
KNOWLEDGE REPRESENTA

DESCRIPTION LOGICS F

KNOWLEDGE

Djillali Elyabes University of Sidi Belabbes

Djillali Elyabes University of Sid

This dissertation is submitted for the degree of Doctor of

This project was directed by Pr. Ahmed

KNOWLEDGE REPRESENTATION USING

DESCRIPTION LOGICS FORMALISM

NOWLEDGE INTEGRATION AND REASONING

PERFORMING

Yasser YAHIAOUI

Djillali Elyabes University of Sidi Belabbes

Department of informatics

Faculty of Engineering

Djillali Elyabes University of Sidi Belabbes

This dissertation is submitted for the degree of Doctor of

December 2016

This project was directed by Pr. Ahmed LEHIRECHE

TION USING

ORMALISM:

EASONING

This dissertation is submitted for the degree of Doctor of science

To my motherTo my motherTo my motherTo my mother LuisaLuisaLuisaLuisa

My fatherMy fatherMy fatherMy father LaidLaidLaidLaid

Sisters & bothersSisters & bothersSisters & bothersSisters & bothers

Future wifeFuture wifeFuture wifeFuture wife K.K.K.K.

My teMy teMy teMy teachers from primary school until end of studies.achers from primary school until end of studies.achers from primary school until end of studies.achers from primary school until end of studies.

Yasser Y.Yasser Y.Yasser Y.Yasser Y.

Knowledge Representation Using Description Logics Formalism: Knowledge Integration and

Reasoning Performing- Yasser Yahiaoui – November 2016

ABSTRACT

The most familiar concept in Artificial intelligence is the knowledge representation. It

aims to find explicit symbolization covering all semantic aspects of knowledge, and to

make possible the use of this representation to produce an intelligent behavior like

reasoning.

The most important constraint is the usability of the representation; it’s why the structures

used must be well defined to facilitate manipulation for reasoning algorithms which leads

to facilitate their implementation.

In this thesis we propose a new approach based on the description logics formalism for the

goal of simplification of description logics system implementation. This approach can

reduce the complexity of reasoning Algorithm by the vectorisation of concept definition

based on the subsumption hierarchy. This idea yields to create the so-called method

SHAMS.

ACKNOWLEDGEMENTS

FIRST WE THANKS GOD FOR THE HELP AND STRENGTH THAT HE
GAVE US TO ACHIEVE THIS WORK

I PRESENT MY FULL ACKNOWLEDGMENTS TO MY TEACHER PR.
AHMED LEHIRECHE WHO IS A REAL INSPIRATION EXAMPLE AS

TEACHER AND SEARCHER.

I THANK MY FRIENDS AND COLLEAGUES OF RESEARCH GROUP
INFO-TEAM NAÂMA.

ALSO THANK YOU TO DR. REDA ADJOUJ, DR. REDA HAMOU, DR
DJEMAL BEN SABER, DR. SOUFIANE BOUKLI AND AMINE

ABDELMALEK FOR THE ACCEPTANCE OF EXAMINATION OF THIS
THESIS.

ESPECIAL ACKNOWLEDGEMENT TO DR. DJELLOUL BOUCHIHA
AND ALL COLLEAGUES OF UNIVERSITY CENTRE OF NAÂMA
ALSO MY TEACHERS AND COLLEAGUES OF INFORMATICS

