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l’expression de mon profond respect.

• Très vivement, Monsieur Prof Abdelghani Ouahab, pour m’avoir fait l’honneur
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Abstract

In this thesis, we discuss the existence and uniqueness of integral solutions for a class
of initial value problem and of boundary value problem for nonlinear implicit frac-
tional differential equations and inclusions (NIFDE for short) with Caputo fractional
derivative. Our results will be obtained by means of fixed points theorems and by the
technique of measures of noncompactness.
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INTRODUCTION

Fractional calculus is a generalization of differentiation and integration to arbitrary
order (non-integer) fundamental operator Dα

a+ where a, α ∈ R. Several approaches to
fractional derivatives exist : Riemann-Liouville (RL), Hadamard, Grunwald-Letnikov
(GL), Weyl and Caputo etc. The Caputo fractional derivative is well suitable to the
physical interpretation of initial conditions and boundary conditions. We refer readers,
for example, to the books [1, 18, 29, 54, 80, 89, 95, 101, 102, 104, 105] and the references
therein. In this thesis, we always use the Caputo’s derivative.

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering. In-
deed, we can find numerous applications of differential equations of fractional order
in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see
[29, 70, 91, 101, 102, 110]). There has been a significant development in ordinary and
partial fractional differential equations in recent years ; see the monographs of Abbas
et al. [1], Kilbas et al. [80], Lakshmikantham et al. [89], and the papers by Agarwal et
al [8, 9], Belarbi et al. [28], Benchohra et al. [32], and the references therein.

Fractional differential equations with nonlocal conditions have been discussed in
([7, 11, 59, 67, 90, 99, 100]) and references therein. Nonlocal conditions were initiated
by Byszewski [45] when he proved the existence and uniqueness of mild and classi-
cal solutions of nonlocal Cauchy problems (C.P. for short). As remarked by Byszewski
([43, 44]), the nonlocal condition can be more useful than the standard initial condition
to describe some physical phenomena.

The theory of functional differential equations has emerged as an important branch
of nonlinear analysis. It is worthwhile mentioning that several important problems of
the theory of ordinary and delay differential equations lead to investigations of functio-
nal differential equations of various types (see the books by Hale and Verduyn Lunel

11
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[69], Wu [117], and the references therein).

Differential delay equations, or functional differential equations, have been used in
modelling scientific phenomena for many years. Often, it has been assumed that the
delay is either a fixed constant or is given as an integral in which case is called distri-
buted delay ; see for instance the books ([69, 84, 117]), and the papers ([47, 68]).

In the literature devoted to equations with infinite delay, the state space is usually
the space of all continuous function on [−r, 0], r > 0 and α = 1 endowed with the
uniform norm topology, see the book of Hale and Lunel [69]. When the delay is in-
finite, the notion of the phase space B plays an important role in the study of both
qualitative and quantitative theory. A usual choice is a semi-normed space satisfying
suitable axioms, which was introduced by Hale and Kato in [68], see also Corduneanu
and Lakshmikantham [47], Kappel and Schappacher [76] and Schumacher [106]. For
detailed discussion and applications on this topic, we refer the reader to the book by
Hale and Verduyn Lunel [69], Hino et al. [71] and Wu [117].

Differential inclusions are generalization of differential equations, therefore all pro-
blems considered for differential equations, that is, existence of solutions,continuation of
solutions, dependence on initial conditions and parameters, are present in the theory of
differential inclusions. Since a differential inclusion usually has many solutions starting
at a given point, new issues appear, such as investigation of topological properties of
the set of solutions, and selection of solutions with given properties. As a consequence,
differential inclusions have been the subject of an intensive study of many researchers
in the recent decades ; see, for example, the monographs [19, 20, 41, 64, 73, 78, 108, 111]
and the papers of Bressan and Colombo [39, 40].

Implicit differential equations involving the regularized fractional derivative were
analyzed by many authors, in the last year ; see for instance [3, 4, 5, 6, 114, 114, 115]
and the references therein.

There are two measures which are the most important ones. The Kuratowski mea-
sure of noncompactness α(B) of a bounded set B in a metric space is defined as infimum
of numbers r > 0 such that B can be covered with a finite number of sets of diameter
smaller than r. The Hausdorf measure of noncompactness χ(B) defined as infimum of
numbers r > 0 such that B can be covered with a finite number of balls of radii smaller
than r. Several authors have studied the measures of noncompactness in Banach spaces.
See, for example, the books such as [15, 23, 112] and the articles [17, 24, 27, 31, 35,
37, 72, 94],and the references cited therein. Recently, considerable attention has been
given to the existence of solutions of initial value problem and boundary conditions for
implicit fractional differential equations and integral equations with Caputo fractional
derivative. See for example [10, 12, 13, 14, 21, 38, 35, 74, 85, 86, 87, 88, 109, 119], and
the references therein.
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The problem of the existence of solutions of Cauchy-type problems for ordinary
differential equations of fractional order and without delay in spaces of integrable func-
tions was studied in some works [79, 107]. The similar problem in spaces of continuous
functions was studied in [116].

To our knowledge, the literature on integral solutions for fractional differential equa-
tions is very limited. El-Sayed and Hashem [56] studies the existence of integral and
continuous solutions for quadratic integral equations. El-Sayed and Abd El Salam consi-
dered Lp-solutions for a weighted Cauchy problem for differential equations involving
the Riemann-Liouville fractional derivative.

Motivated by the above works, this thesis is devoted to the existence of integral
solutions for initial value problem (IVP for short), and boundary value problem (BVP
for short)for fractional order implicit differential equation.

In the following we give an outline of our thesis organization, Consisting of 7 chap-
ters.

The first chapter gives some notations, definitions, lemmas and fixed point theo-
rems which are used throughout this thesis.

In Chapter 2, we study the existence of solutions for initial value problem (IVP
for short), for fractional order implicit differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, T ], 0 < α ≤ 1,

y(0) = y0,

where f : J ×R×R → R is a given function, y0 ∈ R, and cDα is the Caputo fractional
derivative.

In Chapter 3, we deal with the existence of solutions of the nonlocal problem, for
fractional order implicit differential equation

cDαy(t) = f(t, y(t),cDαy(t)), a.e, t ∈ J =: (0, T ], 0 < α ≤ 1,

m∑
k=1

aky(tk) = y0,

where f : J × R × R → R is a given function, y0 ∈ R, ak ∈ R, cDα is the Caputo
fractional derivative, and 0 < t1 < t2 < ..., tm < T, k = 1, 2, ...,m.

In Chapter 4, we shall be concerned with the existence of solutions for initial value
problem (IVP for short), for implicit fractional order functional differential equations
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with infinite delay

cDαy(t) = f(t, yt,
cDαyt), t ∈ J := [0, b], 0 < α ≤ 1,

y(t) = ϕ(t), t ∈ (−∞, 0],

where cDα is the Caputo fractional derivative, and f : J×B×B → R is a given function
satisfying some assumptions that will be specified later, and B is called a phase space
that will be defined later (see Section 1.5). For any function y defined on (−∞, b] and
any t ∈ J , we denote by yt the element of B defined by yt(θ) = y(t+ θ), θ ∈ (−∞, 0].
Here yt(.) represents the history of the state from time −∞ up to the present time t.

In Chapter 5, we study the existence of integrable solutions for the Initial Value
Problem (IVP for short), for implicit fractional order differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, T ], 0 < α ≤ 1,

y(0) = y0,

where cDα is the Caputo fractional derivative, f : J ×R×R −→ R is a given function
satisfying some assumptions that will be specified later. We will use the technique of
measures of noncompactness which is often used in several branches of nonlinear ana-
lysis.

In Chapter 6, deals with the existence existence of solutions for initial value
problem (IVP for short), for fractional order implicit differential inclusions

cDαy(t) ∈ F (t, y(t),cDαy(t)), a.e. t ∈ J := [0, T ], 0 < α ≤ 1,

y(0) = y0,

where cDα is the Caputo fractional derivative, F : J ×R×R → P(R) is a multivalued
map with compact values (P(R) is the family of all nonempty subsets of R), y0 ∈ R.

In Chapter 7, In section 7.1 we study the the existence of solutions for boundary
value problem (BVP for short), for fractional order implicit differential equation

cDαy(t) = f(t, y,cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2,

y(0) = y0, y(T ) = yT

where f : J × R × R → R is a given function, y0, yT ∈ R, and cDα is the Caputo
fractional derivative.

In section 7.3 is devoted to some existence and uniqueness results for the following
class of nonlocal problems

cDαy(t) = f(t, y,cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2,
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y(0) = g(y), y(T ) = yT

where g : L1(J,R) → R a continuous function. The nonlocal condition can be applied
in physics with better effect than the classical initial condition y(0) = y0. For example,
g(y) may be given by

g(y) =

p∑
i=1

ciy(ti).

where ci, i = 1, 2, ..., p are given constants and 0 < ... < tp < T.
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Chapitre 1

Preliminaires

We introduce in this Chapter notations, definitions, fixed point theorems and pre-
liminary facts from multi-valued analysis which are used throughout this thesis.

1.1 Notations and definitions

Let C(J,R) be the Banach space of all continuous functions from J := [0, T ] into
R with the usual norm

∥y∥ = sup{|y(t)| : 0 < t < T}.
L1(J,R) denote the Banach space of functions : J → R that are Lebesgue integrable
with the norm

∥y∥L1 =

∫ T

0

|y(t)|dt.

Definition 1.1 [49]. A map f : J × R× R −→ R is said to be L1-Carathéodory if

(i) the map t 7−→ f(t, x, y) is measurable for each (x, y) ∈ R× R,
(ii) the map (x, y) 7−→ f(t, x, y) is continuous for almost all t ∈ J,

(iii) For each q > 0, there exists φq ∈ L1(J,R) such that

|f(t, x, y)| ≤ φq(t)

for all |x| ≤ q, |y| ≤ q and for a.e. t ∈ J .

The map f is said of Carathéodory if it satisfies (i) and (ii).

Definition 1.2 An operator T : E −→ E is called compact if the image of each
bounded set B ∈ E is relatively compact i.e (T (B) is compact). T is called completely
continuous operator if it is continuous and compact.

Theorem 1.1 (Kolmogorov compactness criterion [50]). Let Ω ⊆ Lp(J,R), 1 ≤ p ≤
∞. If

17
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(i) Ω is bounded in Lp(J,R), and
(ii) uh −→ u as h −→ 0 uniformly with respect to u ∈ Ω,

then Ω is relatively compact in Lp(J,R),
where

uh(t) =
1

h

∫ t+h

t

u(s)ds.

1.2 Fractional Calculus.

Definition 1.3 ([80, 104]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds,

where Γ(.) is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ φα(t), where
φα(t) =

tα−1

Γ(α)
for t > 0, and φα(t) = 0 for t ≤ 0, and φα → δ(t) as α → 0, where δ

is the delta function.

Definition 1.4 . ([80, 104]). The Riemann-Liouville fractional derivative of order α >
0 of function h ∈ L1([a, b],R+), is given by

(Dα
a+h)(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

a

(t− s)n−α−1h(s)ds,

Here n = [α] + 1 and [α] denotes the integer part of α. If α ∈ (0, 1], then

(Dα
a+h)(t) =

d

dt
I1−α
a+ h(t) =

1

Γ(1− α)

d

ds

∫ t

a

(t− s)−αh(s)ds.

Definition 1.5 ([80]). The Caputo fractional derivative of order α ∈ (0, 1], of function
h ∈ L1([a, b],R+) is given by

(cDα
a+h)(t) = I1−α

a+

d

dt
h(t) =

∫ t

a

(t− s)−α

Γ(1− α)

d

ds
h(s)ds,

where n = [α] + 1.

The following properties are some of the main ones of the fractional derivatives and
integrals.

Lemma 1.1 ([80]). Let α > 0, then the differential equation

cDαh(t) = 0

has solution

h(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.
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Lemma 1.2 ([80]). Let α > 0, then

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for arbitrary ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

Proposition 1.1 [80]. Let α, β > 0. Then we have

(1) Iα : L1(J,R) → L1(J,R), and if f ∈ L1(J,R), then

IαIβf(t) = IβIαf(t) = Iα+βf(t).

(2) If f ∈ Lp(J,R), 1 ≤ p ≤ +∞, then ∥Iαf∥Lp ≤ Tα

Γ(α+1)
∥f∥Lp .

(3) The fractional integration operator Iα is linear.

(4) The fractional order integral operator Iα maps L1(J,R) into itself.

(5) When α = n ∈ N, Iα0 is the n-fold integration.

(6) The Caputo and Riemann-Liouville fractional derivative are linear

(7) The Caputo derivative of a constant is equal to zero.

1.3 Multi-valud analysis

Let (X, ∥.∥) be a Banach space and K be a subset of X. We denote by :

P(X) = {K ⊂ X : K ̸= ∅},

Pcl(X) = {K ⊂ P(X) : K is closed},

Pb(X) = {K ⊂ P(X) : K is bounded},

Pcv(X) = {K ⊂ P(X) : K is convex},

Pcp(X) = {K ⊂ P(X) : K is compact},

Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

Let A,B ∈ P(X). Consider Hd : P(X) × P(X) → R+ ∪ {∞} the Hausdorff distance
between A and B given by :

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b). As usual, d(x, ∅) = +∞.

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (complete)
metric space (see [83]).
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Definition 1.6 A multivalued operator N : X → Pcl(X) is called :
(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for all x, y ∈ X;

(b) a contraction if it is γ-Lipschitz with γ < 1.

Definition 1.7 A multivalued map F : J → Pcl(X) is said to be measurable if, for
each y ∈ X, the function

t 7−→ d(y, F (t)) = inf{d(x, z) : z ∈ F (t)}

is measurable.

