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Abstract

Abstract

The time series forecast is a very complex problem, consisting in predicting the behavior
of a data series with only the information of the previous sequence. In this thesis, a highly
comparative framework for time-series modeling and forecasting is developed to give a
good models for time series to perform the prediction as well as linear predictors. For
this, we are reduce errors of time series models, by used genetic algorithms GAs, one of
robustness methods of optimization. GAs is inspired by natural evolution theories, apply
operations of reproduction, crossover and mutation to candidate solutions according to
their relative fitness scores in the successive populations of candidates Holland (1975). We
choose the mean square errors MSE and Akaike criteria information AIC the objectives
functions for optimization to calculate there minimums for select the optimal model. This
method is based on the evolution of set of rules genetically codified, two types of coding
GAs are used, the binary coded GAs (BCGA) and reel coded GAs (RCGA). In the first
time we optimize MSE and AIC with BCGA, and in the second time with RCGA. By
order to determine the best method, we compar between different methodologies and
we contribute in this comparaive study by use a modification to errors of model given by
GAs by normalized them, for have a better model and perform the forecast. The computer
simulation results obtained demonstrate that GAs have the potential to become a powerful
tool for time series modeling and forecasting and as well as when we use the advanced
GAs. To illustrate our studies, we supports all chapters by some examples application on
real time series data.

Keywords

Time series; Box-Jenkins method, Binary coded genetic algorithms(BCGA), Real coded
genetic algorithms(RCGA).

Rateaux, Gardénias
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Résumé

La prédiction des séries chronologiques est un problème très complexe, comment prédire
le comportement d’une série de données avec uniquement les informations précédentes
de la séquence. Dans cette thèse, un cadre hautement comparative des méthodes, pour
modeler les séries chronologiques est performer la prédiction par ces modèles notamment
les modèles linéaires. Pour le faire, on a réduit les erreurs des modèles par la méthode
des algorithmes génétiques (AGs), une des méthodes robuste d’optimisation. AGs étaient
inspirée de la théorie de l’évolution naturelle par Holland (1975), appliquent des opérations
de reproduction, de croisement et de mutation sur les solutions candidates selon leurs scores
de la fonction objective relative a la population des individus. Nous utilisons la moyenne
quadratiques des erreurs (MSE), le critère d’information Akaike (AIC ) et le critère de
Bayes (BIC), comme des fonctions d’objectives à minimiser, puisque ils sont des critères de
sélection du modèle optimal. Cette méthode est basée sur la codification, nous utilisons
deux types de codage, le codage binaire (BCGA) et le codage réel (RCGA). Dans un
premiers temps, on utilise la méthode BCGA pour l’optimisation et en deuxième temps,
on fait l’optimisation par la méthode RCGA. Nous effectuons une étude comparative
entre les différents types des AGs avec des modifications apportées sur les erreurs des
modèles par la normalisation des erreurs pour avoir des modèles optimaux. Les résultats de
simulation informatique obtenus démontrent que GAs ont le potentiel pour devenir un outil
puissant pour les modèles des séries chronologiques et performer la prévision, notamment
lorsque nous utilisons AGs avancées. Pour illustrer ces résultats d’étude nous renforçons
les chapitres par des exemples d’applications sur des séries chronologiques réelles.

Mots-clefs

Series chronologiques; methode de Box-Jenkins, génétique algorithmes en codage binaire(BCGA);
génétique algorithmes en codage real(RCGA).
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σ2 : Fitness variance
R(f) : Reproduction rate
Pd : Loss of diversity
RWS : Roulette Wheel selection
ES : Elitism selection
LRS : linear ranking selection
ERS : Exponential linear ranking selection
TS : Tournament selection
TrS : Truncation selection
BS : Boltzman selection
SPC : Single-point crossover
TPC : Two-point crossover
HC : Heuristic crossover
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IM : Inversion mutation
ScM : Scramble mutation
SwM : Swap mutation
FlM : Flip mutation
InM : interchanging mutation
UM : uniform mutation
RCGA : real-coded Genetic algorithms
AMXO : Whole arithmetic crossover method
LAC : Local arithmetical crossover
SAC : Simple arithmetical crossover
LC : linear crossover
ELC : Extended line crossover
DC : Discrete crossover
FC : Flat crossover
BLX − α crossover
PBX − α crossover
PCCO : Parent-centric crossover
LX : laplace crossover operator
MX : Multiple crossover
NUM : Non-uniform mutation operator
PM : Power mutation operator
BM : Boundary mutation
RM : Random mutation
CX : Continuous mutation



Introduction

Time series refers to the branch of statistics where observations are collected sequentially
in time. Time series modeling and forecasting have fundamental importance to various
practical. Which deals with techniques developed for drawing the inference from time
series(50). The primary goals of time series analysis are:
1) To set up a hypothetical statistical model to represent the series in order to obtain
insights into mechanism that generate the data.
2) Once a static factory model has been formulated, to extrapolate from the in order
anticipate (forecast) the future values of time series.
In many fields like it necessary to accurately predict future values of time series. The
correct estimation of future of values is usually affected by complex processes like random
fluctuations, sudden trend change, volatility, and noise.
Different models employed to estimate time series have been differentiated in two groups:
linear and non-linear methods. The most popular linear method are based on the Box-
Jenkins methodology [49]. In the early days, most of the models proposed were linear
regression models. Their implementation is simple, yet they are quite limited in capabil-
ities of interpreting time series. They are not capable of dealing with nonlinear and/or
nonstationary behavioral patterns. They always assume the systems from which the time
series has been measured to be linear and to operate under stationary conditions (Priestley
1981; Ljung 1987; Chatfield 1989; Box and Jenkins 1994).
The main aim of time series modeling is to carefully collect and rigorously study the past
observations of a time series to develop an appropriate model which describes the inherent
structure of the series.
It is obvious that a successful time series forecasting depends on an appropriate model
fitting.
the mean of the problem for all researchers gives the optimal model fitted for data and
reduce errors between observations and generate observations in order to have a good
forecast. For seasonal time series forecasting, Box and Jenkins [6] had proposed a quite
successful variation of ARIMA model, viz. the Seasonal ARIMA (SARIMA) [3, 6, 23].
The popularity of the ARIMA model is mainly due to its flexibility to represent several
varieties of time series with simplicity as well as the associated Box-Jenkins methodology
[3, 6, 8, 23] for optimal model building process.
Genetic algorithms are based on the principle of genetics and evolution stated Charles
Darwin the theory of natural evolution, and In 1975, Holland described and developed
this idea in his book Adaptation in natural and artificial systems and how to apply his
principles to optimization problems.
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Genetic algorithms are inspired by Darwin’s theory of natural evolution. GAs is a method
for solving both constrained and non-constrained optimization problems based on natural
selection process that mimics biological evolution.
The problem resolution of optimization consists of exploring the space of research to
minimize or maximize an objected function. GAs are optimization and robust searching
technique that is used to find the best search result is composed mainly of three steps:
recombination crossover and mutation. By maintaining a population of a solution, GAs
can be viewed as implicitly modeling of solutions seen in the search process. The aim
of this thesis is to present time series modeling using GAs, a comprehensive discussion
and comparison of the three widely popular approaches for time series forecasting, binary
coded GAs, real ceded GAs, and Box-Jenkins approaches.
Many techniques in literature are proposed to develop this method. This thesis contains
fours chapters, which are organized as follows: Chapter 1 gives an introduction to the basic
concepts of time series modeling, together with some associated ideas such as stationarity,
parsimony, etc.
Chapter 2 is designed to discuss the concepts of GAs, and there operators: selection,
crossover, and mutation.
In Chapter 3 we have described the application of binary genetic algorithms BCGAs in
time series modeling, for AR, MA, ARMA and SARIMA models and comparison with
Box-Jenkins approach.
Chapter 4 presents the real coded genetic algorithms RCGAs approach and comparison
between three approaches RCGAs, BCGAs, and Box-Jenkins.
After completion of these four chapters, we have given a brief conclusion of our work as
well as the prospective future aim in this field.



Chapter 1

Time series

Définition 1.0.1. A time series is a sequence of observation of any random phenomenon
measured at deferent points of time t and usually denoted {Xt}t∈Z .

Example 1.0.2. The average years for Derives Energy Export For Algeria, from 1980 to
2011.

Table 1.1: Derives Energy Export For Algeria,1980 to 2011

YEAR Export
energy
derived∗103

YEAR Export
energy
derived∗103

YEAR Export
energy
derived
∗103

1980 56344 1991 85207 2002 123001
1981 54041 1992 87157 2003 132714
1982 54520 1993 86801 2004 136891
1983 60496 1994 83335 2005 145274
1984 64241 1995 88846 2006 140716
1985 68043 1996 95796 2007 138405
1986 68730 1997 104840 2008 134724
1987 73940 1998 109706 2009 121949
1988 72933 1999 118775 2010 119751
1989 79478 2000 124125 2011 114158
1990 83978 2001 119013
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Figure 1.1: Derives Energy Export For Algeria,1980 to 2011

1.1 Time series decomposition

The time series can be decomposed into four elements:

• Trend (Tt): Long term movements in the mean;

• Seasonal effects (Lt): cyclical fluctuations related to the calendar;

• Cycles (Ct): Other cyclical fluctuations (such as a business cycle)

• Residuals (εt): Other random or systematic fluctuation.

And two models that allow as to do are:
- Additive decomposition model:

Xt = Tt + Lt + Ct + εt (1.1)

- Multiplicative decomposition model:

Xt = Tt × Lt × Ct × εt. (1.2)

Example 1.1.1. Let us show figure of two time series:

The first has Additive decomposition model and the second has Multiplicative decom-
position model.

1.2 White noise

Définition 1.2.1. The process (εt)t∈Z is a strong white noise if:
i) (εt)t∈Z is a sequence of random variables i.i.d(independents and identically distributed).
ii) ∀t ∈ Z,E(εt) = 0, and E(ε2t ) = σ2
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(a).Additive decomposition model (b).Multiplicative decomposition model

Figure 1.2: Model decomposition

Définition 1.2.2. The process (εt)t∈Z is a weak white noise if:
i) (εt)t∈Z is a sequence of random variables i.d(identically distributed),
ii) ∀(t, t′) ∈ Z2: t 6= t′, cov(εt, εt′) = 0,
iii) ∀t ∈ Z,E(εt) = 0 and E(ε2t ) = σ2.

1.3 Stationarity

Définition 1.3.1. A time series Xt, t ∈ Z is strictly stationary or strongly stationary if:
for k ≥ 1 the vectors (Xt1 , Xt2 , ...., Xtk) and (Xt1+h

, Xt2+h
...., Xtk+h

) have identical law
and joint probability distribution. i.e:

Définition 1.3.2. A time series Xt is weakly stationary or second order stationary if :
i) E(Xt) = µ; ∀t ∈ Z; (constant)
ii) var(Xt) = σ2; ∀t ∈ Z; (constant)
iii) ∀r, s, t ∈ Z : cov(Xr+t, Xs+t) = cov(Xr, Xs).

Example 1.3.3. • Strong white noise is strictly stationary.

• Weak white noise is second order stationary.

1.3.1 Back-shift operator

The back shift operator denoted by B, such as B(yt) = yt−1.

Remark 1.3.4. • B2(yt) = B(B(yt)) = yt−2, and Bk(yt) = yt−k,

• B(ayt + b) = aB(yt) + b = ayt−1 + b, for any constant a, b.

1.3.2 Difference operator

Définition 1.3.5. The Difference operator ∇ is defined for Xt process by :

∇(Xt) = Xt −Xt−1 = (I −B)Xt. (1.3)

Where I is identic operator and B is Back-shift operator.
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Remark 1.3.6. - ∇d = (I −B)d, d ∈ N .
- for d = 2, ∇2 = (I −B)2 = I − 2B +B2

- If Xt = at + b + εt, where εt is stationary, then ∇(Xt) = a + (εt − εt−1) (remove the
trend);
- In general, the operator ∇d remove the polynomials of d degree.

1.3.3 Trend stationarity

Définition 1.3.7. A time series Xt is said to be No-stationary (TS) or trend stationary
if : Xt = f(t) + yt, when f is a determinists function, and (yt)t∈Z is a stationary process .

