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ABSTRACT

The main objective of this doctoral thesis is the study of solutions for various types
of non-autonomous second order differential equation. We give conditions guaran-
teeing the existence of mild solutions.

One of the main subject of study is prove the existence of mild solution for the sec-
ond evolution of problem on a bounded interval. Then we studied the problem on
the positive real half-axis with local and nonlocal conditions. On the other hand, an-
other important subject of interest is the study of problem with infinite delay. We
discuss the existence of mild solutions for the neutral evolution equations of the sec-
ond order.

Sufficient conditions on the existence of mild solutions for the semilinear evolution
inclusion are given.

The technique used is to reduce the study of our problem to the search for a fixed
point of a suitably constructed integral operator. Our approach will be based on
some fixed point theorems, semi-group theory and noncompact measurement. The
latter is often used in several branches of the nonlinear analysis. Especially this
technique has proved to be a very useful tool in the existence of solutions of several
types of differential and integral equations. All our work has been illustrated with
examples, to prove the applicability of our results.

AMS Subject Classification : 34G20, 34G25, 34K20, 34K30.
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RESUME

L’objectif principal de cette these de doctorat est 1’étude de solutions pour différents
types d’équations différentielles de second ordre non autonome. Nous donnons des
conditions garantissant 1’existence de solutions faibles.

L'un des principaux sujets d’étude prouve l'existence d’une solution au probleme
d’évolution de second ordre sur un intervalle borné. On étudie ensuite ce probleme
sur la demi-droite réelle positive avec des conditions locales et non locales. D’autre
part, On étudie aussi ce probléeme retard infini.

Nous discutons l’existence des solutions faibles pour équations d’évolution du type
neutre du second ordre. Des conditions suffisantes sur I’existence de solutions faibles
pour l'inclusion de I’évolution semi-linéaire sont données. La technique utilisée est
de ramener 1'étude de notre probleme a la recherche d’un point fixe d'un opéra-
teur intégral convenablement construit. Notre approche sera basée sur quelques
théoremes de point fixe, la théorie des semi-groupes et la mesure de non compacité.
Cette derniere est souvent utilisée dans plusieurs branches de ’analyse non linéaire.
Spécialement cette technique a prouvé qu’elle est un outil tres utile dans I’existence
de solutions de plusieurs types d’équations différentielles et intégrales.

Tous nos travaux ont été illustré par des exemples, pour prouver 1'applicabilité de
nos résultats.

Classification AMS: 34G20, 34G25, 34K20, 34K30.
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INTRODUCTION

In various fields of science and engineering, many problems that are related to lin-
ear viscoelasticity, nonlinear elasticity and Newtonian or non-Newtonian fluid me-
chanics have mathematical models. Popular models essentially fall into two cate-
gories: the differential models and the integrodifferential models. A large class of
scientific and engineering problems is modelled by partial differential equations, in-
tegral equations or coupled ordinary and partial differential equations which can be
described as differential equations in infinite dimensional spaces using semigroups.
In general functional differential equations or evolution equations serve as an ab-
stract formulation of many partial integrodifferential equations which arise in prob-
lems connected with heat-flow in materials with memory and many other physical
phenomena. It is well known that the systems described by partial differential equa-
tions can be expressed as abstract differential equations [108]. These equations occur
in various fields of study and each system can be represented by different forms of
differential or integrodifferential equations in Banach spaces. Using the method of
semigroups, various solutions of nonlinear and semilinear evolution equations have
been discussed by Pazy [108].

The nonlocal Cauchy problem for abstract evolution equations was first investigated
by Byszewski and Lakshmikantham [47], by using the Banach fixed point theorem,
the authors obtained the existence and uniqueness of mild solutions of nonlocal dif-
ferential equations. The nonlocal problem was motivated by physical problems. In-
deed, it is demonstrated that the nonlocal problems, have better effects in applica-
tions than the classical Cauchy problems. For example, it is used to represent math-
ematical models for evolution of various phenomena, such as non- local neural net-
works, nonlocal pharmacokinetics, nonlocal pollution and nonlocal combustion (see
McKibben [96]). For the importance of nonlocal conditions in different fields of ap-
plied sciences see [49, 55,121, 120] and the references cited therein. For example,
in [47] the author describes the diffusion phenomenon of a small amount of gas in a

1
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transparent tube by using the formula

g(u) = chu(ti),

where ¢;,7 = 0,1, ..., p, are given constants and 0 < ¢y < t; < < t, < 1. Early work
in this area was made by Byszewski in [44, 45,46,47]. Then, Balachandran and his
collaborators have considered various classes of nonlinear integrodiferential systems
([22], see also, references cited in [38]). Then, Benchohra and his collaborators con-
sidered various classes of problems with the nonlocal conditions in [37,38, 35, 39, 32].
Thenceforth, the study of differential equations with nonlocal initial conditions has
been an active topic of research. The interested reader can consult [23,48,62,122].

In recent years we see an increasing interest in infinite delay equations. The main
reason is that equations of this type become more and more important for different
applications. When the delay is infinite, the notion of the phase space B plays an im-
portant role in the study of both qualitative and quantitative theories. A usual choice
is a seminormed space satisfying suitable axioms, which was introduced by Hale
and Kato in [74], see also the books by Ahmed [8], Corduneanu and Lakshmikan-
tham [50], Kappel and Schappacher [87]. For detailed discussion and applications on
this topic, we refer the reader to the book by Hale and Verduyn Lunel [76], Hino et
al. [85], Wu [117] and Baghli and Benchohra [16] and the references therein.

Neutral differential equations arise in many areas of applied mathematics and for this
reason these equations have received much attention in the last few decades. The lit-
erature related to ordinary neutral functional differential equations is very extensive.
The work in partial neutral functional differential equations with infinite delay was
initiated by Herndndez and Henriquez. First order partial neutral functional differ-
ential equations have been studied by different authors. The reader can consult Hale
[75,73,76] and Wu [119] for systems with finite delay and Herndndez et al. [80,81,82]
for the unbounded delay case. Herndndez [79] established the existence results for
partial neutral functional differential equations with nonlocal conditions. An exten-
sive theory for ordinary neutral functional differential equations which the includes
qualitative behavior of, classes of such equations and applications to biological and
engineering processes. Several authors have studied the existence of solutions of neu-
tral functional differential equations in Banach space [35, 39, 64, 65,81,79,82]. In the
literature, there are many papers studying the problems of neutral differential equa-
tions using different methods. Among them, the fixed point method combined by
semigroup theory in Fréchet space, see for example Baghli and Benchohra [16,17,18].
Lee et al. [93] and Benchohra et al. [33] discussed the existence of mild solutions to
second-order neutral differential inclusions. See also Herndndez and Mckibben [83]
and the references therein.

The theory of differential inclusions in Banach spaces has been developing fast be-
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cause of the possibility of extensive practical applications, Benchohra et al. [35] dis-
cussed the existence of mild solutions to second-order neutral differential inclusions,
many authors have taken a growing interest in the investigation on this subject, such
as [8,10,43,54,56,60,86,111,112,117] and the references therein. This type of equa-
tions has received much attention in recent years [1].

Measures of noncompactness are very useful tools in functional analysis, for in-
stance, in metric fixed piont theory and in the theory of operator equations in Ba-
nach spaces. They are also used in the studies of functional equations, ordinary and
partial differential equations, fractional partial differential equations, integral and in-
tegro—differential equations, optimal control theory, and in the characterizations of
compact operators between Banach spaces. We give now a list of three important
examples of measures of noncompactness which arise over and over in applications.
The first example, is the Kuratowski measure of noncompactness (or set measure of non-
compactness)

a(D) = inf{r > 0 : D has a finite cover by sets of diameter < r},

was defined and studied by Kuratowski [90] in 1930. In 1955, G. Darbo [51] used the
function a to prove his fixed point theorem. Darbo’s fixed point theorem is a very
important generalization of Schauder’s fixed point theorem, and includes the exis-
tence part of Banach'’s fixed point theorem.

The second measures of noncompactness were introduced by Goldenstein, Goh’berg
and Markus [66], Hausdorff measure of noncompactness (or ball measure of noncompact-
ness)

X(D) = inf{e > 0 : D has a finite cover by balls of radius < ¢},

which was later studied by Goldenstein and Markus [67] in 1968, and the third one
is the Istrdtesku measure of noncompactness (or lattice measure of noncompactness) [106] in
1972.

I(D) = inf{e > 0 : D contains no infinite e-discrete setin D}.

The relation between this measures are given by the following inequalities, which are
obtained by Danes [52]

X(D) < 1(D) < (D) < 2x(D)

for any bounded set D C FE. Apparently Goldenstein, Goh’berg and Markus were
not aware of Kuratowski’s and Darbo’s work. It is surprising that Darbo’s theorem
was almost never noticed and applied until in the 1970’s mathematicians working
in functional analysis, operator theory and differential equations started to apply a
Darbo’s theorem and developed the theory connected with measures of noncompact-
ness.
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The use of these measures is discussed, for instance, in the monographs [11, 26, 28,
107,91,94,109,15], Ph.D. thesis [12,14,59,95,101,114] and expository papers [71,115].
Applications of measures of noncompactness to differential and integral equations
can be found, for instance, in [7, 27,29, 30,98, 102], to fractional partial differential
equations in [2]. Measures of noncompactness on Fréchet spaces and applications to
an infinite system of functional-integral functions can be found in [103]. Additional
related results can be found in the references of the mentioned monographs and pa-
pers.