Definition 1.8 Let X and Y be metric spaces. A set-valued map F from X to Y is
characterized by its graph Gr(F ), the subset of the product space X × Y defined by

Gr(F ) := {f(x, y) ∈ X × Y : y ∈ F (x)}

Definition 1.9 1. A multi-valued map F : X → P(X) is convex (closed) if F (x)
is convex (closed) for all x ∈ X.

2. F is bounded on bounded sets if F (B) = ∪x∈BF (x) is bounded in X for all B ∈
Pb(X), i.e. supx∈B{sup{|y| : y ∈ F (x)}} <∞.

3. A multi-valued map F is called upper semi-continuous (u.s.c. for short) on X if
for each x0 ∈ X the set F (x0) is a nonempty, closed subset of X and for each
open set U of X containing F (x0), there exists an open neighborhood V of x0
such that F (V ) ⊂ U .

4. F is said to be completely continuous if F (B) is relatively compact for every
B ∈ Pb(X). If the multi-valued map F is completely continuous with nonempty
compact values, then F is upper semi-continuous if and only if F has closed graph
(i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ F (x∗)).

5. F has a fixed point if there exists x ∈ X such that x ∈ Fx. The set of fixed points
of the multi-valued operator G will be denoted by FixF .

6. A measurable multi-valued function F : J → Pb,cl(X) is said to be integrably
bounded if there exists a function g ∈ L1(R+) such that |f | ≤ g(t) for almost
t ∈ J for all f ∈ F (t).

Proposition 1.2 [75] Let F : X → Y be an u.s.c map with closed values. Then Gr(F )
is closed.

Definition 1.10 A multi-valued map F : J × R × R → P(R) is said to be L1-
Carathéodory if

(i) t→ F (t, x, y) is measurable for each x, y ∈ R ;
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(ii) x→ F (t, x, y) is upper semicontinuous for almost all t ∈ J ;

(iii) For each q > 0, there exists φq ∈ L1(J,R+) such that

∥F (t, x, y)∥P = sup{|f | : f ∈ F (t, x, y)} ≤ φq(t)

for all |x| ≤ q, |y| ≤ q and for a.e. t ∈ J .

The multi-valued map F is said of Carathéodory if it satisfies (i) and (ii).

Definition 1.11 . Let X,Y be nonempty sets and F : X → P(Y ). The single-valued
operator f : X → Y is called a selection of F if and only if f(x) ∈ F (x), for each
x ∈ X. The set of all selection functions for F is denoted by SF .

Lemma 1.3 ([64]) Let X be a separable metric space. Then every measurable multi-
valued map F : X → Pcl(X) has a measurable selection.

For more details on multivalued maps and the proof of the known results cited in
this section we refer interested reader to the books of Aubin and Cellina [19], Deimling
[51], Gorniewicz [64], Hu and Papageorgiou [75], Smirnov [108], Tolstonogov [113],
Djebali and al [52] and Graef and al [62] .

1.4 Measure of noncompactness

We define in this Section the Kuratowski (1896-1980) and Hausdorf (1868-1942)
measures of noncompactness (MNC for short) and give their basic properties, and
introduce the notion of measure of noncompactness in L1(J).
Now let us recall some fundamental facts of the notion of measure of noncompactness
in Banach space.

Let (X, d) be a complete metric space and Pbd(X) be the family of all bounded
subsets of X. Analogously denote by Prcp(X) the family of all relatively compact and
nonempty subsets of X. Let B ⊂ X recall that

diam(B) :=

{
sup

(x,y)∈B2

d(x, y) si B ̸= ϕ

0 si B = ϕ

is recalled the diameter of B.

Definition 1.12 ([23]) Let X be a Banach space and Pbd(X) the family of bounded
subsets of X. For every B ∈ Pbd(X) the Kuratowski measure of noncompactness is the
map α : Pbd(X) → [0,+∞] defined by

α(B) = inf{r > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) < r}.
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Remark 1.1 It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded
subset B of X and that diam(B) = 0 if and only if B is an empty set or consists of
exactly one point.

The Kuratowski measure of noncompactness satisfies the following properties :

Proposition 1.3 ([15, 23, 24, 81]). Let X be a Banach space. Then for all bounded
subsets A, B of X the following assertions hold

1. α(B) = 0 ⇐⇒ B is compact (B is relatively compact).

2. α(ϕ) = 0.

3. α(B) = α(B) = α(convB), where convB is the convex hull of B.

4. monotonicity : (A ⊂ B) =⇒ α(A) ≤ α(B).

5. algebraic semi-additivity : α(A+B) ≤ α(A)+α(B), where A+B = {x+ y : x ∈
A; y ∈ B}.

6. semi-homogencity : α(λB) = |λ|α(B), λ ∈ R, where λ(B) = {λx : x ∈ B}.
7. semi-additivity : α(A ∪B) = max{α(A), α(B)}.
8. semi-additivity : α(A ∩B) = min{α(A), α(B)}.
9. invariance under translations :α(B + x0) = α(B) for any x0 ∈ X.

Remark 1.2 The α-measure of noncompactness was introduced by Kuratowski in or-
der to generalize the Cantor intersection theorem.

Theorem 1.2 ([23]) Let (X ; d) be a complete metric space and {Bn} be a decreasing
sequence of nonempty, closed and bounded subsets of X. If lim

n→+∞
α(Bn) = 0 then

A∞ =
∞∩
n=1

Bn is a nonempty compact set.

In the definition of the Kuratowski measure we can consider balls instead of arbi-
trary sets. In this way we get the defnition of the Hausdorf measure :

Definition 1.13 ([23])Let X be a Banach space and Pbd(X) the family of bounded
subsets of X. For every B ∈ Pbd(X) The Hausdorf measure of noncompactness is the
map χ : Pbd(X) → [0,+∞] defined by

χ(B) = inf{r > 0 : B admits a finite covering by balls of radius ≤ r}.

Theorem 1.3 ([23]) The Kuratowski and Hausdorf (MNC) are related by the inequa-
lities

χ(B) ≤ α(B) ≤ 2χ(B)

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.
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•Measure of noncompactness in L1(J)
To introduce the notion of measure of noncompactness in L1(J) we let Mbd be the
family of all bounded subsets of L1(J). Analogously denote by Nrcp the family of all
relatively compact and nonempty subsets of L1(J).
We will adopt the following definition of measure of noncompactness [23].

Definition 1.14 A function µ : Mbd −→ R+ will be called a measure of noncom-
pactnes if it satisfies to the following conditions :

1. Kerµ(A) = {A ∈ Mbd : µ(A) = 0} is nonempty and kerµ(A) ⊂ Nrcp.

2. A ⊂ B ⇒ µ(A) ≤ µ(B).

3. µ(A) = µ(A).

4. µ(convA) = µ(A).

5. µ(λA+ (1− λ)B) ≤ λµ(A) + (1− λ)µ(B) pour λ ∈ [0, 1].

6. If (An)n≥1 Is a sequence of closed sets from Mbd such that

An+1 ⊂ An (n = 1, 2, . . . .)

and

lim
n→+∞

µ(An) = 0.

Then the intersection set A∞ =
∞∩
n=1

An is nonempty.

In particular, the measure of noncompactness in L1(J) is defined as follows. Let
X be a fixed nonempty and bounded subset of L1(J). For x ∈ X, denote by

µ(X) = lim
δ→0

{
sup

{
sup

(∫ T

0

|x(t+ h)− x(t)|dt
)
, |h| ≤ δ

}
, x ∈ X

}
. (1.1)

It can be easily shown, that µ is measure of noncompactness in L1(J) (see [23]).

For more details on measure of noncompactness and the proof of the known results
cited in this section we refer the reader to Akhmerov et al. [15], Alvarez [17], Banas et
al. [22, 23, 24, 25, 26], Guo et al. [66].

1.5 Phase spaces

In this paper, we assume that the state space (B, ∥.∥B) is a seminormed linear space
of functions mapping (−∞, 0] into R, and satisfying the following fundamental axioms
which were introduced by Hale and Kato in [68].
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(A1) If y : (−∞, b] → R, and y0 ∈ B, then for every t ∈ J the following conditions
hold :
(i) yt ∈ B
(ii) ∥yt∥B ≤ K(t)

∫ t

0
|y(s)|ds+M(t)∥y0∥B,

(iii) |y(t)| ≤ H∥yt∥B, where H ≥ 0 is a constant, K : J → [0,∞) is continuous,
M : [0,∞) → [0,∞) is locally bounded and H,K,M, are independent of y(.).

(A2) For the function y(.) in (A1), yt is a B-valued continuous function on J .

(A3) The space B is complete.

Denote Kb = supK(t) : t ∈ J and Mb = supM(t) : t ∈ J

Remark 1.3 1. (A1)(ii) is equivalent to |ϕ(0)| ≤ H∥ϕ∥B for every ϕ ∈ B.
2. Since ∥.∥B is a seminorm, two elements ϕ, ψ ∈ B can verify ∥ϕ − ψ∥B = 0 without
necessarily ϕ(θ) = ψ(θ) for all θ ≤ 0
3.From the equivalence in the first remark, we can see that for all ϕ, ψ ∈ B such that
∥ϕ− ψ∥B = 0 : We necessarily have that ϕ(0) = ψ(0).

Now We indicate some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al [71]

1.5.1 Examples of phase spaces

Example 1.1 Let :
BC the space of bounded continuous functions defined from (−∞, 0] → E,
BUC the space of bounded uniformly continuous functions defined from (−∞, 0] → E,
C∞ := {ϕ ∈ BC : lim

θ→−∞
ϕ(θ) exist in E}

C0 := {ϕ ∈ BC : lim
θ→−∞

ϕ(θ) = 0},endowed with the uniform norm

∥ϕ∥ = sup{|ϕ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)-(A3). However,
BC satisfies (A1), (A3) but (A2) is not satisfied.

Example 1.2 Let g be a positive continuous function on (−∞, 0]. We define :

Cg :=
{
ϕ ∈ C((−∞, 0]), E) : ϕ(θ)

g(θ)
is bounded on(−∞, 0]

}
,

C0
g :=

{
ϕ ∈ Cg : lim

θ→−∞

ϕ(θ)

g(θ)
= 0
}
, endowed with the uniform norm

∥ϕ∥ = sup
{ |ϕ(θ)|
g(θ)

: θ ≤ 0
}
.

Then we have that the spaces Cg and C0
g satisfy condition (A3). We consider the fol-

lowing condition on the function g.
(g1) For all a > 0, sup0≤t≤a sup{

ϕ(t+θ)
g(θ)

: −∞ < t ≤ −t} Then Cg and C0
g satisfy

conditions (A1) and (A2) if (g1) holds.
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Example 1.3 The space Cγ For any real positive constant γ, we define the functional
space Cγ by

Cγ := {ϕ ∈ C((−∞, 0]), E) : lim
θ→−∞

eγθϕ(θ) exist in E

endowed with the following norm

∥ϕ∥ = sup{eγθ|ϕ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)-(A3) are satisfied.

1.6 Some fixed point theorems

Definition 1.15 ([16]) Let (M,d) be a metric space. The map T : M −→ M is said
to be Lipschitzian if there exists a constant k > 0 (called Lipschitz constant) such that

d(T (x), T (y)) ≤ kd(x, y), forall x, y ∈M

A Lipschitzian mapping with a Lipschitz constant k < 1 is called contraction.

Theorem 1.4 (Banach’s fixed point theorem [61]). Let C be a non-empty closed subset
of a Banach space X, then any contraction mapping T of C into itself has a unique
fixed point.

Theorem 1.5 (Schauder fixed point theorem ([50]) Let E a Banach space and Q be a
convex subset of E and T : Q −→ Q is compact, and continuous map. Then T has at
least one fixed point in Q.

In the next definition we will consider a special class of continuous and bounded ope-
rators.

Definition 1.16 Let T : M ⊂ E −→ E be a bounded operator from a Banach space
E into itself. The operator T is called a k-set contraction if there is a number k ≥ 0
such that

µ(T (A)) ≤ kµ(A)

for all bounded sets A in M . The bounded operator T is called condensing if µ(T (A)) <
µ(A) for all bounded sets A in M with µ(M) > 0.

Obviously, every k-set contraction for 0 ≤ k < 1 is condensing. Every compact map T
is a k-set contraction with k = 0.

Theorem 1.6 (Darbo’s fixed point theorem [23]) Let M be nonempty, bounded, convex
and closed subset of a Banach space E and T : M −→ M is a continuous operator
satisfying µ(TA) ≤ kµ(A) for any nonempty subset A of M and for some constant
k ∈ [0, 1). Then T has at least one fixed point in M .
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Next we state two multi-valued fixed point theorems

Lemma 1.4 ( Bohnenblust-Karlin 1950)([42]). Let X be a Banach space and K ∈
Pcl,cv(X) and suppose that the operator G : K → Pcl,cv(K) is upper semicontinuous
and the set G(K) is relatively compact in X. Then G has a fixed point in K.

Lemma 1.5 (Covitz-Nadler [48]). Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN ̸= ϕ.



Chapitre 2

Integrable Solutions for Implicit
Fractional Order Differential
Equations (1)

2.1 Introduction and Motivations

In this chapter we deal with the existence of integrable solutions for initial value
problem (IVP for short), for fractional order implicit differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, T ], 0 < α ≤ 1, (2.1)

y(0) = y0, (2.2)

where f : J ×R×R → R is a given function, y0 ∈ R, and cDα is the Caputo fractional
derivative.

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering. In-
deed, we can find numerous applications of differential equations of fractional order
in viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see
[29, 70, 91, 102, 110]). There has been a significant development in ordinary and par-
tial fractional differential equations in recent years ; see the monographs of Abbas et
al. [1, 2], Kilbas et al. [80], Lakshmikantham et al. [89], and the papers by Agarwal et
al. [8, 9], Belarbi et al. [28], Benchohra et al. [32], and the references therein.