DEPARTMENT AT UDL SIDI-BELABBES

CONTENTS

INTRODUCTION .. 1

PART I: BACKGROUND ... 5

CHAPTER01: KNOWLEDGE REPRESENTATION FOUNDATIONS 5

 INTRODUCTION .. 5

 PHILOSOPHICAL FOUNDATIONS .. 5

 KNOWLEDGE REPRESENTATION ... 7

 NETWORKS BASED APPROACHES .. 7

 SEMANTIC NETWORKS ... 8

 FRAMES ... 9

 LOGICS AND KNOWLEDGE REPRESENTATION .. 10

 CHAPTER02: DESCRIPTION LOGICS FORMALISM .. 11

 THE DESCRIPTION LOGICS SYSTEMS ... 11

 BASIC FOUNDATION AND CONNECTIONS TO MODEL LOGICS 12

 STRUCTURES AND ARCHITECTURES ... 14

 TBox and ABox .. 15

 DESCRIPTION LANGUAGE AND EVOLUTION ... 16

 DLS REASONER ... 18

 COMPLEXITY OF REASONING ALGORITHM ... 22

 COMPOUND INFERENCE PROBLEMS ... 23

 DESCRIPTION LOGICS SEMANTIC ... 24

 APPLICATION DOMAINS .. 28

 CONCEPTUAL INFORMATION MODELLING ... 28

 NATURAL LANGUAGE PROCESSING .. 30

 DESCRIPTION LOGICS AND SEMANTIC WEB .. 31

 MEDICAL INFORMATICS ... 34

 DATA BASES .. 36

 CHAPTER03: IMPLEMENTATION AND CURENT SYSTEMS ... 36

 DESCRIPTION LOGICS SYSTEMS IMPLEMENTATION 36

 CURRENT DESCRIPTION LOGICS REASONER .. 40

PART II: PROPOSED APPROACH ... 49

CHAPTER01: DERIVATION OF THE REPRESENTATION METHOD 49

 THE SUBSUMPTION HIERARCHICAL ATTRIBUTE .. 49

 COHERENCE CHECKING ... 50

 SHA GENERATION PROCESS .. 53

 AUTOMATED PROCESS .. 55

CHAPTER02:REASONING WITH SHAS ... 62

 ADAPTED TABLEAU ALC RULES .. 62

 THE ∩-RULE ... 62

 THE ∪-RULE .. 63

 THE Ǝ-RULE .. 64

 THE ∀ RULE ... 66

 THE →≥RULE .. 68

 THE →≤ RULE ... 68

 CONVERGENCE OF THE ALGORITHM ... 72

 CHAPTER03:STUDY CASE (ARABIC LANGUAGE RESSOURCE CREATION) 72

 STADY CASE DESCRIPTION ... 72

 THE ALP SYSTEM ARCHITECTURE .. 73

 THE WORD IN THE ARABIC LANGUAGE ... 74

 THE REPRESENTATION IN AL LANGUAGE ... 76

 THE REPRESENTATION USING SHAS ... 79

DISCUSSION .. 79

CONCLUSION .. 81

REFERENCES .. 83

APPENDIX ... 91

LIST OF TABLES

Table 1 DLs language extensions and evolutions [68] ... 17

Table 2 Completion rules for ALCN ... 21

Table 3 Some Description Logic concept constructors. .. 26

Table 4 Concrete syntax of concept constructors. .. 27

Table 5 Some Description Logic reasoners ... 48

Table 6 vectorial representation .. 59

Table 7 the Meta-base with SHAs .. 77

LIST OF FIGURES

Figure 1 semantic network example.. 8

Figure 2 Architecture of DL-KRS ... 15

Figure 3 family ontology described in OIL[13] ... 33

Figure 4 The subsumption hierarchical structure .. 49

Figure 5 The subsumption hierarchical attribute creation ... 50

Figure 6 SHA for checking the satisfiability .. 51

Figure 7 SHA for checking the Subsumption ... 51

Figure 8 SHA for checking the Equivalence ... 52

Figure 9 SHA for checking the Disjointness ... 52

Figure 10 SHA generation process ... 54

Figure 11 simplified concrete syntax... 55

Figure 12 The main frame of the SHA generator soft ware. .. 56

Figure 13 indexed hierarchy generator ... 57

Figure 14 human being TBox ... 57

Figure 15 automated process for the subsumption dependency tree deduction 58

Figure 16 Representation of the rule of conjunction applied to the vectorial form 63

