall’s

lemma, we obtain

1 To(t
ha B+ o3+ [ () e, b o) 2dk,

1 To(t
-/ (#) 22, ki )2 + aon [V (D12 + aoal Ve (8] < M.

(2.3.60)

Where M is some positive constant. Therefore, from (2.3.24), (2.3.36) and (2.3.60), we
conclude that

u" is bounded in L>(0,T; H*(Q) N Hy (), (2.3.61)

v" is bounded inL>(0, T; H*(Q) N Hy (), (2.3.62)

u is bounded in L>(0,T; H(Q)), (2.3.63)

v}" is bounded in L>(0,T; Hy(Q2)), (2.3.64)

ul; is bounded in L>°(0,T; L*(€2)), (2.3.65)

vt is bounded in L>(0,T; L*(0)), (2.3.66)
2%(z,1,t) is bounded inL?*(Q2 x (0,7)), (2.3.67)
23(z,1,t) is bounded in L*(Q x (0,T)), (2.3.68)

71 ()27 (, ki, t) is bounded in L>®(0,T; L*(Q x (0, 1)), (2.3.69)
7o (t) 25 (2, ko, t) is bounded in L™®(0,T; L'(Q x (0,1)), (2.3.70)
21.(z,1,t) is bounded in L°(0,T; L*(2 x (0,T))), (2.3.71)
25.(z,,t) is bounded in L>=(0,T; L*(Q x (0,T))). (2.3.72)
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Applying Dunford-Pettis theorem, we deduce from (2.3.61)-(2.3.73) that there exists a sub-

sequence (u", 2}, (v™, z%') such that

u" — u weakly star in L>(0,T; H*(Q) N Hy (2)), (2.3.73)

V" — v weakly star in L>°(0,T; H*(Q) N Hy(Q2)), (2.3.74)

u — uy weakly star in L>°(0,T; Hy (52)), (2.3.75)

vl — vy weakly star in L>(0, T; Hy (), (2.3.76)

ul' — x1 weakly star in L*(Q x (0,7)), (2.3.77)

vl — xo weakly star in L*(Q x (0,7)), (2.3.78)

ulh — uy weakly star in L°°(0,T; L*(9)), (2.3.79)

vl — vy weakly star in L°(0,T; L*()), (2.3.80)

(2, by, t) — 21 (2, Ky, t) weakly star in L°(0, T; Hy (€2; L*(0, 1)), (2.3.81)
250(w, ko, t) — 2o(w, ky, t) weakly star in L>(0, T; Hy (Q2; L*(0, 1)), (2.3.82)
()2 (w, ky, t) — 234 (w, ky, t) weakly star in L>(0,T; L*(Q2 x (0,T))), (2.3.83)
To(t) 25, (3, ko, t) — 20 (w, ko, t) weakly star in L>(0,T; L*(Q2 x (0,T))), (2.3.84)
21 (z,1,t) — 1y weakly star in L*(Q x (0, 1)), (2.3.85)

2. (z,1,t) — 1y weakly star in L*(Q x (0, 1)). (2.3.86)

Further, by Aubin’s lemma [30], it follows from (2.3.73)-(2.3.78) that there exists a subse-
quence (u™,v") still represented by the same notation, such that

u™ — u strongly in L*(0,T; L*(9)), (2.3.87)
v" — v strongly in L*(0,T; L*(2)). (2.3.88)
Then
u" — wand v" — v a.ein (0,7) x Q, (2.3.89)
uy — u; and vy — vy a.e in (0,7) x Q. (2.3.90)
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2.3 Global existence

Analysis of the nonlinear term.

T
||f1(unyvn)||L2(Qx(o,T)) < /0 /Q(|u”(s)|p + [v"(s)|P)dsdx

+/OT/Q““"@W|v”<s>|p?>dsdx

T T
<& [ 1vwepas e [ (2391)
0 0
et (1 ot e (T pt+1
wot | o) [ iveas

p+1

< 20T OP+082 TC, T TC,” . TC, = TC, G}
Where C'is a positive constant. In the same way for fo(u™, v™)
| fa(u", 0"™)|| L2 (0,1)) < C. (2.3.92)
From the (2.3.91) and (2.3.92), we deduce that

fi(w™, ™) = fi(u,v) weakly in L*(0,T; L*(Q

(u (),
filu™ v™) = fi(u,v) weakly in L*(0,T; L*(Q (2.3.93)
>(

))-

For suitable functions (u,v) € (L>®(0,T; H}(2)))?, (21,22) € (L>(0,T;L*(Q2 x (0.1))))?,
P19 € LA x(0,7)), (x1,x2) € LA x (0,T))2, £ € L=((0,T); L*(Q2)). We have to show
that ((u,21), (v, 22)) is a solution of (2.3.2) — (2.3.6). Using the embedding

L=(0,T; Hy(Q)) = L*(0,T5 Hy());  H'((0,T) x Q) = L*((0,T) x Q).
From (2.3.63)-(2.3.64) we have that u} and v} are bounded in
L¥=((0,T); Hy () = L*((0,T); Hy (),
then uy, and vy, are bounded in
L¥((0,7); L*(Q)) = L*((0,7); L*(2)).

Consequently, u}, v* are bounded in H'((Q2) x (0,7)). Using Aubin-Lions theorem [30], we
can extract a subsequence (u®) of (u™) and (v%) of (v™) such that

ut — uy strongly in L*(Q2 x (0,T)), (2.3.94)
vt = vy strongly in L*(2 x (0,T)), (2.3.95)

therefore
ut — uy strongly and a.e. in (Q x (0,T)), (2.3.96)
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Vs — vy strongly and a.e. in (Q x (0,T)). (2.3.97)
25— 2y strongly in L*(0,T; L*( x (0,1)), (2.3.98)
25 — 2y strongly in L*(0,T; L*(2 x (0,1)). (2.3.99)

It follows at once from the convergence (2.3.73), (2.3.74),(2.3.79), (2.3.80), (2.3.83), (2.3.84),
(2.3.94), and (2.3.95) for each fixed ¥ € L?*(0,T,L*(Q)), o € L*(0,T,L*(2) x (0,1)) as
& — oo permits us to deduce that

/OT Vﬂ u,(t )19dx+/ﬂAlvug(t)de] it
o [ ft-msomasa]

+/T U s (t )ﬁdw—i—/ugzl(:c,l,tﬁdx—/fl (H é(t))ﬁd:c} dt
R / [ / un(E)9da + / Alvu(wwczx] i

(2.3.100)

+ /0 { /Q /0 gl(t—s)Alvu(t)wczsdmt] dat
+ /0 ' [ /Q Ju(t)9dz + /Q oz (i, 1, )0 — /Q f1<u(t),u(t>>q9dx1 dt,

and

/0

+

1

_|_

_|_

T
[ / vb () 9dadt + / AQva(t)Vﬁda:} dt
Q
/ / Aago(t — s) Vs (t )Vz?dsdx] dt
Q
T
/ /ﬂulvt ﬁd:p—k/ﬂugz2(x,1,t 19dl’—/f2 (t)v f(t))ﬁdx] dt
T
[/ vy (t ﬁdﬁ—{—/%va(t)Vz?d:v] dt
o /e Q
T
/ {/ / go(t — s)AVu(t )dsVﬁdm] dt
0
T
/0 [/ aqu(t 19dx+/904222(x,17t 19dx—/f2 (t))ﬂdx} dt.

