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Notations

Ω: Bounded domain in RN .

Γ: Topological boundary of Ω.

x = (x1, x1, ..., xN):Generic point of RN .

dx = dx1dx1...dxN : Lebesgue measuring on Ω.

∇u: Gradient of u.

∆u: Laplacien of u.

α: a multi-index α = (α1, ...αN), N ∈ N, with αi ≥ 0 for any i ∈ 1, ..., N

f+, f− : max(f, 0), max(−f, 0).

a.e: Almost everywhere.

q: Conjugate of p, i.e 1
p

+ 1
q

= 1.

D(Ω): Space of differentiable functions with compact support in Ω.

D′(Ω): Distribution space.

Ck(Ω): Space of functions k-times continuously differentiable in Ω.

C0(Ω): Space of continuous functions null board in Ω.

Lp(Ω): Space of functions p-th power integrated on Ω with measure of dx.

‖f‖p =
(∫

Ω
|f(x)|p

) 1
p .

W 1,p(Ω) =
{
u ∈ Lp(Ω), ∂u

∂xi
∈ Lp(Ω), i = 1, ..., N

}
.

‖u‖1,p =
(
‖u‖pp + ‖∇u‖pp

) 1
p .

W 1,p
0 (Ω): The closure of D(Ω) in W 1,p(Ω).

W−1,q
0 (Ω): The dual space of W 1,p

0 (Ω).

H: Hilbert space.

H1 = W 1,2(Ω).

H1
0 The closure of D(Ω) in W 1,2(Ω).

If X is a Banach space

Lp(0, T ;X) =
{
f :]0, T [→ X is measurable;

∫ T
0
‖f(t)‖pXdt <∞

}
.

L∞(0, T ;X) =

{
f : [0, T ]→ X is measurable; sup

t∈[0,T ]

ess‖f(t)‖pX

}
.

Ck([0, T ];X): Space of functions k-times continuously differentiable for [0, T ]→ X.

D([0, T ];X): Space of functions continuously differentiable with compact support in [0, T ].

BX = {x ∈ X; ‖x‖ ≤ 1}: unit ball.
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Chapter 1

General Introduction

In the mid-twentieth century, the theory of partial differential equations was considered

the summit of mathematics, due to the difficulty and significance of the problems it solved,

and it’s existence that came later than most areas of mathematics.

Nowadays, many mathematicians are inclined to look disparagingly at this remarkable

area of mathematics as an old-fashioned art of juggling inequalities, or a testing ground for

applications of functional analysis.

The principal source of partial differential equations is found in the continuous-medium

models of mathematical and theoretical physics.

In this thesis, we address some topics related to the controllability and stability of partial

differential equations (PDE).

The controllability problem may be formulated roughly as follows

Consider an evolution system on which we are allowed to act by means of a suitable choice

of the control (the right hand side of the system and the boundary conditions...etc). Given

a time interval 0 < t < T , the initial and final states, the goal is to determine whether there

exists a control driving to the given initial data and to the given final ones in time T .
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This is a classical problem in Control Theory and there is a large literature written on the

subject. We refer to the book of J.-L. Lions [47], as an introduction to the case of systems

modeled by means of PDE.

Regarding the problem of stabilization, the purpose is to attenuate the vibrations by

feedback. it consists of guarantee the decay of the energy of solutions towards 0 in away,

more or less fast.

More precisely, we are interested to determine the asymptotic behavior of the energy denoted

by E(t) and to give an estimation of the decay rate of the energy.

In order to treat the asymptotic behavior, there are several types of stabilization:

The first type consists to analyzing the energy decay of solutions towards 0 i.e. E(t)→ 0 as

t→∞. This is what we name the Strong stabilization.

Concerning the second type, we are interested in the uniform stabilization that is related

to the decay of the energy which exponentially tends to 0 i.e.

E(t) ≤ Ce−γt,∀t > 0,

where C and δ are a positives constant with C depends on the initial data.

In the third type of stabilisation, we study the intermediate situations, in which the

energy decay of the solution is not exponential, but polynomial or logarithmic for example:

E(t) ≤ C

(log(1 + t))k
,∀t > 0,

E(t) ≤ C ′

tα
,∀t > 0,

where C,C ′, α and k are positive constants with C,C ′ depend on the initial data.

The current thesis presents results of existence and stability of solutions for four evolution

problems, and it mainly consists of five chapters. Each chapter is presented as follow:
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Chapter 1

Is entirely devoted to the presentation of the definitions, and the results necessary for this

work.

First, We mention few basic results: functional spaces including spaces of Sobolev, spaces

Lp, and the results of exponential and polynomial decay, and a remind of some methods of

existence used in this work.

Chapter 2

In this chapter we study the following wave equation, with damping effects, and a weak

internal constant delay in a bounded domain.

u′′(x, t)− k04u+ α

∫ t

0

g(t− s)4u(x, s)ds

+µ1(t)u′(x, t) + µ2(t)u′(x, t− τ) = 0, on Ω×]0,+∞[,

u(x, t) = 0, on ∂Ω×]0,+∞[,

u(x, 0) = u0(x), ut(x, t) = u1(x), on Ω,

ut(x, t− τ) = f0(x, t− τ), on Ω×]0, t[.

(1.1)

Where Ω is a bounded domain in RN (N ∈ N∗) with a smooth boundary ∂Ω. The initial

data u0, u1, f0 belong to a suitable space. Moreover, τ > 0 is the time delay term and µ1, µ2

are real functions that will be specified later. Furthermore, k0 is a positive real number and

g is a positive non-increasing function defined on R+.

With conditions on kernel of the term memory g and the functions µ1, µ2, we prove the

global existence of solutions by Faedo-Galerkin methods, and we establish the estimation of

the decay rate for energy using the multiplier method.

Chapter 3

In the same axis, a multidimensional system of viscoelastic wave equations with dynamic

boundary conditions, to the amortization and delay of Kelvin Voigt, were tackled in Chapter

3.
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

utt −∆u−
∫ t

0

g(t− s)∆u(s)ds− δ∆ut = |u|p−1u, in Ω× (0,+∞),

u = 0, on Γ0 × (0,+∞),

utt = −a
[
∂u
∂υ

(x, t) + δ ∂ut
∂υ

(x, t) + µ1(t)ut(x, t) + µ2(t)ut(x, t− τ)
]
,

on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), on Γ1 × (0,+∞).

(1.2)

Where u = u(x, t) , t ≥ 0 , x ∈ Ω and ∆ denote the Laplacian operator with respect to the

x variable. Ω is a regular and bounded domain of RN , (N ≥ 1), ∂Ω = Γ1 ∪ Γ0, Γ1 ∩ Γ0 = ∅
and ∂

∂ν
denote the unit outer normal derivative, µ1 and µ2 are functions depending on t.

Moreover, τ > 0 represents the delay and u0, u1, f0 are given functions belonging to suitable

spaces that will be specified later. This type of problems arises (for example) in modeling of

longitudinal vibrations in a homogeneous bar on which there are viscous effects. The term

∆ut, indicates that the stress is proportional not only to the strain, but also to the strain

rate.

For this problem, we establish a general result of the decay using the Nakao technique.

Chapter 4

The purpose of chapter four is to present a result of existence of solutions for the following

viscoelastic plate equation with a constant delay term and logarithmic nonlinearities

utt(x, t)−∆2u+ φ(x)

(
α∆2u−

∫ t

0

g(t− s)∆2u(x, s)ds

)
+µ1(t)ut(x, t) + µ2(t)ut(x, t− τ) = u ln |u|k in RN×]0,+∞[,

u(x, t) = 0, on ∂RN×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in RN ,

ut(x, t− τ) = f0(x, t− τ), in RN×]0, t[.

(1.3)

Where n ≥ 1, φ(x) > 0 and (φ(x))−1 = ρ(x), such that ρ is a function that will be defined

later. The initial datum u0, u1, f0 are given functions belonging to suitable spaces that will

be specified later. µ1, µ2 are real functions and g is a positive non-increasing function defined

on R+. Moreover τ > 0 represents the time delay term.
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Under certain conditions, we prove the global existence. Also, we establish a general rate of

decrease in solutions.

Chapter 5

The last research problem is presented in chapter five. We investigate the decay properties

of solutions for the initial boundary problem value of a nonlinear wave equation of the form

(|ut|γ−2utt)− Lu−
∫ t

0

g(t− s)Lu(s)ds+ µ1ut(x, t)

+
∫ τ2
τ1
µ2(s)ut(x, t− s)ds = 0, in Ω×]0,+ infty[,

u(x, t) = 0, on Γ×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x,−t) = f0(x, t), in Ω×]0, τ2[.

(1.4)

Where Ω is a bounded domain in RN , N ∈ N∗, with a smooth boundary ∂Ω = Γ. The

constant τ1 is nonnegative such that τ1 < τ2 and µ2 : [τ1, τ2]→ R is a bounded function. The

initial datum (u0, u1, f0) belong to a suitable functional space, where Lu = −div(A∇u) =

−
N∑

i,j=1

(
ai,j(x)

∂u

∂xi

)
and A = (ai,j(x)) is a matrix that will be specified later. We prove the

result of the energy decay by constructing a suitable Lyapunov function.

11
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Chapter 2

Preliminary

In this chapter, we will introduce and state without proofs some important materials needed

in the proof of our results.

2.1 Banach Spaces - Definition and properties

We first review some basic facts from calculus in the most important class of linear spaces ”

Banach spaces”.

Definition 2.1.1 A Banach space is a complete normed linear space X. Its dual space X ′

is the linear space of all continuous linear functional f : X → R.

Proposition 2.1.1 ([71]) X ′ equipped with the norm ‖.‖X′ defined by

‖f‖X′ = sup
{
|f(u)|, ‖u‖ ≤ 1

}
, (2.1)

is also a Banach space. We shall denote the value of f ∈ X ′ at u ∈ X by either f(u) or

〈f, u〉X′,X .

From X ′ we construct the bidual or second dual X ′′ = (X ′)′. Furthermore, with each u ∈ X
we can define ϕ(u) ∈ X ′′ by ϕ(u)(f) = f(u), f ∈ X ′. This satisfies clearly ‖ϕ(u)‖ ≤ ‖u‖.
Moreover, for each u ∈ X there is an f ∈ X ′ with f(u) = ‖u‖ and ‖f‖ = 1. So it follows

that ‖ϕ(u)‖ = ‖u‖.

Definition 2.1.2 Since ϕ is linear we see that

ϕ : X → X ′′,

13



is a linear isometry of X onto a closed subspace of X ′′, we denote this by

X ↪→ X ′′.

Definition 2.1.3 If ϕ is onto X ′′ we say X is reflexive, X ∼= X ′′.

Theorem 2.1.1 (Kakutani)([12]) Let X be Banach space. Then X is reflexive, if and only

if,

BX =
{
x ∈ X : ‖x‖ ≤ 1

}
,

is compact with the weak topology σ(X,X ′). (See the next subsection for the definition of

σ(X,X ′)).

Definition 2.1.4 Let X be a Banach space, and let (un)n∈N be a sequence in X. Then un

converges strongly to u in X if and only if

lim
n→+∞

‖un − u‖X = 0,

and this is denoted by un → u or lim
n→+∞

un = u.

Definition 2.1.5 The Banach space X is said to be separable if there exists a countable

subset D of X which is dense in X, i.e. D = X.

Proposition 2.1.2 ([12]) If X is reflexive and if F is a closed vector subspace of X, then

F is reflexive.

Corollary 2.1.1 ([12]) The following two assertions are equivalent:

(i) X is reflexive. (ii) X ′ is reflexive.

2.1.1 The weak and weak star topologies

Let X be a Banach space and f ∈ X ′. Denote by

ϕf : X → R
x→ ϕf (x),

(2.2)

when f cover X ′, we obtain a family (ϕf )f∈X′ of applications to X in R.

14



Definition 2.1.6 The weak topology on X, denoted by σ(X,X ′), is the weakest topology on

X, for which every (ϕf )f∈X′ is continuous.

We will define the third topology on X ′, the weak star topology, denoted by σ(X ′, X). For

all x ∈ X, denote by

ϕx : X ′ → R
f → ϕx(f) = 〈f, x〉X′,X ,

(2.3)

when x cover X, we obtain a family (ϕx)x∈X of applications to X ′ in R.

Definition 2.1.7 The weak star topology on X ′ is the weakest topology on X ′ for which

every (ϕx)x∈X is continuous.

Since X ⊂ X ′′, it is clear that, the weak star topology σ(X ′, X) is weakest then the topology

σ(X ′, X ′′), and this later is weakest then the strong topology.

Definition 2.1.8 A sequence (un) in X is weakly convergent to u if and only if

lim
n→∞

f(un) = f(u),

for every f ∈ X ′, and this is denoted by un ⇀ u.

Remark 2.1.1 ([12])

1. If un → u ∈ X (strongly) then un ⇀ u (weakly).

2. If dimX < +∞, then the weak convergent equivalent the strong convergent.

Proposition 2.1.3 ([71]) On the compactness in the three topologies in the Banach space

X:

1. First, the unit ball

B ≡
{
x ∈ X : ‖x‖ ≤ 1

}
, (2.4)

in X is compact if and only if dim(X) <∞.

2. Second, the unit ball B′ in X ′( The closed subspace of a product of compact spaces) is

weakly compact in X ′ if and only if X is reflexive.

3. Third, B′ is always weakly star compact in the weak star topology of X ′.

15



Proposition 2.1.4 ([12]) Let (fn) be a sequence in X ′. We have:

1. [fn ⇀
∗ f in σ(X ′, X)]⇔ [fn(x) ⇀∗ f(x), ∀x ∈ X] .

2. If fn → f(strongly) then fn ⇀ f, in σ(X ′, X ′′),

If fn ⇀ f in σ(X ′, X ′′), then fn ⇀
∗ f, in σ(X ′, X).

3. If fn ⇀
∗ f in σ(X ′, X) then ‖fn‖ is bounded and ‖f‖ ≤ lim inf ‖fn‖.

4. If fn ⇀
∗ f in σ(X ′, X) and xn → x(strongly) in X, then fn(xn)→ f(x).

2.1.2 Hilbert spaces

Definition 2.1.9 A Hilbert space H, is a vectorial space supplied with inner product 〈u, υ〉,
such that ‖u‖ =

√
〈u, u〉 is the norm which let H complete.

Theorem 2.1.2 ([12])(Riesz)

If (H; 〈., .〉) is a Hilbert space, 〈., .〉 being a scalar product on H, then H ′ = H in the following

sense: to each f ∈ H ′ there corresponds a unique u ∈ H such that f = 〈u, .〉 and ‖f‖H′ =

‖u‖H .

Remark 2.1.2 From this theorem we deduce that H ′′ = H. This means that a Hilbert space

is reflexive.

Theorem 2.1.3 ([12]). Let (un)n∈N is a bounded sequence in the Hilbert space H, it posses

a subsequence which converges in the weak topology of H.

Theorem 2.1.4 ([12]). In the Hilbert space, all sequence which converges in the weak topol-

ogy is bounded.

Theorem 2.1.5 ([12]). Let (un)n∈N be a sequence which converges to u, in the weak topology

and (υn)n∈N is an other sequence which converge weakly to υ, then

lim
n→∞
〈υn, un〉 = 〈υ, u〉. (2.5)

Theorem 2.1.6 ([12])(Banach-Alaoglu-Bourbaki). Let X be a normed space, then the fol-

lowing unit ball of X ′ is compact in σ(X ′, X)

B′ ≡
{
x ∈ X ′; ‖x‖ ≤ 1

}
. (2.6)
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2.2 Functional Spaces

2.2.1 The Lp(Ω) spaces

Definition 2.2.1 Let 1 ≤ p < ∞ and let Ω be an open domain in RN , N ∈ N. Define the

standard Lebesgue space Lp(Ω) by

Lp(Ω) =

{
f : Ω→ R is measurable and

∫
Ω

|f(x)|pdx <∞
}
. (2.7)

If p =∞, we have

L∞(Ω) =
{
f : Ω→ R is measurable and there exists a constant C such that

|f(x)| ≤ C a.e in Ω
}
.

.

Notation 2.2.1 We denote

‖f‖p =

[∫
Ω

|f(x)|pdx

] 1
p

, (2.8)

‖f‖∞ = inf
{
C, |f(x)| ≤ C a.e in Ω

}
. (2.9)

Notation 2.2.2 For 1 ≤ p ≤ ∞, we denote by q the conjugate of pi.e. 1
p

+ 1
q

= 1.

Theorem 2.2.1 ([12]) Lp is a vectorial space, and ‖.‖p is a norm for all 1 ≤ p ≤ ∞.

Theorem 2.2.2 ([12])(Fischer-Riesz) Lp is a Banach space for all 1 ≤ p ≤ ∞.

Remark 2.2.1 In particularly, when p = 2, L2(Ω) equipped with the inner product

〈f, g〉L2(Ω) =

∫
Ω

f(x)g(x)dx, (2.10)

is a Hilbert space.

Theorem 2.2.3 ([12]) For 1 < p <∞, Lp(Ω) is a reflexive space.

2.2.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.
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Theorem 2.2.4 ([12]) (Holder’s inequality). Let 1 ≤ p ≤ ∞. Assume that f ∈ Lp(Ω) and

g ∈ Lq(Ω), then fg ∈ L1(Ω) and ∫
Ω

|fg|dx ≤ ‖f‖p‖g‖q.

Lemma 2.2.1 ([12]). Let f ∈ Lp(Ω) ∩ Lq(Ω), where 1 ≤ p ≤ r ≤ q, 1
r

= α
p

+ 1−α
q
, and 0 ≤

α ≤ 1. Then

‖f‖Lr ≤ ‖f‖αLp‖f‖1−α
Lq .

Proposition 2.2.1 ([88]) If µ(Ω) <∞, 1 < p < q <∞, then Lq ↪→ Lp and, if f ∈ Lq(Ω)

‖f‖Lp ≤ µ(Ω)
1
p
− 1
q ‖f‖Lq ,

if f ∈ L∞(Ω) then f ∈ Lp(Ω) and

‖f‖Lp ≤ µ(Ω)
1
p‖u‖L∞ .

Lemma 2.2.2 ([12])( Young’s inequality). Let f ∈ Lp(RN) and g ∈ Lq(RN) with 1 ≤ p ≤
∞, 1 ≤ q ≤ ∞ and 1

r
= 1

p
+ 1

q
− 1 ≥ 0. Then f ∗ g ∈ Lr(RN) and

‖f ∗ g‖Lr(R) ≤ ‖f‖Lp‖g‖Lq .

2.2.3 The Wm,p(Ω) spaces

The theory of Sobolev spaces has been developed by generalizing the notion of classical

derivatives and introducing the idea of weak or generalized derivatives.

• Definition and basic properties. Let Ω be an open subset of RN and N ∈ N. Let α

a multi-index where α = (α1, ..., αN) with αi ≥ 0 for any i ∈ 1, ..., N, |α| =
∑d

i=1 αi and

Dα = Dα1
1 ...DαN

N with Di = ∂
∂xi

.

Proposition 2.2.2 ([53]) Let Ω be an open domain in RN . Then the distribution T ∈ D′(Ω)

is in Lp(Ω) if there exists a function f ∈ Lp(Ω) such that

〈T, ϕ〉 =

∫
Ω

f(x)ϕ(x)dx, for all ϕ ∈ D(Ω),

where 1 ≤ p ≤ ∞ and it’s well-known that f is unique.
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Now, we will introduce the Sobolev spaces. Let 1 ≤ p ≤ ∞, and k ∈ N, the Sobolev space

W k,p(Ω) is the space of functions f ∈ Lp(Ω). which have generalized up to order k such that

Dαf ∈ Lp(Ω) for all |α| ≤ k. For k = 0, we set W 0,p(Ω) = Lp(Ω).

W k,p(Ω) =
{
f ∈ Lp(Ω), Dαf ∈ Lp(Ω), ∀α ∈ NN , |α| ≤ k

}
.

The space W k,p(Ω) becomes a Banach space with the norm

‖f‖Wk,p(Ω) =



( ∑
|α|≤k

‖Dαf‖pLp(Ω)

)1/p

, for 1 ≤ p < +∞,

max
|α|≤k
‖Dαf‖L∞(Ω), for p = +∞.

W k,p(Ω) is a reflexive space for 1 < p <∞, and a separable space for 1 ≤ p <∞.

Definition 2.2.2 Let 1 ≤ p ≤ ∞ and k ∈ N, then the Sobolev space W k,p
0 (Ω) is the closure

of the space C∞0 (Ω) in the norm of the space W k,p(Ω).

It follows from the definition above that the space W k,p
0 (Ω) is a Banach space with the norm

‖.‖Wk,p(Ω). We write Hk
0 (Ω) = W k,2

0 (Ω).

For 1 ≤ p ≤ ∞, the dual space of W k,p(Ω) is denoted by W−k,q(Ω) where q is the conjugate

exponent of p. We usually use the notation W−1,2(Ω) = H−1(Ω) Moreover, for k, l ∈ N, k ≤ l

we have the inclusions

C∞0 (Ω) ⊂ H1
0 (Ω) ⊂ Hk

0 (Ω) ⊂ L2(Ω) ⊂ H−k(Ω) ⊂ H−l(Ω) ⊂ (C∞0 (Ω))′.

Each of these spaces being dense in the following one.

• Embedding results. We turn now on embedding and compact embedding results con-

cerning the Sobolev spaces.

Theorem 2.2.5 ([53]) Let Ω be an open bounded set of RN with a Lipschitz boundary. For

nonnegative integers k, l such that 0 ≤ l ≤ k, we have the continuous embedding W k,p(Ω) ↪→
W l,p(Ω) for all 1 ≤ p ≤ ∞. Moreover, for k ≥ 0, we have W k,r(Ω) ↪→ W k,p(Ω) for all

1 ≤ p ≤ r ≤ ∞.
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Definition 2.2.3 If 1 ≤ p < N , the Sobolev conjugate of p is defined as

p∗ =
Np

N − p
,

Equivalently 1
p∗

= 1
p
− 1

N
. Also p∗ > p.

Theorem 2.2.6 ([12]) (Gagliardo-Nirenberg-Sobolev Inequality). Let 1 ≤ p < N . Then

there exists a constant C > 0 (depending on p and N) such that

‖f‖Lp∗ (RN ) ≤ C‖∇f‖Lp(RN ), ∀f ∈ W 1,p(RN).

In particular, we have the continuous imbedding

W 1,p(RN) ↪→ Lp
∗
(RN).

Corollary 2.2.1 ([12]) For any 1 ≤ p < N , W 1,p(RN) ↪→ Lr(RN) is continuously imbedded,

for all r ∈ [p, p∗].

Theorem 2.2.7 ([12])Equality case, p = N, W 1,N(RN) ↪→ Lr(RN) for all r ∈ [N,∞[.

Theorem 2.2.8 ([12]) Let p > N , W 1,p(RN) ↪→ L∞(RN) .

We now extend the results to proper subsets of RN .

Corollary 2.2.2 ([12]) Let Ω a bounded domain in RN with C1 boundary and Γ = ∂Ω and

1 ≤ p ≤ ∞. We have with continuous imbedding

If 1 ≤ p <∞, then W 1,p(Ω) ⊂ Lp
∗
(Ω), where 1

p∗
= 1

p
− 1

N
.

If p = N, then W 1,p(Ω) ⊂ Lr(Ω), ∀r ∈ [p,+∞[.

If p > N, then W 1,p(Ω) ⊂ L∞(Ω).