This thesis is devoted to various semilinear differential equations of non-autonomous
second order. Specifically, we are interested in following problem type

y'(t) — Alt)y(t) = f(ty(D)), 1)

there is many results concerning the second-order differential equations, see for ex-
ample Fattorini [63], Travis and Webb [113], Baliki and Benchohra [24, 25] R. Hen-
riquez [78] and H. R. Henriquez et al. [84]. Among useful for the study of abstract
second order equations is the existence of an evolution system U (t; s) for the homo-
geneous equation

y'(t) = A(t)y(t), for ¢ > 0. (2)

For this purpose there are many techniques to show the existence of U(t; s) which
has been developed by Kozak [89].
In what follows, we will give a brief description of each Chapter of this thesis.
Chapter 1 contains notation and preliminary results, definitions, theorems and other
auxiliary results which will be needed in this thesis, in the first section we give some
generalities, in Section 2 we present some properties of Measures of noncompact-
ness, in the third Section 3 we give some properties evolution systems, in Section 4
we present some properties of phase spaces, in Section 5 we give some properties of
set-valued maps and in the last section we cite some fixed point theorems.
In Chapter 2, we consider the existence of second order evolution equation, defined
on a bounded interval J

y'(t) — A(t)y(t) = f(ty(t)), t € J = [0;T],

y(0) =0, ¥'(0) = y1.
In chapter 3, we establish the existence of second order evolution equation in Banach
spaces, defined on a semi infinite interval J with local conditions

y'(t) — A(t)y(t) = f(t,y(t)), t € J =10,00),,

y(0) = wo, ¥'(0) = 1.

In chapter 4, we prove results on the existence of mild solutions of second order evo-
lution equation in Fréchet spaces, defined on a semi infinite interval J with nonlocal
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conditions
y"(t) — A(t)y(t) = f(t,y(t), t € J =0, 00).

y(0) = g(y), ¥'(0) = h(y).

In Chapter 5, we study the existence of mild solutions of second order evolution
equation with infinite delay of the form

y'(t) — Alt)y(t) = [f(t,p).t € J=I[0;T]
y(t) = o(t),t € (—o0,0],

/

y'(0) = 7.

Chapter 6 is devoted to study the existence of mild solutions of second order neutral
evolution equation

d

V() =gt y)] = Ay(t) = ft.y).t € J=[0:T]

(t) = ¢(t),t € (~o0,0]
y'(0) = 7.

Finally, In Chapter 7, we discuss the existence of mild solution of second order evo-

lution inclusion

y'(t) — A(t)y(t) € F(t,y(t), t € J = [0;T],
y(0) = vo, ¥'(0) = y1,
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CHAPTER 1

CHAPTER 1. PRELIMINARIES

This chapter, we collect some notations, definitions, theorems, lemmas and facts con-
cerning measures of noncompactness, phase spaces and multivalued analysis and
other auxiliary results which will be needed in the sequel.

1.1 Generalities

Let F be a Banach space with the norms | - |.
Denote by

¢ C(J, E) the Banach space of continuous functions y mapping J = [0; 7] into £
with the usual supremum norm

y|| = sup |y(t)],
teJ

¢ BC(J, E) the Banach space of all bounded and continuous functions y mapping
J := [0, 00) into E with the usual supremum norm

Iyl = sup [y (#)].
teJ

¢ C(J, E) the Fréchet space of all continuous functions y mapping .J into E equipped
with the family of seminorms

[yl = sup{[y(®)] - t € [0; 7], T > 0}.

¢ L>(J,]0,00)) the Banach space of essentially bounded measurable function ~ :
J — [0, 00) with the norm

17l =inf{c>0:|v(t)| <c, ae. t € J},

7



8 Chapter 1. Preliminaries

¢ C is the space defined by
C={y:(—00,T] — Esuchthaty|; € C(J, F) and y, € B},

we denote by y|; the restriction of y to J.

¢ B(F) is the Banach space of bounded linear operators from E into E, with the
usual supreme norm

N[5y = sup{|N(y)| - ly| = 1}.

Definition 1.1.1. A function f : R — FE is called strongly measurable if there exists a
sequence of simple functions ( f,,),, such that

Tim [a() = £(8) = 0.

Definition 1.1.2. A function f : R — FE is Bochner integrable on J if it is strongly
measurable and

for any sequence of simple functions ( f,, ).

Theorem 1.1.1. A strongly measurable function f : R — E is Bochner integrable if and
only if | f| is Lebesgue integrable.

We refer to [97,118] for more details.

Definition 1.1.3. Amap f : J x £ — E is Carathéodory if
(1) t — f(t,y) is measurable for all y € E, and

(11) y — f(t,y) is continuous for almost each t € J.

If, in addition,

(i17) for eachr > 0, there exists g, € L'(J, R, ) such that

|f(t,y) < g.(t) forall |y| <r and almosteacht € J,
then we say that the map is L'-Carathéodory.

Lemma 1.1.1. (Cauchy formula). If f : R, — R, continuous function then

/t/ /:2.../asnf(3n+1)dsn+1dsn-~-d31 = %/atf(s)(t—s)”ds

foreacht > a.
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1.2 Some properties of evolution system

In this thesis, we will use the concept of evolution systems U/(¢, s) associated with
problem
y' = A(t)y, t € J, (1.1)

y(0) = 40,4'(0) = w1, (1.2)

introduced by Kozak in [89]. With this purpose, we assume that {A(¢), ¢t € J} isa
family of closed densely defined linear unbounded operators on the Banach space E
and with domain D(A(t)) independent of ¢.

Definition 1.2.1. A family U of bounded operatorsU(t,s) : E — E,
(t,s) € A:={(t,s) € J x J:s < t},issaid to be an evolution operator generated by
the family { A(t), t > 0}if the following conditions are fulfilled:

(II;) For any x € E the map (t,s) — U(t, s)x is of continuously differentiable and

(@) foranyt e J U(t,t) = 0.
(b) forall (t,s) € Aandforanyz € E,
2ut, s)x!tzs =z and ZU(t, 5)x|t:S = —u.

() Forall (t,s) € A, ifx € D(A(t)), then £U(t, s)z € D(A(t)), the map (t,s) —
U(t, s)x is of class C* and

(@) gtzu(t s)x = A)U(L, s)x.
(b) a salU(t,s)x =U(t,s)A(s)

(0 azatu(t s)x ‘: = 0.

(I13) Foz(‘jal] (t,s) € A, then 2U(t, s)x € D(A(t)), there exist 553 dt2d ==U(t,s)z, dSZdtU(t s)x
an

@ 25Ut s)x = At) L (OU(L, s)x.
Moreover, the map (t,s) — A(t) 2 (t)U(t, s)x is continuous.

(b) 682&2/(15 s)x = 2U(L, s)A(s)z.

Kozak [89] has proved that the problem (1.1)-(1.2) has a unique solution

0
y(t) = —au@, O)y() +Z/{<t, O)yl forte J

More details on evolution systems and their properties could be found on Kozak [89].
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1.3 Some properties of measure of noncompactness

The theory of measures of non—compactness has many applications in Topology,
Functional analysis and Operator theory. For more information the reader can see
[28]. Throughout thesis, we will also accept the following definition of the concept of
measure of noncompactness [28].

Definition 1.3.1. Let E/ be a Banach space and )p the family of all nonempty and
bounded subsets D of El. The measure of noncompactness is a map

p: Qp — [0;+00)

satisfying the following properties:

(i1) p(D) = 0if only if D is relatively compact,

(i) p(D) = u(D) ; D the closure of D,

(i5) p(C) < p(D) when C C D;

(i4) W(C+ D) < u(C)+pu(D)whereC+D ={z|x=y+zyecC;ze€ D},
(i5) p(aD) = |a|u(D) for any a € R,

(i) p(ConvD) = u(D) ; ConvD the convex hull of D,

(i7) p(C'U D) =max(u(C), u(D)),

(i) p(CU{z}) =p(D)forany z € E.

We will use a measure of noncompactness p in the space C(.J, E) which was consid-
ered in [28]. Denote by w’(y,e) the modulus of continuity of y on the interval J,
ie.

w'(y,e) = sup{ly(t) —y(s)| 1 t,s € J.|t —s| <&}
Moreover, let us put
w?'(D,e) = sup {w’(y,e) : y € D}

wi(D) = ll_r)no supw’ (D, ¢).

Lemma 1.3.1. [28] If { D}, is sequence of nonempty, bounded and closed subsets of E
such that D, 41 C D,,(n =1,2,3...) and if lim u(D,,) = 0, then the intersection
n—oo

D, =nNiXD,

is nonempty and compact.
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Lemma 1.3.2. ([28]). If v is a regular measure of noncompactness, then
[1(D1) — p(D2)| < u(B(0,1))dp (D1, Do)

for any bounded subset Dy, Dy € E, where dy is Hausdorff distance between Dy and Ds.

Lemma 1.3.3. [102]If D C C(J; E) is bounded and equicontinuous, then the map
t — u(D(t)) is continuous on J and

(D) = sup u(D(t)),

teJ

L (/OtD(s)ds) < /Ot,u(D(s))dsfor eacht € J.

where
D(t) ={y(t) : y € D}

/OtD(s)dSZ {/Oty(s)ds:yel)}.

Lemma 1.3.4. [43] Assume that a set D C C(J, E) is bounded, then

and

sup 1(D(t)) < u(D(J)) < wg (D) + sup p(D(t)),

teJ teJ

sup 1(D(t)) < n(D) < wy (D) + sup u(D(1)),

teJ teJ

where 1) is a measure of noncompactness in C(J, E).

Lemma 1.3.5. [77] If E separable Banach space and C' is nonempty, bounded subset of
BC(J; E) then the function t — p(C(t)) is measurable and

i (/OtC(s)ds) < /Ot,u(C(s))dsfor eacht > 0,

Lemma 1.3.6. [43] If B is bounded subset of Banach space, then for each ¢ > 0 there is a
sequence function {b,}°>, C B such that

w(B) < 2u({bn}oi,) + ¢

We recall that a subset B C L'(.J; E) is uniformly integrable if there exists
¢ € L'(J;R") such that

|z(s)| < &(s) forz € Band ae. s € J.

Lemma 1.3.7. [99] If {B,}*, C L'(J, E) is uniformly integrable, then the function t —
p({Bn(t)}o2,) is mesurable and

oA t Bn<s>>ds}jo <2 [ uiB)
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Definition 1.3.2. [53] Let X be a Banach space, and let S be a nonempty subset of
X. A continuous mapping ¥ : S — X is called to be —contraction if there exists a
constant k € [0; 1) such that, for every bounded setv C S,

p(W(v) < kp(v).