(2.3.101)
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2.3 Global existence

exploiting the convergence (2.3.98) and (2.3.99) we deduce

///(Z(t +(1- (t)kl)a%,f)adxdkldt 25102
%/ //( —z1—|- T;(t)kl)a—]ﬁzl)adxdkldt,

ol 0 : 0
T2(t) 5,23 + (1 — 7p(t)ka) 5~ 25 | odudkadt
0 0 JQ ot ak,Q
[ 0 0 (2.3.103)
— /0 /O /Q (n(t)azz +(1- rz(t)k2)a—k2z2) odxdkydt.

Uniqueness. Let (uy,v;) and (ug, vs) be two solutions of problem (23). Then (w,q) =
(u1,v1) — (u2,v2) and we put also W = vy (2, — ki72(t)) — us(z,t — ki72(1)), ¢ = vi(z,t —
koTo(t)) — vh(x,t — koma(t)). Multiplying the first equation in (2.3.1) by w’, integrating over

) and using integration by parts, we get

& (o + (1= [ e ) atwo.w) + o)
| ()12 + %Hw(:p, L2 + gr()as (w(t), w(t)) — (¢, 0 w) (1) (2.3.104)

D ! Lwo)2 — fi(ug, vo)] W' (t)dx
S / (e, 1, ) (1) + 5 ! ()] + / i, 01) — faluz, v2)] ' (£) e

in the same way for second equation in (2.3.1). Multiplying the second equation in (2.3.1)
by ¢, integrating over 2 and using integration by parts, we get

t

& (170 + (1= [ w6)ds) axtatt.a) + @on0)
el ()13 + 5o . + 0)osafo).6) ~ (500 (23109
== [ a1 0 de + 310 O+ [ (ol 0n) = falun,va)) (0

Multiplying the third equation in (2.3.1) by @, integrating over 2 x (0,1), we get
1 Tg(t) d - 9 1 d - 2
| = t ——|w(t)||5 = 0. 2.3.106

Then

L 1O LY@ Y e
2‘1[/ e LI RCREY i Ce= e NECIED (23107
42 (e, LI - [ (0)1B) =
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In the same way for the forth equation in (2.3.1), we get

1 d 1 < Tg(t) - 2) 1/1 < Tg(t) )/ - 2
—— ——||q(t dky — = —_— t)||5 dk
2 Jy \T=wgor 11) 75 \T=agn) 1TORE 540
+5 (la(z, 1,015 = lld (0)13) =
Combining (2.3.104)-(2.3.105) and (2.3.106)-(2.3.108), we have

t

1d \|w’(t)|\§+ g (t)]15 + 1—/0 gl(S)dS) az(w(t), w(t)) ]
2 dt o

1d ~ 1 T -
_d_< ( 7 tk I ()”2) s +/0 <1 —Tgé )k2H‘J(t>”2) dk?) (2.3.109)
Hpuflw +Oq||q( )||2 sla@, Lol + slloz, 1,1)[3

_|_

@)l 1 1

o [ e 10w O~ 0 [ a1, 04 (s + 51O + 51013
Q Q

+/Q [f1(ur, v1) = fi(ug, vo)] w'(t)dx + /Q [four, v1) = folug, v2)] ¢'(t)dz.

< >ds) a1 (a(t), a(t)) + (g100) () + (g200)(8)
)
t

< C (I @2+ IVw®) +IVa@®)z),  (2.3.110)

/Q[fl(ulavl) — f1(ug, v9)] w'dx

<C(ldOIE+ Vel +11Va@®llz) . (2.3.111)

/ [f2(U1,U1) — fz(ug,vg)] w'dx
Q

We set
Y(t) =[5+ g5+ [IVw@)|z+ Va3

(Y o) e+ [ (7220 1awg) a

then the equality (2.3.109) becomes

1d 1, . 1, .
SZY () + O + anlld @I + 5 N, Lol + Sz, 1,0)13

< |lw@®)||2| V' )]z + G2l V e (#)]]2 + %Hw’(t)ug (2.3.112)
+g @O + IVw @3 + Va3,
hence
%diy( t) <Y(t). (2.3.113)

Integrating the last equality and using the Gronwall’s lemma we get

[’ @13+ ld' O + anli[[Vw(®)]13 + aosle|[Va(t)[3

w (Y wwen) e+ [ (7220 ) lawig) ko

This completes our proof of existence and uniqueness of the weak solution. O
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2.3 Global existence

Remark 2.3.1. By virtue of the theory of ordinary differential equations, the system (2.3.2)—
(2.3.6) has local solution which is extended to a mazimal interval [0, Ty[ with (0 < Ty, < 400).

Now we will prove that the solution obtained above is global and bounded in time, for

this purpose, we define
1
110 = 6@t [ [ ek dbide + (g0 00)(0) + 920 0)(0
QJO
1
+ &(t)ehm0) / / 2(2, ko, )dknde + (p+ 1) / F(u, v)dz (2.3.114)
QJOo Q

+ (1 - /0 t gl(s)ds) ay(u(t), u(t)) + (1 — /0 t gz(s>ds) az(v(t), v(t)),

and
t)e k12 (t) L 1 1
)= S [ b e + (a0 0)0) + 5020 0)0)

¢ —kaTa(t) 1
+M// zg(x,kg,t)d@da:+/F(u,v)dx (2.3.115)
2 QJO Q
t

+% (1 —/0 gl(s)ds) ay (u(t), u(t)) + % (1 - /Ot 92(3)d3> az(v(t), v(t)).

Remark 2.3.2. From the definition of E(t) by (2.3.115), we observe that

E(t) =5 (lue@l + loe(®)]I2) + I (1). (2.3.116)

Definition 2.3.1. Let (ug,v9) € (H3(Q))?, (u1,v1) € (L*(Q))? and (¢o,d1) € (L*(Q x
(0,1)))2. We denote by ((u,21), (v, 22)) the solution to the problem (3.1). We define

T" = sup{T >0, ((u, 21), (v, 22)) exists on [O,T]}.
If T* = 0o, we say that the solution of (2.3.1) is global.