Figure 17 Representation of the rule of disjunction applied to the vectorial form 64

Figure 18 Representation of the rule of existential quantification applied to the vectorial form .. 66

Figure 19 Representation of the rule of universal quantification applied to the vectorial form. ... 67

Figure 20 Human Being KB augmented after one execution of reasoning rules 67

Figure 21 architecture of the ALP system .. 72

Figure 22 hierarchy of Syntactic Roles of Words in Arabic Language ... 73

Figure 23 example of the additional restriction to hierarchy of words in Arabic 78

LIST OF ABBREVIATIONS AND ACRONYMS

AL: Attributed Language

DL: Description Logics

DL-KRS: Description Logics Knowledge Representation Systems

KR: Knowledge Representation

SN: Semantic Networks

LIST OF APPENDICES

Example 91

Introduction

Yasser YAHIAOUI - December 2016 1

INTRODUCTION
Artificial intelligence has two different definitions each one focus on a point of view; the

first one define AI like a field of research in which man try to give to the machine the

ability of thinking as human, when the second speaks about acting as human. The two

definitions aim the same goal which is a machine simulating the human behaviour, but the

difference is on methods and approach.

The first point of view is based on the modelling of natural phenomenon with these

processes and mechanisms. However, the second is based on modelling knowledge in

logical computational forms to be manipulated with logical and mathematical models.

This logic based approaches have reviled a lot of concepts like semantics, knowledge

representation, reasoning algorithms, expressiveness, and completeness, these concepts

will be explained later with more details.

When speaking about knowledge representation, we are involving a higher level of

automation and calculability, because we speak about representation which can carry with

identification: the semantic (meaning), contextual (pragmatic), and relational aspect, these

ones when they are well defined in a representation it will be qualified of strong and

meaningful representation. The complexity of manipulation Algorithms using these

representations must be simplified to be an input in deduction process of implicit

knowledge from a minimal set of explicitly represented knowledge. That is called the

reasoning process. Here we speak about a compromise to make a meaningful

representation with simple representation structures. This aimed compromise is justified

by the fact that more meaning integration entail more complexity of representation’s

structures and manipulation’s Algorithms.

From the history of knowledge representation, we can find lot of formalisms of

representation the most famous ones are those which gave good result in implementation

when they are founded on heuristics ideas and method or theoretically proved when they

are based on well formed mathematic or logic entailments, and they result from the

eventual deduction from known and accepted axioms and theories.

Introduction

Yasser YAHIAOUI - December 2016 2

One of these formalisms is Semantic networks were developed after the work of Quillian

in 1967, with the goal of characterizing by means of network-shaped cognitive structures

the knowledge and the reasoning of the system.

The second one is the frame systems which rise in works of Minski in 1981, it rely on the

notion of a “frame” as a prototype and on the capability of expressing relationships

between frames. This two formalisms are considered net work structures and they are

motivating cognitive intuitions.

Description logics rise as successor of these previous formalisms to respond to limitations

seen with semantic ambiguity for the SNs and low level of expressivity for the frames.

DLs introduced a kind of semantic representation so-called logical based semantic which

allowed expressing by terminological definition the three aimed aspects: contextual,

semantic and relational.

In our work we consider the description logics the most important one. This formalism

based on two kinds of relations: the subsumption and equivalence and define relations by

the use of constructors as union (disjunction), intersection (conjunction), and negation

(complement) , also it provides more detail with the quantification and restrictions

possible using the existential quantifier, the universal quantifier and the number

restriction, all this tools provides a strong and expressive formalism of knowledge

representation and open researches on the best Algorithms for automated deduction and

process design Looking for a complete reasoner and expressive knowledge base described

in DLs.

Description logics are defined as a family of logic-based knowledge representation

language that can be used to represent the terminological knowledge of an application

domain in structured way.

To rich more expressivity of knowledge representation DLs languages have seen many

augmentations, and developments.

The implementation the DLs systems lead to speak about problems that face researchers.

