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Abstract

The research reported in this thesis deals with the problem of fractional stochastic
differential equations. We formulated and proved the set of sufficient conditions for
the controllability of semilinear fractional stochastic differential systems with nonlocal
conditions in Hilbert spaces. We have discussed the existence and uniqueness result for
a neutral stochastic fractional differential equations involving nonlocal initial conditions,
we also investigated a class of dynamic control systems described by semilinear fractional
stochastic differential equations of order 1 < q < 2 and Sobolev-type fractional functional
stochastic integro-differential systems. The main results are obtained by means of the
theory of operators semi-group, fractional calculus, fixed point technique and stochastic
analysis theory.

The approximate controllability has also been investigated for this class of fractional
stochastic functional differential equations. In all the resuts, a new set of sufficient con-
ditions are derived under the assumption that the corresponding linear system is approx-
imately controllable.
As a consequence, some of the above results are extended to study exact controllability.
In this thesis, adequate examples are provided to illustrate the theory.
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Introduction

Fractional differential equations have been proved to be valuable tools in the modeling
of many phenomena in various fields of engineering, physics and economics. It draws a
great application in nonlinear oscillations of earthquakes, many physical phenomena such
as seepage flow in porous media and in the fluid dynamic traffic model.

Applications of fractional differential equations to different areas were considered
by many author sand some basic results on fractional differential equations have been
obtained (see for example [28], [55]. Actually, fractional differential equations are
considered as an alternative model to integer differential equations. For more details on
fractional calculus theory, one can see the monographs of (Abbas and al [3]), (Kilbas and

al.[35]), (Lakshmikantham and al.[39]) and(Miller and Ross [51]). Fractional differential
equations involving the Riemann-Liouville fractional derivative or the Caputo fractional
derivative have been paid more and more attention (see for example [8], [18], [19], [26],

[67]).

Stochastic differential equations have attracted great interest due to their appli-
cations in various fields of science and engineering. There are many interesting results
on the theory and applications of stochastic differential equations,(see[9], [10], [11]) and

the references therein). Chang and al [12] investigated the existence of square-mean
almost automorphic mild solutions to non-autonomous stochastic differential equations
in Hilbert spaces using semigroup theory and fixed point approach. Fu and Liu [21]
discussed the existence and uniqueness of square-mean almost automorphic solutions to
some linear and nonlinear stochastic differential equations and in which they studied
the asymptotic stability of the unique square-mean almost automorphic solution in the
square-meansense. Chang et al [11] studied the existence and uniqueness of quadratic
mean almost periodic mild solutions for a class of stochastic differential equations in areal

9
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separable Hilbert space by employing the contraction mapping principle and an analytic
semigroup of linear operators. However, only few papers deal with the existence result
for stochastic fractional systems. Cui and Yan [13] studied the existence of mild solutions
for a class of fractional neutral stochastic integro-differential equations with infinite delay
in Hilbert spaces by means of Sadovskii’s fixed-point theorem. The existence of mild
solutions for a class of fractional stochastic differential equations with impulses in Hilbert
spaces has been established in [26], [59].

On the other hand, the study of controllability plays a major role in the devel-
opment of modern mathematical control theory. Mainly, the problem of controllability
of dynamical systems is widely used in analysis and design of control system. In this
way, fractional-order control systems described by fractional-order deterministic and
stochastic differential equations are attracting considerable attention in recent years.
The fractional-order models need fractional-order controllers for more effective control
of dynamical systems [55].Clearly,the use of fractional-order derivatives and integrals
in control theory leads to better results than integer-order approaches. The concept of
controllability is an important property of a control system which plays an important
role in many control problems such as stabilization of unstable systems by feedback
control. Therefore, in recent years controllability problems for various types of linear
and nonlinear deterministic and stochastic dynamic systems have been studied in many
publications [45], [52], [53] Recently, much attention has been paid to establish sufficient
conditions for the controllability of linear and nonlinear fractional dynamical systems by
several authors, including a recent monograph [34] and various papers [4], [17], [30], [71].

Debbouche and Baleanu [17] established the exact null controllability result for a class
of fractional evolution non local integro-differential control system in Banach space via
the implicit evolution system. Sakthivel et al [59] studied the controllability for class
of fractional neutral control systems governed by abstract nonlinear fractional neutral
differential equations. Controllability of fractional evolution systems of Sobolev-type in
Banach spaces has been studied by Ahmed [1] and Fečkan et al [19].

Moreover, in general in infinite-dimensional spaces, the concept of exact controlla-
bility is usually too strong [46]. Therefore, the class of fractional dynamical systems must
be treated by the weaker concept of controllability, namely approximate controllability.
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However, the approximate control theory for fractional equations is not yet sufficiently
elaborated. More precisely, there are very few contributions regarding the approximate
controllability results for fractional deterministic and stochastic dynamical systems in
the literature [24], [45], [59], [63], [64].

Sakthivel and Ren [63] obtained approximate controllability results for nonlinear
fractional dynamical systems with state dependent delay by using Schauder’s fixed point
theorem. Sakthivel [64] investigated the problem of approximate controllability for neutral
stochastic fractional integro-differential equation with infinite delay in a Hilbert space by
means of Krasnoselskii’s fixed point theorem. and the work of Mahmudov [46],we offer to
study the approximate controllability of a class of fractional functional stochastic integro-
differential systems of Sobolev-type via characteristic solutions operators.

This thesis consists of four chapter , The chapter 1 will give definitions and properties
of the needed theory. We briefly recall some basic properties of the Brownian motion,
then we discuss integration with respect to this process. At the end of this chapter
we will present the definitions and properties of semigroups, fractional calculus and the
controllability.

In the second chapter, the approximate controllability of neutral stochastic
fractional differential equations involving nonlocal initial conditions is studied. By
using Sadovskii’s fixed point theorem with stochastic analysis theory, we derive a new
set of suffcient conditions for the approximate controllability of semilinear fractional
stochastic differential equations with nonlocal conditions under the assumption that
the corresponding linear system is approximately controllable. Finally, an application
to a fractional partial stochastic differential equation with nonlocal initial condition is
provided to illustrate the obtained theory.

In the chapter 3, a class of dynamic control systems described by semilinear
fractional stochastic differential equations of order 1 < q < 2 with nonlocal conditions
in Hilbert spaces is considered. Using solution operator theory, fractional calculations,
fixed-point technique and methods adopted directly from deterministic control problems,
a new set of sufficient conditions for nonlocal approximate controllability of semilinear
fractional stochastic dynamic systems is formulated and proved by assuming the asso-
ciated linear system is approximately controllable. As a remark, the conditions for the
exact controllability results are obtained. Finally, an example is provided to illustrate
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the obtained theory.

Finally, we discuss the approximate controllability of Sobolev-type fractional func-
tional stochastic differential systems in Hilbert spaces. Using Schauder fixed point theo-
rem, stochastic analysis the oryand characteristic solutions operators, we derive a new set
of sufficient conditions for the approximate controllability of fractional functional Sobolev-
type stochastic integro-differential system under the assumption that the corresponding
linear system is approximately controllable. Finally, an example is provided to illustrate
the obtained theory.



Chapter 1

General Introduction

A family (X(t), t ≥ 0) of Rd-valued random variables on (Ω,F ,P) is called a stochastic

process, this process is adapted if all X(t) are Ft-measurable. Denoting B, the Borel

σ-field on [0,∞). The process X is measurable if (t, ω) 7→ X(t, ω) is a B
⊗
F -measurable

mapping. We say that (X(t), t ≥ 0) is continuous if the trajectories t 7→ X(t, ω) are
continuous for all ω ∈ Ω.

1.1 Brownian motion

1.1.1 Definition of Brownian Motion

Brownian motion is closely linked to the normal distribution. Recall that a random

variable X is normally distributed with mean and variance σ2 if

P{X > x} =
1√

2πσ2

∫ ∞
x

e−
(u−µ)2

2σ2 du, ∀x ∈ R

Definition 1.1.1 A real-valued stochastic process {W (t) : t > 0} is called a (linear)
Brownian motion with start in x ∈ R if the following holds:

• W (0) = x

• The process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤ .... ≤ tn the
increments W (tn)−W (tn−1),W (tn−1)−W (tn−2), ...,W (t2)−W (t1) are independent
random variables.

13



14 General Introduction

• For all t > 0 and h > 0, the increments W (t + h)−W (t) are normally distributed
with expectation zero and variance h.

• Continuity of paths, the function t→ W (t) is continuous.

We say that {W (t) : t > 0} is a standard Brownian motion if x = 0.

Properties 1.1.1 . Let W (t)t∈R+ be a standard Brownian motion

1. Self-similarity. For any T > 0, {T−1/2W (Tt)} is Brownian motion.

2. Symmetry. {−W (t), t ≥ 0} is also a Brownian motion.

3. {tW (1/t), t > 0} is also a Brownian motion.

4. If W (t) is a Brownian motion on [0, 1], then (t+1)W (1/t+1)−W (1) is a Brownian

motion on [0,∞).

Remark 1.1.1 1. Notice that the natural filtration of the Brownian motion is FWt =

σ(Ws, s ≤ t).

2. We can define the Brownian motion without the last condition of continuous paths,
because with a stochastic process satisfying the second and the third conditions, by ap-
plying the Kolmogorov’s continuity theorem, there exists a modification of (Wt)t∈R+

which has continuous paths a.s.

3. A Brownian motion is also called a Wiener process since, it is the canoncial process
defined on the Wiener space.

1.1.2 Properties of Brownian motion paths

Almost every sample path W (t), 0 ≤ t ≤ T

1. Is a continuous function of t;

2. Is not monotone in any interval, no matter how small the interval is;

3. Is not differentiable at any point.
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1.1.3 Variation and quadratic variation

Definition 1.1.2 The quadratic variation of Brownian motion W (t) is defined as

[W,W ](t) = [W,W ]([0, t]) = lim
n→∞

n∑
i=1

∣∣∣Wtni
−Wtni−1

∣∣∣2,
where for each n, {tni , 0 ≤ i ≤ n} is a partition of [0, t], and the limit is taken over all

partitions with δn = maxi(t
n
i+1 − tni ) → 0 as n → ∞, and in the sense of convergence in

probability.

Theorem 1.1.1 Quadratic variation of a Brownian motion over [0, t] is t, that is, the
Brownian motion accumulates quadratic variation at rate one per unit time.

1.1.4 Martingale property for Brownian motion

Definition 1.1.3 A stochastic process {X(t), t = 0} is a martingale if for any t it is

integrable, E|X(t)| <∞, and for any s > 0

E[X(t+ s) \ Ft] = X(t) a.s,

where Ft is the information about the process up to time t, that is, {Ft} is a collection of
σ-algebras such that:

1. Fu ⊂ Ft, if u ≤ t.

2. X(t) is Ft mesurable.

Theorem 1.1.2 Let W (t) be a Brownian motion. Then

1. W (t) is a martingale.

2. W 2(t)− t is a martingale.

3. for any u, euW (t)−u
2

2
t is a martingale.
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1.1.5 Brownian motion and a Gaussian process

Definition 1.1.4 The incrementsW (tn)−W (tn−1),W (tn−1)−W (tn−2), ...,W (t2)−W (t1)

are independent and normal distributed, as their linear transform, the random variables
W (t1),W (t2), ...,W (tm) are jointly normally distributed, that is, the infinite dimensional
of Brownian motion is multivariate normal. So Brownian motion is a Gaussian process
with mean 0 and covariance function

γ(t, s) = cov(W (t),W (s)) = E(W (t)W (s).

On the other hand, a continuous mean zero Gaussian process with covariance function
γ(t, s) = min(t, s) is a Brownian motion.

1.2 Brownian Motion Calculus

Let W (t) be a Brownian motion, together with a filtration Ft, t ≥ 0. Our goal to define
stochastic integral ∫ T

0

X(t)dW (t).

The integrand X(t) can also be a stochastic process. The integral should be well defined

for at least all non-random continuous functions on [0, T ]. When the integrand is random,
we will assume that it is an adapted stochastic process.

1.2.1 Definition of Itô integral

Itô’s Integral for simple integrand

Definition 1.2.1 [22] The integral
∫ T

0

X(t)dW (t) should have the properties:

• If X(t) = 1 then
∫ T

0

X(t)dW (t) = W (t)−W (0).

• If X(t) = c in (a, b] ∈ [0, T ] and zero otherwise, then∫ T

0

X(t)dW (t) = c(W (b)−W (a)).



1.2 Brownian Motion Calculus 17

• For real α and β

∫ T

0

(αX(t) + βY (t))dW (t) = α

∫ T

0

X(t)dW (t) + β

∫ T

0

X(t)dW (t).

Definition 1.2.2 [22] A stochastic process X is called simple if it is of the form

X(t) = ξ0I0(t)
n∑
i=1

ξi−1(W )1(ti−1,ti](t),

with ξ is Fi- measurable and a partition 0 = t0 < t1 < ... < tk = T of [0, T ]

For a simple process, the Itô integral
∫ T

0

X(t)dW (t) is defined as a

∫ T

0

X(t)dW (t) =
n∑
i=1

ξi−1(W (ti)−W (ti−1)).

It is easy to see that the integral is a Gaussian random variable with mean zero and
variance

V ar(

∫ T

0

X(t)dW (t)) =
n∑
i=1

ξ2
i−1V ar(W (ti)−W (ti−1)) =

∫ T

0

X2(t)d(t).

Definition 1.2.3 (The Itô integral) Let X ∈ ν(0, T ). Then the Itô integral of X (from

to T) is defined by ∫ T

0

X(t)dW (t) = lim
n→∞

∫ T

0

φn(t)dW (t),

where φn is a sequence of stochastic process such that

E[

∫ T

0

(X(t)− φn(t))2dt]→ 0, n→ 0.
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Properties of Itô integral

1. Linearity. If X(t) and Y (t) are simple processes and α and β are constant, then∫ T

0

(αX(t) + βY (t))dW (t) = α

∫ T

0

X(t)dW (t) + β

∫ T

0

X(t)dW (t).

2. For all [a, b] ⊂ [0, T ],
∫ T

0

I[a,b](t)dW (t) = W (b)−W (a).

3. E
∫ T

0

X(t)dW (t) = 0.

4. E(

∫ T

0

X(t)dW (t))2 =

∫ T

0

EX2(t)d(t).

5. Let I(t) =

∫ T

0

X(t)dB(t). Then I(t) is a continuous martingale.

6. The quadratic variation accumulated up to time t by the Itô integral is

[I, I](t) =

∫ T

0

X2(u)du.

7. E(

∫ T

0

X(t)dW (t) Fs)2 =

∫ T

0

E(X2(t) Fs)d(t), ∀s < t.

Proof. The proof can be found in [22].

1.3 The Stochastic Integral in Hilbert Space

We fixe two Hilbert spaces (H, 〈, 〉H) and (U , 〈, 〉U) .This section is devoted to construction
of the stochastic Itô integral

∫ t

0

Φ(s)dW (s), t ∈ [0, T ],

where W (t) is a Wiener process on U and Φ is process with values that are linear but not
necessarily bounded operators from U to H.



1.3 The Stochastic Integral in Hilbert Space 19

1.3.1 Wiener Processes and Stochastic Integrals

Definition 1.3.1 A probability measure µ on (U ,B(U)) is called Gaussian if all bounded
linear mappings.

v′ : U → R
u 7→ 〈u, v〉U , u ∈ U

have Gaussian laws, i.e. for all v ∈ U there exist m = m(v) ∈ R and σ = σ(v) > 0 such
that

µ(v′ ∈ A) =
1√

2πσ2

∫
A

e
−(x−m)2

2σ2 dx, A ∈ B(U).

Theorem 1.3.1 A measure µ on (U ,B(U)) is Gaussian if and only if

µ̂(u) =

∫
ei<u,v>Uµd(v) = ei<m,u>U−

1
2
<Qu,u>U , u ∈ U,

where m ∈ U and Q ∈ L(U) is nonnegative, symmetric, with finite trace.

In this case µ will be denoted by N(m,Q) where m is called mean and Q is called covari-
ance. The measure µ is uniquely determined by m and Q.

Definition 1.3.2 Let W (t) be an U-valued random process on T . Then W (t) is a Q-
Wiener process if:

i) EW (t)−W (s) = 0 for all s, t ∈ T ;

ii) W (t) is continuous in t;

iii) E[W (t)−W (s)]o[W (t)−W (s)]2 = (t− s)Q for all s, t in T ;
Where Q is a compact, positive, bounded trace classe operator mapping H into self.

iv) E‖W (t)−W (s)‖2 <∞ for all s, t in T ;

v) W (t2 − W (t1) and W (s2 − W (s1) are independent for all s1, s2, t1, t2 in T with
s1 < s2 ≤ t1 < t2.
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We note that the operator Q has countably many eigenvalues λi, that λi ≥ 0 for all i,

that Tr(Q) =
∞∑
i=0

λi, and that there is a complete orthonormal basis ei of H for which

Qei = λei.

Proposition 1.3.1 [36](Representation of the Q-Wiener process) Let ek, k ∈ N, be an
orthonormal basis of U consisting of eigenvectors of Q with corresponding eigenvalues
λk, k ∈ N. Then a U-valued stochastic process W (t), t ∈ [0, T ], is a Q-Wiener process if
and only if

W (t) =
∑
k∈N

√
λkβk(t)ek, t ∈ [0, T ], (1.1)

where {βk, k ∈ N/λn > 0}, are independent real-valued Brownian motions on a probability

space (Ω,F , P ). The series converges in L2(Ω,F , P, U)).

Definition 1.3.3 (Hilbert-Schmidt operator) Suppose H is a separable Hilbert space, and

that A ∈ B(H). We say that A is a Hilbert-Schmidt operator if there exists an orthonormal
basis ek, k ∈ N such that ∑

k∈N

‖Aen‖2 <∞.

Definition 1.3.4 If A and B are two Hilbert-Schmidt operators in a Hilbert space H and
let ek, k ∈ N an orthonormal basis in H, and Tr is the trace of a nonnegative self-adjoint
operator. the Hilbert-Schmidt inner product can be defined as

< A,B >HS= Tr(A∗B) =
∑
i

< Aei, Bei > .

Properties 1.3.1 The class of Hilbert-Schmidt operators is a Hilbert space of the compact
operators with the following properties:

(i) HS(H1, H2) denote the space of Hilbert Schmidt operators from H1 to H2;

(ii) Every Hilbert-Schmidt operator A : H → H is compact;

(iii) ‖A‖HS = ‖A∗‖HS and A ∈ H ⇔ A∗ ∈ HS.
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Proposition 1.3.2 Let B,A ∈ L2(U ,H) and let ek, k ∈ N, be an orthonormal basis of
U . If we define

〈A,B〉L2 :=
∑
k∈N

〈Aek, Bek〉.