(1)M. Benchohra and M. S. Souid, Integrable Solutions for Implicit Fractional Order Differential
Equations. Transylvanian Journal of Mathematics and Mechanics 6 (2014), No. 2, 101-107.
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More recently, some authors have considered initial value problems for fractional
differential equations depending on the fractional derivative.
In [30], Benchohra et al. studied the problem involving Caputo’s derivative :

cDαu(t) = f(t, u(t),cDα−1u(t)), t ∈ J = [0,+∞), 1 < α ≤ 2

u(0) = u0, u is bounded on J :

In [36], Benchohra and Lazreg, studied the existence of continuous solutions for the
problem (2.1)-(2.2)

This chapter is organized as follows. In Section 2.2, we give two results, the first
one is based on Schauder’s fixed point theorem (Theorem 2.1) and the second one on
the Banach contraction principle (Theorem 2.2). An example is given in Section 2.3
to demonstrate the application of our main results. These results can be considered as
a contribution to this emerging field.

2.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem
(2.1)− (2.2).

Definition 2.1 . A function y ∈ L1(J,R) is said to be a solution of IVP (2.1)− (2.2)
if y satisfies (2.1) and (2.2).

For the existence of solutions for the problem (2.1) − (2.2), we need the following
auxiliary lemma.

Lemma 2.1 The solution of the IVP (2.1) − (2.2) can be expressed by the integral
equation

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, (2.3)

where x ∈ L1(J,R) is the solution of the functional integral equation

x(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, x(t)

)
. (2.4)

Proof. Let cDαy(t) = x(t)) in equation (2.1), then

x(t) = f(t, y(t), x(t)) (2.5)

and

y(t) = y(0) + Iαx(t))

= y(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds. (2.6)

Leu us introduce the following assumptions :
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(H1) f : J × R2 −→ R is measurable in t ∈ J , for any (u1, u2) ∈ R2 and continuous
in (u1, u2) ∈ R2, for almost all t ∈ J .

(H2) There exist a positive function a ∈ L1(J,R) and constants, bi > 0; i = 1, 2 such
that :

|f(t, u1, u2)| ≤ a(t) + b1|u1|+ b2|u2|,∀(t, u1, u2) ∈ J × R2.

Our first result is based on Schauder fixed point theorem.

Theorem 2.1 Assume that the assumptions (H1)− (H2) are satisfied. If

b1T
2α

Γ(2α + 1)
+

b2T
α

Γ(α+ 1)
< 1, (2.7)

then the IVP (2.1)− (2.2) has at least one solution y ∈ L1(J,R).

Proof. Transform the problem (2.1) − (2.2) into a fixed point problem. Consider the
operator

H : L1(J,R) −→ L1(J,R)

defined by :
(Hx)(t) = y0 + Iαx(t), (2.8)

where
x(t) = f(t, y0 + Iαx(t), x(t)).

The operator H is well defined, indeed, for each x ∈ L1(J,R), from assumptions (H1)
and (H2), we obtain

∥Hx∥L1 =

∫ T

0

|Hx(t)|dt

=

∫ T

0

|y0 + Iαx(t))|dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|x(s))|ds

)
dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|f(s, y0 + Iαx(s), x(s))|ds

)
dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|a(s) + b1(y0 + Iαx(s)) + b2(x(s)|ds

)
dt

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

b1|y0|Tα+1

Γ(α + 1)
+

b2T
α

Γ(α + 1)
∥x∥L1

+b1

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
Iα|x(s)|ds

)
dt

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

b1|y0|Tα+1

Γ(α + 1)
+

b2T
α

Γ(α + 1)
∥x∥L1

+
b1T

2α

Γ(2α + 1)
∥x∥L1 < +∞. (2.9)
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Let

r =
T |y0|+

(
Tα∥a∥L1

+b1|y0|Tα+1

Γ(α+1)

)
1−

(
b1T 2α

Γ(2α+1)
+ b2Tα

Γ(α+1)

) ,

and consider the set
Br = {x ∈ L1(J,R) : ∥x∥L1 ≤ r.}.

Clearly Br is nonempty, bounded, convex and closed.
Now, we will show that HBr ⊂ Br, indeed, for each x ∈ Br, from (2.7) and (2.9)

we get

∥Hx∥L1 ≤ T |y0|+
(
Tα∥a∥L1 + b1|y0|Tα+1

Γ(α + 1)

)
+

(
b1T

2α

Γ(2α + 1)
+

b2T
α

Γ(α + 1)

)
∥x∥L1

≤ r.

Then HBr ⊂ Br. Assumption (H1) implies that H is continuous. Now, we will show
that H is compact, this is HBr is relatively compact. Clearly HBr is bounded in
L1(J,R), i.e condition (i) of Kolmogorov compactness criterion is satisfied. It remains
to show (Hx)h −→ (Hx) in L1(J,R) for each x ∈ Br.
Let x ∈ Br, then we have

∥(Hx)h − (Hx)∥L1

=

∫ T

0

|(Hx)h(t)− (Hx)(t)|dt

=

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Hx)(s)ds− (Hx)(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

h

∫ t+h

t

|(Hx)(s)− (Hx)(t)|ds
)
dt

≤
∫ T

0

(
1

h

∫ t+h

t

|Iαx(s)− Iαx(t)|ds
)
dt

≤
∫ T

0

1

h

∫ t+h

t

|Iαf (s, y0 + Iαx(s), x(s))− Iαf (t, y0 + Iαx(t), x(t)) |dsdt.

Since x ∈ Br ⊂ L1(J,R) and assumption (H2) that implies f ∈ L1(J,R) and by
Proposition 1.1 (4), it follows that Iαf ∈ L1(J,R), then we have

1

h

∫ t+h

t

|Iαf(s, y0 + Iαx(s), x(s))− Iαf(t, y0 + Iαx(t), x(t)|ds −→ 0 as h −→ 0, t ∈ J.

Hence
(Hx)h −→ (Hx) uniformly as h −→ 0.
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Then by Kolmogorov compactness criterion, H(Br) is relatively compact. As a conse-
quence of Schauder’s fixed point theorem the IVP (2.1)−(2.2) has at least one solution
in Br. �

The following result is based on the Banach contraction principle.

Theorem 2.2 Assume that (H1) and the following condition hold.

(H3) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1|x1 − x2|+ k2|y1 − y2|, t ∈ J, x1, x2, y1, y2 ∈ R.

If
k1T

2α

Γ(2α + 1)
+

k2T
α

Γ(α+ 1)
< 1, (2.10)

then the IVP (2.1)− (2.2) has a unique solution y ∈ L1(J,R).

Proof. We shall use the Banach contraction principle to prove that H defined by (2.8)
has a fixed point. Let x, y ∈ L1(J,R), and t ∈ J . Then we have,

|(Hx)(t)− (Hy)(t)| = |Iα [f(t, y0 + Iαx(t), x(t))− f(t, y0 + Iαy(t), y(t))] |
≤ k1I

2α|x(t)− y(t)|+ k2I
α|x(t)− y(t)|

≤ k1
Γ(2α)

∫ t

0

(t− s)2α−1|x(s)− y(s)|ds

+
k2

Γ(α)

∫ t

0

(t− s)α−1|x(s)− y(s)|ds.

Thus

∥(Hx)− (Hy)∥L1 ≤ k1T
2α

Γ(2α + 1)
∥x− y∥L1 +

k2T
α

Γ(α + 1)
∥x− y∥L1

≤
(

k1T
2α

Γ(2α + 1)
+

k2T
α

Γ(α + 1)

)
∥x− y∥L1 .

Consequently by (2.10) H is a contraction. As a consequence of the Banach contraction
principle, we deduce that H has a fixed point which is a solution of the problem
(2.1)− (2.2). �

2.3 Example

Let us consider the following fractional initial value problem,

cDαy(t) =
e−t

(et + 8)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], α ∈ (0, 1], (2.11)

y(0) = 1. (2.12)
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Set

f(t, y, z) =
e−t

(et + 8)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).

Let y1, y2, z1, z2 ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + 8

(
1

1 + y1 + z1
− 1

1 + y2 + z2

)∣∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + 8)(1 + y1 + z1)(1 + y2 + z2)

≤ e−t

(et + 8)
(|y1 − y2|+ |z1 − z2|)

≤ 1

9
|y1 − y2|+

1

9
|z1 − z2|.

Hence the condition (H3) holds with k1 = k2 =
1
9
. We shall check that condition (2.10)

is satisfied with T = 1. Indeed

k1T
2α

Γ(2α + 1)
+

k2T
α

Γ(α + 1)
=

1

9Γ(2α+ 1)
+

1

9Γ(α + 1)
< 1. (2.13)

Then by Theorem 2.2, the problem (2.11)− (2.12) has a unique integrable solution on
[0, 1].



Chapitre 3

L1-Solutions for Implicit Fractional
Order Differential Equations with
Nonlocal Condition(2)

3.1 Introduction

In this chapter we deal with the existence of solutions of the nonlocal problem, for
fractional order implicit differential equation

cDαy(t) = f(t, y(t),cDαy(t)), a.e, t ∈ J =: (0, T ], 0 < α ≤ 1, (3.1)

m∑
k=1

aky(tk) = y0, (3.2)

where f : J × R × R → R is a given function, y0 ∈ R, ak ∈ R, cDα is the Caputo
fractional derivative, and 0 < t1 < t2 < ..., tm < T, k = 1, 2, ...,m.

Fractional differential equations with nonlocal conditions have been discussed in
([7, 11, 59, 67, 90, 99, 100]) and references therein. Nonlocal conditions were initiated
by Byszewski [45] when he proved the existence and uniqueness of mild and classi-
cal solutions of nonlocal Cauchy problems (C.P. for short). As remarked by Byszewski
([43, 44]), the nonlocal condition can be more useful than the standard initial condition
to describe some physical phenomena.

This chapter is organized as follows. In Section 3.2, we give two results, the first
one is based on Schauder’s fixed point theorem (Theorem 3.1) and the second one on

(2) M. Benchohra and M. S. Souid, L1-Solutions for Implicit Fractional Order Differential Equa-
tions with Nonlocal Condition, (to appear) .
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the Banach contraction principle (Theorem 3.2). An example is given in Section 3.3
to demonstrate the application of our main results. These results can be considered as
a contribution to this emerging field.

3.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the nonlocal
problem (3.1)− (3.2).

Definition 3.1 . A function y ∈ L1([0, T ],R) is said to be a solution of IVP (3.1) −
(3.2) if y satisfies (3.1) and (3.2).

For the existence of solutions for the nonlocal problem (3.1) − (3.2), we need the
following auxiliary lemma.
Set

a =
1∑m

k=1 ak
.

Lemma 3.1 Assume that
∑m

k=1 ak ̸= 0, the nonlocal problem (3.1)−(3.2) is equivalent
to the integral equation

y(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, (3.3)

where x is the solution of the functional integral equation

x(t) = f

(
t, ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, x(t)

)
.

(3.4)

Proof. Let cDαy(t) = x(t)) in equation (3.1), then

x(t) = f(t, y(t), x(t)) (3.5)

and

y(t) = y(0) + Iαx(t))

= y(0) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds. (3.6)

Let t = tk in (3.6), we obtain

y(tk) = y(0) +

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds,
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and
m∑
k=1

aky(tk) =
m∑
k=1

aky(0) +
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds. (3.7)

Substitute from (3.2) into (3.7), we get

y0 =
m∑
k=1

aky(0) +
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds,

and

y(0) = a

(
y0 −

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

)
. (3.8)

Substitute from (3.8) into (3.6) and (3.5), we obtain (3.3) and (3.4).
For complete the proof, we prove that equation (3.3) satisfies the nonlocal problem
(3.1)− (3.2). Differentiating (3.3), we get

cDαy(t) = x(t) = f(t, y(t),cDαy(t)).

Let t = tk in (3.3), we obtain

y(tk) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

= ay0 +

(
1− a

m∑
k=1

ak

)∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds.

Then

m∑
k=1

aky(tk) =
m∑
k=1

akay0 +
m∑
k=1

ak

(
1− a

m∑
k=1

ak

)∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds = y0.

This complete the proof of the equivalent between the nonlocal problem (3.1)-(3.2) and
the integral equation (3.3).
Leu us introduce the following assumptions :

(H1) f : [0, T ] × R2 −→ R is measurable in t ∈ [0, T ], for any (u1, u2) ∈ R2 and
continuous in (u1, u2) ∈ R2, for almost all t ∈ [0, T ].

(H2) There exist a positive function a ∈ L1[0, T ] and constants, bi > 0; i = 1, 2 such
that :

|f(t, u1, u2)| ≤ a(t) + b1|u1|+ b2|u2|, ∀(t, u1, u2) ∈ [0, T ]× R2.

Our first result is based on Schauder’s fixed point theorem.
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Theorem 3.1 Assume that the assumptions (H1)− (H2) are satisfied. If

2b1T
α

Γ(α + 1)
+ b2 < 1, (3.9)

then the IVP (3.1)− (3.2) has at least one solution y ∈ L1([0, T ],R).

Proof. Transform the nonlocal problem (3.1)−(3.2) into a fixed point problem. Consi-
der the operator

H : L1([0, T ],R) −→ L1([0, T ],R)

defined by :

(Hx)(t) = f

(
t, ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, x(t)

)
,

(3.10)
Let

r =
Tab1|y0|+ ∥a∥L1

1−
(

2b1Tα

Γ(α+1)
+ b2

) ,
and consider the set

Br = {x ∈ L1([0, T ],R) : ∥x∥L1 ≤ r.}

Clearly Br is nonempty, bounded, convex and closed.
Now, we will show that HBr ⊂ Br, indeed, for each x ∈ Br, from (3.9) and (3.10)

we get

∥Hx∥L1 =

∫ T

0

|Hx(t)|dt

=

∫ T

0

∣∣∣∣∣f
(
t, ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, x(t)

)∣∣∣∣∣ dt
≤

∫ T

0

[
|a(t)|+ b1|ay0 − a

m∑
k=1

akI
αx(t)|t=tk + Iαx(t)|+ b2|x(t)|

]
dt

≤ Tab1|y0|+ ∥a∥L1 +
b1a
∑m

k=1 akt
α
k

Γ(α + 1)
∥x∥L1 +

b1T
α

Γ(α + 1)
∥x∥L1 + b2∥x∥L1

≤ Tab1|y0|+ ∥a∥L1 +

(
2b1T

α

Γ(α + 1)
+ b2

)
∥x∥L1

≤ r.