As it is known the two major occupations of DLs systems developers are the expressivity

Introduction

Yasser YAHIAOUI - December 2016 3

and the effectiveness of the reasoner; “ DLs systems need both expressive logics and fast

reasoner procedures for deciding subsumption (or equivalently satisfiability) in such

logics have discouragingly high worst-case complexities, normally exponential with

respect to the problem size”[13] that means we have to evaluate this to aspect for each

kind of representation derived from the DLs. It is what we are presenting here.

In this thesis we aim to create a representation having vectorial form. The idea treated is

based on the possibility of simplification of the representation to make the design of

reasoning process more simple and to find simple structures to carry the DLs based

knowledge representation. Then the aimed compromise is between the complexity of

reasoning and the level expressivity provided by the new representation. This compromise

when reached yields to a new long work on new representations and new kind of

reasoning Algorithms.

Then we present here a formal derivation from the interpretation of the DLs representation

to find graphics forms where we can define the new attribute associated to the concept

name to replace the definitions giving in axioms. This attribute can be easily manipulated

and makes the reasoner more and simpler for implementation. Also we have to check if

the new representation has no negative effects on the performances comparing to ordinary

DLs knowledge systems.

This thesis is composed of two parts: the first one concerned with theoretical context and

the background, when the second describes the proposed approach with illustrations of her

strength and weaknesses.

The first part called Background contains three chapters; the first one describes the

philosophical foundations of the artificial intelligence in general and especially the

knowledge representations. The second speaks about Description logics systems beginning

from definitions to the architecture and application domains. The third speaks about

implementation and currents DLs systems.

The second part called proposed approach contains also three chapters beginning by the

description of the new representation method and the generation process in the first

chapter, and the reasoning adaptation to the new method of representation with evaluation

Introduction

Yasser YAHIAOUI - December 2016 4

of the Algorithm convergence. The third chapter contains a study case using a knowledge

base created to be an add-on for Arabic language processing system.

PART I: BACKGROUND

CHAPTER 01: KNOWLEDGE REPRESENTATION

FOUNDATIONS

Part 01 Knowledge representation foundations

 Yasser YAHIAOUI - December 2016 5

1. INTRODUCTION

As beginning, we investigate knowledge representation (KR) and their techniques

distinguished by their characteristics as the description logics (DLs)[1] which takes a part

with formalisms that have grown out of the others knowledge representation techniques

using frames and semantic networks.

The project interest on DLs systems performing, it’s why we describe respectively KRs

formalisms in general and especially the DLs systems, motivated by the fact that in one

hand DLs offers complete and empirically traceable reasoning services [2] added to the

varicosity of constructors which makes possible to build complex classes from simpler

ones.

On the other hand they have wide range of applications. But their wider acceptance has

hindered by their limited expressiveness and the intracabilty of their subsumption

algorithms [1].

This section will be organized to make a background on the field. So we began with the

philosophical foundations which introduce a sort of chronological and problematic

development of formalisms and techniques in the field of knowledge representation with

some historical notions.

The second section is interested on the knowledge representation formalisms. It contains

terms definition and description of mechanisms before speaking about advantages and

limits of each described formalism.

2. PHILOSOPHICAL FOUNDATION

We evolve heir some philosophical foundations to make a round on the present subject

first we define our search domain which is the artificial intelligence (AI) that have a lot of

definition according to the philosophical point of view. Very along tow main dimensions;

the first dimension address the behavior what means that AI is searching to make a

machine able to act as human, then the second one address the reasoning abilities that

means that AI aims to make the machine able to think as human.