Moreover, If p > N we have

∀f ∈ W 1,p(Ω), |f(x)− f(y)| ≤ C|x− y|δ‖f‖W 1,p(Ω) a.e with x, y ∈ Ω,

with δ = 1 − N
p
> 0 and C is a constant which depend on p,N and Ω. In particular

W 1,p(Ω) ⊂ C(Ω).
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Theorem 2.2.9 ([53])(Rellich-Kondrachov). Let Ω a bounded domain in RN with C1 bound-

ary and Γ = ∂Ω and 1 ≤ p ≤ ∞. We have with compact imbedding

If p < N, then W 1,p(Ω) ⊂ Lr(Ω),∀r ∈ [1, p∗[ where 1
p∗

= 1
p
− 1

N
.

If p = N, then W 1,p(Ω) ⊂ Lr(Ω), ∀r ∈ [p,+∞[.

If p > N, then W 1,p(Ω) ⊂ C(Ω).

.

Remark 2.2.2 We remark in particular that

W 1,p(Ω) ⊂ Lr(Ω),

with compact imbedding for 1 ≤ p ≤ ∞ and for p ≤ r < p∗.

• Generalized Sobolev Imbedding

We shall now generalize the results of previous section to all derivative orders of k ≥ 2.

Theorem 2.2.10 ([53]). Let k ≥ 1 be an integer and 1 ≤ p <∞ and. Then

1. If p < N/k, then W k,p(RN) ⊂ Lr(RN) for all r ∈ [p,Np/(N − pk)].

2. If p = N/k then W k,n/k(RN) ⊂ Lr(RN) for all r ∈ [N/k,∞).

3. If p > N/k, then W k,p(RN) ⊂ L∞(RN),

with continuous imbedding.

Lemma 2.2.3 ([12])(Sobolev-Poincaré’s inequality). Let Ω be a bounded open subset of RN ,

then there is a constant C(p,Ω)(depending on p and Ω) such that

If 2 ≤ p ≤ 2N

N − 2
, N ≥ 3 and q ≥ 2, N = 1, 2,

then

‖u‖Lp(Ω) ≤ C(p,Ω)‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω).

Remark 2.2.3 For all ϕ ∈ H2(Ω), ∆ϕ ∈ L2(Ω) and for Γ sufficiently smooth, we have

‖ϕ(t)‖H2(Ω) ≤ C‖∆ϕ(t)‖L2(Ω).
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Proposition 2.2.3 ([12] Green’s formula). For all u ∈ H2(Ω), υ ∈ H1(Ω) we have

−
∫

Ω

∆uυdx =

∫
Ω

∇u∇υdx−
∫
∂Ω

∂u

∂η
υdσ,

where ∂u
∂η

is a normal derivation of u at Γ.

2.2.4 The Lp(0, T,X) spaces

Definition 2.2.4 Let X be a Banach space, denote by Lp(0, T,X) the space of measurable

functions

f :]0, T [→ X

t 7→ f(t),
(2.11)

such that (∫ T

0

‖f(t)‖pXdt
) 1

p

= ‖f‖Lp(0,T,X) <∞, for 1 ≤ p <∞. (2.12)

If p =∞
‖f‖L∞(0,T,X) = sup

t∈]0,T [

ess‖f(t)‖X . (2.13)

Theorem 2.2.11 ([47]). The space Lp(0, T,X) is complete.

We denote by D′(0, T,X) the space of distributions in ]0, T [ which take its values in X and

let us define

D′(0, T,X) = L(D]0, T [, X),

where L(E,F ) is the space of the linear continuous applications of E to F . Since u ∈
D′(0, T,X), we define the distribution derivation as

∂u

∂t
(ϕ) = −u

(
dϕ

dt

)
, ∀ϕ ∈ D(]0, T [),

and since u ∈ Lp(0, T,X), we have

u(ϕ) =

∫ T

0

u(t)ϕ(t)dt, ∀ϕ ∈ D(]0, T [).

We will introduce some basic results on the Lp(0, T,X) space. These results, will be very

useful in the other chapters of this thesis.
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Lemma 2.2.4 ([47]). Let f ∈ Lp(0, T,X) and ∂f
∂t
∈ Lp(0, T,X), (1 ≤ p ≤ ∞), then the

function f is continuous from [0, T ]→ X. i.e. f ∈ C1(0, T,X).

Lemma 2.2.5 (47]). Let V =]0, T [×Ω an open bounded domain in R × Rn, and gµ, g are

two functions in Lq(]0, T [, Lq(Ω)), 1 < q <∞ such that

‖gµ‖Lq(]0,T [,Lq(Ω)) ≤ C, ∀µ ∈ N, (2.14)

and gµ → g in V , then gµ ⇀ g in Lq(V).

Theorem 2.2.12 ([47]). Lp(0, T,X) equipped with the norm ‖.‖Lq(]0,T [,X), 1 ≤ p ≤ ∞ is a

Banach space.

Proposition 2.2.4 ([47]). Let X be a reflexive Banach space, X ′ it’s dual, and 1 ≤ p, q <

∞, 1
p

+ 1
q

= 1. Then the dual of Lp(0, T,X) is identify algebraically and topologically with

Lq(0, T,X ′).

Proposition 2.2.5 ([47]) Let X, Y be Banach space, X ⊂ Y with continuous embedding,

then we have with continuous embedding

Lp(0, T,X) ⊂ Lp(0, T, Y ),

The following compactness criterion will be useful for nonlinear evolution problem, especially

in the limit of the nonlinear terms.

Proposition 2.2.6 ([47])

Let B0, B,B1 be Banach spaces with B0 ⊂ B ⊂ B1. Assume that the embedding B0 ↪→ B is

compact and B ↪→ B1 is continuous. Let 1 < p, q <∞. Assume further that B0 and B1 are

reflexive. Define

W ≡
{
u ∈ Lp(0, T, B0) : u′ ∈ Lq(0, T, B1)

}
. (2.15)

Then, the embedding W ↪→ Lp(0, T, B) is compact.

2.2.5 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them

here.
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Lemma 2.2.6 (The Cauchy-Schwartz’s inequality) Every inner product satisfies the Cauchy-

Schwartz’s inequality

〈x1, x2〉 ≤ ‖x1‖‖x2‖. (2.16)

The equality sign holds if and only if x1 and x1 are dependent.

Lemma 2.2.7 ([12]Young’s inequalities). For all a, b ∈ R+, we have

ab ≤ εap + Cεb
q, (2.17)

where Cε = ε−
1
p−1 .

Lemma 2.2.8 ([12]) For a, b ≥ 0, the following inequality holds

ab ≤ ap

p
+
bq

q
, (2.18)

where, 1
p

+ 1
q

= 1, 1 < p <∞.

2.3 Integral Inequalities

We will recall some fundamental integral inequalities introduced by A. Haraux, V. Komornik

, P.Martinez and A.Guesmia to estimate the decay rate of the energy.

2.3.1 A result of exponential decay

The estimation of the energy decay for some dissipative problems is based on the following

lemma

24



Lemma 2.3.1 ([44]) Let E : R+ −→ R+ be a non-increasing function and assume that

there is a constant A > 0 such that

∀t ≥ 0,

∫ +∞

t

E(τ) dτ ≤ 1

A
E(t). (2.19)

Then we have

∀t ≥ 0, E(t) ≤ E(0) e1−At. (2.20)

Proof 2.3.1 The inequality (2.20) is verified for t ≤ 1
A

, this follows from the fact that E is

a decreasing function. We prove that (2.20) is verified for t ≥ 1
A

. Introduce the function

h : R+ −→ R+, h(t) =

∫ +∞

t

E(τ) dτ.

It is non-increasing and locally absolutely continuous. Differentiating and using (2.19) we

find that

∀t ≥ 0, h′(t) + Ah(t) ≤ 0.

Let

T0 = sup{t, h(t) > 0}. (2.21)

For every t < T0, we have
h′(t)

h(t)
≤ −A,

thus

h(0) ≤ e−At ≤ 1

A
E(0) e−At, for 0 ≤ t < T0. (2.22)

Since h(t) = 0 if t ≥ T0, this inequality holds in fact for every t ∈ R+. Let ε > 0. As E is

positive and decreasing, we deduce that

∀t ≥ ε, E(t) ≤ 1

ε

∫ t

t−ε
E(τ) dτ ≤ 1

ε
h(t− ε) ≤ 1

Aε
E(0) eεt e−At.

Choosing ε = 1
A

, we obtain

∀t ≥ 0, E(t) ≤ E(0) e1−At.

The proof of Lemma 2.3.1 is now completed.
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2.3.2 A result of polynomial decay

Lemma 2.3.2 ([44]) Let E : R+ → R+ be a non-increasing function and assume that there

are two constants q > 0 and A > 0 such that

∀t ≥ 0,

∫ +∞

t

Eq+1(τ) dτ ≤ 1

A
Eq(0)E(t). (2.23)

Then we have

∀t ≥ 0, E(t) ≤ E(0)

(
1 + q

1 + Aq t

)1/q

. (2.24)

Remark 2.3.1 It is clear that Lemma 2.3.1 is similar to Lemma 2.3.2 in the case of q = 0.

Proof 2.3.2 If E(0) = 0, then E ≡ 0 and there is nothing to prove. Otherwise, replacing

the function E by the function E
E(0)

we may assume that E(0) = 1. Introduce the function

h : R+ −→ R+, h(t) =

∫ +∞

t

E(τ) dτ.

It is non-increasing and locally absolutely continuous. Differentiating and using (2.23) we

find that

∀t ≥ 0, −h′ ≥ (Ah)1+q,

where

T0 = sup{t, h(t) > 0}.

Integrating in [0, t] we obtain that

∀0 ≤ t < T0, h(t)−q − h(0)−σ ≥ σω1+qt,

hence

0 ≤ t < T0, h(t) ≤
(
h−q(0) + qA1+q t

)−1/q
. (2.25)

Since h(t) = 0 if t ≥ T0, this inequality holds in fact for every t ∈ R+. Since

h(0) ≤ 1

A
E(0)1+q =

1

A
,
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by (2.23), the right-hand side of (2.25) is less than or equal to:

(
h−q(0) + qA1+q t

)−1/q ≤ 1

A
(1 + Aq t)−1/q. (2.26)

From other hand, E being nonnegative and non-increasing, we deduce from the definition of

h and the above estimate that:

∀s ≥ 0, E
(

1
A

+ (q + 1)s
)q+1 ≤ 1

1
A

+q+1

∫ 1
A

+(q+1)s

s
E(τ)q+1 dτ

≤ A
1+Aqs

h(s) ≤ A
1+Aqs

1
A

(1 + Aqs)−
1
q ,

hence

∀S ≥ 0, E

(
1

A
+ (q + 1)S

)
≤ 1

(1 + Aq S)1/q
.

Choosing t = 1
A

+ (1 + q)s then the inequality (2.24) follows.Note that letting q → 0 in this

theorem we obtain (2.24).

2.3.3 New integral inequalities of P. Martinez

The above inequalities are verified only if the energy function is integrable. We will try to

resolve this problem by introducing some weighted integral inequalities, so we can estimate

the decay rate of the energy when it is slow.

Lemma 2.3.3 ([52]) Let E : R+ → R+ be a non-increasing function and φ : R+ → R+ an

increasing C1 function such that

φ(0) = 0 and φ(t)→ +∞ when t→ +∞. (2.27)

Assume that there exist q ≥ 0 and A > 0 such that∫ +∞

S

E(t)q+1φ′(t) dt ≤ 1

A
E(0)qE(S), 0 ≤ S < +∞. (2.28)

then we have

If q > 0, then E(t) ≤ E(0)

(
1 + q

1 + q Aφ(t)

) 1
q

, ∀t ≥ 0,

If q = 0, then E(t) ≤ E(0) e1−Aφ(t), ∀t ≥ 0.
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Proof of Lemma 2.3.3.

This Lemma is a generalization of Lemma 2.3.1. Let f : R+ → R+ be defined by f(x) :=

E(φ−1(x)), (we notice that φ−1 has a meaning by the hypotheses assumed on φ). f is non-

increasing, f(0) = E(0) and if we set x := φ(t) we obtain f is non-increasing, f(0) = E(0)

and if we set x = φ(t) we obtain for 0 ≤ S < T < +∞

∫ φ(T )

φ(S)

f(x)q+1dx =

∫ φ(T )

φ(S)

E
(
φ−1(x)

)q+1
dx =

∫ T

S

E(t)q+1φ′(t)dt

≤ 1

A
E(0)qE(S) =

1

A
E(0)qf(φ(S)).

Setting s = φ(S) and letting T → +∞, we deduce that

∀s ≥ 0,

∫ +∞

s

f(x)q+1 dx ≤ 1

A
E(0)qf(s).

Thanks to Lemma 2.3.1, we deduce the desired results.

2.3.4 Generalized inequalities of A. Guesmia

Lemma 2.3.4 ([33]) Let E : R+ → R+ differentiable function, λ ∈ R+ and Ψ : R+ → R+

convex and increasing function such that Ψ(0) = 0. Assume that∫ +∞

s

Ψ(E(t)) dt ≤ E(s), ∀s ≥ 0,

E ′(t) ≤ λE(t), ∀t ≥ 0.

Then E satisfies the estimate

E(t) ≤ eτ0λT0d−1
(
eλ(t−h(t))Ψ

(
ψ−1

(
h(t) + ψ(E(0))

)))
, ∀t ≥ 0,

where

ψ(t) =

∫ 1

t

1

Ψ(s)
ds, ∀t > 0,

d(t) =


Ψ(t) if λ = 0,

∀t ≥ 0,∫ t
0

Ψ(s)
s
ds if λ > 0,
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h(t) =


K−1(D(t)), if t > T0,

0 if t ∈ [0, T0],

K(t) = D(t) +
ψ−1

(
t+ ψ(E(0))

)
Ψ
(
ψ−1

(
t+ ψ(E(0))

)) eλt, ∀t ≥ 0,

D(t) =

∫ t

0

eλs ds, ∀t ≥ 0,

T0 = D−1
( E(0)

Ψ(E(0))

)
, τ0 =


0, if t > T0,

1, if t ∈ [0, T0].

Remark 2.3.2 If λ = 0 (that is E is non increasing), then we have

E(t) ≤ ψ−1
(
h(t) + ψ(E(0))

)
, ∀t ≥ 0 (2.29)

where ψ(t) =
∫ 1

t
1

Ψ(s)
ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

Ψ(E(0))
and

h−1(t) = t+
ψ−1

(
t+ ψ(E(0))

)
Ψ
(
ψ−1

(
t+ ψ(E(0))

)) , t > 0.

This particular result generalizes the one obtained by Martinez ([52]) in the particular case

of Ψ(t) = dtp+1 with p ≥ 0, d > 0 and improves the one obtained by Eller, Lagnese and

Nicaise .

Proof. Because E ′(t) ≤ λE(t) imply E(t) ≤ eλ(t−t0)E(t0) for all t ≥ t0 ≥ 0, then, if

E(t0) = 0 for some t0 ≥ 0, then E(t) = 0 for all t ≥ t0, and then there is nothing to prove

in this case. So we assume that E(t) > 0 for all t ≥ 0 without loss of generality. Let:

L(s) =

∫ +∞

s

Ψ(E(t)) dt, ∀s ≥ 0.

We have, L(s) ≤ E(s), for all s ≥ 0. The function L is positive, decreasing and of class

C1(R+) satisfying

−L′(s) = Ψ(E(s)) ≥ Ψ(L(s)), ∀s ≥ 0.
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The function ψ is decreasing, then

(
ψ(L(s))

)′
=
−L′(s)
Ψ(L(s))

≥ 1, ∀s ≥ 0.

Integration on [0, t], we obtain

ψ(L(t)) ≥ t+ ψ(E(0)), ∀t ≥ 0. (2.30)

Since Ψ is convex and Ψ(0) = 0, we have

Ψ(s) ≤ Ψ(1)s, ∀s ∈ [0, 1] and Ψ(s) ≥ Ψ(1)s, ∀s ≥ 1,

then limt→0 ψ(t) = +∞ and [ψ(E(0)),+∞[⊂ Image (ψ). Then (2.30) imply that

L(t) ≤ ψ−1
(
t+ ψ(E(0))

)
, ∀t ≥ 0. (2.31)

Now, for s ≥ 0, let

fs(t) = e−λt
∫ t

s

eλτ dτ, ∀t ≥ s.

The function fs is increasing on [s,+∞[ and strictly positive on ]s,+∞[ such that

fs(s) = 0 and f ′s(t) + λfs(t) = 1, ∀t ≥ s ≥ 0,

and the function d is well defined, positive and increasing such that:

d(t) ≤ Ψ(t) and λtd′(t) = λΨ(t), ∀t ≥ 0,

then
∂τ

(
fs(τ)d(E(τ))

)
= f ′s(τ)d(E(τ)) + fs(τ)E ′(τ)d′(E(τ))

≤
(

1− λfs(τ)
)

Ψ(E(τ)) + λfs(τ)Ψ(E(τ))

= Ψ(E(τ)), ∀τ ≥ s ≥ 0.

Integrating on [s, t], we obtain

L(s) ≥
∫ t

s

Ψ(E(τ)) dτ ≥ fs(t)d(E(t)), ∀t ≥ s ≥ 0. (2.32)
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Since limt→+∞ d(s) = +∞, d(0) = 0 and d is increasing, then (2.31) and (2.32) imply

E(t) ≤ d−1

 inf
s∈[0,t[

ψ−1
(
s+ ψ(E(0))

)
fs(t)

 , ∀t > 0. (2.33)

Now, let t > T0 and

J(s) =
ψ−1

(
s+ ψ(E(0))

)
fs(t)

, ∀s ∈ [0, t[.

The function J is differentiable and we have

J ′(s) = f−2
s (t)

[
e−λ(t−s)ψ−1

(
s+ ψ(E(0))

)
− fs(t)Ψ

(
ψ−1

(
s+ ψ(E(0))

))]
.

Then

J ′(s) = 0 ⇔ K(s) = D(t) and J ′(s) < 0 ⇔ K(s) < D(T ).

Since K(0) = E(0)
Ψ(E(0))

, D(0) = 0 and K and D are increasing (because ψ−1 is decreasing and

s 7→ s
Ψ(s)

, s > 0, is non increasing thanks to the fact that Ψ is convex). Then, for t > T0,

inf
s∈[0,t[

J(s) = J
(
K−1(D(t))

)
= J(h(t)).

Since h satisfies J ′(h(t)) = 0, we conclude from (2.33) our desired estimate for t > T0.

For t ∈ [0, T0], we have just to note that E ′(t) ≤ λE(t) and the fact that d ≤ Ψ implies

E(t) ≤ eλtE(0) ≤ eλT0E(0) ≤ eλT0Ψ−1
(
eλtΨ(E(0))

)
≤ eλT0d−1

(
eλtΨ(E(0))

)
.

Remark 2.3.3 Under the hypotheses of Lemma 2.3.4, we have lim
t→+∞

E(t) = 0. Indeed, we

have just to choose s = 1
2
t in (2.33) instead of h(t) and note that d−1(0) = 0, lim

t→+∞
ψ−1(t) = 0

and lim
t→+∞

f 1
2
t(t) > 0.
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Lemma 2.3.5 ([Guesmia [33]) Let E : R+ −→ R+ be a differentiable function, a : R+ −→
R∗+ and λ : R+ −→ R+ two continuous functions. Assume that there exist r ≥ 0 such that∫ +∞

s

Er+1(t)dt ≤ a(s)E(s),∀s ≥ 0, (2.34)

E ′(t) ≤ λ(t)E(t), ∀t ≥ 0. (2.35)

Then E satisfies for all t ≥ 0,

E(t) ≤ E(0)

ω(0)
ω(h(t)exp(λ̃(t)− λ̃(h(t)))exp(−

∫ h(t)

0

ω(τ)dτ), if r = 0

E(t) ≤ ω(h(t))exp(λ̃(t)− λ̃(h(t)))

[(
ω(0)

E(0)

)r
+ r

∫ h(t)

0

ω(τ)r+1dτ

]−1/r

and if r > 0

where λ̃(t) =

∫ t

0

λ(τ)dτ.

Proof of Lemma 2.3.5.

If E(s) = 0 or a(s) = 0 for one s ≥ 0, the first inequality implies E(t) = 0 for t ≥ s,then we

can suppose that E(t) > 0 and a(t) > 0 for t ≥ 0.

By putting ω = 1
a

and Ψ(s) =

∫ +∞

s

Er+1(t)dt, we have

Ψ(s) ≤ 1

ω(s)
E(s), ∀s ≥ 0. (2.36)

The function Ψ is decreasing, positive and of class C1 on R+ and verifies:

Ψ′(s) = −Er+1(s) ≤ −(ω(s)Ψ(s))r+1, ∀s ≥ 0

then

Ψ(s) ≤ Ψ(0)exp

(∫ s

0

ω(τ)dτ

)
≤ E(0)

ω(0)
exp

(∫ s

0

ω(τ)dτ

)
if r = 0 (2.37)

Ψ(s) ≤
(

(
ω(0)

E(0)
)r +

∫ s

0

(ω(τ))r+1dτ

)−1/r

if r > 0 (2.38)
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Now we put for all s ≥ 0,

fs(t) = exp(−(r + 1)λ̃(t))

∫ t

s

exp((r + 1)λ̃(τ))dτ, ∀t ≥ s (2.39)

where fs(s) = 0 and f ′s(t) + (r + 1)λ(t)fs(t) = 1 , ∀t ≥ s ≥ 0. Under the second hypothesis

in the lemma, we deduce

Er+1(t) ≥ ∂t(fs(t)E
r+1(t)); ∀t ≥, s ≥ 0 (2.40)

hence

Ψ(s) ≥
∫ g(s)

s

Er+1(t) ≥ fs(g(s))Er+1(g(s))); ∀s ≥ 0 (2.41)

where g : R+ −→ R+∗ with Is(g(s)) = 0 and Is is defined by

Is(t) = (ω(s))r+1

∫ t

s

exp((r + 1)λ̃(τ))dτ

Let t > g(0) and s = h(t) where

h(t) =

{
0 if t ∈ [0, g(0)]

max g−1(t) if t ∈]g(0),+∞[

Hence we have g(s) = t and we deduce from (2.41) that for all t ≥ g(0), we have

Ψ(h(t)) ≥ fh(t)(t)E
r+1(t) =

(
exp(−(r + 1)λ̃(t))

∫ t

h(t)

exp((r + 1)λ̃(τ))dτ

)
Er+1(t)

We conclude from (2.37) and (2.38) that for all t > g(0), we obtain

E(t) ≤ E(0)

ω(0)
exp(λ̃(t))

(∫ t

h(t)

exp(λ̃(τ))dτ

)−1

exp

(
−
∫ h(t)

0

ω(τ)dτ

)
if r = 0

and

E(t) ≤ exp(λ̃(t))

(∫ t

h(t)

exp((r + 1)λ̃(τ))dτ

) −1
r+1

×(
( ω(0)
E(0)

)r + r

∫ h(t)

0

(ω(τ))r+1dτ

) −1
r(r+1)

if r > 0.
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The fact that I th(t) = Is(g(s)) = 0, we get the result of the lemma for t > g(0). If t ∈ [0, g(0)]

the second inequality of the lemma implies that

E(t) ≤ E(0)exp(λ̃(t)).

Since h(t) = 0 on [0, g(0)] then E(0)exp(λ̃(t)) is identically equal to the left hand side of the

results of the lemma.That conclude the proof.

Lemma 2.3.6 ([Guesmia 33]) Let E : R+ −→ R+ be a differentiable function, a1, a2 ∈ R∗+
and a3, λ, r, p ∈ R+ such that

a3λ(r + 1) < 1 and for all 0 ≤ s ≤ T < +∞,∫ T

s

Er+1(t)dt ≤ a1(s)E(s) + a2E
p+1(s) + a3E

r+1(T ),

E ′(t) ≤ λE(t), ∀t ≥ 0.