We obtain that (L2(U ,H), 〈 , 〉L2) is a separable Hilbert space.

If fk, k ∈ N, is an orthonormal basis of H we get that fj ⊗ ek := fj〈ek, .〉U , j, k ∈ N, is
an orthonormal basis of L2(U ,H).

Definition 1.3.5 (Cylindrical Wiener Process) Let Q ∈ L(U) be nonnegative and
symmetric. Remember that in the case that Q is to finite trace the Q-Wiener process has
the following representation

W (t) =
∑
k∈N

βk(t)ek.

Where ek ∈ N is an orthonormal basis of Q
1
2 (U) = U0 and βk, k ∈ N is family of

independent real bounded Brownian motions. the series converges in L2(Ω,F , P,U). In
the case that Q is no longer of finite trace one loses this convergence. Nevertheless it is
possible to define the Wiener process under the following assumptions:
There is a further Hilbert space (U1, 〈, 〉1) such that there exists a Hilbert-Schmidt
embedding:

J : (U0, 〈, 〉0)→ (U1, 〈, 〉1).

Then the process given by the following proposition is called Cylindrical Q-Wiener process
in U .

1.3.2 Stochastic Fubini Theorem

We assume that:

1. (E, E , µ) is measure space where µ is a finite.

2. Φ : ΩT × E → L0
2, (t, ω, x) 7→ Φ(t, ω, x) is PT ⊗ E/B(L0

2)-measurable, thus un

particular Φ(., ., x) is a predictable L0
2-valued process for all x ∈ E
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Theorem 1.3.2 (Stochastic Fubini Theorem) assume 1, 2 and that

∫
‖Φ(., ., x)‖Tµ(dx) =

∫
E(

∫ T

0

‖Φ(t, ., x)‖2
L0
2
dt)

1
2µ(dx) <∞

Then ∫
E

[

∫ T

0

Φ(t, x)dW (t)]µ(dx) =

∫ T

0

[

∫
E

Φ(t, x)µ(dx)]dW (t) P − a.s.

Proof. We refer the reader to [15].

1.4 Semigroups

The semigroup theory plays a central role and provide a unified and powerful tool for
the study of existence uniqueness solutions of ordinary differential equations in abstract
spaces. In recent years, the theory of semigroups of bounded linear operators has been
extensively applied to study existence problems in differential equations and controllability
problems in control theory. Using the method of semigroups, various types of solutions
of evolution equations have been discussed in ([54]).

Definition 1.4.1 [54] Let X be a Banach space. A one parameter family T (t), 0 ≤ t <∞
of bounded linear operators from X into X is a semigroup of a bounded linear operators
on X if:

(i) T (0) = I, (I is the identity operator on X);

(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.

A semigroup of a bounded linear operators T (t) is a uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0.

The linear operator A defined by

D(A) = {x ∈ X, lim
t→0

T (t)x− x
t

} exists.
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and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt
|t=0, x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Definition 1.4.2 [54] A semigroup T (t), 0 ≤ t <∞ of bounded linear operators from X

is a strongly continuous semigroup of a bounded linear operators on X if

lim
t→0

T (t)x = x, x ∈ X.

A strongly continuous semigroup of a bounded linear operators on X will be called a
semigroup of class C0 or simply a C0 semigroup.

1.5 The Mild Solutions

Let us consider (U , ‖.‖U) and (H, ‖.‖H) tow separable Hilbert spaces, we take Q-Wiener

process W (t), t ≥ 0, in a probability space (Ω,F , P ) with a normal filtration Ft. We fix
T > 0 and consider the following type of stochastic differential equations in H.{

dX(t) = [AX(t) + F (X(t))]dt+B(X(t))dW (t), t ∈ [0, T ]
X(0) = ξ

(1.2)

Where

1) A : D(A)→ H is infinitesimal generator of a C0-semigroup (St)t>0 of linear opera-
tors on H.

2) F : H −→ H is B(H)-measurable.

3) B : U −→ L(U ,H).

4) ξ is H-valued, F0-measurable random variable.

Definition 1.5.1 [16] (Mild Solution) An H-valued predictable process (Xt)t∈[0,T ] is a

called a Mild solution of problem (1.2) if

X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)B(X(s))dW (s) P − a.s.
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1.5.1 Existence, Uniqueness of Mild solution

To get the existence of a mild solution of equation (1.2) on [0, T ] we make the following

usual assumption H0: (see [16])

1) A : D(A)→ H is infinitesimal generator of a C0-semigroup (St)t>0 of linear opera-
tors on H.

2) F : H −→ H is Lipschitz continuous i.e that there exists a constant C > 0 such that

‖F (x)− F (y)‖ ≤ C‖x− y‖, ∀x, y ∈ H

3) B : H −→ L(U ,H) is strongly continuous i.e that the mapping x → B(x)u is
continuous from H to H for each u ∈ U .

4) For all t ∈]0, T ] and x ∈ H we have that

S(t)B(x) ∈ L2(U ,H)

5) there is a square integrable mapping K : [0, T ]→ [0,∞[ such that

‖S(t)(B(x)−B(y))‖ ≤ K(t)‖x− y‖
‖S(t)(B(x)‖ ≤ K(t)(1 + ‖x‖), t ∈]0, T ], x, y ∈ H

1.6 The Fixed Point Theorem

Definition 1.6.1 [43] Let X be a set and let T : X → X be a function that maps X into

itself. (Such a function is often called an operator, a transformation, or a transform on

X, and the notation Tx is often used in place of T (x).) A fixed point of T is an element

x ∈ X for which T (x) = x.

1.6.1 The Banach contraction principle

Definition 1.6.2 Let (X, d) be a metric space. A contraction of X (also called a con-

traction mapping on X ) is a function f : X → X that satisfies:

∀x, x′, d(f(x′), f(x)) ≤ βd(x′, x),

for some real number β < 1. Such a β is called a contraction modulus of f .



1.7 Fractional Calculus 25

Theorem 1.6.1 (Banach) [43] Let f be a contraction on a complete metric space X.
Then f has a unique fixed point.

Proof. The proof can be found in [43].

1.6.2 Schauder’s fixed point theorem

Theorem 1.6.2 [37] Every continuous operator that maps a closed convex subset of a
Banach space into a compact subset of itself has at least one fixed point.

1.7 Fractional Calculus

Fractional calculus is a field of mathematical study that deals with the investigation
and applications of derivatives and integrals of non-integer orders. The origin of fractional
calculus goes back to times when Newton and Leibniz invented differential and integral
calculus. The German mathematician Leibniz in a letter to l’Hospital, has suggested the

idea of the fractional derivative of order 1
2
. During the period fractional calculus has

drawn the attention of many famous mathematicians such as Euler, Laplace, Fourier,
Abel, Liouville, Riemann, and Laurent. In the last three decades, fractional calculus has
gained the attention of physicists, mathematicians and engineers and notable contribu-
tions have been made to both theory and applications of fractional differential equations.
Podlubny (1999) addressed the overview of basic theory of derivatives and integrals of
non-integer order, fractional differential equations and the methods of their solutions.
Existence and uniqueness results for initial value problems for various fractional differen-
tial equations and its applications to real world problems were studied in ([35], [55]).

1.8 Fractional Differential equations

Fractional differential equation is concerned with the notion and methods to solve
differential equations involving fractional derivatives of the unknown function. It can be
also considered as an alternative model to nonlinear differential equations.
The advantages of fractional derivatives becomes evident in modeling mechanical and
electrical properties of real materials, description of rheological properties of rocks and
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in various other fields. Fractional integrals and derivatives also appear in the theory of
control of dynamical systems, when the controlled system and the controller is described
by a fractional differential equation.
The researchers have addressed differential equations of fractional order as a study ranging
from the theoretical aspects of existence and uniqueness of solutions to the analytic and
numerical methods to derive the solutions. Furthermore, researchers also concentrate on
the qualitative behaviors such as the existence, controllability and stability of fractional
dynamical systems which are the significant current issues. The theory of fractional dif-
ferential equations has been extensively studied in ([39], [40], [41]). The class of fractional
differential equations involving the Riemann-Liouville fractional derivative or the Caputo
fractional derivative have been paid much attention ([3], [67]). The problem of the exis-
tence of solutions for various kind of fractional differential equations have been treated in
the literature ([74],[72], [71]).

1.9 Basic Fractional Calculus

Recall the following known definitions. For more details see [55].

1.9.1 Gamma function

Definition 1.9.1 For any complex number z such as R(z) > 0, we define the Gamma
function

Γ(z) =

∫ ∞
0

e−ttz−1dt,

this integral converges absolutely on half complex plane or the real part is strictly
positive.

The gamma function satisfies the identity

Γ(z + 1) = zΓ(z),

is demonstrated by integrating by parts

Γ(z + 1) =

∫ +∞

0

e−ttz−1dt = −e−tt−z|∞0 + z

∫ ∞
0

e−ttz−1dt.
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If n is an integer, we get closer and closer as

Γ(z + n) = z(z + 1)...(z + n− 1)Γ(z)

as Γ(1) = 1, this proves that Γ(n+ 1) = n!.

1.9.2 The Fractional Integral

Definition 1.9.2 [55] The fractional integral of order α with the lower limit 0 for a
function f is defined as

Iαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−αds, t > 0, α > 0. (1.3)

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Proposition 1.9.1 let f ∈ C0([a, b]). for α, β complexes such as

Re(α) > 0 et Re(β) > 0. We have

Iαa (Iβa f) = Iα+β
a f.

and for Re(α) > 0 we have
d

dx
Iαa f = Iαa f.

1.9.3 The Fractional Derivative

Definition 1.9.3 [55] The Rieman-Louiville derivatives of order α with the lower limit

0 for a function f : [0,∞) can be written as

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−nds, t > 0, n− 1 < α < n. (1.4)

Definition 1.9.4 [55] The Caputo derivatives of order α for a function f can be written
as

CDαf(t) = LDα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, 0 ≤ n− 1 < α < n.
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If f(t) ∈ Cn[0,∞) then

CDαf(t) = 1
Γ(n−α)

∫ t

0

f (n)(s)(t− s)n−α−1ds

= In−αf (n)(t), t > 0, n− 1 < α < n

(1.5)

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform
of the Caputo derivative of order α > 0 is given as:

L{CDαf(t), s} = sαf̂(s)−
n−1∑
k=0

sα−k−1f (k)(0); n− 1 < α < n.

Proposition 1.9.2 The derivation operator of Riemann-Liouville Dα
a has the following

properties:

(1) Dα
a is a linear operator;

(2) in general Dα
a oD

β
a 6= Dβ

aoD
α
a and also 6= Dα+β

a ;

(3) Dα
a oL

α
a = id.

If f is an abstract function with values in H, then the integrals appearing in the
above definitions are taken in Bochner’s sense [50].

1.10 The controllability

Controllability is one of the important fundamental concept in modern mathematical
control theory. Notion of controllability is closely related to the theory of minimal
realization and optimal control. there are many different notions of controllability, both
for linear and nonlinear dynamical systems ([30],[45],[59]).

Many fundamental problems of control theory such as pole-assignment, sta-
bilisability and optimal control may be solved under assumption that system is
controllable. Any control system is said to be controllable if every state correspond-
ing to this process can be affected or controlled in respective time by some control signals.
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The problem of controllability is to prove the existence of a control function, which
drives the solution of the system from its initial state to a final state, where the initial
and final states may vary over the entire space. To be brief, if a dynamic system is
controllable, all modes of the system can be excited from the input.

The concept of controllability plays a predominant role in both finite and infinite
dimensional spaces of systems represented by ordinary differential equations and partial
differential equations. So, it is natural to study this concept for dynamical systems
represented by fractional differential equations.

Several literature in this direction so far has been concerned with controllability
for nonlinear integer order differential equations in infinite dimensional spaces. But
the literature related to the controllability of fractional differential equations in infinite
dimensional spaces is very limited and we refer the reader to ([62], [71]).

For infinite dimensional dynamical systems it is necessary to distinguish between
the notions of approximate and exact controllability.

. Exact controllability: The exact controllability property is the possibility to steer
the state of the system from any initial data to any target by choosing the control
as a function of time in an appropriate way.

. Approximate controllability: The approximate controllability property is the pos-
sibility to steer the state of the system from any initial data to a state arbitrarily
close to a target by choosing a suitable control.

In other words, approximate controllability gives the possibility of steering the system
to the states which form the dense subspace in the state space. The approximate
controllability is more appropriate for control systems instead of exact controllability.

It should be noted that it is generally difficult to realize the conditions of exact
controllability for infinite dimensional systems and thus the approximate controllability
becomes very significant. Approximate controllability of the deterministic and stochastic
dynamical control systems in infinite dimensional spaces is well-developed using different
kind of approaches, and the details can be found in various papers ([4], [45]).
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1.11 Nonlocal Problems

The nonlocal condition, which is a generalization of the classical initial condition, was
motivated by physical problems (see [74] and references and therein). In recent years,
the interest of physicists in nonlocal field theories has been steadily increasing. The
main reason for their development is the expectation that the use of these field theories
will lead to much more elegant and effective way to treat problems in particle and high
energy physics as it has been possible till now with local field theories. Nonlocal effect
may occur in space and time. For example, in the time domain, the extension from local
to nonlocal description becomes manifest as a memory effect which roughly states that
actual behavior of a given object is not only influenced by the actual state of the system
but also by events which happened in the past.

Also, in various real world problems, it is possible to require more measurements at
some instances in addition to standard initial data and, therefore, the initial conditions
changed to nonlocal conditions ([74], [73]). The nonlocal initial problem was initiated

by Byszewski (1991), where the existence and uniqueness of mild, strong and classical
solutions of the nonlocal Cauchy problem were discussed. In recent years, the study of
differential and integro-differential equations in abstract spaces with nonlocal condition
has received a great attention. There exist extensive literatures of differential equations
with nonlocal conditions. Several authors ([71]) investigated the existence of solutions of
fractional differential equations with nonlocal conditions by using semigroups theorems
and fixed point techniques. Debbouche and Baleanu (2012)([17]) studied the control-
lability of fractional evolution nonlocal impulsive quasi linear delay integro-differential
systems.



Chapter 2

Approximate Controllability of
Fractional Neutral Stochastic Evolution
Equations with Nonlocal Conditions

In this chapter1 we studies the approximate controllability of semilinear neutral frac-
tional stochastic differential equations with nonlocal conditions in the following form

cDα[x(t) + f(t, x(t), x(b1(t)), ...., x(bm(t)))] + Ax(t) = Bu(t)

σ(t, x(t), x(a1(t)), ..., x(an(t)))dW (t)
dt

, t ∈ J = [0, b].

x(0) + g(x) = x0.

(2.1)

Where cDα, 0 < α < 1 is understood in the Caputo sense; the state variable x(.) takes

value in a real separable Hilbert space H;−A : D(A) ⊂ H → H is the infinitesimal

generator of a strongly continuous semigroup of a bounded linear operator {S(t), t ≥ 0}
on H; the control function u(.) is given in L2(J,U),U is a Hilbert space; B is a bounded

linear operator from U into H; {W (t), t ≥ 0} is a given K valued Wiener process with a
finite trace nuclear covariance operator Q ≥ 0 defined on a filtered complete probability
space (Ω,F , {Ft},P),K is another separable Hilbert space; f, σ and g are given functions
to be specified later.

1The chapter is based on the paper [26].

31
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In order, we will introduce a suitable mild solutions and establish set of sufficient
conditions for the approximate controllability of the fractional control system (2.1). More
precisely, by using the constructive control function, we transfer the controllability prob-
lem for semilinear systems into a fixed point problem. In particular, the results on control-
lability of semilinear fractional systems are derived by assuming the corresponding linear
system is controllable. Finally, an example is given to illustrate the obtained theory.

2.1 Preliminaries

Let (Ω,F ,P) be a complete probability space equipped with a normal filtration Ft, t ∈
J = [0, b] satisfying the usual conditions (i.e., right continuous and F0 containing all

P-null sets).We consider three real separable Hilbert spaces H,K and U , and Q-Wiener

process on (Ω,Fb,P) with the linear bounded covariance operator Q such that TrQ <∞.

We assume that there exists a complete orthonormal system {en}n≥0 on H, a bounded
sequence of non-negative real numbers λn such that Qen = λnen, n = 1, 2, ... and a
sequence {βn}n≥1 of independent Brownian motions such that

< W (t), e >=
∞∑
n=1

√
λn < en, e > βn(t), e ∈ K, t ∈ J := [0, b]

and Ft = FWt where FWt is the sigma algebra generated by {W (s) : 0 ≤ s ≤ t}.
We denote by L(K,H) the set of all linear bounded operators from K into H, equipped

with the usual operator norm ‖.‖.Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-

Schmidt operators from Q
1
2K into H with the inner product < ψ, π >L0

2
= Tr[ψQπ?].

We assume without loss of generality that 0 ∈ ρ(A), the resolvent set of A, and

the semigroup S(·) is uniformly bounded. This means that there exists a M ≥ 1

such that ‖S(t)‖ ≤ M for every t ≥ 0. Then, for 0 < β ≤ 1, it is possible to define

the fractional power Aβ as a closed linear operator on its domain D(Aβ) with inverse A−β.

We will introduce the following basic properties of Aβ.

Lemma 2.1.1 [54]

1. Hβ = D(Aβ) is a Hilbert space with the norm ‖x‖β = ‖Aβx‖, x ∈ Hβ.
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2. S(t) : H → Hβ for each t > 0 and AβS(t)x = S(t)Aβx for each x ∈ Hβ and t ≥ 0.

3. For every t > 0, AβS(t) is bounded on H and there exists a positive constant Cβ
such that

‖AβS(t)‖ ≤ Cβ
tβ
, t > 0.

4. If 0 < γ < β ≤ 1 then D(Aβ) ↪→ D(Aγ) and the embedding is compact whenever the
resolvent operator of A is compact.

Now, we introduce the concept of mild solution.

Definition 2.1.1 [74]: A stochastic process x : J → H is said to be a mild solution of

the nonlocal system (2.1) if

i) x(t) is measurable and Ft-adapted,

ii) x(t) is continuous on J almost surely and for each s ∈ [0, b), the function (t −
s)α−1ATα(t− s)f(s, x(s), x(b1(s)), ..., x(bm(s))) is integrable on [0, b).
and the following integral equation is verified:

x(t) = Sα[x0 + f(0, x(0), x(b1(0)), ..., x(bm(s)))− g(x)]

−f(t, x(t), x(b1(t)), ..., x(bm(t)))

−
∫ t

0

(t− s)α−1ATα(t− s)f(s, x(s), x(b1(s)), ..., x(bm(s)))ds

+

∫ t

0

(t− s)α−1Tα(t− s)Bu(s)ds

+

∫ t

0

(t− s)α−1ATα(t− s)σ(s, x(s), x(a1(s)), ..., x(am(s)))dW (s)

0 ≤ t ≤ b.