Lemma 1.3.8. [27] If the map ¥ : D(V) C X — Y is Lipschitz continuous with constant
k, then (W (V)) < ku(V') for any bounded subset V' C D(V), where Y is another Banach
space.

1.4 Some properties of phase spaces

For any continuous function y and any ¢ > 0, we denote by y, the element of B defined
by
y:(0) = y(t+6) for 6 € (—0,0].

Here y,(-) represents the history of the state up to the present time ¢t. We assume that
the histories y; belong to 5.

In this thesis, we will employ an axiomatic definition of the phase space B introduced
by Hale & Kato [74] and follow the terminology used in [85]. Thus, (B, || - ||z) will be
a seminormed linear space of functions mapping (—oo, 0] into E, and satisfying the
following axioms :

(A) Ify : (=00, T) — E,T > 0, is continuous on J and y, € B, then for every
t € [0,T) the following conditions hold :

@) y € B;
(ii) There exists a positive constant H such that |y(¢)| < H||y:||5;

(iif) There exist two functions K(-), M(-) : Ry — R, independent of y with K
continuous and M locally bounded such that :

lyells < K (t) sup{ [y(s)] : 0 < s <t} + M()||yol 5
(A3) For the function y in (A;), y; is a B—valued continuous function on J.
(A3) The space B is complete.

Remark 1.4.1. In the sequel, we get

7= ma {sup (K (0}, sup ()} }.
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1.4.1 Examples of phase spaces

Example 1.4.1. Let:

BC the space of bounded continuous functions defined from (—oo, 0] to E,
BUC the space of bounded uniformly continuous functions defined from
(—00,0] to E,

C>*:={¢pe BC: eli)moo o(0) exists in E}

C":={¢ € BC: elim ¢(0) = 0}, endowed with the uniform norm

o]l = sup{lp(0)] - 6 < 0}.

We have that the spaces BUC, C™ and C° satisfy conditions (A;) — (A3). However,
BC satisfies (A1), (As3), but (Ay) is not satisfied.

Example 1.4.2. Let g be a positive continuous function on (—oo, 0]. We define:

Cy = {(b € C((—00,0]), E) : 90) is bounded on (—oo, O]}

9(9)

and 5(0)
0._ T _
tm ety 20 <o),
endowed with the uniform norm
[6(0)]
= —=:0<0;.
o = sup {“ 75" 0 < 0}
Then we have that the spaces C, and C satisfy condition (As). We consider the
following condition on the function g.
(g1) Foralla > 0,

sup sup{¢(t+9) c—oo <t < —t} < o0.
0<t<a 9(0)

Then C, and CY satisfy conditions (A1) and (As) if (¢1) holds.

Example 1.4.3. The space C, For any real positive constant v, we define the func-
tional space C., by

C, :={p € C((—00,0)), E) : lim e"¢(0) existin E}

6——oc0

endowed with the following norm

9]l = sup{e™|¢(0)] : 6 < 0}.
Then in the space C.,, the axioms (A;) — (A3) are satisfied.

For other details we refer, for instance to the book by Hino et al. [85].
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1.5 Some Properties of Set-Valued Maps

Let (X, d) be a metric space and A be a subset of X. We denote:
PX)={ACX:A#0}
and
Py(X)={A C X : Abounded }, Py(X)={AC X : Aclosed }.
P.,(X)={AC X : Acompact }, P.,(X)={AC X : Aconvexe }.
Pryen(X) = Poa(X) 1 Poy(X).

Let Ay, Ay € P(X), consider H; : P(X) x P(X) — R, U {oo} the Hausdorff distance
between A, and A, given by:

Hy(Ay, As) = max{ sup d(ay, Az), sup d(A1,a2)} )
a1€A, a2€A>
where d((ll, AQ) = inf{d(al, CLQ) tag € AQ} and d(Al, ag) = inf{d(al, Clg) ay € Al}
As usual, d(z, () = +oo0.
Then, (P, 4(X), Hy) is a metric space and (P.;(X), Hy) is a generalized (complete) met-
ric space.

Definition 1.5.1. A multivalued map F : J — P,(X) is said to be measurable if, for
each x € X, the function g : J — X defined by

g(t) =d(z, F(t)) = inf{d(x, 2) : z € F(t)},
is measurable.

Definition 1.5.2. Let X and Y be metric spaces. A set-valued map F from X toY is
characterized by its graph Gr(F'), the subset of the product space X x Y defined by

Gr(F) ={(z,y) e X xY :y € F(z)}
Definition 1.5.3.

1. A measurable multivalued function F' : J — P, ,(X) is said to be integrably
bounded if there exists a function g € L'(R,) such that |f| < g(t) for almost
te Jforall f € F(t).

2. F is bounded on bounded sets if F'(W) = |J,.5 F(x) is bounded in X for all
W e Py(X), i.e. sup,ep{sup{ly| : y € F(x)}} < o0.

3. A set-valued map F is called upper semi-continuous (u.s.c. for short) on X if
for each xzy, € X the set F(x,) is a nonempty, closed subset of X and for each
open set U of X containing F'(z,), there exists an open neighborhood V' of
such that F(V) C U. A set-valued map F is said to be upper semi-continuous
if it is so at every point z, € X.
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4. A set-valued map F is called lower semi-continuous (L.s.c) at vy € X if for any
Yo € F(zo) and any neighborhood V' of y, there exists a neighborhood U of x
such that

F(xo) NV # forall zy € U.

A set-valued map F' is said to be lower semi-continuous if it is so at every point
Xo € X.

5. F is said to be completely continuous if F(B) is relatively compact for every
B € Py(X). If the multivalued map f is completely continuous with nonempty
compact values, then f is upper semi-continuous if and only if f has closed

graph.
Proposition 1.5.1. Let F' : X — Y be an u.s.c map with closed values. Then Gr(F') is
closed.

Definition 1.5.4. Let E be a Banach space. A multivalued map I’ : J x E — F is said
to be L' —Carathéodory if

(i) t — F(t,y) is measurable for all y € E,
(ii) y — F(t,y) is upper semicontinuous for almost eacht € J,
(iii) for each p > 0, there exists ¢, € L'(J,R,) such that
|F(t,y)llp < ,(t), forallly] < panda.e. te€ J,

such that ||F(t,y)||p = sup{|f|: f € F(t,y)}.

Definition 1.5.5. Let X,Y be nonempty sets and F' : X — P(Y'). The single-valued
operator f : X — Y is called a selection of F' if and only if f(x) € F(x), for each
x € X. The set of all selection functions for F is denoted by Sp.

The following lemmas is very important to prouve our result.

Lemma 1.5.1 (Lasota and Opial [92]). Let E be a Banach space and I bounded closed
interval, and F be an L'—Caratheodory multivalued map with compact convex values, and
let £: LY(I,E) — C(J, E) be a linear continuous mapping. Then the operator

LoSp:C(I,E)— P,.(C(I,F)),
is a closed graph operator in C(I, E) x C(I, E).

Lemma 1.5.2. [68] Let X be a separable metric space. Then every measurable multi-valued
map F : X — P, (X) has a measurable selection.

Definition 1.5.6. Let 7 : X — P(X) be a multi-valued map. An element z € X is
said to be a fixed point of T if x € T ().

For more details on multivalued maps and the proof of the known results cited in
this section we refer interested reader to the books of Deimling [54],
Gorniewicz [68], Hu and Papageorgiou [86], Smirnov [111] and Tolstonogov [112].
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1.6 Fixed Point Theorems

Fixed point theory plays an important role in our existence results, therefore we state
the following fixed point theorems.

Theorem 1.6.1. (Schauder [60])
Let X be a Banach space, K compact convex subset of X and N : K — K continuous
map.Then N has at least one fixed point in K.

Theorem 1.6.2. (Tykhonoff [60])
Let X be a locally convex space, K compact convex subset of X and N : K — K is a continu-
ous map. Then N has at least one fixed point in K.

Theorem 1.6.3. (Darbo-Sadovskii [28])
Let X be a Banach space, K bounded, closed and convex subset of X and N : K — K
continuous map and p—contraction. Then N has at least one fixed point in IC.

Theorem 1.6.4. (Bohnenblust-Karlin [42])
Let K € Pepe(X), and N : K — P (K) be an upper semicontinuous operator. Then N
has at least one fixed point in K.



CHAPTER 2

‘_ SEMILINEAR DIFFERENTIAL EQUATIONS ON
BOUNDED INTERVALS (M)

2.1 Introduction

The theory of abstract nonlinear second order functional differential and integrodif-
ferential equations has received considerable attention in recent years. Several pa-
pers have also appeared for the existence of solutions of the nonlinear second-order
diffrential equations in Banach spaces [19,21]. Non—-autonomous second order prob-
lems have received much attention in recent years due to their applications in dif-
ferent fields. Specially, many authors [41,78,70,110,116] have studied the Cauchy
problem for second order evolution.

The aim of this chapter is to study the existence of mild solutions for second order
semi-linear functional evolution equations. Our analysis is based on the technique of
measure of noncompactness and Schauder’s fixed point theorem.

Consider the following problem

y'(t) = A()y(t) = f(ty(t), t € J = [0;T7, (2.1)

y(0) = 5o, ¥'(0) = y1, (2.2)

where {A(t) }o<i<r is a family of linear closed operators from E into £ that generate
an evolution system of linear bounded operators {U(¢,s)} for0 < s <t < T,
f:J x E — Ebea Carathéodory function and (E, | - |) a real Banach space.

(1) [40] M. Benchohra; N. Rezzoug, Measure of noncompactness and second order evolution equa-
tions. Gulf J. Math. 4 (2016), no. 2, 71-79.

17



18 Chapter 2. Semilinear differential equations on bounded intervals

2.2 Existence of solutions

Let us start by defining what we mean by a mild solution of the problem (2.1) -(2.2).