Then there exist two positive constants ω and c such that for all t ≥ 0,

E(t) ≤ ce−ωt, if r = 0

E(t) ≤ c(1 + t)−1/r, if r > 0 and λ = 0

E(t) ≤ c(1 + t)
−1

r(r+1) , if r > 0 and λ > 0

Proof of Lemma 2.3.6.

We show that E verifies the inequality (2.34). Applying the lemma (2.3.5), we have

a3E
r+1(T ) = a3

∫ T

s

E ′r+1(t)dt+ a3E
r+1(s) ≤ a3(r + 1)

∫ T

s

λEr+1(t)dt+ a3E
r+1(s).

Under (2.34), we obtain ∫ +∞

s

Er+1(t)dt ≤ b(s)E(s), ∀s ≥ 0, (2.42)
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where

b(s) =
a1 + a2E

p(s) + a3E
r(s)

1− a3λ(r + 1)
, ∀s ≥ 0.

We consider the function f0 defined in (2.39)and integrating on [0, s] the inequality

Er+1(t) ≥ ∂t(f0(t)Er+1(t)), ∀t ≥ 0,

we obtain under (2.42)

b(0)E(0) ≥
∫ s

0

Er+1(t)dt ≥ f0(s)Er+1(s), ∀s ≥ 0,

then

E(s) ≤
(
b(0)E(0)

f0(s)

) 1
r+1

, ∀s ≥ 0.

On the other hand, the conditions of the lemma implies that

E(s) ≤ E(0)exp(λ̃(s), ∀s ≥ 0.

Hence

E(s) ≤ min

{
E(0)exp(λ̃(s),

(
b(0)E(0)

f0(s)

) 1
r+1

}
= d(s), ∀s ≥ 0.

d is continuous and positive and

b(s) ≤ a1 + a2(d(s))p + a3(d(s))r

1− a3λ(r + 1)
, ∀s ≥ 0.

Hence we can conclude from (2.42) the first inequality (2.34) of the lemma (2.3.5) with

a(s) =
a1 + a2(d(s))p + a3(d(s))r

1− a3λ(r + 1)
, ∀s ≥ 0.

This completes the proof.
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2.4 Existence Methods

2.4.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in the

separable Hilbert space with the inner product 〈., .〉 and the associated norm ‖.‖ .

(P )

{
u′′(t) + A(t)u(t) = f(t), t ∈ [0, T ]

(x, 0) = u0(x), u′(x, 0) = u1(x);

where u and f are unknown and given function, respectively, mapping the closed interval

[0, T ] ⊂ R into a real separable Hilbert space H. A(t) (0 ≤ t ≤ T ) are linear bounded

operators in H acting in the energy space V ⊂ H.

Assume that 〈A(t)u(t), v(t)〉 = a(t;u(t), v(t)), for all u, v ∈ V ; where a(t; ., .) is a bilinear

continuous in V. The problem (P ) can be formulated as: Found the solution u(t) such that

(P̃ )


u ∈ C([0, T ];V ), u′ ∈ C([0, T ];H)

〈u′′(t), v〉+ a(t;u(t), v) = 〈f, v〉 in D′(]0, T [)

u0 ∈ V , u1 ∈ H.

This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let Vm a sub-space of V with the finite dimension dm, and let {wjm} one basis of Vm such that

1. Vm ⊂ V (dimVm <∞), ∀m ∈ N

2. Vm → V such that, there exist a dense subspace ϑ in V and for all υ ∈ ϑ we can get

sequence {um}m∈N ∈ Vm and um → u in V.

3. Vm ⊂ Vm+1 and ∪m∈NVm = V.

We define the solution um of the approximate problem

(Pm)


um(t) =

∑dm
j=1 gj(t)wjm

um ∈ C([0, T ];Vm), u′m ∈ C([0, T ];Vm) , um ∈ L2(0, T ;Vm)

〈u′′m(t), wjm〉+ a(t;um(t), wjm) = 〈f, wjm〉, 1 ≤ j ≤ dm

um(0) =
∑dm

j=1 ξj(t)wjm , u′m(0) =
∑dm

j=1 ηj(t)wjm
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where
dm∑
j=1

ξj(t)wjm −→ u0 in V as m −→∞

dm∑
j=1

ηj(t)wjm −→ u1 in V as m −→∞.

By virtue of the theory of ordinary differential equations, the system (Pm) has unique local

solution which is extend to a maximal interval [0, tm[ by Zorn lemma since the non-linear

terms have the suitable regularity. In the next step, we obtain a priori estimates for the

solution, so that can be extended outside [0, tm[ to obtain one solution defined for all t > 0.

2.4.2 A priori estimation and convergence

Using the following estimation

‖um‖2 + ‖u′m‖2 ≤ C

{
‖um(0)‖2 + ‖u′m(0)‖2 +

∫ T

0

‖f(s)‖2ds

}
; 0 ≤ t ≤ T,

and the Gronwall lemma we deduce that the solution um of the approximate problem (Pm)

converges to the solution u of the initial problem (P ). The uniqueness proves that u is the

solution.

Lemma 2.4.1 (Gronwall’s lemma). Let T > 0, g ∈ L1(0, T ), g ≥ 0 a.e and c1, c2 are

positives constants. Let ϕ ∈ L1(0, T ) ϕ ≥ 0 a.e such that gϕ ∈ L1(0, T ) and

ϕ(t) ≤ c1 + c2

∫ t

0

g(s)ϕ(s)ds a.e in (0, T ),

then, we have

ϕ(t) ≤ c1exp

(
c2

∫ t

0

g(s)ds

)
a.e in (0, T ).

2.4.3 Semigroups approach

Definition 2.4.1 ([88]). Let X be a Banach space. A one parameter family T (t) for 0 ≤
t < ∞ of bounded linear operators from X into X is a semigroup bounded linear operator

on X if
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• T (0) = I, (I is the identity operator on X).

• T (t+ s) = T (t).T (s) for every t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0.

The linear operator A defined by

D(A) =

{
x ∈ X; lim

t→0

T (t)x− x
t

exists

}
and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt

∣∣
t=0
, ∀x ∈ D(A)

is the infinitesimal generator of the semigroup T (t) and D(A) is the domain of A.

Theorem 2.4.1 ([88])(Lumer-Phillips). Let A be a linear operator with dense domain D(A)

in X

• If A is dissipative and there is a λ0 > 0 such that the range , R(λ0I −A) = X, then A

is the infinitesimal generator of a C0 semigroup of contraction on X.

• If A is the infinitesimal generator of a C0 semigroup of contractions on X then

R(λ0I − A) = X, ∀λ > 0 and A is dissipative.
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Chapter 3

Global existence and asymptotic

behavior of solutions for a viscoelastic

wave equation with a constant delay

term

3.1 Introduction

In this chapter we consider the following Cauchy problem of the form

u′′(x, t)− k0∆u+ α

∫ t

0

g(t− s)∆u(x, s)ds

+µ1(t)u′(x, t) + µ2(t)u′(x, t− τ) = 0, on Ω×]0,+∞[

u(x, t) = 0, on ∂Ω×]0,+∞[

u(x, 0) = u0(x), ut(x, t) = u1(x), on Ω

ut(x, t− τ) = f0(x, t− τ), on Ω×]0, t[

(3.1)

Where Ω is a bounded domain in RN (N ∈ N∗) with a smooth boundary ∂Ω. The initial

data u0, u1, f0 belong to a suitable space. Moreover, τ > 0 is the time delay term and µ1, µ2

are real functions that will be specified later. Furthermore k0 is a positive real number and

g is a positive non-increasing function defined on R+.

In recent years, the PDEs with time delay effects have become an active area of research.
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Many authors have focused on this problem ( see ([8],[2],[3],[17],[61],[79]).

The presence of delay may lead to a source of instability. In [22] for example, R. Datko, J.

Lagnese and M. P. Polis proved that a small delay may destabilize a system.

S. Nicaise, C. Pignotti studied in [56] the wave equation with a linear internal damping term

with constant delay and determined suitable relations between µ0 and µ1 > 0 in which the

stability or alternatively instability takes place.

After that, they studied in [60] the stabilization problem by interior damping of the wave

equation with boundary time-varying delay in a bounded and smooth domain. By introduc-

ing suitable Lyapunov functionals, exponential stability estimates are obtained if the time

delay effect is appropriately compensated by the internal damping.

It is worth mentioning that Z. Y. Zhang et al. [80] recently have investigated global exis-

tence and uniform decay for wave equation with dissipative term and boundary damping.

Under some assumptions on nonlinear feedback function. They have obtain the results by

means of Galerkin method and the multiplier technique. More precisely, they introduced a

new variables and transformed the boundary value problem into an equivalent one with zero

initial data by argument of compactly and monotonicity. More details are present in [82].

Later on, Zhang et al. studied in [84] the well posedness and uniform stability of strong and

weak solutions of the nonlinear generalized dissipative Klein-Gordon equation with nonlin-

ear damped boundary conditions. Also, the authors proved the well posedness by means of

nonlinear semigroup method and obtain the uniform stabilization by using the perturbed

energy functional method. In another works, Zai-Yun Zhang and al ([80],[82]) considered

a more general problem than (1.1). Their proof of the existence is based on the Galerkin

approximation. For strong solutions, their approximation requires a change of variables to

transform the main problem into an equivalent problem with initial value equals zero. Espe-

cially, they overcome some difficulties, that is, the presence of nonlinear terms and nonlinear

boundary damping bringing up serious difficulties when passing to the limit, by combining

arguments of compactly and monotonicity.

F. Tahamtani and A. Peyravi [76] investigated the nonlinear viscoelastic wave equation with

dissipative boundary conditions:

u′′ − k04u+ α

∫
g(t− s)div[a(s)∇u(s)]ds+ (k1 + b(x)|u′|m−2)u′ = |up−2|u
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They showed that the solutions blow up in finite time under some restrictions on initial data

and for arbitrary initial energy in some case. In another case, they proved a nonexistence

result when the initial energy is less than potential well depth.

Wenjun Liu [48] studied the weak viscoelastic equation with an internal time-varying delay

term

u′′(x, t)− k04u+ α(t)

∫
g(t− s)4u(x, s)ds+ a0u

′(x, t) + a1u
′(x, t− τ(t)) = 0

in a bounded domain. By introducing suitable energy and Lyapunov functionals, he estab-

lishes a general decay rate estimate for the energy under suitable assumptions.

A. Benaissa, A. Benguessoum and S. A. Messaoudi [5] considered the wave equation with a

weak internal constant delay term:

u′′(x, t)−4u+ µ1(t)u′(x, t) + µ2(t)u′(x, t− τ) = 0 on × [0,+∞[

In a bounded domain. Under appropriate conditions on µ1 and µ2, they proved global

existence of solutions by the Faedo-Galerkin method and establish a decay rate estimate for

the energy by using the multiplier method.

However, according to our best knowledge, in the present work, we have to treat Eq.(1.1)

with a delay term and it is not considered in the literature. The proof of the existence is

based on the Galerkin approximation. The content of this chapter is organized as follows. In

Section 2, we provide assumptions that will be used later. We state and prove the existence

result. In Section 3, we establish the energy decay result that is given in Theorem 5.2.3.

3.2 Preliminary Results

In the following, we will give sufficient conditions and assumptions that guarantee that the

problem 3.1 has a global solution.

(H1) g is a positive bounded function satisfying

k0 − α
∫ ∞

0

g(s)ds = l > 0, α > 0,
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and there exists a positive non-increasing function η such that for t > 0 we have

g′(t) ≤ −η(t)g(t), η(t) > 0

(H2) µ1 : R+ → R+ is a nonincreasing function of class C1(R+) satisfying∣∣∣∣µ′1(t)

µ1(t)

∣∣∣∣ ≤M, (3.2)

(H3) µ2 : R+ → R is a function of class C1(R+), which is not necessarily positive or

monotone, such that

|µ2(t)| ≤ βµ1(t), (3.3)

|µ′2(t)| ≤ M̄µ1(t), (3.4)

for some 0 < β < 1 and M̄ > 0. For the relaxation function g we assume

We also need the following technical Lemmas in the course of our investigation.

Lemma 3.2.1 (52) For any g ∈ C1 and ϕ ∈ H1
0 (0, T ) we have∫ t

0

∫
Ω

g(t− s)ϕϕtdxds = − d

dt

(
1

2
(g ◦ ϕ)(t)− 1

2

∫ t

0

g(s)ds‖ϕ‖2
2

)
− 1

2
g(t)‖ϕ‖2

2

+
1

2
(g′ ◦ ϕ)(t),

where

(g ◦ ϕ)(t) =

∫ t

0

∫
Ω

g(t− s)|ϕ(s)− ϕ(t)|2dx ds.

In order to prove the existence of solutions of the problem (3.1) we introduce like in [80] the

unknown auxiliary

z(x, ρ, t) = u′(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then we have

τzt(x, ρ, t) + zρ(x, ρ, t) = 0.
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Therefore the problem (3.1) takes the form

u′′(x, t)− k0∆u(x, t) + α

∫ t

0

g(t− s)∆u(x, s)ds

+µ1(t)u′(x, t) + µ2(t)z(x, 1, t) = 0, on Ω×]0,+∞[

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ Ω, ρ ∈ (0, 1), t > 0

u(x, t) = 0, on ∂Ω×]0,+∞[

u(x, 0) = u0, u
′(x, t) = u1, on Ω

z(x, ρ, 0) = f0(x,−τρ) on Ω×]0, t[

(3.5)

Now, we are in the position to state our main result, namely the theorem of global

existence.

Theorem 3.2.1 Let (u0, u1, f0) ∈ H1
0 (Ω) × L2(Ω) × L2(Ω × (0, 1)) be given. Assume that

assumptions (H1) -(H3) are fulfilled. Then the problem (3.5) admits a unique global weak

solution (u, z) satisfying

u ∈ C([0, T );H1
0 (Ω)), u′ ∈ C([0, T );H1

0 (Ω)), z ∈ C([0, T );L2(Ω× (0, 1))

To prove this theorem, we need the following lemma. First we define the energy associated

to the solution of the problem (3.5) by

E(t) =
1

2
‖u′‖2

2 +

(
k0

2
− α

2

∫ t

0

g(s)ds

)
‖∇u‖2

2

+
α

2
(g ◦ ∇u)(t) +

1

2
ξ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx,

(3.6)

where ξ is non-increasing function such that

τβ < ζ < τ(2− β), t > 0, (3.7)

where ξ(t) = ζµ1(t).

Lemma 3.2.2 Let (u, z) be a regular solution of problem (3.5). Then the energy functional

defined by (3.6) satisfies

E ′(t) ≤ −
(
µ1(t)− ξ(t)

2τ
− µ2(t)

2

)
‖u′(x, t)‖2 −

(ξ(t)
2τ
− µ2(t)

2

)
‖z(x, 1, t)‖2 ≤ 0. (3.8)
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Proof 3.2.1 Multiplying the first equation in (3.5) by u′(x, t), integrating over Ω and using

Green’s identity we obtain

1

2

d

dt

(
‖u′‖2

2 + k0‖∇u‖2
2

)
+ µ1(t)‖u′‖2

2 + µ2(t)

∫
Ω

u′z(x, 1, t)dx

− α
∫ t

0

g(t− s)
∫

Ω

∇u(x, s)∇u′(x, t)dxds = 0.

(3.9)

We simplify the last term in (3.9) by applying the lemma 3.2.1, we get

− α
∫ t

0

g(t− s)
∫

Ω

∇u(x, s)∇u′(x, t)dxds =
α

2

d

dt
(g ◦ ∇u)

− α

2
(g′ ◦ ∇u) +

α

2
g(t)‖∇u‖2 − α

2

d

dt

∫ t

0

g(s)ds‖∇u‖2.

(3.10)

Replacing (3.10) in (3.9) we arrive at

d

dt

(1

2
‖u′‖2

2 +
(k0

2
− α

2

∫ t

0

g(s)ds
)
‖∇u‖2

2 −
α

2
(g ◦ ∇u)

)
=
α

2
(g′ ◦ ∇u)(t)

− 1

2
g(t)‖∇u‖2

2 − µ1(t)‖u′‖2
2 − µ2(t)

∫
Ω

z(x, 1, s)u′dx.

(3.11)

Multiplying the second equation in (3.5) by ξ(t)z
τ

, where ξ(t) satisfies (3.7) and integrating

over Ω× (0, 1), we obtain

ξ(t)

2

d

dt

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx+
ξ(t)

2τ

∫ 1

0

∫
Ω

d

dρ
z2(x, ρ, t)dxdρ, (3.12)

which gives
1

2

d

dt
ξ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx =
ξ′(t)

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

− ξ(t)

2τ

∫
Ω

z2(x, 1, t)dx+
ξ(t)

2τ

∫
Ω

u′2(x, t)dx = 0.

(3.13)
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A combination of (3.11) and (3.13) leads to

1

2

d

dt

(
‖u′‖2

2 + (k0 − α
∫ t

0

g(s)ds)‖∇u‖2
2

)
+

1

2

d

dt

(
α(g ◦ ∇u) + ξ(t)

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx
)

=
α

2
(g′ ◦ ∇u)− 1

2
g(s)‖∇u‖2

2ds− µ1(t)‖u′n‖2
2ds− µ2(t)

∫
Ω

z(x, 1, s)u′dx

+
ξ′(t)

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx− ξ(t)

2τ

∫
Ω

z2(x, 1, t)dx+
ξ(t)

2τ

∫
Ω

u′2(x, t)dx.

(3.14)

Using the definition (3.6) of E(t), we deduce that

E ′(t) =
α

2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖2

2 − µ1(t)‖u′n‖2
2ds

− µ2(t)

∫
Ω

z(x, 1, s)u′dx+
ξ′(t)

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

− ξ(t)

2τ

∫
Ω

z2(x, 1, t)dx+
ξ(t)

2τ

∫
Ω

u′2(x, t)dx.

(3.15)

Due to Young’s inequality we have

E ′(t) ≤ α

2
(g′ ◦ ∇u)− 1

2
g(t)‖∇u‖2

2ds−
(
µ1(t)− ξ(t)

2τ
− µ2(t)

2

)
‖u′(x, t)‖2

−
(ξ(t)

2τ
− µ2(t)

2

)
‖z(x, 1, t)‖2

(3.16)

Using the assumption (3.7) for ξ(t) we see that

C1 = µ1(t)− ξ(t)

2τ
− µ2(t)

2
> 0, C2 =

ξ(t)

2τ
− µ2(t)

2
> 0,

then we easily deduce that

E ′(t) ≤ −
(
µ1(t)− ξ(t)

2τ
− µ2(t)

2

)
‖u′(x, t)‖2

−
(ξ(t)

2τ
− µ2(t)

2

)
‖z(x, 1, t)‖2 ≤ 0.

(3.17)

This completes the proof of the lemma.
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3.3 Global existence

We will use the Faedo-Galerkin method to prove the global existence of solutions. Let

(wn)n∈N be a basis in H1
0 (Ω) and Wn be the space generated by w1, ..., wn, n ∈ N. Now,

we define for 1 ≤ i ≤ n the sequence ϕi(x, ρ) as follows ϕi(x, 0) = wi(x).Then, we may

extend ϕi(x, 0) by ϕi(x, ρ) over (L2 × [0, 1]) and denote Vn to be the space generated by

ϕ1, ..., ϕn, n ∈ N. We consider the approximate solution (un(t), zn(t)) as follow for any given

i

un(t) =
n∑
i=0

cin(t)wi zn(t) =
n∑
i=0

rin(t)ϕi,

which satisfies∫
Ω

u′′n(t)widx− k0

∫
Ω

4un(t)widx+ α

∫ t

0

g(t− s)
∫

Ω

4un(s)widxds

+µ1(t)

∫
Ω

u′n(t)widx+ µ2(t)

∫
Ω

zn(x, 1, t)widx = 0,

(3.18)

and ∫
Ω

(τznt(x, ρ, t) + znρ(x, ρ, t))ϕidx = 0. (3.19)

The system is completed by the initials conditions:

un(0) =
n∑
i=0

cin(0)wi → u0 in H1
0 (Ω) when n→∞

u′n(0) =
n∑
i=0

c′in(0)wi → u1 in H1
0 (Ω) when n→∞

zn(0) =
n∑
i=0

rin(0)ϕi → f0 in L2 (Ω× (0, 1)) when n→∞.

Then the problem (3.5) can be reduced to a second-order ODE system and we infer that

this problem admits a unique local solution (un(t), zn(t)) in [0, tn[ where 0 < tn < T . This

solution can be extended to [0;T [, 0 < T ≤ +∞ by Zorn lemma. In the next step we shall

prove that this solution is global.
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1. First estimate. Multiplying the equation in (3.18) by c′in(t) and summing with respect

to i we obtain∫
Ω

u′′n(t)u′n(t)dx+ k0

∫
Ω

∇un(t)∇u′n(t)dx− α
∫ t

0

g(t− s)
∫

Ω

∇un(s)∇u′n(t)dxds

+ µ1(t)

∫
Ω

u′2n (t)dx+ µ2(t)

∫
Ω

zn(x, 1, t)u′n(t)dx = 0,

then

1

2

d

dt

(
‖u′n‖2

2 +
k0

2
‖∇un‖2

2

)
+ µ1(t)‖u′n‖2

2 + µ2(t)

∫
Ω

zn(x, 1, t)u′n(t)dx

− α
∫ t

0

g(t− s)
∫

Ω

un(t)∇u′n(t)dxds = 0.

(3.20)

We use the lemma 3.2.1 to simplify the last term in (3.20)

− α
∫ t

0

g(t− s)
∫

Ω

un(t)∇u′n(t)dxds =
α

2

d

dt
(g ◦ ∇un)(t)

− α

2
(g′ ◦ ∇un)(t) +

α

2
g(t)‖∇un(t)‖2 − α

2

d

dt

∫ t

0

g(s)ds‖∇un(t)‖2.

(3.21)

Replacing (3.21) in (3.20) and integrating over (0, t) we arrive at

1

2
‖u′n‖2

2 +
(k0

2
− α

2

∫ t

0

g(s)ds
)
‖∇un‖2

2 −
α

2
(g ◦ ∇un)(t)

− α

2

∫ t

0

(g′ ◦ ∇un)(s)ds+
1

2

∫ t

0

g(s)‖∇un‖2
2ds+

∫ t

0

µ1(s)‖u′n‖2
2ds

+

∫ t

0

µ2(s)

∫
Ω

z(x, 1, s)u′n(t)dxds =
1

2
‖u1n‖2 +

k0

2
‖∇u0n‖2.

(3.22)

Multiplying the equation (3.34) by rin(t), summing with respect to i and integrating

over (0, 1), we obtain

ξ(t)

2

d

dt

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx+

ξ(t)

2τ

∫ 1

0

∫
Ω

d

dρ
z2
n(x, ρ, t)dxdρ = 0, (3.23)
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which gives

1

2

[ d
dt
ξ(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx− ξ′(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx

]
+
ξ(t)

2τ

∫
Ω

z2
n(x, 1, t)dx− ξ(t)

2τ

∫
Ω

u′2n (x, t)dx = 0.

(3.24)

Integrating (3.24) over (0, t) we get

1

2

[
ξ(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx−

∫ t

0

∫
Ω

∫ 1

0

ξ′(s)z2
n(x, ρ, s)dρdxds

]
+

1

2τ

∫ t

0

∫
Ω

ξ(s)z2
n(x, 1, s)dxds

− 1

2τ

∫ t

0

∫
Ω

ξ(t)u′2n (x, t)dxds =
ξ(0)

2
‖f0‖2.