Part 01 Knowledge representation foundations

 Yasser YAHIAOUI - December 2016 6

This tow points of view are distinguished each one to other by the methods used for

measurement of the success. The first one measure against an ideal concept of intelligence,

which is called rationality and it is defined as : «a system is rational if it does the right

thing given what it knows» [3]. The second one «measure success in term of fidelity to

human performance»[3]. Consequently we find in the literature some definitions that we

will present classified like followed:

The rationality definitions look to the study of intelligent systems that think rationally as

«the study of mental faculties through the use of computational models»[4] in the same

mining «the study of the computations that makes it possible to perceive reason and act »

[5] in the rational view the study of intelligent that act rationally is defined as

«computational intelligence is the study of the design of intelligent agent»[6], and

according to Nilson,1998 «AI … is concerned with intelligent behavior in artifacts»[7].

For the course of human performances this study is defined as «the existing new effort to

make computers think … machines with minds, in the full and literature sense»[8]. Or

«the automation of activities that we associate with human thinking, activities such as

decision making, problem solving, learning… »[9]. And if we think about behavior o

systems we find that the study of this kind of systems is «the art of creating machines that

performs function that require intelligence when performed by people»[10] other ways

«the study of how to make computers do things at which, at the moment, people are

better»[11].

Consequently, in AI we can say that a classification like this is the result of the diffident

points of view between the approach centred around the human like the Turing test

approaches, by the other side the approaches centred around rationality as laws of thought

approaches it’s for what we arrive now to speak about the ability of computer to deal with

the following tasks:

Natural language processing: to enable it to communicate successfully with humans by

natural expression tools.

Machine learning: to adapt to new circumstances and to detect and extrapolate patterns

Part 01 Knowledge representation foundations

 Yasser YAHIAOUI - December 2016 7

Computer vision: to perceive objects and distinguish then.

Robotics: to act and manipulate objects and move about.

Knowledge representation: to store what it knows with signification.

Automated reasoning: to use the stored information to answer question and new

conclusion.

3. KNOWLEDGE REPRESENTATION

The knowledge representation is a research field concerned by formalisms and methods

for providing a height level description of the world that can be effectively a main tool to

the development of intelligent systems which means systems able to find implicit

consequences of its explicit represented knowledge.

In 1970 s the knowledge representation field enjoyed great popularity [12] and the KR

approaches were divided into two categories: logic-based formalisms which evolved out of

the intuition that predicate calculus could be used unambiguously to capture facts about

the world, and other non-logic-based approaches representation developed on more

cognition notion as the network structures and rule based representations derived from

experiments on recall from human memory and human execution of tasks like

mathematical puzzle solving. Then these two categories have seen a development due to

the use by applications developers. In on hand the non logical systems developed from

very specific lines of thinking evolved to be treated a general purpose tools, expected to be

applicable in different domains and on different type of problems, on the other hands the

first order logic have seen a general and powerful machinery and consequently the logic-

based approaches took a place in KR field, then the notion of reasoning was introduced.

3.1. NETWORKS BASED APPROACHES

The representation of knowledge in this approaches are done using ad-hoc data structure

and reasoning is accomplished by similar ad-hoc procedure that can manipulate this

structures [12]. These approaches are based on graphical interface. According to this lasts

we specifies semantic networks and the frames as no-logical formalisms, the first ones

Part 01

were developed with the work of Quillian in 1967 that have as goals to represent by the

net work-shaped the means of cognitive structure and facilitate the use of this structures

of reasoning of the system.

a) Semantic Networks

KRs using SNs are based on the node and links, the nodes used to characterize concepts

i.e. sets or classes of individuals objects, howe

links between node but some times when the relationships are characterized as complex

links, they are represented by nodes at the place of links to rich more expressivity, these

are carefully distinguished from node

properties often called attributes which are typically attached to the corresponding

nodes.[13]

Now days the SNs aims

relationships defining for now t

to the early networks that represents concepts and objects and the specific individual by

the similarly using the nodes.

Figure

 Knowledge represent

 Yasser YAHIAOUI - December 2016

were developed with the work of Quillian in 1967 that have as goals to represent by the

means of cognitive structure and facilitate the use of this structures

of reasoning of the system.