(2.2)
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Where

Sα(t) =

∫ ∞
0

ηα(θ)S(tαθ)xdθ, Tα(t) = α

∫ ∞
0

θηα(θ)S(tαθ)xdθ,

with ηα is a probability density function defined on (0,∞), that is ηα(θ) ≥ 0, θ ∈ (0,∞)

and
∫ ∞

0

ηα(θ)dθ = 1

remark :
∫ ∞

0

θηα(θ)dθ =
1

Γ(1 + α)
.

Lemma 2.1.2 [74] The operator Sα(t) and Tα(t) have the following properties:

i) For any fixed x ∈ H, ‖Sα(t)x‖ ≤M‖x‖, ‖Tα(t)x‖ ≤ αM
Γ(1+α)

‖x‖;

ii) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous;

iii) For every t > 0, Sα(t) and Tα(t) are also compact operators;

iv) For any x ∈ H, β, δ ∈ (0, 1), we have ATα(t)x = A1−βTα(t)Aβx and

‖AδTα(t)‖ ≤ αCδΓ(2− δ)
tαδΓ(1 + α(1− δ))

, t ∈ (0, b].

At the end of this section, we recall the fixed point theorem of Sadovskii [58]which is used

to establish the existence of the mild solution to the fractional control system (2.1).

Theorem 2.1.1 (Sadovskii’s fixed-point theorem) . Let φ be a condensing operator
on a Banach space X, that is, φ is continuous and takes bounded sets into bounded sets,
and µ(φ(N)) ≤ µ(N) for every bounded set N of X with µ(N) > 0. If φ(Υ) ⊂ Υ for a

convex, closed and bounded setΥ of X, the φ has a fixed point in X (where µ(.) denotes

Kuratowski’s measure of noncompactness).
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2.2 The Main Results

In this section, we shall formulate and prove sufficient conditions for the approximate con-
trollability of the fractional control system (2.1). We first prove the existence of solutions
for fractional control system. Then, we show that under certain assumptions, the ap-
proximate controllability of semilinear control system (2.1) is implied by the approximate
controllability of the associated linear system.

Definition 2.2.1 [45] Let x(b, u) be the state value of (2.1) at the terminal time b cor-
responding to the control u. Introduce the set

R(b) = {x(b, u) : u(.) ∈ L2(J,U)}.

which is called the reachable set of (2.1) at the terminal time b and its closure in H is

denoted by R(b).The system (2.1) is said to be approximately controllable on the interval

J if R(b) = H.

In order to study the approximate controllability for the fractional control system
(2.1), we introduce the approximate controllability of its linear part

Dαx(t) = Ax(t) + (Bu)(t), t ∈ [0, b]
x(0) = x0

(2.3)

Let us now introduce the following operators. Define the operator Γb0 : H → H associated

with (2.3) as

Γb0 =

∫ b

0

Tα(b− s)BB∗T ∗α(b− s)ds.

R(k,Γb0) = (kI + Γb0)−1.

where B∗ denotes the adjoint of B and T ∗α(t) is the adjoint of Tα(t). It is straightforward

that the operator Γb0 is a linear bounded operator.

In order to establish the result, we need the following assumptions.
(A1) The semigroup Tα(t) is a compact operator.
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(A2) f : J ×Hm+1 → H is a continuous function, and there exists a constant β ∈ (0, 1)

and M1,M2 > 0 such that the function Aβf satisfies the Lipschitz condition:

E‖Aβf(s1, x0, x1, ......, xm)−Aβf(s2, y0, y1......, ym‖2
H ≤ M1(|s1−s2|2+ max

i=0,1,...,m
E‖xi−yi‖2

H),

for 0 ≤ s1, s2 ≤ b, xi, yi ∈ H, i = 0, 1, ...,m and the inequality

E‖Aβf(t, x0, x1, ......, xm)‖2
H ≤M2(1 + max

i=0,1,...,m
E‖xi‖2

H),

holds for (t, x0, x1, ...., xm) ∈ J ×Hm+1.

(A3) The function σ : J ×Hn+1 → L0
2 satisfies the following conditions:

i) for each t ∈ J the function σ(t, .) : Hn+1 → L0
2 is continuous and for each

(x0, x1, ...., xn) ∈ Hn+1 the function σ(., x0, x1, ...., xn) : J → L0
2 is strongly mea-

surable;

ii) for each positive integer q, there exists µq ∈∈ L1(J,R+) such that

sup
‖x0‖2,...,‖xn‖26q

E‖σ(t, x0, X1, ..., xn)‖2
L0
2
≤ µq(t)

the function s→ (t−s)2α−2µq(s) ∈ L1([0, t],R+) and there exists a Λ > 0 such that.

lim inf
q→∞

∫ t

0

(t− s)2α−2µq(s)sd

q
= Λ <∞, t ∈ [0, b].

(A4) ai, bj ∈ C(J, J), i = 1, 2, ...., n; j = 1, 2, ...,m; g ∈ C(E,H) here and hereafter E =

C(J,H), and g satisfies the following conditions:

i) There exists a nondecreasing function ψ : R+ → R+ such that

E‖g(x)‖2
H ≤ ψ(E‖x‖2

H) and lim inf
q→∞

ψ(q)

q
= Ξ <∞.

ii) g is completely continuous map.

The following lemma is required to define the control function.
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Lemma 2.2.1 [45] For any x̂b ∈ L2(Fb,H) there exists φ̂ ∈ L2
F(Ω, L2(J, L0

2)). such that

x̂b = Ex̂b +

∫ b

o

φ̂(s)W (s).

Now for any k > 0 and x̂b ∈ L2(Fb,H), we define the control function.

uk(t) = B∗T ∗(b− t)(kI + Γb0)−1
{
Ex̂b +

∫ b

o

φ̂(s)dW (s)− Sα(b)

×[x0 + f(0, x(0)), x(b1(0)), ...., x(bm(0))− g(x)]

+f(b, x(b), x(b1(b)), ...., x(bm(b))
}

+B∗T ∗(b− t)
∫ b

0

(kI + Γb0)−1(b− s)α−1ATα(b− s)

×f(s, x(s)), x(b1(s)), ...., x(bm(s)))ds

−B∗T ∗(b− t)
∫ b

0

(kI + Γb0)−1(b− s)α−1Tα(b− s)

×σ(s, x(s)), x(a1(s)), ...., x(an(s)))dW (s).

2.2.1 Existence of mild solution

Theorem 2.2.1 Assume that (A1) - (A4) hold and x0 ∈ H. Then for each k > 0, the

nonlocal problem (1) has a mild solution on [0, b] provided that:

[
M2M2

0M2+M2Ξ+M2
0M2

C2
1−βΓ2(1 + β)b2αβ

Γ2(1 + αβ)β2
M2 +

( αM

Γ(α + 1)

)2

Λ
]
×
[
7+

49

k2

( αMMβ

Γ(α + 1)

)b2α

α2

]
< 1.

(2.4)
and

M1[(M2 + 1)M2
0 +

C2
1−βΓ2(1 + β)b2αβ

Γ2(1 + αβ)β2
] < 1. (2.5)

where MB = ‖B‖ and M0 = ‖A−β‖.
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Proof. For the sake of brevity, we rewrite that

(t, x(t), x(b1(t)), ...., x(bm(t))) = (t, v(t))
(t, x(t), x(a1(t)), ...., x(an(t))) = (t, ṽ(t)).

Let x ∈ E = C(J,H) and. Ẽ be the classes of all stochastic processes x ∈ E which

are measurable and Ft -adapted such that ‖x‖Ẽ = supt∈J(E‖x(t)‖2
H)

1
2 <∞

Define the operator Φ on Ẽ by

Φx(t) = Sα(t)[x0 + f(0, v(0))− g(x)]− f(t, v(t))

−
∫ t

0

(t− s)α−1ATα(t− s)f(s, v(s))ds

+

∫ t

0

(t− s)α−1Tα(t− s)Buk(s)ds

+

∫ t

0

(t− s)α−1Tα(t− s)σ(sṽ(s))dW (s), t ∈ J.

For each positive integer q, let Bq = x ∈ Ẽ : E‖x(t)‖2
H ≤ q the set Bq is clearly a bounded

closed convex set in Ẽ.
From Lemma (4.1.1), Holder’s inequality and assumption (A2), we derive that

E
∥∥∥∫ t

0

(t− s)α−1ATα(t− s)f(s, v(s))ds
∥∥∥2

H

≤ E
[ ∫ t

0

‖(t− s)α−1A1−βTα(t− s)Aβf(s, v(s))‖Hds
]2

≤ α2C2
1−βΓ2(1+β)

Γ2(1+αβ)
E
[ ∫ t

0

‖(t− s)αβ−1Aβf(s, v(s))ds‖Hds
]2

≤ α2C2
1−βΓ2(1+β)

Γ2(1+αβ)
bαβ

αβ

∫ t

0

(t− s)αβ−1E‖Aβf(s, v(s))ds‖2
Hds

≤ α2C2
1−βΓ2(1+β)

Γ2(1+αβ)
bαβ

αβ

∫ t

0

(t− s)αβ−1M2

(
1 + max

i=1,..,m
E‖xi(s)‖2

H

)
ds

≤ C2
1−βΓ2(1+β)

Γ2(1+αβ)
b2αβ

β2 M2(1 + q).

(2.6)
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which deduces that (t − s)α−1ATα(t − s)f(s, v(s)) is integrable on J , by Bochner’s

theorem [50], so Φ is well defined on Bq.

Similarly, from (A2), we derive that

UE‖
∫ t

0

(t− s)α−1Tα(t− s)σ(s, ṽ(s))dW (s)‖2
H

≤
∫ t

0

‖(t− s)α−1Tα(t− s)‖2E‖σ(s, ṽ(s))‖2
L0
2
ds

≤ ( αM
Γ(α+1)

)2

∫ t

0

(t− s)2(α−1)E‖σ(s, ṽ(s))‖2
L0
2
ds

≤ ( αM
Γ(α+1)

)2

∫ t

0

(t− s)2(α−1)µq(s)ds.

(2.7)

Further, by using (A2)− (A4), Lemma (4.1.1) and the estimates (2.6), (2.7), we get

E‖uk(s)‖2 ≤ 1
k2
M2

B

(
αM

Γ(α+1)

)2{
7
∥∥∥Ex̂b +

∫ b

0

φ̂(s)dω(s)
∥∥∥2

+ 7E‖Sα(b)x0‖2

+7E‖Sα(b)f(0, v(0))‖2 + 6E‖Sα(b)g(x)‖2 + 7E‖f(b, v(b))‖2

+7E
∥∥∥∫ b

0

(b− s)α−1ATα(b− s)f(s, v(s))ds
∥∥∥2

H

+7E
∥∥∥∫ b

0

(b− s)α−1Tα(b− s)σ(s, ṽ(s))dW (s)
∥∥∥2

H

}

≤ 7
k2

(
αMMB

Γ(α+1)

)2{
2‖Ex̂b‖2 + 2

∫ b

0

E‖φ̂(s)‖2ds+M2E‖x0‖2

+M2M2
0M2(1 + q) +M2ψ(q)

+M2
0M2(1 + q) +

C2
1−βΓ2(1+β)

Γ2(1+αβ)
b2αβ

β2 M2(1 + q)

+
(

αM
Γ(α+1)

)2
∫ t

0

(t− s)2(α−1)µq(s)ds
}
.
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Now, we have

E
∥∥∥∫ t

0

(t− s)α−1Tα(t− s)Bk
u(s)ds

∥∥∥2

H
≤
( αMMB

Γ(α + 1)

)2 b2α

α2
× 7

k2

( αMMB

Γ(α + 1)

)2

MC . (2.8)

where

MC =
{

2‖Ex̂b‖2 + 2

∫ b

0

E‖φ̂(s)‖2ds+M2E‖x0‖2 +M2M2
0M2(1 + q)

+M2ψ(q) +M2
0M2(1 + q) +

C2
1−βΓ2(1+β)

Γ2(1+αβ)
b2αβ

β2 M2(1 + q)

(
αM

Γ(α+1)

)2
∫ t

0

(t− s)2(α−1)µq(s)ds
}
.

We claim that there exists a positive number q such that ΦBq ⊂ Bq. If it is not true,

then for each positive number q, there is a function xq(.) ∈ Bq but Φxq ∈ Bq that is

E‖Φxq(t)‖2
H > q for some t = t(q) ∈ J . However, from assumptions (A2) − (A4) and

equations (2.6),(2.8)
we have:

q ≤ E‖Φxq(t)‖2
H

≤ 7M2E‖x0‖2 + 7M2M2
0M2(1 + q) + 7M2ψ(q) + 7M2

0M2(1 + q)

+7
C2

1−βΓ2(1+β)

Γ2(1+αβ)
b2αβ

β2 M2(1 + q) +
(
αMMB

Γ(α+1)

)2
b2α

α2

× 7
k2

(
αMMB

Γ(α+1)

)2

MC + 7
(

αM
Γ(α+1)

)2
∫ t

0

(t− s)2(α−1)µq(s)ds.

(2.9)

Dividing both sides of (2.9) by q and taking q →∞, we obtain that

[
M2M2

0M2+M2Ξ+M2
0M2+

C2
1−βΓ2(1 + β)

Γ2(1 + αβ)

b2αβ

β2
M2+(

αM

Γ(α + 1)
)2Λ
]
×
[
7+

49

k2
(
αMMB

Γ(α + 1)
)4 b

2α

α2

]
≥ 1.

This contradicts (2.4). Thus for k > 0, for some positive number q,ΦBq ⊆ Bq.

Next, we will show that the operator Φ has a fixed point on Bq, which implies that

equation (2.1) has a mild solution.We decompose Φ as Φ = Φ1 + Φ2, where Φ1 and Φ2
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are defined on Bq by:

(Φ1x)(t) = Sα(t)f(0, v(0))− f(t, v(t))−
∫ t

0

(t− s)α−1ATα(t− s)f(s, v(s))ds.

and

(Φ2x)(t) = Sα(t)[x0−g(x)]+

∫ t

0

(t−s)α−1Tα(t−s)Buk(s)ds+
∫ t

0

(t−s)α−1ATα(t−s)σ(s, ṽ(s))dW (s)

for t ∈ J we will show that Φ1 is a contractive mapping while Φ2 is compact.

Let x1, x2 ∈ Bq, t ∈ J . By assumption (A2) and (2.5), we have:

E‖(Φ1x1)(t)− (Φ1x2)(t)‖2
H

≤ 3E‖Sα(t)(f(0, v1(0))− f(0, v2(0)))‖2
H + 3E‖(f(t, v1(t))− f(t, v2(t)))‖2

H

+E
∥∥∥∥∫ t

0

(t− s)α−1ATα(t− s)(f(s, v1(s))− f(s, v2(s)))

∥∥∥∥2

H

≤ (M2 + 1)M2
0M1 sup

0≤s≤b
E‖x1(s)− x2(s)‖2

H

+
C2

1−βΓ2(1+β)

Γ2(1+αβ)
b2αβ

β2 M1 sup
0≤s≤b

E‖x1(s)− x2(s)‖2
H.

Thus
‖(Φ1x1)(t)− (Φ1x2)(t)‖2

Ẽ
≤ L0‖x1 − x2‖2

Ẽ

Where

L0 = M1

[
(M2 + 1)M2

0 +
C2

1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)

]
< 1.

so Φ1 is contraction.

Now, to prove that Φ2 is compact, firstly we prove that Φ2 is continuous on Bq.

Let xn ⊆ Bq , with xn → x in Bq and rewrite uk(t, x) = uq(t) the control function defined

above. Then for each s ∈ J, vn(s) → v(s), ṽn(s) → ṽ(s), and from the assumptions on

f, σ we have f(s, vn(s)) → f(s, v(s)) and σ(s, ṽn(s)) → σ(s, ṽ(s)), as n → ∞. By the
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dominated convergence theorem, we have

‖Φ2xn − Φ2x‖2
Ẽ

= sup
0≤s≤b

E‖Sα(t)[g(x)− g(xn]

+

∫ t

0

(t− s)α−1Tα(t− s)B[uk(s, xn)− uk(s, x)]ds

+

∫ t

0

(t− s)α−1Tα(t− s)[σ(s, ṽn(s))− σ(s, ṽ(s))]dW (s)‖2
H → 0.

as n→∞ that is continuous.
Next, we prove that the set Φ2x : x ∈ Bq is an equicontinuous family of functions on J .

Let 0 < ε < t < b and δ > 0 be such that ‖Tα(s1) − Tα(s2) < ε‖ for every s1, s2 ∈ J ,
with |s1 − s2| < δ. For any x ∈ Bq and 0 < t1 < t2 ∈ J , we get:

E‖(Φ2x)(t2)− (Φ2x)(t1)‖2
H

≤ 7‖Sα(t2)− Sα(t1)‖2
HE‖x0 − g(x)‖2

H

+7E
∥∥∥∥∫ t1

0

(t1 − s)α−1[Tα(t2 − s)− Tα(t1 − s)]Buk(s)ds
∥∥∥∥2

H

+7E
∥∥∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)Buk(s)ds
∥∥∥∥2

H

+7E
∥∥∥∥∫ t2

t1

(t2 − s)α−1Tα(t2 − s)Buk(s)ds
∥∥∥∥2

H

+7E
∥∥∥∥∫ t1

0

[(t1 − s)α−1[Tα(t2 − s)− Tα(t1 − s)]σ(s, ṽ(s))dW (s)

∥∥∥∥2

H

+7E
∥∥∥∥∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]Tα(t2 − s)σ(s, ṽ(s)))dW (s)

∥∥∥∥2

H

+7E
∥∥∥∥∫ t2

t1
(t2 − s)α−1Tα(t2 − s)σ(s, ṽ(s)))dW (s)

∥∥∥∥2

H
.