Lemma 2.3.2. Let ((u, z1), (v, 22)), be the solution of problem (2.3.1). Assume further that
I(0) > 0 and
2p+ 1 T
a=p (ME(O)) <1 (2.3.117)
p—1
Then I(t) >0V t.

Proof. Since 1(0) > 0, then there exists (by continuity of u(t)), there exists a time ¢; > 0
such that
I(t) >0, Yte(0t). (2.3.118)
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Let
5= {I(to —0and I(t) >0, 0 §t<to}.

From (2.3.16) and (2.3.17), we haver V ¢ € [0, t¢]

p—1
p+1

J(t) = [hal( (1), u(t)) + laas(v(t), u(t))]

+ & (t)e / / 2w,k t dklda;}
P

1)
p+1 l& ¢ ka2t / /z2 T, ko, t deda;} (2.3.119)

( )[(9 u)(t) + gzov)(t)HmI()

> 2( n 1) [har(u(t), u(t)) + Laz(v(t), v(t))] -
Thus by (2.3.116) and (2.3.119) and the fact that (g, o u)(t) 4+ (g2 0 v)(t) > 0 , we deduce

han(u(t), u(t)) + baz(v(t), o(t) < 2RI (H) < TERE(®)

Y (»=1) (2.3.120)
< 2D E(0), ¥ t € [0, ).
Employing lemma 2.2.1, we obtain
p+1
o+ 1) [ Flutto) ol < p (0| Valto) 3 + LI Tult)])
Q -1
<p(222D) 7 (Ll|Vulto)|3 + LIVolto) 3) (23.121)

= a(L]|Vu(ty) |3 + Ll Vo(te) [3)
< (LlIVulto)l3 + L[| Vo(to) [3)
< sha(ulto), u(t)) + JZaz(v(t), v(to))-

By exploiting lemma 2.2.2. Hence, we conclude from (2.3.121) that I(¢) > 0 on [0, to] which
contradicts thus I(¢) > 0 on [0, 7], which completes the proof. O

Theorem 2.3.3. Let (ug,vo) € (Hy(Q))?, (u1,v1) € (LA(Q))?, (¢o, ¢1) € (L*(2 x (0,1)))2.
Suppose that (140) and 1(0) > 0 hold. Then the solution of (2.53.1) is global and bounded.

Proof. To prove Theorem 2.3.3, using the definition of 7™, we have to verify that

ay(u(t), u(t)) + az(v(t), v(t))

is uniformly bounded in time. To do this, we use (2.3.116) to get

B(0) > B(t) = J(0) + 5l + 5l
e 1 1 (2.3.122)
> (H50) fan (u(t), u(t)) + ax(u(t), v(E)] + 5 ()] + 5 @) 3

56
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Therefore
a1 (u(t), u(t)) + az(v(t), v(t)) < CE(0),

where C'is positive constant, which depends only on p. Thus, we obtain the global existence
result. This completes the proof. O
2.4 Asymptotic stability

In this section we prove the asymptotic stability result by constructing a suitable Lyapunov
functional. Now we define the following functional

L(t) = ME(t) + e(t) + p(t) + el (1), (2.4.1)
P(t) = / wudr + / vude, (2.4.2)

o(t) = —/Qut/o g1(t — 8)(u(t) — u(s))dsdr — g Ut/o go(t — s)(v(t) — v(s))dsdz, (2.4.3)

t t
I(t) :/ /e’\(s_t)uf(a:,s)dxds—l—/ /e’\(s_t)vf(:x,s)dxds. (2.4.4)
t—7(t) /Q t—7(t) JQ

Remark 2.4.1. We can easily see that

: 1
/ /ek(s_t)uf(x, s)d:vds:/ /B_km(t)zf(fakht)dwdkh
t—ma(t) JQ 0 JQ

after using a change of variables, t — 15(t) = s. We use the same way for the second term

in (2.4.4).
In order to show our stability result, we need the following Lemmas.

Lemma 2.4.1. ([24]) Let ((u, z1), (v, 22)) be the solution of problem (2.3.1) and assume that
(140) holds. Then, for v > 0, we have

| (/ it = )00) ) s () (2.4.5)
X (L=1)"" e (g1 0 u)(t),
and
/ </ slt = )010) vl s (%) (2.4.6)

X (L= 1) el (g2 0 0)(1).
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Lemma 2.4.2. ([24]) Suppose that (Ag) — (As) hold. Let (ug,vo) € (H(2))?, (uy,v1) €
(L2(2))? be given and satisfying (3.118). Then there exist two positive constants n; and 1,
such that for any 0 > 0 and for all t > 0,

/Qfl(uav)/o g1(t = s)(u(t) — u(s))dsdz < md(L[|Vull; + L[| Vol)3)

L (2.4.7)
0o, o),
and .
[ 5.0 [ aatt = 9)0(0) = ot)dsde < (0| Vul3 + Vol
0 0 e (2.4.8)
+ 022, 0000

Lemma 2.4.3. There exists two positive constants Ai,\o depending on € and M such that
forallt >0
ME(t) < L(t) < ME(1), (2.4.9)

for M sufficiently large.

Proof. Thank’s to the Holder and Young’s inequalities, we have

1 1
[0 < wllulls + =lluls +wllvlls + =l (2.4.10)

D=1 [ [ = 5)u(t) -~ ls))dsds
/Ut/ g2(t — s)( —v(s))dsdx|
hutg+ 3 [ ( / gl<t—s><u<t>—u<s>>ds)2dx

+§uvtn%+§ [ ([ att-s <>_U<3>>ds)2dx (2411)

and

< 5 (1l + 0= 002 [ ontt = s)antu(t)  uts) o) - o))
+3 (o + 01— e / ot = Shoa(ult) = v(s) v(e) — v(s))ds
<5 (bl + @ =002 (222 o0
+%(Hvt\|2 + (1= l)e (25E > ggov)(t)>.
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2.4 Asymptotic stability