KRs using SNs are based on the node and links, the nodes used to characterize concepts

i.e. sets or classes of individuals objects, however the relationships are represented by

links between node but some times when the relationships are characterized as complex

links, they are represented by nodes at the place of links to rich more expressivity, these

are carefully distinguished from nodes concepts. In addition concepts can have simple

properties often called attributes which are typically attached to the corresponding

Now days the SNs aims the representation of knowledge about concepts and their

or now treatment of knowledge about specific individuals contrary

to the early networks that represents concepts and objects and the specific individual by

the similarly using the nodes.

Figure 1 semantic network example

representation foundations

 8

were developed with the work of Quillian in 1967 that have as goals to represent by the

means of cognitive structure and facilitate the use of this structures

KRs using SNs are based on the node and links, the nodes used to characterize concepts

ver the relationships are represented by

links between node but some times when the relationships are characterized as complex

links, they are represented by nodes at the place of links to rich more expressivity, these

s concepts. In addition concepts can have simple

properties often called attributes which are typically attached to the corresponding

about concepts and their

bout specific individuals contrary

to the early networks that represents concepts and objects and the specific individual by

Part 01 Knowledge representation foundations

 Yasser YAHIAOUI - December 2016 9

b) Frames

 Are formalisms developed for th same goals of SN and similarity to. Them they are

regarded as networks structures aiming to motivate cognitive intuition and in their features

they have a strong common basis [12]

The frames are a data structure that typically used to represent a single object or a class of

related object or a general concept (or predicate)[14]. There are some words which in

literature were used synonymously for the words frame like memory unit and unit.

In general there is two or more type of frame such as class frames and instance frames.

The former represent classes or sets of things and the latter represent particular instances

of things [14]

A taxonomic hierarchy arranges the frames by links that much each frame to another, or

some others parent frames which is a superset or a more general concept that include the

set represented by the frame considered.

In the frame representations there are some notions that must be known as:

The slot: that means an attributes or properties of the thing represented by that frame and

also it can describe a binary relation between two frames.

Inheritance: is the mechanism that causes a down propagation of the taxonomic hierarchy

i.e. that represent a relation between two frames as one is considered more general than the

other that means the second one represents a part of the set of individuals represented by

the first one, then we accept that the second frame inherits slots from his parent add some

others slots.

The subsumption is kind of relationships between class frames; it allows frames

representation systems FRS to determine automatically the correct position of a class in

taxonomic hierarchy [14] (data integration) we say that a concepts or a frames A subsumes

a frames B if every instance of the concept B is an instance of A.

Part 01 Knowledge representation foundations

 Yasser YAHIAOUI - December 2016 10

3.2. Logics and knowledge representation

In this section the first thing to define is logic which is a term attached to the philosophy

“…it is where philosophy and logic, come together and become one… some species

distinct from mathematical logic, symbolic logic or logic with any other familiar

modifier”[15].

All this kinds of logics can be gathered in this definition: logic is the theory of

consequence relations, of valid inferences such as it can be investigated and presented in

many ways.

Logic offers structures and representations or formal systems to be used for analyzing

concepts and augments that are central to philosophical inquiry. And it begins with

languages that are qualified as constructed languages which will extend to natural

languages or at less a portion of them.

Logic can be regarded as a second sense which is analysis and evaluation of propositions

and arguments in the language used, in where we find well-formed formulas WFF that can

stands in many relations, and these relations can be described in different ways, which

reflect different ways of looking at logic and logical consequence. Some relations can be

characterized syntactically terms of the grammatical structures of the expressions

themselves [15]. And we speak here about logical syntax.

In logical approaches the meaning is achieve by defining a language such as the concepts

will be represented using syntactic formulas that make it possible to define all the

elements of the structures used on the above ideas. To be noted here: “that while the

syntax may have different flavors in deferent settings the semantic is typically giving as a

Tarski-style semantics” [13].