(3.25)

Combining (3.22) and (5.13) we find

1

2
‖u′n‖2

2 +
(k0

2
− α

2

∫ t

0

g(s)ds
)
‖∇un‖2

2 +
1

2
ξ(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx

+
α

2
(g ◦ ∇un)(t)− α

2

∫ t

0

(g′ ◦ ∇un)(s)ds+
α

2

∫ t

0

g(s)‖∇un‖2
2ds

+

∫ t

0

µ1(s)‖u′n‖2
2ds+

∫ t

0

µ2(s)

∫
Ω

z(x, 1, s)u′n(t)dxds

− 1

2

∫
Ω

∫ t

0

∫ 1

0

ξ′(s)z2
n(x, ρ, s)dρdxds+

1

2τ

∫ t

0

∫
Ω

ξ(s)z2
n(x, 1, s)dxds

− 1

2τ

∫ t

0

∫
Ω

ξ(t)u′2n (x, t)dxds =
1

2
‖u1n‖2 +

k0

2
‖∇u0n‖2 +

ξ(0)

2
‖f0‖2.

(3.26)

Using Hölder’s and Young’s inequalities on the eighth term of (3.26) we obtain∫ t

0

µ2(s)

∫
Ω

z(x, 1, s)u′n(t)dxds ≤ 1

2

∫ t

0

µ2(s)

∫
Ω

z2(x, 1, s)dxds

+
1

2

∫ t

0

µ2(s)

∫
Ω

u′2n (t)dxds.

(3.27)

48



Then the equation (3.26) takes the form

En(t)− α

2

∫ t

0

(g′ ◦ ∇un)(s)ds+
1

2

∫ t

0

g(s)‖∇un‖2
2ds

+

∫ t

0

(
µ1(s)− ξ(s)

2τ
− µ2(s)

2

)
‖u′n‖2

2ds

+
1

2

∫
Ω

∫ t

0

∫ 1

0

ξ′(s)z2
n(x, ρ, s)dρdxds

+

∫ t

0

(ξ(s)
2τ
− µ2(s)

2

)∫
Ω

z2
n(x, 1, s)dxds ≤ En(0),

(3.28)

where

En(t) =
1

2
‖u′n‖2

2 +
(k0

2
− α

2

∫ t

0

g(s)ds
)
‖∇un‖2

2

+
α

2
(g ◦ ∇un)(t) +

1

2
ξ(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx,

(3.29)

and

En(0) =
1

2
‖u1n‖2 +

k0

2
‖∇u0n‖2 +

ξ(0)

2
‖f0‖2. (3.30)

Since u0n, u1n, f0 converge we can find a constant L1 > 0 independent of n such that

1

2
‖u′n‖2

2 +
(k0

2
− α

2

∫ t

0

g(s)ds
)
‖∇un‖2

2

+
α

2
(g ◦ ∇un)(t) +

1

2
ξ(t)

∫
Ω

∫ 1

0

z2
n(x, ρ, t)dρdx ≤ L1.

(3.31)

So this estimate gives

un is bounded in L∞(0,∞;H1
0 (Ω))

u′n is bounded in L∞(0,∞;L2(Ω))

zn is bounded in L∞(0,∞;L2(Ω)× (0, 1)).

2. Second estimate. Differentiating (3.15) with respect to t, we get∫
Ω

u′′′n (t)widx− k0

∫
Ω

∆u′n(t)widx+ α

∫ t

0

g(t− s)
∫

Ω

∆u′n(s)widxds

+µ1(t)

∫
Ω

u′′n(t)widx+ µ2(t)

∫
Ω

z′n(x, 1, t)widx+ µ′1(t)

∫
Ω

u′n(t)widx+ µ′2(t)

∫
Ω

zn(x, 1, t)wi = 0,

(3.32)
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Multiplying by c′′in(t) and summing with respect to i we obtain

1

2

d

dt

(
‖u′′n(t)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(t)‖+
α

2
(g ◦ ∇u′)

)
− α

2
(g′ ◦ ∇u′)(t) +

α

2
g(t)‖∇u′‖2

2

+ µ1(t)‖u′′n(t)‖2 + µ′1(t)

∫
Ω

u′n(t)u′′n(t) + µ2(t)

∫
Ω

z′n(x, 1, t)u′′n(t)dx

+ µ′2(t)

∫
Ω

zn(x, 1, t)u′′n(t) = 0

(3.33)

Differentiating (3.16) with respect to t, we get∫
Ω

(τz′′n(x, ρ, t) +
d

dρ
z′n(x, ρ, t))ϕidx = 0. (3.34)

Multiplying by r′in(t) and summing with respect to i we obtain

τ

2
‖z′n‖2

2 +
1

2

d

dρ
‖z′n‖2

2 = 0 (3.35)

Combination give

1

2

d

dt

(
‖u′′n(t)‖2 + µ′1(t)‖u′n(t)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(t)‖

+
α

2
(g ◦ ∇u′) + τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)

− α

2
(g′ ◦ ∇u′)(t) +

1

2
‖z′n(x, 1, t)‖2

2 −
1

2
‖u′′n(t)‖2 +

1

2
g(t)‖∇u′‖2

2

+ µ1(t)‖u′′n(t)‖2 + µ2(t)

∫
Ω

z′n(x, 1, t)u′′n(t)dx

+ µ′2(t)

∫
Ω

zn(x, 1, t)u′′n(t) = 0

(3.36)

Exploiting the Hölder’s, Young’s and Poincaré’s inequalities and the assumptions

(H1), (H2) we have
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1

2

d

dt

(
‖u′′n(t)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(t)‖+
α

2
(g ◦ ∇u′) + τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)

− α

2
(g′ ◦ ∇u′)(t) +

1

2
‖z′n(x, 1, t)‖2

2 −
1

2
‖u′′n(t)‖2 +

1

2
g(t)‖∇u′‖2 + µ1(t)‖u′′n(t)‖2

≤ 1

2
µ′1(t)‖u′′n(t)‖2 +

1

2
‖u′n(t)‖2 +

1

2
µ2(t)‖u′′n(t)‖2 +

1

2
‖z′n(x, 1, t)‖2+

1

2
µ′2(t)‖u′′n(t)‖2 +

1

2
‖zn(x, 1, t)‖2

Then

1

2

d

dt

(
‖u′′n(t)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(t)‖+
α

2
(g ◦ ∇u) + τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)

− α

2
(g′ ◦ ∇u)(t) +

1

2
g(t)‖∇u′‖2(s)

≤ C
(
‖u′′n(t)‖2 + ‖z′n(x, 1, t)‖2

2 + ‖zn(x, 1, t)‖2 + ‖u′n(t)‖2
)

(3.37)

Integrating the last inequality over (0, t) and using (3.6), we get

(
‖u′′n(t)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(t)‖+
α

2
(g ◦ ∇u) + τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)

− α

2

∫ t

0

(g′ ◦ ∇u)(s)ds+
1

2

∫ t

0

g(s)‖∇u‖2(s)ds

≤
(
‖u′′n(0)‖2 + (k0 − α

∫ t

0

g(s)ds)‖∇u′n(0)‖+ τ

∫ 1

0

‖z′n(x, 1, 0)‖2
2dρ
)

+ C

∫ t

0

(
‖u′′n(s)‖2 + ‖z′n(x, 1, s)‖2

2 + ‖zn(x, 1, s)‖2 + ‖u′n(s)‖2
)
ds

(3.38)

using (H1)and the first estimates, then the formula take the form

(
‖u′′n(t)‖2 + l‖∇u′n(t)‖+ τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)

≤ C ′ + C

∫ s

0

(
‖u′′n(t)‖2 + 2‖z′n(x, 1, t)‖2

2 + ‖zn(x, 1, t)‖2 + 2‖u′n(t)‖2
)
ds

(3.39)

Applying lemma de Gronwal we get
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(
‖u′′n(t)‖2 + ‖∇u′n(t)‖+ τ

∫ 1

0

‖z′n(x, 1, t)‖2
2dρ
)
≤ L2 (3.40)

where L2 = CeC
′T is a positive constant independent of n ∈ N and t ∈ [0, T ). We

observe for estimates (3.31) and (3.40) that

un is bounded in L∞(0,∞;H1
0 (Ω)), u′n is bounded in L2(0,∞;H1

0 (Ω))

u′′n is bounded in L∞(0,∞;L2(Ω)), zn is bounded in L∞(0,∞;L2(Ω)× (0, 1)).

Applying Dunford Pettis theorem, we deduce that there exists a subsequence (ui, zi)

of (un, zn) and we can replace the subsequence (ui, zi) with the sequence (un, zn) such

that

un ⇀ u weak star in L∞(0, T ;H1
0 (Ω)), u′n ⇀ u′ weak star in L2(0, T ;H1

0 (Ω)

u′′n ⇀ u′′ weakly in L2(0, T ;H1
0 (Ω)), zn ⇀ z weak star in L2(0, T ;L2(Ω)× (0, 1)).

Moreover u′′n is bounded in L2(0, T ;H1
0 (Ω)). The same method is used to prove that

u′n is bounded in L2(0, T ;H1
0 (Ω)). Consequently u′n is bounded in H1(0, T ;H1

0 (Ω)).

Furthermore, by Aubins-Lions theorem ([47]) there exists a subsequence (uj) still rep-

resented by the same notation such that u′j ⇀ u′ strongly in L2(0, T ;H1
0 (Ω)), which

implies that

u′j ⇀ u′ a.e. on Ω× (0, T ) and zj ⇀ z a.e. on Ω× (0, T ).

And we have for each wi ∈ L2(Ω), vi ∈ L2(Ω)∫
Ω

(
u′′j − k0∆uj + α

∫
Ω

g(t− s)∆ujds+ µ1u
′
j + µ2zj

)
widx

→
∫

Ω

(
u′′ − k0∆u+ α

∫
Ω

g(t− s)∆uds+ µ1u
′ + µ2z

)
wi,

and ∫
Ω

τ(zjt + zjρ)vidx→
∫

Ω

τ(zt + zρ)vidx.

When j →∞. Then, problem (3.1) admits a global weak solution u.
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3.4 Asymptotic behavior

In this section, we shall investigate the asymptotic behavior of our problem. Our stability

result, namely the exponential decay of the energy is obtained by the following theorem.

Theorem 3.4.1 Let (u0, u1, f0) ∈ (H1
0 (Ω)× L2(Ω)× L2(Ω× (0, 1))) be given. Assume that

the assumptions (H1)-(H3) are fulfilled. Then for some positive constants K, k we obtain

the following decay property

E(t) ≤ E(0)e1−kφ(t).

Proof. Given 0 ≤ S < T <∞ arbitrarily. We multiply the first equation of (3.5) by Epφ′u,

p ∈ R where φ is a function will be chosen later satisfying all the hypotheses of Lemma 2.1

and we integrate over (S, T )× Ω we obtain

0 =

∫ T

S

Epφ′
∫

Ω

uu′′(x, t)dxdt− k0

∫ T

S

Epφ′
∫

Ω

u∆u(x, t)dxdt

+ α

∫ T

S

Epφ′
∫

Ω

∫ t

0

g(t− s)4u(x, s)udsdxdt

+

∫ T

S

Epφ′µ1(t)

∫
Ω

uu′(x, t) + Epφ′µ2(t)

∫
Ω

uu′(x, t− τ)dxdt

=
[
Epφ′

∫
Ω

uu′dx
]T
S
−
∫ T

S

(Epφ′)

∫
Ω

uu′dxdt−
∫ T

S

Epφ′
∫

Ω

u′2dxdt

+ k0

∫ T

S

Epφ′
∫

Ω

|∇u|2dxdt+ α

∫ T

S

Epφ′(g ◦ ∇u(x, t))dt

− α

2

∫ T

S

Epφ′‖∇u‖2

∫ t

0

g(s)dsdt− α

2

∫ T

S

Epφ′
∫ t

0

g(s)‖∇u‖2dsdt

+

∫ T

S

Epφ′µ1(t)

∫
Ω

uu′(x, t)dxdt+

∫ T

S

Epφ′µ2(t)

∫
Ω

uu′(x, t− τ)dx

(3.41)
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Multiplying the second equation of (3.5) by Epφ′ξ(t)e−2τρz and integrating over (S, T )×Ω×
(0, 1) we find

0 =

∫ T

S

∫ 1

0

τEpφ′ξ(t)e−2τρ

∫
Ω

zz′dxdρdt+

∫ T

S

Epφ′ξ(t)e−2τρ

∫
Ω

∫ 1

0

zzρdρdxdt

=
τ

2

[ ∫ 1

0

Epφ′ξ(t)e−2τρ

∫
Ω

z2dxdρ
]T
S
− τ

2

∫ T

S

∫ 1

0

∫
Ω

(Epφ′ξ(t)e−2τρ)′z2dxdρdt

+

∫ T

S

Epφ′
∫

Ω

∫ 1

0

ξ(t)
(1

2

d

dρ
(e−2τρz2) + τe−2τρz2

)
dρdxdt

=
τ

2

[ ∫ 1

0

Epφ′ξ(t)e−2τρ

∫
Ω

z2dxdρ
]T
S
− τ

2

∫ T

S

∫ 1

0

∫
Ω

(Epφ′ξ(t)e−2τρ)′z2dxdρdt

+ τ

∫ T

S

Epφ′ξ(t)

∫
Ω

∫ 1

0

e−2τρz2dxdρ

+
1

2

∫ T

S

Epφ′ξ(t)

∫
Ω

(e−2τz2(x, 1, t)− z2(x, 0, t))dxdt.

(3.42)

Summing (3.41) and (3.42) and taking A = min(1, τe−2τ ) we get

A

∫ T

S

Ep+1φ′dt ≤ −
[
Epφ′

∫
Ω

uu′
]T
S

+

∫ T

S

(Epφ′)′
∫

Ω

uu′dxdt

+
α

2

∫ T

S

Epφ′
∫ t

0

g(s)‖∇u‖2dsdt−
∫ T

S

Epφ′µ1(t)

∫
Ω

uu′(x, t)dxdt

−
∫ T

S

Epφ′µ2(t)

∫
Ω

uz(x, 1, t)dx− τ

2

[ ∫ 1

0

Epφ′ξ(t)e−2τρ

∫
Ω

z2dxdρ
]T
S

+
τ

2

∫ T

S

∫ 1

0

∫
Ω

e−2τρ(Epφ′ξ(t))′z2dxdρdt
3

2

∫ T

S

Epφ′
∫

Ω

u′2dxdt

− 1

2

∫ T

S

Epφ′ξ(t)

∫
Ω

(e−2τz2(x, 1, t)− z2(x, 0, t))dxdt

(3.43)

Now assume that φ is a strictly increasing concave function. So φ′ is a bounded function

on R+. Denote λ the maximum of φ′. By the Cauchy Schwarz’s, Young’s and Poincaré’s

inequalities and the fact that φ′ is bounded and since E is an increasing function, we have∣∣∣Epφ′
∫

Ω

uu′(x, t)dx
∣∣∣ ≤ λc1E

p+1(t), (3.44)
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where c1 = max
(

1, C
2
s

l

)
. From (3.44) we deduce the following estimates

∣∣∣ ∫ T

S

(Epφ′)′
∫

Ω

uu′dxdt
∣∣∣ =

∣∣∣ ∫ T

S

pE ′Ep−1φ′
∫

Ω

uu′(x, t)dxdt+

∫ T

S

Epφ′′
∫

Ω

uu′(x, t)dxdt
∣∣∣

≤ λc1p

∫ T

S

Ep(−E ′)dt+ c1E
p+1(S)

∫ T

S

φ′′(t)dt ≤ λc2E(S)p+1,

(3.45)

where c2 = c1 max(p, 1) and

∣∣∣α
2

∫ T

S

Epφ′
∫ t

0

g(s)‖∇u‖2dsdt
∣∣∣ ≤ λc3E(S)p+1, (3.46)

where c3 = (k0−l)
l

. By the hypothesis (H2), Young’s and Poincaré’s inequalities and (3.44),

we have ∣∣∣ ∫ T

S

Epφ′µ1(t)

∫
Ω

uu′(x, t)dxdt
∣∣∣ ≤ λMβEp+1 + λ

∫ T

S

Ep(−E ′)dt

≤ λc4E
p+1(S),

(3.47)

where c4 = Mc1 and

∣∣∣ ∫ T

S

Epφ′µ2(t)

∫
Ω

uz(x, 1, t)dxdt| ≤ λc5E
p+1(S), (3.48)

where c5 = max
(
βM c2s

l
, 1
)

and

τ

2

∫ T

S

∫ 1

0

Epφ′ξ(t)e−2τρ

∫
Ω

z2dxdρdt ≤ τλE(p+1S). (3.49)

Therefore

τ

2

∫ T

S

∫ 1

0

∫
Ω

e−2τρ(Epφ′ξ(t))′z2dxdρdt =
τ

2

∫ T

S

∫ 1

0

pE ′Ep−1φ′ξ(t)e−2τρ

∫
Ω

z2dxdρdt

+
τ

2

∫ T

S

∫ 1

0

∫
Ω

e−2τρEpφ′′ξ(t)z2dxdρdt+
τ

2

∫ T

S

∫ 1

0

∫
Ω

e−2τρEpφ′ξ′(t)z2dxdρdt

≤ λτp

∫ T

S

Ep(−E ′)dt+ τEp+1(s)

∫ T

S

φ′′(t)dt+ τλEp+1(s) ≤ λc6E(S)p+1,

(3.50)
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where c6 = τ max(1, p) and

1

2

∫ T

S

Epξ(t)

∫
Ω

e−2τz2(x, 1, t)dxdt ≤ λ

∫ T

S

Epξ(t)

∫
Ω

z2(x, 1, t)dxdt

≤ λ

∫ T

S

Ep(−E ′)dt ≤ λE(S)p+1,

(3.51)

and we have

1

2

∫ T

S

Epφ′ξ(t)

∫
Ω

z2(x, 0, t)dxdt =
1

2

∫ T

S

Epφ′ξ(t)

∫
Ω

u′2(x, t)dxdt

≤ τλ(2− β)E(S)p+1

(3.52)

3

2

∫ T

S

Epφ′ξ(t)

∫
Ω

u′2dxdt ≤ 3λEp+1(S). (3.53)

From (3.43) and the estimates (3.45), (3.46), (3.48),(3.42), (3.49), (3.52) we obtain∫ T

S

E(t)p+1φ′dt ≤ CE(S)p+1, (3.54)

where C = λmax(ci, 3, τ(2− β)), i = 1, ..., 6. Applying the lemma 2.3.3 we get the decay

property. This ends the proof of Theorem 3.4.1.
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Chapter 4

Energy decay of solution for

viscoelastic wave equations with a

dynamic boundary and delay term

4.1 Introduction

In this chapter, we investigate the following wave equation with dynamic boundary conditions

and delay term

utt −∆u−
∫ t

0

g(t− s)∆u(s)ds− δ∆ut = |u|p−1u, in Ω× (0,+∞),

u = 0, on Γ0 × (0,+∞),

utt = −a
[
∂u
∂υ

(x, t) + δ ∂ut
∂υ

(x, t) + µ1(t)ut(x, t) + µ2(t)ut(x, t− τ)
]
,

on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), on Γ1 × (0,+∞).

(4.1)

where u = u(x, t) , t ≥ 0 , x ∈ Ω and ∆ denotes the Laplacian operator with respect

to the x variable. Ω is a regular and bounded domain of RN , (N ≥ 1), ∂Ω = Γ1 ∪ Γ0,

Γ1∩Γ0 = ∅ and ∂
∂ν

denotes the unit outer normal derivative, µ1 and µ2 are functions depend

on t. Moreover, τ > 0 represents the delay and u0, u1, f0 are given functions belonging to
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suitable spaces that will be specified later.

This type of problems arises (for example) in modeling of longitudinal vibrations in a

homogeneous bar on which there are viscous effects. The term ∆ut, indicates that the stress

is proportional not only to the strain, but also to the strain rate ( See [14]).

This type of problem without delay (i.e µi = 0), has been considered by many authors

during the past decades and many results have been obtained (see [13], [20], [9], [27]) and

the references therein.

Such types of boundary conditions are usually called dynamic boundary conditions. They

are not only important from the theoretical point of view but also arise in several physical

applications. For instance in one space dimension, problem (4.1) can modelize the dynamic

evolution of a viscoelastic rod that is fixed at one end and has a tip mass attached to its free

end. The dynamic boundary conditions represent the Newton’s law for the attached mass

(see [13, 1, 20] for more details), which arise when we consider the transverse motion of a

flexible membrane whose boundary may be affected by the vibrations only in a region. Also

some of them as in problem (4.1) appear when we assume that is an exterior domain of R3

in which homogeneous fluid is at rest except for sound waves. Each point of the boundary is

subjected to small normal displacements into the obstacle (see [4] for more details). This type

of dynamic boundary conditions is known as acoustic boundary conditions. Among the early

results dealing with the dynamic boundary conditions are those of Grobbelaar-Van Dalsen

[8,9] in which the author has made contributions to this field. And In [8] the author has

introduced a model which describes the damped longitudinal vibrations of a homogeneous

flexible horizontal rod of length L when the end x = 0 is rigidly fixed while the other end

x = L is free to move with an attached load. This yields to a system of two second order

equations of the form



utt − uxx − utxx = 0, x ∈ (0, L), t > 0,

u = 0, t > 0,

utt(L, t) = −[ux + utx](L, t), t > 0,

ut(x, 0) = u1(x), ut(L, 0) = µ, x ∈ (0, L),

u(L, 0) = η, ut(L, 0) = µ.

(4.2)

By rewriting problem (4.2) within the framework of the abstract theories of the so-called

B-evolution theory, the existence of a unique solution in the strong sense has been shown

and an exponential decay result was also proved in [9] for a problem related to (4.2), which
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describes the weakly damped vibrations of an extensible beam (See [9] for more details).

Subsequently, Zang and Hu [81], considered the problem

utt − p(ux)xt − q(ux)x = 0, x ∈ (0, 1), t > 0

p(ux)t + q(ux)(1, t) + kutt(1, t) = 0, u(0, t) = 0, t ≥ 0.

By using the Nakao’s inequality and under appropriate conditions on p and q, they estab-

lished both exponential and polynomial decay rates for the energy depending on the form of

the terms p and q. It is clear that in the absence of the delay term and for µ1 = 0, problem

(4.2) is the one dimensional model of (4.1). Similarly, and always in the absence of the delay

term, Pellicer and Sola-Morales [67] considered the one dimensional problem of (4.1) as an

alternative model for the classical spring-mass damper system and by using the dominant

eigenvalues method, they proved that their system has the classical second order differential

equation

m1u
′′(t) + d1u

′(t) + k1u(t),

as a limit, where the parameters m1, d1 and k1 are determined from the values of the spring-

mass damper system. Thus, the asymptotic stability of the model has been determined as

a consequence of this limit. But they did not obtain any rate of convergence.( See also [66,

67] ) for related results.

It is widely known that delay effects, which arise in many practical problems are source

of some instabilities. In this way Datko and al [66] showed that a small delay in a boundary

control turns to be a well-behaved hyperbolic system into a wide one which in turn, becomes

a source of instability. Nicaise and al [60] studied the following system of a wave equation

with a linear boundary term :



utt −4u(x, t) = 0, in Ω× (0,+∞),

u(x, t) = 0, on Γ0 × (0,+∞),
∂u
∂υ

= µ1ut(x, t) + µ2ut(x, t− σ), on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ),

(4.3)

and proved that the energy is exponentially stable, where υ is the unit outward normal

to ∂Ω, under the condition
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µ2 < µ1. (4.4)

On the contrary, if (4.4) doesn’t hold, there is a sequence of delays for which the corre-

sponding solution of (4.3) will be instable.

The problem (4.3) with time varying delay term has been studied by Nicaise and al. We

refer the readers to ([60], [62]).