Therefore
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E‖(Φ2x)(t2)− (Φ2x)(t1)‖2
H

≤ 7‖Sα(t2)− Sα(t1)‖2
HE‖x0 − g(x)‖2

H

+7ε2M2
B
t1α
α

∫ t1

0

(t1 − s)α−1E‖uk(s)‖2ds

+7
(
αMMB

Γ(α+1)

)2
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

×[(t2 − s)α−1 − (t1 − s)α−1]E‖uk(s)‖2ds

+7
(
αMMB

Γ(α+1)

)2
(t2−t1)α

α

∫ t2

t1

[(t2 − s)α−1E‖uk(s)‖2ds

+7ε2 t
1
α

α

∫ t1

0

(t1 − s)α−1µq(s)ds

+7(αMMB

Γ(α+1)

)2
∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

×[(t2 − s)α−1 − (t1 − s)α−1]µq(s)ds

+7
(
αMMB

Γ(α+1)

)2
(t2−t1)α

α

∫ t2

t1

[(t2 − s)α−1µq(s)ds.

Observe that the right-hand side of the above inequality tends to zero independently
of x ∈ Bq as t2 → t1, with ε sufficiently small since the compactness of Sα(t) fort > 0

(see [54]) implies the continuity of Sα(t) in t in the uniform operator topology. Similarly,

using the compactness of the set g(Bq) we can prove that the function Φ2x, x ∈ Bq are
equicontinuous at t = 0. Hence, the set Φ2x : x ∈ Bq is an equicontinuous family of
functions on J .
Now, we prove that V (t) = {(Φ2x)(t) : x ∈ Bq} is relatively compact in H. Obviously,

by assumption (A4),V(0) is relatively compact in H.
Let 0 < t ≤ b be fixed and let ε be a given real number such that 0 < ε < t. We define

an operator Φε,δ
2 on Bq by
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(Φε,δ
2 x)(t) =

∫ ∞
δ

ηα(θ)S(tαθ)[x0 − g(x)]dθ

+α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ηα(θ)T ((t− s)αθ)Bk(s)dθds

+α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ηα(θ)T ((t− s)αθ)σ(s, ṽ(s))dθdWs

= S(εαδ)

∫ ∞
δ

ηα(θ)S(tαθ − εαδ)[x0 − g(x)]dθ

+αS(εαδ)

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ηα(θ)S((t− s)αθ − εαδ)Bk(s)dθds

+αS(εαδ)

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ηα(θ)S((t− s)αθ − εαδ)

×σ(s, ṽ(s))dθdWs.

Then from the compactness of S(εαδ), εαδ > 0, the set V ε,δ(t) = {(Φε,δ
2 x)(t) : x ∈ Bq} is

relatively compact in H, for every ε, 0 < ε < t and all δ > 0.

Moreover, for every x ∈ Bq, we have

E‖(Φ2x)(t)(Φε,δ
2 x)(t)‖2

≤ 5E
∥∥∥∥∫ δ

0

ηα(θ)S(tαθ)[x0 − g(x)]dθ

∥∥∥∥2

.

+5α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ηα(θ)T ((t− s)αθ)Buk(s)dθds
∥∥∥∥2

+5α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ηα(θ)T ((t− s)αθ)Buk(s)dθds
∥∥∥∥2

+5α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ηα(θ)T ((t− s)αθ)σ(s, ṽ(s))dθdW (s)

∥∥∥∥2

+5α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ηα(θ)T ((t− s)αθ)σ(s, ṽ(s))dθdW (s)

∥∥∥∥2
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≤ 5M2bα[E‖x0‖2 + ψ(q)](

∫ δ

0

ηα(θ)dθ)2

+5αM2bα
∫ t

0

(t− s)α−1
[
M2

B

7

k2

( αMMB

Γ(α + 1)

)2

MC + µq(s)ds
]

×
(∫ δ

0

ηα(θ)dθ
)2

+ 5αM2εα

Γ2(α+1)

∫ t

t−ε
(t− s)α−1

[
M2

B

7

k2

( αMMB

Γ(α + 1)

)2

MC + µq(s)
]
ds

→ 0 as ε, δ → 0+.

Therefore, there are relative compact sets arbitrary close to the set V (t), t > 0. Hence,

the set V (t), t > 0 is also relatively compact in H.

Thus, by Arzelà-Ascoli theorem Φ2 is a compact operator. Finally, we
conclude that Φ = Φ1 + Φ2 is a condensing map on Bq, and by the fixed-

point theorem of Sadovskii there exists a fixed point x(.) for Φ on Bq. There-

fore, the nonlocal problem (2.1) has a mild solution, and the proof is completed.
�

2.2.2 Approximate Controllability

Now, to prove the approximate controllability result, the following additional assump-
tions are required.
(A5) The linear fractional control system (2.4) is approximately controllable on [0, b].

(A6) The functions f : J ×Hm+1 → H and σ : J ×Hn+1 → L0
2 are uniformly bounded.

Remark . In view of [45], the assumption (A5) is equivalent to kR(k,Γb0) = k(kI + Γb0)−1

as k → 0+ in the strong operator topology.

Theorem 2.2.2 Assume that the assumptions of Theorem (2.2.1) hold and in addition,

(A5) and (A6) are satisfied. Then, the fractional control system (2.1) is approximately

controllable on [0, b].

Proof. Let xk(.) ∈ Bq be a fixed point of the Φ = Φ1 + Φ2. By Theorem (2.2.1), any fixed

point of Φ = Φ1 + Φ2 is a mild solution of (2.1) on [0, b] under the control.
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uk(t) = B∗T ∗α(b− t)(kI + Γb0)−1
{
Ex̂b +

∫ b

0

φ̂(s)dW (s)− Sα(b)[x0

+f(0, xk(0), xk(b1(0)), ...., xk(bm(0)))− g(xk)]

+f(b, xk(b), xk(b1(b)), ...., xk(bm(b)))
}

+B∗T ∗α(b− t)
∫ b

0

(kI + Γbs)
−1(b− s)α−1ATα(b− s)

f(s, xk(s), xk(b1(s)), ...., xk(bm(s)))ds

−B∗T ∗α(b− t)
∫ b

0

(kI + Γbs)
−1(b− s)α−1Tα(b− s)

σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))dW (s).

By using the stochastic Fubini theorem, it is easy to see that

xk(b) = x̂b − (kI + Γb0)−1
[
Ex̂b +

∫ b

0

φ̂(s)dW (s)

−Sα(b)[x0f(0, xk(0), xk(b1(0)), ...., xk(bm(0)))− g(xk)]

−f(b, xk(b), xk(b1(b)), ...., xk(bm(b)))
]

−k
∫ b

0

(kI + Γbs)
−1(b− s)α−1ATα(b− s)f(s, xk(s), xk(b1(s)), ...., xk(bm(s)))ds

+k

∫ b

0

(kI + Γbs)
−1(b− s)α−1Tα(b− s)σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))dW (s).

(2.10)

Moreover, by the assumption (A6), there exists N1, N2 > 0 such that

‖Aβf(s, xk(s), xk(b1(s)), ...., xk(bm(s)))‖2 ≤ N2.

and

‖σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))‖2 ≤ N2
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and consequently, there is a sequence still denoted by

{Aβf(s, xk(s), xk(b1(s)), ...., xk(bm(s))), σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))}
weakly converges to say f(s), σ(s). Thus, from the equation (2.10), we have

E‖xk(b)− x̂b‖2

≤ 7‖k(kI + Γb0)−1(Ex̂b − Sα(b)[x0

+f(0, xk(0), xk(b1(0)), ...., xk(bm(0)))− g(xk)])‖2

+7E
(∫ b

0

‖k(kI + Γb0)−1φ̂(s)‖2
L0
2

)
+7E‖k(kI + Γb0)−1f(b, xk(b), xk(b1(b)), ...., xk(bm(b)))‖2

+7E
(∫ b

0

(b− s)α− 1‖k(kI + Γb0)−1ATα(b− s)

×[f(s, xk(s), xk(b1(s)), ...., xk(bm(s)))− f(s)]‖ds
)2

+7E
(∫ b

0

(b− s)α− 1‖k(kI + Γb0)−1ATα(b− s)f(s)‖ds
)2

+7E
(∫ b

0

(b− s)α− 1‖k(kI + Γb0)−1Tα(b− s)[σ(s, xk(s), xk(a1(s))]

..., xk(an(s))− σ(s)]‖2
L0
2
ds
)

+7E
(∫ b

0

(b− s)α− 1‖k(kI + Γb0)−1Tα(b− s)σ(s)‖2
L0
2
ds

)
.

On the other hand, by Remark (2.2.2), it can be seen that approximate controllability of

(2.4) is equivalent to convergence of the operator kR(k,Γb0) to zero operator in the strong

operator topology, as k → 0+, and moreover ‖k(kI + Γbs)
−1‖ ≤ 1. Thus, it follows from

the Lebesgue dominated convergence theorem, the compactness of Tα(t) and Remark

(2.2.2) that E‖xn(b)− x̂b‖2 → 0 as k → 0+. This proves the approximate controllability

of (2.1). Hence the proof is complete.
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2.3 An Example

Consider the fractional neutral stochastic partial differential equation of the form

cDα
t

[
x(t, z) +

∫ π

0

(a(z, y))x(t, y)dy

]
= ∂2

∂z2
x(t, z) + µ(t, z) + h(t, x(t, z))dβ(t)

dt
,

0 ≤ t ≤ b, 0 ≤ z ≤ π,

x(t, 0) = x(t, π) = 0, 0 ≤ t ≤ b

x(0, z) +

p∑
i=1

∫ π

0

k(z, y)x(ti, y)dy = x0(z), 0 ≤ z ≤ π

(2.11)

where p is a positive integer, b ≤ π, 0 < t0 < t1, ...., < tp < b, x0(z) ∈ H = L2([0, π]),

K(z, y) ∈ L2([0, π] × [0, π], cDα
t is the Caputo fractional derivative of order 0 < α < 1

and β(t) denotes a standard cylindrical Wiener process in H defined on the filtered

probability space (Ω,F ,P).

To write the above system (2.11) into the abstract form (2.1), we choose the space

U = H = K = L2([0, π]). Define the operator A : D(A) ⊂ H → H by Ay = y′′ with the
domain
D(A) = {y ∈ H; y, y′} are absolutely continuous, y′′ ∈ H and y(0) = y(π) = 0.

Then −A is the infinitesimal generator of an analytic semigroup {Sα(t)}, t ≥ 0 in
H which is compact. Furthermore, −A has a discrete spectrum with eigenvalues of

the form −n2, n = 0, 1, 2... and corresponding normalized eigenfunctions are given by

xn(z) =
√

2
π

sin(nz). We also use the following properties:

i) if y ∈ D(A),then Ay =
∑∞

n=1 n
2〈y, xn〉xn.

ii) For each y ∈ H, A−1
2
y =

∑∞
n=1

1
n
〈y, xn〉xn. In particular, ‖A− 1

2‖ = 1.

iii) The operatorA
1
2 is given by A

1
2y =

∑∞
n=1 n〈y, xn〉xn on the space

D(A
−1
2 ) = y(.) ∈ H,

∑∞
n=1 n〈y, xn〉xn ∈ H.
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Define an infinite-dimensional space U by U = {u\u =
∑∞

n=2 unvn} with {
∑∞

n=2 U2
n <∞}

for each v ∈ H. The norm in U is defined by ‖u‖2
U =

∑∞
n=2 U2

n. Now, define a continuous

linear mapping B from H into H as Bu = 2u2v1 +
∑∞

n=2 unvn for u =
∑∞

n=2 unvn ∈ U .
The system (2.11) can be reformulated as the following nonlocal problem in H:

cDα[x(t) + f(t, x(t), x(b1(t)), ..., x(bm(t)))] + Ax(t) = Bu(t)

σ(t, x(t), x(a1(t)), ..., x(an(t)))dω(t)
dt
, t ∈ J = [0, b],

x(0) + g(x) = x0.

Where x(t) = x(t, .) that is (x(t))(z) = x(t, z), t ∈ [0, b], z ∈ [0, π]; the bounded

linear operator B : U → H is defined by Bu(t)(z) = µ(t, z), u ∈ H; the func-

tion f : [0, b] × H → H is given by (f(t, ϕ))(z) =

∫ π

0

a(z, y)ϕ(y)dy hold for

(ϕ, t) ∈ [a, b] × H → H and z ∈ [0, π]; the function σ : [0, b] × H → L0
2 is given by

(σ(t, ϕ))(z) = h(t, x(t, z)) hold for (ϕ, t) ∈ [a, b] × H → L0
2 and z ∈ [0, π]; g : E → H is

given by g(x) =
∑p

i=0Kg(x)(ti) where Kg(x)(z) =

∫ π

0

k(z, y)x(y)dy, for z ∈ [0, b].

We can take α = 1
2
and σ(t, x) = 1

t
1
3

sinx, then (A3) is satisfied. Furthermore, assume

that the function ψ(‖x‖2) = N3‖x‖2, where N3 = (p + 1)[

∫ π

0

∫ π

0

k2(z, y)dydz]
1
2 . Then

(A4) is satisfied (noting that Kg : H → H is completely continuous). Moreover, we
assume the following conditions hold:

i) The function a(z, y); z, y ∈ [0, π] is measurable and
∫ π

0

∫ π

0

a2(z, y)dydz <∞.

ii) The function ∂za(z, y) is measurable, a(0, y) = a(π, y) = 0 and let N4 =[ ∫ π

0

∫ π

0

(∂za(z, y))2
]2

<∞.

Therefore, the assumptions (A1)-(A4) are all satisfied. Hence, according to Theorem

(2.2.1) system (2.11) has a mild solution provided that (2.5) and (2.6) hold. On the
other hand, it can be easily seen that the deterministic linear fractional control system
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corresponding to (2.11) is approximately controllable on [0, π] (see [45]). Also, all the

conditions of Theorem (2.2.1) are satisfied. Thus by Theorem (2.2.1), fractional stochastic

control system (2.11) is approximately controllable on [0, π].



Chapter 3

Approximate Controllability of
Semilinear Fractional Stochastic
Dynamic Systems with Nonlocal
Conditions in Hilbert Spaces

In this chapter1 we studies the approximate controllability for a class of fractional
semilinear stochastic dynamic systems of the form

cDα
t x(t) + Ax(t) = f(t, x(t), x(b1(t)), ...., x(bm(t))) +Bu(t)

+σ(t, x(t), x(a1(t)), .., x(an(t)))
dW (t)

dt
, t ∈ J := [0, b] (3.1)

x(0) + g(x) = x0 ∈ H, x′(0) + h(x) = x1 ∈ H.

where 1 < α < 2, cDα
t denotes the Caputo fractional derivative operator of order α and x(.)

takes its values in the separable Hilbert space H. Then, we will introduce a suitable mild
solutions and establish set of suficient conditions for the approximate controllability of
fractional dynamic system (3.1). More precisely, using some constructive control function,
we transfer the controllability problem for semilinear dynamic systems into a fixed-point
problem. Further, as a remark, exact controllability of the considered systems is discussed.
In particular, the results on controllability of nonlinear fractional dynamic systems are
derived by assuming the corresponding linear system is controllable. Finally, an example
is given to illustrate the obtained theory.

1The chapter is based on the paper [26].
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3.1 Preliminaries and Basic Properties

In this chapter, we provide definitions, lemmas and notations necessary to establish
our main results. we use the following notations.
Let (Ω,F ,P) be a complete probability space equipped with a normal filtration Ft, t ∈
J = [0, b] satisfying the usual conditions (i.e., right continuous and F0 containing all

P-null sets).We consider three real separable Hilbert spaces H,K and U , and Q-Wiener

process on (Ω,Fb,P) with the linear bounded covariance operator Q such that TrQ <∞.

We assume that there exists a complete orthonormal system {en}n≥0 on H, a bounded
sequence of non-negative real numbers λn such that Qen = λnen, n = 1, 2, ... and a
sequence {βn}n≥1 of independent Brownian motions such that

< W (t), e >=
∞∑
n=1

√
λn < en, e > βn(t), e ∈ K, t ∈ J := [0, b]

and Ft = FWt where FWt is the sigma algebra generated by {W (s) : 0 ≤ s ≤ t}.

Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-Schmidt operators from Q

1
2K into H

with the inner product < ψ, π >L0
2
= Tr[ψQπ?].

Let L2(Fb,H) be the Banach space of all Fb-measurable square integrable random

variables with values in the Hilbert space H. Let E(.) denote the expectation with

respect to the measure P. Let C(J ;L2(F ,H)) be the Banach space of continuous maps

from J into L2(F ,H) satisfying supt∈J E‖x(t)‖2 < ∞. Let H2 = H2(J,X) is a closed

subspace of C(J ;L2(F ,H)) consisting of measurable and Ft-adapted H-valued process

x ∈ C(J ;L2(F ,H)) endowed with the norm ‖x‖H2 = (supt∈J E‖x(t)‖2
H)

1
2 .

Consider the nonlinear fractional stochastic control system (3.1), where x(.) takes its

values in the separable Hilbert space H;−A : D(A) ⊂ H → H is a sectorial operator

of type (M, θ, α, ω) on H; the control function u(.) is given in L2
F(J,U) of admissible

control functions, and U is a Hilbert space.B is a bounded linear operator from U into

H; f : J ×Hm+1 → H, σ : J ×Hn+1 → L0
2 are continuous, x0 is F0-mesurable H-valued

random variables independent of W ; ai, bj ∈ C(J, J); i = 1, 2, ..., n; j = 1, 2, ...,m

and the nonlocal terms g, h are given functions to be specified later.
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Definition 3.1.1 [67]. Let A be a closed and linear operator with the domain D(A)

defined in a Banach space X. A is said to be sectorial operator of type (M, θ, α, ω) if
there are constants ω ∈ R, 0 < θ < π

2
,M > 0, such that the following two conditions are

satisfied:

1. The α-resolvent of A exists outside the sector ω + Sθ = {ω + λα : λ ∈
C, ‖ arg(−λα)‖ < θ}.

2. ‖R(λ,A)‖ = ‖(λ− A)−1‖ ≤ M
|λ−ω| , λ ∈ Ψθ,ω.

If A is a sectorial operator of type (M, θ, α, ω), then it is not difficult to see that A is the

infinitesimal generator of a α-resolvent operator family Tα(t), t ≥ 0 in a Banach space X,

where Tα(t) = 1
2πi

∫
c

eλtR(λα, A)dλ (for more details, see [67]).

Lemma 3.1.1 [67] If f satisfies the uniform Hölder condition with the exponent β ∈ (0, 1]

and A is a sectorial operator of type (M, θ, α, ω), then the unique solution of the Cauchy
problem.

Dαx(t) = Ax(t) + f(t) t ∈ J := [0, b], 1 < α < 2

x(0) = x0 ∈ X, x′(0) = x1 ∈ X.
(3.2)

is given by

x(t) = Sα(t)x0 +Kα(t)x1 +

∫ t

0

Tα(t− s)f(s)ds, (3.3)

where

Sα(t) =
1

2πi

∫
c

eλtλα−1R(λα, A)dλ, Kα(t) =
1

2πi

∫
c

eλtλα−2R(λα, A)dλ,

Tα(t) =
1

2πi

∫
c

eλtR(λα, A)dλ

where c is a suitable path such that:λα ∈ ω + Sθ, λ ∈ C.