Then HBr ⊂ Br. Assumption (H1) implies that H is continuous. Now, we will show
that H is compact, this is HBr is relatively compact. Clearly HBr is bounded in
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L1([0, T ],R), i.e condition (i) of Kolmogorov compactness criterion is satisfied. It re-
mains to show (Hx)h −→ (Hx) in L1([0, T ],R) for each x ∈ Br.
Let x ∈ Br, then we have

∥(Hx)h − (Hx)∥L1

=

∫ T

0

|(Hx)h(t)− (Hx)(t)|dt

=

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Hx)(s)ds− (Hx)(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

h

∫ t+h

t

|(Hx)(s)− (Hx)(t)|ds
)
dt

≤
∫ T

0

1

h

∫ t+h

t

|f

(
t, ay0 − a

m∑
k=1

ak

∫ sk

0

(sk − τ)α−1

Γ(α)
x(τ)dτ) +

∫ s

0

(s− τ)α−1

Γ(α)
x(τ)dτ, x(s)

)

−f

(
t, ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, x(t)

)
|dsdt.

Since x ∈ Br ⊂ L1([0, T ],R) and assumption (H2) that implies f ∈ L1([0, T ],R), it
follows that

1
h

∫ t+h

t

∣∣∣f (t, ay0 − a
∑m

k=1 ak
∫ sk
0

(sk−τ)α−1

Γ(α)
x(τ)dτ +

∫ s

0
(s−τ)α−1

Γ(α)
x(τ)dτ, x(s)

)
− f

(
t, ay0 − a

∑m
k=1 ak

∫ tk
0

(tk−s)α−1

Γ(α)
x(s)ds+

∫ t

0
(t−s)α−1

Γ(α)
x(s)ds, x(t)

) ∣∣∣ds→ 0 as h→ 0.

Hence

(Hx)h → (Hx) uniformly as h→ 0.

Then by Kolmogorov compactness compactness criterion, H(Br) is relatively compact.
As a consequence of Schauder’s fixed point theorem the nonlocal problem (3.1)− (3.2)
has at least one solution in Br. �

The following result is based on the Banach contraction principle.

Theorem 3.2 Assume that (H1) and the following condition hold.

(H3) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1|x1 − x2|+ k2|y1 − y2|, t ∈ [0, T ], x1, x2, y1, y2 ∈ R.

If

2k1T
α

Γ(α + 1)
+ k2 < 1, (3.11)

then the IVP (3.1)− (3.2) has a unique solution y ∈ L1([0, T ],R).
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Proof. We shall use the Banach contraction principle to prove that H defined by (3.10)
has a fixed point. Let x, y ∈ L1([0, T ],R), and t ∈ [0, T ]. Then we have,

|(Hx)(t)− (Hy)(t)|

=
∣∣∣f(t, ay0 − a

m∑
k=1

akI
αx(t)|t=tk + Iαx(t), x(t))

−f(t, ay0 − a

m∑
k=1

akI
αy(t)|t=tk + Iαy(t), y(t))

∣∣∣
≤ k1a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
|x(s)− y(s)|ds

+k1

∫ t

0

(t− s)α−1

Γ(α)
|x(s)− y(s)|ds+ k2|x− y|.

Thus

∥(Hx)− (Hy)∥L1 ≤ k1t
α
ka
∑m

k=1 ak
Γ(α+ 1)

∫ T

0

|x(t)− y(t)|dt+ k1T
α

Γ(α + 1)

∫ T

0

|x(t)− y(t)|dt

+k2

∫ T

0

|x(t)− y(t)|dt

≤ 2k1T
α

Γ(α + 1)
∥x− y∥L1 + k2∥x− y∥L1

≤
(

2k1T
α

Γ(α + 1)
+ k2

)
∥x− y∥L1 .

Consequently by (3.11) H is a contraction. As a consequence of the Banach contraction
principle, we deduce thatH has a fixed point which is a solution of the nonlocal problem
(3.1)− (3.2). �

3.3 Example

Let us consider the following fractional nonlocal problem,

cDαy(t) =
1

(et + 5)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], α ∈ (0, 1], (3.12)

m∑
k=1

aky(tk) = 1, (3.13)

where ak ∈ R, 0 < t1 < t2 < ... < 1.
Set

f(t, y, z) =
1

(et + 5)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).
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Let y1, y2, z1, z2 ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ 1

et + 5

(
1

1 + y1 + z1
− 1

1 + y2 + z2

)∣∣∣∣
≤ |y1 − y2|+ |z1 − z2|

(et + 5)(1 + y1 + z1)(1 + y2 + z2)

≤ 1

(et + 5)
(|y1 − y2|+ |z1 − z2|)

≤ 1

6
|y1 − y2|+

1

6
|z1 − z2|.

Hence the condition (H3) holds with k1 = k2 =
1
6
. We shall check that condition (3.11)

is satisfied. Indeed
2k1

Γ(α + 1)
+ k2 =

1

3Γ(α + 1)
+

1

6
< 1. (3.14)

Then by Theorem 3.2, the nonlocal problem (3.12) − (3.13) has a unique integrable
solution on [0, 1].



40
L1-Solutions for Implicit Fractional Order Differential Equations with Nonlocal

Condition



Chapitre 4

Integrable Solutions For Implicit
Fractional Order Functional
Differential Equations with Infinite
Delay (3)

4.1 Introduction

In this chapter we deal with the existence of solutions for initial value problem (IVP
for short), for implicit fractional order functional differential equations with infinite
delay

cDαy(t) = f(t, yt,
cDαyt), t ∈ J := [0, b], 0 < α ≤ 1, (4.1)

y(t) = ϕ(t), t ∈ (−∞, 0], (4.2)

where cDα is the Caputo fractional derivative, and f : J×B×B → R is a given function
satisfying some assumptions that will be specified later, and B is called a phase space.
For any function y defined on (−∞, b] and any t ∈ J , we denote by yt the element of B
defined by yt(θ) = y(t+ θ), θ ∈ (−∞, 0]. Here yt(.) represents the history of the state
from time−∞ up to the present time t.

In the literature devoted to equations with finite delay, the state space is usually
the space of all continuous function on [−r, 0], r > 0 and α = 1 endowed with the
uniform norm topology ; see the book of Hale and Lunel [69]. When the delay is in-
finite, the selection of the state B (i.e. phase space) plays an important role in the
study of both qualitative and quantitative theory for functional differential equations.

(3) M. Benchohra and M. S. Souid, Integrable Solutions For Implicit Fractional Order Functional
Differential Equations with Infinite Delay, Archivum Mathematicum (BRNO)Tomus 51 (2015), 13-22.
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A usual choice is a seminormed space satisfying suitable axioms, which was introduced
by Hale and Kato [68] (see also Kappel and Schappacher [77] and Schumacher [106]).
For a detailed discussion on this topic we refer the reader to the book by Hino et al. [71].

This chapter is organized as follows. In Section 4.2, we give two results, the first
one is based on the Banach contraction principle (Theorem 4.1) and the second one on
Schauder type fixed point theorem (Theorem 4.2). An example is given in Section 4.3
to demonstrate the application of our main results. These results can be considered as
a contribution to this emerging field.

4.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem
(4.1)− (4.2).
Let the space

Ω = {y : (−∞, b] → R : y|(−∞,0] ∈ B and y|J ∈ L1(J)}.

Definition 4.1 . A function y ∈ Ω is said to be a solution of IVP (4.1) − (4.2) if y
satisfies (4.1) and (4.2).

For the existence of solutions for the problem (4.1) − (4.2), we need the following
auxiliary lemma.

Lemma 4.1 The solution of the IVP (4.1) − (4.2) can be expressed by the integral
equation

y(t) = ϕ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, t ∈ J, (4.3)

y(t) = ϕ(t), t ∈ (−∞, 0], (4.4)

where x is the solution of the functional integral equation

x(t) = f

(
t, ϕ(0) +

1

Γ(α)

∫ t

0

(t− s)α−1xsds, xt

)
. (4.5)

Proof. Let y be solution of (4.3)− (4.4), then for t ∈ J and t ∈ (−∞, 0], we have (4.1)
and (4.2), respectively. �

To present the main result, let us introduce the following assumptions :

(H1) f : J × B2 −→ R is measurable in t ∈ J , for any (u1, u2) ∈ B2 and continuous
in (u1, u2) ∈ B2, for almost all t ∈ J .

(H2) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1∥x1 − x2∥B + k2∥y1 − y2∥B,

for t ∈ J , and every x1, x2, y1, y2 ∈ B.
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Our first existence result for the IVP (4.1)− (4.2) is based on the Banach contraction
principle.
Set

Kb = sup{|K(t)| : t ∈ J}.

Theorem 4.1 Assume that the assumptions (H1)− (H2) are satisfied. If

k1Kbb
2α

Γ(2α + 1)
+

k2Kbb
α

Γ(α+ 1)
< 1, (4.6)

then the IVP (4.1)− (4.2) has a unique solution on the interval (−∞, b].

Proof. Transform the problem (4.1) − (4.2) into a fixed point problem. Consider the
operator N : Ω −→ Ω defined by :

(Ny)(t) =

{
ϕ(t), t ∈ (−∞, 0]
1

Γ(α)

∫ t

0
(t− s)α−1f(s, Iαys, ys)ds, t ∈ J.

We shall use the Banach contraction principle to prove that N has a fixed point.
Let x(.) : (−∞, b] → R be the function defined by

x(t) =

{
0, if t ∈ J
ϕ(t), if t ∈ (−∞, 0].

Then x0 = ϕ. For each z ∈ L1(J,R), with z(0) = 0, we denote by z the function defined
by

z(t) =

{
z(t), if t ∈ J
0, if t ∈ (−∞, 0].

if y(.) satisfies the integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iαys, ys)ds,

we can decompose y(.) as y(t) = z(t) + x(t), 0 ≤ t ≤ b, which implies yt = zt + xt, for
every 0 ≤ t ≤ b, and the function z(.) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iα(zs + xs), zs + xs)ds.

Set
L0 = {z ∈ L1(J,R) : z0 = 0},

and let ∥.∥b be the seminorm in L0 defined by

∥z∥b = ∥z0∥B +

∫ b

0

|z(t)|dt =
∫ b

0

|z(t)|dt, z ∈ L0.
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L0 is a Banach space with norm ∥.∥b. Let the operator P : L0 → L0 be defined by

(Pz)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iα(zs + xs), zs + xs)ds, t ∈ J, (4.7)

That the operator N has a fixed point is equivalent to P has a fixed point, and so
we turn to proving that P has a fixed point. We shall show that P : L0 → L0 is a
contraction map. Indeed, consider z, z∗ ∈ L0. Then we have for each t ∈ J

|P (z)(t)− P (z∗)(t)|

≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, Iα(zs + xs), zs + xs)− f(s, Iα(z∗s + xs), z
∗
s + xs)|ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1[k1∥Iα(zs − z∗s)∥B + k2∥zs − z∗s∥B]ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1Kb [k1∥Iα(z(s)− z∗(s))∥+ k2∥z(s)− z∗(s)∥] ds

≤
(
k1Kbb

2α

Γ(2α+ 1)
+

k2Kbb
α

Γ(α+ 1)

)
∥z − z∗∥b.

Therefore

∥P (z)− P (z∗)∥b ≤
(
k1Kbb

2α

Γ(2α+ 1)
+

k2Kbb
α

Γ(α+ 1)

)
∥z − z∗∥b.

Consequently by (4.6) P is a contraction. As a consequence of the Banach contraction
principle, we deduce that P has a unique fixed point which is a solution of the problem
(4.1)− (4.2). �

The following result is based on Schauder fixed point theorem.

Theorem 4.2 Assume that (H1) and the following condition hold.

(H3) There exist a positive function a ∈ L1(J) and constants, qi > 0; i = 1, 2 such
that :

|f(t, u1, u2)| ≤ |a(t)|+ q1∥u1∥B + q2∥u2∥B,∀(t, u1, u2) ∈ J × R2.

If

Kb

(
q1b

2α

Γ(2α + 1)
+

q2b
α

Γ(α + 1)

)
< 1, (4.8)

then the IVP (4.1)− (4.2) has at least one solution y ∈ L1(J,R).

Proof.

Let P : L0 → L0 be defined as in (4.7), and

r =

bα∥a∥L1

Γ(α+1)
+Mb∥ϕ∥B( q1b2α

Γ(2α+1)
+ q2bα

Γ(α+1)
)

1−Kb(
q1b2α

Γ(2α+1)
+ q2bα

Γ(α+1)
)

,
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where Mb = sup{|M(t)| : t ∈ J}, and consider the set

Br := {z ∈ L0, ∥z∥b ≤ r}.

Clearly Br is nonempty, bounded, convex and closed. We shall show that the operator
P satisfies the assumptions of Schauder fixed point theorem. The proof will be given
in three steps.

Step1 : P is continuous.
Let zn be a sequence such that zn → z in L0. Then

|(Pzn)(t)− (Pz)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, Iα(zns + xs), zns + xs)

− f(s, Iα(zs + xs), zs + xs)|ds

Since f is a continuous function, we have

∥P (zn)− P (z)∥b

≤ bα

Γ(α+ 1)
∥f(., Iα(zn(.)

+ x(.), zn(.)
) + x(.))− f(., Iα(z(.) + x(.)), z(.) + x(.))∥L1 → 0

as n→ ∞.