It follows from (2.4.4) that Ve > 0

It <

1
< fl(t)// e‘km(t)zf(:v,kl,t)dkldx
aJo
1
+ fQ(t)// e R0 2 (1 Ky, t)dkyda

(2.4.12)
< c&(t —kima(t / / zl x, ky,t)dkidx
+ by (t)ekem®) / / 23(x, ko, t)dkyd.
aJo
Hence, combining (2.4.10)-(2.4.12). This yields
|L(t) — ME(t)| = e(t) + @(t) + el (t) < ewcay (u(t), u(t)
€ 1 € 1
 cacdan(olt). o) + (5 + 3 ) hull + (— n ; ol
2 (28 2.4.13
+ €y (t)e et / / (x, k1, t)dk dx + z ( > (grou)(t) ( )
2 E 0)
+ c&y(t)e R ® / / 22(x, ky, t)dkodx + ( b > (g20v)(t).
aJo
Where ¢; = ewc?, ¢y = ewc?, ¢z = (4w + 1) Cy = (42, + %), Cs = —(17121)63 (_2ﬁi(o)>7
e = % (ZBZLQ(O))’ c7 = cg = c. Finally we obtain
|L(t) = ME(t)| < coE(t), (2.4.14)

where cg = mazx(cy, co, c3, ¢4, 5, Cg, C7, cg). Thus, from the definition of F(¢) and selecting M
sufficiently large to get
M E(t) < L(t) < ME(t). (2.4.15)

Where A\; = (M — ¢g), A2 = (M + ¢9). This completes the proof. O

Lemma 2.4.4. The functional defined in (2.4.4) satisfies

dIt) _ &), o ¢ / &), 12
< — 1
W) < 8Ol - i)z [ o100+ s
—fg(t)i/2’22(33,1,t)dl‘—gz(t)k’Qe_Tz(t)kQTo// 22(x, kg, t)dkydx (2.4.16)
21 Jq aJo

1
— & () ke kg / / 22z, ky, t)dkyd.
QJO

Where 1y, 7 are a positive constants.
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Proof. Taking derivative of (2.4.4) and using the same technique as (2.3.18) produces

1
dil—gf) = % [51@)6’“”2@ / / zf(:c,kl,t))dkld:c}
d fk:‘r(t
_|_ — 52 272 23(x, ki, t))dkodz
1
= £ (t)e Ok / / zf(a:,kl,t))dk;d:c—51(t)kle’72(t)klr§(t) / / 22(x, k1, t))dk dx
+ &5(¢) _TQ(t // 22(x, ko, t))dkodr — E(t) ke ™ tk2 7 // 23(x, ko, t))dkodx
1
_ = m(t)k @ 9
—1—72@)6 Tg(t)ﬁl(t)/g/o dtzl(x,k‘l,t))dkldx
b Lm0k, (heyr) / / 1 L 20 by, 1)) o
(1) oo a2
1
= & (t)e M / / (2, ky, 1)) dkyda — & () ke Ok 7] / / 2 (@, k1, t))dkydz
QJ0
1
j(1)e 0k / / (0 Fog, )b — 9 ()R (1) / / 2(@, ko, 1)) dhnda
QJO
e Wkig (¢ // @k1 (k1) 22(z, ky, t))dkyd
1 e T2 2
Tz@ Okz¢, (¢ // (%2 (ko) 22 (x, kg, 1)) dkoda
< =&k —Tz(tkl // zlazk‘l, Ydkidx — Eo(t) ke ™ t)kl // ngk‘l, ))dkidx

1 B
+—6) [ [.0.0) = e 1 0dr+ 60 L [ 21, 0ds
! 2 i 22 T X
ﬁ@)()/kﬂ%Qﬂ)—%@Jﬁﬁh+&@Lﬂﬂl;A,Lﬂd

< SO0l - a5 [ o

— & () ke Wk g //zlxkl, Ydkydx

1
—fg(t)—Q /zg(x,l,t)d:r—fg(t)k‘ge_”(t)k?m// zg(x,k:g,t)dk:gd:v.
1 Ja QJo

&(1)
270

lodll

(2.4.17)
This ends the proof. m
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2.4 Asymptotic stability

Lemma 2.4.5. The functional defined in (2.4.2) satisfies

Proof.

W (1%%) uel2 + (1+45> Joall; — (p+1)/QF<u<t>,v(t))d:c
+ [ (14 52) =) (). u) + [oa (14 52) ~ B e 0) - 415)
+g;3||zl(x, L)1+ Gllze(z, LONS + o (L= 1) (g1 0 w)(?)

i (1= b) (g2 00)(t)

Taking derivative of (2.4.2) and using (2.3.1), gives us

W = [ weudo+ [ wude + o+ o3
Q
||ut||2 + [[oell3 = ar (ult), u(t)) — ax(v(t), v(t))
// g1(t — s)A1Vu(s)Vu(t)dsdz (2.4.19)
// g2 As(t — s)Vu(s)Vou(t)dsde — Mg/QZl(.Z', 1, t)udx — Ml/QUtUdiU
—ag/Q 2o(z, 1, t)vdr — oy / vvdr — (p+ 1) / F(u(t),v(t))dz,

Q Q

following [31], yields

Ay /Ot g1(t — s)(Vu(t)Vu(s)dsdx
- ZN: /Ot gi(t - S)éalij(x)agx(:) <ag§j) - 8;5? + 8;;:)) dxds

Y dult ou)
/0 ()5 = Ox; Ox; dsda

+ /Q/Ot (gl(t — s)am(x)ag;j) (8;(;) B 8;2&7;))) dsda (2.4.20)

S~

+— Z/(/ gt —s) <agii)—agii))ds>2dx

2]1

< [(1=0) + 2] (u(t), u®)) + 725 (1 = D (gr0u)(),

in the same way

/ A, / olt — 8)(Vo(t)Vo(s)dsdz < {(1_zg)+ ’;“22} ans(u(t), u(t))
@ Jo 02 (2.4.21)

N1 1) (gaov) (1),

_l_
dagap
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for the seventh, eight, ninth and tenth term in (2.4.19), Holder, Young’s inequalities to

get

2 1
/Q wudz| < ijfal(u(t),u(t)) v EHutH%, (2.4.22)

2 1
/Qvtvda: < ij; as(v(t),v(t)) + EH%H%’ (2.4.23)

pe; 1 2

/Qzl(x, 1, t)udx| < - ar(u(t),u(t)) + A zi(z,1,t)dz, (2.4.24)
/ng(x, L, t)vdzr| < ifal(v(t),v(t)) + %/ng(x, 1,t)dz. (2.4.25)

Inserting (2.4.20)-(2.4.25), we get finally

mﬁ;ﬁ < (1 + 45) 5 + (1 + 43) |2 = (p + 1)/QF(u(t),U(t))dx

+ {ul (14+22) = 1) an (ult), w(®) + [ (14 22) = b aa(v(t), v(1))