Example 1.3.8.
Xt = α+ βt+ εt,

Xt is trend stationary (TS).
E(Xt) = α+ βt,

depend on t.

1.3.4 Differences stationarity

Définition 1.3.9. A time series Xt is No-stationary (DS) or differenciated stationary if
Xt is stationary after d differentiations:

∇dXt = (1−B)dXt. (1.4)

Example 1.3.10. Plot for time series 1.1 after differenciated:

Figure 1.3: Export Derives Energy For Algeria Deffirenced ,1980 TO 2011

Proposition 1.3.11. If Xt, t ∈ Z is a stationary process, and ai, i ∈ Z, is a real sequence
absolutely convergent i.e Σi∈Z |ai| < +∞, then the process yt defined by: yt = Σi∈ZaiXt−i,
for t ∈ Z, is a stationary process.

Proof. See [10].

Remark 1.3.12. For make data stationary, we may do any of the following:
i) Re-scale it (for instance, by a logarithmic or exponential transformation ).
ii) Remove deterministic components.
iii) Difference it. That is, take ∇d(Xt) until stationary.
So we need the test of stationary. We can use Dickey-fuller tests (DF) and Augmented
Dickey-Fuller tests (ADF)
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Dickey-fuller test (DF)

Tests of Dickey-Fuller is the unit root tests when the null hypothesis is no stationarity
carried out the process autoregressive one AR(1) such as εt is i.i.d, (0, σ2

ε) for the models:

i) Xt = β1Xt−1 + c+ α× t+ εt

ii) Xt = β1Xt−1 + c+ εt

iii) Xt = β1Xt−1 + εt

Augmented Dickey-Fuller test (ADF)

When εt is not i.i.d,(0, σ2
ε) and p ≥ 2 , we need use (ADF), is generalized for (DF) and

same threshold for signification to this tree models :

i) Xt = β1Xt−1 + Σp
j=1ξj∆xt−j + c+ αt+ εt

ii) Xt = β1Xt−1 + +Σp
j=1ξj∆xt−j + c+ εt

iii) Xt = β1Xt−1 + Σp
j=1ξj∆xt−j + εt

we testing by (ADF) and (DF), unit root hypothesis :

H0 : β1 = 1 ; H1 : |β1| < 1

Remark 1.3.13. But the strategic of the tests (ADF) and (DF) is testing the general
model with trend and constant model (i), if the test statics is less than critical-value and
p-value less 0.05, then we can reject null hypothesis and accept alternative hypothesis ,
but if the test statics is more than critical-value and p-value more 0.05, then we can not
reject null hypothesis and series is non-stationary.

1.4 Auto-covariance and Autocorrelation functions

1.4.1 Auto-covariance function (AC0VF)

Définition 1.4.1. The sequence of covariance between Xt and Xt−k is called the auto-
covariance function denoted by γk, k ∈ Z:

γk = cov(Xt, Xt−k). (1.5)

Remark 1.4.2. For k = 0, γ0 = var(Xt).

properties 1.4.3. The Auto-covariance function verifies the next properties:

• γ0 ≥ 0

• |γk| ≤ γ0,

• γk is a symmetry function: γ−k = γk
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1.4.2 Autocorrelation function (ACF)

Définition 1.4.4. The sequence denoted ρk = γk
γ0

= corr(Xt, Xt−k) is called autocorrela-
tion function (ACF).

properties 1.4.5. • ρ0 = 1

• ρ−k = ρk

• |ρk| ≤ 1

Example 1.4.6. For white noise, E(εt) = 0, γ0 = σ2, for all t;

γk = corr(εt, εt−k) =
{
σ2
t , k=0;

0, k 6= 0.

ρk = γk
γ0

=
{

1, k=0;
0, k 6= 0.

1.4.3 Partial autocorrelation function PACF

Définition 1.4.7. We call the partial autocorrelation function of Xt at lagk, the function
: {

r(k) = corr(Xt, Xt−k \Xt−1, Xt−2, ....Xt−k+1), fork ∈ N∗;
r(1) = ρ(1), for k = 1.

(1.6)

1.4.4 Sample autocorrelation function SACF

Most of the analysts using sampled data, such if we suppose Xt is stationary, for t ∈ N ,
we can use sample autocorrelation function (SACF) denoted ρ̂k by substituted γ̂k the es-
timate of auto-covariance function γk in ρk formula where:

γ̂k = 1
n

n−k∑
t=1

(xt − x)(xt−k − x), t ∈ N (1.7)

Définition 1.4.8. The sample autocorrelation function (SACF) is defined as:

ρ̂k = γ̂k
γ̂0
. (1.8)

Remark 1.4.9. 1) In the SACF of the time series values X1, X2, ....., Xn is either cuts off
fairly quickly or dies down fairly quickly, then the time series values should be considered
stationary.
2) If the SACF of the time series values X1, X2, ....., Xn dies down extremely slowly, then
the time series values should be considered non-stationary.

Example 1.4.10. Example of the SACF two time series:
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(a).ACF Dying down fairly (b).ACF Dying down extremely slowly

Figure 1.4: The sample autocorrelation function (SACF)

1.5 Wold decomposition

Théorème 1.5.1. Any mean zero covariance stationary process Xt can be represented in
the form:

Xt =
∞∑
j=0

θjεt−j + ηt (1.9)

Where:
1) θ0 = 1, and

∑∞
j=0 θ

2
j <∞,

2) εt  N(0, σ2
t ),

3) E(εt, ηt) = 0, ∀s, t > 0,
4) εt is the error in forecasting Xt on the basic of linear of lagged n:
εt = Xt − E(Xt Xt−1, Xt−2, ....., Xt−n),
5) ηt is a determinist process, and it can be predicted from a linear function of logged n.

Proof. See [25].

Remark 1.5.2. Wold decomposition says that any covariance stationary process has a
linear presentation: linear deterministic components (ηt) and linear indeterministic com-
ponents (εt).

1.6 Stationary time series Models

1.6.1 Autoregressive process AR(P)

Définition 1.6.1. The process {Xt}t∈Z is said to be an autoregressive process of order
p, denoted AR(p), if it is stationary and

Xt =
p∑
i=1

θiXt−i + εt. (1.10)

For all t ∈ Z and θp 6= 0. Where θi are reels and εt is white noise, his variance σ2.
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Remark 1.6.2. We can rewrite equality :

Φ(B)Xt = εt (1.11)

Where the polynomial Φ(B) = I − θ1B − θ2B
2 − .......− θpBp.

In general the forme of AR(p) with constant is writhen:

Φ(B)Xt = µ+ εt, (1.12)

µ is a constant.

Example 1.6.3. - For p = 1:

AR(1) : Xt = θ1Xt−1 + εt, t ∈ Z (1.13)

- For p = 2:
AR(2) : Xt = θ1Xt−1 + θ2Xt−2 + εt, t ∈ Z (1.14)

Sample autocorrelation function of AR(P)

Proposition 1.6.4. If {Xt}t∈Z is the autoregressive process AR(p):
Xt =

∑p
i=1 θiXt−i + εt, where t ∈ Z, θi ∈ R, i = 1, p and εt is white noise, then:

γ0 = σ2

1−
∑p
i=1 θiρi

(1.15)

and

ρh =
p∑
i=1

θiρh−i. (1.16)

Proof. We have :

γ0 = cov(Xt, Xt),

= cov(Xt,
p∑
i=1

θiXt−i + εt),

=
p∑
i=1

θicov(Xt, Xt−i) + cov(Xt, εt),

=
p∑
i=1

θiγi + cov(
p∑
i=1

θiXt−i + εt, εt),

=
p∑
i=1

θiγi + cov(εt, εt),

=
p∑
i=1

θiγ0ρi + σ2.

Then,

γ0 = σ2

1−
∑p

i=1 θiρi
.
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In the same : ∀h ∈ N∗,

γh = cov(Xt, Xt−h),

= cov(
p∑
i=1

θiXt−i + εt, Xt−h),

=
p∑
i=1

θicov(Xt−i, Xt−h) + cov(Xt, Xt−h),

=
p∑
i=1

θiγh−i.

Remark 1.6.5. We obtain the system called the Walker-equations:

γ0 = σ2

1−
∑p

i=1 θiρi
.



ρ1

ρ2

.

.

.

ρp


=



1 ρ1 ρ2 . . ρp

ρ1 1 . . . .

ρ2 . 1 . . .

. . . 1 . .

. . . . 1 .

ρp . . . . 1





θ1

θ2

.

.

.

θp


= Rpθ

Where Rp is the matrices of correlation and θ = (θ1, θ2, ....., θp)

Remark 1.6.6. If the roots of characteristic polynomial Φ(z); zi = 1
λi
, i ∈ {1, 2, ...., p}

are reals and distinct, we obtain:

ρh =
p∑
i=1

ciλ
h
i . (1.17)

Example 1.6.7. For AR(1): 
γ0 = σ2

1−θ2
1

γk = θk
1σ

2

1−θ2
1

ρk = θk1

(1.18)

k = 1, 2, .....
For AR(2): 

γ0 = σ2

1−θ1ρ1−θ2ρ2

ρ1 = θ1
1−θ2

ρ2 = θ2−θ2
2+θ2

1
1−θ2

(1.19)

Example 1.6.8. AR(1): Xt = 0.85Xt−1 + εt, t ∈ Z
AR(2): Xt = 0.3Xt−1 + 0.54Xt−2 + εt, t ∈ Z
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(a).ACF for AR(1)(0.85) (b).PACF for AR(1)(0.85)

Figure 1.5: ACF and PACF for AR(1)(0.85)

(a).ACF for AR(2)(0.3,0.54) (b).PACF for AR(2)(0.3,0.54)

Figure 1.6: ACF and PACF for AR(2)(0.3,0.54)

Remark 1.6.9. We can remark, for the AR(p) process, the PACF is zero for all lags
beyond p, i.e r(k) = 0

Autoregressive process MA(q)

Définition 1.6.10. The process {Xt}t∈Z is said to be moving average process MA(q) of
order q if:

Xt = εt +
q∑
i=1

ϕiεt−i, (1.20)

∀t ∈ Z
where εt is white noise and ϕ = (ϕ1, ϕ2, ...., ϕq), ϕq 6= 0

Remark 1.6.11. - We can use notation

Xt = Θ(B)εt (1.21)

where Θ(B) = I +
∑q
i=1 ϕiB

i.
- The moving average process is stationary.
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Example 1.6.12. For q=1 the model MA(1):

Xt = εt + ϕiεt−1 (1.22)

For q=2 the model MA(2):

Xt = εt + ϕ1εt−i + ϕ2εt−2 (1.23)

1.6.2 Sample autocorrelation function of MA(q)

Proposition 1.6.13. If {Xt}t∈Z is the moving average process MA (q):
Xt = εt +

∑q
i=1 ϕiεt−i, ∀t ∈ Z, where εt is white noise and ϕi ∈ R, i = 1, q, then:

γ0 = σ2(1 +
q∑
i=1

ϕ2
i ), (1.24)

γh =
{
ϕh +

∑q
i=1 ϕiϕi−h if h ∈ {1, 2, ...., q}
0 if h > q

(1.25)

Proof. Let us

γ0 = var(εt +
q∑
i=1

ϕiεt−i)

= cov(
p∑
i=1

θiXt−i + εt, Xt−h),

= σ2(1 +
q∑
i=1

ϕ2
i )

∀h ∈ N :

γh = cov(Xt, Xt−h)

= cov(εt +
q∑
i=1

ϕiεt−i, εt−h +
q∑
j=1

ϕjεt−h−j)

=
{
ϕh +

∑q
i=1 ϕiϕi−h if h ∈ {1, 2, ...., q}
0 if h > q

Remark 1.6.14. If {Xt}t∈Z is the moving average process of order q (MA(q)), then his
S-ACF are Zero for all lags beyond q i.e:

{
ρ(h) 6= 0 h = q

ρ(h) = 0 ∀h ≥ q + 1.
(1.26)

Example 1.6.15. For q = 1, MA(1):

γk =


σ2(1 + ϕ2

1) for k = 0,
−ϕ1σ

2 for k = 1,
0 for k ≥ 2.