Step2 : P maps Br into itself.

Let z ∈ Br. Since f is a continuous functions, we have for each t ∈ [0, b]

|(Pz)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, Iα(zs + xs), zs + xs)|ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1[a(t)|+ q1∥Iα(zs + xs)∥B + q2∥zs + xs∥B]ds

≤ bα∥a∥L1

Γ(α+ 1)
+
( q1b

2α

Γ(2α + 1)
+

q2b
α

Γ(α + 1)

)
(Kbr +Mb∥ϕ∥B),

where

∥zs + xs∥B ≤ ∥zs∥B + ∥xs∥B.

Hence ∥(Pz)∥L1 ≤ r. Then PBr ⊂ Br.
Step3 : P is compact.

We will show that P is compact, this is PBr is relatively compact. Clearly PBr is
bounded in L0, i.e condition (i) of Kolmogorov compactness criterion is satisfied. It
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remains to show (Pz)h −→ (Pz), in L0 for each z ∈ Br.
Let z ∈ Br, then we have

∥(Pz)h − (Pz)∥L1

=

∫ b

0

|(Pz)h(t)− (Pz)(t)|dt

=

∫ b

0

∣∣∣∣1h
∫ t+h

t

(Pz)(s)ds− (Pz)(t)

∣∣∣∣ dt
≤

∫ b

0

(
1

h

∫ t+h

t

|(Pz)(s)− (Pz)(t)|ds
)
dt

≤
∫ b

0

1

h

∫ t+h

t

|Iαf (s, zs + xs), zs + xs)− Iαf (t, Iα(zt + xt), zt + xt) |dsdt.

Since z ∈ Br ⊂ L0 and assumption (H3) that implies f ∈ L0 and by Proposition 1.1,
it follows that Iαf ∈ L1(J,R), then we have

1

h

∫ t+h

t

|Iαf (zs + xs), zs + xs)−Iαf (t, Iα(zt + xt), zt + xt) |ds −→ 0 as h −→ 0, t ∈ J.

Hence
(Pz)h −→ (Pz) uniformly as h −→ 0.

Then by Kolmogorov compactness criterion, P (Br) is relatively compact. As a conse-
quence of Schauder’s fixed point theorem the IVP (4.1)−(4.2) has at least one solution
in Br. �

4.3 Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional initial value problem,

cDαy(t) =
ce−γt+t

(et + e−t)(1 + |yt|+ |cDαyt|)
, t ∈ J := [0, b], α ∈ (0, 1], (4.9)

y(t) = ϕ(t), t ∈ (−∞, 0], (4.10)

where c > 1 is fixed. Let γ be a positive real constant and

Bγ = {y ∈ L1(−∞, 0] : lim
θ→−∞

eγθy(θ), exists in R}.

The norm of Bγ is given by

∥y∥γ =

∫ 0

−∞
eγθ|y(θ)|dθ.
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Let y : (−∞, b] → R be such that y0 ∈ Bγ. Then

lim
θ→−∞

eγθyt(θ) = lim
θ→−∞

eγθy(t+ θ)

= lim
θ→−∞

eγ(θ−t)y(θ)

= e−γt lim
θ→−∞

eγθy0(θ) <∞.

Hence yt ∈ Bγ. Finally we prove that

∥yt∥γ ≤ K(t)

∫ t

0

|y(s)|ds+M(t)∥y0∥γ,

where K =M = 1 and H = 1. we have

|yt(θ)| = |y(t+ θ)|.

If θ + t ≤ 0, we get

|yt(θ)| ≤
∫ 0

−∞
|y(s)|ds.

For t+ θ ≥ 0, then we have

|yt(θ)| ≤
∫ t

0

|y(s)|ds

Thus for all t+ θ ∈ J, we get

|yt(θ)| ≤
∫ 0

−∞
|y(s)|ds+

∫ t

0

|y(s)|ds.

Then

∥yt∥γ ≤ ∥y0∥γ +
∫ t

0

|y(s)|ds.

It is clear that (Bγ, ∥.∥) is a Banach space. We can conclude that Bγ is a phase space.
Set

f(t, y, z) =
e−γt+t

c(et + e−t)(1 + y + z)
, (t, x, z) ∈ J ×Bγ ×Bγ.

For t ∈ J, y1, y2, z1, z2 ∈ Bγ, we have

|f(t, y1, z1)− f(t, y2, z2)| =
e−γt+t

c(et + e−t)

∣∣∣∣ 1

1 + y1 + z1
− 1

1 + y2 + z2

∣∣∣∣
=

e−γt+t(|y1 − y2|+ |z1 − z2|)
c(et + e−t)(1 + y1 + z1)(1 + y2 + z2)

≤ e−γt × et(|y1 − y2|+ |z1 − z2|)
c(et + e−t)

≤ e−γt(∥y1 − y2∥γ + ∥z1 − z2∥γ)
c

≤ 1

c
∥y1 − y2∥γ +

1

c
∥z1 − z2∥γ.
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Hence the condition (H2) holds. We choose b such that Kbb
2α

cΓ(2α+1)
+ Kbb

α

cΓ(α+1)
< 1. Since

Kb = 1, then
b2α

cΓ(2α + 1)
+

bα

cΓ(α + 1)
< 1.

Then by Theorem 4.1, the problem (4.9) − (4.10) has a unique integrable solution on
[−∞, b].



Chapitre 5

A New Result of Integrable
Solutions for Implicit Fractional
Order Differential Equations (4)

5.1 Introduction

In this chapter deals with the existence of integrable solutions for the Initial Value
Problem (IVP for short), for implicit fractional order differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J = [0, T ], 0 < α ≤ 1, (5.1)

y(0) = y0, (5.2)

where cDα is the Caputo fractional derivative, f : J × R × R −→ R is a given func-
tion satisfying some assumptions that will be specified later. We will use the technique
of measures of noncompactness which is often used in several branches of nonlinear
analysis. Especially, that technique turns out to be a very useful tool in existence for
several types of integral equations ; details are found in Akhmerov et al. [15], Alvarez
[17], Banas et al. [22, 23, 24, 25, 26], Guo et al. [66].
The principal goal here is to prove the existence of integral solutions for the problem
(5.1)-(5.2) using Darbo’s fixed point theorem.

Many techniques have been developed for studying the existence and uniqueness
of solutions of initial and boundary value problem for fractional differential equations.
Several authors tried to develop a technique that depends on the Darbo or the Mönch
fixed point theorems with the Hausdorff or Kuratowski measure of noncompactness.

(4) M. Benchohra and M. S. Souid, A New Result of Integrable Solutions for Implicit Fractional
Order Differential Equations, (submitted).
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The notion of the measure of noncompactness was defined in many ways. In 1930, Ku-
ratowski [109] defined the measure of non-compactness, α(A), of a bounded subset A
of a metric space (X; d), and in 1955, Darbo [74] introduced a new type of fixed point
theorem for noncompactness maps.

This chapter is organized as follows. In Section 5.2, we give a result (Theorem 5.1).
An example is given in Section 5.3 to demonstrate the application of our result. These
results can be considered as a contribution to this emerging field.

5.2 Existence of solutions

Let us start by defining what we mean by a solution of the problem (5.1)− (5.2).

Definition 5.1 A function y ∈ L1(J,R) is said to be a solution of IVP (5.1)− (5.2) if
y satisfies the equation cDαy(t) = f(t, y(t),cDαy(t)) on J , and the condition y(0) = y0.

For the existence of solutions for the problem (5.1) − (5.2), we need the following
auxiliary lemma.

Lemma 5.1 The solution of the IVP (5.1) − (5.2) can be expressed by the integral
equation

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, (5.3)

where x is the solution of the functional integral equation

x(t) = f

(
t, y0 +

1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, x(t)

)
. (5.4)

Leu us introduce the following assumptions :

(H1) f : J × R× R −→ R satisfies the Carathéodory conditions.

(H2) There exist a positive function a ∈ L1(J) and two constants, q1, q2 > 0 such
that :

|f(t, u1, u2)| ≤ a(t) + q1|u1|+ q2|u2|, ∀(t, u1, u2) ∈ J × R× R,

(H3) We first consider two real numbers 0 < |ρ| < δ, there exist a positive valued
functions Lf (.) which is continuous in a neighborhood of 0 with Lf (0) = 0 and
two constants k1, k2 > 0 such that

|f(t+ ρ, x1, y1)− f(t, x2, y2)| ≤ Lf (ρ) + k1|x1 − x2|+ k2|y1 − y2|,

t ∈ [0, T ], xi, yi ∈ R, i = 1, 2.

In this section, we study the existence of a solution of the problem (5.1)− (5.2) by the
using the concept of measure of noncompactness in L1(J).
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Theorem 5.1 Assume that assumptions (H1)− (H3) are satisfied. If

k1T
2α

Γ(2α + 1)
+

k2T
α

Γ(α+ 1)
< 1, (5.5)

then the IVP (5.1)− (5.2) has at least one solution y ∈ L1(J,R).

Proof. Transform the problem (5.1) − (5.2) into a fixed point problem. Consider the
operator N : L1(J,R) → L1(J,R) defined by :

(Nx)(t) = y0 + Iαx(t), (5.6)

where x(t) = f(t, y0 + Iαx(t), x(t)). Clearly, the fixed point of the operator N are
solutions of the problem (5.1)− (5.2). Let

r =
T |y0|+

(
Tα∥a∥L1+q1|y0|Tα+1

Γ(α+1)

)
1−

(
q1T 2α

Γ(2α+1)
+ q2Tα

Γ(α+1)

) ,

where
q1T

2α

Γ(2α + 1)
+

q2T
α

Γ(α + 1)
< 1

and consider the set

Br = {x ∈ L1(J,R) : ∥x∥L1 ≤ r, r > 0}.

Clearly, the subset Br is closed, bounded and convex. We shall show that N satisfies
the assumptions of Darbo’s fixed point theorem. The proof will be given in three steps.
Step 1. N is continuous.
Let xn be a sequence such that xn → x in Br. Then for each t ∈ J ,

∥N(xn)−N(x)∥L1

= ∥Iαxn(t)− Iαx(t)∥L1

=
∥∥∥ 1

Γ(α)

∫ t

0

(t− s)α−1
(
xn(s)− x(s)

)
ds
∥∥∥
L1

≤
∫ T

0

( 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, y0 + Iαxn(s), x(s))− f(s, y0 + Iαx(s), x(s))|ds
)
dt.

Since f is of Carathéodory type, then by the Lebesgue dominated convergence theorem
we have

∥N(xn)−N(x)∥L1 → 0 as n→ ∞.
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Step 2. N maps Br into itself.
Let x an arbitrary element in Br. Then from assumptions (H1)-(H2), we obtain

∥Nx∥L1 =

∫ T

0

|Nx(t)|dt

=

∫ T

0

|y0 + Iαx(t))|dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|x(s))|ds

)
dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|f(s, y0 + Iαx(s), x(s))|ds

)
dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|a(s) + q1(y0 + Iαx(s)) + q2(x(s)|ds

)
dt

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

q1|y0|Tα+1

Γ(α + 1)
+

q2T
α

Γ(α + 1)
∥x∥L1

+ q1

∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
Iα|x(s)|ds

)
dt

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

q1|y0|Tα+1

Γ(α + 1)
+

q2T
α

Γ(α + 1)
∥x∥L1 +

q1T
2α

Γ(2α + 1)
∥x∥L1

≤ T |y0|+
Tα∥a∥L1 + q1|y0|Tα+1

Γ(α+ 1)
+

q1T
2αr

Γ(2α + 1)
+

q2T
αr

Γ(α + 1)
≤ r.

Then ∥Nx∥L1 ≤ r, which implies that the operator N maps Br into itself.

Step 3. N is a contraction, i.e : µ(NX) ≤ kµ(X), k ∈ [0, 1)
Now let us fix a nonempty subset X of Br. We first consider two real numbers 0 <
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|ρ| < δ and an arbitrary fixed x ∈ X, by (H3) we have

∥Nx(t+ ρ)−Nx(t)∥L1

=

∫ T

0

|(Nx)(t+ ρ)− (Nx)(t)|dt

=

∫ T

0

|Iαx(t+ ρ)− Iαx(t)|dt

=

∫ T

0

|Iα(x(t+ ρ)− x(t))|dt

=

∫ T

0

∣∣∣Iα(f(t+ ρ, y0 + Iαx(t+ ρ), x(t+ ρ))− f(t, y0 + Iαx(t), x(t))
)∣∣∣ dt

≤
∫ T

0

(
|IαLf (ρ)|+ k1

∣∣I2α(x(t+ ρ)− x(t))
∣∣+ k2 |Iα(x(t+ ρ)− x(t))|

)
dt

≤ Tα

Γ(α + 1)

∫ T

0

|Lf (ρ)| dt+
k1T

2α

Γ(2α + 1)

∫ T

0

|x(t+ ρ)− x(t)| dt

+
k2T

α

Γ(α + 1)

∫ T

0

|x(t+ ρ)− x(t)| dt.

Hence, we have

∥Nx(.+ ρ)−Nx(.)∥L1 ≤ Tα+1

Γ(α + 1)
Lf (ρ)

+

(
k1T

2α

Γ(2α + 1)
+

k2T
α

Γ(α + 1)

)
∥x(.+ ρ)− x(.)∥L1 .

Taking into account that

lim
δ→0

sup
|ρ|≤δ

Lf (ρ) = 0,

we get

µ(NX) ≤
(

k1T
2α

Γ(2α + 1)
+

k2T
α

Γ(α + 1)

)
µ(X).