Gy ) (2.4.26)
1,t 1,t — (11 t
4B||21(93, )3+ LG )H2+4a01u( 1)(g1 0 u)(t)
1—1 t).
(1= )0 V)0
O
Lemma 2.4.6. The functional defined in (2.4.3) satisfies
dp(t
W < (54 1 — gl + (5 + e — o)
{2 i - )+ (20— 2m0) oy (a(e), ()
(2.4.27)

{2+ 21— ) + (22 - 2l b gy (o(t), u(t))

+(1 —1y) allﬂ (l+25a11+ﬂ) + 5+ A=l + p2) p grou)(t)
CZ
(1 — lg) aozﬁ ( + 2B6L22 + ) —+ 43 + (1 - lg Cz(Oél + 062) ga O U)(t)
cs 2 cg
tpallz (@, L )3 + aollza (e, 1,013 + 29% (gt o w)(t) + 259% (— g5 0 v) (1),
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2.4 Asymptotic stability

Proof. Taking derivative of (2.4.3) and using (2.3.1), we obtain
)

/ / 1(t = 5)(u(t) —u(s))dsdr — (/Ot gl(S)dS) /Qufda:

s)(u(t) — u(s))dsdm—/ﬂvtt/ g2(t — s)(v(t) — v(s))dsdx

, Jo
gQ(s)ds> / vide
0 Q
— s

|
@\

_|_
S M S

|
—
&
L Q
S N~
=
|
=
=
|
=
=
QL
8
|
s

S~— 55— S

(2.4.28)
— [ttt ([ ante = yuto) - s )
_/Qﬁ(u(t),v(t)) (/Ot ga(t — s)v(t) —U(s)ds) dx
+ [ ) [ o= 5)u(t)  ats)ydsds
+ [ anwto) [t = s)(0t0) - o)
+ [ e 1.0 [ (e s)(ato) — u(s)dsc
+ [ asnte1.0) [ gult = )(0t0) — o)
~ Lo [ sttt st = atspyasas — ([ ias) [
—/Qvt/otg;(t— Y0 () — v(s))dsdz — (/Otgg(s)ds> /Qvtdx
Using Young’s inequality and the embedding HZ(Q) < L(92), we inf
5 [t </ (552 +)e
e 3 [l ([0 (- ) o) o
§i<a>mw wwnww;ﬁwmw+@ﬁwmm
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and
5[ ([ -o%2) ([ o (52-582) )
B ([ e ([0 (5250 )
<03 ([ o)

( s (@u(t) B 8u($)) d5>2 - (2.4.30)
[ (/s a)
(/- (%2 - 200)

WL — L) ar(u(t), u(t) + 221~ b)as(v(t), v(t))

ag1

S 01
+< - 28011 + 25 (91 0 w)(t) + E2 [28a5; + 3] (g2 0 v)(0).

<

From the lemma 2.4.2, we deduce

t

filu, v)/o g1(t = s)(u(t) — u(s))dsdr < A3 (L[|Vull3 + L[ Vv]3)

o (2.4.31)
+ U (ghou) (1) < 28ay (u(t), u(t)) + 222ay(u(t), v(t)) + L2 (grou) (1),
also
t
fa(u, ’U)/ ga(t — 8)(v(t) — v(s))dsdz < X6 (11| Vull3 + L[| Vo|)3)
o ; (2.4.32)
+ U220 (ga0u) (1) < 22y (u(1), v(t)) + 2Ly (u(t), u(t)) + SH2E (ga0v)(2).
Since g1, go are positive, continuous and g;(0) > 0, go(0) > 0 for any ¢, we have
t to
/ g1(s)ds > / g1(s)ds = g0, Vt > to, (2.4.33)
0 0
t to
/ g2(s)ds > / g2(8)ds = ga9, Yt > 1y, (2.4.34)
0 0

then we use (2.4.33) and (2.4.34) to get

/ut/ g1 (t — s)(u(t) — u(s))dsdr — (/Otgl(s)ds) /Q“thx (2.4.35)

< Bllul3 + 29% (- 910U)(t) = grolluel3,
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2.4 Asymptotic stability

o [ dute=s100 = vtsnasas — [ tspas) [ vio (2.4:36)

0)c?
< Blvul3 + 295 (— ggou)(t) — gaollurl

From the lemma 2.4.1 by taking v = 0, we have, for § > 0,

and

—/Q/nut/o g1(t = s)(u(t) — u(s))dsdz| < pllull + pa (L = h)*ci(grou)(t),  (2.4.37)

— /Q agvt/o g2t — 8)(v(t) — v(s))dsdr| < agllve]l3 + az(1 — Ip)*c2(goov)(t),  (2.4.38)

‘_/Q,ugzl(x,l,t) /Otgl(t_s)(u<t)—U(s))dsdx

§p2/zf(m,1,t)dx
Q

+pa(1 = 1h)*cX(gr0u)(t),

(2.4.39)

and

'—/Qam(x,l,t) /Otgg(t—s)(v(t)—v(s))dsdx Sozg/sz(x,l,t)dx—l—on(l [)%c3(g200)(t).

(2.4.40)
A substitution of (2.4.36)-(2.4.40) into (2.4.28) yields
do(t
B < (84— gro) 3+ (8 + 0 — o)
H{Z i - )+ (20 - 220) oy (u(e), u(0)
2.4.41
+{Z+ %(1 — 1)+ (22 - 2m8) L gy u(t), u(t)) (2.4.41)
‘l‘(l — ll) a01,3 ( + 25&11 + ) + f; + (1 — ll)Cz(,Ul + [LQ) gy © U,)(t)
(1 — ZQ) a025 ( + 25(122 + ) + f; + (]_ — lg Cz(Oél + 042) gs O U)(t)
izl (. 1,3 + anllza(z, 1, 8)][3 + 0% (—gf 0 u)(t) + 2% (—gh 0 ) (1).
]

Theorem 2.4.7. Let (ug,,vo) € (Hg(2) N H*(Q))?, (u1,v1) € (Hy(Q))? be given. Assume
that (Ag) — (As) hold. Then, for each ty > 0, there exist strictly positive constants K and k
such that the solution of (2.4.1) satisfies

BE(t) < Ke 0@ ror 4>, (2.4.42)
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Proof. Taking a derivative of (2.4.1) and using the lemmas 2.4.4, 2.4.5 and 2.4.6, we infer

dfl—gt) < - <a1M— (1+Z—é = %S})) + g10 — —6) |13

- (@M e (1 + Z‘—g = %56)) + 920 — 01 — 6) el

{2 (1) i

- L2 (1+”:2)+lz}} 0
(a2 g) B

£)ll3

o
} (24.43)
) o

+
+ (1= 10)*(p1 + p2) (g1 o u)(t) — (Ma3+u1 |21 (2
+

- (5 2em 345 )
M

46
(1= B + (o2 00)(0) + (7 20 )
# (e (- a5 ) ) e L0 = o+ 1 / F(a(t), o(t))ds
—((Ma4+a1>—e( 2 (05 ) ) lat Lol
ey (ke // 2z, by, )k +(%— ig )(g'lou)(t)