(1.27)
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ρ(k) =


−ϕ1
1+ϕ2

1
for k = 1

0 for k ≥ 2
(1.28)

For q = 2, MA(2):

ρ(k) =


−ϕ1+ϕ1ϕ2
1+ϕ2

1+ϕ2
2

for k = 1,
−ϕ1

1+ϕ2
1+ϕ2

2
for k = 2,

0 for k ≥ 3.

(1.29)

Example 1.6.16. MA(0.2): Xt = εt + 0.2εt−1,
MA(0.5, 0.7): Xt = εt + 0.5εt−1 + 0.7εt−1.

(a).ACF for MA(1)(0.2) (b).PACF for MA(1)(0.2)

Figure 1.7: ACF and PACF for MA(1)(0.85)

(a).ACF for MA(2)(0.5,0.7) (b).PACF for MA(2)(0.5,0.7)

Figure 1.8: ACF and PACF for MA(2)(0.5,0.7)

1.6.3 Mixed Autoregressive Moving Average models ARMA(p,q)

Définition 1.6.17. We say that {Xt}t∈Z is a mixed autoregressive moving average, pro-
cess of order (p, q) denoted ARMA(p,q) if it satisfies:

• {Xt}t∈Z is stationary,
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• It exist θ = (θ1, θ2, ....., θp) ∈ Rp, θp 6= 0 and ϕ = (ϕ1, ϕ2, ....., ϕq) ∈ Rq, ϕq 6=0; then
for all t ∈ Z :

Xt −
p∑
i=1

θiXt−i = εt +
q∑
i=1

ϕiεt−i, (1.30)

Remark 1.6.18. Using the shift operator B equation 1.30 may be rewritten as:

Φ(B)Xt = Θ(B)εt (1.31)

where Φ(B) = I −
∑p
i=1 θiB

i and Θ(B) = I +
∑q
i=1 ϕiB

i.
- AR(p) is an ARMA(p, 0) and MA(q) is an ARMA(0,q).
- The process is stationary if all roots of the characteristic equation

yp − θ1y
p−1 − θ2y

p−2 − .....− θp = 0

lie outside the unit circle.
- The representation Φ(B)Xt = Θ(B)εt is:

1. Minimum: if Φ and Θ have not a commune factors,

2. Causal: if all roots of Φ are outside the unit circle,

3. Invertible: if all roots of Θ are outside the unit circle,

4. Canonic: if the representation is causal and invertible.

Example 1.6.19. Let us example of ARMA(1, 1) and ARMA(1, 1):

ARMA(1, 1) model: Xt = 0.54Xt−1 + εt + 0.85εt−1

ARMA(2, 1) model: Xt = −0.25Xt−1 + 0.60Xt−2 + εt + 0.35εt−1

Autocorrelation properties

Proposition 1.6.20. Let us {Xt}t∈Z is ARMA(p, q) process, then auto-covariances func-
tion γ

h
satisfies:

1. γh −
∑p
i=1 θiγh−i = 0 for h ≥ q + 1,

2. γh −
∑p
i=1 θiγh−i = σ2[ϕh + h1ϕh+1 + .....+ hq−hϕq] for 0 ≤ h ≤ q,

Proof. See [8]

Remark 1.6.21. The PACF of an invertible ARMAmodel will not cut off. The following
table summarized the behavior of PACF of the causal and invertible ARMA models .

1.7 Models for non-stationary time series

1.7.1 Mixed Integrated Autoregressive Moving Average models ARIMA(p,q)

Définition 1.7.1. A process {Xt} is said an integrated auto-regressive moving average
model if dth difference, Zt = ∇dXt is stationary ARMA process.
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Table 1.2

. AR(p) MA(q) ARMA(p,q)
ACF Tails off cuts off after lag q Tails off
PACF cuts off after lag q Tails off Tails off

Remark 1.7.2. More generally, the ARIMA(p, d, q) model for {Xt}t∈Z is writhen as:

Φ(B)(1−B)dXt = µ+ Θ(B)εt (1.32)

where Φ(B) = I −
∑p
i=1 θiB

i, Θ(B) = I +
∑q
i=1 ϕiB

i and µ is a constant.

Guide lines for determining the order of the general non-seasonal models

Table 1.3: Behavior of S-ACF and S-PACF of ARIMA(p, q)

Behavior of S-ACF and S-PACF Determination of orders
The S-ACF dies extremely slowly
and S-ACF for the first differential,
data either cuts off fairly quickly

or dies down fairly quickly d = 1
The S-ACF for the first differential,
data dies down extremely slowly
and the second differential data
either cuts off fairly quickly
or dies down fairly quickly d = 2

The S-ACF has spikes at lags 1,2,3,....,k, and
cuts off after lags, and the S-PACF dies down q = k; p = 0

The S-ACF dies down and the S-PACF
has spikes at lags 1,2,....,l,
and cuts off after lag l p = l; q = o

The S-ACF has spikes at
lags 1,2,....,k, and cuts off after lag k

and the S-PACF has spikes at lags 1,2,....,l, and
cuts off after lag l q=k or p=l and choose best model

The S-ACF dies down and the S-PACF dies
down small values for both p and q

The S-ACF contains small sample correlation
and the S-PACF contains small sample correlation. white noise no seasonal model
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1.7.2 Seasonal Autoregressive Integrated Moving Average models SARIMA(p,d,q)

Définition 1.7.3. Since, s1, s1, ......, sn are n integers, the process {Xt} is the SARIMA(p,d,q)
if satisfies the relation:

Φ(B)(1−Bs1)(1−Bs2).......(1−Bsn)Xt = Θ(B)εt, (1.33)

for all t ≥ 0.
where Φ(B) = I −

∑p
i=1 θiB

i and Θ(B) = I +
∑q
i=1 ϕiB

i with θp 6= 0, ϕp 6= 0 and εt is
white noise with σ2 variance.

Remark 1.7.4. - If we take n = d, s1 = s2 = ...., sn = 1 the SARIMA(p, d, q) model
is an ARIMA(p, d, q) model,i.e SARIMA models are generalization of ARIMA models
include seasonal part.
- SARIMA(p, d, q) = ARIMA(p, d, q)(P,D,Q)S, where (p,d,q)(non-seasonal part of the
model), (P,D,Q)(seasonal part of the model) and S is the number of seasons in year.
- The forms, more used are :

Φ(B)(1−Bs)Xt = Θ(B)εt, (1.34)

or

Φ(B)(1−Bs)(1−Bd)Xt = Θ(B)εt. (1.35)

Example 1.7.5. Monthly hotel room averages time series in Kuwait for 1985-1995(see
26), here S = 12:

Figure 1.9: hotel data.train 1985 to 1995

1.8 Box and Jenkins methodology

In general finding models for time series is non trivial. The approach proposed by Box-
Jenkins come to be known us Box-Jenkins methodology to ARIMA models, when this
method became highly popular in 1970 among academics. It has tree part: identification,
estimation, and verification(diagnostics).
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Table schematic representation of the Box-Jenkins approach source Maenadic and M.Hibou
95/45/TM. Revised version 95/33/TM.

Table 1.4: Box-Jenkins approach

phase 1) postulate general class of models
→

Identification identify model to be tentatively entertained
phase 2) estimate parameters tentatively entertained model

→
Estimation and testing diagnostic checking is the model adequate no or yes

phase 3) → use model for forecast

1.8.1 Estimation

The first determining appropriate the order of the ARMAmodel by examining the autocor-
relation and partial autocorrelation of the stationary series. And estimate the parameters
of models and after select best model with many of criteria for example:

Information criteria

The goodness of fit of the model can be assessed with the residuals variance:

σ̂2(k) = 1
n

n∑
t=1

ε̂2t (1.36)

where n is the number of observation used for estimate k is total number of parameters
estimated (ex: k = p+ q + 2),

∑n
t=1 ε̂

2
t is the adjusted residuals at time t.

Akaike information criteria (AIC)

Définition 1.8.1. The Akaike information criteria (AIC) is defined to be :

AIC(p, q) = n× log(ε̂2k) + 2× (k) (1.37)

where k is the total number of parameters estimated

Shwarz bayesian information criteria (BIC)

Définition 1.8.2. Shwarz bayesian information criteria is defined to be:

BIC(p, q) = n× log(ε̂2k) + k × (1 + log(n)) (1.38)

where k is the total number of parameters estimated.
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Hannan-Quin information criteria (HQIC)

Hannan-Quin information criteria is defined to be:

HQIC(p, q) = log(ε̂2t ) + 2k
n

log(log(n)). (1.39)

where k is the total number of parameters estimated.

Remark 1.8.3. - The objective is thus to choose the number of parameters which mini-
mizes the value of the information criteria.
- Diagnostic testing in the Box-Jenkins methodology involves the statistical properties of
the errors terms (normality assumption, weak white noise assumption).

1.8.2 Forecasting in ARMA models

Now suppose we interested in forecasting Xn+k from observations {Xt, t ≤ n}. Working
with the Wold representation we may consider forecasts of from:

X̂n,k =
∞∑
j=0

Ck,jεn−j (1.40)

Comparing 1.40 with the Wold representation for Xn+k, we introduce:

Xn+k − X̂n,k =
∑k−1
j=0 Cjεn+k−j +

∑∞
j=0Cj+k(Cj+k − Ck,jCk,j)εn−j .

Hence

E(Xn+k − X̂n,k)2 = {
∑k−1
j=0 C

2
j +

∑∞
j=0(Cj+k − Ck,j)2}σ2

ε

This expression may be minimized by setting : Cj+k = Ck,j for all j ≥ 0, k ≥ 0, and then
give rise to then mean squared prediction error.
Application on ARIMA Model

Example 1.8.4. In this example, we show us the application of Box-Jenkins methodology
to give ARIMA model for traffic accidents time series in France:
1) Visualize the Time Series
We visualize the times series by plotting it see figure 1.10:
2) Stationarity the Series
We can check if the series is stationary or not. Dickey Fuller is one of the popular test
used.
Augmented Dickey-Fuller Test
data: traffic accidents.train
Dickey-Fuller = -2.2719, Lag order = 0, p-value = 0.4674
alternative hypothesis: stationary
From this test, p-value= 0.4674, then the time series is non-stationary (i.e. explosive), we
need to stationeries the series (by taking difference transformation).
data: ddataaccidts.train
Dickey-Fuller = -5.3221, Lag order = 0, p-value = 0.01
alternative hypothesis: stationary
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Figure 1.10: traffic accidents in France

Now the time series is stationary
3) Find Optimal Parameters of ARIMA Model
The value found in the previous section might be an approximate estimate and we need
to explore more (p,d,q) combinations. The one with the lowest AIC should be our choice.
arima(x = ddata traffic accidents.train, order = c(0, 0, 1)) :
Coefficients: sigma2estimated as 250332: log likelihood = -267.22, aic = 540.44

Table 1.5: parameters estimation

ma1 intercept
0.2032 83.1014

s.e. 0.1527 101.2803

4) Residuals diagnostic

Figure 1.11: ddata of traffic accident .train residuals

Box-Ljung test
Box.test(ddata traffic accidents.train arima residuals, lag = 25, type = "Ljung-Box" )
data: raffic accidents.train arima residuals
X-squared = 14.078, df = 25, p-value = 0.9604
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Jarque Bera test
data: raffic accidents.train arima residuals
X-squared = 5.749, df = 2, p-value = 0.05644 5) Make Predictions

(a).pacf ddata of traffic accident .train residuals (b).ddata of traffic accident .train residuals qqplot

Figure 1.12: Residuals diagnostic

Once we have the final ARIMA model, we are now ready to make predictions on the future
time points. We can also visualize the trends to cross-validate if the model works fine.