Recently, inspired by the works of Al and Nicaise [60], Sthéphane Gherbi and Said El

Houari [29] considered the following problem in bounded domain

utt −∆u−∆ut = 0, in Ω× (0,+∞),

u = 0, on Γ0 × (0,+∞),

utt = −a
[
∂u
∂υ

(x, t) + α∂ut
∂υ

(x, t) + µ1ut(x, t) + µ2ut(x, t− τ)
]
,

on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ(t)) = f0(x, t− τ), on Γ1 × (0,+∞),

(4.5)

and obtained several results concerning global existence and exponential decay rates for

various sign of µ1, µ2.

Motivated by the previous works, in the present chapter we investigate problem (4.1)

in which we generalize the results obtained in [5] by supposing new conditions with which

the global existence and stability results are assured. The stable set is used to prove the

existence result and Nakao’s technique to establish energy decay rates.

The content of this chapter is organized as follows: In Section 2, we provide assumptions

that will be used later. In Section 3, we state and prove the global existence result. In

Section 4, the stability result given in Theorem 4.3.2 will be proved.

4.2 Preliminary Results

In this section, we present some material in the proof of our main result. we denote

H1
Γ0

(Ω) = {u ∈ H1(Ω)/uΓ0 = 0}
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, we set γ1 the trace operator from H1
Γ0

(Ω) on L2(Γ1) we denote by B the norm of γ1 and

we have

∀u ∈ H1
Γ0
, ‖u‖2,Γ1 ≤ B‖∇u‖2

We assume

(A1) µ1 : R+ → R+ is a nonincreasing function of class C1(R+) satisfying∣∣∣∣µ′1(t)

µ1(t)

∣∣∣∣ ≤M, (4.6)

(A2) µ2 : R+ → R is a function of class C1(R+), which is not necessarily positive or monotone,

such that

|µ2(t)| ≤ βµ1(t), (4.7)

|µ′2(t)| ≤ M̄µ1(t), (4.8)

for some 0 < β < 1 and M̄ > 0. For the relaxation function g we assume

(A3) g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l < 1,

(A4) There exists a nonincreasing differentiable function η : R+ → R+ satisfying

g′(t) ≤ −η(t)g(t),

(A5) We suppose therefore

2 ≤ p ≤ 2n− 2

n− 2
if n ≥ 3; p > 2, if n = 1, 2. (4.9)

Now we choose ζ̃ such that

τβ < ζ̃ < τ(2− β). (4.10)

Lemma 4.2.1 (Sobolev-Poincaré’s inequality). Let 2 ≤ m ≤ 2n
n−2

. The inequality

‖u ‖m≤ cs‖∇u‖2 for u ∈ H1
0 (Ω),

holds with some positive constant cs.
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Lemma 4.2.2 [4] For any g ∈ C1 and φ ∈ H1(0, T ), we have∫ t

0

∫
Ω

g(t− s)ϕϕtdxds = −1

2

d

dt

(
(goϕ)(t) +

∫ t

0

g(s)ds‖ϕ‖2
2

)
− g(t)‖ϕ‖2

2 + (g′oϕ)(t),

where

(goϕ)(t) =

∫ t

0

g(t− s)
∫

Ω

|ϕ(s)− ϕ(t)|2dxds.

Lemma 4.2.3 [4] For u ∈ H1
0 (Ω), we have

∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx ≤ (1− l)c2
s(go∇u)(t), (4.11)

where c2
s is the Poincaré’s constant and l is given in (A3) and

(go∇u)(t) =

∫ t

0

g(t− s)
∫

Ω

|∇u(s)−∇u(t)|2dxds.

Lemma 4.2.4 [58] Let φ be a nonincreasing and nonnegative function on [0, T ], T > 1,

such that

φ(t)1+r ≤ ω0(φ(t)− φ(t+ 1)), on [0, T ],

where ω0 > 1 and r ≥ 0. Then we have, for all t ∈ [0, T ]

(i) if r = 0, then

φ(t) ≤ φ(0)e−ω1[t−1]+ ,

(ii) if r > 0, then

φ(t) ≤
(
φ(0)−r + ω−1

0 r[t− 1]+
)−1
r ,

where ω1 = ln
(

ω0

ω0−1

)
and [t− 1]+ = max(t− 1, 0).
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4.3 Global existence and energy decay

We introduce the new variable z as in [60],

z(x, k, t) = ut(x, t− τk), x ∈ Γ1, k ∈ (0, 1),

which implies that

τzt(x, k, t) + zk(x, k, t) = 0, in Γ1 × (0, 1)× (0,∞).

Therefore, problem (4.1) can be transformed as follows

utt −∆u− δ∆ut +

∫ t

0

g(t− s)∆u(s)ds = |u|p−1u, in Ω× (0,∞),

utt = −a
[
∂u
∂υ

(x, t) + α∂ut
∂υ

(x, t) + µ1(t)ut(x, t) + µ2(t)z(x, 1, t)
]
,

on Γ1 × (0,+∞),

τzt(x, k, t) + zk(x, k, t) = 0, in Γ1 × (0, 1)× (0,∞),

z(x, k, 0) = f0(x,−τk), x ∈ Γ1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ Γ0, t ≥ 0.

(4.12)

Remark 4.3.1 For seeking of simplicity, we take a = 1 in (4.12).

Now inspired by [73, 81], we define the energy functional related with problem (12) by

E(t) =
1

2
‖ut‖2

2 +
1

2
‖ut‖2

2.Γ1
+

1

2
(go∇u)(t) +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2

− 1

p+ 1
‖u‖p+1

p+1 +
ζ(t)

2

∫
Γ1

∫ 1

0

z2(x, k, s)dkdγ,

(4.13)

where

ζ(t) = ζ̃µ1(t).
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Lemma 4.3.1 Let (u, z) be the solution of (4.12) then, the energy equation satisfies

E ′(t) ≤ 1

2
(g′o∇u)(t)− 1

2
g(t)‖∇u(t)‖2

2 − µ1(t)

(
1− ζ̃

2τ
− β

2

)
‖ut(t)‖2

2.Γ1

− µ1(t)

(
ζ̃

2τ
− β

2

)
‖z(x, 1, t)‖2

2.Γ1
− δ‖∇ut(t)‖2

2 ≤ 0

(4.14)

Proof 4.3.1 By multiplying the first and second equation in (4, 12) by ut(t), integrating the

first equation over Ω and the second equation over Γ1, using Green’s formula, we get

d

dt

[
1

2
‖ut(t)‖2

2 +
1

2
‖ut(t)‖2

2.Γ1
+

1

2
‖∇u(t)‖2

2 −
1

p+ 1
‖u(t)‖p+1

p+1

]
− δ‖∇ut‖2

2 + µ1(t)‖ut(t)‖2
2.Γ1
−
∫

Ω

∫ t

0

g(t− s)∇u(s)∇ut(t)dsdx

+

∫
Γ1

µ2(t)z(γ, 1, t)ut(t)dγ = 0.

(4.15)

As in [5] we multiply the third equation in (4.12) by ζ(t)z and integrate over Γ1 × (0, 1) to

obtain

ζ(t)τ

∫
Γ1

∫ 1

0

ztz(γ, k, t)dkdγ + ζ(t)

∫
Γ1

∫ 1

0

zkz(x, k, t)dkdγ = 0, (4.16)

this yields

ζ(t)τ

2

d

dt

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ +
ζ(t)

2

∫
Γ1

∫ 1

0

∂

∂k
z2(γ, k, t)dkdγ = 0, (4.17)

then
τ

2

[
d

dt

(
ζ(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ

)
− ζ ′(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ

]
+
ζ(t)

2

∫
Γ1

z2(γ, 1, t)dγ − ζ(t)

2

∫
Γ1

z2(x, 0, t)dγ = 0,

(4.18)

consequently
τ

2

d

dt

(
ζ(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ

)
=
τ

2
ζ
′
(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ − ζ(t)

2

∫
Γ1

z2(γ, 1, t)dγ

+
ζ(t)

2

∫
Γ1

z2(x, 0, t)dγ,

(4.19)
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finally from (4.15) and (4.18), we get

E(t) +

(
µ1(t)− ζ(t)

2τ

)
‖ut(t)‖2

2.Γ1
+ µ2(t)

∫
Γ1

z2(γ, 1, t)ut(γ, t)dγ

− ζ
′
(t)

2

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ +
ζ(t)

2τ

∫
Γ1

z2(γ, 1, t)dγ

− 1

2

∫ t

0

(g′o∇u)(s)ds+
1

2

∫ t

0

g(s)‖∇u(s)‖2
2ds = 0.

(4.20)

Due to Young’s inequality, we have∫
Γ1

z(γ, 1, t)ut(γ, t)dγ ≤
1

2
‖ut(t)‖2

2.Γ1
+

1

2

∫
Γ1

z2(γ, 1, t)dγ. (4.21)

Noting that ζ ′(t) ≤ 0. Inserting (4.21) into (4.20) and deriving it, we get the desired result.

Now we are in position to state the local existence result to problem (12), which can be

established by combining arguments of [(21), (66)].

Theorem 4.3.1 Let u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω) and f0 ∈ L2(Γ1 × (0, 1)) be given. Suppose

that (A1)−(A5) hold. Then the problem (4.12) admits a unique weak solution (u, z) satisfying

u ∈ L∞((0, T );H1
Γ0

(Ω)), ut ∈ L∞((0, T );H1
Γ0

(Ω)) ∩ L∞((0, T );L2(Γ1)),

utt ∈ L∞((0, T );L2(Ω)) ∩ L∞((0, T );L2(Γ1)).

Now we will prove that the solution abstained above is global and bounded in time. For this

purpose let us define

I(t) =

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 + (go∇u)(t)− ‖u‖p+1
p+1

+ ζ(t)

∫
Γ1

∫ 1

0

z2(γ, k, s)dkdγ,

(4.22)

J(t) =
1

2
(go∇u)(t) +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 −
1

p+ 1
‖u‖p+1

p+1

+
ζ(t)

2

∫
Γ1

∫ 1

0

z2(γ, k, s)dkdγ,

(4.23)

where

E(t) = J(t) +
1

2
‖ut‖2

2 +
1

2
‖ut‖2

2.Γ1
. (4.24)
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Lemma 4.3.2 Suppose that (A3)−(A4) hold. Let (u, z) be the solution of the problem (4.12).

Assume further that I(0) > 0 and

α =
cp+1
s

l

(
2(p+ 1)

p− 1
E(0)

) p−1
2

< 1. (4.25)

Then I(t) > 0 for all t ≥ 0 .

Proof 4.3.2 Since I(0) > 0, then there exists (by continuity of u(t)) T ∗ < T such that

I(t) ≥ 0, (4.26)

for all t ∈ [0, T ∗]. From (4.22) and (4.23) we have

J(t) ≥ p− 1

2(p+ 1)

[(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 + go∇u(t)

]
+

(p− 1)

2(p+ 1)

[
ζ(t)

∫ 1

0

∫
Γ1

z2(x, k, t)dkdγ

]
+

1

p+ 1
I(t)

≥ p− 1

2(p+ 1)

[(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 + (go∇u)(t)

]
+

(p− 1)

2(p+ 1)

[
ζ(t)

∫ 1

0

∫
Γ1

z2(γ, k, t)dkdγ

]
≥ p− 1

2(p+ 1)
l‖∇u‖2

2.

(4.27)

Thus by (4.24) and (4.25) we deduce ∀t ∈ [0, T ∗]

l‖∇u‖2
2 ≤

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 ≤
2(p+ 1)

(p− 1)
E(t) ≤ 2(p+ 1)

(p− 1)
E(0). (4.28)

Exploiting Lemma 4.2.1 and formula (4.28), we obtain

‖u‖p+1
p+1 ≤ cp+1

s ‖∇u‖
p+1
2 ≤ cp+1

s

l
‖∇u‖p−1

2 ‖∇u‖2
2 ≤

cp+1
s

l

(
2(p+ 1)

(p− 1)l
E(0)

) p−1
2

l‖∇u‖2
2

= αl‖∇u‖2
2 <

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2, ∀t ∈ [0, T ∗].

(4.29)

Hence ∀t ∈ [0, T ∗], we have

I(t) =

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2 + (go∇u)(t)− ‖u‖p+1
p+1 + ζ(t)

∫ 1

0

∫
Γ1

z2(γ, k, t)dkdγ > 0.

66



Repeating this procedure and using the fact that

lim
t→T ∗

cp+1
s

l

(
2(p+ 1)

2l(p− 1)
E(u(t))

) p−1
2

≤ α < 1,

we can take T ∗ = T . This completes the proof.

Theorem 4.3.2 Let (A3)− (A5) hold. Let u0 ∈ H1
Γ0

(Ω), u1 ∈ L2(Ω), f0 ∈ L2(Γ1× (0, 1)) be

given. Then the solution of the problem (4.12) is global and bounded in time. Furthermore,

there exists θ > 0, such that

θ >
3− 3l

l
, (4.30)

and we have the following decay estimate:

E(t) ≤ E(0)e−σt, ∀t ≥ 0, σ = ln

(
c12

c12 − 1

)
,

where c12 is a positive constant.

Proof First, we prove T =∞. It is sufficient to show that l‖∇u‖2
2 is bounded independently

of t. From (4.24) we have

E(0) ≥ E(t) =
1

2
‖ut‖2

2 + ‖ut‖2
2.Γ1

+ J(t) ≥ 1

2
‖ut‖2

2 +

(
p− 1

2(p+ 1)

)
l‖∇u‖2

2 ≥ l‖∇u‖2
2.

Therefore l‖∇u‖2
2 ≤ ρE(0), where ρ is a positive constant which depends only on p, thus we

obtain the global existence result. From now and on, we focus our attention to the decay

rate of the solutions to problem (4.12). In order to do so, we will derive the decay rate of

the energy function for problem (4.12) by Nakao’s method, as in [58]. For this aim, we have

to show that the energy function defined by (4.24) satisfies the hypotheses of lemma 4.2.4.

By integrating (4.14) over [t, t+ 1], we have

E(t)− E(t+ 1) = D(t)2, (4.31)

where

D(t)2 = c1

∫ t+1

t

µ1(s)‖ut‖2
2.Γ1

ds+ c2

∫ t+1

t

µ2(s)

∫
Γ1

z2(γ, 1, s)dγds

−
∫ t+1

t

1

2
(g′o∇u)(s)ds+

∫ t+1

t

1

2
g(s)‖∇u(s)‖2

2ds+ c3

∫ t+1

t

‖∇ut‖2
2ds.

(4.32)
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We observe that∫ t+1

t

∫
Γ1

µ1(s)|ut|2dγds+

∫ t+1

t

µ2(s)

∫
Γ1

|z(γ, 1, s)|2dγds+

∫ t+1

t

‖∇ut‖2
2ds

≤ CD(t)2,

(4.33)

where C = max{c1, c2, c3}. Applying the mean value, there exist t1 ∈ [t, t + 1
4
] and t2 ∈

[t+ 3
4
, t+ 1] such that for i = 1, 2, we get

µ1(ti)‖ut(ti)‖2
2.Γ1

+ µ2(ti)‖z(γ, 1, ti)‖2
2.Γ1

+ ‖∇ut(ti)‖2
2 ≤ CD(t)2. (4.34)

Multiplying the first equation in (4.12) by u and integrating over Ω× [t1, t2], multiplying the

second equation in (4.12) by u and integrating over Γ1 × [t1, t2], adding and subtracting the

following term

∫ 1

0

∫
Γ1

ζ(t)z2(γ, k, t)dkdγ, we obtain

∫ t2

t1

I(t)dt ≤
2∑
i=1

‖ut(ti)‖2‖u(ti)‖2 +

∫ t2

t1

‖ut‖2
2dt+

∫ t2

t1

∫
Ω

∇ut∇udtdx

+

∫ t2

t1

(go∇u)(t)dt+

∫ t2

t1

∫
Ω

∫ t

0

g(t− s)∇u(t)(∇u(s)−∇u(t))dsdxdt

+

∫ t2

t1

ζ(t)

∫ 1

0

∫
Γ1

z2(x, k, t)dkdγdt−
∫

Γ1

∫ t2

t1

µ2(t)z(x, 1, t)udtdγ

−
∫ t2

t1

µ1(t)

∫
Γ1

utudγdt.

(4.35)

Since∫
Ω

∫ t

0

g(t− s)∇u(t)(∇u(s)−∇u(t))dsdx

=
1

2

[∫ t

0

g(t− s)(‖∇u(s)‖2
2 + ‖∇u(t)‖2

2)ds−
∫ t

0

g(t− s)(‖∇u(s)‖2
2 + ‖∇u(t)‖2

2)ds

]
−
∫

Ω

∫ t

0

g(s)|∇u(t)|2dsdx,= −1

2

∫
Ω

∫ t

0

g(s)|∇u(s)|2dsdx

+
1

2

∫ t

0

g(t− s)ds‖∇u(s)‖2
2ds−

1

2
(go∇u)(t).

(4.36)
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Then (4.35) takes the form

∫ t2

t1

I(t)dt ≤
2∑
i=1

‖ut(ti)‖2‖u(ti)‖2 +

∫ t2

t1

‖ut‖2
2dt+

1

2

∫ t2

t1

(go∇u)(t)dt

+

∫ t2

t1

∫
Ω

∇ut∇udtdx−
1

2

∫
Ω

∫ t

0

g(s)|∇u(s)|2dsdx+
1

2

∫ t

0

g(t− s)ds‖∇u(s)‖2
2ds

+

∫ t2

t1

∫ 1

0

ζ(t)

∫
Γ1

z2(x, k, t)dkdγdt−
∫

Γ1

∫ t2

t1

µ2(t)z(x, 1, t)udtdγ

−
∫ t2

t1

µ1(t)

∫
Γ1

utudγdt.

(4.37)

Now we will estimate the right hand side of (4.37). First by (4.36) and lemma 4.2.1, we have

‖ut(ti)‖2‖u(ti)‖2 ≤ csC
1
2D(t) sup

t1≤s≤t2
‖∇u(s)‖2

≤ D(t)csC
1
2

(
2(p+ 1)

p− 1

) 1
2

sup
t1≤s≤t2

E(s)
1
2

≤ D(t)csC
1
2

(
2(p+ 1)

p− 1

) 1
2

E(t)
1
2 .

(4.38)

As in [74], by employing Young’s inequality for convolution ‖ϕ ∗ φ‖ ≤ ‖ϕ‖‖φ‖ and noting

that

l‖∇u(t)‖2
2 ≤

1

θ
I(t). (4.39)

Then we have ∫ t

0

∫ t2

t1

g(t− s)‖∇u(s)‖2
2dsdt ≤

∫ t2

t1

g(t)dt

∫ t2

t1

‖∇u(t)‖2
2dt

≤ (1− l)
∫ t2

t1

‖∇u(t)‖2
2dt ≤

1− l
lθ

∫ t2

t1

I(t)dt.

(4.40)

Exploiting (4.36) to obtain

1

2

∫ t2

t1

(go∇u)(t)dt =
1

2

∫ t

0

∫ t2

t1

g(t− s)‖∇u(s)−∇u(t)‖dsdt

≤
∫ t

0

g(t− s)
∫ t2

t1

(‖∇u(t)‖2 + ‖∇u(s)‖2)dtds

≤ 2(1− l)
lθ

∫ t2

t1

I(t)dt.

(4.41)
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Multiplying the second equation in (4.12) by ζz and integrating the result over Γ1 × (0, 1),

we obtain

τ

2

d

dt

(
ζ(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ

)
=
τ

2
ζ
′
(t)

∫
Γ1

∫ 1

0

z2(γ, k, t)dkdγ

− ζ(t)

2

∫
Γ1

z2(γ, 1, t)dγ +
ζ(t)

2

∫
Γ1

z2(x, 0, t)dγ.

(4.42)

Recalling that ζ
′
(t) ≤ 0, we have

∫ t2

t1

∫
Γ1

ζ(t)

∫ 1

0

z2(x, k, t)dkdγdt ≤
∫ t2

t1

∫ t2

t1

ζ̃µ1(s)

2τ
‖ut(s)‖2

2.Γ1
dsdν

≤ c

(∫ t2

t1

dν

)(∫ t2

t1

µ1(s)‖ut(s)‖2
2.Γ1

ds

)
≤ C

τ
(t2 − t1)D(t)2.

(4.43)

Using Sobolev’s inequality, also we have∣∣∣∣∫ t2

t1

µ2(s)z(x, 1, t)udxdt

∣∣∣∣ ≤ ∫ t2

t1

µ2(s)‖z(x, 1, t)‖2‖u‖2dt

≤ cs

(
2(p+ 1)

l(p− 1)

) 1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

µ2(s)‖z(x, 1, t)‖2dt

≤ csC
1
2

(
2(p+ 1)

l(p− 1)

) 1
2

E(t)
1
2D(t),

(4.44)

and ∫ t2

t1

‖ut‖2
2dt ≤ c2

s

∫ t2

t1

‖∇ut‖2
2dt,≤ c2

sCD(t)2, (4.45)∣∣∣∣∫ t2

t1

∫
Ω

∇ut∇udtdx
∣∣∣∣ ≤ ∫ t2

t1

‖∇ut‖2‖∇u‖2dt

≤
(

2(p+ 1)

l(p− 1)

) 1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

‖∇ut‖2

≤ C

(
2(p+ 1)

l(p− 1)

) 1
2

E(t)
1
2D(t),

(4.46)
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also we have ∣∣∣∣∫ t2

t1

∫
Γ1

µ1(s)utudγdt

∣∣∣∣ ≤ ∫ t2

t1

µ1(s)‖ut‖2.Γ1‖∇u‖2.Γ1dt

≤ csB

(
2(p+ 1)

l(p− 1)

) 1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

µ1(s)‖ut‖2.Γ1dt

≤ csc(Γ1)B

(
2(p+ 1)

l(p− 1)

) 1
2

E(t)
1
2D(t),

(4.47)

therefore, from (4.38)− (4.47) we deduce

∫ t2

t1

I(t)dt ≤ C
1
2

(
2(p+ 1)

l(p− 1)

) 1
2

[cs(B + 3) + 1]E(t)
1
2D(t)

+

(
3

(1− l)
lθ

)∫ t2

t1

I(t)dt+

(
3

4τ
C + c2

sC

)
D(t)2.

(4.48)

Then, rewriting (4.48), we get

c5

∫ t2

t1

I(t)dt ≤ c4D(t)2 + c3E(t)
1
2D(t), (4.49)

with

c5 =

[
1− (3− 3l)

lθ

]
, c3 = C

1
2

(
2(p+ 1)

l(p− 1)

) 1
2

[cs(B + 3) + 1], c4 = C
3

4τ
+ c2

sC.

From the condition (4.30) and observing that is equivalent to c5 > 0, thus∫ t2

t1

I(t)dt ≤ c7

[
D(t)2 + E(t)

1
2D(t)

]
, (4.50)
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where c7 = max(c3,c4)
c5

. On the other hand, from the definition of E(t) and by (4.22) and (4.24)

we have ∫ t2

t1

E(t)dt ≤ p− 1

2(p+ 1)

∫ t2

t1

[
(go∇u)(t) +

(
1−

∫ t

0

g(s)ds

)
‖∇u‖2

2

]
+

p− 1

2(p+ 1)

∫ t2

t1

∫
Γ1

∫ 1

0

z2(x, k, s)dkdγdt

+
1

p+ 1

∫ t2

t1

I(t)dt+

∫ t2

t1

1

2
‖ut‖2

2dt+

∫ t2

t1

1

2
‖ut‖2

2.Γ1
dt.