Now, we present the defn of mild solutions for the system (3.1) based on the paper [59],[67].
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Definition 3.1.2 A continuous stochastic process x ∈ H2(J,H) is called a mild solution

of the system(3.1) if for each u ∈ L2
F(J,U) and the following conditions hold:

1. x(t) is mesurable and Ft-adapted.

2. x(0) + g(x) = x0 and x′(0) + h(x) = x1.

3. x satisfies the following equation:

x(t) = Sα(t)(x0 − g(x)) +Kα(t)(x1 − h(x))

+

∫ t

0

Tα(t− s)[Bu(s) + f(s, x(s), x(b1(s)), ..., x(bm(s)))]ds

+

∫ t

0

Tα(t− s)f(s, x(s), x(a1(s)), ..., x(an(s)))dW (s).

3.2 The Main Results

In this section, we shall formulate and prove sufficient conditions for the approximate
controllability of the system (3.1). To do this, we first prove the existence of a family of

solutions to problem (3.1) with control function using a fixed-point theorem. Then, we

show that under certain assumptions, the approximate controllability of (3.1) is implied
by the approximate controllability of the corresponding linear system. In particular, we
formulate and prove conditions for approximate controllability for the semilinear fractional
stochastic control systems with nonlocal conditions.

Definition 3.2.1 Let x(b, u) be the state value of (3.1) at the terminal time b correspond-
ing to the control u. Introduce the set

R(b) = {x(b, u) : u(.) ∈ L2(J, U)}.

Which is called the reachable set of (3.1) at the terminal time b and its closure inH is

denoted by R(b).The system (3.1) is said to be approximately controllable on the interval

J if R(b) = H.
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In order to study the approximate controllability for the fractional control system (3.1),
we introduce the approximate controllability of its linear part;

Dαx(t) = Ax(t) + (Bu)(t), t ∈ [0, b]

x(0) = x0, x′(0) = x1.
(3.4)

Let us now introduce the following operators. Define the operator Γb0 : H → H associated

with (3.4) as

Γb0 =

∫ b

0

Tα(b− s)BB∗T ∗α(b− s)ds

R(k,Γb0) = (kI + Γb0)−1,

where B∗ denotes the adjoint of B and T ∗α is the adjoint of Tα. It is straight-forward that

the operator Γb0 is a linear bounded operator.
To establish the result, we need the following assumptions:

(A1) The operators Sα(t), Kα(t), Tα(t) generated by A are compact in D(A) when
t > 0 such that

sup
0≤t≤b

‖Sα(t)‖ ≤ M̂, sup
0≤t≤b

‖Kα(t)‖ ≤ M̂, sup
0≤t≤b

‖Tα(t)‖ ≤ M̂.

(A2) The functions f : J ×Hm+1 → H and σ : J ×Hn+1 → L0
2 satisfy the following

conditions:

i . For each t ∈ J the functions f(t, .) : Hm+1 → H and σ(t, .) : Hn+1 → L0
2 are con-

tinuous and for each (x0, x1, ...., xm) ∈ Hm+1, (x0, x1, ...., xn) ∈ Hn+1 the functions

f(., x0, x1, ...., xm) : J → H and σ(., x0, x1, ...., xn) : J →→ L0
2 are strongly Ft

measurable;

ii . For each positive integer r, there exists µr ∈ L1(J,R+) such that

sup
‖x0‖2,...,‖xm‖26r

E‖f(t, x0, X1, ..., xm)‖2
H ≤ µr(t)

sup
‖x0‖2,...,‖xn‖26r

E‖σ(t, x0, X1, ..., xn)‖2
L0
2
≤ µr(t).
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(A3) The functions g, h : H → D(A) are continuous and there exist constants β1, β2 such
that for x ∈ H.

‖g(x)‖2 ≤ β1, ‖h(x)‖2 ≤ β2

(A4) ai, bj ∈ C(J, J), i = 1, 2, ...., n; j = 1, 2, ....,m and there exist continuous functions
mf : J → R and mσ : J → R such that:

E‖f(t, x(t), x(b1(t)), ..., x(bm(t)))‖2
H ≤ mf (t)ϕ(E‖x‖2

H), ∀t ∈ J, x ∈ H,

and

E‖σ(t, x(t), x(a1(t)), ..., x(an(t)))‖2
L0
2
≤ mσ(t)ϕ(E‖x‖2

H), ∀t ∈ J, x ∈ H.

Where ϕ : [0,∞)→ (0,∞) is a continuous nondecreasing function with:

∫ b

0

m(s)ds ≤
∫ ∞
γ

ds

2ϕ(s)
.

Where γ = 10M̂2[E‖x0‖2
H + E‖x1‖2

H + (β1 + β2)] + 5M4
BM̂

4b2 7
k2
Mc.

and

m(t) = max
{
mf (t)

(
5bM̂2 + 5M4

BM̂
4b2 7

k2
b2M̂2mσ(t)(5M̂2 + 5M4

BM̂
4b2 7

k2
bM̂2)}.

(A5) The sets {ω0 − g(ω), ω ∈ Br} and {ω1 − h(ω), ω ∈ Br} where Br = {ω ∈ H2 :

E‖ω‖2
H ≤ r} are precompact in H.

The following lemma is required to define the control function.

Lemma 3.2.1 For any x̂b ∈ L2(Fb,H) there exists φ̂ ∈ L2
F(Ω, L2(J, L0

2)) such that

x̂b = Ex̂b +

∫ b

o

φ̂(s)dW (s).
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Now for any k > 0 and x̂b ∈ L2(Fb,H) , we define the control function.

uk(t) = B∗T ∗(b− t)(kI + Γb0)−1

×
{
Ex̂b +

∫ b

o

φ̂(s)dW (s)− Sα(b)[x0 − g(x)]−Kα(b)[x1 − h(x)]
}

−B∗T ∗(b− t)
∫ b

0

(kI + Γb0)−1Tα(b− s)

×f(s, x(s)), x(b1(s)), ...., x(bm(s)))ds

−B∗T ∗(b− t)
∫ b

0

(kI + Γb0)−1Tα(b− s)

×σ(t, x(t)), x(a1(t)), ...., x(an(t)))dW (t).

3.2.1 The existence of a mild solution

Before stating the theorem on the existence of a mild solution, we recall the following
fixed-point theorem which is used to establish the existence of the mild solution to the
system (3.1).

Lemma 3.2.2 (Schaefer’s fixed-point theorem). Let Y be a closed convex subset of a
Banach space X such that 0 ∈ Y . Let Φ : Y → Y be a completely continuous map. If the
set U := {x ∈ Y : λx = Φx} for some λ > 1 is bounded, then Φ has a fixed point.

Theorem 3.2.1 Assume that (A1)-(A5) hold, then for each k > 0, the fractional

stochastic control system (3.1) has at least one mild solution on J .

Proof. We transform the problem (3.1) into a fixed-point problem. Consider the map
Φk : H2 → H2 defined by

(Φkx)(t) = Sα(t)[x0 − g(x)] +Kα(t)[x1 − h(x)] +

∫ t

o

Tα(t− s)Buk(s)ds

+

∫ t

o

Tα(t− s)f(s, x(s)), x(b1(s)), ...., x(bm(s)))ds
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+

∫ t

o

Tα(t− s)σ(s, x(s)), x(a1(s)), ...., x(an(s)))dW (s), t ∈ J

We shall prove that the operator Φk is completely continuous operator. For the sake of
brevity, we rewrite that
(t, x(t), x(b1(t)), ...., x(bm(t)) = (t, y(t)), (t, x(t), x(a1(t)), ...., x(an(t)) = (t, z(t))

Let Br = {x ∈ H2 : E‖x(t)‖2
H ≤ r} for some r ≤ 1. We first show that Φk maps Br into

an equicontinuous family. Let x ∈ Br, t1, t2 ∈ J and ε > 0. Then, if 0 < ε < t1 < t2 ≤ b.

E‖(Φkx)(t1)− (Φkx)(t2)‖2
H

≤ 10‖Sα(t1)− Sα(t2)‖2(E‖x0‖2
H + E‖g(x)‖2

H)

+10‖Kα(t1)−Kα(t2)‖2(E‖x1‖2
H + E‖h(x)‖2

H)

+15E‖
∫ t1−ε

o

[Tα(t1 − τ)− Tα(t2 − τ)]f(τ, y(τ))dτ‖2
H

+15E‖
∫ t2

t1

Tα(t2 − τ)f(τ, y(τ))dτ‖2
H + 15E‖

∫ t1

t1−ε
[Tα(t1 − τ)

−Tα(t2 − τ)f(τ, y(τ))dτ‖2
H

−15E‖
∫ t1−ε

o

[Tα(t1 − τ)− Tα(t2 − τ)]Bukdτ‖2
H

+15E‖
∫ t2

t1

Tα(t2 − τ)Bukdτ‖2
H

+15E‖
∫ t1

t1−ε
[Tα(t1 − τ)− Tα(t2 − τ)]Bukdτ‖2

H

+15E‖
∫ t1−ε

o

[Tα(t1 − τ)− Tα(t2 − τ)]σ(τ, z(τ))dW (τ)‖2
H

+15E‖
∫ t2

t1

Tα(t2 − τ)σ(τ, z(τ))dW (τ)‖2
H

+15E‖
∫ t1

t1−ε
[Tα(t1 − τ)− Tα(t2 − τ)]σ(τ, z(τ))dW (τ)‖2

H.
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We have
E‖uk(s)‖2

≤ 1
k2
M2

BM̂
2
[
7‖Ex̂b +

∫ b

0

φ̂(s)dW (s)‖2 + 7E‖Sα(b)x0‖2 + 7E‖Sα(b)g(x)‖2

+7E‖Kα(b)x1‖2 + 7E‖Kα(b)h(x)‖2 + 7E‖
∫ b

o

Tα(b− s)f(s, y(s))ds‖2

+7E‖
∫ b

o

Tα(b− s)σ(s, z(s))dW (s)‖2
]
.

≤ 7
k2
M2

BM̂
2
[
2‖Ex̂b‖2 + 2

∫ b

0

E‖φ̂(s)‖2ds+ 2M̂2r + M̂2(β1 + β2)

+2

∫ b

o

‖Tα(b− s)‖2µr(s)ds
]
.

where MB = ‖B‖ Therefore
‖(Φkx)(t1)− (Φkx)(t2)‖2

H2

≤ 10(r + β1)‖Sα(t1)− Sα(t2)‖2 + 10(r + β2)‖Kα(t1)−Kα(t2)‖2

+15b‖
∫ t1−ε

o

‖Tα(t1 − τ)− Tα(t2 − τ)‖2µr(τ)dτ

+15b‖
∫ t2

t1

‖Tα(t2 − τ)‖2µr(τ)dτ

+15b‖
∫ t1

t1−ε
‖Tα(t1 − τ)− Tα(t2 − τ)‖2µr(τ)dτ

+15M2
BM̂

2(t2 − t1)

∫ t2

t1

‖uk(τ)‖2dτ

+15M2
B‖
∫ t1

t1−ε
‖Tα(t1 − τ)− Tα(t2 − τ)‖2‖uk(τ)‖2dτ

+15M2
B‖
∫ t1−ε

0

Tα(t1 − τ)− Tα(t2 − τ)‖2‖uk(τ)‖2dτ
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+15‖
∫ t1−ε

0

‖Tα(t1 − τ)− Tα(t2 − τ)‖2µr(τ)dτ

+15‖
∫ t2

t1

‖Tα(t2 − τ)‖2µr(τ)dτ

+15‖
∫ t1

t1−ε
‖Tα(t1 − τ)− Tα(t2 − τ)‖2µr(τ)dτ.

The right-hand side of the above inequality is independent of x ∈ Br and tends to zero
as t2 − t1 → 0 and ε sufficiently small, since the compactness of Sα(t), Kα(t), Tα(t) for
t > 0 implies the continuity in the uniform operator topology. Thus, Φk maps Br into
an equicontinuous family of functions. It is easy to see that the family Br is uniformly
bounded.
Next, we show that ΦkBr is compact. Since we have shown that ΦkBr is an equicon-
tinuous family, it suffices by Arzela-Ascoli theorem to show that Φk maps Br into a
precompact set in H.
Let 0 < t < b be fixed and ε a real number satisfying 0 < ε < t. For x ∈ Br, we define

(Φε
kx)(t) = Sα(t)(x0 − g(x)) +Kα(t)(x1 − h(x)) +

∫ t−ε

o

Tα(t− s)Buk(s)ds

+

∫ t−ε

o

Tα(t− s)f(s, x(s), x(b1(s)), ..., x(bm(s)))ds

+

∫ t−ε

o

Tα(t− s)σ(s, x(s), x(a1(s)), ..., x(an(s)))dW (s)

= Sα(t)(x0 − g(x)) +Kα(t)(x1 − h(x))

+Tα(ε)

∫ t−ε

o

Tα(t− s− ε)Buk(s)ds

+Tα(ε)

∫ t−ε

o

Tα(t− s− ε)f(s, x(s), x(b1(s)), ..., x(bm(s)))ds

+Tα(ε)

∫ t−ε

o

Tα(t− s− ε)σ(s, x(s), x(a1(s)), ..., x(an(s)))dW (s).

Since Sα(t), Kα(t), Tα(t) are compact operators, the set {(Φε
kx)(t) : x ∈ Br} is precompact

in H, for every ε, 0 < ε < t and every k > 0. Moreover, forevery x ∈ Br we have:
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E‖(Φkx)(t)− (Φε
kx)(t)‖2

H

≤ 3E‖
∫ t

t−ε
Tα(t− s)Buk(s)ds‖2

H + 3E‖
∫ t

t−ε
Tα(t− s)

×f(s, x(s), x(b1(s)), ..., x(bm(s)))ds‖2
H

+3E‖
∫ t

t−ε
Tα(t− s)σ(s, x(s), x(a1(s)), ..., x(an(s)))dW (s)‖2

H

≤ 3M2
B

∫ t

t−ε
‖Tα(t− s)‖ds

∫ t

t−ε
‖Tα(t− s)‖E‖uk(s)‖2

Hds

+3

∫ t

t−ε
‖Tα(t− s)‖ds

∫ t

t−ε
‖Tα(t− s)‖E‖f(s, y(s))‖2

Hds

+3

∫ t

t−ε
‖Tα(t− s)‖2‖E‖σ(s, z(s))‖2

L0
2
ds

≤ 3M4
BM̂

4b2 7
k2

(MC + 2M̂2

∫ t

t−ε
µr(s)ds) + 3M̂2(b2 + 1)

∫ t

t−ε
µr(s)ds).

Therefore, there are precompact sets arbitrary close to the set {(Φε
kx)(t) : x ∈ Br}.

Hence, from assumption (A5), the set {(Φε
kx)(t) : x ∈ Br}. is precompact in H (see [54]).

Next, we show that Φk : H2 → H2 is continuous. Let {xn}∞n=0 be a sequence in H2 such

that xn → x in H2. Then, there is an integer q such that ‖un(t)‖2 for all n and t ∈ J , so
un ∈ Bq and u ∈ Bq. By assumption (A2), we have

f(t, yn(t))→ f(t, y(t)) and σ(t, zn(t))→ σ(t, z(t)) for each t ∈ J .
Since
‖f(t, yn(t))− f(t, y(t))‖2

H ≤ 2νq(t); and ‖σ(t, zn(t))− σ(t, z(t))‖2
L0
2
≤ 2νq(t).

we have by dominated convergence
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E‖(Φkx)(t)− (Φε
kx)(t)‖2

H ≤ 3M4
BM̂

4b 7
k2
×
[
E‖
∫ b

0

Tα(b− s)[f(s, yn(s)− f(s, y(s)))]ds‖2
H

+E‖
∫ b

0

Tα(b− s)[σ(s, zn(s))− σ(s, z(s))]dW (s)‖2
H

]

+3E‖
∫ b

0

Tα(b− s)[f(s, yn(s)− f(s, y(s)))]ds‖2
H

+3E‖
∫ b

0

Tα(b− s)[σ(s, zn(s))− σ(s, z(s))]dW (s)‖2
H

≤ 3M4
BM̂

4b 7
k2

[
bM̂2

∫ b

0

E‖f(s, yn(s)− f(s, y(s)))‖2
H

+M̂2

∫ b

0

E‖σ(s, zn(s)− σ(s, z(s)))‖2
L0
2

]

+3bM̂2

∫ b

0

E‖f(s, yn(s)− f(s, y(s)))‖2
H

+3M̂2

∫ b

0

E‖σ(s, zn(s)− σ(s, z(s)))‖2
L0
2
→ 0.

Hence, ‖(Φkun)(t) − (Φku)(t)‖2
H2
→ 0 Thus, Φk is continuous.This completes the proof

that Φk is completely continuous.

Now, we prove that the set U := {x ∈ H2 : λx = Φkx for some λ > 1} is bounded.

Let x ∈ U . Then λX = Φkx for some λ > 1 and k > 0 Then

x(t) = λ−1Sα(x0 − g(x)) + λ−1Kα(x1 − h(x)) + λ−1

∫ t

0

Tα(t− s)Buk(s)ds

+λ−1

∫ t

0

Tα(t− s)f(s, y(s))ds

+λ−1

∫ t

0

Tα(t− s)σ(s, z(s))dW (s), t ∈ J.
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We have
E‖x(t)‖2

H ≤ 10‖Sα(t)‖2(E‖x0‖2
H + E‖g(x)‖2

H

+10‖Kα(t)‖2(E‖x1‖2
H + E‖h(x)‖2

H

+5M2
B

∫ t

0

‖Tα(t− s)‖ds
∫ t

0

‖Tα(t− s)‖dsE‖uk(s)‖2ds

+5

∫ t

0

‖Tα(t− s)‖ds
∫ t

0

‖Tα(t− s)‖dsE‖f(s, y(s))‖2
Hds

+5

∫ t

0

‖Tα(t− s)‖2dsE‖σ(s, z(s))‖2
L0
2

≤ 10M̂2E‖x0‖2
H + 10M̂2β1 + 10M̂2E‖x1‖2

H10M̂2β2 + 5M4
BM̂

4b 7
k2

×
[
MC + bM̂2

∫ b

0

mf (s)ϕ(E‖x(s)‖2
H)ds+ M̂2

∫ b

0

mσ(s)ϕ(E‖x(s)‖2
H)ds

]

+5bM̂2

∫ b

0

mf (s)ϕ(E‖x(s)‖2
H)ds+ 5M̂2

∫ b

0

mσ(s)ϕ(E‖x(s)‖2
H)ds.