Figure 1.13: ddata traffic accident forecast

Application on SARIMA Model
In this example, we applique the Box-Jenkins methodology for giving SARIMA model to
monthly hotel room averages time series in Kuwait for 1985-1995(see [26]):
1) Visualize the Time Series in training fase
See figure 1.9.
2) Stationarity the Series
Augmented Dickey-Fuller Test
data: hotel.data.train
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Dickey-Fuller = -2.7543, Lag order = 15, p-value = 0.2637
alternative hypothesis: stationary
Augmented Dickey-Fuller Test data: diff(hotel datats.train, 12) Dickey-Fuller = -7.1603,

Figure 1.14: hotel ddata.train 1985 TO 1995

Lag order = 0, p-value = 0.01 alternative hypothesis: stationary
3) Find Optimal Parameters of Model
Series: data ts.train ARIMA(3,1,3)(1,1,1)[12] Coefficients:

ar1 ar2 ar3 ma1 ma2 ma3 sar1 sma1
0.4913 0.5668 -0.5573 -1.3164 -0.3255 0.6422 -0.1726 -0.2256

s.e. 0.1417 0.1444 0.0946 0.3108 0.2903 0.2799 0.2538 0.2443

sigma2estimated as 148.7: log likelihood=-375.11 AIC=768.22 AICc=770.34 BIC=791.21
4) Residuals diagnostic

(a).fit model of hotel data.main residuals (b).qqplot of residuals

Figure 1.15: Residuals diagnostic
Box-Ljung test
data: fit model residuals
X-squared = 4.3551, df = 15, p-value = 0.9963
Jarque Bera Test
data: residuals(fit model)
X-squared = 3.9052, df = 2, p-value = 0.1419 then the errors are uncorrelated.
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5) Make Predictions

Figure 1.16: forecast fit model
The figure of the fit model on time series observations shows us, that the fit model is
better for forecasting.





Chapter 2

Genetic Algorithms

Genetic algorithms (GAs) are numerical optimization algorithms inspired by both natural
selection and natural genetics. there represent an intelligent exploitation of random search
used to solve the optimization problem. This particular description of GAs is intentionally
abstract because, in some sense, the term genetic algorithm has two meaning. So in this
chapter, we will spell the principals of this method.

2.1 Definitions and terminology

2.1.1 Definitions

Définition 2.1.1. (Local maximum)
We said x0 ∈ Ω is the local maximum of function f if ∀x ∈ Ω, ∃ε > 0 : f(x0) ≥ f(x),
∀x ∈ R, |x− x0| < ε.

Définition 2.1.2. (Local minimum)
We said x0 ∈ Ω is the local minimum of function f if ∀x ∈ Ω,∃ε > 0 : f(x0) ≤ f(x), ∀x ∈
R, |x− x0| < ε.

Définition 2.1.3. (Local optimum)
We said x0 ∈ Ω is the local optimum of function f if it is the either a local maximum or
local minimum.

Définition 2.1.4. (Global maximum)
We said x0 ∈ Ω is the global maximum of function f if ∀x ∈ Ω : f(x0) ≥ f(x),∀x ∈ R.

Définition 2.1.5. (Global minimum)
We said x0 ∈ Ω is the global maximum of function f if ∀x ∈ Ω : f(x0) ≤ f(x),∀x ∈ R.

Définition 2.1.6. (Global optimum)
We said x0 ∈ Ω is the global optimum of function f if it is the either a global maximum
or global minimum.

Example 2.1.7. Figure of function has global minimum and local minimum
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Figure 2.1: global minimum and local minimum

Définition 2.1.8. (Solution candidate)
A solution candidate is an element of problem space Ω.

Définition 2.1.9. (Solution space)
We call the union of all solutions of optimization problem it’s solution space S, S ⊆ Ω.

Remark 2.1.10. The solution space contain and can be equal to the globally optimal set
χ∗, χ∗ ⊆ S ⊆ Ω.

Définition 2.1.11. (Genotype)
We call an element in Ω, a genotype.

Définition 2.1.12. (Gene)
The distinguishable unit of information in genotype that encode the phenotypical proper-
ties are called a gene.

Définition 2.1.13. (Allele)
An allele is a value of specific gene.

Définition 2.1.14. (Phenotype)
The phenotype is the population in the actual real world solution space in which solutions
are represented in a way they are represented in real world situations.

Définition 2.1.15. (Individual)
Each element of set Ω is called an individual presented by some chromosomes(genomes).

Définition 2.1.16. (Population)
A population Pop is a list of individuals used during an optimization process.

Définition 2.1.17. (Generation)
Generation is a set of population at moment donned of process.

2.1.2 Objectif function and fitnes function

Définition 2.1.18. Let Ω is problem space and an objective function f : X → Y with
Y ⊆ R is a mathematical function which is subject to optimization, where X is the set of
possible solutions. We can call f the target or score function.
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Example 2.1.19. let X = [−1, 1] and Y = R

f : X → Y : f(x) = (x− 1) exp(2x− 1) + 1

Définition 2.1.20. The fitness function is normally used to transform the objective func-
tion values into a measure of relative fitness, thus F (x) = g(f(x)), where f is the objective
function, g transform the values of the objective function to a non-negative number and
F is relative fitness.

Example 2.1.21. F (xi) = f(xi)∑i=n

i=1 f(xi)
where n is the population size and xi is the pheno-

type value of individual i.

2.2 Encoded

A population of individuals in maintained within Ω, each representing a possible solution
to a given problem. Each individual is coded as a finite length vector or variable in term
of some alphabet.

Définition 2.2.1. Assume S to be a set of strings, let Ω is the search space of an opti-
mization problem, then a function : C : Ω→ S x 7→ C(x) is called coding function.
Conversely, a function C̃ : S → Ω s 7→ C̃(s) is called decoding function.

Remark 2.2.2. Moreover, the following equality is often supposed to be satisfied : CoC̃ ≡
IS .

There are many kids of individuals encoding, We introduce three popular encoding
forms:

• Binary coded;

• Gray coded;

• Real coded.

2.2.1 Binary-coded

Binary encoding is the most common form of encoding. In this encoding, each chro-
mosome is represented using a binary string. Each bit in the string can represent some
characteristics of the solution.

Définition 2.2.3. Binary encoding represents the chromosomes by a string of bits {0,1}.

Remark 2.2.4. Holand and his students concentrated on such encodings, and GA practice
has tended to follow this lead.
Precession of each element of k is determined by a string of length lk and the desired
resolution rk. In general rk = UB−LB

2lk−1
where UB and LB specify the upper and lower limits of the rang of parameters.
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Example 2.2.5. Encoding and Decoding principe

Encoding ↔ Decoding
genotype ↔ phenotype

coded domain ↔ decision domain
biological UGCAACCGU −−−−−−−→

expression and ←−−−−−−−−sequencing "blue eye"
10011110

−−−−−−→
decoding

←−−−−−−
encoding 158

Remark 2.2.6. Binary encoding has problem with Hamming cliff distance. The distance
between two genotypes xg and yg is defined by Hamming as d(xg, yg) =

∑l−1
i=0 |xg,i − yg,i|,

and denote the number of different alleles in the two genotypes.

2.2.2 Gray-coded

The Gray encoded can be constructed in two step:
1) The phenotype is encoded using binary encoding,
2) Subsequently the binary encoded string can be converted into the corresponding Gray
encoded string.
If the binary string x ∈ {0, 1}l = {x1, x2, .......xl, }, then is converted to the corresponding
Gray code y ∈ {0, 1}l = {y1, y2, .......yl, } by mapping γ : Bl → Bl

yi =
{

xi if i = 1
xi−1 ⊕ xi other wise

Where ⊕ denotes addition modulo 2. The decoding of Gray encoded string is as follow :
xi = ⊕li=1xi−1, for i ∈ {2, ...., l}.
A Gray encoded string has the same length l as a binary encoded string, and the encoding
is redundancies-free.

Example 2.2.7. An example for using binary and Gray encoding :

xg 0 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111
Gray 000 001 011 010 110 111 101 100

2.2.3 Real-coded RCGA

In the RCGA a chromosome is coded as a finite length string of the real numbers corre-
sponding to the design variable. We develop this section in the fourth chapter.

2.3 Genetic algorithms process

Graph of the GAs schematic process.
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Initial
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Optimal
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2.3.1 Initialization

Initially, many individuals solutions are randomly generated to form an initial population.
The population size depends on the mature of the problem, but typically contain serval
hundred or thousands of possible solutions. Traditionally, the population is generated
randomly, covering the entire range of possible solutions ( space Ω). Occasionally, the
solution may be seeded in an area where optimal solutions are likely to be found.

Example 2.3.1. Generate random initial population contained between lower and upper
bounds in solutions space, for example, I = [0, 14] and the probabilities for having the
gene 0 or 1 is p = 0.5
We generate six individuals(chromosomes) with four genes:

Random numbers Binary coded Random numbers Binary coded
0.263 0 0.509 1
0.684 1 0.648 1
0.489 0 0.656 1
0.010 0 0.123 0
0.351 0 0.745 1
0.779 1 0.310 0
0.578 1 0.407 0
0.292 0 0.245 0
0.070 0 0.876 1
0.331 0 0.719 1
0.980 1 0.426 0
0.672 1 0.720 1

The first generation or initial population is:
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Encoding individuals Decoding individuals
x1 = 0100 4
x2 = 0110 6
x3 = 0011 3
x4 = 1110 14
x5 = 1000 8
x6 = 1101 13

2.3.2 Selection

Définition 2.3.2. Selection is the process of determining the number of time, or trial,
a particular individual is chosen for reproduction and, thus the number of spring an
individual will produce.

Définition 2.3.3. (Fitness distribution of population) The fitness S : R→ Z+, assigns to
each fitness value f ∈ R the number of individuals in population pop carrying this fitness
value. S is called the fitness distribution of population pop.

Définition 2.3.4. A selection method G is a function that transform a fitness distribution
S into a new fitness distribution S′

S′ = G(S).

Probability for Selection

The probability of choosing a certain individual is proportional to his fitness. It can be
regarded as a random experiment with:

P (xi) = f(xi)∑m
i=1 f(xi)

This formula makes sense if all fitness values are positive. If this not the case, a non-
decreasing transformation g : R → R+ must be applied. Then the probability can be
expressed as:

P (xi) = g(f(xi))∑m
i=1 g(f(xi))

Remark 2.3.5. A linear transformation which offsets the objective function, such that:
F (x) = af(x) + b

Where a is a positive scaling factor if the optimization is maximizing and negative if we
are minimizing. And b is used to ensure that the resulting fitness values are non-negative.

Remark 2.3.6. It possible to describe a selection method as a function transform a fitness
distribution into another fitness distribution.

Définition 2.3.7. (Expected fitness distribution) G∗ denotes the expected fitness distri-
bution after applying selection method G to the fitness distribution S i.e :
S∗ = G∗(S′) = E(G(S)).

Théorème 2.3.8. The variance in obtaining the fitness distribution S′ is :

σ2
S = S∗(1− S∗

N )
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Proof. See [11]

Remark 2.3.9. The index S in σS stand for "sampling" as it is the mean variance due to
the sampling of the finite population.

Cumulative fitness distribution

1) For discreet fitness distribution:

Définition 2.3.10. We denote Γ(fi) the cumulative fitness distribution, defined by:

Γ(fi) =


0 i < 1;∑j=1

j=1 S(fj) 1 ≤ i ≤ n;
N i > n

(2.1)

Example 2.3.11. plot of cdf of discrete distribution,

(a).Diagram of discrete distribution (b).cdf discrete distribution

Figure 2.2: Diagram cdf of discrete distribution

2) For continuous fitness distribution:

Définition 2.3.12. Let us g(f) is continuous fitness distribution. We denote Γ(f) the
cumulative fitness distribution defined by:

Γ(f) =
∫ fn

f0
S(f)dx.