Here, µ(.) is the measure of noncompactness in L1[0, T ] given by (1.1). This means
that the operator N is a contraction with respect to µ. Finally, since

k1T
2α

Γ(2α + 1)
+

k2T
α

Γ(α+ 1)
< 1,

then by applying Darbo’s fixed point theorem, we conclude that IVP (5.1)− (5.2) has
at least one solution belonging to the set Br ⊂ L1(J,R). �



54
A New Result of Integrable Solutions for Implicit Fractional Order Differential

Equations

5.3 Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional initial value problem,

cDαy(t) =
t(1 + |y(t)|+ |cDαy(t)|)

(t+ 5)
, t ∈ J := [0, 1], α ∈ (0, 1], (5.7)

y(0) = y0. (5.8)

Set

f(t, y, z) =
t(1 + y + z)

(t+ 5)
, (t, y, z) ∈ J × R+ × R+.

Clearly, the function f satisfies the Carathéodory conditions. Let y, z ∈ R+ and
t ∈ J, then we have

|f(t, y, z)| =

∣∣∣∣ t

t+ 5
+

ty

t+ 5
+

tz

t+ 5

∣∣∣∣
≤

∣∣∣∣ t

t+ 5

∣∣∣∣+ ∣∣∣∣ ty

t+ 5

∣∣∣∣+ ∣∣∣∣ tz

t+ 5

∣∣∣∣
≤

∣∣∣∣ t

t+ 5

∣∣∣∣+ 1

6
|y|+ 1

6
|z|.

We first show that a ∈ L1[0, 1], where a(t) = t
t+5

, indeed a(t) is a measurable function
and ∫ 1

0

a(t)dt =

∫ 1

0

t

t+ 5
dt

= [t− 5ln|t+ 5|)]10
= 1− 5ln6 + 5ln5 <∞.

Then a ∈ L1[0, 1]. Hence the assumption (H2) holds with a(t) = t
t+5

and q1 = q2 =
1
6
.

Moreover, for each t ∈ [0, 1], xi, yi ∈ R+, i = 1, 2. we have

|f(t+ ρ, y1, z1)− f(t, y2, z2)|

=

∣∣∣∣ t+ ρ

t+ ρ+ 5
− t

t+ 5
+

(t+ ρ)y1
t+ ρ+ 5

− ty2
t+ 5

+
(t+ ρ)z1
t+ ρ+ 5

− tz2
t+ 5

∣∣∣∣
≤ ρ

ρ+ 5
+

∣∣∣∣ (t+ ρ)y1
t+ ρ+ 5

− ty2
t+ 5

∣∣∣∣+ ∣∣∣∣ (t+ ρ)z1
t+ ρ+ 5

− tz2
t+ 5

∣∣∣∣
≤ Lf (ρ) +

∣∣∣∣ (t+ ρ)y1
t+ ρ+ 5

− ty2
t+ 5

∣∣∣∣+ ∣∣∣∣ (t+ ρ)z1
t+ ρ+ 5

− tz2
t+ 5

∣∣∣∣ ,
where Lf (ρ) =

ρ
ρ+5

.
As δ → 0, then we have

|f(t+ ρ, y1, z1)− f(t, y2, z2)| ≤ Lf (ρ) +
1

6
|y1 − y2|+

1

6
|z1 − z2|
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Then the assumption (H3) holds with Lf (ρ) =
ρ

ρ+5
and k1 = k2 =

1
6
.

Finally we shall check that condition (5.5) is satisfied for appropriate values of α ∈ (0, 1]
with T = 1. Indeed

k1
Γ(2α + 1)

+
k2

Γ(α + 1)
< 1 ⇔ 1

Γ(α + 1)
+

1

Γ(2α + 1)
< 6 (5.9)

Then by Theorem 5.1 the problem (5.7) − (5.8) has at least one solution on [0, 1] for
values of α satisfying condition (5.9). For example
• If α = 1

2
then Γ(α + 1) = Γ(3

2
) ≃ 0, 88 and Γ(2α + 1) = Γ(2) = 1 and

k1
Γ(2α + 1)

+
k2

Γ(α + 1)
=

1

6
+

1
6

0, 88
≃ 0, 35659 < 1.
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Chapitre 6

Integrable Solutions for Implicit
Fractional Order Differential
Inclusions (5)

6.1 Introduction

In this chapter we deal with the existence of solutions for initial value problem (IVP
for short), for fractional order implicit differential inclusions

cDαy(t) ∈ F (t, y(t),cDαy(t)), a.e. t ∈ J := [0, T ], 0 < α ≤ 1, (6.1)

y(0) = y0, (6.2)

where cDα is the Caputo fractional derivative, F : J ×R×R → P(R) is a multivalued
map with compact values (P(R) is the family of all nonempty subsets of R), y0 ∈ R.

Differential equations and inclusions of fractional order have recently proved to be
valuable tools in the modeling of many phenomena in various fields of science and
engineering. Indeed we can find numerous applications in viscoelasticity, electroche-
mistry, electromagnetism, and so forth. For details, including some applications and
recent results, see the monographs of Kilbas et al. [80], Kiryakova [82], Miller and Ross
[95], Podlubny [103] and Samko et al. [105] , and the papers of Agarwal et al [8, 9],
Diethelm et al. [53], El-Sayed [57, 58], Gaul et al. [60], Glockle and Nonnenmacher
[63], Lakshmikantham and Devi [85], Mainardi [92], Metzler et al. [93], Momani et al.
[98, 97], Podlubny et al.[103], Yu and Gao [118] and the references therein.

(5) M. Benchohra and M. S. Souid, Integrable Solutions for Implicit Fractional Order Differential
Inclusions, (submitted).
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This chapter is organized as follows. In Section 6.2, we present an existence result
for the problem (6.1)− (6.2) when the right hand side is convex valued by using fixed
point theorem of Bohnnenblust-Karlin type. In Section 6.3, our results are given for
nonconvex valued right hand sides, which are based upon a fixed point theorem for
contraction multivalued maps due to Covitz and Nadler [48]. An example is given in
Section 6.4 to demonstrate the application of our main results. These results can be
considered as a contribution to this emerging field.

By S1
F,y we denote the set of all measurable selections of F that belong to the

Lebesgue space L1(J,R), that is,

S1
F,y = {f ∈ L1(J,R) : f(t) ∈ F (t, y(t),cDαy(t)) a.e. t ∈ J}.

Remark 6.1 Note that for an L1-Carathéodory multifunction F : J×R×R → Pcl(R)
the set S1

F,y is not empty.

6.2 The Convex Case

In this section, we are concerned with the existence of solutions for the problem
(6.1)− (6.2) when the right hand side has convex values. Let us start by defining what
we mean by an integrable solution of the problem (6.1)− (6.2).

Definition 6.1 A function y ∈ L1(J,R) such that cDαy(t) is measurable is said to be
a solution of IVP (6.1)− (6.2) if y satisfies (6.1) and (6.2).

For the existence of solutions for the problem (6.1) − (6.2), we need the following
auxiliary lemma.

Lemma 6.1 The solution of the IVP (6.1) − (6.2) can be expressed by the integral
equation

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, (6.3)

where x is the solution of the functional integral inclusion

x(t) ∈ F (t, y(t), x(t)). (6.4)

Proof. Let cDαy(t) = x(t) in equation (6.1), then

x(t) ∈ F (t, y(t), x(t))

and

y(t) = y(0) + Iαx(t)

= y(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds.

Let us introduce the following assumptions :
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(H1) F : J ×R×R → Pcv,cl(R) is L1-Carathéodory.

(H2) There exist a positive function a ∈ L1(J) and constants, bi > 0; i = 1, 2 such
that :

∥F (t, u1, u2)∥P = sup{|f | : f ∈ F (t, u1, u2)} ≤ a(t) + b1|u1|+ b2|u2|,

for all u1, u2 ∈ R, and for a.e. t ∈ J .

(H3) There exist constants ℓ1, ℓ2 > 0 such that

Hd(F (t, x, z)), F (t, x, z)) ≤ ℓ1|x− x|+ ℓ2|z − z| ,

for every x, x, z, z ∈ R.

(H4) F : J × R × R → Pcp(R) has the property that F (., u1, u2) : J → Pcp(R) is
measurable, and integrably bounded for each u1, u2 ∈ R.

Our first result is based of Bohnenblust-Karlin fixed point theorem.

Theorem 6.1 Assume that the assumptions (H1)− (H3) are satisfied. If

b2T
α

Γ(α + 1)
+

b1T
2α

Γ(2α+ 1)
< 1, (6.5)

then the IVP (6.1)− (6.2) has at least one solution y ∈ L1(J,R).

Remark 6.2 Note that for an L1-Carathéodory multifunction F : J×R×R → Pcl(R)
the set S1

F,y is not empty.

Proof. Transform the problem (6.1) − (6.2) into a fixed point problem. Consider the
the multivalued operator

N : L1(J,R) −→ P(L1(J,R))

defined by :

(Nx)(t) =

{
h ∈ L1(J,R) : h(t) = y0 +

1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

}
(6.6)

where f ∈ S1
F,x. Clearly, from Lemma 1.4, the fixed points of N are solutions to

(6.1) − (6.2). We shall show that N satisfies the assumptions of Bohnenblust-Karlin
fixed point theorem.
Let

r ≥
T |y0|+ Tα

Γ(α+1)
∥a∥L1 +

b1|y0|Tα+1

Γ(α+1)

1−
(

b2Tα

Γ(α+1)
+ b1T 2α

Γ(2α+1)

) ,

and consider the bounded set

Br := {x ∈ L1(J,R), ∥x∥L1 ≤ r}.
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The proof will be given in several steps.

Step 1 : N(x) is convex for each y ∈ Br.
Indeed, if h1, h2 belong to N(x), then there exist f1, f2 ∈ S1

F,y such that for each t ∈ J
we have

hi(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1fi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1[df1(s) + (1− d)f2(s)]ds.

Since S1
F,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(x).

Step 2 : N(Br) is relatively compact.
(a) N(Br) is bounded.
Let x ∈ Br for each h ∈ N(x) and t ∈ J , we have by (H2) and (6.6)

∥h∥L1 =

∫ T

0

|h(t)|dt

=

∫ T

0

|y0 + Iαf(t))|dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
|f(s))|ds

)
dt

≤ T |y0|+
∫ T

0

(∫ t

0

(t− s)α−1

Γ(α)
[a(s) + b1|y0 +

1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds|+ b2|x(s)|]ds
)
dt

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

b1|y0|Tα+1

Γ(α + 1)
+

b2T
α

Γ(α+ 1)
∥x∥L1 +

b1T
2α

Γ(2α+ 1)
∥x∥L1

≤ T |y0|+
Tα

Γ(α + 1)
∥a∥L1 +

b1|y0|Tα+1

Γ(α + 1)
+

(
b2T

α

Γ(α+ 1)
+

b1T
2α

Γ(2α + 1)

)
r ≤ r.

Then the above inequalities show that

∥N(x)∥ = sup{∥h∥L1 : h ∈ N(x)} ≤ r,

which shows that N(Br) ⊂ Br and Br is bounded, then N(Br) is bounded.
(b) (Nx)τ −→ (Nx), in L1(J,R) for each x ∈ Br.
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Let x ∈ Br and h ∈ N(x) then we have

∥hτ − h∥L1

=

∫ T

0

|hτ (t)− h(t)|dt

=

∫ T

0

∣∣∣∣1τ
∫ t+τ

t

h(s)ds− h(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

τ

∫ t+τ

t

|h(s)− h(t)|ds
)
dt

≤
∫ T

0

(
1

τ

∫ t+τ

t

|Iαf(s)− Iαf(t)|ds
)
dt

≤
∫ T

0

1

τ

∫ t+τ

t

|Iαf(s)− Iαf(t)|dsdt.

Since f ∈ L1(J,R) and by Proposition 1.1(4), it follows that Iαf ∈ L1(J,R), then we
have

1

τ

∫ t+τ

t

|Iαf(s)− Iαf(t)|ds→ 0 as τ → 0, t ∈ J.

Hence
(Nx)τ → (Nx) uniformly as τ → 0.

As a consequence of (a) and (b) together with the Kolmogorov compactness compact-
ness criterion, we can conclude that N(Br) is relatively compact.

Step 3 : N has a closed graph.
Let xn → x∗, hn ∈ N(xn), and hn → h∗. We need to show that h∗ ∈ N(x∗). Now
hn ∈ N(xn) implies there exists fn ∈ S1

F,xn
such that, for each t ∈ J,

hn(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1fn(s)ds.

We must show that there exists f∗(t) ∈ S1
F,y∗ such that for each t ∈ J,

h∗(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f∗(s)ds.

Since F (t, ., .) is upper semicontinuous, for every ϵ > 0, there exist n0(ϵ) ≥ 0 such that
for every n ≥ n0, we have

fn(t) ∈ F (t, y(t), x(t)) ⊂ F (t, y∗(t), x∗(t)) + ϵB(0, 1) a.e. t ∈ J.

Since F has compact values, there exists a subsequence fnm(.) such that

fnm(.) → f∗ as m→ ∞
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f∗(t) ∈ F (t, y∗(t), x∗(t)) a.e. t ∈ J ;

For every ω(t) ∈ F (t, y∗(t), x∗(t)), we have

|fnm(t)− f∗(t)| ≤ |fnm(t)− ω(t)|+ |ω(t)− f∗(t)|,

and so
|fnm(t)− f∗(t)| ≤ d(fnm(t), F (t, y∗(t), x∗(t))).

By an analogous relation obtained by interchanging the roles of fnm and f∗ it follows
that

|fnm(t)− f∗(t)| ≤ Hd(F (t, ynm(t), xnm(t))), F (t, y∗(t), x∗(t)))

≤ ℓ1|ynm − y∗|+ ℓ2|xnm − x∗|
≤ ℓ1|Iα(xnm − x∗)|+ ℓ2|xnm − x∗|.

Therefore,

|hnm(t)− h∗(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|fnm(s)− f∗(s)|ds

∥hnm − h∗∥L1 ≤
(

ℓ1T
2α

Γ(2α + 1)
+

ℓ2T
α

Γ(α + 1)

)
∥xnm − x∗∥L1 .