Definition 2.2.1. A functiony € C(J, E) is called a mild solution to the problem (2.1)
-(2.2) it y satisfies the integral equation

5] t

V(E) = — 5 U O+ Ut O + [ Ut ) (s, u()ds. 23)
0

To prove our results we introduce the following conditions:

(Hy) There exists a constant M > 1 such that

U, $)|| ) < M.
(H,) There exists a constant M > 0 such that

< M.
B(E)

0
H %U(t, S)

(H3) There exist integrable function p : J — R, and a continuous nondecreasing
function ¢ : [0, 00) — (0; 00) such that:

|f(t,u)| < p(t)Y(|u|) fora.et € Jand eachu € E.

(H4) There exists a constant R > 0 such that

Myo| + M(Jyi| +¥(R) |pll, < R

(Hs) There exists a function v € L*°(J, R, ) such that for any nonempty set D C E
we have :

p(f(J x D)) < ~()u(D).

Theorem 2.2.1. If assumptions (Hy)—(Hs) are satisfied, then the problem (2.1)-(2.2) admits
at least one mild solution.

Proof. Consider the operator N : C'(J, E) — C(J, E) defined by

(Ny)(t) = —%U(m)yo + UL, 0)y1 +/O U(t, s)f (s, y(s))ds.

Let s,t € J with t > s. Then we have
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(¥0)0) ~ (V) < | SU(00ho— (s O]+ (1,0 U5, O

n /0 A (t,7) = U(s, )| gy |f (1, 9(7)] dr
b [ D e ) i
@T(%u(t, 0)yo, ) +w (U(t, 0)yo, €)
AT [ pudyar

IN

¥ Msup{/:p<7>¢<|y<7>|>dr;t <s<Tii-s e},

where

@T(gu(t,O)yo,g) = sup{‘%lj(t,O)yo — 2Z/I(s, DNyo|;t <s<T,|t—s| < 5} ;

Js Js
wh (UL, 0)y0,e) = sup {|U(t,0)yo —U(s,0)yo| st < s < T, |t —s| <e},
AT(U,e) = sup {HL{(t,T) ~U(s, 7| gy i TSt < s < Toft—s| < g} .

Puting
QT,e) = @T(%M(t,O)yo,e)+wT(U(z€,0)yo,€)
LA e) / p()b(y(r) )
n Msup{ [ oturarst <5 < T < }
We have
[(Ny)(t) = (Ny)(s)| < QT,¢)
ie

wWwl(Ny,e) < Q(T,¢). (2.4)
The assumptions (H;) — (Hy) yield that

lim Q(T,¢) = 0.

e—0

We define
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D= {y € C(J,B) : |ly] < Rand lim Q(T,¢) = o} .

The set D is nonempty convex and closed.
Now, we have

0

%u(tv 0)

|yo|
B(E)

Ny(t) < H

+ U, 9)ll g |y1\+HU(t75)HB(E>/O p(s)¥(ly(s)[)ds

M+M/

< M+ My(R VPl 11
< R. (2.5)

IN

The conditions (2.4) and (2.5) ensure that the operator N transforms the set D into
itself.

Step 1. N continuous.

Let (yn)nen be a sequence in D such that y, — y in D. We have

[Nyn(t) — Ny(t)| < M/Ot £ (s,un(s)) = f(s,y(s))| ds.

Since f is Caratheory we obtain by the Lebesgue dominated convergence theorem
that
lim [|N(y.) — N()l| = 0.

t——4o0
We deduce N is continuous.

Consider the mesure of noncompacteness p*(D) defined on the family of bounded
subsets of the space C(J, ) by

W' (D) = wq (D) +sup pu(D(t))

teJ

Step 2. D, = N/ D,, is compact.

In the sequel, we consider the sequence of sets {D,,},'>? defined by induction as fol-
lows :

Dy=D, D,,1 = ConvN(D,) forn=0,1,2,---and D, = N D,
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this sequence is nondecreasing, i.e. D, ; C D,, for each n.
Claim 1. lim w{(D,)=0.
n—-+oo
This is a consequence from the equicontinuity of the set D on compact intervals.
Claim 2. lim sup u(D,(t)) = 0.
n—=+00 4 g
Set
an(t) = p(Dn(t))-
In view of Lemma 1.3.8 and (2.4) we have
|an(t) = an(s)] < p(B(0, 1)QAT, [t — s])
which together with proves the continuity o, (t) on J.
Using the properties of 11, Lemma 1.3.2 and (Hs)) we get
t
an1(t) = w(CouN(Dn)) = u(N(Dn)) = (/ Ult,s)f(s, y(S))dS>
0
t
< U [ s p(s))ds
t
< M [ (D)
0
t
< M/ v(8)a,(s)ds
0
Using Lemma 1.1.1 we derive
t
i (t) < M / 51 / (52 / / Y(Sn41)0(Sny1)dsidsy - - - dspdsy i

S1
< M"5 n+1// / / o (Sps1)dSpi1dsy, - - - dsadsy

A4n+1 n+1
< /0()

n! 0

where 7(t) = esssup{7y(s) : s < t}.
We get

lim a,(t) =0.

n—-+o00

Then
lim wu(D,(t)) =0.

n——+00
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Form Claim 1 and Claim 2 we conclude

lim wl(D,)+ lim supu(D,(t)) = 0.

n—-+o0o n—-+oo teJ

Taking into account Lemma 1.3.8 we infer that D, = N>} D,, is nonempty, convex
and compact. Thus, by Schauder’s fixed point theorem the operator N : Do, — D
has at least one fixed point which is a mild solution of problem (2.1)-(2.2).

2.3 An example

Consider the second order Cauchy problem

@Z(t, T) = WZ(L 7') + a(t)az(t, 7')
t
t 2(t,7)
e /0 T2 teJ, 7€, (2.6)
2(t,0) = z(t,m) = ted,
0
L &Z((L T) = ¢(T) TE [07 7T]7

where we assume that a : J — R is a Holder continuous function.

Let E = L*([0, 7], R) the space of 2-integrable functions from [0, 7] into R, and H*([0, 7], R)
denotes the Sobolev space of functions z : [0, 7] — R such that 2" € L*([0, 7], R). We
consider the operator Ayy(7) = y”(7) with domain D(A;) = H?*(R,C), infinitesi-
mal generator of strongly continuous cosine function C(¢) on E. Moreover, we take
As(t)y(s) = a(t)y'(s) defined on H*([0, 7], R), and consider the closed linear operator
A(t) = Ay + A,(t) which generates an evolution operator U/ defined by

UL, s) =) za(t, s){a, wy)w,,

nel

where z, is a solution to the following scalar initial value problem

Z'(t) = —n?z(t) + ina(t)z(t)
{ 2(s) =0,  2(s)=z. 2.7)

Set
y(t) (1) = w(t)(r), t =0, 7 € [0,7],

s = [ 28D

0 1 + y2<t77—)
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and
0 d

S(0)(7) = Sw(0)(7), 7 € [0,7).

Consequently, (2.6) can be written in the abstract form (2.1)-(2.2) with A(¢) and f
defined above. The existence of a mild solution can be deduced from an application
of Theorem 2.2.1.
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CHAPTER 3

‘ _ SEMILINEAR DIFFERENTIAL EQUATIONS ON
UNBOUNDED INTERVALS IN BANACH SPACE )

3.1 Introduction

Differential equations on infinite intervals frequently occur in mathematical mod-
elling of various applied problems see [3, 104]. For example, in the study of un-
steady flow of a gas through a semi-infinite porous medium Agarwal & O’Regan [5],
Kidder [88], analysis of the mass transfer on a rotating disk in a non-Newtonian
fluid Agarwal & O’Regan [6], heat transfer in the radial flow between parallel cir-
cular disks Na [100], investigation of the temperature distribution in the problem of
phase change of solids with temperature dependent thermal conductivity Na [100],
as well as numerous problems arising in the study of circular membranes Agarwal
& O'Regan [4], Dickey [57, 58], plasma physics Agarwal & O’Regan [6], nonlinear
mechanics, and non-Newtonian fluid flows Agarwal & O’Regan [4].

The aim of this chapter is to study the existence of mild solutions for second order
semi-linear functional evolution equations on unbounded intervals in Banch space.
Consider the following problem

y'(t) — A(t)y(t) = f(t,y(t)), t € J =[0,00), (3.1)
y(0) = 5o, ¥'(0) = y1, (3.2)

where {A(t) }o<i<+ is a family of linear closed operators from E into E that
generate an evolution system of linear bounded operators {U(t, s) }(; ) 7x s for
0<s<t<+4oo, f:JxE — EDbea Carathéodory function, yo,y1 € Fand (E,|-|) a
real separable Banach space.

(2) [36] M. Benchohra, J. Henderson and N. Rezoug, Global existence results for second order
evolution equations, Communications on Applied Nonlinear Analysis. Vol 23, (2016) no. 3, 57 - 67.

25
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3.2 Existence of solutions

A mild solution of (3.1)- (3.2) is defined as follows.

Definition 3.2.1. A functiony € C(J, E) is called a mild solution to the problem (3.1)
-(3.2) if y satisfies the integral equation

a t

V{E) = =5 U0+ Ut 0 + [ Ut ) (s, u(5)ds. 33)
0

Now, we give the basic assumptions to prove our results

(Hy) There exists a constant M/ > 1 and such that

Ut s)llpe) < M, (t,s) € A.

(H;) There exists a constant A/ > 0 such that

< M, (t,s) € A.
B(E)

H%u(z&, s)

(Hs) There exist an integrable function p : J — R, and a continuous nondecreasing
function ¢ : [0, 00) — (0; 00) such that:

|f(t,w)| < p(t)y(Ju|) fora.et € Jand each u € E.

(H4) There exists a constant R > 0 such that

M‘Z/0| + M| +(R) |Ipll £ R

(Hs) There exists a locally integrable function o : J — R such that for any nonempty
set D C E'we have:

w(f(t, D)) < o(t)u(D)fora.et € Jand each D C E.
To establish our main theorem, we need the following lemma.
Lemma 3.2.1. [105] Assume that the hypotheses (H1) — (Hy4) hold and a set D C E is
bouded. Then
wg (F(D)) < 2T'Mp(f([0,T7, D).