≤ c7
p− 1

2(p+ 1)

[
1

θ
+

2− 2l

2θ
+

1

p+ 1

]
(D(t)2 + E(t)

1
2D(t))

+

[
c2
sC(1 +B) + C

3

4τm

]
D(t)2,

≤
[
c8D(t)2 + c9E(t)

1
2D(t)

]
≤ c10

[
D(t)2 + E(t)

1
2D(t)

]
,

(4.51)

where c8 = c7
p−1

2(p+1)

[
2−2l
θ

+ 1
θ

+ 1
p+1

+ c2
sC(1 +B) + 3

4τm
C
]
,

c9 = c7
p−1

2(p+1)

[
1−l
2θ

+ 1
θ

+ 1
p+1

]
, c10 = max(c8, c9).

Moreover, integrating (4.14) over (t, t2) and using (4.51) and the fact that E(t2) ≤ 2

∫ t2

t1

E(t)dt,

due to t2 − t1 ≥ 1
2
, we obtain

E(t) = E(t2) +

∫ t2

t

1

2
(g′o∇u)(t)dt+

∫ t2

t

1

2
g(t)‖∇u(t)‖2

2dt

+

∫ t2

t

µ1(t)

(
1− ζ̃

2τ
− β

2

)
‖ut(t)‖2

2.Γ1
dt

+

∫ t2

t

µ1(t)

(
ζ̃

2τ
− β

2

)
‖z(x, 1, t)‖2

2.Γ1
dt+ δ

∫ t2

t

‖∇ut(t)‖2
2dt

≤ 2

∫ t2

t1

E(t)dt,

(4.52)

exploiting (4.51) we arrive at

E(t) ≤ c11

[
D(t)2 + E(t)

1
2D(t)

]
. (4.53)
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Then a simple application of Young’s inequality gives, for all t ≥ 0

E(t) ≤ c12D(t)2, (4.54)

where c11,c12 are some positive constants. Therefore, from (4.54), we get

E(t) ≤ c12[E(t)− E(t+ 1)],

here we choose c12 > 1. Thus by lemma 4.2.4, we obtain

E(t) ≤ E(0)e−σt for t ≥ 0,

with σ = ln
(

c12
c12−1

)
.
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Chapter 5

Global existence and asymptotic

behavior of a plate equations with a

constant delay term and logarithmic

nonlinearities

5.1 Introduction

In this work, we consider the following Cauchy problem with logarithmic nonlinearity

utt(x, t)−∆2u+ φ(x)

(
α∆2u−

∫ t

0

g(t− s)∆2u(x, s)ds

)
+µ1(t)ut(x, t) + µ2(t)ut(x, t− τ) = u ln |u|k in Rn×]0,+∞[,

u(x, t) = 0, on ∂Rn×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Rn,

ut(x, t− τ) = f0(x, t− τ), in Rn×]0, t[.

(5.1)

Where n ≥ 1, φ(x) > 0 and (φ(x))−1 = ρ(x) such that ρ is a function that will be defined

later. The initial datum u0, u1, f0 are given functions belonging to suitable spaces that will

be specified later. µ1, µ2 are real functions and g is a positive non-increasing function defined

on R+. Moreover τ > 0 represents the time delay term.

It is well known that the logarithmic nonlinearity is distinguished by several interesting

75



physical properties. In recent years, there has been a growing interest in the viscoelastic

wave equation, its properties and variants of the problem can be found for example in

([17],[35],[50],[52]). The plate equation in Rn has been studied by many authors and some

results have been proved (see for instance [2],[37],[40]) and the references therein.

The author in [39] looked into a linear Cauchy viscoelastic problem with density. He obtained

the exponential and polynomial rates by using the spaces weighted by density to compensate

for the lack of Poincare’s inequality.

In the case of delay term, Nicaise, Valein and Pignotti [60] proved an exponential stability

result under the condition µ1 <
√

1− dµ1 where d is a constant such that τ ′(t) ≤ d < 1.

After that, Serge Nicaise, Cristina Pignotti and Julie Valein considered the following problem

utt(x, t)−∆u = 0 in Ω× [0,+∞[

u(x, t) = 0 on ΓD × [0,+∞[

∂ut
∂ν

= µ1ut(x, t) + µ2ut(x, t− τ(t)) on ΓN × [0,+∞[

u(x, 0) = u0, u
′(x, 0) = u1 in Ω

ut(x, t) = f0(x, t− τ(t)) on ΓN × (0, τ(0))

(5.2)

where they extend the last result to general space dimension under some hypothesis. A.

Benaissa, A. Benguessoum and S. A. Messaoudi in considered the wave equation with a

weak internal constant delay term. Keltoum Bouhali and Fatheh Ellaggoune in [11], studied

in any spaces dimension, a general decay rate of solutions of viscoelastic wave equations with

logarithmic nonlinearities. Furthermore, they established, under convenient hypotheses on

g and the initial data, the existence of weak solution associated to this equation.

The content of this chapter is organized as follows. In Section 2, we provide assumptions

that will be used later, state and prove the existence result. In Section 3, we prove energy

decay result of our problem.

5.2 Preliminary Results

We first recall some basic definitions and abstract results on weighted spaces. We define the

function spaces of our problem and its norm as follows

D2,2(Rn) =
{
f ∈ L2n/n−4(Rn)/ ∆xf ∈ L2(Rn)

}
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and D2,2(Rn) can be embedded continuously in L2n/n−4(Rn). The space L2
ρ(Rn) to be the

closure of C∞0 (Rn)

‖f‖Lqρ =

(∫
Rn
ρ|f |qdx

) 1
q

Remark 5.2.1 The space L2
ρ(Rn) is a separable Hilbert space.

In the following, we will give sufficient conditions and assumptions that guarantee the global

existence of the problem 5.1.

(H1) g is a positive bounded function satisfying:

α−
∫ ∞

0

g(s)ds = l > 0, α > 0, (5.3)

and there exists a positive non-increasing function H ∈ C2(R+) such that, for t ≥ 0, we have

g′(t) ≤ −H(t)g(t), H(0) = 0. (5.4)

where H is linear or strictly increasing and strictly convex function on (0; r]; r < 1.

(H2) According to results in [18],we obtain

1. We can deduce that there exists t1 > 0 large enough such that:

2. ∀t ≥ t1, we have lim
t→∞

g(s) = 0 so lim
t→∞

g′(s) = 0 and g(t1) > 0.

Then

max{g(s),−g′(s)} < min{r,H(s), H0(s)},

where H0(t) = H(D(t)), and D is a positive C1 function, with D(0) = 0, for which H0

is strictly increasing and strictly convex function on (0; r] and∫ ∞
0

g(s)H0(−g′(s))ds <∞

3. For 0 ≤ t ≤ t1 we have g(0) ≤ g(t) ≤ g(t1), (g is non-increasing).

Since H is a positive continuous function, then

g′(t) < H(g(t)) ≤ −kg(t), k > 0
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1. Let H0
∗ be the convex conjugate of H0 in the sense of Young (see [2]), then

H0
∗ = s(H ′0)−1(s)−H0((H ′0)−1(s)), s ∈ (0, (H ′0(r))

and satisfies the following Young’s inequality

AB ≤ H0
∗(A) +H0(B), A ∈ (0, (H ′0(r)), B ∈ (0; r]

(H3)

1. µ1 is a positive function of class C1 satisfying:

µ1(t) ≤M, M > 0. (5.5)

2. µ2 is a real function of class C1 such that:

µ2(t) ≤ βµ1(t), 0 < β < 1. (5.6)

(H4) The function ρ : Rn → Rn
+ satisfies ρ(x) ∈ C0,γ(Rn)

with γ ∈ (0, 1) and ρ ∈ Ls(Rn),where s = 2n
2n−qn+4q

.

We also need the following technical Lemmas in the course of our investigation.

Let λ1 be the first eigenvalue of the spectral Dirichlet problem

∆u = λ1u in Rn, u =
∂u

∂η
= 0 in ∂Rn,

‖∇u‖2 ≤ ω‖∆u‖2,

where ω = 1√
λ1
.

Lemma 5.2.1 [37] Assume that the function ρ satisfies the assumption (H4), then for any

u ∈ D2,2(Rn) we have

‖u‖L2
ρ(Rn) ≤ C0‖∆u‖L2(Rn),

where C0 = ‖ρ‖Lsρ, with s = 2n
2n−qn+4q

and 2 ≤ q ≤ 2n
n−4

.

78



Lemma 5.2.2 For any g ∈ C1 and ϕ ∈ H1
0 (0, T ) , we have

−2

∫ t

0

∫
Rn
g(t− s)ϕ ϕtdxds =

d

dt

(
(g ◦ ϕ)(t)−

∫ t

0

g(s)ds‖ϕ‖2
2

)
+ g(t)‖ϕ‖2

2 − (g′ ◦ ϕ)(t).

(5.7)

where

(g ◦ ϕ)(t) =

∫ t

0

g(t− s)
∫
Rn
|(φ(s)− ϕ(t))|2dxds.

Lemma 5.2.3 [19] Let u ∈ D2,2(Rn) and c1, c2 > 0 be two numbers. Then

2

∫
Rn
ρ(x)|u|2 ln

( |u|
‖u‖2

L2
ρ

)
dx+ n(1 + c1)‖u‖2

L2
ρ
≤ c2

‖ρ‖2
L2

π
‖∇u‖2

2. (5.8)

If u is a solution of the problem 5.1,and v ∈ D2,2(Rn) then∫
Rn
ρ(x)|u| ln |u|kvdx =

∫
Rn
ρ(x)uttvdx−

∫
Rn
ρ(x)∆u∆vdx

+

∫
Rn
α∆u∆vdx−

∫
Rn

∫ t

0

g(t− s)∆u(x, s)∆vdsdx

+µ1

∫
Rn

(t)ρ(x)utvdx+ µ2(t)

∫
Rn
ρ(x)ut(x, t− τ)vdx

(5.9)

Lemma 5.2.4 (16) Let u ∈ D2,2(Rn), then we have

(∫ t

0

g(t− s)(u(s)− u(t))ds
)2

≤
(∫ t

0

|g(s)|2(1−θ)ds
)(∫ t

0

|g(t− s)|2θ|(u(s)− u(t))|2ds
)
.

(5.10)

Like in ([59]) we introduce the auxiliary unknown

z(x, γ, t) = ut(x, t− τγ), x ∈ Rn, γ ∈ (0, 1), t > 0.

Then, we have

τzt(x, γ, t) + zγ(x, γ, t) = 0.
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Therefore the problem 5.1 takes the form

utt(x, t)−∆2u+ φ(x)

(
α∆2u−

∫ t

0

g(t− s)∆2u(x, s)ds

)
+µ1(t)ut(x, t) + µ2(t)z(x, 1, t) = u ln |u|k, in Rn×]0,+∞[

τzt(x, γ, t) + zρ(x, γ, t) = 0 in Rn×]0,+∞[

u(x, t) = 0, on ∂Rn×]0,+∞[

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Rn

z(x, γ, 0) = f0(x,−τγ), in Rn×]0, t[.

(5.11)

First we define the energy of solution by

E(t) =
1

2
‖ut‖2

L2
ρ

+
1

2
‖∆u‖2

L2
ρ

+
(α

2
− 1

2

∫ t

0

g(s)ds
)
‖∆u‖2

2

+
1

2
(g ◦∆u)(t)− k

2

∫
Rn
ρ(x)u2ln|u|dx+

k

4
‖u‖2

L2
ρ

+
1

2
ξ(t)

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx.

(5.12)

Where ξ is non-increasing function such that

τβ < ξ < τ(2− β), t > 0, ξ(t) = ξµ1(t). (5.13)

Lemma 5.2.5 Let (u, z) be a solution of the problem 5.11. Then, the energy functional

defined by 5.12 satisfies

E ′(t) ≤ 1

2
(g′ ◦∆u)− 1

2
g(t)‖∆u‖2

2 −
(
µ1(t)− ξ(t)

2τ
− µ2(t)

2

)
‖ut‖2

L2
ρ

−
(ξ(t)

2τ
− µ2(t)

2

)
‖z(x, 1, t)‖2

L2
ρ
≤ 0.

(5.14)
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Proof. Multiplying the first equation in 5.11 by ρ(x)ut, integrating over Rn and using

Green’s identity, we obtain

1

2

d

dt

(
‖ut‖2

L2
ρ
− ‖∆u‖2

L2
ρ

+ α‖∆u‖2
2 +

k

2
‖u‖2

L2
ρ
−
∫
Rn
ρ(x)u2 ln |u|kdx

)
+µ1(t)‖ut‖2

L2
ρ

+ µ2(t)

∫
Rn
ρ(x)utz(x, 1, t)dx

−
∫ t

0

g(t− s)
∫
Rn

∆u(x, s)∆ut(x, t)dxds = 0

(5.15)

We simplify the last term by using lemma 5.2.2, we get

−
∫ t

0

g(t− s)
∫
Rn

∆u(x, s)∆ut(x, t)dxds =
1

2

d

dt
(g ◦∆u)

−1

2
(g′ ◦∆u) +

1

2
g(t)‖∆u‖2

2 −
1

2

d

dt

∫ t

0

g(s)ds‖∆u‖2
2

(5.16)

Replacing 5.16 in 5.15 we arrive at

1

2

d

dt

(
‖ut‖2

L2
ρ
− ‖∆u‖2

L2
ρ

+

(
α−

∫ t

0

g(s)ds

)
‖∆u‖2

2

)
+

1

2

d

dt

(
k

2
‖u‖2

L2
ρ
−
∫
Rn
ρ(x)u2 ln |u|k + g ◦∆u

)
+µ1(t)‖ut‖2

L2
ρ

+ µ2(t)

∫
Rn
ρ(x)utz(x, 1, t)dx

−1

2
(g′ ◦∆u) +

1

2
g(t)‖∆u‖2

2 = 0.

(5.17)

Multiplying the second equation in 5.11 by 1
τ
ξ(t)ρ(x)z, where ξ(t) satisfying 5.13 and inte-

grating over Rn × (0, 1), we obtain

1

2

d

dt
ξ(t)

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx− ξ′(t)

2

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx

+
ξ(t)

2τ
‖z2(x, 1, t)‖2

L2
ρ
− ξ(t)

2τ
‖ut‖2

L2
ρ

= 0.

(5.18)

81



Combination of 5.17 and 5.18, by recalling at the definition of E(t), we deduce that

E ′(t) + µ1(t)‖ut‖2
L2
ρ

+ µ2(t)

∫
Rn
ρ(x)utz(x, 1, t)dx

−1

2
(g′ ◦∆u) +

1

2
g(t)‖∆u‖2

2

−ξ
′(t)

2

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx

+
ξ(t)

2τ
‖z2(x, 1, t)‖2

L2
ρ
− ξ(t)

2τ
‖ut‖2

L2
ρ

= 0,

(5.19)

then

E ′(t) = −
(
µ1(t)− ξ(t)

2τ

)
‖ut‖2

L2
ρ
− µ2(t)

∫
Rn
ρ(x)utz(x, 1, t)dx

+
1

2
(g′ ◦∆u)− 1

2
g(t)‖∆u‖2

2

+
ξ′(t)

2

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx− ξ(t)

2τ
‖z2(x, 1, t)‖2

L2
ρ
.

(5.20)

Due to Young’s inequality and using the assumptions for ξ(t) and g, we obtain

E ′(t) ≤ 1

2
(g′ ◦∆u)− 1

2
g(t)‖∆u‖2

2 −
(
µ1(t)− ξ(t)

2τ
− µ2(t)

2

)
‖ut‖2

L2
ρ

−
(ξ(t)

2τ
− µ2(t)

2

)
‖z(x, 1, t)‖2

L2
ρ
≤ 0,

(5.21)

where

C1 = µ1(t)− ξ(t)

2τ
− µ2(t)

2
> 0; C2 =

ξ(t)

2τ
− µ2(t)

2
> 0.

This complete the proof of energy decay.
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5.3 Global existence

According to logarithmic Sobolev inequality and by using Galerkin’s method combined with

compact theorem, similar to the proof in ([35], [19]), we have the following result

Theorem 5.3.1 (Local existence) Let (u0, u1, f0) ∈ D2,2(Rn)× L2
ρ(Rn)× L2(Rn × (0, 1)) be

given. Assume that g satisfies (H1) and µ1, µ2 satisfy (H3). Then the problem 5.11 admits

a unique local solution (u, z) satisfying:

u ∈ C([0, T );D2,2(Rn))

u′ ∈ C([0, T );L2
ρ(Rn))

z ∈ C([0, T );L2(Rn × (0, 1)).

Now, we introduce the two functionals as follow

J(t) =
1

2
‖∆u‖2

L2
ρ

+
(α

2
− 1

2

∫ t

0

g(s)ds
)
‖∆u‖2

2

+
1

2
(g ◦∆u)(t)− k

2

∫
Rn
ρ(x)u2ln|u|dx

+
1

2
ξ(t)

∫ 1

0

‖z2(x, γ, t)‖2
L2
ρ
dγdx+

k

4
‖u‖2

L2
ρ
,

(5.22)

and

I(t) = 2J(t)− k

2
‖u‖2

L2
ρ
.

As in ([49]) to establish the corresponding method of potential wells which is related to the

logarithmic nonlinear term, we introduce the stable set as follows

W =
{
u ∈ D2,2(Rn − {0}) : I(t) > 0, J(t) < d

}
∪ {0}

Where d is the mountain pass level defined by

d = inf{sup J(µu)}

With µ ≥ 0, u ∈ D2,2(Rn − {0}). Also, by introducing the set called ”Nehari manifold”

N =
{
u ∈ D2,2(Rn)− {0}, I(t) = 0

}
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Similar to results in ([87]), it is readily seen that the potential depth d is characterized by

d = inf
u∈N

J(t).

This characterization of d shows that

dist(0,N ) = min
u∈N
‖u‖D2,2(Rn).

By the fact of E ′(t) < 0, we will prove the invariance of the set W. That is if for some t0 > 0

if u(t0) ∈ W , then u(t) ∈ W , ∀t ≥ t0. Now we give the existence Lemma of the potential

depth (see Lemma 2.4 in [19]).

Lemma 5.3.1 d is positive constant.

Lemma 5.3.2 Let u ∈ D2,2(Rn), and η = exp(n
2
(1 + c1)). If ‖u‖2

L2(ρ) < η then I(t) > 0. If

I(t) = 0, ‖u‖2
L2(ρ) 6= 0 then ‖u‖2

L2(ρ) > η.

Proof. By the lemma 5.2.3 we have

J(t) = ‖∆u‖2
L2
ρ

+
(
α−

∫ t

0

g(s)ds
)
‖∆u‖2

2

+(g ◦∆u)(t)− k
∫
Rn
ρ(x)u2ln|u|2dx

+ξ(t)

∫
Rn

∫ 1

0

z2(x, γ, t)dγdx ≥ (l − kωc2

‖ρ‖2
L2

2π
)‖∆u‖2

2

+k(
n

2
(1 + c1)− ln ‖u‖2

L2
ρ
)‖u‖2

L2
ρ

+
k

4
‖u‖2

L2
ρ
.

(5.23)

Choosing c2 <
π

ωk‖ρ‖2
L2
ρ

, then

I(t) ≥ k(
n

2
(1 + c1)− ln ‖u‖2

L2
ρ
)‖u‖2

L2
ρ
. (5.24)

Therefore if ‖u‖2
L2
ρ
< η then I(t) > 0.

If I(t) = 0, ‖u‖2
L2
ρ
6= 0 we have ‖u‖2

L2
ρ
> η.

Theorem 5.3.2 (Global Existence) Let u0 ∈ D2,2(Rn), u1(x) ∈ L2
ρ(Rn) and

0 < E(0) < d, I(0) > 0. Then, under hypothesis (H1) and conditions of the function ρ, the

problem 5.11 has a global solution in time.
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Proof. From the definition of energy for the weak solution and since E is increasing, we

have
1

2
‖ut‖2

L2
ρ

+ J(t) ≤ 1

2
‖u1‖2

L2
ρ

+ J(0), ∀t ∈ [0, Tmax),

where Tmax is the maximal existence time of weak solution of u. Then, by the definition of

the stable set and using Lemma 5.3.2, we have u ∈ W,∀t ∈ [0, Tmax).

5.4 Asymptotic behavior

We apply the multiplier techniques and we introduce an appropriate Lyapunov functional

to obtain the asymptotic behavior. For this purpose, we introduce the so called Liapunov

functional L defined by

L(t) = ξ1E(t) + ψ(t) + ξ2ϕ(t) + ε1φ(t), ξ1 > 1, ξ2 > 1, ε1 > 0, (5.25)

where

ψ(t) =

∫
Rn
ρ(x)utudx,

ϕ(t) = −
∫
Rn
ρ(x)ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx,

φ(t) = −ξ(t)τ
∫
Rn
ρ(x)

∫ 1

0

e−2τγu2
t (x, t− τγ)dγdx.

(5.26)

Now we present some lemmas to get the asymptotic behavior of solutions.

Lemma 5.4.1 Suppose that (H1)−(H4) hold and let (u0, u1) ∈ D2,2(Rn)×L2
ρ(Rn) be given.

If (u, z) is the solution of 5.11, then the derivative of the functional ψ satisfies the following

inequality for δ > 0.

ψ′(t) ≤ (1 +
1

2
µ1(t))‖ut‖2

L2
ρ

+ (α− l)cδ(g ◦∆u)(t)

+(δ − l + ‖∆u‖∞)‖∆u‖2
2 +

1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ

+‖ρ‖2
L2
ρ

(kωc2

2π
+ k ln ‖u‖2

L2
ρ
− kn

2
(1 + c1) +

1

2
[µ1(t) + µ2(t)]

)
‖∆u‖2

2.

(5.27)

Proof 5.4.1 By using the first equation in 5.11, we have

ψ′(t) =

∫
Rn
ρ(x)uttudx+

∫
Rn
ρ(x)|ut|2dx, (5.28)

85



ψ′(t) =

∫
Rn
ρ(x)|ut|2dx+

∫
Rn
ρ(x)∆u2dx− α

∫
Rn

∆u2dx

+

∫
Rn

∆ut

∫ t

0

g(t− s)∆u(x, s)dsdx− µ1(t)

∫
Rn
ρ(x)utu(x, t)dx

−µ2(t)

∫
Rn
ρ(x)uz(x, 1, t)dx+

∫
Rn
ρ(x)u2ln|u|kdx.

(5.29)

We now estimate the right hand side of 5.29 and applying lemma 5.2.2, we have the estimates

as follows ∫
Rn

∆u

∫ t

0

g(t− s)∆u(s)dsdx =

∫ t

0

g(s)ds‖∆u‖2
2

+

∫
Rn

∆u

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx

≤ (δ + α− l)‖∆u‖2
2 + cδ

∫
Rn

(∫ t

0

g(t− s)|∆u(s)−∆u(t)|ds
)2

dx

≤ (δ + α− l)‖∆u‖2
2 + (α− l)cδ(g ◦∆u)(t).

(5.30)

By using Young’s inequality, Sobolevs̀ inequality and Lemma 2.3 we have

−µ1(t)

∫
Rn
ρ(x)utu(x, t)dx− µ2(t)

∫
Rn
ρ(x)uz(x, 1, t)dx ≤

1

2

(
µ1(t) + µ2(t)

)
‖ρ‖2

L2
ρ
‖∆u‖2

2 +
1

2
µ1(t)‖ut‖2

L2
ρ

+
1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ
,

(5.31)

and ∫
Rn
ρ(x)u2 ln |u|kdx = k

∫
Rn
ρ(x)u2

(
ln

u

‖u‖2
L2
ρ

+ ln ‖u‖2
L2
ρ

)
dx

≤ kωc2

2π
‖ρ‖2

L2
ρ
‖∆u‖2

2 + k
[

ln ‖u‖2
L2
ρ
− n

2
(1 + c1)

]
‖u‖2

L2
ρ

≤
(kωc2

2π
‖ρ‖2

L2
ρ
‖∆u‖2

2 + k
[

ln ‖u‖2
L2
ρ
− n

2
(1 + c1)

])
‖ρ‖2

L2
ρ
‖∆u‖2

2.