Example 2.3.13. Gaussian distribution F (µ, σ) with :

F (x) = 1√
2πσ exp(−(x−µ)2

2σ2 )

Définition 2.3.14. (Average fitness) We denote M , the average fitness of population
before selection, and M

∗ is the expected average fitness after selection, for continuous
distribution: {

M = 1
N

∫ fn

f0
S(f)fdf

M
∗ = 1

N

∫ fn

f0
S∗(f)fdf

(2.2)
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(a).Density of Laplace distribution (b).cdf continues distribution

Figure 2.3: Diagram cdf of continues distribution

Définition 2.3.15. (Fitness variance) The fitness variance σ2 denotes the variance of the
fitness distribution S(f) before selection, and (σ∗)2 denotes the variance of the fitness
distribution S∗(f) after selection:{

σ2 = 1
N

∫ fn

f0
S(f)(f −M)2df

(σ∗)2 = 1
N

∫ fn

f0
S∗(f)(f −M∗)2df

(2.3)

Définition 2.3.16. (Reproduction rate) The reproduction rate R(f) denote de ratio of
the number of individuals with a certain fitness f before and after selection:

R(f) =


S∗(f)
S(f) S(f) > 0;
0 S(f) = 0;

(2.4)

Remark 2.3.17. A reasonable selection method should favor good individuals by assign-
ing them a reproduction rate R(f) > 1, and punish bad individuals by a ratio R(f) < 1

During every selection phase, bad individuals will be lost and replaced by copies of
better individuals.

Définition 2.3.18. (Loss of diversity) The loss of diversity Pd is the proportion of indi-
viduals of a population that is not selected during the selection phase.

Théorème 2.3.19. If the reproduction rate R(f) increases monotonously in f, the class
diversity of selection method is :

Pd = 1
N

(Γ(fz)− Γ∗(fz)). (2.5)

where fz denotes the fitness value, such that R(f) = 1

Proof. For all fitness values f ∈ [f0, fz], the reproduction rate is less than one. Hence the
number of individuals are not selected during selection is given by

∫ fn

f0
(S − S∗)dx.

It follows that :

Pd = 1
N

(
∫ fz

f0
(S(x)− S∗(x))dx).

= 1
N

(
∫ fz

f0
S(x)dx− 1

N

∫ fz

f0
(S∗(x)dx.

= 1
N

(Γ(fz)− Γ∗(fz))
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Remark 2.3.20. - The loss of diversity should be as low as possible because a high loss
of diversity increases the risk of premature of convergence. - Beker [1989], has introduced
a similar measure called "reproduction rate RR". RR gives the percentage of individuals
that is selected to reproduce, hence RR = 100(1− Pd).

Certain selection methods rate the fitness of each solution and preferentially select the
best solutions. The most commonly used methods of selecting chromosomes for parents
to crossover:

1. Roulette wheel selection

2. Elitism selection

3. Rank selection

4. Tournament selection

5. Truncation selection

6. Boltzmann selection

Roulette Wheel selection RWS

RWS is the simplest selection approach. In this method, all the chromosomes (individuals)
in the population, are placed on the (RWS) according to their fitness value. Each individual
is assigned a segment of roulette. The size of each segment in the (RWS), is proportional
to the value of the fitness of the individual. The virtual (RWS) is spined and the individual
corresponding to the segment on the witch (RWS) stops are then selected. The process is
repeated until the desired number of individuals is selected.

Example 2.3.21. We take example of five individuals selection:

Figure 2.4: Roulette Wheel
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Elitism selection ES

The idea of elitism has been already introduced. When creating new population by
crossover and mutation, we have a big chance, that we will loose the best chromosome.
Elitism is the name of the method, which first copies the best chromosome (or a few best
chromosomes) to a new population. The rest is done in a classical way. Elitism can very
rapidly increase the performance of GA, because it prevents losing the best-found solution.

Rank Selection

Rank selection ranks the population and every chromosome receives fitness from the rank-
ing. Rank selection first ranks the population and then every chromosome receives fitness
from this ranking. The worst will have fitness 1, second worst 2 etc. and the best will
have fitness N (number of chromosomes in population).
The previous selection will have problems when the fitness differs very much. For exam-
ple, if the best chromosome fitness is 90 percent of all the roulette wheel then the other
chromosomes will have very few chances to be selected.

linear ranking selection LRS

The selection probability is assigned to the individual according to their rank:

Pi = 1
N

(η− + (η+ − η−) i− 1
N − 1), i ∈ {1, 2, .....N}. (2.6)

Here η−

N is the probability of the worst individual to be selected, and η+

N is the probability
of the best individual to be selected.

Remark 2.3.22. As the population size is held constant, the condition η+ = 2− η− and
η− ≥ 0 must be full filled. Not that all individuals get a different rank, i.e a different
selection probability, even if the individuals have the same fitness value.

Exponential ranking selection ERS

Exponential ranking selection probability assigned to the individual is:

Pi = CN−i∑N
j=1C

N−j
, i ∈ {1, 2, .....N}. (2.7)

When 0 < C < 1. The sum
∑N
j=1C

N−j normalizes the probability to ensure that∑N
j=1 Pi = 1.

As
∑N
j=1C

N−j = CN−1
C−1 , we can rewrite the above equation by:

Pi = (C − 1)CN−i

CN − 1 , i ∈ {1, 2, .....N}. (2.8)

Example 2.3.23. You can see in the following picture, how the situation changes after
changing fitness to order number.

Remark 2.3.24. After this, all the chromosomes have a chance to be selected. But this
method can lead to slower convergence because the best chromosomes do not differ so
much from other ones.
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(a).Situation before ranking (b).Situation after ranking

Figure 2.5: Rank Selection

Tournament selection TS

Tournament selection is a variant of the rank-band selection method. It’s principle consists
in randomly selecting a set of N individuals. His strategy provides selective pressure
by holding a competition among N individuals from the population Pop(i). The best
individual is the highest fitness and copy the best one from this group into the intermediate
population Pop(i+ 1) and repeat k times. For unconstrained optimization problems:
(i) Among two selected chromosomes, the chromosome with better fitness value is selected.
For constrained optimization problems:
(i) When two chromosomes (individuals) are feasible then the individual with better fitness
value is selected.
(ii) When one chromosome (individual) is feasible and another is infeasible then the feasible
one is selected.
(iii) When two chromosomes (individuals) are infeasible with unequal constraints violation,
then the chromosome with less constraint violation is selected.
(iv) When two chromosomes (individuals) are infeasible with equal constraints violation,
then anyone chromosome (individual) is selected.

Truncation selection TrS

This method is very simple technique; that orders the candidate solutions of each pop-
ulation according to their fitness. Then, only a certain portion of fittest individuals are
selected and they all have the same selection probability.

Remark 2.3.25. This method is less used in practice, then other techniques except for
very large population.

Boltzman selection BS

This method simulates the process of slow cooling of molten method to achieve the min-
imum function value in minimization problem. Let fmax be the fitness of the currently
available best string. If the next string has fitness f(xi) such that f(xi) > fmax, then the
new string is selected. Other wise it is selected with BoltzMann probability :

P = exp(−(fmax − f(xi)
T

) (2.9)

Where T = T0(1 − α)k and k = (1 + 100 g
G), g is the current generation number, and G

the maximum value of g. The value of α can be chosen from the rang [0,1] and to from
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the [5,100]. The final slate is reached when computation approaches zero value of T i,e,
the global solution is achieved at this point.

Remark 2.3.26. The selection operator is intended to improve the average quality of
the population by giving individuals of higher quality a higher t to be copied into next
generation.

2.3.3 Crossover

Crossover is a genetic operator that two chromosomes parents produce a new chromosomes
children. Then the new chromosomes may be better than both of the parents. After this
operation, the population enriched with better(off string) individuals and the evolution
process may be continued.
The pairs of individuals selected undergoing crossover with probability Pc. A random
number Rc is generated in the rang 0− 1, and the individuals under crossover if and only
if Rc ≤ Pc. Other wise the pair proceed without crossover. Typical value of Pc are 0.4 to
0.9. Without a crossover, the average fitness of population fave, will climb until it equals
the fitness of the best member, fmax. After this point, it can only improve via mutation.

Remark 2.3.27. If Pc = 0.5 then half the new population will be formed by selection
and crossover, and half by selection alone.

Many different crossover algorithms have been devised:

• One-point crossover

• Two-point crossover

• Cut and splice

• Uniform and half-uniform crossover

• Arithmetic crossover

• Heuristic crossover

Single-point crossover SPC

Single- point crossover proceeds by cutting the pair of selected strings at a random lo-
cus(picked by throwing a random number, RL, between 1 and L − 1, where L is number
of genes) and swapping the tails to create two child string.

Example 2.3.28. For RL = 4 L = 12 and then

Two-point crossover TPC

This operator randomly selects two crossover points within a chromosome then, inter-
changes the tow parents chromosomes between there pints to produce two new off spring.

Example 2.3.29. For RL = 4, then
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Figure 2.6: Crossover in one point

Figure 2.7: Crossover in two points

2.3.4 Cut and splice crossover

Like one-point crossover, except each parent has a different cut point. Can result in
variable length children.

Example 2.3.30. Different cut point crossover:

Figure 2.8: Cut and splice crossover

Uniform crossover and half Uniform crossover

Single and multi-points crossover define cross points as places between loci where a chro-
mosome can be split. Uniform crossover generalizes this scheme to make every locus a
potential crossover point.
- The individual genes are compared between two parents.
- The gene value are swapped with a fixed probability typically 0.5
- Half uniform crossover scheme is exactly of the non-matching genes are swapped.

Example 2.3.31. Consider the following two parents crossover made and resulting off-
spring :
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Figure 2.9: Uniform crossover

P1 = 000010000
P2 = 110100001
C1 = 010000000
C2 = 100110001

Here the first child1 is produced by taking bit from P1 if the corresponding mask bit is 1
or the bit from P2 if the corresponding mask bit is 0.
Offspring child is created using the inverse of mask, or equivalently, swapping P1 and P2.

2.3.5 Heuristic crossover HC

This crossover operator uses the fitness values of the two parents chromosomes to deter-
mine the direction of the search. The offspring are created according to the equation:

offspring1 = bestparent+ r(bestparent− worstparent)

offspring2 = bestparent

Where r is a random number between 0 and 1.

Remark 2.3.32. It possible that offspring1 will not be feasible. It happens if r is chosen
such that one, or more of its genes fall outside of the allowable upper or lower bounds.
For this reason, the heuristic crossover has a user defined parameter n for the number of
time to try and r that in a feasible chromosome. If a feasible chromosome is not produced
after n tries, the worst parent is returned as offspring1.

2.3.6 Mutation

In the natural world, several processes can case mutation, the simplest being an error
during replication. After crossover, the strings are subject to mutation.
Mutation plays the role of recovering the lost genetic materials as well as for randomly
distribute genetic information. And introduce the new genetic structures in the population
by randomly modifying the genes of chromosomes selected with a mutation probability
Pm

Example 2.3.33. An example of a mutation in the binary string:
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Figure 2.10: Mutation example

2.3.7 Types of Mutation

There are many different forms of mutation for different kinds of representation, in this
chapter, we introduce various types of mutation operators in the binary string:

2.3.8 Insertion mutation

It is used in permutation encoding. First of all, pick two alleles values at random. Then
move the second allele to follow the first shifting the rest along to accommodate.

Example 2.3.34. In insertion mutation we show 5 follow 2:

Figure 2.11: Insertion mutation

2.3.9 Inversion mutation IM

Inverse mutation is used for chromosomes with permutation encoding. In order to perform
inversion, pick two alleles at random and then invert the substring between them. It pre-
serves most adjacency information and only breaks two links but it lead to the discerption
and only breaks order information.

Example 2.3.35. Inversion mutation plot for offspring:

Figure 2.12: Inversion mutation
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2.3.10 Scramble mutation ScM

Is also used with permutation encoded chromosome. In this mutation one has to pick
a subset of genes at random and then randomly rearrange the alleles in those positions.
Subset does not have to be contiguous.

Example 2.3.36. Scramble mutation plot for offspring:

Figure 2.13: Scramble mutation

2.3.11 Swap mutation SwM

Is also used with permutation encoded chromosome. To perform swap, mutation select two
alleles at random and swap their positions. It preserves most of the adjacency information
but links broken disrupts order more.

Example 2.3.37. In swap mutation, we show that exchange between 2 and 6:

Figure 2.14: Swap mutation

2.3.12 Flip mutation FlM

Based on a generated mutation chromosome flipping of bit involve changing 0 to 1 and
1 to 0. A parent is considered and a mutation chromosome is randomly generated. It is
commonly used in binary encoding.