Where F(y(t)) = /tu(t, s)f(s,y(t)ds fora.et € Jandy € D.
0



3.2 Existence of solutions 27

Theorem 3.2.1. Assume that the hypotheses (Hy) — (Hy) are satisfied, and if

t

lim o(s)ds = 4o0.
t——+o00 0

Then the problem (3.1)-(3.2) admits at least one mild solution.
Proof. Consider the operator N : BC(J, E) — BC(J, E) defined by

(NY)(t) = — 24 (2,0)yo + U1, O)ps + / Ut 5)f(s,y(s))ds.

We define -
D={yeBCU,E): |yl <R}

The set D is nonempty convex and closed.
Now, we have

Mol < | o]

B(E)

0s

+ U, 9)ll g |y1|+HU(t;S)||B(E)/Op(SW(!y(S)DdS

IN

M| + Mlyo| + M / p(s)i(R)ds

Mlyo| + M (ly1| + ¥ (R) [Ipll 1)
R. (3.4)

IA A

The condition (3.4) ensure that the operator NV transforms the set D into itself.
Step 1. N continuous.

Let (y,,)nen be a sequence in D such that y,, — y in D. We have

Nya(t) — Ny(t)] < M / (5, 9(5)) — F(5.(s)] ds.

Hence, from the Carathéodory of the function f and the Lebesgue dominated con-
vergence theorem we obtain

INy, — Ny|| = 0 as n — +oo.

So N is continuous.
Consider the mesure of noncompacteness p*(D) defined on the family of bounded
subsets of the space BC(J, E) by

(D) = ol (D) + lim sup{e ™ |y(t)|: t > T} + sup a(D(t)),
T—+o0 teJ
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t
where 5(t) = M / o(s)ds, T>1, @(D)=eOuT(D)and
0
(D) = e Ou(D).

Step 2. D, = N!> D,, is compact.

In the sequel, we consider the sequence of sets { D}, defined by induction as fol-
lows :

Dy =D, D, 1 = Conv(N(D,)) forn=0,1,2,---and D,, = NI D,
this sequence is nondecreasing, i.e. D,+; C D, for each n.

Claim 1. lim 7(D,(t)) =0.

n—-+4o0o

Using the properties of 1, Lemma 1.3.5 and ((H4) we get

p(Dnia(t)) = M(COMN(Dn))IM(N(Dn))Iu(/O U(t,S)f(S,Dn(S))de)

IN

Ut ) 5 / u(f (5, Dols))ds

A
2
=
=
S
3
«
=
V2)

IN
Q
—~
V2)
~—
@

3
Q
O
Cbl
3
Qe
O
=
S
3
—~
VA
~—
~—
Q.
Va)

A\
\‘
Q
=
=
E
/~
~
N—
N—

we obtain

F(Dia (1)) < Z(D ().

By method of mathematical induction, we can prove

A(Dui(t) < (1)”+1n<Do<t>>.

-
We get
lim 7(D,(t)) =0.

n—-+o0o
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Claim 2. lim «l(D,)=0.

n—-+00

It is eough to prove that
Y6 > 0 In > ng YT >0 wi(D,) < 4.
Observe thas, for arbitrary 7" > Ty, t5,t, € [Ty, 7] and y € D,, we have

[(Ny)(t2) = (Ny) ()| < [(Ny)(E2)] + [(Ny)(t1))]
< 2R,

we get
e TO|(Ny)(t2) — (Ny)(t1)] < 2Re” ™.
Hence, there exists T such that
e TO|(Ny)(t) — (Ny)(1)] < 6. (3.5)

For T > Ty, to,ty € [Ty, T],yn € Dy

Letus fixany 7} > Tyand ¢ € (0,77 — Tp).

For arbitrary 7' > T and for arbitrary ¢,,t, € [Ty, T] with |t; — ¢1| < ¢, at least one of
the following two cases is fulfilled:

a) to, 11 € [T(),T]

or

b) ta, t1 € [0,T1]

case a) A vertu (3.5), we have

e T OI(Ny)(t) — (Ny)(1)] < 6.
case b) Implies that

677&(T)’(Ny)(t2) . (Ny)(tl)] < e*T&(Tl)‘(Ny> (t2) _ (Ny) (t1>’ < e~ 7o(M) T (Dna 8).
Joining these two facts we get
e 7w (D, €) < max{d, e WWN(D, 0)} for e € (0,11 — 1), T > To.

Letting ¢ — 0 and keeping in mind that the function w;(.) nondecreasing with rspect
to 7', we obtain

e T NWT(D,, ) < max{s, e MW (D, e)} for T > 0. (3.6)
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Now, applying Lemma (6.2.1) we derive

W (Dpy1) = w'(Conv(N(Dy)) = w" (F(Dy))

< 2D Mp({f(s,y(s)) : s < T,y € Dy})
< Mo(Ty)p(Dy,)
we have
e I (Dypyy) < 2MTo(Ty)e ™ pu(D,),
than

0" (Dyy1) < 2MTo(T))a(D,,).
From Claim 3 and (3.6) we obtain

lim @l (D,) = 0.

n—-+400

Claim 3.Tlim sup{e " O|(Ny)(t)| : t > T}.

—+00

We have
e TW|(Ny)(t)] < Re 770,

Then
lim supe ""®|(Ny)(t)| = 0.

t——+o0 teJ

Form Claim 1, Claim 2, and Claim 3 we conclude

lim p*(D,) =0.

n—-+00

oo

Taking into account Lemma 1.3.8 we infer that D,, = N} D,, is nonempty, convex
and compact. Thus, by Schauder’s fixed point theorem the operator N : D, — D
has at least one fixed point which is a mild solution of problem (3.1)-(3.2).

Theorem 3.2.2. Assume that the hypotheses (H) — (Hy) are satisfied, and if

t

lim o(s)ds = c < o0.
t—=+oc0 [

Then the problem (3.1)-(3.2) admits at least one mild solution.

Proof. The prouf of this theorem is similar to the prouf of theorem 3.2.1 and we used
the mesure of noncompacteness 1*(D) defined on the family of bounded subsets of
the space BC(J, E) by
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pH(D) = e TCOFGT (D) 4 Tlirf sup{e TCO |y(t)| 1 t > TV + supe "COF 4 (D(t)).
T teJ

W(Dust) — M(COHUN(Dn)):u(N(Dn))=u< / u<t,s>f<s,Dn<s>>ds)

IA

Ut ) / u(f(5, Dols))ds

M/ o (8)pn(Dn(s))ds.

/ T(&(s)-&—t)e—v—(&(s)-f—t),u(Dn(S))ds

F(Da(s))-

IN

IA

IN

3.3 An example

Consider the second order Cauchy problem

(92 o 0
—z(t,7) = ?Z(t’ T) + a(t)gz(t,T)

o2 2
bo(t—7)In(1+ |2(¢,7)|) -
+/0 4 2207 dr, teJ, €0, (3.7)
2(t,0) = z(t,m) =0 teJ,
0
\ E2<O T) =1(1) T € [0, 7]

where we assume that a : J — R is a Holder continuous function and ¢ : J — R
essentially bounded measurable function. Let £ = L?*([0,7],R) the space of 2-
integrable functions from [0, 7] into R, and H?([0, 7], R) denotes the Sobolev space
of functions z : [0,7] — R such that 2” € L?*([0,n],R). We consider the operator
Ayy(r) = y"(7) with domain D(A4;) = H?*(R,C), infinitesimal generator of strongly
continuous cosine function C(t) on E. Moreover, we take A, (t)y(s) = a(t)y'(s) de-
fined on H' (|0, 7], R), and consider the closed linear operator A(t) = A; + A, (t) which
generates an evolution operator I/ defined by

= Z Zn(tv S) <£L', wn>wn7
nez
where z, is a solution to the following scalar initial value problem

2'(t) = —an(t) + ina(t)z(t)
{ z(s) =0, 2'(s) = 2. (3.8)
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Set

2(t) (1) = w(t)(r), t >0, 7 € [0, 7],

R e e

0 d
az(O)(T) = %UJ(O)(T), T € [0, 7].

and

Consequently, (3.7) can be written in the abstract form (3.1)-(3.2) with A(¢) and f
defined above. The existence of a mild solution can be deduced from an application
of Theorem 3.2.1.



CHAPTER 4

SEMILINEAR DIFFERENTIAL EQUATIONS IN
FRECHET SPACE WITH NON-LOCAL CONDITIONS )

4.1 Introduction

Evolution equations with non-local initial conditions generalize evolution equations
with classical initial conditions. This notion is more complete in describing nature
phenomena than the classical one because additional information is taken into ac-
count. For the importance of nonlocal conditions in different fields of applied sci-
ences see [9,22,37,38,120,121] and the references therein. The earliest works in this
areaweremade by Byszewski in [44,45,46,47].

This chapter is devoted to study the existence of mild solutions of non-local ini-
tial value problem described as a second order non-autonomous abstract differential
problem.

Consider the following problem

y'(t) — A)y(t) = f(ty(t), t € J =0, 00), (4.1)

y(0) = g(y), ¥'(0) = h(y), (4.2)

where {A(t) }o<t<+ is a family of linear closed operators from E into E that generate
an evolution system of linear bounded operators {U(t, s)} sesxs for 0 < s <t <
+oo, f : J x E — E be a Carathéodory function, g,h : C(J;E) — E are given
functions and (E, | - |) a real Banach space.

(3) M. Benchohra, J. Nieto and N. Rezoug, Second order evolution equations nonlocal conditions,
(submitted)

33
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4.2 Existence of solutions

A mild solution of (4.1)- (4.2) is defined as follows.

Definition 4.2.1. A function y € C(J,E) is called a mild solution to the problem
(4.1)-(4.2) it y satisfies the integral equation

) = ~ U 0() + UL R + [ Ut GuDds @)

To prove our results we introduce the following conditions:

(Hy) There exists a constant M/ > 1 and such that

Ut s)llpe) < M, (t,s) € A.

(H,) There exists a constant A/ > 0 such that

< M, (t,s) € A.
B(E)

12209

(H3) There exist an integrable function p : / — R, and a continuous nondecreasing
function ¢ : [0, 00) — (0; 00) such that:

|f(t,w)| < p(t)y(Ju|) fora.et € Jand eachu € E.