By combining the last inequalities, we arrive at

ψ′(t) ≤ (1 +
1

2
µ1(t))‖ut‖2

L2
ρ

+ (α− l)cδ(g ◦∆u)(t)

+(δ − l + ‖ρ‖∞)‖∆u‖2
2 +

1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ

+‖ρ‖2
L2
ρ

(kωc2

2π
+ k ln ‖u‖2

L2
ρ
− kn

2
(1 + c1) +

1

2
[µ1(t) + µ2(t)]

)
‖∆u‖2

2.

(5.32)

Lemma 5.4.2 Suppose that (H3) is fulfilled and let (u0, u1) ∈ D2,2(Rn)× L2
ρ(Rn) be given.
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If (u, z) is the solution of 5.11,then the derivative of the functional ϕ satisfies the following

inequality for some δ > 0.

ϕ′(t) ≤
[
δl + αδ‖ρ‖∞ + k

(δc2

2π
+ ln ‖u‖2

L2
ρ
− n(1 + c1)

2

)
‖ρ‖2

L2
ρ

]
‖∆u‖2

2

+
(

1 + cδl + cδ‖ρ‖∞ + (1 +
kcδωc2

2π
)‖ρ‖2

L2
ρ

)
(α− l)(g ◦∆u)

− cδ‖ρ‖2
L2
ρ
(g′ ◦∆u) +

(
δ +

1

2
µ1(t)−

∫ t

0

g(s)
)
‖ut‖2

L2
ρ

+
1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ
.

(5.33)

Proof. Taking the derivative of ϕ, we obtain easily

ϕ′(t) = −
∫
Rn
ρ(x)utt

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds‖ut‖2
L2
ρ

= −
∫
Rn
ρ(x)∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

+ α

∫
Rn

∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

−
∫
Rn

(∫ t

0

g(t− s)∆u(s)ds
)(∫ t

0

g(t− s)(∆u(t)−∆u(s))ds
)
dx

+ µ1(t)

∫
Rn
ρ(x)ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

+ µ2(t)

∫
Rn
ρ(x)z(x, ρ, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)u ln |u|k

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
∫ t

0

g(s)ds‖ut‖2
L2
ρ
,

(5.34)

87



then

ϕ′(t) = −
∫
Rn
ρ(x)∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

+
(
α−

∫ t

0

g(s)ds
)∫

Rn
∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

+

∫
Rn

(∫ t

0

g(t− s)(∆u(t)−∆u(s))ds
)2

dx

+ µ1(t)

∫
Rn
ρ(x)ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

+ µ2(t)

∫
Rn
ρ(x)z(x, ρ, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)u ln |u|k

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫
Rn
ρ(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
∫ t

0

g(s)ds‖ut‖2
L2
ρ
.

(5.35)

By Holder’s and Young’s inequalities and Sobolev Poincare’s inequality, we estimate

(
α−

∫ t

0

g(s)ds
)∫

Rn
∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

+

∫
Rn

(∫ t

0

g(t− s)(∆u(t)−∆u(s))ds
)2

dx ≤ lδ‖∆u‖2
2

+ (cδl + 1)(α− l)(g ◦∆u).

(5.36)

And

−α
∫
Rn
ρ(x)∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))dsdx

≤ αδ‖ρ‖∞‖∆u‖2
2 + (α− l)cδ‖ρ‖∞(g ◦∆u),

(5.37)

−µ1(t)

∫
Rn
ρ(x)ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−µ2(t)

∫
Rn
ρ(x)z(x, 1, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤ 1

2
µ1(t)‖ut‖2

L2
ρ

+
1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ

+ ‖ρ‖2
L2
ρ
(α− l)(g ◦∆u),

(5.38)
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−
∫
Rn
ρ(x)ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx

≤ δ‖ut‖2
L2
ρ
− cδ‖

∫ t

0

−g′(t− s)(u(t)− u(s))ds‖2
L2
ρ

≤ δ‖ut‖2
L2
ρ
− cδ‖ρ‖2

L2
ρ
(g′ ◦∆u).

(5.39)

Using Poincaré-Sobolev inequality and lemma 5.2.3 and conditions in Lemma 5.3.2, we have

−
∫
Rn
ρ(x)u ln |u|k

∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤
∫
Rn
ρ(x)u

(
ln
|u|k

‖u‖2
L2
ρ

+ ln ‖u‖2
L2
ρ

)∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤ k
(

ln ‖u‖2
L2
ρ
− n(1 + c1)

2

)
‖u‖2

L2
ρ

+
kc2

2π

∥∥∥u∫ t

0

g(t− s)(u(t)− u(s))ds
∥∥∥2

L2
ρ

≤ k
(

ln ‖u‖2
L2
ρ
− n(1 + c1)

2

)
‖ρ‖2

L2
ρ
‖∆u‖2

2

+
kωc2

2π
‖ρ‖2

L2
ρ

∥∥∥∆u

∫ t

0

g(t− s)(∆u(t)−∆u(s))ds
∥∥∥2

2

≤ k
(δc2

2π
+ ln ‖u‖2

L2
ρ
− n(1 + c1)

2

)
‖ρ‖2

L2
ρ
‖∆u‖2

2 +
kcδωc2

2π
‖ρ‖2

L2
ρ
(α− l)(g ◦∆u).

(5.40)

Combining these estimates we arrive at

ϕ′(t) ≤
[
δl + αδ‖ρ‖∞k

(δc2

2π
+ ln ‖u‖2

L2
ρ
− n(1 + c1)

2

)
‖ρ‖2

L2
ρ

]
‖∆u‖2

2

+
(

1 + cδl + cδ‖ρ‖∞ + (1 +
kcδωc2

2π
)‖ρ‖2

L2
ρ

)
(α− l)(g ◦∆u)

− cδ‖ρ‖2
L2
ρ
(g′ ◦∆u) +

(
δ +

1

2
µ1(t)−

∫ t

0

g(s)
)
‖ut‖2

L2
ρ

+
1

2
µ2(t)‖z(x, 1, t)‖2

L2
ρ
.

(5.41)

This completes the proof.
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Lemma 5.4.3 Suppose that (H1), (H2) hold and let (u0, u1) ∈ D2,2(Rn)×L2
ρ(Rn) be given.

If (u, z) is the solution of 5.11 then the derivative of the functional φ(t) satisfies the following

inequality

φ′(t) ≤ τ(ξ′(t)− 2ξ(t))

∫ 1

0

‖z(x, γ, t)‖2
L2
ρ
dγ + ξ(t)e−2τ‖z(x, 1, t)‖2

L2
ρ
− ξ(t)‖ut‖2

L2
ρ

(5.42)

Proof. Differentiating φ(t), we get

φ′(t) = −ξ′(t)τ
∫
Rn
ρ(x)

∫ 1

0

e−2τγz2(x, γ, t)dxdγ

−2ξ(t)τ

∫
Rn
ρ(x)

∫ 1

0

e−2τγz(x, γ, t)zt(x, γ, t)dxdγ.

(5.43)

Using the second equality in 5.2 we obtain

φ′(t) =
(ξ′(t)
ξ(t)

− 2
)
φ(t) + ξ(t)e−2τ‖z(x, 1, t)‖2

L2
ρ
− ξ(t)‖ut‖2

L2
ρ

≤
(
ξ′(t) + 2ξ(t)

)
τ

∫ 1

0

‖z(x, γ, t)‖2
L2
ρ
dγ

+ξ(t)e−2τ‖z(x, 1, t)‖2
L2
ρ
− ξ(t)‖ut‖2

L2
ρ
.

(5.44)

Lemma 5.4.4 If the functional L satisfies 5.25 then there exists two constants α1 and α2

such that

α1E(t) ≤ L(t) ≤ α2E(t). (5.45)

Proof. Using the Cauchy Schwartz and Young’s inequalities, Poincaré-Sobolev inequality

and lemma 5.2.4, we obtain

|L(t)− ξ1E(t)| ≤ (
1

2
+
ξ2

2
− ε1ξ(t))‖ut‖2

L2
ρ

+
1

2
‖ρ‖2

L2
ρ
‖∆u‖2

2

+
ξ2

2
‖ρ‖2

L2
ρ
(α− l)(g ◦∆u)ε1τ(ξ′(t) + 2ξ(t)

)∫ 1

0

‖z(x, γ, t)‖2
L2
ρ
dγ

+ ε1ξ(t)e
−2τ‖z(x, 1, t)‖2

L2
ρ
≤ cE(t).

(5.46)

Choosing ε1 small enough such that

|L(t)− ξ1E(t)| ≤ cE(t). (5.47)
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Then we can choose ξ1 such that

α1E(t) ≤ L(t) ≤ α2E(t). (5.48)

Lemma 5.4.5 For all t ≥ t1 > 0, we have∫ t

t1

(g ◦∆u)(s)ds ≤ H−1
0

(∫ t

t1

H0(−g′(s))g(s)

∫
Rn
g(s)|∆u(t)−∆u(t− s)|2dxds

)
,

where H0 is introduced in (H2).

Proof. By properties of E ′ and by (H4) we have for t ≥ t1∫
Rn

∫ t1

0

g(t− s)|∆u(t)−∆u(s)|2dsdx ≤ −1

k

∫
Rn

∫ t1

0

g(t− s)|∆u(t)−∆u(s)|2dsdx

≤ −cE ′(t).

We define now

χ(t) =

∫ t

t1

H0(−g′(s))(g ◦∆u)(t)ds.

Since

∫ ∞
0

H0(−g′(s))g(s)ds < +∞, we have

χ(t) =

∫ t

t1

H0(−g′(s))
∫
Rn
g(s)|∆u(s)−∆u(t)|2dxds

≤ 2

∫ t

t1

H0(−g′(s))g(s)(‖∆u(s)‖2
2 − ‖∆u(t)‖2

2)dxds

≤ cE(0)

∫ t

t1

H0(−g′(s))g(s) < 1.

(5.49)

We define again a new functional λ(t) related with χ(t) as

λ(t) = −
∫ t

t1

H0(−g′(s))g′(s)
∫
Rn
g(s)|∆u(t)−∆u(t− s)|2dxds. (5.50)
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From (H1)− (H2) and for some positive constant k0, we conclude for all t ≥ t1

λ(t) ≤ −k0

∫
(g′(s))

∫
Rn
|∆u(t)−∆u(t− s)|2dxds

≤ −k0

∫ t

t1

(g′(s))

∫
Rn
|∆u(t)|2 + |∆u(t− s)|2dxds

≤ −cE(0)

∫ t

t1

g′(s)ds ≤ −cE(0)g(t1) < min{r,H(r), H0(r)}.

Using the properties of H0(θx) ≤ θH0(x) and hypothesis in (H2), 5.50, 5.49 and Jensen’s

inequality we get

λ(t) =
1

χ(t)

∫ t

t1

H0

(
H−1

0 (−g′(s))
)
χ(t)H0(−g′(s))g′(s)

∫
Rn
g(s)|∆u(t)−∆u(t− s)|2dxds

≥ H0

∫ t

t1

∫
Rn
g(s)|∆u(t)−∆u(t− s)|2dxds.

Which implies ∫ t

t1

∫
Rn
g(s)|∆u(t)−∆u(t− s)|2dxds ≤ H−1

0 (λ(t)).

This ends the proof.

Theorem 5.4.1 Let (u0, u1) ∈ D2,2(Rn) × L2
ρ(Rn) be given. Assume that g and ξ satisfy

(H1) and 5.13. Then, for each t0 > 0, there exist positive constants n1, n2, n3, n4 and k such

that, for any solution of the problem 5.1, the energy satisfies

E(t) ≤ n3H
−1
1 (n1 + n2), ∀t ≥ 0, (5.51)

where

H1(t) =

∫ 1

t

(sH ′0(n4s))
−1ds.
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Proof. From the definition of L(t) we obtain

L′(t) = ξ1E
′(t) + ψ′(t) + ξ2ϕ

′(t) + ε1φ(t). (5.52)

Then

L′(t) ≤ −m0‖ut‖2
L2
ρ
−M1‖∆u‖2

2 +M2(g ◦∆u)

+
(ξ1

2
− cδξ2‖ρ‖2

L2
ρ

)
(g′ ◦∆u)− (

1 + ξ2

2
+ ε1ξ(t)e

−2τ )µ2(t)‖z(x, 1, t)‖2
L2
ρ

+
ξ(t)

2τ
‖z(x, 1, t)‖2

L2
ρ
− µ2(t)

∫
Rn
ρ(x)utz(x, 1, t)dx

+
ξ′(t)

2

∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx,

(5.53)

hence
L′(t) ≤ −M0‖ut‖2

L2
ρ
−M1‖∆u‖2

2 +M2(g ◦∆u)

+
(1

2
− cδξ2‖ρ‖2

L2
ρ

)
(α− l)(g′ ◦∆u)−M3‖z(x, 1, t)‖2

L2
ρ

+
(
ε1(ξ′(t) + 2ξ(t))τ +

ξ′(t)

2

)∫
Rn

∫ 1

0

ρ(x)z2(x, γ, t)dγdx,

(5.54)

where

M0 =
(
ξ1

(µ2(t)

2
+ ε1ξ(t)− µ1(t)− ξ(t)

2τ

)
− 1 +

µ1(t)

2
+ ξ2

(
δ −

∫ t1

0

g(s)ds+
µ1(t)

2

))
,

M1 =
ξ1

2
g(t)−

(
δ − l + αδ‖ρ‖∞ +

kωc2

2π
+ k ln ‖u‖2

L2
ρ
− kn

2
(1 + c1)

+
1

2
(µ1(t) + µ2(t))

)
− ξ2

(
δl + ‖ρ‖∞ + k

δωc2

2π
+ k ln ‖u‖2

L2
ρ
− kn(1 + c1)

2

)
‖ρ‖2

L2
ρ
− ε1ξ(t

)
.

M2 = ξ2

(
1 + cδl + cδ‖ρ‖∞ + (1 +

kcδωc2

2π
)‖ρ‖2

L2
ρ

)
(α− l) + (α− l)cδ) > 0.

M3 = (
ξ(t)

2τ
− µ2(t)

2
+
µ2(t)ξ2

2
− ε1ξ(t)e

−2τ ).

93



At this point, we choose δ so small such that ξ1 > 2cδ‖ρ‖2
L2
ρ
ξ2.

Whence δ is fixed, we can choose ξ2 such that M0 > 0

M0 =
(
ξ1

(µ2(t)

2
− µ1(t)− ξ(t)

2τ

)
+ ε1ξ(t)− 1 +

µ1(t)

2

+ξ2

(
δ −

∫ t1

0

g(s)ds+
µ1(t)

2

))
≥ ξ2

(
δ −

∫ t

0

g(s)ds
)
,

then for t > t1 we can choose

ξ2 >
(∫ t1

0

g(s)ds− δ
)−1

.

Now choosing ε1 small enough such that M3 > 0. After this conditions we estimate that

L′(t) ≤M2(g ◦∆u)− cE ′(t).

Now we set F (t) = L(t) + cE(t), which is equivalent to E(t). Then

F ′(t) ≤ −cE(t) + c

∫
Rn

∫ t

t1

g(t− s)|∆u(t)−∆u(s)|2dsdx, ∀t > t1.

Using Lemma 5.4.5, we obtain

F ′(t) = L′(t) + cE ′(t) ≤ −cE(t) + cH−1
0 (λ(t)).

Now, we will use the following steps in ([56]) and using the fact that E ′ < 0, H ′ > 0, H ′′ > 0

on (0; r] to define the functional

F1(t) = H ′0

(
α0
E(t)

E(0)

)
F (t) + cE(t), α0 < r, c > 0.

Where F1(t) ∼ E(t) and

F ′1(t) = α0
E ′(t)

E(0)
H ′′0

(
α0
E(t)

E(0)

)
F (t) +H ′0

(
α0
E(t)

E(0)

)
+ cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
F (t) + cH ′0

(
α0
E(t)

E(0)

)
H−1(λ(t)) + cE ′(t).
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Let H∗0 given in (H2) and using Young’s inequality in (H2) with A = H ′
(
α0

E(t)
E(0)

)
,

B = H−1
0 (λ(t)) to get

F ′1(t) ≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cH∗0

(
H ′0

(
α0
E(t)

E(0)

))
+ c(λ(t)) + cE ′(t)

≤ −cE(t)H ′0

(
α0
E(t)

E(0)

)
+ cα0

E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
− c′E ′(t) + cE ′(t)

Choosing α0, c, c
′, such that for all t ≥ t1 we have

F ′1(t) ≤ −k E(t)

E(0)
H ′0

(
α0
E(t)

E(0)

)
= −kH2

E(t)

E(0)
,

where H2(t) = H ′0(α0t). By using the strict convexity of H0 on (0; r], to find that H ′2, H2 are

strict positives function on (0; 1], then

R(t) = γ
k1F1(t)

E(0)
∼ E(t), γ ∈ (0, 1), (5.55)

and

R′(t) ≤ −γk0H2(R(t)), k0 ∈ (0,+∞), t ≥ t1.

hence, a simple integration gives

R(t) ≤ H−1
1 (n1t+ n2), n1, n2 ∈ (0,+∞), t ≥ t1

here H1(t) =

∫ 1

t

H−1(s)ds. From 5.55, for a positive constant n3, we have

E(t) ≤ n3H
−1
1 (n1t+ n2), n1, n2 ∈ (0,+∞), t ≥ t1.

The fact that H1 is strictly decreasing function on (0; 1] and due to properties of H2, we

have: limt→0H1(t) = +∞. Then

E(t) ≤ n3H
−1
1 (n1t+ n2), n1, n2 ∈ (0,+∞), t ≥ 0.

This completes the proof of the Theorem.

Remark 5.4.1 Noting that, we have obtained all results without any conditions on the ex-

ponent k in the logarithmic nonlinearities.
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Chapter 6

General decay result for the wave

equation with distributed delay

We consider the nonlinear wave equation with distributed delay

(
|ut|γ−2ut

)
t
− Lu−

∫ t

0

g(t− s)Lu(s)ds+ µ1ut(x, t) +

∫ τ2

τ1

µ2(s)ut(x, t− s)ds = 0,

in a bounded domain Ω ⊂ Rn(n ≥ 1). By using an appropriate Lyapunov functional, we

study the asymptotic behavior of solutions. Moreover, we extend and improve the previous

results in the literature.

6.1 Introduction

In this chapter, we investigate the decay properties of solutions for the initial boundary value

problem of a nonlinear wave equation of the form

(|ut|γ−2ut)t − Lu−
∫ t

0

g(t− s)Lu(s)ds+ µ1ut(x, t)

+

∫ τ2

τ1

µ2(s)ut(x, t− s)ds = 0, in Ω×]0,+∞[,

u(x, t) = 0, on Γ×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x,−t) = f0(x, t), in Ω×]0, τ2[,

(6.1)
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where Ω is a bounded domain in RN , N ∈ N∗, with a smooth boundary ∂Ω = Γ. The

constant τ1 is nonnegative such that τ1 < τ2 and µ2 : [τ1, τ2] → R is a bounded function.

The initial datum (u0, u1, f0) belong to a suitable function space, where Lu = −div(A∇u) =

−
∑N

i,j=1

(
∂u
∂xi
ai,j(x) ∂u

∂xj

)
and A = (ai,j(x)) is a matrix that will be specified later. In absence

of delay (µ2 = 0), the problem of existence and energy decay have been extensively studied

by several authors (see [6, 18, 22, 44, 45, 57, 63]) and many energy estimates have been

derived for arbitrary growing feedbacks. The delay term is often used in process control

systems (see [61])

Recently, much attention has been focused on the study of the control of PDEs with time

delay effects ( see for example [62,85,62]) and the references therein. In [73], the authors

showed that a small delay in a boundary control becomes a source of instability. However,

sometimes it also can improve the performance of the systems (see [62]). Additional terms

are needed to stabilize hyperbolic systems involving input delay terms (see [70,72,79,34] ).

For instance in 70 the authors studied the wave equation with linear internal damping term

with constant delay. They determined suitable relations between µ1 and µ2, for which the

stability or alternatively instability takes place. More precisely, they showed that the energy

is exponentially stable if µ2 < µ1 and they also found a sequence of delays for which the

corresponding solution of (6.1) will be instable if µ2 ≥ µ1. The main approach used in [70],

is an observability inequality obtained with a Carleman estimate. The same results were

obtained if both the damping and the delay are acting in the boundary. We also recall the

result by Xu, Yung and Li [79], where the authors proved a result similar to the one in [63]

for the one-space dimension by adopting the spectral analysis approach. The case of time

varying delay in the wave equation has been studied recently by Nicaise, Valein and Fridman

63 and proved an exponential stability result under the condition

µ2 <
√

1− dµ1,

where the constant d satisfies

τ ′(t) ≤ d < 1, ∀t > 0.

In 60 Nicaise, Pignotti and Valein extended the above result to higher-space dimension and

established an exponential decay.

Motivated by the previous works, our purpose in this chapter is to give an energy decay
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estimate of the solution to problem (6.1) for linear damping and in the presence of distributed

delay term. We use for this goal a suitable energy and Lyapunov functionals.

6.2 Preliminary Results

In this section, we present some material for the proof of our results. Let H(L,Ω) =

{ν ∈ H1(Ω)/Lν ∈ L2(Ω)} be the Hilbert space equipped with the norm

‖ν‖H(L,Ω) =
(
‖ν‖2

H1(Ω) + ‖Lν‖2
2

) 1
2
,

where H1(Ω) is the real Sobolev space of first order, ‖ν‖2
2 is a L2-norm and 〈., .〉 is the scalar

product in L2 i.e. 〈ν, ϑ〉 =
∫

Ω
ν(x, t).ϑ(x, t)dx. We define in H1(Ω) the inner product and

norm by

〈ν, ϑ〉 =
N∑
i=1

∫
Ω

∂ν

∂xi

∂ϑ

∂xi
dx, ‖ν‖2 =

N∑
i=1

∫
Ω

∣∣∣∣ ∂ν∂xi
∣∣∣∣2 dx.

And we define

a(u(t), υ(t)) =
N∑

i,j=1

ai,j(x)
∂u(t)

∂xj

∂υ(t)

∂xi
dx =

∫
Ω

A∇u(t).∇υ(t)dx,

(A1) : The matrix A = (ai,j(x)), where ai,j ∈ C1(Ω), is symmetric and there exists a constant

a01 > 0 such that for all x ∈ Ω and δ = (δ1, δ2, ....., δN) ∈ RN , we have

N∑
i,j=1

ai,j(x)δjδi ≥ a01|δ|2, (6.2)

And

a11 = max
1≤j≤n

(
N∑
i=1

‖ai,j‖2
∞

)
(A2) : g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l > 0,

and there exists a non-increasing differentiable function : σ : R+ → R+ such that

g′(t) ≤ −σ(t)g(t). We now state some Lemmas needed later.
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Lemma 6.2.1 (Sobolev-Poincaré’s inequality) Let q be a number with 2 ≤ q < +∞ (n =

1, 2) or 2 ≤ q ≤ 2n/(n− 2) (n ≥ 3). Then there exists a constant c∗ = c∗(Ω, q) such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈ H1
0 (Ω).