Example 2.3.38. the principe of this mutation is popular in this example changing 1 to
0:

Figure 2.15: Bit flip mutation
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2.4 Example of application

In this example we search the minimum of function f, f(x) = 14x− x2 in solutions space
for example I = [0, 14]
The first we generate a random initial population of 6 individuals with 4 bits contained
between lower and upper bounds of I . The probabilities for have the gene 0 or 1 is
p = 0.5 and probability density function (pdf) diagram And cumulative density function
(cdf) diagram is:

(a).probability of bits (b).cdf of bits

Random numbers Binary coded Random numbers Binary coded
0.963 1 0.509 1
0.384 0 0.148 0
0.489 0 0.656 1
0.010 0 0.123 0
0.351 0 0.745 1
0.279 0 0.310 0
0.778 1 0.407 0
0.292 0 0.845 1
0.570 1 0.876 1
0.331 0 0.719 1
0.980 1 0.426 0
0.672 1 0.720 1

Then the first generation or initial population is:

Encoding individuals Decoding individuals
x1 = 1000 8
x2 = 0010 2
x3 = 1011 11
x4 = 1010 10
x5 = 1001 9
x6 = 1101 13
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The fitness function evaluation :

Encoding individuals Decoding individuals Fitness values proportional probability
x1 = 1000 8 48 48

203 0.24
x2 = 0010 2 24 24

203 0.12
x3 = 1011 11 33 33

203 0.16
x4 = 1010 10 40 40

203 0.20
x5 = 1001 9 45 45

203 0.22
x6 = 1101 13 13 13

203 0.06

Roulette wool selection, it can be:

Figure 2.16: Roulettewoolforexampple

individuals Lower bound Upper bound
x1 0 0.24
x2 0.24 0.36
x3 0.36 0.52
x4 0.52 0.72
x5 0.72 0.94
x6 0.94 1

The probability for crossover is pc = 0.70 and the diagram of dcf is:
Selection of candidates parents for crossover:

0.153→ x1

0.26→ x2

0.647→ x4
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Figure 2.17: Diagram of parents

Figure 2.18: crossover point probability

0.037→ x1

0.341→ x2

0.512→ x3

we take three random number :

0.995→ x1, x2 no crossover
0.071→ x4, x1 yes crossover
0.566→ x2, x3 yes crossover

Crossover operation:
We take a random number for determinate the point of crossover; thus the number is 0.62,
then the point of crossover is B:

x′1 = 1000
x′2 = 0010
x′4 = 1010
x′1 = 1000
x′2 = 1010
x′3 = 0011

New generation:
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individuals Binary string decoded string
x1 1000 8
x2 0010 2
x3 1010 10
x4 1000 8
x5 1010 10
x6 0011 3

Mutation:
The probability of mutation is pm = 0.001 We generate 6 number randomly to show ho

Figure 2.19: mutation probability

chromosome is under mutation:

0.225
0.368
0.256
0.237
0.416
0.088

Then the chromosome under mutation is x6 by change 0 by 1, but a ho bit or gene to
change in x6. For this, we generate a number randomly:
such this number is 0.538, then the bit is B, then:

individuals Binary string decoded string
x6 before mutation 0011 3
x6 after mutaion 0111 7

If we have not the optimal solution, we start again the process with a new generation.



Chapter 3

Modeling linear Time Series with
Binary Genetic Algorithm BCGA

In this chapter, we will applique the BCGA on linear time series models AR(p), MA(q)
and ARIMA(p, d; q) in application study, by minimizing the mean MSE square errors
and Akaike information criteria AIC.

3.1 BCGA on Autoregressive models AR(P)

In the first step, we begin by application the BCGA to give AR(P ) model for Derive oil
production time series in Algeria(1980 to 2011):
1)Visualize the Time Series

Figure 3.1: PRODUCTION DERIVE ENERGY FOR ALGERIA 1980 TO 2011
2) Stationarity the Series



62
Chapter 3. Modeling linear Time Series with Binary Genetic Algorithm

BCGA

(a).acf derive oil production (b).pacf derive oil production

Figure 3.2: acf and pacf of derive oil production time series
Test de stationarity
Augmented Dickey-Fuller Test
data: product oil ts
Dickey-Fuller = -3.6693, Lag order = 1, p-value = 0.0431
alternative hypothesis: stationary
It’s clear the Augmented Dickey-Fuller Test p-value = 0.0431 less then 0.05, indicate that
time series is stationary.

3)Find Optimal Parameters of ARIMA Model with Box-Jenkins
The acf or pacf of this data indicated that one of AR(1) or AR(2), is the model of this
time series. We check which one is optimal. arima(x = product oil ts, order = c(1, 0, 0),
include.mean = TRUE)
Coefficients:
sigma2 estimated as 9501117: log likelihood = -304.18, aic = 614.35

Table 3.1: parameters estimation

ar1 intercept
0.9832 41176.46

s.e. 0.0218 15176.63

arima(x = product oil ts, order = c(2, 0, 0), include.mean = TRUE)
Coefficients:
sigma2 estimated as 8975099: log likelihood = -303.29, aic = 614.58.
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Table 3.2: parameters estimation

ar1 ar2 intercept
1.2241 -0.2468 41553.61

s.e. 0.1784 0.1826 13761.45

Table 3.3: Box and Jenkins methods

MODEL MSE AIC BAIC
MOD1: AR(1) 47604.08 614.35 618.7512
MOD2: AR(2) 47879.35 614.58 620.4407

This result on two tables show us the first model AR(1) is better then AR(2) because
all statistics MSE, AIC and BIC of AR(1) are less then of AR(2).
Now we diagnostic the residuals of ARIMA(1, 0, 0)
4)Residuals diagnostic
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BCGA

(a).Residual plot (b).acf of residuals

(a).pacf of residuals (b).qqline of residual

Figure 3.3: Residuals diagnostic
Box-Ljung test
data: arma product oil residuals
X − squared = 6.4793, df = 15, p− value = 0.9705
ThBox-Ljung test
data: arma product oil residuals
X − squared = 6.4793, df = 15, p− value = 0.9705
Then after this diagnostic, we can confirm that ARIMA(1, 0, 0) is fit model for data with
Box-Jenkins

BCGA application
We applique BCGA for modeling the time series by choosing the fitness functions the AIC
to optimize it. And follow all BCGA steps.
Selection
For example when we applique the binary genetic algorithms, on individuals in form
(βi, c) ∈ [−1, 1]2, and use roulette wheel selection then:
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Table 3.4: Fitness values of individuals

individuals binary strings f (βi) F (βi) F (βi) ∗ 100 rank
β1 = 0.9140625, c = 0.7890625 (0.1110101,01100101) 3.2264e+5 0.0028150 0.28150 4
β2 = 0.6796875, c = 0.4453125 (0.1010111,00111001) 9.2731e+ 006 0.0809074 8.09074 3
β3 = 0.171875, c = 0.6953125 (0.0010110,01011001) 7.0765e+ 007 0.6174216 61.74216 1
β4 = 0.4140625, c = 0.2890625 (0.0110101,00100101) 3.4253e+ 007 0.2988560 29.88560 2

Figure 3.4: roulette wheel selection

Crossover
The crossover operator choused in this example is a single point Crossover with probability
PC = 0.80.

Figure 3.5: Single point Crossover

Mutation
The mutation operator used is the flip mutation, where the algorithm replaces each se-
lected entry by a random number selected uniformly from the range for that entry. In
binary-coded, any bit a ∈ {0, 1}, is replace within probability operator pm by his comple-
mentary ā = 1− a see 3.6.
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Figure 3.6: Binary Mutation

3.1.1 Iterative process

With a program in Matlab software for modeling our data 3.1, we have the follow result:

(a).BCGA for AR(1) (b).BCGA for AR(2)

Figure 3.7: Comparison between for AR(1) and AR(2)

Table 3.5: BCGAs method

MODEL MSE AIC BIC parameters
MOD3: AR(1) 1.71819 20.77943 20.77943 (−0.27916, 0.96782)
MOD4: AR(2) 4.99692e− 10 −6.36511e+ 02 −6.29307e+ 02 (0.53855, 0.95561, 0.01280)
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Table 3.6: comparison between genetic algorithms and Box-jenkins models

Method Model MSE AIC BIC
Box-jenkins MOD1: 47604.08 614.35 618.7512

genetic algorithms MOD4: 4.99692e− 10 −6.36511e+ 02 −6.29307e+ 02

Figure 3.8: Comparison between BCGA model and Box-Jenkins model

It’s clear that the model MOD4 introduced by genetic algorithms has a fewer statistics
MSE, AIC and BIC, then of the model proposed by Box-Jenkins method. So we can
conclude that the genetic algorithms method introduce the best model for this time series
and improve the forecast.

3.2 BCGA on Autoregressive models MA(q)

In this example, we show the application of Box-Jenkins and BBGAs methodologies for giv-
ingMA(p) model for euro hourly index data in Europe in 09/01/2017 see (www.investing.com):
First part Box-Jenkins application:
1) Visualize the Time Series in training faze

Figure 3.9: Hourly euro Index
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BCGA

2) Stationarity the Series

(a).acf of Euro Index Overview (b).pacf of Euro Index Overview

Figure 3.10: acf and pacf of time series
Augmented Dickey-Fuller Test
data: euro index ts
Dickey-Fuller = -2.6335, Lag order = 15, p-value = 0.3092
alternative hypothesis: stationary
That is clear the time series non stationery, then we need differentiate data for have
stationary:

Figure 3.11: diff euro index time series plot
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(a).acf of diff euro index (b).pacf of diff euro index

Figure 3.12: acf and pacf of differentiate time series
Augmented Dickey-Fuller Test
data: diff euro index ts
Dickey-Fuller = -5.9704, Lag order = 15, p-value = 0.01
alternative hypothesis: stationary
That is clear that differentiate data is stationery and the third spike is significate in ACF,
but PACF is Tails off. Then we can say the model of difference data has an MA(3).

3) Find Optimal Parameters of Model
With auto.arima command in R , the better model proposed with less AIC and BIC is
ARIMA(0, 0, 3) model, indeed:
arima(x = diff euro index ts, order = c(0, 0, 3), include.mean = TRUE)
Coefficients:
sigma2 estimated as 0.003966: loglikelihood = 386.67, aic = −765.35,BIC = −745.0304,

Table 3.7: parameters estimation

ma1 ma2 ma3 intercept
-0.0172 -0.0209 -0.6933 -8e-04

s.e. 0.0432 0.0454 0.0429 1e-03

MSE = −0.0009486277
4) Residuals diagnostic
Box-Ljung test
data: diff euro index residuals
X-squared = 1.1434, df = 15, p-value = 1
Jarque Bera Test
data: euro index residuals
X-squared = 260750, df = 15, p-value < 2.2e-16
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(a).acf euro of index residuals model (b).pacf of euro index residuals model

Figure 3.13: Residuals diagnostic

Figure 3.14: qqnorm of residuals model

Second part: BBGAs application:
Calling now GAs for giving the model for our data. This method is described in the fol-
lowing steps:

1. Calculate the mean of observations Xt, i,e Xt

2. Calculate the errors εt by taking difference Xt −Xt

3. Centering errors εt i.e calculate :

ε′t = εt − εt, (3.1)

where εt is the mean of εt

Find Optimal Parameters of Model
Now we estimate moving average models parameters for lag 3 by BCGA, proposed by the
first result of box-Jenkins technic. And we take a comparison between them.
When we follow all steps of BCGA in the same of the first application in section (1), by
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estimate MA(3) parameters with optimized the function AIC and calculate all statistics.
So, we have the following result:

Table 3.8: Comparison between BCGAs model and Box-Jenkins model

MODEL MSE AIC BIC parameters
Box-Jenkins

model -765.35 -745.0304 -0.00095 (-0.0172 ,-0.0209, -0.6933, -8e-04)
MA(3)
BCGA
model 3.48301e-15 -9.48190e+03 -9.46794e+03 (-0,00066,-0.39821 ,0.78180,-0.39924)
MA(3)

(a). Box-Jenkins model and diff euro index model (b).BCGA model and diff euro index model

Figure 3.15: Comparison between Box-Jenkins and BCGA models

Comparing between all indicators on table 3.8 for two models, and show on the figure
3.15, we conclude that the model introduces by BCGA method is better then the model
introduce by Box-Jenkins method.