(Hy) There exists a locally integrable function o : J — R such that for any nonempty
bounded set D C E we have:

w(f(t, D)) <o(t)u(D)foraet € J.

(Hs) g,h: C(J,E) — E is a continuous mapping and

sup |g(y)| < oo, suplh(y)| < oo
yeD yeD

for any nonempty bounded set D C C(J, E).

(Hg) There exist L; > 0 (i = 1,2) such that

1(g(D)) < Lin(D)

and
u(h(D)) < Lon(D).
for any nonempty bounded set D C C(J, E).
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(H7) There exists a constant R > 0 such that

M sup |g(y)| + M sup |a(y)| + M (R) [lp]l 2 < R,

yEBR yEBR

where By, is the closed ball in C(J; E)) centered at zero O and with radius R.
Consider the operators N; : C(J, E) — C(J, E)(i = 1,2, 3) defined by
(Nig)(#) =~ 2-U(t,0)g()
ly - 68 I g y )
(Nay)(t) = UL, 0)h(y),

(Ny)(8)) = / Ut 5)f (5. y(s))ds.

Lemma 4.2.1. [105] Assume that the hypotheses (Hq) — (Hy) hold and a set D C E is
bounded. Then

wg (N1(D)) < 2Mp(g(D)),

wi (N2(D)) < 2M pu(h(D)),

Wl (N5(D)) < 2M / u(f (s, D(s))ds.

Theorem 4.2.1. Assume that the hypotheses (H,) — (Hz) are satisfied. If
~ 6
SML, +3MLy+ - <1, 7>6,
T

then the problem (4.1)-(4.2) admits at least one mild solution.

Proof. Consider the operator N : C(J, E) — C(J, E) defined by

(N9)(0) = = 5. Ut gl + U(t, M) + | Ult, )1 (5,5

We define

D=Br={yeC(J,E):|lylr <R}.
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The set By is nonempty convex and closed.
Now, fort € J, T > 0 we have

el < | o

lg(v)|
B(E)

+ Hu(taS)HB(E)|h(y)|+”u(t78)”B(E)/0p(8)¢<|y(s)|)d5

IN

Mmm+Mww+MA%@wmw

M sup |g(y)| + M sup |h(y)| + My(R) [v2irs

yEBR yEBR

R. 4.4)

N

IN

(4.4) ensures that the operator N transforms the set By into itself.
Step 1. N is continuous.

Let (yn)nen be a sequence in Bp, such that y, — vy in Bg.
Fort € J,T > 0 we have

|(Nyn)(t) — (Ny)®)] < 19(yn) — 9| + |R(yn) — h(y)]
+Mlvwmm<mwmm'

Hence, since the functions ¢, h are continuous and f is Carathéodory, the Lebesgue
dominated convergence theorem implies that

|Ny, — Ny|lr — 0 as n — +oo.

So N is continuous.
Consider the measure of noncompacteness ;*(D) defined on the family of bounded
subsets of the space C'(J, E) by

(D) = sup {G_T&(T) (wo (D) + sup u(Dn(t)) : T > 0} ,
te[0,T
where .
a(t) = M/ o(s)ds, T > 6.
0
Step 2. D, = N2 D,, is compact.

In the sequel, we consider the sequence of sets {D,,},'", defined by induction as fol-
lows :

Dy = Bg, D,.1 = Conv(N(D,)) forn=0,1,2,---and Do, = N3 D,
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this sequence is nondecreasing, i.e. D, ; C D,, for each n.

Claim 1. lim p*(D,)=0.
n—+o0o

We know from Lemma 1.3.6 that for each £ > 0 there is a sequence function {W; }2, C
(N3D,,)(s) such that

p(NsDy)(s) < 20({Wi}5) + ¢

This implies that there is a sequence {Q};2, C Wi(s) such that

Wk = (Nng)(s) for k = 1,2, c.

Using the properties of ;;, Lemma 1.3.6, Lemma 1.3.7 and assumptions (Hy), (Hs)),
we get

1(Dnya(t)) = p(ConvN(Dn)(t))
= p((N1Dn)(1)) + (N2 D) (2)) + p((Ns D) (1))
1(9(Dn)) + p(h(Dn)) + 2p({Wi}720) + €
1(9(Dn) + p(h(Dn) + 2p({ (N3Qr)(5)}720) + €
= (g(Dn)) + p(h(Dn))

n
o ({ [ueore @i} )
MLn(D,) + MKan(D,)

+ 4M/ p({Qk(s)}iy)ds + €.

IA

IN

MLn(Dy) + MKyn(D,) + AM / ))ds + .

Since ¢ is arbitrary and using Lemma 1.3.4 we obtain

WD (t) < MLy(wg (Dn) + sup u(Da(t)))

t€[0,T]
+ MLy(wg (Dy) + sup u(Dy(t)))
t€[0,T]
+ 4M/ )+ sup u(Dy(s)))ds.
s€[0,T]

(4.5)
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Now, applying Lemma 6.2.1 and using assumptions (Hy), (Hs), we derive

wy (Dny1) = wg (Conv(ND,))
we (N1D,) + wi (NoD,,) + wl (N3D,,))

IN

MLy(D,) + MLyn(D,) + 2M / ))ds

IN

2MLy(wy (Dy) + sup pu(Dy(t))
t€[0,T]

2M Ly(wl'(D,,) + t:[tér; ] 1(Dy(1)))

+ ZM/ )+ sup p(Dy(s))ds.

s€[0,T

_l_

(4.6)
From (6.9) and (4.6), we have

Wi (Dpy1) 4+ sup pu(Dnya(t))

~ te[0,T]
< (BMLy + 3M L) (wE(Dy) + sup p(D,(t)))
t€[0,T]
6M/ )+ sup p(Dy,(s)))ds.
s€[0,T]
Then
Wy (Dns1) + sup pu(Dpya(t))
~ te[0,7)
< (BMK, + 3MK,)(wl(D,) + sup u(Dy,(t)))
te[0,7)
6M/ e OO (T (D) + sup_ pu(Das)))ds,
s€[0,7T
We obtain
e 77 (Wi (Dys1) + sup pu(Da(t)))

te[0,7

< (BMKl MK, + 9) sup{e" D (WT(Dy) + sup w(Dat))) : T = 0},
.

Hence, we get
~ 6
P (3MK1 LMK, + ;> W (D).

By method of mathematical induction, we can prove

N 6 n+1
M*(Dn-‘rl) S (3MK1 + 3MK2 + ;) M*(Do)
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Hence, in view of the assumption (Hg), we get

lim p*(D,) =0.

n——+oo

Taking into account Lemma 1.3.8 we infer that D, = N9 D,, is nonempty, convex
and compact. Thus, by Tykhonoft’s fixed point theorem the operator N : Do, — D
has at least one fixed point which is a mild solution of problem (4.1)-(4.2).

4.3 An example

Consider the following partial differential equation with nonlocal conditions;

( 0?z(t,T) B 0?z(t,7) 0z(t, 1)
oz oz Ty
+fi(t, 2(t,7)), teJ, Tel0,n],
z(t,0) = z(t,m) ted,
2(tO)— 2(tO) telJ (4.7)
ot Y T atfoo’ ’ :
2(0,7) = / g1(t, z(t,7))dt, T € (0,7,
9 P oo
90,7 = / Mt =(t, 7))t 7€ 0]
L Ot 0

where we assume that a : J — R is a Holder continuous function and by, g; : J xR —

R are given functions.

Let £ = L*(]0, w1}, C) the space of 2-integrable functions from [0, 7] into R, and H?([0, 7], C)
denotes the Sobolev space of functions z : [0, 7] — R such that 2" € L*([0, n1],C). We
consider the operator A;y(7) = y"(7) with domain D(A;) = H?*(R,C), infinitesi-
mal generator of strongly continuous cosine function C'(t) on £. Moreover, we take
As(t)y(s) = a(t)y'(s) defined on H'([0, 7], C), and consider the closed linear operator
A(t) = Ay + Ay(t) which generates an evolution operator ¢/ defined by

U(t,s) = Z zn(t, 8){(z, wp)w,,

neE”L

where z, is a solution to the following scalar initial value problem

2"(t) = —n?z(t) + ina(t)z(t)
z(0) =0, 2'(0) = 1.

Set
w(t)(r) =2(t,7), t >0, 7 € [0, 7],
f(t,Z(t,T)) - f1<t72(t77-))

—+00

9(2)(1) = g1(t, 2(t,7))dt, T € [0, 7],

S—
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h(z)(T) = /0 Oohl(if,z(t,T))als,T € [0, 7.

We now assume that:
(1) The maps f is Carathéodory and satisfy conditions (Hs), (H4).

(3) The maps g and & satisfy Carathéodory conditions and there exist functions
0; € L*(J) (i = 1,2) such that

lg1(t; )| < 01(t)s for a.e. t, s € R;
and
|hi(t; )| < 0a(t)s for a.e. t, s € R;

Hence, reasoning similarly as in the proof of Claim 1 and using Lemma 1.3.4 we infer
that for any D c C(J; E)

u(g(D)) < 4</0T@?(t)dt)ésupu(l?(t))

and

teJ

<[ @§<t>dt)§nw>.

These show that the maps g and h satisfy conditions (Hs) and (Hg) with the constants

T 3
L; = (/ gf(t)dt) ci=1,2.
0

Consequently, problem (4.7) can be written in the abstract form (4.1)-(4.2) with A(t)
and f defined above. The existence of a mild solution can be deduced from an appli-
cation of Theorem 4.2.1.

wno)) < o [ s (D)



CHAPTER 5

SEMILINEAR FUNCTIONAL DIFFERENTTAL
EQUATIONS WITH INFINITE DELAY ()

5.1 Introduction

In recent years we see an increasing interest in infinite delay equations. The main
reason is that equations of this type become more and more important for different
applications. When the delay is infinite, the notion of the phase space B plays an
important role in the study of both qualitative and quantitative theory. A usual choice
is a seminormed space satisfying suitable axioms, which was introduced by Hale and
Kato in [74], see also the books by Ahmed [8], Corduneanu and Lakshmikantham
[50], Kappel and Schappacher [87]. For detailed discussion and applications on this
topic, we refer the reader to the book by Hale and Verduyn Lunel [76], Hino et al. [85],
Wu [117], Baghli and Benchohra [16,17,18] and Baliki and Benchohra [24,25] and the
references therein.