Consider the function η(t) defined by η(t) = sup{E‖x(s)‖2
H), 0 ≤ s ≤ b ≤}, t ∈ J we

have:

η(t) ≤ 10M̂2[E‖x0‖2
H + β1] + 10M̂2[E‖x1‖2

H + β2]

+5M4
BM̂

4b 7
k2

[
MC + b2M̂2

∫ b

0

mf (s)ϕ(η(s))ds+ M̂2b

∫ b

0

mσ(s)ϕ(η(s))ds

]

+5bM̂4

∫ b

0

mf (s)ϕ(η(s))ds+ 5M̂4

∫ b

0

mσ(s)ϕ(η(s))ds.

Denote by η(t) the right-hand side of the last inequality, we have

v(0) = γ = 10M̂2[E‖x0‖2
H+β1]+10M̂2[E‖x1‖2

H+β2]+5M4
BM̂

4b
7

k2
MC , η(t) ≤ v(t), t ∈ J.

Moreover

v′(t) = 5M4
BM̂

4b 7
k2

[
b2M̂2mf (t)ϕ(η(t)) + M̂2bmσ(t)ϕ(η(t))

]
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+5bM̂4mf (t)ϕ(η(t)) + 5M̂4mσ(t)ϕ(η(t))

≤ 5M4
BM̂

4b 7
k2

[
b2M̂2mf (t)ϕ(v(t)) + M̂2bmσ(t)ϕ(v(t))

]
+5bM̂4mf (t)ϕ(v(t)) + 5M̂4mσ(t)ϕ(v(t))

= mf (t)ϕ(v(t))
(

5bM̂4 + 5M4
BM̂

4b2 7
k2
b2M̂2

)
+mσ(t)ϕ(v(t))

(
5M̂4 + 5M4

BM̂
4b2 7

k2
bM̂2

)
≤ m(t) (ϕ(v(t)) + ϕ(v(t))) = 2m(t)ϕ(v(t)) t ∈ J.

This implies

∫ v(t)

v(0)

ds

2ϕ(s)
≤
∫ b

0

m(s)ds <

∫ ∞
γ

ds

2ϕ(s)
, t ∈ J.

This inequality implies that there is a constant k such that v(t) ≤ k, t ∈ J

and, hence, η(t) ≤ k. Furthermore, we get ‖x(t)‖2 ≤ η(t) ≤ k, t ∈ J . By

the Schaefer’s fixed-point theorem (Lemma 3.2.2), we deduce that Φk has a fixed

point on J which is a solution to (3.1). This completes the proof of the theorem
�

3.2.2 The approximate controllability

To prove the approximate controllability result, the following additional assumption is
required:
(A6) The linear system (3.4) is approximately controllable.

(A7) The functions f : J ×Hm+1 → H and σ : J ×Hn+1 → L0
2 are bounded.

Remark : (A6) is equivalent to kR(k,Γb0) = k(kI+Γb0)−1 as k → 0+ in the strong operator

topology ([45]).

Theorem 3.2.2 Assume that the assumptions of Theorem (3.2.1) hold and in addition,

(A6) and (A7) are satisfied. Then, the fractional control system (3.1) is approximately
controllable on J .
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Proof. Let xk(.) ∈ Bq be a fixed point of the Φk Using the stochastic Fubini theorem, it
is easy to see that

xk(b) = x̂b − (kI + Γb0)−1
[
Ex̂b +

∫ b

0

φ̂(s)dW (s)− Sα(b)(x0 − g(xk))

−Kα(b)(x1 − h(xk))
]

+k

∫ b

0

(kI + Γbs)
−1Tα(b− s)f(s, xk(s), xk(b1(s)), ...., xk(bm(s)))ds

+k

∫ b

0

(kI + Γbs)
−1Tα(b− s)σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))dW (s).

(3.5)

Moreover, by the assumption (A7), there exists N1 > 0 such that

‖f(s, xk(s), xk(b1(s)), ...., xk(bm(s)))‖2 + ‖σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))‖2 ≤ N1

and consequently, there is a sequence still denoted by
{f(s, xk(s), xk(b1(s)), ...., xk(bm(s))), σ(s, xk(s), xk(a1(s)), ...., xk(an(s)))}. weakly con-

verges to say f(s), σ(s). Thus, from the equation (3.5), we have

E‖xk(b)− x̂b‖2

≤ 6‖k(kI + Γb0)−1(Ex̂b − Sα(b)(x0 − g(xk))−Kα(b)(x1 − h(xk))]‖2

+6E
(∫ b

0

‖k(kI + Γb0)−1φ̂(s)‖2
L0
2
ds

)

+6E
(∫ b

0

‖k(kI + Γb0)−1‖‖Tα(b− s)[f(s, yk(s))− f(s)]‖
)2

+6E
(∫ b

0

‖k(kI + Γb0)−1Tα(b− s)f(s)‖
)2

+6E
(∫ b

0

‖k(kI + Γb0)−1‖‖Tα(b− s)[σ(s, zk(s))− σ(s)]‖2
L0
2

)

+6E
(∫ b

0

‖k(kI + Γb0)−1Tα(b− s)σ(s)‖2
L0
2

)
.
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On the other hand, by assumption (A6), for all 0 ≤ s ≤ b the op-

erator kR(k,Γb0)to zero operator in the strong operator topology, as k →
0+, and moreover ‖k(kI + Γbs)

−1‖ ≤ 1. Thus, by the Lebesgue domi-

nated convergence theorem and the compactness of Tα(t) we obtain E‖xn(b) −
x̂b‖2 → 0 as k → 0+. This gives the approximate controllability of (3.1).

�

3.2.3 The Exact Controllability

Remark : The stochastic control system (3.1) is said to be exactly controllable on J if

R(b) = H. Assume that the linear fractional stochastic control system

Dαx(t) = Ax(t) + (Bu)(t) + σ(t)dW (t)
dt

t ∈ [0, b]

x(0) = x0, x′(0) = x1

(3.6)

is exactly controllable.

Now, we introduce the controllability operator associated with (3.6) as

Γb0 =

∫ b

0

Tα(b − s)BB∗T ∗α(b − s)E{.\Ft}ds It should be mentioned that the linear

fractional stochastic system (3.6) is exactly controllable if and only if there exists a γ > 0

such that E(Γb0x, x) ≥ γE‖x‖2, for all x ∈ H and consequently ‖(Γb0)−1‖ ≤ 1
γ
.

To prove the exact controllability result, we assume the following assumptions:

(A8) f : J × Hm+1 → H, σ : J × Hn+1 → L0
2 are continuous and there exist constants

Lf and Lσ such that

E‖f(t1, x0, x1, ..., xm)− E‖f(t2, y0, y1, ..., ym)‖2
H ≤ Lf

(
|t1 − t2|+ max

i=0,1,...,m
E‖xi − yi‖2

H

)
,

E‖σ(t1, x0, x1, ..., xn)− E‖σ(t2, y0, y1, ..., yn)‖2
L0
2
≤ Lσ

(
|t1 − t2|+ max

j=0,1,...,n
E‖xi − yi‖2

H

)
for all 0 ≤ t1, t2 ≤ b, (xi, yi), (xj, yj) ∈ H ×H, i = 0, 1, ...,m; j = 0, 1, ..., n.

(A9) There exist constants β1, β2 > 0 such that
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E‖g(x)− g(y)‖2
H ≤ β1E‖x− y‖2

H

E‖h(x)− h(y)‖2
H ≤ β2E‖x− y‖2

H,∀x, y ∈ H.

Theorem 3.2.3 Assume that (A1), (A8) and (A9) hold. If the linear stochastic sys-

tem associated with the system (3.1) is exactly controllable on all [0, t], t > 0, then the

semilinear fractional stochastic control system (3.1) is exactly controllable on J provided
that

5ΛM̂2(1 + ΛM̂2 1

γ2
)
[
(β1 + β2) + b2(m+ 1)Lf + b(n+ 1)Lσ

]
≤ 1. (3.7)

proof. Define the operator Ψ : H2 → H2 by

(Ψx)(t) = Sα(t)[x0 − g(x)] +Kα(t)[x1 − h(x)] +

∫ t

o

Tα(t− s)Bu(s, x)ds

+

∫ t

o

Tα(t− s)f(s, x(s)), x(b1(s)), ...., x(bm(s)))ds

+

∫ t

o

Tα(t− s)σ(s, x(s)), x(a1(s)), ...., x(an(s)))dW (s), t ∈ J

Where

u(t, x) = B∗T ∗α(b− t)E
{

(Γb0)−1
(
x̂b − Sα(b)[x0 − g(x)]−Kα(b)[x1 − h(x)]

−
∫ t

o

Tα(b− s)f(s, x(s)), x(b1(s)), ...., x(bm(s)))ds

−
∫ t

o

Tα(b− s)σ(t, x(s)), x(a1(s)), ...., x(an(s)))dW (s)
)
\Ft
}
.

(3.8)

Note that, the control (3.8) transfers the system (3.1) from the initial state x0 to the

final state x(b) = x̂b provided that the operator Ψ has a fixed point. To prove the exact
controllability result, it is enough to show that the operator Ψ has a fixed point in H2.
To do this, we can employ the Banach contraction principle.
First, It can be seen that Ψ maps H2 into itself. Let us show that Φ is a contraction on
H2. For t ∈ J , it follows from the assumptions (A1), (A8) and (A9) that
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E‖(Ψx)(t)− (Ψy)(t)‖2
H

≤ 5‖Sα(t)‖2E‖g(x)− g(y)‖2
H + 5‖Kα(t)‖2

E‖h(x)− h(y)‖2
H + 5E‖

∫ t

o

Tα(b− s)B(u(s, x)− u(s, y))ds‖2

+5E‖
∫ t

o

Tα(b− s)[f(s, x(s)), x(b1(s)), ...., x(bm(s)))

−f(s, y(s)), y(b1(s)), ...., y(bm(s)))]ds‖2
H

+5E‖
∫ t

o

Tα(b− s)[σ(s, x(s)), x(a1(s)), ...., x(an(s)))

−σ(s, y(s)), y(a1(s)), ...., y(an(s)))]dW (s)‖2
H.

We have∫ t

o

Tα(b− s)B(u(s, x)− u(s, y))ds

= Γb0T
∗
α(b− t)(Γb0)−1

×
(
Sα(t)(g(x)− g(y)) +Kα(t)(h(x)− h(y))

+

∫ t

o

Tα(b− s)(f(s, y(s)), y(b1(s)), ...., y(bm(s)))

−f(s, x(s)), x(b1(s)), ...., x(bm(s))))ds

+

∫ t

o

Tα(b− s)(σ(s, x(s)), x(a1(s)), ...., x(an(s)))

−σ(s, x(s)), x(a1(s)), ...., x(an(s))))dW (s)
)
.

Then
E‖(Ψx)(t)− (Ψy)(t)‖2

H

≤ 5M̂2(β1 + β2)E‖x− y‖2
H + 5ΛM̂2 1

γ2

(
M̂2(β1 + β2)
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E‖x− y‖2
H + bM̂2

∫ t

0

Lf max
i=0,1,..,m

E‖xi − yi‖2
Hds

+M̂2

∫ t

0

Lσ max
j=0,1,..,m

E‖xj − yj‖2
Hds

+5bM̂2

∫ t

0

Lf max
i=0,1,..,m

E‖xi − yi‖2
Hds

+5M̂2

∫ t

0

Lσ max
j=0,1,..,m

E‖xj − yj‖2
Hds

≤ 5M̂2(β1 + β2)
(

1 + ΛM̂2 1
γ2

)
E‖x− y‖2

H

+5
(

1 + ΛM̂2 1
γ2

)
b2M̂2(m+ 1)Lf

E‖x− y‖2
H + 5

(
1 + ΛM̂2 1

γ2

)
bM̂2(n+ 1)LσE‖x− y‖2

H

= 5ΛM̂2
(

1 + ΛM̂2 1
γ2

)
[(β1 + β2)b2(m+ 1)Lf + b(n+ 1)Lσ]E‖x− y‖H.

Where Λ = max{‖Γbs : 0 ≤ s ≤ b‖2}
Hence by the condition (3.7), Ψ is a contraction mapping. Therefore, by the Banach

contraction principle Ψ has a unique fixed point.Further x(b) = x̂b. Thus, the system

(3.1) is exactly controllable on [0, b].
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3.3 An example

Consider the following fractional stochastic control system of the form

cDα
t x(t, z) =

∂2

∂z2
x(t, z) + µ(t, z) + ϕ(t, x(t, z)) + ψ(t, x(t, z))

dβ(t)

dt

0 ≤ t ≤ b, 0 ≤ z ≤ π, x(t, 0) = x(t, π) = 0, x′(t, 0) = x′(t, π) = 0

x(0, z) +

p∑
i=0

∫ π

0

H(z, y)x(ti, y)dy = x0(z)

x′(0, z) +

p∑
i=0

∫ π

0

K(z, y)x(ti, y)dy = x1(z), 0 ≤ z ≤ π.

(3.9)

Where p is a positive integer, b ≤ π, 0 < t0 < t1, ...., < tp < b, x1(z) ∈ H =

L2([0, π]), H(z, y), K(z, y) ∈ L2([0, π] × [0, π], µ : [0, b] × [0, π] → [0, π] is continuous in

t, cDα
t is the Caputo fractional derivative of order 1 < α < 2 and β(t) is a two sided

and standard one-dimensional Brownian motion defined on the filtered probability space
(Ω,F ,P).

To write the above system (3.9) into the abstract form (3.7), we choose the space

U = H = K = L2([0, π]). Define the operator A : D(A) ⊂ H → H by Ay = y′′ with the
domain

D(A) = {y ∈ H; y, y′} are absolutely continuous, y′ ∈ H and y(0) = y(π) = 0.
Then A is densely defined in H and it is the infinitesimal generator of a resolvent
family {Sα(t), t ≥ 0}. Furthermore, −A has a discrete spectrum with eigenvalues of

the form −n2, n = 0, 1, 2... and corresponding normalized eigenfunctions are given by

zn(x) =
√

2
π

sin(nz). In addition {zn, n ∈ N} is an orthonormal basis for H.

T (t)(y) =
∞∑
n=1

e−n
2t(y, yn)yn, y ∈ H, t > 0

Let x(t)(z) = x(t, z) and define the bounded linear operator B : U → H by Bu(t)(z) =

µ(t, z), 0 ≤ z ≤ π, u ∈ H; Also, define the function f : J ×Hm+1 → H, σ : J ×Hn+1 →
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L0
2, g : H → H and h : H → H by f(t, x(t))(z) = ϕ(t, x(z)), σ(t, x(t))(z) = ψ(t, x(z))

and g(x) =

p∑
i=0

H(x)(ti), h(x) =

p∑
i=0

K(x)(ti) where H(x)(z) =

∫ π

0

H(z, y)x(y)dy, and

K(x)(z) =

∫ π

0

K(z, y)x(y)dy for z ∈ [0, b]

On the other hand, the linear fractional stochastic system corresponding to (3.9) is ap-

proximately controllable. Thus, with the above choices of A,B, f and σ, system (3.9) can

be rewritten into the abstract form of (3.1). Thus, all conditions of Theorem (3.2.2) are

satisfied. Hence, by Theorem (3.2.2) the fractional control system (3.9) is approximately

controllable on [0, b].



Chapter 4

Approximate controllability of
sobolev-type fractional functional
stochastic integro-differential systems

In this chapter1 we studies the approximate controllability of sobolev-type fractional
functional stochastic integro-differential systems in the following form

cDα
t (Ex(t)) + Ax(t) = Bu(t) + f(t, xt) +

∫ t

0

σ
(
t, s, xs,

∫ s

0

H(s, τ, xτ )dτ
)
dW (s),

t ∈ J := [0, b],

x(t) = φ(t), −r ≤ t ≤ 0.

(4.1)

4.1 Preliminaries

Let (Ω,F ,P) be a complete probability space equipped with a normal filtration Ft, t ∈
J = [0, b] satisfying the usual conditions (i.e., right continuous and F0 containing all P-
null sets). and E(.) denotes the expectation with respect to the measure P, We consider

three real separable Hilbert spaces H,K and Z with inner products (., .)H, (., .)K and

(., .)Z , respectively and norms ‖.‖H; ‖.‖K; ‖.‖Z . Let W = (Wt)t≥0 be a Q-Wiener process

defined on (Ω,F ,P) with the linear bounded covariance operator Q such that TrQ <∞.

We assume that there exists a complete orthonormal system {en}n≥0 on H, a bounded
1The chapter is based on the paper [26].
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sequence of non-negative real numbers λn such that Qen = λnen, n = 1, 2, ... and a
sequence {βn}n≥1 of independent Brownian motions such that

< W (t), e >=
∞∑
n=1

√
λn < en, e > βn(t), e ∈ K, t ∈ J := [0, b]

and Ft = FWt where FWt is the sigma algebra generated by {W (s) : 0 ≤ s ≤ t}.

We denote by L(K,Z) the set of all linear bounded operators from K into Z, equipped

with the usual operator norm ‖.‖.Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-

Schmidt operators from Q
1
2K into H with the inner product < ψ, π >L0

2
= Tr[ψQπ?].

Let L2(Fb,H) be the Banach space of all Fb-measurable square integrable random

variables with values in the Hilbert space H. Let C([0, b], L2(F ,H)) be the Banach space

of continuous maps from [0, b] into L2(F ,H) satisfying supt∈J E‖x(t)‖2 <∞.

Let C0 := C0([0, b];L2(F ,H)) be a closed subspace of C([0, b], L2(F ,H)) consisting of

measurable and Ft-adapted H-valued process x ∈ C([0, b];L2(F ,H)) endowed with the

norm ‖x‖CO = (supt∈J E‖x(t)‖2
H)

1
2 .

Consider the sobolev-type fractional functional stochastic integro-differential
system (4.1), Where x(.) takes value in the Hilbert space H; the fractional deriva-

tive cDα, 0 < α < 1 is understood in the Caputo sense; A : D(A) ⊂ H → Z and

E : D(A) ⊂ H → Z;W = {W (t), t ≥ 0} is a given K-Valued Wiener process with a finite

trace nuclear operator Q ≥ 0 defined on (Ω,F ,P); the control function u(.) is given in

L2(J,U) of admissible control functions, U is a Hilbert space; B is a bounded linear opera-

tor from U into Z; f : J×Cr → Z, H : J×J×Cr → H and σ : J×J××Cr×H → L0
2 with

Cr := Cr([−r, 0],H) will de specified later; x : J∗ := [−r, b] → H is continuous; xt is the

element of Cr defined by xt(s) = x(t+ s),−r ≤ s ≤ 0, the domain D(E) of E becomes a

Hilbert space with the norm ‖x‖ = ‖Ex‖Z , x ∈ D(E) and φ ∈ Cr(E) = Cr([−r, 0],D(E)).