Then
∥hnm − h∗∥L1 → 0 as m → ∞.

Therefore, we deduce from Bohnenblust-Karlin fixed point theorem that N has a fixed
point x in Br ⊂ L1(J,R) which is a solution of IVP (6.1)− (6.2). �

6.3 The Nonconvex Case

This section is devoted to proving the existence of solutions for (6.1) − (6.2) with
a nonconvex valued right hand side. Our second result is based on the fixed point
theorem for contraction multivalued maps given by Covitz-Nadler [48] ;

Theorem 6.2 Assume that the assumptions (H3)− (H4) are satisfied. If

ℓ1T
2α

Γ(2α + 1)
+

ℓ2T
α

Γ(α+ 1)
< 1, (6.7)

then the IVP (6.1)− (6.2) has at least one solution y ∈ L1(J,R).

For each y ∈ L1(J,R), the set S1
F,y is nonempty since, by (H4), F has a measurable

selection (see [46], Theorem III.6). Proof. We shall show that N given by (6.6) satisfies
the assumptions of Covitz and Nadler fixed point theorem. The proof will be given in
two steps.
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Step 1 : N(x) ∈ Pcl(L
1(J,R)) for all x ∈ L1(J,R). Let (hn)n≥0 ∈ N(x) be such that

hn → h̃ ∈ L1(J,R). Then there exists fn ∈ S1
F,y such that, for each t ∈ J ,

hn(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1fn(s)ds.

From (H3) and the fact that F has compact values, we may pass to a subsequence if
necessary to obtain that fn converges to υ in L1(J,R) and hence f ∈ S1

F,y. Thus, for
each t ∈ J ,

hn(t) → h̃(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

so h̃ ∈ N(x).
Step 2 : There exists γ < 1 such that

Hd(N(x), N(x)) ≤ γ∥x− x∥L1 , for all x, x ∈ L1(J,R).

Let x, x ∈ L1(J,R) and h1 ∈ N(x). Then, there exists f1(t) ∈ F (t, y(t), x(t)) such
that, for each t ∈ J,

h1(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f1(s)ds.

From (H3) it follows that

Hd(F (t, y(t), x(t))), F (t, y(t), x(t))) ≤ ℓ1|y(t)− y(t)|+ ℓ2|x(t)− x(t)|.

Hence, there exists ω(t) ∈ F (t, y(t), x(t)) such that

|f1(t)− ω(t)| ≤ ℓ1|y(t)− y(t)|+ ℓ2|x(t)− x(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {ω ∈ R : |f1(t)− ω(t)| ≤ ℓ1|y(t)− y(t)|+ ℓ2|x(t)− x(t)|}.

Since the multivalued operator V (t) = U(t)∩F (t, y(t), x(t)) is measurable (see Propo-
sition [46], III.4), there exists a function f2(t) which is a measurable selection for V .
Thus, f2(t) ∈ F (t, y(t), x(t)), and for each t ∈ J ,

|f1(t)− f2(t)| ≤ ℓ1|y(t)− y(t)|+ ℓ2|x(t)− x(t)|
≤ ℓ1|Iα(x(t)− x(t))|+ ℓ2|x(t)− x(t)|

For each t ∈ J , define

h2(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1f2(s)ds.
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Then, for t ∈ J ,

|h1(t)− h2(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f1(s)− f2(s)|ds

≤
(

ℓ1T
2α

Γ(2α + 1)
+

ℓ2T
α

Γ(α + 1)

)
|x− x|.

Therefore

∥h1 − h2∥L1 ≤
(

ℓ1T
2α

Γ(2α + 1)
+

ℓ2T
α

Γ(α + 1)

)
∥x− x∥L1 .

By an analogous relation, obtained by interchanging the roles of x and x, it follows
that

Hd(N(x), N(x)) ≤
(

ℓ1T
2α

Γ(2α + 1)
+

ℓ2T
α

Γ(α + 1)

)
∥x− x∥L1 .

Therefore, by (??), N is a contraction, and so by Covitz-Nadler fixed point theorem, N
has a fixed point x that is a solution to IVP (6.1)− (6.2). The proof is now complete.
�

6.4 Example

As an application of our results we consider the following fractional initial value
problem,

cDαy(t) ∈ F (t, y(t),cDαy(t)), t ∈ J := [0, 1], α ∈ (0, 1], (6.8)

y(0) = 1, (6.9)

where

F (t, y(t),cDαy(t)) = {v ∈ R : f1(t, y(t),
cDαy(t)) ≤ v ≤ f2(t, y(t),

cDαy(t))},

and f1, f2 : J×R×R → R are measurable in t. We assume that for each t ∈ J, f1(t, ., .)
is lower semi-continuous (i.e, the set {y ∈ R : f1(t, y(t),

cDαy(t)) > µ} is open for each
µ ∈ R), and assume that for each t ∈ J, f2(t, ., .) is upper semi-continuous (i.e the set
{y ∈ R : f2(t, y(t),

cDαy(t)) < µ} is open for each µ ∈ R. Assume that there exists
a ∈ L1(J,R+) such that

max(|f1(t, y(t), x(t))|, |f2(t, y, x(t))|) ≤
t

7
+

1

4
|y(t)|+ 1

4
|x(t)|, t ∈ J.

We have T = 1, a(t) = t
7
, b1 = b2 =

1
4
. It is easy to see that

b2T
α

Γ(α + 1)
+

b1T
2α

Γ(2α + 1)
=

1

4Γ(α + 1)
+

1

4Γ(2α + 1)
< 1.

Then the condition (6.5) is satisfied for appropriate values of α. It is clear that F
is compact and convex valued, and it is upper semi-continuous (see [51]). Since all
conditions of Theorem 6.1 are satisfied, IVP (6.8) − (6.9) has at least one solution y
on J .



Chapitre 7

L1-Solutions of Boundary Value
Problems for Implicit Fractional
Order Differential Equations (6)

7.1 Introduction and Motivations

The purpose of this Chapter, is to establish existence and uniqueness of solutions
integrable for boundary value problem (BVP for short), for fractional order implicit
differential equation

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2, (7.1)

y(0) = y0, y(T ) = yT (7.2)

where f : J × R × R → R is a given function, y0, yT ∈ R, and cDα is the Caputo
fractional derivative.

More recently, considerable attention has been given to the existence of solutions
of boundary value problem and boundary conditions for implicit fractional differential
equations and integral equations with Caputo fractional derivative. See for example
[10, 12, 13, 14, 21, 38, 35, 74, 85, 86, 87, 88, 109, 119], and the references therein.

In [98], S. Murad and S. Hadid, by means of Schauder fixed-point theorem and the
Banach contraction principle, considered the boundary value problem of the fractional
differential equation :

Dαy(t) = f(t, y(t), Dβy(t)), t ∈ J := (0, 1), 1 < α ≤ 2, 0 < β < 1, 0 < γ ≤ 1,

(6) M. Benchohra and M. S. Souid, L1-Solutions of Boundary Value Problems for Implicit Frac-
tional Order Differential Equations, (to appear).

65
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y(0) = 0, y(1) = Iγ0 y(s)

where f : [0, 1]×R×R → R is a continuous function, and Dα is the Riemann-Liouville
fractional derivative.
In [65], A. G-Lakoud and R. Khaldi, studied the following boundary value problem of
the fractional integral boundary conditions :

cDqy(t) = f(t, y(t),cDpy(t)), t ∈ J := (0, 1), 1 < q ≤ 2, 0 < p < 1,

y(0) = 0, y′(1) = αIp0y(1),

where f : [0, 1]×R×R → R is a continuous function, and Dα is the Caputo fractional
derivative. In [109], by means of Schauder fixed-point theorem, Su and Liu studied the
existence
of nonlinear fractional boundary value problem involving Caputo’s derivative :

cDαu(t) = f(t, u(t),cDβu(t)), t ∈ J := (0, 1), 1 < α ≤ 2, 0 < β < 1,

u(0) = 0 = u′(1) = 0 or u′(1) = u(1) = 0 or u(0) = u(1) = 0,

where f : [0, 1]×R×R → R is a continuous function.
In [35], Benchohra and Lazreg, studied the existence of continuous solutions for the
problem (7.1)-(7.2), and the following implicit fractional-order differential equation :

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], 0 < α ≤ 1,

with boundary condition
ay(0) = y0 +By(T ) = c

where f : J ×R×R → R is a given function, cDα is the Caputo fractional derivative
and a, b, c are real constants with a+ b ̸= 0.

This chapter is organized as follows. In Section 7.2, we give two results, the first one
is based on Schauder’s fixed point theorem (Theorem 7.1) and the second one on the
Banach contraction principle (Theorem 7.2). Some indications to nonlocal problems
are given in Section 7.3. Two examples is given in Section 7.4 to demonstrate the
application of our main results. These results can be considered as a contribution to
this emerging field..

7.2 Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem
(7.1)− (7.2).

Definition 7.1 . A function y ∈ L1(J,R) is said to be a solution of BVP (7.1)− (7.2)
if y satisfies (7.1) and (7.2).
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For the existence of solutions for the problem (7.1) − (7.2), we need the following
auxiliary lemma.

Lemma 7.1 . Let 1 < α ≤ 2 and let x ∈ L1(J,R). The boundary value problem
(7.1)− (7.2) is equivalent to the integral equation

y(t) =
1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, (7.3)

where x is the solution of the functional integral equation

x(t) = f

(
t,

1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t)

)
. (7.4)

and G(t, s) is the Green’s function defined by

G(t, s) :=

{
(t− s)α−1 − t(T−s)α−1

T
, 0 ≤ s ≤ t ≤ T,

−t(T−s)α−1

T
, 0 ≤ t ≤ s ≤ T,

(7.5)

Proof.Let cDαy(t) = x(t) in equation (7.1), then

x(t) = f(t, y(t), x(t)) (7.6)

and lemma 1.2 implies that

y(t) = c0 + c1t+
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds.

From (7.2), a simple calculation gives

c0 = y0

and

c1 = − 1

TΓ(α)

∫ T

0

(T − s)α−1)x(s)ds+
(yT − y0)

T

Hence we get equation (7.3).
Inversely, we prove that equation (7.3) satisfies the BVP (7.1)− (7.2).
Differentiating (7.3), we get

cDαy(t) = x(t) = f(t, y(t),cDαy(t)).

By (7.3) and (7.5) we have

y(t) =
1

Γ(α)

∫ t

0

(t−s)α−1x(s)ds− t

TΓ(α)

∫ T

0

(T −s)α−1x(s)ds+y0+
(yT − y0)t

T
. (7.7)

A simple calculation give y(0) = y0 and y(T ) = yT . This complete the proof of the
equivalent between the BVP (7.1)-(7.2) and the integral equation (7.3).
Leu us introduce the following assumptions :
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(H1) f : [0, T ] × R2 −→ R is measurable in t ∈ [0, T ], for any (u1, u2) ∈ R2 and
continuous in (u1, u2) ∈ R2, for almost all t ∈ [0, T ].

(H2) There exist a positive function a ∈ L1[0, T ] and constants, bi > 0; i = 1, 2 such
that :

|f(t, u1, u2)| ≤ a(t) + b1|u1|+ b2|u2|, ∀(t, u1, u2) ∈ [0, T ]× R2.

Our first result is based on Schauder fixed point theorem.

Theorem 7.1 Assume that the assumptions (H1)− (H2) are satisfied. If

b1G0T

Γ(α)
+ b2 < 1, (7.8)

then the BVP (7.1)− (7.2) has at least one solution y ∈ L1(J,R).

Proof. Transform the problem (7.1) − (7.2) into a fixed point problem. Consider the
operator

H : L1(J,R) −→ L1(J,R)

defined by :

(Hx)(t) = f

(
t,

1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t)

)
. (7.9)

where G is given by 7.5. let

G0 := max[|G(t, s)|, (t, s) ∈ J × J ],

and

r =
b1(|y0|+ |yT |)T + ∥a∥L1

1−
(

b1G0T
Γ(α)

+ b2

) .

Consider the set
Br = {x ∈ L1([0, T ],R) : ∥x∥L1 ≤ r}.

Clearly Br is nonempty, bounded, convex and closed.
Now, we will show that HBr ⊂ Br, indeed, for each x ∈ Br, from assumption (H2)

and (7.8) we get

∥Hx∥L1 =

∫ T

0

|Hx(t)|dt

=

∫ T

0

∣∣∣∣f (t, 1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t)

)∣∣∣∣ dt
≤

∫ T

0

[
|a(t)|+ b1

∣∣∣∣ 1

Γ(α)

∫ T

0

G(t, s)x(s)ds− (
t

T
− 1)y0 +

t

T
yT

∣∣∣∣+ b2|x(t)|
]
dt

≤ ∥a∥L1 +
b1G0T

Γ(α)
∥x∥L1 + b1(|y0|+ |yT |)T + b2∥x∥L1

≤ b1(|y0|+ |yT |)T + ∥a∥L1 +

(
b1G0T

Γ(α)
+ b2

)
r

≤ r.



7.2 Existence of solutions 69

Then HBr ⊂ Br. Assumption (H1) implies that H is continuous. Now, we will show
that H is compact, this is HBr is relatively compact. Clearly HBr is bounded in
L1(J,R), i.e condition (i) of Kolmogorov compactness criterion is satisfied. It remains
to show (Hx)h −→ (Hx) in L1(J,R) for each x ∈ Br.
Let x ∈ Br, then we have

∥(Hx)h − (Hx)∥L1

=

∫ T

0

|(Hx)h(t)− (Hx)(t)|dt

=

∫ T

0

∣∣∣∣1h
∫ t+h

t

(Hx)(s)ds− (Hx)(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

h

∫ t+h

t

|(Hx)(s)− (Hx)(t)|ds
)
dt

≤
∫ T

0

(1
h

∫ t+h

t

∣∣∣f(s, 1

Γ(α)

∫ T

0

G(s, τ)x(τ)dτ + y0 +
(yT − y0)s

T
, x(s))

−f(t, 1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t))

∣∣∣ds)dt
Since x ∈ Br ⊂ L1(J,R) and assumption (H2) that implies f ∈ L1(J,R), then we have

1

h

∫ t+h

t

∣∣∣f(s, 1

Γ(α)

∫ T

0

G(s, τ)x(τ)dτ + y0 +
(yT − y0)s

T
, x(s))

−f(t, 1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t))

∣∣∣ds −→ 0, as h −→ 0, t ∈ J.