This Chapter is dedicated to study the existence and uniqueness of mild solution the
following second order evolution equation.
Consider the following problem

y'(t)— At)y(t) = f(t,y), ae. t € J=1[0;T), (5.1)
(t) = o(t),t € (—o0,0], (5.2)
y'(0) = 7, (5.3)

where {A(t) }o<i<+ is a family of linear closed operators from E into E that
generate an evolution system of operators {U(¢, s)} s)ecsxs for0 < s <t < T,
f:J x B— E bea Carathéodory function and B is an abstract phase space to be
specified later, § € E, ¢ € Band (E, |- |) a real Banach space.

(4) M. Benchohra and N. Rezoug, Second order functional evolution equations with infinite delay,
(submitted).
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5.2 Existence of solutions
Definition 5.2.1. A functiony € C is called a mild solution to the problem (5.1) -(5.3),
if y is continuous and

o(t), ift <0

y(t) = o (5:4)

t
—%u(t,0)¢(0)+L{(t,0)gj+/o U(t,s)f(s,ys)ds, ift e .

To prove our results we introduce the following conditions:
(Hy) There exists a constant A/ > 1 such that
|U(t,s)||pE) < M forany (t,s) € A.

(H,) There exists a constant A/ > 0 such that

P B
el < M.
HaSZ/{(t, s) <M

B(E)

(H3) There exist a function p € L'(J,R;) and a continuous nondecreasing function
Y : [0, +00) — (0, 400) such that:

|f(t,u)| < pt)Y(||u|g) for a.e. t € Jand any u € B.
(H4) There exists a constant R > 0 such that

M (YR + A6l + 1) + Y M) Ipll o < R

(Hs) There exists a function ¢ € L'(J,R,) such that for any nonempty bounded set
D C Bwehave:

p(f(t, D)) <oft) ee??p O],u(D(H)) foraet e J.

To establish our main theorem, we need the following lemma.

Lemma 5.2.1. [104] Assume that the hypotheses (H,), (Hs) and (Hs) hold and a set D C C
is bounded. Then

WL (F(D)) < 2M / u(f (s, D.)ds,

where
F(D)={Fy:ye€ D},
and

(Fy)(t):/o U(t,s)f(s,ys)ds.
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Theorem 5.2.1. Assume that the hypotheses (Hy) — (Hj) are satisfied. Then the problem
(5.1) -(5.3) admits at least one mild solution.

Proof. It is clear that the fixed point of the operator N : C — C defined by
(Ny)(t) = ¢(t)ift <0Oand

(Ny)(t) = —%u(t,O)qﬁ(O) +U(t, o)gj+/0 U(t,s)f(s,ys)ds, if t € J, (5.5)

are mild solutions of problem (5.1) -(5.3).
For ¢ € B, Let z : (—o00,T| — E be the function defined by

—2U(t,0)6(0) + U(L,0)7, ifte ]
x(t) =

9(t) ift € (—o0,0].
Then 4, = . For any function = € C, we denote

y(t) = x(t) + 2(1).

It is obvious that y satisfies (5.4) if and only if z satisfies zy = 0 and for allt € J

t
z(t) = / U(t,s)f(t, s + 2z5)ds. (5.6)
0
In the sequel, we always denote C, as a Banach space defined by
C():{ZECZ 2’0:0},
endowed with the family of seminorms

I2lle, = sup{[z(t)] -t € J} + [|20l
= sup{|z(¥)|:t € J}

Now, we can consider the operator L : Cy — Cj given by
t
(Lz)(t) = / U(t,s)f(s,zs +xs)ds, fort € J.
0

The problem (5.1) -(5.3) has a solution is equivalent to L has a fixed point. To prove
this end, we start with the following estimation.
For any z € Cy and t € J, we have

IN

2ell5 + ||t 5

0
E@)l=)] + K@)l 5 Ut 0z 9]s
K@U, 0)l syl + M@)[4ls

Ml + 7M||¢HB~+ TMgl+ 19l
YMzlle, +Nllls(M + 1) + yMlg]. (5.7)

|2t + 24| 5

IN

ININ +
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Now, we will show that the operator L satisfied the conditions of Schauder’s fixed
point theorem.
We define

Br={z¢€Co:|2le, < R}

The set Bg is nonempty convex and closed. Let z € By

LEO < [ I s+l ds
< 0 [ ol + il

< M¢<7||Z|\co+7||¢HB(M+1)+7M|§|> / p(s)ds
< MY(YR+~|6|ls(M + 1) + vM[F]) |pll 2 < R.

Thus the operator L maps Bp, into itself.

Step 1. L is continuous.
Let (2™),en be a sequence in By, such that 2" — z in Bg, then for any ¢t € J we obtain

(L2")(t) = (L2) ()] < /I\U(ta8)|lB<E>|f(t,$s+Z§‘)—f(t7xs+zs)|d8
< M/ |f(s, 28 +x5) — f(s, 25 + x)| ds.

Hence, from the continuity of the function f and the Lebesgue dominated conver-
gence theorem we obtain

||LZk — LZ”CO —0 as n — +oo.

So L is continuous.
Consider the mesure of noncompacteness * defined on the family of bounded sub-
sets of the space Cy by

p'(D) = e i (D) + sup e D u(D(t)),

teJ

¢
= M/ o(s)ds, T > 6.
0

Step 2. D, = N!> D,, is compact.

where
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In the sequel, we consider the sequence of sets {D,,} 7> defined by induction as fol-
lows :

Dy = Bg, D,;1 = Conv(N(D),)) forn=0,1,2,---and Dy, = N3 D,

this sequence is nondecreasing, i.e. D, .1 C D, for each n.

We know from Lemma 1.3.6 that for each ¢ > 0 there is a sequence function
{Wi}2y C L(D,(s)) such that

H(Da) < 2u({We}) + <
This implies that there is a sequence {Q*}°,, C W such that
= (LQ")(s) for k =10,1,2, ...

Using the properties of 11, Lemma 1.3.6, Lemma 1.3.7 and assumptions (H,4), (Hs),
we get

#(Duir(t)) = p(ConvL(D,)(®))
= 2u({Wilio) +¢
= 2u({(LQ")(5)}iZo) +

" ({ / u, )f(s,@’;ms};) ‘e

4M/ s) sup p({Q%(s + 0 2y + {w,})ds + e

(—00,0]

IA

IN

< 4]\/[/ s) sup (D (s +0) + {x:}))ds + €.
(—00,0]
< 4M/ sup U(Dp(s+8)))ds +e.
(—00,0]
< 4M/ sup w(Dy(u))ds + €.
(—00,3]
< 4M/ sup u(Dy(u)))ds + ¢
u€(0,s]
< 2M/ ))ds + €

IN

4/ o (8)em D0 (D, (5))ds + e
0

IN

t
4/ o(5)e™®) sup e ™ (D, (s))ds + ¢
0 s€[0,t]

4e™ W sup e (D, (1)) + €.
teJ

IN
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Since ¢ is arbitrary, we get

supe W (D, (t) <
teJ

4 (sup eTé(t)u(Dn(t)) :
-

teJ

Then
- 4 - -
supe 7O (D, (1) < = (e_m(t)on(Dn) + sup e_m(t),u(Dn(t)) :
teJ T teJ]
(5.8)
Now, applying Lemma 6.2.1 and using assumptions (Hy), (Hs), we derive
pplymng g P
(Do) = Wcmwujn
< 2M/ )s + {xs})ds
< 2M/ sup  p((Dn)s) + {xs})ds
0e(—o0,0]
< Ze M (supe D pu(Dy(t)).
T teJ
Then
- 4 -
e 0wy (D,) < - (6‘”%0 (Da) +supe (“u(Dn(t)>
(5.9)
From (5.8) and (5.9),
e 77w (Dusa) + supe ™ (D (1)
te
< 2 (7 (D) +swpe (D, ).
T teJ

Hence, we get
* 6 *
(D) < 21" (Dn).

By method of mathematical induction, we can prove

1 (D) < <§>n+1 1" (Do)

Hence, in view of the assumption (Hg), we get

lim p*(D,)=0.

n—-+00
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o0

Taking into account Lemma 1.3.8 we infer that D, = N%)D,, is nonempty, convex
and compact. Thus, by Schauder’s fixed point theorem the operator NV : Do, — Do
has at least one fixed point which is a mild solution of problem (5.1)-(5.3).

5.3 An example

Consider the second order Cauchy problem

( 82 2 8
@y(ta 7_) = ﬁy(ta T) + a(t)Ey(t, T)

—l—/t b(t — s)arctan(y(s,7))ds te J:=1[0,T], 7 € [0,2n],
y(t,0) = y(t,2m) =0 tel
y(0,7) = ¢(0,7), %y(O,T) = (T) 0 € (—00,0],7 € [0, 27]

(5.10)

where we assume that a, b,: J — R are continuous functions, ¢(¢,-) € B.

Let X = L*(R,C) the space of 2m-periodic 2-integrable functions from R into C,
and H?*(R, C) denotes the Sobolev space 2r-periodic functions z : R — C such that
2" € L*(R,C).

We consider the operator A;y(7) = y”(7) with domain D(4;) = H?(R, C), infinitesi-
mal generator of strongly continuous cosine function C'(t) on X. Moreover, we take
As(t)y(s) = a(t)y'(s) defined on H'(R,C), and consider the closed linear operator
A(t) = Ay + Ay(t) which generates an evolution operator ¢/ defined by

U(t,s) = Z zn(t, $){x, wy)wy,

ne’

where 2, is a solution to the following scalar initial value problem

{20 = ol 4 inal0 -

Define the operator f : J x B — X by

f(t, o) () = / bt — s)p(s)(7)ds, T € [0,27],

—00

w(t)(r) =y(t,7), t >0, 7 €]0,2n],

¢(s)(7) = arctan(y(s, 7)), —0o < s <0, 7 € [0,27],
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and q 5
%w(O)(T) = ay(()ﬂ'), T € [0, 27].