Like in [19] we introduce the auxiliary unknown

z(x, ρ, s, t) = ut(x, t− ρs), (x, ρ, s, t) ∈ Ω× (0, 1)× (τ1, τ2)× (0,∞). (6.3)

Then, we have

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0 in Ω× (0, 1)× (τ1, τ2)×]0,+∞[,

Therefore, problem (6.1) is equivalent to

(|ut|γ−2ut)t − Lu−
∫ t

0

g(t− s)Lu(s)ds+ µ1ut

+

∫ τ2

τ1

µ2(s)z(x, 1, s, t)ds = 0, in Ω×]0,+∞[,

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0 in Ω× (0, 1)× (τ1, τ2)×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

∂νu = ∂νυ = 0, on Γ×]0,+∞[,

u = ν = 0, in Γ×]0,+∞[,

z(x, ρ, s, 0) = f0(x, ρs), in Ω× (0, 1)× (τ1, τ2).

(6.4)

Let ξ be a positive constant such that∫ τ2

τ1

|µ2(s)|ds+
ξ(τ2 − τ1)

2
< µ1. (6.5)

By combining the arguments of [ 7,6,73], we recall the existence result in [10].
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Theorem 6.2.1 Let u0 ∈ H1
0 (Ω) ∩ H2(Ω), u1 ∈ H1

0 (Ω) and f0 ∈ (L2(Ω× (0, 1)× (τ1, τ2))

such that the compatibility condition f0(., 0) = u1 is fulfilled. Assume that the hypotheses

(A1)− (A2) hold. Then there exists a unique weak solution u of (6.4) such that

u(t) ∈ C
(
[0,+∞];H1

0 (Ω)
)
∩ C1

(
[0,+∞];L2(Ω)

)
.

Now, we define the energy associated to the solution of the problem (6.4) by

E(t) =
γ − 1

γ
‖ut(t)‖γγ +

1

2

(
1−

∫ t

0

g(s)ds

)
a(u(t), u(t)) + (g ◦ u)(t)

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s(|µ2(s)|+ ξ)z2(x, ρ, s, t)dsdρdx.

(6.6)

Lemma 6.2.2 Let (u, z) be a solution of the problem (6.4). Then, the energy functional

defined by (6.6) satisfies

E ′(t) ≤ −
[
µ1 −

∫ τ2

τ1

|µ2(s)|ds− ξ(τ2 − τ1)

2

] ∫
Ω

u2
tdx−m

∫
Ω

∫ τ2

τ1

z2(x, 1, s, t)dsdx

+
1

2
(g′ou)(t)− 1

2
g(t)a(u(t), u(t)) ≤ 0.

(6.7)

Proof. Multiplying the first equation in (6.4) by ut, integrating over Ω and using integration

by parts, we get

1

2

d

dt

(
‖ut‖γγ + a(u(t), u(t))

)
+ µ1‖ut‖2

2 dx+

∫ τ2

τ1

µ2(s)

∫
Ω

z(x, 1, s, t)ut(x, t)dsdx

−
∫ t

0

g(t− s)
∫

Ω

A∇υ(s)∇υt(t)dxds = 0.

(6.8)

Where

a(ψ(t), φ(t)) =
N∑

i,j=1

∫
Ω

ai,j(x)
∂ψ(t)

∂xj

∂φ(t)

∂xi
dx =

∫
Ω

A∇ψ(t)φ(t)dx.

By using hypothesis (A1), we verify that the bilinear forms a(., .) : H1
0 (Ω)×H1

0 (Ω)→ R are

symmetric and continuous. On the other hand, from (6.2) for δ = ∇ψ, we get

a(ψ(t), ψ(t)) ≥ a01

∫
Ω

N∑
i,j=1

∣∣∣∣ ∂ψ∂xi
∣∣∣∣2 dx = a01‖∇ψ(t)‖2

2, (6.9)
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which implies that a(., .), are coercive. Note that

a(u(t), ut(t)) =
1

2

d

dt
a(u(t), u(t)). (6.10)

Following the same technique as in [73], we obtain

∫ t

0

g(t− s)
∫

Ω

A∇u(s)∇ut(t)dxds =
N∑

i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)
∂u(s)

∂xj

∂ut(t)

∂xi
dxds

=
N∑

i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)
∂u(t)

∂xi

∂ut(t)

∂xi
dxds

−
N∑

i,j=1

∫ t

0

∫
Ω

g(t− s)ai,j(x)

(
∂u(t)

∂xi
− ∂ut(s)

∂xj

)
∂ut(t)

∂xi
dxds

=
1

2

∫ t

0

g(t− s)
(
d

dt
a(u(t), u(t))ds

)
− 1

2

∫ t

0

g(t− s)
(
d

dt
a(u(t)− u(s), u(t)− u(s))ds

)
=

1

2

d

dt

(∫ t

0

g(t− s)a(u(t), u(t)

)
ds− 1

2

d

dt

(∫ t

0

g(t− s)a(u(t)− u(s), u(t)− u(s))

)
ds

− 1

2
g(t)a(u(t), u(t)) +

1

2

∫ t

0

g′(t− s)a(u(t)− u(s), u(t)− u(s))ds

= −1

2

d

dt
(g ◦ u)(t) +

1

2
(g′ ◦ u)(t) +

1

2

d

dt

[
a(u(t), u(t))

∫ t

0

g(s)ds

]
− 1

2
g(t)a(u(t), u(t)),

(6.11)

Multiplying the second equation in (6.4) by (µ2(s)+ξ)z and integrating over Ω×(0, 1)×(τ1, τ2)

with respect to ρ, x and s, we get

1

2

d

dt

∫
Ω

∫ 1

0

∫ τ2

τ1

s(µ2(s) + ξ)z2(x, ρ, s, t)dsdρdx

= −
∫

Ω

∫ 1

0

∫ τ2

τ1

(µ2(s) + ξ)zzρ(x, ρ, s, t)dsdρdx

= −1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

(µ2(s) + ξ)
∂

∂ρ
z2(x, ρ, s, t)dsdρdx

=
1

2

∫
Ω

∫ τ2

τ1

(µ2(s) + ξ)(z2(x, 0, s, t)− z2(x, 1, s, t))dsdx

≤ 1

2

[
ξ(τ2 − τ1) +

∫ τ2

τ1

µ2(s)ds

] ∫
Ω

u2
tdx

− 1

2

∫
Ω

∫ τ2

τ1

(µ2(s) + ξ)z2(x, 1, s, t)dsdx.

(6.12)
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From (6.8), (6.11) and (6.13), we obtain

E ′(t) ≤ −
[
µ1 −

∫ τ2

τ1

|µ2(s)|ds− ξ(τ2 − τ1)

2

] ∫
Ω

u2
tdx−m

∫
Ω

∫ τ2

τ1

z2(x, 1, s, t)dsdx

+
1

2
(g′ou)(t)− 1

2
g(t)a(u(t), u(t)).

(6.13)

In this way the proof of Lemma 6.2.2 is completed.

6.3 Asymptotic Behavior

In this section, we prove the energy decay result by constructing a suitable Lyapunov func-

tional. We denote by c various positive constants which may be different at different occur-

rences. Now we define the following functional

L(t) = ME(t) + εφ(t) + εϕ(t) + εI(t), (6.14)

where

φ(t) =

∫
Ω

u|ut|γ−2utdx, (6.15)

ϕ(t) = −
∫

Ω

|ut|γ−2ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx, (6.16)
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and

I(t) =

∫
Ω

∫ 1

0

∫ τ2

τ1

se−sρ(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx. (6.17)

We need also the following lemmas

Lemma 6.3.1 Let (u, z) be a solution of problem (6.4), then there exists two positive con-

stants λ1, λ2 such that

λ1E(t) ≤ L(t) ≤ λ2E(t), t ≥ 0, (6.18)

for M sufficiently large .

Proof. By applying the Hölder inequality and Young’s inequality and Lemma 6.4 we easily

see that

φ(t)|
∫

Ω

u|ut|γ−2utdx| ≤ Cε

∫
Ω

|u|γdx+ ε

∫
Ω

|ut|ldx ≤ Cε‖∇u‖γ2 + ε‖ut‖γγ

≤ CεE
γ
2 (t) + cεE(t) ≤ Cε

a01

E
γ−2
2 (0)E(t) + cεE(t),

(6.19)

then
φ(t)

≥ −CεE
γ
2 (t)− cεE(t) ≥ − Cε

a01

E
γ−2
2 (0)E(t)− cεE(t),

(6.20)

and

ϕ(t) =

∣∣∣∣−∫
Ω

|ut|γ−2ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ 1

2
‖ut‖γγ +

1

2

∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx

≤ 1

2

(
‖ut‖γγ + (1− l)c2

s

∫ t

0

g(t− s)a(u(t)− u(s), u(t)− u(s))ds

)
≤ 1

2

(
‖ut‖γγ + (1− l)

(
βE(0)

l

)
c2
s(gou)(t)

)
,

(6.21)

it follows from (6.18) that ∀c > 0, we have

|I(t)| =
∣∣∣∣∫

Ω

∫ 1

0

∫ τ2

τ1

se−sρ(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx

∣∣∣∣
≤ c

∫
Ω

∫ 1

0

∫ τ2

τ1

s(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx.

(6.22)
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Hence, combining (6.20)-(6.22). This yields

|L(t)−ME(t)| = εφ(t) + ϕ(t) + εI(t) ≤ Cε
a01

E
γ−2
2 (0)E(t) + cεE(t)ε‖ut‖γγ

+ ε(1− l)
(
βE(0)

l

)
c2
s(gou)(t) + c

∫
Ω

∫ 1

0

∫ τ2

τ1

s(|k(s)|+ ξ)z2(x, ρ, s, t)dsdρdx.

(6.23)

Finally, we get

|L(t)−ME(t)| ≤ c5E(t), (6.24)

where c5 = max(c1, c2, c3, c4). Thus, from the definition of E(t) and selecting M sufficiently

large, we find

β2E(t) ≤ L(t) ≤ β1E(t), (6.25)

such that β1 = (M − εc5), β2 = (M + εc5). This completes the proof.

Lemma 6.3.2 Let (u, z) be the solution of (6.4), then it holds for any ∀δ > 0

d

dt
φ(t) ≤

{
µa11

a01

+ 2µ1δc
2
s − l

}
a(u(t), u(t)) +

N

4a01µ
(1− l)(gou)(t)

+
µ1

4δ

∫ τ2

τ1

|µ2(s)|‖z(x, 1, s, t)‖2
2ds+ ‖ut‖γγ +

µ1

4δ
‖ut‖2

2.

(6.26)

Proof. We take the derivative of φ(t). It follows from (6.17) that

d

dt
φ(t) =

∫
Ω

(|ut|γ−2ut)tudx+ ‖ut‖γγ, (6.27)

using the problem (6.4), then we have

d

dt
φ(t) = ‖ut‖γγ − a(u(t), u(t)) +

∫
Ω

∫ t

0

g(t− s)A∇u(s)∇u(t)dsdx

−µ1

∫
Ω

utudx−
∫

Ω

∫ τ2

τ1

µ2(s)z(x, 1, s, t) u dsdx,

(6.28)
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following the same idea in [10], yields∫
Ω

A

∫ t

0

g(t− s)(∇u(t)∇u(s)dsdx

=

N∑
i,j=1

∫ t

0

g(t− s)
∫

Ω

aij(x)
∂u(t)

∂xj

(
∂u(s)

∂xi
− ∂u(t)

∂xi
+
∂u(t)

∂xi

)
dxds

=
N∑

i,j=1

∫
Ω

∫ t

0

g(t− s)aij(x)
∂u(t)

∂xj

∂u(t)

∂xi
dsdx

+
N∑

i,j=1

∫
Ω

∫ t

0

(
g(t− s)aij(x)

∂u(t)

∂xj

(
∂u(s)

∂xi
− ∂u(t)

∂xi

))
dsdx

≤ (1− l)a(u(t), u(t)) + µ
N∑

i,j=1

∫
Ω

(
aij(x)

∂u(s)

∂xj
ds

)2

dx

+
1

4µ

N∑
i,j=1

∫
Ω

(∫ t

0

g(t− s)
(
∂u(s)

∂xi
− ∂u(t)

∂xi

)
ds

)2

dx

≤
[
(1− l) +

µa11

a01

]
a(u(t), u(t)) +

N

4a01µ
(1− l)(gou)(t),

(6.29)

for the forth and fifth term in (6.29), we use Holder and Young’s inequalities, then for any

δ > 0, we get ∣∣∣∣∫
Ω

utudx

∣∣∣∣ ≤ δc2
sa(u(t), u(t)) +

1

4δ
‖ut‖2

2, (6.30)

and ∣∣∣∣∫
Ω

∫ τ2

τ1

µ2(s)z(x, 1, s, t)udx

∣∣∣∣ ≤ δc2
sa(u(t), u(t))

+

∫ τ2

τ1

|µ2(s)|ds
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t)dsdx,

(6.31)

hence∣∣∣∣∫ τ2

τ1

∫
Ω

µ2(s)z(x, 1, s, t)udxds

∣∣∣∣ ≤ δc2
sa(u(t), u(t)) +

µ1

4δ

∫ τ2

τ1

|µ2(s)|‖z(x, 1, s, t)‖2
2ds. (6.32)
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Using (6.31)-(6.33), then (6.30) becomes

d

dt
φ(t) ≤

{
µa11

a01

+ (µ1 + µ2)δc2
s − l

}
a(u(t), u(t)) +

N

4a01µ
(1− l)(gou)(t)

+
µ1

4δ

∫ τ2

τ1

|µ2(s)|‖z(x, 1, s, t)‖2
2ds+ ‖ut‖γγ +

µ1

4δ
‖ut‖2

2.

(6.33)

This completes the proof.

Lemma 6.3.3 Let (u, z) be the solution of (2.3), then ϕ(t) satisfies for any ∀ δ > 0

ϕ′(t) ≤
{
β

a01

+
a11β(1− l)2

a01

}
a(u(t), u(t))− (g0 − δ)‖ut‖γγ

+ µ1‖ut‖2
2 +

1

4δ
c2
sµ1

∫
Ω

∫ τ2

τ1

µ2(s)z2(x, 1, s, t)dsdx+
g(0)c2

s

4δ
(−g′ou)(t)

+

{
(1− l)

{
1

4a01β
+

1

a01

(
2βa11 +

N

4β

)
+

2µ1c
2
s

4δ

}}
(gou)(t).

(6.34)

Proof. Now Taking the derivatives of ϕ(t) and using the problem (6.4), we obtain

dϕ(t)

dt
= −

∫
Ω

(|ut|γ−2ut)t

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫

Ω

|ut|γ−2ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds

)∫
Ω

uγt dx

=
N∑

i,j=1

∫
Ω

aij(x)
∂u(t)

∂xj

(∫ t

0

g(t− s)
(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
ds

)
dx

−
N∑

i,j=1

∫
Ω

(∫ t

0

g(t− s)∂u(s)

∂xi
ds

)(∫ t

0

g(t− s)
(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
ds

)
dx

+

∫
Ω

µ1u(t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

+

∫
Ω

∫ τ2

τ1

µ2(s)z1(x, 1, s, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdsdx

−
∫

Ω

|ut|γ−2ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds

)∫
Ω

uγt dx.

(6.35)
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Using Young’s inequality and A2, we infer

N∑
i,j=1

∫
Ω

aij(x)
∂u(t)

∂xj

(∫ t

0

g(t− s)
(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
ds

)
dx

≤ β

a01

a(u(t), u(t)) +
(1− l)
4a01β

(gou)(t),

(6.36)

Using (6,29)∣∣∣∣∣
N∑

i,j=1

∫
Ω

(∫ t

0

g(t− s)∂u(s)

∂xi
ds

)(∫ t

0

g(t− s)
(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
ds

)
dx

∣∣∣∣∣
≤ β

N∑
i,j=1

∫
Ω

(∫ t

0

g(t− s)∂u(s)

∂xi
ds

)2

dx

+
1

4β

N∑
i,j=1

∫
Ω

(∫ t

0

g(t− s)
(
∂u(t)

∂xi
− ∂u(s)

∂xi

)
ds

)2

dx

≤ (1− l)
a01

[
2βa11 +

N

4β

]
(g ◦ u)(t) +

2a11β

a01

(1− l)2a(u(t), u(t)).

(6.37)

Next we will estimate the right hand side of (6.36). Applying the Hölder inequality and

Young’s inequality and the assumptions (A1)− (A2), we have for any t0 > 0∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0, ∀t ≥ t0, (6.38)

Invoking (6.38), we get the following estimates∫
Ω

|ut|γ−2ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds

)∫
Ω

uγt dx

≤ δ‖ut‖γγ +
g(0)c2

s

4δ
(−g′ou)(t)− g0‖ut‖γγ,

(6.39)

∣∣∣∣−∫
Ω

µ1ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ µ1‖ut‖2

2 +
µ1(1− l)c2

s

4δ
(gou)(t),

(6.40)
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and ∣∣∣∣−∫
Ω

∫ τ2

τ1

µ2(s)z(x, 1, s, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ µ1

∫
Ω

∫ τ2

τ1

µ2(s)z2(x, 1, s, t)dsdx+
µ1(1− l)c2

s

4δ
(gou)(t).

(6.41)

A substitution of (6.36)-(6.41) into (6.35) yields

ϕ′(t) ≤
{
β

a01

+
a11β(1− l)2

a01

}
a(u(t), u(t))− (g0 − δ)‖ut‖γγ

+ µ1‖ut‖2
2 +

1

4δ
c2
sµ1

∫
Ω

∫ τ2

τ1

µ2(s)z2(x, 1, s, t)dsdx+
g(0)c2

s

4δ
(−g′ou)(t)

+

{
(1− l)

{
1

4a01β
+

1

a01

(
2βa11 +

N

4β

)
+

2µ1c
2
s

4δ

}}
(gou)(t).

(6.42)

This completes the proof.

Lemma 6.3.4 Let I the functional defined by (6.17), then it holds

d

dt
I(t) ≤ c

∫
Ω

u2
tdx− γ0

∫
Ω

∫ τ2

τ1

s(|µ2(s)|+ ξ)z2(x, s, ρ, t)dsdx (6.43)

where τ0, τ2 are some positive constants.

Proof. Differentiating (6.17) with respect to t and using the second equation in (6.4), we

have

I ′1(t) = −2

∫
Ω

∫ τ2

τ1

(|µ2(s)|+ ξ)

∫ 1

0

e−sρzzρdρdsdx

= −
∫

Ω

∫ τ2

τ1

(|µ2(s)|+ ξ)

∫ 1

0

e−sρz2dρdsdx

−
∫

Ω

∫ τ2

τ1

(|µ2(s)|+ ξ)

[
e−sz2(x, 1, s, t)− z2(x, 0, s, t) + s

∫ 1

0

e−sρz2dρ

]
dsdx

≤ c

∫
Ω

u2
tdx− γ0

∫
Ω

∫ τ2

τ1

s(|µ2(s)|+ ξ)z2(x, s, ρ, t)dsdx.

(6.44)

The proof is hence completed.
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Theorem 6.3.1 Assume that assumptions (A1) − (A2) are fulfilled. Let u0 ∈ H1
0 (Ω),

u1 ∈  L2(Ω) and f0 ∈
(

 L2(Ω× (0, 1)× (τ1, τ2)
)

be given. Then, we have the following de-

cay estimates:

E(t) ≤ Ke
−α

∫ t

t0

σ(s)ds
, for t ≥ t0. (6.45)

Proof. Since g is positive for any t0 > 0, we have∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 ∀t ≥ t0.

Hence we conclude from Lemma 6.2.1, Lemma 6.3.2, Lemma 6.3.3 and Lemma 6.3.4 that

dL(t)

dt
≤ ε

{
(1− l)

{
N

4a01µ
+

1

4a01β
+

1

a01

(
2βa11 +

N

4β

)
+

2µ1c
2
s

4δ

}}
(g ◦ u)(t)

+ ε
{µ1

4δ
+ µ1

}
‖ut‖2

2 − ε
{

1− µa11

a01

− 2µ1δc
2
s −

β

a01

− a11β(1− l)2

a01

}
a(u(t), u(t))

−
[
mM −

(
µ1

4δ
− c2

sµ1

4δ
µ2

)
(s) + γ0(s(|µ2(s)|+ ξ))

] ∫ τ2

τ1

‖z(x, s, ρ, t)‖2
2ds

− 2εI(t) +

{
M

2
− εg(0)c2

s

4δ

}
(g
′
ou)(t)− ε(g0 − δ − 1)‖ut‖γγ.

(6.46)

Choosing carefully ε sufficiently small and M sufficiently large such that{
(1− l)

{
N

4a01µ
+

1

4a01β
+

1

a01

(
2βa11 +

N

4β

)
+

2µ1c
2
s

4δ

}}
= η0 > 0,

{
1− µa11

a01

− 2µ1αc
2
s −

β

a01

− a11β(1− l)2

a01

}
= η1 > 0,

(g0 − α− 1) = η2 > 0,

[
mM −

(
µ1

4δ
− c2

sµ1

4δ
µ2(s)

)
+ γ0(s(|µ2(s)|+ ξ))

]
= η3 > 0,

then (6.46) takes the form

dL(t)

dt
≤ −θεE(t) + ε

η1

2
(gou)(t), (6.47)

110



where θ is positive constant. Setting

λ1 =
θε

β2

, λ2 =
η1ε

2
, λ3 = εc,

the last inequality becomes

dL(t)

dt
≤ −λ1E(t) + λ2(gou)(t), (6.48)

multiplying (6.48) by σ(t), we get

σ(t)
dL(t)

dt
≤ −λ1σ(t)E(t) + λ2σ(t)(gou)(t)

≤ −λ1σ(t)E(t)− λ2σ(t)(g
′
ou)(t) ≤ −λ1σ(t)E(t)− cE ′(t).

(6.49)

Let

H(t) = σ(t)L(t) + 2λE(t).

At last, we can easily see that H(t) is equivalent to E(t). Now, subtracting and adding

σ
′
(t)F (t) in the right hand side of (6.49), using the fact that σ

′
(t) ≤ 0 and (A1), then

∀t ≥ t0, we obtain

dH(t)

dt
≤ σ

′
(t)L(t)− ρ1σ(t)E(t) ≤ −ρ1σ(t)E(t) ≤ −ρ3σ(t)H(t). (6.50)

Integrating this over (t0, t), we conclude that

H(t) ≤ H(t0)e
−ρ3

∫ t

t0

σ(s)ds
for t ≥ t0. (6.51)

Where ρ3 is a positive constant. Finally, we get

E(t) ≤ Ke
−α

∫ t
t0
σ(s)ds

for t ≥ t0. (6.52)

where α and K are some positive constants. This completes the proof.
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Remark 6.3.1 We illustrate the energy decay rate given by Theorem 6.3.1 through the fol-

lowing examples which are introduced in [55,73].

1. If g(t) = a
(1+t)ν

, for a > 0 and ν > 1, then σ(t) = ν
(1+t)

satisfies the condition (A2).

Thus (6.52) gives the estimate

E(t) ≤ K(1 + t)−α where α > 0,

2. If g(t) = ae−b(1+t)ν , for a, b > 0 and 0 < ν ≤ 1, then σ(t) = bν(1 + t)ν−1 satisfies the

condition (A2). Thus (6.52) gives the estimate

E(t) ≤ Ke−α(1+t)ν ,

3. If g(t) = ae−b lnν(1+t), for a, b > 0 and ν > 1, then σ(t) = bν lnν−1(1+t)
1+t

satisfies the

condition (A2). Thus (6.52) gives the estimate

E(t) ≤ Ke−α lnν(1+t),

4. If g(t) a
(1+t) ln ν(1+t)

, for a > 0 and ν > 1, then σ(t) = ln(1+t)+ν
(1+t) lnν(1+t)

satisfies the condition

(A2). Thus (6.52) gives the estimate

E(t) ≤ K((1 + t) lnν(1 + t))−α.
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