3.3 BCGA on Seasonal Autoregressive Integrated Moving
Average models SARIMA(p, d, q), application study

This study was introduced in the article published on «international journal of statistics
and economics», Vol.18 Issue. N◦1(Année 2017).pages 1-15.





Chapter 4

Real Genetic Algorithms RCGA
and comparison study with BCGA
models

4.1 Introduction

For continuous optimization problems, real numbers representation is a natural way repre-
sent, solutions no difference between genotypes and phenotypes. A chromosome is a vector
of floating point numbers and each gene represents a variable of the problem x ∈ Rn. The
use of real coding RCGA initially appears on the specific application, such as in (Laisias
and Al.,1989) for chemistries problems, and in (Davis,1989) for the use meta operator
in order to find an adequate parameters for standard GA. The main difference in imple-
mentation of RCGA and BCGA is their recombination operators( crossover and mutation
operators).

4.2 Crossover

They have many crossover operators proposed for this type encoding:

4.2.1 Whole arithmetic crossover method AMXO

In Arithmetic crossover, two parents produce two offspring:
If ck = (ck1, ck2, ....., ckn) for k = 1, 2. are the parents, then the children are:

ch1
i = λc1

k + (1− λ)c2
k,

ch2
i = λc2

k + (1− λ)c1
k.

Where λ is a proper fraction which can be chosen randomly.
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Remark 4.2.1. • Alternatively, the proper fraction λ can be chosen in the following
way:

λ = fmax
fmax + fmin

Where fmax denotes the max of fitness value of chromosomes and fmin denotes the
min of fitness value of chromosomes.

• If λ is constant, then the crossover is called uniform arithmetical crossover. Other-
wise, it is known as non-uniform arithmetic crossover.

4.2.2 Local arithmetical crossover LAC

the same as whole arithmetical crossover, except that the value of λ is randomly selected
for each gene location.

4.2.3 linear crossover LC

If the parents are: chk = (ck1, ck2, ....., ckn) for k = 1, 2, 3. then the children are:

ch1
i = 1

2c
1
i + 1

2c
2
i ,

ch2
i = 3

2c
2
i +−1

2c
1
i ,

ch3
i = −1

2c
1
i + 3

2c
2
i .

An offspring selection mechanism is applied, which chooses the two parents in the popu-
lation.

4.2.4 Extended line crossover ELC

In extended line crossover, one offspring is generated from two parents. The offspring is
given by:

chi = λc1
i + λ(c2

i − c1
i ).

where λ is randomly chosen,( uniformly λ in [-0.25,1.25])

4.2.5 linear BGA crossover (Schlierkamp-Veosen 1994)

Under same consideration as above :

chi = λc1
i + riγΛ

Where Λ = (c2
i−c

1
i )

‖(c1−c2)‖ the sign is chosen with a probability of 0.9. Usually ri is 0.5(UBi −
LBi) and
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γ = Σ15
k=0αk2−k,

where αk ∈ {0, 1} is randomly generated with P (α = 1) = 1
16 . And LB is lower bound and

UB is upper bound.

4.2.6 Flat crossover FC

An offspring ch = (c1, c2, ....., cn) is generated where ci is randomly (uniformly) chosen
value from the set [c1

i , c
2
i ].

4.2.7 Blend Crossover BLX − α

The BLX − α crossover operator, where α is positive, mates two parents to produce one
offspring. An offspring is the following:
ch = (c1, c2, ....., cn), where ci is a randomly (uniformly) chosen number of interval
[ai − diα, bi + diα], where ai = min(c1

i , c
2
i ), bi = max(c1

i , c
2
i ) and di =| c1

i , c
2
i |.

Remark 4.2.2. The BLX − 0.0 crossover is equal Flat crossover.
For the value of K, Eshelman and Schafer have used α = 0.5.

4.2.8 PBX − α crossover

In PBX − α, two parents produce one offspring. The offspring is given by equation
ch = (c1, c2, ....., cn). The difference compared to BLX − α is that ci is randomly chosen
number from the [li, ui] interval. The libris li and ui are given by:

li = max(LBi, c1
i − Iiα), ui = min(UBi + Iiα) and Ii = |c1

i − c2
i |.

4.2.9 Heuristic crossover operator (HX)

The HX has been applied to solve nonlinear constraint optimization problem and as well
as un constrained optimization problems having various levels of difficulty. The offspring
is generated in the following manner :

chi = α(c2
i − c1

i ) + c2
i

where α is a uniformly distributed randomly number in interval [0, 1].
It should be noticed that the parent c2 has fitness value not worse than that of the parent
c1. If the offspring lees outside the feasible region, a new random number is generated to
produce another offspring using:

ch2
i = (c2

i + β(c1
i )− c2

i )

where β is number, witch is generated using the laplace distribution function. The process
is repeated up to k times.

4.2.10 Parent-centric crossover PCCO

The PCCO create the offspring in the neighborhood of the female parent using a proba-
bility distribution. The male parent is considered to define the rang of probability distri-
bution.
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4.2.11 laplace crossover operator LX

A new crossover operator which uses Laplace distribution was introduced. This parent
centric crossover operator has been named as Laplace crossover LX. The density function
of Laplace distribution is:

f(x) = 1
2b exp(− |x−a|b ), −∞ < x < +∞;

the corresponding distribution function is as follow:

F (x) =
{ 1

2 exp( |x−a|b ) x ≤ a;
1− 1

2 exp(− |x−a|b ) x > a;

where a ∈ R, and b > 0.
the α is a random number in [0,1] is generated.
And a random β is generated which follows the Laplace distribution by simply inverting
the distribution function of Laplace distribution as follows:

β =
{
a− b ln(α) α ≤ 1

2
a+ b ln(α) α > 1

2

The offspring are giving by the equations:

ch1
i = c1

i + β|c1
i − c2

i |

ch2
i = c2

i + β|c1
i − c2

i |.

Both offspring symmetrically with respect to position of the parents.

4.2.12 Multiple crossover MX

A multi-crossover MX formula with more than two chromosomes was proposed. It was
assumed that three chromosome c1, c2 and c3 are selected from the population randomly.
let α is a random number selected from [0,1], if α ≥ Pc, then no crossover operation is
performed. If α < Pc, then multiple crossover formulas are the following:

ch1
i = (c1

i + r(2c1
i )− c2

i − c3
i )

ch2
i = (c2

i + r(2c1
i )− c2

i − c3
i ).

ch3
i = (c3

i + r(2c1
i )− c2

i − c3
i ).

where r ∈ [0, 1] is a random value determining the crossover grade.

4.3 Mutation operators in real coded genetic algorithms
RCGA

Let us suppose c = (c1, c2, ....., cn) a chromosome and ci ∈ [LBi, UBi], a gene to be muted.
Next the gene c‘

i resulting from the application of different mutation operators is shown.
Mutation is regulated with the mutation probability Pm. Let us introduce a various of
mutation operators used in RCGA.
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4.3.1 Power mutation operator PM

The mutation operators is based on power distribution :

f(x) = pxp, 0 ≤ x ≤ 1

The corresponding density function is as follows:

F (x) = xp, 0 ≤ x ≤ 1

where p is the index of distribution. This mutation is used to create a solution c′ in the
vicinity of a parent solution c. A uniform random number t between 0 and 1 created, and
s created which follow the mentioned distribution:

c′ =
{
c+ s(c− LB) if t < α

c+ s(UB − c) if t ≥ α.

Where t = c−LBi
UBi−LBi

, l and u are lower and upper bound and α is a uniformly distributed
random between [0.1]. The probability of producing a mutation solution c′ on left(right)
side of c is proportional to distance of c from [LB,UB] and the muted solution is always
feasible.

4.3.2 Boundary mutation BM

The boundary mutation is a variation of the uniform mutation. The difference is that a
selected element of chromosome is replaced by the lower or upper boundary of the feasible
area.

4.3.3 Random mutation RM

The ci is a random (uniform) number from domain [LBi, UBi].

4.3.4 Makinen-Periaux and Toivanen mutation

It has been applied to solve some multidisciplinary shape optimization problem in aero-
dynamics and electromagnetic as well as a large set of constrained optimization problem
(Deep and Thakar 2007).
Let us α ∈ [0.1]; Then the mutation point c′ is :

c′ = (1− t̂)li + t̂ui,

where

t̂ =


t− t( t−rt )b if r < t,

t if r = t

t+ (1− t)( r−t1−t
b) if r > t.

t = c−LBi
UBi−c .

Remark 4.3.1. This operator does not decrease as the generation in creases.
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4.3.5 Mühlen Bein’s mutation

The mutated element is given by:

c′i = (ci ∓ riγ).

Where ri defines the mutation rang and it is normally set to 0.1(UBi − LBi). The + or -
sign is chosen with a probability of 0.5 and :

γ = Σ15
k=0αk2−k, αk ∈ [0, 1]. (4.1)

Is randomly generated with P (αi = 1
16), value in the interval [Ci−ri, Ci+ri], are generated

using this operator, with probability of generating a neighborhood of Ci being very high.
The minimum possible proximity is produced with precision of ri2−15.

4.3.6 Discrete mutation (DX)

For DX, we choose γ, where:
γ = Σπ

k=0αkB
k
m, (4.2)

with,
π = log(rmin)

log(Bm) , Bm > 1, (4.3)

is a parameter called the base of the mutation and rmin is the lower limit of the relative
mutation rang.

4.3.7 Continuous mutation CX

The same of DX but:
γ = Σπ

k=0αkφ(Bk
m), (4.4)

with φ(zk), being a triangular probability distribution, with Bk
m−B

k−1
m

2 ≤ zk ≤ Bk+1
m −Bk

m
2 .

4.3.8 Creep mutation

In creep mutation a random gene is selected and its value changed with a random value
between lower and upper bound.

4.3.9 Uniform mutation UM

The mutation operator changes the value of chosen gene with uniform random value se-
lected between the user specified upper and lower bound, for that gene. It used in case of
integer representation.

4.3.10 Non-uniform mutation operator NUM

The element to be mutation at kth generation is denoted by c, ci ∈ [LBi, UBi]. As before
LBi and UBi are lower and upper bounds of ci respectively. The mutated segment is given
by:

c′i =
{
ci + ∆(k, UBi − ci) if t = 0
ci −∆(k, ci − LBi) if t = 1
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where t is a random digit that takes either the value 0 or 1. The value of the function ∆
is calculated by:

∆(k, y) = y(1− α(1− k
T

)b) (4.5)

where α is a uniformly distributed random number in interval [0.1], T is the maximum
number of generations, b is a parameter determining the degree of non-uniformity. This
operation returns a value in the rang [0, y], such that the probability of returning a number
close to zero increase as k increases. In the initial generations non-uniform mutation tends
to search the space locally.

Remark 4.3.2. This method will be more used in comparison study in next section in
RCGA, for this we will be showing the convergence of this operators based on the stochastic
process theory in one dimensional case, i.e., n = 1. See [91]

Définition 4.3.3. Given a vector c = (c1, .........ci, ........cm), where m is the dimension
of vectors. We call c′ is its neighbor, if and only if one of its component is changed and
other components remain unchanged. The neighborhood N of a vector c consists of all its
neighbors. That is, N = {c′, c′, is a neighbor of c}.