Consequently, (5.10) can be written in the abstract form (5.1)-(5.3) with A and f de-
tined above. Now, the existence of a mild solution can be deduced from an applica-
tion of Theorem 5.2.1.



CHAPTER 6

L NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH INFINITE DELAYS ©)

6.1 Introduction

Functional differential equations of neutral type play an important role in the the-
ory of functional differential equations because they are used in many fields of sci-
ence, especially in control, biological, and medical domains. For more details, we
refer the reader to [20,72,75,76].

In the literature there are many papers study the problems of neutral differential
equations using different methods. Among them, the fixed point method combined
by semigroup theory in Fréchet space, see for exemple Baghli and Benchohra [17,18]
and Hernandez et al. [80,81,82].

In this Chapter, we investigate the existence of mild solutions for the neutral func-
tional differential equation.

SV~ glt.90] ~ AW = Fltw),t e T =[0T] (6.1)
(t) = o(t),t € (—o00,0], (6.2)
y'(0) = 7, (6.3)

where {A(t) }o<i<7 is a family of linear closed operators from F into E that generate
an evolution system of operators {U(t, s) }(ts)csxs for0 <s <t < 4oo, f: I xB = E
be a Carathéodory function and B is an abstract phase space to be specified later,

(5) M. Benchohra and N. Rezoug, Second order neuteral Functional Evolution Equations with
Infinite Delay, (submitted)
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g€ FE,¢ e Band (E,|-|)areal Banach space.

For any continuous function y and any ¢ > 0, we denote by y; the element of 13 defined
by v:(0) = y(t + 8) for § € (—o0, 0]. Here y,(-) represents the history of the state up to
the present time ¢. We assume that the histories y; belong to B.

6.2 Existence of solutions

Definition 6.2.1. A function y € C is said to be a mild solution of the problem (6.1)-
(6.3), if

(1), ift <0
W(0) = § LU (1.0)6(0) + V(1. 0)(6(0) ~ 9(0,6)) + g(t.1) (64)
\ —I—/() U(t,s)A(s)g(s,yS)d8+/O U(t,s)f(s,ys)ds, ifte J.

To prove our results we introduce the following conditions:

(Hy) There exists a constant A/ > 1 such that

Ut s)||pE) < M forany (t,s) € A.

(H51) There exists a constant A/ > 0 such that

B,
Hasu@, s) <M

B(E)

(Hs) There exist a function p € L'(J,R;) and a continuous nondecreasing function
Y : (0,400) — [0, +00) such that:

£ (t,w)] < pt)e(|[u]|s) for ae. t € J and any u € B.

(H,) There exists a function ¢ € L'(J,R,) such that for any nonempty bounded set
D C Bwehave:

p(f(t,D)) <o(t) sup u(D(F))foraete J

0e(—00,0]

(Hs) There exists a constant M * such that:

IA (t) | ey < M* forall te.J.
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(Hg) There exists a constant ¢ > 0 such that

|A(t)g(t, ) — A(s)g(s, )| < (|t = s| + [l — ¢||5)
forallt,s € Jand ¢, p € B.

(H7) There exists a bounded continuous function ¢ : J — R such that:

[At)g(t,9)] < &(D)l¢lls forall teJ ¢eB.

(Hg) There exists a constant R > 0 such that

MM*€*||g]ls + M*E V(R + [|6lls(M + 1) + M|g])
+MEY(R+ [|lls(M + 1) + M|g)

+MAP(E YR+ || ¢lls(M + 1) + M[g)))||p]l 2

S R7

where £* := esssup |£(t)].
teJ

Let C(J, E) the Banach space of all continuous functions y mapping J into £
equipped with the norm

lyll = sup{e ™ y(@)[ .t e T}, 7>6.
To establish our main theorem, we need the following lemma

Lemma 6.2.1. [104] Assume that the hypotheses (H,), (Hs) and (H;) hold and aset D C E
is bounded. Then

where

and
o)) = {(Fnio: (F)0) = [ Ut uti(s.)ds}.
Theorem 6.2.1. Assume that (H,) — (Hs) are fulfilled. if
CM™y + ; <1,

then the problem (6.1)-(6.3) admits at least one mild solution.
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Proof. 1t is clear that we will obtain the results if we show that the operator 7" :
C — C defined by:

(o), ift <0
(V) = 3 =2 U(,0)6(0) + U (1, 0)(6(0) - 9(0,0) + (1,2 ©65)
\ +/0 U(t,s)A(s)g(s,yt)ds—i-/o U(t,s)f(s,y)ds, ifteJ

has a fixed point.
For ¢ € B, we can introduce the following function z : (—o0,7] — E by

o(t), ift € (—00,0]
x(t) = 5
_%L{(t,())gb(()) + U(t,0)0(0) ifte J.

Then zy = ¢. For each function z € C, set

y(t) = x(t) + 2(t).

It is obvious that y satisfies (6.4) if and only if z satisfies zp = 0 and for all t € J

z2(t) = U(t,0)9(0,0) + g(t, z + ) + /0 Ult,s)A(s)g(s, x5 + z5)ds

+ U(t,s)f(s, x5+ z5)ds.

S—

Let
602{2603 2’0:0}

The C, is a Banach space with norm

lzlle, = sup{e™™[2(t)],t € T} + |20l
= sup{e M| 2(t)|,t € J}.

Now, define the operators N = F' + L : Cy — Cy by

(Fz)(t) = /t U(t,s)f(s,zs + x5)ds, fort € J,
0
and

(Gz)(t) =U(t,0)9(0,0) + g(t, s + z¢) + /0 Ult,s)A(s)g(s, x5 + zs)ds.
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Obviously the problem (6.1)-(6.3) has a solution is equivalent to F' + L has a fixed
point. To prove this end, we start with the following estimation. For any z € C; and
t € J, we have

IN

1zel]5 + (1]l 5

0
E@)l=)] + K@)l 5 Ut 0)llsm9]s
K(@)[e(t,0)| s gl + M)l o[l

Y zlle; + VMH¢HB~+ TMIgl + 9l
Yzlleo +AlI0lls(M + 1) + Mgl (6.6)

|2t + 24| 5

IN

ININ +

Now, we will show that the operator L satisfied the conditions of Schauder’s fixed

point theorem.
We define

BR = {Z S CO : HZHCO < R}

The set By is nonempty convex and closed. Let z € By

N

U, 0)l[ 5@ A~ O]l 5 A1) g(0, ) + A7 ()| 5y | At)g(t, 21 + )]

t t
AHU@@M@M@M@%+%WB+AHU@$MmV@%+%Wm
MM ED0lls + MED)|e: + s

[(N2) (1)

IN +

+ M / E(s)llws + 2llpds + M / p()e(l|zs + 2|s)ds.
0 0
< MMl + M EY(||zlle, + 10ls(M + 1) + M3))
+ ME(llle, + Ills(M +1)
+ MIg|) + My (v (|| 2lle, + |@lls(M + 1) + M|g|))lpll L1,
< MME|lls + M EY(R+ ||olls(M + 1) + M]g))
+ MEY(R+ [|9lls(M + 1) + M|j])
+ Myp(Ey(R+ ||olls(M + 1) + M|G)lIpllzr,
< R.

Thus the operator N maps By, into itself.
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Let (2™),en be a sequence in By such that 2" — 2z in B, then for any ¢ € J we obtain

[N (2")(t) = N (2)(t)]

IN

/ U, ) f (1 o+ 20) — (s + 2)] ds
LA ARt ) — A (D AWD)g(E, )]
/ UGt )| Als)g (s, 2o + 27) — A(s)g(5, 20 + 2)ds

+

IN

M/ |f(s, 28 +xs) — f(s, 25 + xs)| ds.
M[A(t)g(t, 2") — A(t)g(t, )]

+
t
+ M/ A(s)g(s,xs + 27) — A(s)g(s, xs + 25)ds
0

Hence, from Carathéodory of the function f, (H;) and the Lebesgue dominated con-
vergence theorem we obtain

Nz — Nz|lc, >0 as n — 4o0.

So N is continuous. Consider the mesure of noncompacteness ;1* defined on the
family of bounded subsets of the space C; bay

p(D) = e " Duf (D) + sup e O p(D(t),.

teJ

t
= M/ o(s)ds, T > 6.
0
Step 1. F'is a u* —contraction.

We know from Lemma 1.3.6 that for each € > 0 there is a sequence function
{Wi}2, € L(D,(s)) such that

where

WD) < Wiy + =
This implies that there is a sequence {Q*}°,, C Wj, such that
Wi = (LQ*)(s) for k = 0,1,2, ...

Using the properties of 11, Lemma 1.3.6, Lemma 1.3.7 and assumptions (Hy), (H5), we
get
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p(ED() = 2u({Wilil) +¢
= 2u({(LQ")(s)}iZo) + ¢

w({f tu(us)f(s,cz’;)ds}:oo) b

4M/0 o(s) sup p({Q%(s+0) 2+ {w})ds +e.

0e(—00,0]

IN

IN

IN

M / o(s) sup p(D(s+60) + {w.}))ds + <.

e (—00,0]

AM /t o(s) sup wu(D(s+6)))ds+e.

0e(—00,0]

IN

IN

4M/ s) sup wu(D(7))ds+e.

TE(—00,s]

IA

4M/ s) sup u(D(7)))ds + ¢

T€[0,s]

IN

4M/ ))ds + ¢

IN

/ (5)e™ e ™) 1 (D(s))ds + €
0

IN

¢
4/ o(5)e™® sup e 7 (D(s))ds + ¢
0

s€[0,¢]

IN

467 sup e W u(D(t))ds + €.
teJ

Since ¢ is arbitrary, we get

4
supe W u(D(t) < =(supe O pu(D(t))
teJ T teJ
Then
_ 4 _
supe O (D, (1)) < = (e Wy (D) + sup e O p(D(t))
teJ T teJ]

6.7)
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