Now, we introduce the following hypotheses on the operators A and E.

(H1): A and E are linear operators, and A is closed.
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(H2): D(E) ⊂ D(A) and E is bijective.

(H3): E−1 : Z → D(E) ⊂ H is compact (which implies that E−1 is bounded).

The hypothesis (H3) implies that E is closed since the fact: E−1 is closed and

injective, then its inverse is also closed. It comes from (H1)-(H3) and the closed graph

theorem, we obtain the boundedness of the linear operator −AE−1 : Z → Z.
Consequently, −AE−1 generates a semigroup {T (t), t ≥ 0} in Z which means that there

exists M > 1 such that supt∈J ‖T (t)‖ ≤M .

According to definitions (1.9.2) and (1.9.4), it is suitable to rewrite the system (4.1)
in the equivalent fractional integral equation

Ex(t) = Eφ(0) + 1
Γ(α)

∫ t

0

(t− s)α−1[−Ax(s) + f(s, xs) +Bu(s)]ds

+ 1
Γ(α)

∫ t

0

(t− s)α−1

[∫ s

0

σ
(
s, τ, xτ , R(τ)

)
dW (τ)

]
ds, t ∈ J := [0, b],

x(t) = φ(t), −r ≤ t ≤ 0,

(4.2)

Where R(τ) =

∫ τ

0

H(τ, υ, xυ)dυ, provided that the integral in (4.2) exists.

If the Formula (4.2) holds, then we have (see [1], [19])

x(t) = TE(t)Eφ(0) +

∫ t

0

(t− s)α−1SE(t− s)f(s, xs)ds

+

∫ t

0

(t− s)α−1SE(t− s)Bu(s)ds

+

∫ t

0

(t− s)α−1SE(t− s)
[∫ s

0

σ
(
s, τ, xτ , R(τ)

)
dW (τ)

]
ds,

t ∈ J := [0, b],

x(t) = φ(t), −r ≤ t ≤ 0.

(4.3)
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Here TE(.) and SE(.) are called characteristic solution operators and given by

TE(t) :=

∫ ∞
0

E−1ξα(θ)T (tαθ)dθ

SE(t) := α

∫ ∞
0

E−1θξα(θ)T (tαθ)dθ
(4.4)

Where

ξα(θ) := 1
α
θ−(1+ 1

q
)$α(θ−

1
q ) ≥ 0,

$α(θ) := 1
π

∞∑
n=1

(−1)n−1θαn−1 Γ(nα + 1)

n!
sin(nπα).

ξα is a probability density defined on ]0,∞[.

Remark : When E = I, I : Z → Z is the identity operator, we have

TI(t) :=

∫ ∞
0

ξα(θ)T (tαθ)dθ, SI(t) := α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

where
∫ ∞

0

θξα(θ)dθ =
1

Γ(1 + α)
.

Definition 4.1.1 A stochastic process x ∈ C(J∗,H) is a mild solution of (4.1) if or each

u ∈ L2
F(J,U) and φ ∈ Cr(E), it satisfies the following integral equation,

x(t) = TE(t)Eφ(0) +

∫ t

0

(t− s)α−1SE(t− s)f(s, xs)ds+

∫ t

0

(t− s)α−1SE(t− s)Bu(s)ds

+

∫ t

0

(t− s)α−1SE(t− s)
[∫ s

0

σ
(
s, τ, xτ , R(τ)

)
dW (τ)

]
ds, t ∈ J.

Where TE(.) and SE(.) are defined as in (4.4)

The following properties of TE(.) and SE(.) appeared and proved in [20] are useful.
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Lemma 4.1.1 Assume (H1)-(H3) hold, then:

(i) For any fixed t ≥ 0, TE(t) and SE(t) are linear and bounded operators, i.e; for any
x ∈ H

‖TE(t)x‖ ≤M‖E−1‖‖x‖ , ‖SE(t)x‖ ≤ M‖E−1‖
Γ(α)

‖x‖.

(ii) {TE(t), t ≥ 0} and {SE(t), t ≥ 0} are compact.

4.2 The Main Resuls

In this chapter, we shall formulate and prove sufficient conditions for the approx-
imate controllability of the system (4.1). To do this, we first prove the existence of
solutions for fractional control system. Then, we show that under certain assumptions,
the approximate controllability of (4.1) is implied by the approximate controllability of
the associated linear system.

Definition 4.2.1 Let xb(φ, u) be the state value of (4.1) at the terminal time b corre-
sponding to the control u and the initial value φ . Introduce the set

R(b, φ) = {xb(φ, u)(0) : u(.) ∈ L2(J,U)}

which is called the reachable set of (4.1) at the terminal time b and its closure in H

is denoted by R(b, φ). The system (4.1) is said to be approximately controllable on

the interval J if R(b, φ) = H; that is, given an arbitrary ε > 0, it is possible to steer

from the point φ(0) to within a distance ε from all points in the state spaceH at the time b.

to study the approximate controllability for the fractional control system (4.1), we
introduce the approximate controllability of its linear part.

Dα
t Ex(t) = Ax(t) + (Bu)(t), t ∈ [0, b]

x(0) = φ(0)
(4.5)
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It is convenient at the point to introduce the controllability and resolvent operators asso-
ciated with (4.5) as.

Lb0 =

∫ t

0

(t− s)α−1SE(t− s)Bu(s)ds : L2(J,U)→ D(E)

Γb0 = Lb0(Lb0)∗ =

∫ b

0

(b− s)2(α−1)SE(b− s)BB∗S∗E(b− s)ds : D(E)→ D(E).

(4.6)

respectively,where B∗ denotes the adjoint of B and S∗E(t) is the adjoint of SE(t). It is

straightforward that the operator Γb0 is a linear bounded operator for 1
2
< α ≤ 1.

For more details, one con see [45],[14].

To establish the existence result, we need the following assumptions.
(H4)The function f satisfies the following tow conditions:

(i) For each x ∈ Cr, the function f(., x) : J → Z is strongly measurable, and for each

t ∈ J , the function f(t, .) : Cr → Z is continuous.

(ii) There is a positive integrable function n ∈ L1([0, b]) and a continuous nondecreasing

function Ξf : [0,∞)→ (0,∞) such that for every (t, x) ∈ J × Cr, we have

E‖f(t, x)‖2 ≤ n(t)Ξf (‖x‖2), lim inf
k→∞

Ξf (k)

k
= Λf <∞.

(H5): For each (t, s) ∈ J × J , the function H(t, s, .) : Cr → H is continuous, and for each

x ∈ Cr, the function H(., ., x) : J × J → H is strongly measurable.

(H6): The function σ satisfies the following tow conditions:

(i) For each (t, s, x) ∈ J×J×Cr, the function σ(t, s, ., .) : Cr×H → L0
2 is continuous, and

for each x ∈ Cr, y ∈ H, the function σ(., x, y) : J × J → L0
2 is strongly measurable.

(ii) There is a positive integrable function m ∈ L1([0, b]) and a continuous nondecreasing

function Ξσ : [0,∞)→ (0,∞) such that for every (t, s, x,H) ∈ J×J×Cr×H, we have∫ t

0

E
∥∥∥σ(t, s, x,

∫ s

0

H(s, τ, x)dτ)
∥∥∥2

L0
2

≤ m(t)Ξσ(‖x‖2), lim inf
k→∞

Ξσ(k)

k
= Λσ <∞.
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The following lemma is required to define the control function. For more details see
[46],[48]

Lemma 4.2.1 [46],[48] For any x̂b ∈ L2(Fb,D(E)) there exists φ̂ ∈ L2
F(Ω, L2(J, L0

2))

such that x̂b = Ex̂b +

∫ b

o

φ̂(s)dW (s)

Now for any k > 0 and x̂b ∈ L2(Fb,D(E)) , we define the control function.

uε(t, x) = (b− t)α−1B∗S∗E(b− t)(εI + Γb0)−1
{
Ex̂b +

∫ b

o

φ̂(s)dW (s)− TE(b)Eφ(0)
}

−(b− t)α−1B∗S∗E(b− t)
∫ b

0

(εI + Γb0)−1(b− t)α−1SE(b− s)f(s, x(s))ds

−(b− t)α−1B∗S∗E(b− t)
∫ b

0

(εI + Γb0)−1(b− t)α−1SE(b− s)

×
{∫ s

o

σ(s, τ, xτ , R(τ))dW (τ)
}
ds.

(4.7)

4.2.1 Existence theorem

Let us now explain and prove the following theorem about the existence of solution for
the fractional system (4.1)

Theorem 4.2.1 Assume that (H1)-(H6) hold, then for each ε > 0, the system (4.1)
has a mild solution on J provided that.

M2‖E−1‖2b2α

α2Γ2(α)

(
4 + ‖B‖2 16

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M

2‖E−1‖2b2α

α2Γ2(α)

)

×
[
Λf sup

s∈J
n(s) + Λσ sup

s∈J
m(s)

]
< 1
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Proof : For all ε > 0, consider the operator Pε : C(J∗,H)→ C(J∗,H) defined by

(Pεx)(t) = TE(t)Eφ(0) +

∫ t

o

(t− s)α−1SE(t− s)Buε(s, x)ds

+

∫ t

o

(t− s)α−1SE(t− s)f(s, xs)ds

+

∫ t

o

(t− s)α−1SE(t− s)
{∫ s

o

σ(s, τ, xτ , R(τ))dW (τ)
}
ds, t ∈ J

(Pεx)(t) = φ(t), −r ≤ t ≤ 0.

We shall show that for all ε > 0, the operator Pε has a fixed point, which is then a
mild solution for the system (4.1). To prove this we will employ the schauder fixed point
theorem.

For each positive number q, define Bq := {x ∈ C(j∗,H) : ‖x(t)‖2 ≤ q, t ∈ J∗}. Then,

for each q, Br is clearly a bounded closed convex subset in C(j∗,H). The proof will be
given in several steps.

step 1. We show that there exists a positive number q := q(ε) such that Pε(Bq) ⊂ Bq.

If it is not true, then for each positive number q, there exists a function zq(.) ∈ Bq, but

Pε(zq) ∈ Bq, that is, E‖(Pεzq)(t)‖2 > q for some t = t(q) ∈ J . One can show that

q ≤ E‖(Pεzq)(t)‖2 ≤ 4E‖TE(t)Eφ(0)‖2 + 4E
∥∥∥∫ t

o

(t− s)α−1SE(t− s)Buε(s, x)ds
∥∥∥2

+4E
∥∥∥∫ t

o

(t− s)α−1SE(t− s)f(s, xs)ds
∥∥∥2

+4E
∥∥∥∫ t

o

(t− s)α−1SE(t− s)
{∫ s

o

σ(s, τ, xτ , R(τ))dW (τ)
}
ds
∥∥∥2

=: 4
4∑
i=1

Ii

(4.8)
Let us now estimate each term above Ii,i=1,...,4; We have

I1 ≤M2‖E−1‖2E‖Eφ(0)‖2. (4.9)
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Using the assuption (H4) and lemma 4.1.1, we have

I2 ≤ E
[∫ t

o

‖(t− s)α−1SE(t− s)f(s, xs)‖ds
]2

≤ M2‖E−1‖2
Γ2(α)

∫ t

o

(t− s)α−1

∫ t

o

(t− s)α−1E‖f(s, xs)‖2ds

≤ M2‖E−1‖2
Γ2(α)

bα

α

∫ t

o

(t− s)α−1E‖f(s, xs)‖2ds

≤ M2‖E−1‖2
Γ2(α)

bα

α

∫ t

o

(t− s)α−1n(s)Ξf (‖x(s)‖2)ds

≤ M2‖E−1‖2
Γ2(α)

b2α

α2 Ξf (q) sup
s∈J

n(s).

(4.10)

A similar argument involves Bukholder-David-Gundy’s inequality and assumptions
(H5),(H6); we obtain

I3 ≤ E
[∫ t

o

‖(t− s)α−1SE(t− s)
{∫ s

o

σ(s, τ, xτ , R(τ))dW (τ)
}
‖ds
]2

≤ M2‖E−1‖2
Γ2(α)

bα

α

∫ t

o

(t− s)α−1E‖σ(s, τ, xτ , R(τ))dW (τ)‖2ds

≤ M2‖E−1‖2
Γ2(α)

bα

α
ds

∫ t

o

(t− s)α−1
(∫ t

o

E‖σ(s, τ, xτ , R(τ))‖2
L0
2
dτ
)
ds

≤ M2‖E−1‖2
Γ2(α)

bα

α

∫ t

o

(t− s)α−1m(s)Ξσ(‖x(s)‖2)ds

≤ M2‖E−1‖2
Γ2(α)

b2α

α2 Ξσ(q) sup
s∈J

m(s).

(4.11)

I4 ≤ E
[∫ t

o

‖(t− s)α−1SE(t− s)Buε(s, x)‖ds
]2

≤ M2‖E−1‖2
Γ2(α)

‖B‖2

∫ t

o

(t− s)α−1ds

∫ t

o

(t− s)α−1E‖uε(s, x)‖2ds
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≤ M2‖E−1‖2
Γ2(α)

‖B‖2 bα

α

∫ t

o

(t− s)α−1dsE‖uε(s, x)‖2ds.

Further, by assumptions (H4)-(H6) and the Hölder inequality, we get

E‖uε(s, x)‖2 ≤ 1
ε2
‖B‖2M

2‖E−1‖2
Γ2(α)

(b− t)α−1
[
4
∥∥∥Ex̂b +

∫ b

o

φ̂(s)dW (s)
∥∥∥2

+4E‖TE(b)Eφ(0)‖2 + 4E
∥∥∥∫ b

o

‖(b− s)α−1SE(b− s)f(s, xs)ds
∥∥∥2

+4E
∥∥∥∫ b

o

‖(b− s)α−1SE(b− s)
{∫ t

o

E‖σ(s, τ, xτ , R(τ))dW (τ)
}
ds
∥∥∥2]

≤ 4
ε2
‖B‖2M

2‖E−1‖2
Γ2(α)

(b− t)α−1
[
2‖Ex̂b +

∫ b

o

E‖φ̂(s)‖2ds

+M2‖E−1‖2E‖Eφ(0)‖2 + M2‖E−1‖2
Γ2(α)

b2α

α2 Ξf (q) sup
s∈J

n(s).

M2‖E−1‖2
Γ2(α)

b2α

α2 Ξσ(q) sup
s∈J

m(s)
]
.

Therefore,

I4 ≤
M2‖E−1‖2

Γ2(α)
‖B‖2 b

2α

α2
× 4

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M1. (4.12)

Where

M1 =
[
2‖Ex̂b‖2 +

∫ b

o

E‖φ̂(s)‖2ds+M2‖E−1‖2E‖Eφ(0)‖2

+M2‖E−1‖2
Γ2(α)

b2α

α2 Ξf (q) sup
s∈J

n(s) +
M2‖E−1‖2

Γ2(α)

b2α

α2
Ξσ(q) sup

s∈J
m(s)

]
.
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Combining these estimates (4.8)-(4.12) yeilds

q ≤ E‖(Pεzq)(t)‖2

≤ M2 + 4M
2‖E−1‖2b2α
α2Γ2(α)

[
Ξf (q) sup

s∈J
n(s) + Ξσ(q) sup

s∈J
m(s)

]
+M2‖E−1‖2b2α

α2Γ2(α)
‖B‖2 16

ε2
‖B‖2M

2‖E−1‖2
Γ2(α)

bα−1M
2‖E−1‖2b2α
α2Γ2(α)

×
[
Ξf (q) sup

s∈J
n(s) + Ξσ(q) sup

s∈J
m(s)

]
.

(4.13)

Where

M2 = 4M2‖E−1‖2E‖Eφ(0)‖2 + M2‖E−1‖2b2α
Γ2(α)α2 ‖B‖2 16

ε2
‖B‖2M

2‖E−1‖2
Γ2(α)

bα−1

×
[
2‖Ex̂b +

∫ b

o

E‖φ̂(s)‖2ds+M2‖E−1‖2E‖Eφ(0)‖2
]
.

Dividing both sides of (4.13) by q and taking q →∞, we obtain that

M2‖E−1‖2b2α

α2Γ2(α)

(
4+‖B‖2 16

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M

2‖E−1‖2b2α

α2Γ2(α)

)
×
[
Λf (q) sup

s∈J
n(s)+Λσ(q) sup

s∈J
m(s)

]
≥ 1

Which is a contradiction to our assumption. Thus, for ε > 0, for some positive number
q,Pε(Bq) ⊂ Bq.

step 2 : We show the set PεBq = {Pεx : x ∈ Bq} is an equicontinuous family of function.

Let 0 < η < t < b and δ > 0 such that ‖SE(s1) − SE(s2)‖ < η, for every s1, s2 ∈ J with

|s1, s2| < δ. For x ∈ Bq, 0 < |h| < δ, t+ h ∈ J , we have

E‖(Pεx)(t+ h)− (Pεx)(t)‖2

≤ 10‖TE(t+ h)− TE(t)‖2E‖Eφ(0)‖2

+10E
∥∥∥∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
SE(t+ h− s)Buε(s, x)ds

∥∥∥2

+10E
∥∥∥∫ t+h

t

(t+ h− s)α−1SE(t+ h− s)Buε(s, x)ds
∥∥∥2

+10E
∥∥∥∫ t

0

(t− s)α−1
(
SE(t+ h− s)− SE(t− s)

)
Buε(s, x)ds

∥∥∥2
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+10E
∥∥∥∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
SE(t+ h− s)f(s, xs)ds

∥∥∥2

+10E
∥∥∥∫ t+h

t

(t+ h− s)α−1SE(t+ h− s)f(s, xs)ds
∥∥∥2

+10E
∥∥∥∫ t

0

(t− s)α−1
(
SE(t+ h− s)− SE(t− s)

)
f(s, xs)ds

∥∥∥2

+10E
∥∥∥∫ t+h

t

(t+ h− s)α−1SE(t+ h− s)
{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
ds
∥∥∥2

+10E
∥∥∥∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
SE(t+ h− s)

{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
ds
∥∥∥2

+10E
∥∥∥∫ t

0

(t− s)α−1
(
SE(t+ h− s)− SE(t− s)

){∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
ds
∥∥∥2

.