We assume that f(x) has a unique minimal value at x∗. In Fig.4.1, let x0 be one initial
solution, x′0 another initial solution lying between x∗ and x0, x0 a number satisfying
f(x0) = f(x0) and x0 6= x0, and ε an arbitrary small positive number. Without loss of
generality, we assume that variable x lies on the right side of x∗ and x lies on the left side.
Based on this method, we have

Figure 4.1: Analysis on the unimodal function

x1 =
{
x0 if ζ = 0, or if ζ = 1, and x0 −∆(1, x0 − LB) ≤ x0

x0 −∆(1, x0 − LB) if ζ = 1 and x0 −∆(1, x0 − LB) > x0
(4.6)

x′1 =
{
x′0 if ζ = 0, or if ζ = 1, and x′0 −∆(1, x′0 − LB) ≤ x′0
x′0 −∆(1, x′0 − LB) if ζ = 1 and x′0 −∆(1, x′0 − LB) > x′0

(4.7)

Lemme 4.3.4. Let p1 = P{x1 /∈ (x∗ − ε, x∗ + ε)}, p′1 = P{x′1 /∈ (x∗ − ε, x∗ + ε)}, if
x∗ < x′0 < x0, then p′1 < p1. Similarly if x0 < x′0 < x∗, p′1 < p1 also hold.
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Proof. We have

p1 = 1− P{x1 ∈ (x∗ − ε, x∗ + ε)}

= 1− P{ζ = 1, x∗ − ε < x0 −∆(1, x0 − LB) < x∗ + ε}

= 1− 1
2P{x

∗ − ε < x0 −∆(1, x0 − LB) < x∗ + ε}

Similarly p′1 = 1− 1
2P{x

∗ − ε < x′0 −∆(1, x′0 − LB) < x∗ + ε}.
Let q = P{x∗ − ε < x0 −∆(1, x0 − LB) < x∗ + ε}
and q′ = P{x∗ − ε < x′0 −∆(1, x′0 − LB) < x∗ + ε}.
Thus it is enough to show that

q < q′ (4.8)

By Eq.(4.5), we have

q = P{x∗ − ε < x0 −∆(1, x0 − LB) < x∗ + ε}

= P{x∗ − ε < x0 − (x0 − LB)(1− α(1− 1
T

)b) < x∗ + ε}

= P{(x
∗ − LB − ε
x0 − LB

)
1
m < α < (x

∗ − LB + ε

x0 − LB
)

1
m }

q = (x
∗ − LB + ε

x0 − LB
)

1
m − (x

∗ − LB − ε
x0 − LB

)
1
m (4.9)

(4.10)

Where m = (1− 1
T )b.

Similarly, we have

q′ = P{x∗ − ε < x′0 −∆(1, x′0 − LB) < x∗ + ε}. (4.11)

(4.12)

= (x
∗ − LB + ε

x′0 − LB
)

1
m − (x

∗ − LB − ε
x′0 − LB

)
1
m (4.13)

(4.14)

From 4.13,4.9, and let q subtracts q′, we may derive Eq. (4.8) and thus the correctness of
the Lemma. Since x0 is a given initial solution (individual), we can assume that x0 > x∗.
Let
p+

1 :=P{x0 is the initial solution and x1 /∈ (x∗ − ε, x∗ + ε)}
p−1 :=P{x0 is the initial solution and x1 /∈ (x∗ − ε, x∗ + ε)}
Then, p1 := p+

1 , (or p
−
1 )

For n ≥ 2, we define

p+
n := P{xn−1 > x∗, xn /∈ (x∗ − ε, x∗ + ε)}

p−n := P{xn−1 < x∗, xn /∈ (x∗ − ε, x∗ + ε)}
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Then, pn := p+
n + p−n

Théorème 4.3.5. For any ε > 0, we have, limn→∞ pn = 0

Proof. By the description of NUM, it is easy to know that the stochastic process {xi; i =
0, 1, 2, .....} is a Markov process. By the property of conditional expectation, Markov
property and Lemma 4.3.4, we can obtain that

p2 = P{x2 /∈ (x∗ − ε, x∗ + ε)}

= E(Ix2 /∈(x∗−ε,x∗+ε)

= E(E(Ix2 /∈(x∗−ε,x∗+ε)|x1))

= E(Ex1(Ix2 /∈(x∗−ε,x∗+ε))

= Ex1(Ix2 /∈(x∗−ε,x∗+ε)P{x1 /∈ (x∗ − ε, x∗ + ε)}

≤ max{p+
1 , p

−
1 }p1

p3 = P{x3 /∈ (x∗ − ε, x∗ + ε)}

= E(Ix3 /∈(x∗−ε,x∗+ε)

= E(E(Ix3 /∈(x∗−ε,x∗+ε)|x2))

= E(Ex2(Ix3 /∈(x∗−ε,x∗+ε))

= E(Ex2(Ix1 /∈(x∗−ε,x∗+ε))

= Ex2(Ix1 /∈(x∗−ε,x∗+ε)P{x2 /∈ (x∗ − ε, x∗ + ε)}

= max{Ex1(Ix1 /∈(x∗−ε,x∗+ε), E
x1(Ix1 /∈(x∗−ε,x∗+ε)}P2

≤ (max{p+
1 , p

−
1 })2p1

By induction we have

pn = P{xn /∈ (x∗ − ε, x∗ + ε)}

≤ (max{p+
1 , p

−
1 })n−1p1

Obviously, 0 < p+
1 , p

−
1 < 1, so limn→∞ pn = 0.

By the greedy selection of NUM, it is easy to know that

pn = P{xi /∈ (x∗ − ε, x∗ + ε); i = 0, 1, 2, .....}.

So Theorem implies that for any ε > 0, we have

lim
n→∞

(1− P{xi /∈ (x∗ − ε, x∗ + ε); i = 0, 1, 2, .....}) = 1

i.e
lim
n→∞

(P{∃i = 0, 1, 2, ....., n, s.t, xi ∈ (x∗ − ε, x∗ + ε)}) = 1 (4.15)

Eq.4.15 indicates that for any ε > 0; {xi}∞i=1 is to enter the domain (x∗− ε, x∗+ ε) almost
surely, and so {xi}∞i=1, converges to x∗ almost surely.
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4.4 Comparison study between BCGA and RCGA models

In this section, we will compare between two types of GAs (BCGA ,RCGA) and Box-
Jenkins method, applied on monthly hotel room averages data in Kuwait figure 1.9 in
chapter one. The plan of this study is:

1. Estimate the parameters of Box-Jenkins model proposed with BCGA and RCGA
using same crossover operators and different mutation operators,

2. Estimate the parameters of Box-Jenkins model with BCGA and RCGA using differ-
ent crossover and mutation operators,

3. comparison between all results.

The crossover and mutation operators used in this comparison are,:
First step:

• Single point crossover and two point crossover operators for RCGA and BCGA,

• Non-uniform mutation operator for all RCGA and flip mutation for all BCGA,

Second step:

• Extended linear crossover, Laplace crossover arithmetic crossover for RCGA and two
point crossover operator for all BCGA,

• Non-uniform mutation operator for RCGA and flip mutation for all BCGA,

Third step:

• Arithmetic crossover for RCGA and two point crossover operator for BCGA,

• Makinen-Periaux and Toivanen mutation operator for RCGA and flip mutation for
all BCGA,

Remark 4.4.1. 1. We use the comparison in all step with three selection methods:
roulette wheel selection, tournament selection, and random selection.

2. The figure used in this study is for difference data of monthly hotel clients data in
Kuwait.

So we have don’t forget that the result of Box-Jenkins method in chapter one, the
ARIMA(3,1,3)(1,1,1)[12] model is the better model for this data:
1) In the first, when we applique the RCGA and BCGA algorithms using same crossover
operators and different mutation operators, we have the following result on figures and
tables:
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(a).Wheel roulette (b).Tournament (c).Random

Figure 4.2: One point crossover

(a).Wheel roulette (b).Tournament (c).Random

Figure 4.3: Two point crossover

Table 4.1: BCGA application

BINARY CODED GENETIC ALGORITHMS(BCGA)
Crossover

and Selection types AIC BIC MSE AREf

Mutation
Single point Wheel roulette -1.3043e+03 -1.2652e+03 1.6045e-06 28.3232

with Tournament -1.1929e+03 -1.1539e+03 4.8847e-06 5.8328
flip Random -1.0859e+03 -1.0468e+03 1.4250e-05 55.3441

mutation
Two point Wheel roulette -1.2624e+03 -1.2233e+03 2.4392e-06 36.4903

with Tournament -1.2571e+03 -1.2181e+03 2.5707e-06 31.2935
flip Random -1.0441e+03 -1.0050e+03 2.1648e-05 51.6448

mutation
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Table 4.2: RCGA application

REAL CODED GENETIC ALGORITHMS(RCGA)
Crossover

and Selection types AIC BIC MSE AREf

Mutation
Single point Wheel roulette -1.1745e+03 -1.1699e+03 2.8275e-05 12.8853

with Tournament -1.7401e+03 -1.7356e+03 2.0664e-07 1.7230
non-uniform Random -1.5518e+03 -1.5473e+03 1.0625e-06 51.3316
mutation
Two point Wheel roulette -1.4027e+03 -1.3981e+03 3.8865e-06 23.3916

with Tournament -1.3815e+03 -1.3770e+03 4.6722e-06 35.4764
non-uniform Random -1.3182e+03 -1.3137e+03 8.1015e-06 35.2068
mutation

2) In the second, when we applique the RCGA and BCGA algorithms using different
crossover and mutation operators, we have the following result on figures and tables:

(a).Wheel roulette (b).Tournament (c).Random

Figure 4.4: Extended linear crossover



4.4. Comparison study between BCGA and RCGA models 85

(a).Wheel roulette (b).Tournament (c).Random

Figure 4.5: Laplace crossover

(a).Wheel roulette (b).Tournament (c).Random

Figure 4.6: Arithmetic crossover

(a).Wheel roulette (b).Tournament (c).Random

Figure 4.7: Makinen-Periaux and Toivanen mutation
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Table 4.3: RCGA with various crossover and mutation operators

REAL CODED GENETIC ALGORITHMS(RCGA)
Crossover
and Selection types AIC BIC MSE AREf

Mutation
Extended linear Wheel roulette -1.3906e+03 -1.3860e+03 4.3176e-06 19.5356
crossover with Tournament -1.5341e+03 -1.5296e+03 1.2395e-06 5.8490
non-uniform
mutation Random -1.4206e+03 -1.4160e+03 3.3263e-06 23.5867
Laplace Wheel roulette -1.7904e+03 -1.7859e+03 1.3345e-07 21.3803
crossover
with Tournament -1.4714e+03 -1.4668e+03 2.1387e-06 33.2422
non-uniform Random -2.9304e+03 -2.9258e+03 6.6117e-12 0.6769
mutation
Arithmetic Wheel roulette -1.8661e+03 -1.8615e+03 6.9113e-08 21.9403
crossover
with Tournament - 2.1173e+03 -2.1127e+03 7.7775e-09 15.2560
non-uniform Random -2.4454e+03 -2.4409e+03 4.4834e-10 5.1750
mutation
Arithmetic Wheel roulette -2.4010e+03 -2.3965e+03 6.5959e-10 8.0643
crossover
with Makinen Tournament -1.7930e+03 -1.7884e+03 1.3049e-07 5.1825
-Periaux
and Toivanen Random -1.3651e+03 -1.3606e+03 5.3884e-06 15.8515
mutation

It easy to show that when we use some various of crossover and mutation operator,
the results are performed for RCGA then of BCGA, because all statistics indicators AIC,
BIC, MSE and AREf are minimums in general, and errors of models are reduced. Then
we can conclude that using RCGA have many advantages, Better precision( we see that
after) and easy to handle a large dimensional problem.
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conclusion and perspective
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General conclusion and
perspective

The main objective of time series analysis is
to know the relation between observation for
choosing an optimal model to forecast the
future.In this thesis, we have presented and
exploit one of robustness methods for opti-
mization, is the genetic algorithms with his
types BCGA and RCGA, for modeling the
time series and performing the forecasting
and comparing them too with Box - Jenk-
ins method. Application of this method to
linear model ARIMA and SARIMA models
in the third and fourth chapter improve the
model’s construction and the forecast with
giving us a good models comparing with the
classical method. In the fourth chapter, when
we let the variable in their nature called real
encoded requires some various crossover and
mutation operators more than BCGA op-
erators. A new evolutionary programming
algorithm crossover operators based on the
non-uniform mutation(NUM) and modifica-
tion in errors are proposed. A highly com-
parative framework for time-series analysis
was developed and its broad scientific utility
demonstrated. GAs with his types is gener-
ally faster and more robust then Box - Jenk-
ins method.
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