Hence

(Hx)h −→ (Hx) uniformly as h −→ 0.

Then by Kolmogorov compactness criterion, H(Br) is relatively compact. As a conse-
quence of Schauder’s fixed point theorem the BVP (7.1)−(7.2) has at least one solution
in Br. �

The following result is based on the Banach contraction principle.

Theorem 7.2 Assume that (H1) and the following condition hold.

(H3) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1|x1 − x2|+ k2|y1 − y2|, t ∈ [0, T ], x1, x2, y1, y2 ∈ R.

If
k1TG0

Γ(α)
+ k2 < 1, (7.10)

then the BVP (7.1)− (7.2) has a unique solution y ∈ L1([0, T ],R).
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Proof. We shall use the Banach contraction principle to prove that H defined by (7.9)
has a fixed point. Let x, y ∈ L1(J,R), and t ∈ J . Then we have,

|(Hx)(t)− (Hy)(t)| =
∣∣∣f (t, 1

Γ(α)

∫ T

0

G(t, s)x(s)ds+ y0 +
(yT − y0)t

T
, x(t)

)
−f
(
t,

1

Γ(α)

∫ T

0

G(t, s)y(s)ds+ y0 +
(yT − y0)t

T
, y(t)

) ∣∣∣.
≤ k1

Γ(α)

∫ T

0

|G(t, s)(x(s)− y(s))|ds+ k2|x(t)− y(t)|

≤ k1G0

Γ(α)

∫ T

0

|x(s)− y(s)|ds+ k2|x(t)− y(t)|

Thus

∥(Hx)− (Hy)∥L1 ≤ k1TG0

Γ(α)
∥x− y∥L1 + k2

∫ T

0

|x(t)− y(t)|dt

≤ k1TG0

Γ(α)
∥x− y∥L1 + k2∥x− y∥L1

≤
(
k1TG0

Γ(α)
+ k2

)
∥x− y∥L1 .

Consequently by (7.10) H is a contraction. As a consequence of the Banach contraction
principle, we deduce that H has a fixed point which is a solution of the problem
(7.1)− (7.2).

7.3 Nonlocal problems

This section is devoted to some existence and uniqueness results for the following
class of nonlocal problems

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], 1 < α ≤ 2, (7.11)

y(0) = g(y), y(T ) = yT (7.12)

where g : L1(J,R) → R a continuous function. The nonlocal condition can be applied
in physics with better effect than the classical initial condition y(0) = y0. For example,
g(y) may be given by

g(y) =

p∑
i=1

ciy(ti).

where ci, i = 1, 2, ..., p are given constants and 0 < ... < tp < T. Nonlocal conditions
were initiated by Byszewski [43] when he proved the existence and uniqueness of mild
and classical solutions of nonlocal Cauchy problems. As remarked by Byszewski [44, 45],
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the nonlocal condition can be more useful than the standard initial condition to describe
some physical phenomena.
Let us introduce the following set of conditions on the function g.

(H4) There exists a constant k̃ > 0 such that

|g(y)− g(ỹ| ≤ k̃|y − ỹ|, for each y, ỹ ∈ L1(J,R).

Theorem 7.3 Assume that the assumptions (H1),(H3),(H4) are satisfied. If

2k1T
α

Γ(α+ 1)
+ k1k̃ + k2 < 1, (7.13)

then the BVP (7.11)− (7.12) has a unique solution y ∈ L1(J,R).

Transform the problem (7.11)−(7.12) into a fixed point problem. Consider the operator

H̃ : L1(J,R) −→ L1(J,R)

defined by :

(H̃x)(t) (7.14)

= f

(
t,

1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1x(s)ds− (
t

T
− 1)g(y) +

t

T
yT , x(t)

)
.

Proof. We shall use the Banach contraction principle to prove that H̃ defined by (7.14)
has a fixed point. Let x, y ∈ L1(J,R), and t ∈ J . Then we have,

|(H̃x)(t)− (H̃y)(t)|

=
∣∣∣f (t, 1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1x(s)ds− (
t

T
− 1)g(x) +

t

T
yT , x(t)

)
− f

(
t,

1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds− t

TΓ(α)

∫ T

0

(T − s)α−1y(s)ds− (
t

T
− 1)g(y) +

t

T
yT , y(t)

) ∣∣∣
≤ k1

Γ(α)

∫ t

0

(t− s)α−1|(x(s)− y(s))|ds+ k1
Γ(α)

∫ T

0

(T − s)α−1|(x(s)− y(s))|ds

+k1|g(x)− g(y)|+ k2|x(t)− y(t)|
Thus

∥(H̃x)− (H̃y)∥L1 ≤ k1∥x− y∥L1

Γ(α)

∫ t

0

(t− s)α−1ds+
k1∥x− y∥L1

Γ(α)

∫ T

0

(T − s)α−1ds

+k1k̃∥x− y∥L1 + k2∥x− y∥L1

≤ 2k1T
α

Γ(α + 1)
∥x− y∥L1 + k1k̃∥x− y∥L1 + k2∥x− y∥L1

≤
(

2k1T
α

Γ(α + 1)
+ k1k̃ + k2

)
∥x− y∥L1 .

Consequently by (7.13) H̃ is a contraction. As a consequence of the Banach contraction
principle, we deduce that H̃ has a fixed point which is a solution of the problem
(7.11)− (7.12). �
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7.4 Examples

Example 7.1 Let us consider the following boundary value problem,

cDαy(t) =
e−t

(et + 6)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], 1 < α ≤ 2, (7.15)

y(0) = 1, y(1) = 2. (7.16)

Set

f(t, y, z) =
e−t

(et + 6)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞).

Let y1, y2, z1, z2 ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + 6

(
1

1 + y1 + z1
− 1

1 + y2 + z2

)∣∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + 6)(1 + y1 + z1)(1 + y2 + z2)

≤ e−t

(et + 6)
(|y1 − y2|+ |z1 − z2|)

≤ 1

7
|y1 − y2|+

1

7
|z1 − z2|.

Hence the condition (H3) holds with k1 = k2 =
1
7
. We shall check that condition (7.10)

is satisfied with T = 1. Indeed

k1TG0

Γ(α)
+ k2 =

G0

7Γ(α)
+

1

7
< 1. (7.17)

Then by Theorem 7.2, the problem (7.15)− (7.16) has a unique integrable solution on
[0, 1] for values of α satisfying condition (7.17).

Example 7.2 Let us consider the following nonlocal boundary value problem,

cDαy(t) =
e−t

(et + 9)(1 + |y(t)|+ |cDαy(t)|)
, t ∈ J := [0, 1], 1 < α ≤ 2, (7.18)

y(0) =
n∑

i=1

ciy(ti), y(1) = 0. (7.19)

where 0 < ... < tn < 1, ci, i = 1, 2, ..., n are given positive constants with
∑n

i=1 ci <
4
5
.

Set

f(t, y, z) =
e−t

(et + 9)(1 + y + z)
, (t, y, z) ∈ J × [0,+∞)× [0,+∞),

and

g(y) =
n∑

i=1

ciy(ti).
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Let y1, y2, z1, z2 ∈ [0,+∞) and t ∈ J. Then we have

|f(t, y1, z1)− f(t, y2, z2)| =

∣∣∣∣ e−t

et + 9

(
1

1 + y1 + z1
− 1

1 + y2 + z2

)∣∣∣∣
≤ e−t(|y1 − y2|+ |z1 − z2|)

(et + 9)(1 + y1 + z1)(1 + y2 + z2)

≤ e−t

(et + 9)
(|y1 − y2|+ |z1 − z2|)

≤ 1

10
|y1 − y2|+

1

10
|z1 − z2|.

Hence the condition (H5) holds with k1 = k2 =
1
10
. Also we have

|g(x)− g(y)| ≤
n∑

i=1

ci|x− y|.

Hence (H4) is satisfied with k̃ =
∑n

i=1 ci. We shall check that condition (7.13) is
satisfied with T = 1. Indeed

2k1T
α

Γ(α + 1)
+ k1k̃ + k2 =

1

5Γ(α+ 1)
+

1

10

n∑
i=1

ci +
1

10
< 1 ⇐⇒ Γ(α+ 1) >

10

41
. (7.20)

Then by Theorem 7.3, the problem (7.18)− (7.19) has a unique integrable solution on
[0, 1] for values of α satisfying condition (7.20).
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Conclusion and Perspectives

In this thesis, we have considered the following nonlinear implicit fractional differential
(NIFD for short) problem

cDαy(t) = f(t, y,cDαy(t)), t ∈ J, 0 < α ≤ 1, or 1 < α ≤ 2

with initial value, local and nonlocal conditions, boundary value problems and with
infinite delay. Here cDα is the Caputo fractional derivative. Also We have discussed and
established the existence of integrable solutions for initial value problem for implicit
fractional order differential inclusion.
We plan to study the stability problems, for nonlinear implicit fractional differential
equations with Caputo fractional derivative. We will study the controlability problem
in Frechet space. Also, We will study the existence and uniqueness of integrable solu-
tions for a class of boundary value problem for nonlinear implicit fractional differential
equations with Caputo fractional derivative and with integral conditions.
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tional order differential equations on the half-line, Bull. Math. Anal. App. 146 (4)
(2012), 62-71.



BIBLIOGRAPHIE 79

[31] M. Benchohra, A. Cabada and D. Seba, An existence result for non-linear frac-
tional differential equations on Banach spaces, Boundary Value Problems. Volume
2009 (2009), Article ID 628916, 11 pages.

[32] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results
for functional differential equations of fractional order, J. Math. Anal. Appl. 338
(2008), 1340-1350.

[33] M. Benchohra, S. Hamani, and S.K. Ntouyas, Boundary value problems for dif-
ferential equations with fractional order and nonlocal conditions, Nonlinear Anal.
71 (2009), 2391-2396.

[34] M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for diffe-
rential equations with fractional order, Surveys Math. Appl. 3 (2008), 1-12.

[35] M. Benchohra and J. E. Lazreg, Existence and uniqueness results for nonlinear
implicit fractional differential equations with boundary conditions. Romanian J.
Math. Comput. Sc. 4 (1) (2014), 60-72.

[36] M. Benchohra and J. E. Lazreg, Nonlinear fractional implicit differential equations.
Commun. Appl. Anal. 17 (2013), 471-482.

[37] M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach
Spaces. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I (2009), No. 8, pp. 1-14.

[38] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value
problems with nonlinear fractional differential equations,Appl. Anal.87 (7) (2008),
851-863.

[39] A. Bressan and G. Colombo, Generalized Baire category and differential inclusions
in Banach spaces, J. Differential Equations 76 (1987), 135-158.

[40] A. Bressan and G. Colombo, Boundary value problems for lower semicontinuous
differential inclusions, Funkcial. Ekvac. 36 (1993), 359-373.
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[103] I. Podlubny, I. Petráas, B. M. Vinagre, P. O Leary, and L. Dorcák, Analogue
realizations of fractional order controllers. Fractional order calculus and its appli-
cations, Nonlinear Dynamics, 29 (2002), (14), 281-296.

[104] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[105] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives.
Theory and Applications, Gordon and Breach, Yverdon, 1993.

[106] K. Schumacher, Existence and continuous dependence for differential equations
with unbounded delay, Arch. Ration. Mech. Anal. 64 (1978), 315-335. Integrable
Solutions For Implicit Fractional Order.

[107] N.P. Semenchuk, On one class of differential equations of noninteger order. Dif-
ferents. Uravn. 10, 1831-1833 (1982)

[108] G. V. Smirnov, Introduction to the theory of differential inclusions, Graduate
studies in mathematics, vol. 41, American Mathematical Society, Providence, 2002.

[109] X. Su and L. Liu, Existence of solution for boundary value problem of nonlinear
fractional differential equation, Appl. Math. 22 (3) (2007) 291-298.

[110] V. E. Tarasov, Fractional Dynamics : Application of Fractional Calculus to Dyna-
mics of Particles, Fields and Media, Springer, Heidelberg ; Higher Education Press,
Beijing, 2010.

[111] A. A. Tolstonogov, Differential Inclusions in Banach Space, Kluwer Academic
Publishers, Dordrecht, 2000.

[112] J. M. A. Toledano, T. D. Benavides and G. L. Acedo, Measures of Noncompact-
ness in Metric Fixed Point Theory, Birkh Aauser, Basel, 1997.

[113] . A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer Academic
Publishers, Dordrecht, (2000).

[114] . A.N. Vityuk, A.V. Golushkov, The Darboux problem for a differential equation
containing a fractional derivative. Nonlinear Oscil. 8, 450-462 (2005).

[115] . A.N. Vityuk, A.V. Mykhailenko, On one class of differential quations of frac-
tional order. Nonlinear Oscil. 11(3) (2008), 307-319.



84 BIBLIOGRAPHIE

[116] . A.N. Vityuk, Existence of Solutions of partial differential inclusions of fractional
order. Izv.Vyssh. Uchebn. Ser. Mat. 8, 13-19 (1997)

[117] J. Wu, Theory and Applications of Partial Functional-Differential Equations. Ap-
plied Mathematics Sciences, vol. 119 Springer, New-York, 1996.

[118] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal.
Appl, 310 (1) (2005), 2629.

[119] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional
diffrential equations, Electron. J. Differential Equations 2006, No. 36, pp. 1-12.