—652 k‘17'0€ ma(t // 22 xZ, ]{ZQ, dkgdx

920U

At this point, we choose M so large such that

771=<CL1M—6< M >+910—M1 )>07
UzZ(GQM—E( —l——— ,)+920—a1 )>0>
To
1(0)c
7732(—— )>O,

45
o (3582

Then we choose € sufficiently small such that

20 28c?
s = {anﬁ(lﬂf)—ﬁ———e{m <1+ 505) +l1}} > 0,
aop1 aop1 ao1 Qo1




2.4 Asymptotic stability

2X0 28c?
176:{&226(1+l§)—£———6{a2 <1+ 568)+l2}}>0,
o1 Qo2 Qo2 Qo2

and (2.4.43) remains valid. Hence for all ¢t > t,, we arrive at

daL(t) _

— = < —mlwllz = mllvells = ns(g10u)(6) + na(gz0v) (1)

(p+1)/Q Fu(t), v(t))dr — nsa1 (u(t), u(t)) — neaz(v(t), v(t))

(g1 0 w)(0) + (g2 0 V)(1) = Mol 21 (2, 1, D5 = mollz2(z, 1, 1)II3

—7’]11// Zl Z, k?l, dkldl’—’lhg// Z J] kg, dedCL’

which yields

&.

(2.4.44)

df{—fﬁ < —maB() +ms (1o w)(t) + g2 0v)(1)), Yt > o, (2.4.45)

where 7;,7 = 5,6,7.. are some positive constants. Multiplying the above inequality by
¢ = min{(y, (2} and exploiting (Ayp), we get, for all t > ¢,

COL(t) < =maC()E(t) + C()ms((g1 0 w)(t) + g2 0 v)(1)) -

Since ¢1(t) < —((t)g1(t) and g5(t) < —((t)ga(t) and using the fact that
—(grou(t) + (g 0v(t)) < —2E'(1),
by (2.3.24), we get

C(t)L'(t 4O E(t 15 (g) ow hou
(t)L'(t) (t)E) —ms (9] )(t);rg )(1)) (2.4.46)

< =t E
< —nuC)E(t) — 2msE'(t), Y

Define x(t) = ((t)L(t) + 2msE(t), which is equivalent to F(t) and ('(t) < 0, Vt > 0, we
obtain
X'() < (¢)L(t) — maC(t)E(t)
< LalE®), ¥i>i (2.4.47)

Integrating the last inequality over (ty,t), we conclude that

(1) < y(0)e o ¢@ds. (2.4.48)
Then, the equivalent relation between x(t) and E(t) yields

B(t) < Ke @ )ds, (2.4.49)

This completes the proof. O
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Remark 2.4.2. We illustrate the energy decay rate given by Theorem 4.1 through the fol-
lowing examples which are introduced in [23, 24].

1. If gi(t) = a1e 0+ go(t) = ity Jor ai > 0 and v; > 0, then CGi(t) = by (1)t

and (3(t) = 1% satisfy the condition (2.1). Thus (2.4.49) gives the estimate

Et) <K+t

2. If i(t) = are” U 1 go(t) = ase™ 0™ for a;,v; > 0(i = 1,2), then (i(t) = vi(1 +
t)ymin0vi=1) sqtisfies the condition (2.1). Thus (2.4.49) gives the estimate

min(1,v1,v9)

E(t) S Kefoé(].“rt)

3. If gi(t) = are”MF g0 (#) = ape D™ for q; > 0 and v; > 1(i = 1,2), then
Gt) = %( 1,2) satisfies the condition (2.1) . Thus (2.4.49) gives the
estimate

E(t) < K e—oin(140)min(ir2)
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Chapter 3

Decay Property For Solutions In
Elastic Solids Without Mechanical
Damping

3.1 Introduction

In this paper, we consider the one-dimensional linear system of a homogeneous and isotropic
elastic solid with the heat conduction given by:

P1Uty — UUgy — b%c =0
PEP1 — APy + buy +ap + 00, =0 (3.1.1)
ett - 691:96 + YPtte — ketzx =0

with the initial data

(U, Uty L, Pty 97 9t>(£7 O) - (Uo, Ui, Yo, L1, 907 91)7 (312>

where wu is the longitudinal displacement, ¢ is the volume fraction, p; > 0, p > 0 are the
mass density, x > 0 is the equilibrated inertia and u, «, a are the constitutive constants

which are positive and satisfy
pa > b2, (3.1.3)

To motivate our work, let us start with the linear theory of elastic materials that has been
established by Cowin and Nunziato [40]. The one-dimensional porous-elastic has the form

PrUst — gy — bpy =0
(3.1.4)

PEPs — QPrr + buy +ap + 7 =0
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with initial conditions and mixed boundary conditions and showed that the damping in the
porous equation (7¢;) is not strong enough to obtain an exponential decay. Only the slow
decay has been proved. Many authors considered the linear elastic materials problem as in
(3.1.4) where the decay of solutions to the problems in elasticity have been investigated in
previous works, see ([38],[39],[40],[41],[42]).

Very Recently, L. Djouamai and B. Said-Houari [44] considered the same problem as above

P1Utt — PUge — bgpa: =0
PRO — Pz + by + ap + Ty =0

and proved that a linear porous dissipation leads to decay rates of regularity-loss of the
solution. They showed the decay estimates with the very restriction on the initial data and
also proved that any additional mechanical damping is enough to stabilize the system.
Motivated by the previous works, in the present paper, we consider the decay rates for the
solution of (3.1.1), from which the estimates in [44] are only particular cases. In order to
prove our result, we apply the energy method in the Fourier space to obtain the pointwise
estimate for the Fourier image. Our aim is attained by combining the pointwise estimate,
Plancherel theorem and some integral estimates.

We introduce the notation used in this chapter. Throughout this work, |[.|[z« and ||.|| g
stand for the L4(R)-norm (2 < ¢ < o) and the H*(R)-norm. We denote by f the Fourier
transform of f :

fi6) = [ e an, g = 5 [ Heopee

and ¢,, c(€,), 0, for n =1,2... are all positive constants.