Applying Lemma 4.1.1 and the Hölder inequality, we obtain

E‖(Pεx)(t+ h)− (Pεx)(t)‖2

≤ 10‖TE(t+ h)− TE(t)‖2E‖Eφ(0)‖2

+M2‖E−1‖2
Γ2(α)

‖B‖2

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
E‖uε(s, x)‖2ds

+10M
2‖E−1‖2
Γ2(α)

‖B‖2 hα

α

∫ t+h

t

(t+ h− s)α−1E‖uε(s, x)‖2ds

+10η2 bα

α
‖B‖2

∫ t

0

(t− s)α−1E‖uε(s, x)‖2ds

+10M
2‖E−1‖2
Γ2(α)

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
E‖f(s, xs)‖2ds
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+10M
2‖E−1‖2
Γ2(α)

hα

α

∫ t+h

t

(t+ h− s)α−1E‖f(s, xs)‖2ds

+10η2 bα

α

∫ t

0

(t− s)α−1E‖f(s, xs)‖2ds

+10M
2‖E−1‖2
Γ2(α)

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
E‖
∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)‖2ds

+10M
2‖E−1‖2
Γ2(α)

hα

α

∫ t+h

t

(t+ h− s)α−1E‖
∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)‖2ds

+10η2 bα

α

∫ t

0

(t− s)α−1E‖
∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)‖2ds

By assumptions (H4)-(H6), we have

E‖(Pεx)(t+ h)− (Pεx)(t)‖2

≤ 10‖TE(t+ h)− TE(t)‖2E‖Eφ(0)‖2

+M2‖E−1‖2
Γ2(α)

‖B‖2

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
E‖uε(s, x)‖2ds

+10M
2‖E−1‖2
Γ2(α)

‖B‖2 hα

α

∫ t+h

t

(t+ h− s)α−1E‖uε(s, x)‖2ds

+10η2 bα

α
‖B‖2

∫ t

0

(t− s)α−1E‖uε(s, x)‖2ds

+10M
2‖E−1‖2
Γ2(α)

Ξf (q)

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
n(s)ds
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+10M
2‖E−1‖2
Γ2(α)

hα

α
Ξf (q)

∫ t+h

t

(t+ h− s)α−1n(s)ds

+10η2 hα

α
Ξf (q)

∫ t

0

(t− s)α−1n(s)ds

+10M
2‖E−1‖2
Γ2(α)

∫ t

0

(t+ h− s)α−1 − (t− s)α−1ds

×
∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
m(s)Ξσ(q)ds

+10M
2‖E−1‖2
Γ2(α)

hα

α
Ξf (q)

∫ t+h

t

(t+ h− s)α−1m(s)Ξσ(q)ds

+10η2 hα

α

∫ t

0

(t− s)α−1m(s)Ξσ(q)ds.

Therefore,for ε sufficiently small,the right-hand side of the above inequality tends to zero
as h → 0. On the other hand, the compactness of TE and SE,(Lemma 4.1.1 implies the
continuity in the uniform operator topology. Thus,the set PεBq is equicontinuous.
Step 3. The operator Pε maps Bq into a precompact set in Bq. To prove this, we first

show that the set Vq(t) = {(Pεx)(t) : x ∈ Bq} is precompact in H, for every t ∈ J .This is
trivial for t ∈ [−r, 0], since Vq(t) = {φ(t)}. Let 0 < t ≤ b be fixed and η be real number

satisfying 0 < η < t. For δ > 0, define an operator Pη,δε on Bq by

(Pεx)(t) =

∫ ∞
δ

ξα(θ)E−1T (tαθ)Eφ(0)dθ

+α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
Buε(s, x)dθds

+α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
f(s, xs)dθds

+α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)

×
{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
dθds
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= T (ηαδ)

∫ ∞
δ

ξα(θ)E−1T (tαθ − ηαδ)Eφ(0)dθ

+T (ηαδ)α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ − ηαδ
)
Buε(s, x)dθds

+T (ηαδ)α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ − ηαδ
)
f(s, x)dθds

+T (ηαδ)α

∫ t−η

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ − ηαδ
)

×
{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
dθds.

Since E−1 is compact operator, the set {(Pη,δε x)(t) : x ∈ Bq} is precompact in H, for
every 0 < η < t, δ > 0.
Moreover, for each x ∈ Bq, We have:

E‖(Pεx)(t)− (Pη,δε x)(t)‖2

≤ 7E
∥∥∥∫ δ

0

ξα(θ)E−1T (tαθ)Eφ(0)dθ
∥∥∥2

+7α2E
∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
Buε(s, x)dθds

∥∥∥2

+7α2E
∥∥∥∫ t

t−η

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
Buε(s, x)dθds

∥∥∥2

+7α2E
∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
f(s, xs)dθds

∥∥∥2

+7α2E
∥∥∥∫ t

t−η

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
f(s, xs)dθds

∥∥∥2

+7α2E
∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)

×
{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
dθds

∥∥∥2

(4.14)
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+7α2E
∥∥∥∫ t

t−η

∫ ∞
δ

θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)

×
{∫ s

0

σ(s, τ, xτ , R(τ))dW (τ)

}
dθds

∥∥∥2

=
7∑
i=1

Ji.

A similar argument as before can show that

J1 ≤ 7M2‖E−1‖2E‖Eφ(0)‖2

∫ δ

0

ξα(θ)dθ, (4.15)

J2 ≤ 7α2E
[ ∫ t

0

∫ δ

0

‖θ(t− s)α−1ξα(θ)E−1T
(

(t− s)αθ
)
Buε(s, x)dθ‖ds

]2

≤ 7α2‖B‖2M2‖E−1‖2

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1E‖uε(s, x)‖2ds
(∫ δ

0

θξα(θ)dθ
)2

≤ 7α2‖B‖2M2‖E−1‖2bα
∫ t

0

(t− s)α−1
( 4

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M1

)
ds
(∫ δ

0

θξα(θ)dθ
)2

.

(4.16)

J3 ≤ 7α2‖B‖2M2‖E−1‖2

∫ t

t−η
(t− s)α−1ds

∫ t

t−η
(t− s)α−1E‖uε(s, x)‖2ds

(∫ δ

0

θξα(θ)dθ
)2

≤ 7α2‖B‖2M2‖E−1‖2ηα
∫ t

t−η
(t− s)α−1

( 4

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M1

)
ds
(∫ ∞

0

θξα(θ)dθ
)2

≤ 7α2‖B‖2M2‖E−1‖2ηα
Γ2(1+α)

∫ t

t−η
(t− s)α−1

( 4

ε2
‖B‖2M

2‖E−1‖2

Γ2(α)
bα−1M1

)
ds.

(4.17)

J4 ≤ 7α2M2‖E−1‖2

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1E‖f(s, xs)‖2ds
(∫ δ

0

θξα(θ)dθ
)2

≤ 7αM2‖E−1‖2bαΞf (q)

∫ t

0

(t− s)α−1n(s)ds
(∫ δ

0

θξα(θ)dθ
)2

.

(4.18)
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and

J5 ≤ 7α2M2‖E−1‖2

∫ t

t−η
(t− s)α−1ds

∫ t

t−η
(t− s)α−1E‖f(s, xs)‖2ds

(∫ δ

0

θξα(θ)dθ
)2

≤ 7αM2‖E−1‖2ηαΞf (q)

∫ t

t−η
(t− s)α−1n(s)ds

(∫ ∞
0

θξα(θ)dθ
)2

≤ 7αM2‖E−1‖2ηαΞf (q)

Γ2(1+α)

∫ t

t−η
(t− s)α−1n(s)ds.

(4.19)
Similarly, employing Burkhölder-Davis-Gundy’s inequality, we further derive that

J6 ≤ 7αM2‖E−1‖2bα
∫ t

0

(t− s)α−1E‖
∫ s

0

σ(s, τ, xτ , R(τ))‖2ds
(∫ ∞

0

θξα(θ)dθ
)2

≤ 7αM2‖E−1‖2bαΞσ(q)

∫ t

0

(t− s)α−1m(s)ds
(∫ ∞

0

θξα(θ)dθ
)2

.

(4.20)
and

J7 ≤ 7αM2‖E−1‖2ηα
∫ t

t−η
(t− s)α−1E‖

∫ s

0

σ(s, τ, xτ , R(τ))‖2ds
(∫ ∞

0

θξα(θ)dθ
)2

≤ 7αM2‖E−1‖2ηα
Γ2(1+α)

Ξσ(q)

∫ t

t−η
(t− s)α−1m(s)ds.

(4.21)

Recalling (4.14), from (4.15)-(4.21), we see that for each x ∈ Bq,

E‖(Pεx)(t)− (Pη,δε x)(t)‖2 → 0 as η → 0+, δ → 0+.

Therefore, there are relatively compact sets arbitrary close to the set {(Pεx)(t) : x ∈ Bq};
hence, the set {(Pεx)(t) : x ∈ Bq} is also precompact in Bq.

Finally, combining Step 1 to Step 3 with Arzela-Ascoli theorem, we conclude that for
all ε > 0,PεBq is precompact in C(J∗,H).Hence,Pε is a completely continuous operator

on C(J∗,H).From the Schauder fixed point theorem, Pε has a fixed point in Bq.Any fixed
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point of Pε is a mild solution of (4.1) on J satisfying (Pεx)(t) = x(t) ∈ H.

4.2.2 Approximate controllability result

Further, to prove the approximate controllability result, the following additional assump-
tion is required;
(H7) The linear system (4.5) is approximately controllable.

(H8) The functions f(t, x) : J × Cr → Z and σ(t, s, x, y) : J × J × Cr × H → L0
2 are

bounded for all t, s ∈ J, x ∈ Cr and y ∈ H
Remark. In view of [45], the assumption (H7) is equivalent to εR(ε,Γb0) = ε(εI+Γb0)−1 → 0

as ε→ 0 in the strong operator.

Theorem 4.2.2 Assume that the assumptions of Theorem (4.2.1) hold and in addition,

(H7) and (H8) are satisfied. Then, the fractional control system (4.1) is approximately
controllable on J .

Proof :Let xε ∈ Bq be a fixed point of the operator Pε. Using the stochastic fubini
theorem, it is easy to see that

xε(b) = x̂b − ε(εI + Γb0)−1

[
Ex̂b +

∫ b

0

φ̂(s)ds− TE(b)Eφ(0)

]

+ε

∫ b

0

(εI + Γbs)
−1(b− s)α−1SE(b− s)f(s, xεs)ds

+ε

∫ b

0

(εI + Γbs)
−1(b− s)α−1SE(b− s)

×
{∫ s

0

σ
(
s, τ, xετ ,

∫ τ

0

H(τ, ν, xεν)dν
)
dW (τ)

}
ds.

Moreover, by the assumption (H8), there exists N1 > 0 and N2 > 0 such that

‖f(s, xεs)‖2 ≤ N1, ‖σ(s, τ, xετ ,

∫ τ

0

H(τ, ν, xεν)dν‖2 ≤ N2, and consequently, there is a

sequence still denoted by {f(s, xετ ), σ(s, τ, xετ ,

∫ τ

0

H(τ, ν, xεν)dν)} weakly converges to say

{f(s), σ(s, τ,

∫ τ

0

H(τ, ν, xεν)dν)}. Thus, from the above aquation, we have
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E‖xε(b)− x̂b‖2 ≤ 6‖ε(εI + Γb0)−1[Ex̂b − TE(b)Eφ(0)]‖2

+6E
(∫ b

0

‖ε(εI + Γb0)−1φ̂(s)ds‖2
L0
2
ds
)

+6E
(∫ b

0

(b− s)α−1‖ε(εI + Γb0)−1SE(b− s)[f(s, xεs)− f(s)]‖ds
)2

+6E
(∫ b

0

(b− s)α−1‖ε(εI + Γb0)−1SE(b− s)f(s)‖ds
)2

+6E
(∫ b

0

(b− s)α−1‖ε(εI + Γb0)−1SE(b− s)

×
[∫ s

0

[σ
(
s, τ, xετ ,

∫ τ

0

H(τ, ν, xεν)dν
)
− σ

(
s, τ,

∫ τ

0

H(τ, ν)dν
)

]dW (τ)

]
‖ds
)2

+6E
(∫ b

0

(b− s)α−1‖ε(εI + Γb0)−1SE(b− s)

×
[∫ s

0

[σ
(
s, τ,

∫ τ

0

H(τ, ν)dν
)
dW (τ)

]
‖ds
)2

+6E
(∫ b

0

(b− s)α−1‖ε(εI + Γb0)−1SE(b− s)

×
[∫ s

0

[σ
(
s, τ,

∫ τ

0

H(τ, ν)dν
)
dW (τ)

]
‖ds
)2

.

On the other hand, by assumption(H7) for all 0 ≤ s ≤ b, the operator is ε(εI + Γb0)−1

strongly as ε→ 0+, and moreover ‖ε(εI+Γb0)−1‖ ≤ 1. Thus, by the Lebesgue’s dominated

convergence theorem and the compactness of SE(t), we obtain E‖xε(b) − x̂b‖2 → 0 as

ε→ 0+. This prove the approximate controllability of (4.1)

Remark : theorem (4.2.2) assume that the operator E−1 is compact and consequently

SE(t) is compact (lemme(4.1.1)). Therefore, the associated linear control system (4.5) is

not exactly controllable. Thus, Theorem (4.2.1) has no analog for the concept of exact
controllability.
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4.3 An example

In this chapter, we consider an example to illustrate our main theorem. We consider the
following fractional stochastic integro-partial differential equation in the form

c∂αt

(
z(t, x)− zxx(t, x)

)
− zx,x(t, x) = Bu+ µ1

(
t, zxx(t− r, x)

)
+

∫ t

0

µ3

(
t, s, zxx(s− r, x),∫ s

0

µ2

(
s, τ, zxx(τ − r, x)

)
dτ
)
dβ(s)

0 ≤ x ≤ π, τ > 0, t ∈ J = [0, 1]
z(t, 0) = z(t, π) = 0, t ≥ 0
z(t, x) = φ(t, x), 0 ≤ x ≤ π, −1 ≤ t ≤ 0,

(4.22)

where β(t) is a standard cylindrical Wiener process in H defined on a stochastic space

(Ω,F ,P, {Ft}) and c∂αt is the Caputo fractional partial derivative of order 0 < α < 1.

Take H = Z = U = L2([0, π]) and define the operator A : D(A) ⊂ H → Z and

E : D(A) ⊂ H → Z by Az = −zxx and Ez = z − zxx, where each domain D(A) and

D(E) is given by

{z ∈ H; z, zx are absolutely continuous, zxx ∈ H and z(0) = z(π) = 0}.

Then A and E can be written, respectively, as [42],

Az =
∞∑
n=1

n2(z, zn)zn, z ∈ D(A) and Ez =
∞∑
n=1

(1 + n2)(z, zn)zn, z ∈ D(E).

Where zn(x) =
√

2
π

sin(nz), n = 1, 2... is the orthonormal set of eigenvectors of A and

(z, zn) is the L2 inner product. Moreover, for any z ∈ H, we get

E−1z =
∞∑
n=1

1

1 + n2
(z, zn)zn, −AE−1z =

∞∑
n=1

−n2

1 + n2
(z, zn)zn,

and

T (t)z =
∞∑
n=1

e
−n2
1+n2 (z, zn)zn.
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integro-differential systems

Define an infinite-dimensional space U by U = {u u =
∞∑
n=2

unzn} with {
∞∑
n=2

U2
n < ∞}.

The norm in U is defined by ‖u‖U =
∑∞

n=2 U2
n. Now, define a continuous linear mapping

B from U into Z as Bu = 2u2z1 +
∑∞

n=2 unzn for u =
∑∞

n=2 unzn ∈ U .
We assume that

(i) The operator B : U → Z with U ⊂ J , is a bounded linear operator .

(ii) The nonlinear operator µ1 : [0, 1]×H → Z satisfies the following conditions:

(a) For each t ∈ J, µ1(t, z) is continuous.

(b) For each z ∈ H, µ1(t, z) is measurable.

(c) There is a constant ν(0 < ν < 1) and a positive integrable function

γ ∈ L1([0, 1]) such that for all (t, z) ∈ [0, 1]×H

‖µ1(t, z)‖C0 ≤ γ(t)‖z‖νH.

(iii) The nonlinear operator µ2 : J × J ×H → H satisfies the following conditions:

(a) For each (t, s) ∈ J × J, µ2(t, s, z) is continuous.

(b) For each z ∈ H, µ2(t, s, z) is measurable.

(iv) The nonlinear operator µ3 : J × J × H × H → L(K,Z) satisfies the following
conditions:

(a) For each (t, s, z) ∈ J × J ×H, µ3(t, s, z) is continuous.

(b) For each z ∈ H, µ3(t, s, z) is measurable.

(c) There is a constant ν(0 < ν < 1) and a positive integrable function

γ̃ ∈ L1([0, 1]) such that for all (t, s, z, y) ∈ J × J ×H×H

∫ t

0

‖µ3(t, s, z,

∫ s

0

µ2(s, τ, z)dτ)‖ds ≤ γ̃(t)‖z‖νH.
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Define an operator f : [0, 1] × C([−1, 0],H) → Z by f(t, z)(x) = µ1(t, zxx(−r)(x)), and

let H(t, s, z)(x) = µ2(t, s, zxx(−r)(x)), (t, s, z) ∈ [0, 1]× [0, 1]× C([−1, 0],H),

σ
(
t, s, z,

∫ s

0

H(s, τ, z)dτ)
)

(x) = µ3

(
t, s, zxx,

∫ s

0

µ2(s, τ, zxx(−r)(x))dτ
)
, x ∈ [0, π]

On the other hand, the linear system corresponding to (4.22) is approximately controllable

(but not exactly controllable). Thus, with the above choices of A,E,B, µ1, µ2 and µ3, the

problem (4.22) can be formulated abstractly as

CDα
(
Ez(t)

)
+ Az(t) = Bu(t) + f(t, zt) +

∫ t

0

σ
(
t, s, z,

∫ s

0

H(s, τ, z)dτ)
)
dW (x),

t ∈ J, z(t) = φ(t).

Also, all the conditions of Theorem 4.2.2 are satisfied. Hence, by Theorem 4.2.2 the
fractional control system (4.22) is approximately controllable on J := [0, 1].



Conclusion

We are focused on establishing the approximate controllability result for a class of
fractional stochastic differential systems involving the Caputo fractional derivative in
Hilbert spaces.

By employing fractional calculus, fixed-point technique and solution operator theory,
sufficient conditions for the approximate controllability of semilinear fractional stochastic
dynamic system are formulated and proved under the assumption that the associated
linear system is approximately controllable.

Our further work will be devoted to study approximate controllability of the above
problems via characteristic solution operators with the help of the theory of propagation
family and the techniques of the measure of noncompactness.
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