3.2 The energy method in the Fourier space

In order to exhibit the dissipative nature of system (3.1.1) and following Reference [51], we
use the following transformation

t

O(z,t) = / 0(z,s)ds + x(x), (3.2.1)
0

with a function x = x(z) satisfying

ox =6, — kby + ¢,
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Then, we get from (3.1.1) (by writing, for simplicity 6 instead of 0)
P1Uy — PUge — by =0
PREO — WPz + buy + ap + B0, =0 (3.2.2)
Ot — 0000 + VP10 — kbiaw = 0
with the initial data
(u, ug, 0, 01,0, 0;)(x,0) = (u, ug, @, got,g,gt)(a:,()). (3.2.3)

Our goal in this section is to apply the energy method in the Fourier space and prove the
decay rate of the Fourier image of the solution of (3.2.2). Let us first transform our problem

to a first order system, by introducing the new variables:
U = Uy, h = U, 2=Pz, Y=, N= eta W = 9967 (324>

then the above system takes the form

;

prhy — pv, —bz =0
szt—OéZz‘i‘bU"’aSO"‘ﬁnz:O
P3N — 0wy + VYo — kNze = 0

we—1n; =0 (3.2.5)
2t = Yz = 0
Uy — hx =0
[ pt—y=0
with the initial data
(h7 y,n,w,z,v, 90)((737 O) = <h07 Yo, Mo, Wo, 20, Vo, 900) (326>

The system (3.2.5) is a hyperbolic-parabolic system and can be written in the matrix form

{m+A%+LU:B@x (3.2.7)

U(ZE,O) = UO

with U = (h,y,n,w, z,0,0)T, Uy = (ho, Yo, Mo, wo, 20, Vo, vo) and A, L and B are matrices
defined as follows

0O 0 0 0 0 —u O
0O 0 B 0 —a 0 0
0O ~ 0 -6 0 1 0
A=l 0o 0o -1 0 0 0 0
0 -1 0 0 0 0 0
-1 0 0 0 0 0 0
O 0 0 0 0 0 0
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0 0 00 —=b 0 O
0 0 00 0 b a
0O 0 00 0 0O
L=10 0 00 O 0O
0O 0 00 0O 0O
0 0 00 0 0O
0 -1 00 0 0O
00 0O0O0O0 O
00 0O0O0O0O O
000O0O0O0 =k
B=]1000000 0
00 0O0O0O0 O
00 0O0O0O0 O
00 0O0O0O0O O
Indeed, taking the Fourier transform of (3.2.7), we get

U, + iACU + LU = —BE2U
{ 0(2.0) O (3.2.8)
then (3.2.8) takes the form:
{ 0(e.0) = U (3.2.9)

where A(§) = —L — i€ A — €2B. Consequently, solving the above first order ordinary differ-
ential equation, we get

U(E,t) = e @10, (€), (3.2.10)

computing the term " is a challenging problem and in many situations this cannot be
done. Consequently, in order to show the asymptotic behavior of the solution, it suffices to
find a function ((§) such that

MO < Cem<Or, (3.2.11)
Taking the Fourier transform of the system (3.2.5) with respect to z yields

( pihy — i€pd — b2 =0
Pl — 1€ Z + b0+ ap + 1N =0
p3ie — 1€0w + 6y + k&*) = 0

@y — i&h = 0 (3.2.12)
5 —ig=0
by —i€h =0

\ @t_g:()
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with the initial data

(}A?ﬂ ga ﬁ7 @7 27 ?37 @) (67 O) = (hj(b yA07 ﬁ07 CJO? ZAOa ,UA07 @0)(&) (321?))

The energy functional associated to the system (3.2.5) is defined as

. 1.~ _
E(&,t) = 5 {Ih? + [ + 1] + |l + |2 + [0 + [2* + 2bRe(0) (3.2.14)
2

t >0, the identity
d » .
CE(E, 1) = —pRE P (3215)
is fulfilled. Also, assume that (3.1.3) holds, then there exist two positive constants co and ¢y

that satisfy the following inequality
~ 2 ~ ~ 2
o |UED)| < Bt < e |0 ) (3.2.16)

Proof. Multiplying the first equation in (3.2.12) by ;L, the second equation by 7, the third
equation by 7, the fourth equation by @, the fifth equation by 2, the sixth by ¢, and the

seventh equation by ¢, we get

d1l (.- o
LI 1017 + 102 + 1617 + 2 + 10 + 8} + bRe(0g — 2h) + KGE}i? = 0 (3217)
recalling that as in [44], 0 =ifa, h=1;, 2=1ip, U= @, we get
Re(0g — éil) = Re(i&tiypr — i€@iy)
d . d ~
== {Re(itup)} = %Re(fxﬁ).

Inserting (3.2.18) into (3.2.17), so the assertion (3.2.15) holds.

In order to prove (3.2.16), we use Young’s inequality for the last term in (2.18) for any ¢ > 0

(3.2.18)

|2bRe(0¢)

1 -
< 2be|O]* + 26E|¢|2, (3.2.19)

inserting (3.2.19) into (3.2.14), we obtain (3.2.16) with
1 2b
co = émin{l, (1 —2be), (1 — 4—6)} >0,

4e
Hence the proof is completed. ]

1 2b
= 5max{1,(1+2be),(1—l— )} > 0.

73



Decay Property For Solutions In Elastic Solids Without
Mechanical Damping

(3.2.12). Assume that (3.1.3) holds. Then for anyt > O and & € R, we have the following
pointwise estimates
(3 0)

)U(g, t)’ < Cem® , (3.2.20)

where 52

(&) = Atey (3.2.21)

Here C' and ¢ are two positive constants.
Proof. Multiplying first equation in (3.2.12) by —2 and fifth equation by plfTL, we get
—pihE 4 i€0F + b32 = 0 (3.2.22)
and B B
—p1éh + prigih = 0 (3.2.23)
Adding the above two equations and taking the real parts, we obtain

d a _ =
—ERe(plhﬁ) — Re(p1pui€02) + b|2]* + Re(p1igh) = 0, (3.2.24)

by using Young’s inequality, we get

2
Re(pypi€0z) < c(e)&|2° + & . f_ & |0)? (3.2.25)
~ 2 ~
Re(pri€ih) < eler) =g if + (1 + )P (3.2.26)
inserting (3.2.25)-(3.2.26) in (3.2.24), we obtain
d 512 20212 &
g TGN + U < cle) 12 + e 0l
, (3.2.27)
+ 0(61)T§2|ZQ|2 +ea&(1+&)h,
noting that Fy(&,t) = —Re(elﬁg). Now, by the same procedure multiplying the second
equation by ho and sixth equation by pgizﬁ, we get
P2ts0 — G0 E0 + po| O 4 apd 4 i€Ho = 0 (3.2.28)
and
ptif — iEhj = (3.2.29)
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summing up (3.2.28)-(3.2.29) and taking the real parts, we have

d _ _ _ .
EFQ(g, t) — Re(iaz0) + pa|0)? + Re(p0) + Re(i€Bn00) — Re(i€pahg) = 0, (3.2.30)

such that F5(€,t) = Re(§0). By exploiting the Young’s inequality:

2

Re(iaz0) < c(e) 22> + eggzi : |0)2, (3.2.31)
B 2
Re(p0) < c(@)52 ) |02 + 25| 0%, (3.2.32)
and inserting (3.2.31)-(3.2.32) into (3.2.30) this produces
LFe ) +EC(a, e3P — 13 < I8P + @i lifs  (3239)
dt £ +1 &2 +1

such that F3(&,t) = Re(p2g0). Multiplying the second equation by ¢ and seventh by pyg
payep — i€z +bOp + al@|? +i& B = 0, (3.2.34)

paey — paly]* = 0. (3.2.35)
Adding the above two equations and taking the real parts, we obtain

d A N NN A A . A~
& 1) + algl® = polgl” — Re(aig2) + Re(bog) + Re(igfig) = 0. (3.2.36)

Using Young’s inequality for the forth, fifth and sixth terms, we get

d X . R £ .
%sz(élt) + (a —€7)|P)* — p2|9)* < E3P) + 2 2> 4 c(e7)[0]?
2 (3.2.37)
R
e

such that Fy(&,t) = Re(pay

:@ Multiplying the first equation in (3.2.12) by (—iép;$) and
the sixth equation by (i¢pih),

), we obtain
—i€p1hy® 4 E2pp|0)? + i€ p1biD = 0, (3.2.38)
i€p10h + E2py A2 = 0, (3.2.39)

adding (3.2.38)-(3.2.39), we get

d R 5 . =
S IE )+ Eprplof* + & pi|h|* + Re(i€pibz0) = 0. (3.2.40)
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Young’s inequality for the forth term produces

d

%F5(5 t) + & (prp — c(eo))|0]* < Epr|h|* + €5

§2 A|2
where F5(&,t) = Re(pyi¢h). Now, multiplying the forth equation in (2.12) by (—p2ifZ) and
the fifth equation by (—p,i&9), we have

(3.2.41)

—0oGE + Epral 22 — ibEpsDE — i€ papE — i€2pPRE = O, (3.2.42)
Ep2iy — pa€71Y1* = 0, (3.2.43)
summing up (3.2.42)-(3.2.43) and using Young’s inequality, we get
d X R
S 16(&1) + &% (aps — 1= 200) |2 = Epa|y* + ¢
e e (3.2.44)
< X .

such that Fy(¢,t) = Re(ppi€2). By the same procedure, multiplying the forth equation in
(3.2.12) by (—psi€n) and the third equation by (—psiw), we obtain

—psi&n) — ps&|A1* = 0, (3.2.45)
p3i&n + 26| — Evyjw + ki€ hHo = 0, (3.2.46)
summing up (3.2.45)-(3.2.46) and using Young’s inequality and taking the real parts, we get
d . X ar
GFHE) + €46 - ey = @)laf + Eerlil? < clea) il (3.2.47)
where Fr(€,t) = Re(psi€@n). Now we define the Lyapunov functional
2
L(t)=(1+E+NEE )+ g P+ B} ey 5 [ {Fs+ Fut Fs+ Fo + Fr} . (3.2.48)
Taking the derivative of (3.2.48) with respect to ¢ and by using the formulas (3 2.27), (3.2.30)
(3.2.33), (3.2.37), (3.2.41), (3.2.44), (3.2.47) and invoking the fact that §4+1)(£2+1) < (gfﬂ),

we arrive at
2

d & 12
L)+ g1 ela) ma—cle) —cles) = cfer) — e — cleo)} 2]

4

t 11 {er — 03+ c(e6) + (p2 — €10) + €9 + c(en)} [0
2 A )

+ €4§—+1 {04 — c(er) + e + e} 9> + §4€+ 1 {c(ers) — g — €1} |h)? (3.2.49)
2 4

+ gy o) = b + o {eler)y — a-+ e} ol

<E(1++ Y {c(es) — enr — ea — BE} 7.
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On the other hand, it is a straightforward, we may find \; and Ay such that
MEA+E+ENEE ) < £(61) S ME(1+E+EHEE L), t>0. (3.2.50)

Consequently, having fixed the constants as above, we deduce that there exists a positive
constants vy > 0, such that

%fe(g, 1) +y00(E,1) <0. Vi>0, (3.2.51)
where
62 512 ~ 12 ~12 712 ~12 ~ 12
B60) > gy AP+ 108 + 19 + AP + 6P + [0} (3.2.52)

1
exploiting (3.2.51), (3.2.52) and (3.2.50), we get

%f(f,t) + K—ZC(g)f(g,t) <0, V>0, (3.2.53)
where ((§) is defined in (3.2.21). Integrating (3.2.53) with respect to t, we find

L(€,1) < £(£,0)e2E" v >0, (3.2.54)
exploiting (3.2.50) once again, then the first estimate in (3.2.20) holds. O

Theorem 3.2.3. Let s be a nonnegative integer and Uo = (ﬁo,j&o,ﬁg,wg,éo,?}o,gbo)T €

the system (3.2.12) satisfies the following decay estimates:
[0 @)l < O+ 0 F0E Tl + C1+ 0 Thlls  (3.255)
for k+1<s. Here C is a positive constant.

Proof. First, we can see that the functions ((§) satisfy
a&® if [§l <1,

&2 af gl > 1.

Making use of the Plancherel theorem, observing that ]U (&,1)* and E (&,t) are equivalent,
we get

¢(€) >

lozU @)z < / 12T (¢, 1)]2dg < 0/ €2 Fr(¢, 0)Pde
i ; ) . (3.2.56)
=0 [ WO ofas 0 [ e SO0 s = 1+ 1,

1€1>1

7
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For the first integral, we have

A~ 2 2 A 2
I, < sup {‘U(g,())’ }/ Cl¢|PFe<tde < CHUO(t)H%m/ ClE|*Fe=*tde.  (3.2.57)
€1<1 lg1<1 lgl<1

Using the inequality

1
/ ClelPetde < C(1+4) "7, (3.2.58)
0
we deduce that
L <C+8)72 F|00)]2, (3.2.59)
exploiting the inequality
sup {!£I*2le*652t} <O+t (3.2.60)
l|>1

we obtain

) . 2
b< Coup {2} [ cleptn o o)f ae
1€1>1

1€1>1
< C(L+ )05 U122
Combining (3.2.57) and (3.2.61), we get the desired result. Hence the proof is completed. [

(3.2.61)
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