For this languages two kinds of alphabet are important and should be used which are unary

predicate symbols to denote atomic concepts, and binary predicate symbols that are used

to express relationships between concepts. And here constructers are used for building

expressions as ∩ intersection, ∪ union but here it’s between the set of individuals de note

by the concepts name.

PART I: BACKGROUND

CHAPTER 02: DESCRIPTION LOGICS FORMALISM

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 11

1. THE DESCRIPTION LOGICS SYSTEMS

Description logics (DLs) [13, 16, 17] are a family of knowledge representation languages

that can be used to represent the knowledge of an application domain in a structured and

formally well-understood way. The name description logics is motivated by the fact that,

on the one hand, the important notions of the domain are described by concept

descriptions, i.e., expressions that are built from atomic concepts (unary predicates) and

atomic roles (binary predicates) using the concept and role constructors provided by the

particular DL; on the other hand, DLs differ from their predecessors, such as semantic

networks and frames, in that they are equipped with a formal, logic-based semantics.

The definition of a concept is based on the two relations equivalence and subsumption, the

first one is interpreted like sets equivalent because of the fact that every concept is viewed

like a set of individuals. The second one represents a relation of inclusion i.e. we can say

that a concept A is subsumed by B if all individuals that satisfy A definition satisfy B

definition.

The expression of definitions is based on constructors (conjunction∩ , disjunction∪),

quantifiers (∀ ����	
�	�
�������	
 , ∃ 	����	�����
�������	
) and numerical

restrictions (≤ � �
 ≥ �).

Description logics languages have seen lot of augmentations from the basic description

logics languages till the actual languages, aiming more expressivity in knowledge

description. These augmentations can be clearly seen when following the syntax after

every augmentation.

To begin this section we will describe the basic foundations of DLs and connections to

other models. We describe the structure and architecture of description logics systems,

before coming to reasoning definition and characterization. The followers will be

concerned by the compounds reasoning problems. The last section will describe the formal

foundation of DLs systems and finally the DLs knowledge representation system DL-

KRS.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 12

2. BASIC FOUNDATION AND CONNECTIONS TO MODEL

LOGICS

The DLs systems are initiated after the Tarski-style semantics based approaches, which are

the semantique networks and frames. A brief view on history of description logics enables

us to know the basic connections between DLs and other approaches. Then Research in

Description Logics can be roughly classified into the following phases [18].

Phase 0 (1965–1980)

is the pre-DL phase, in which semantic networks [19] and frames [20] were introduced as

specialized approaches for representing knowledge in a structured way, and then criticized

because of their lack of a formal semantics [21,22, 23, 24]. An approach to overcome

these problems was Brachman’s structured inheritance networks [18], which were realized

in the system KL-ONE, the first DL system.

Phase 1 (1980–1990)

was mainly concerned with implementation of systems, such as KL-ONE, K-REP,

KRYPTON, BACK, and LOOM [25, 26, 27, 28, 29]. These systems employed so-called

structural subsumption algorithms, which first normalize the concept descriptions, and

then recursively compare the syntactic structure of the normalized descriptions [30]. These

algorithms are usually relatively efficient (polynomial), but they have the disadvantage

that they are complete only for very inexpressive DLs, i.e., for more expressive DLs they

cannot detect all subsumption/instance relationships. During this phase, the first logic-

based accounts of the semantics of the underlying representation formalisms were given

[27, 31], which made formal investigations into the complexity of reasoning in DLs

possible. For example, in [31] it was shown that seemingly small additions to the

expressive power of the representation formalism can cause intractability of the

subsumption problem. In [32] it was shown that subsumption in the representation

language underlying KL-ONE is even undecidable, and in [33] it was shown that the use

of a TBox formalism that allows the introduction of abbreviations for complex

descriptions makes subsumption intractable if the underlying DL has the constructors

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 13

conjunction and value restriction (these constructors were supported by all the DL systems

available at that time). As a reaction to these negative complexity results, the

implementors of the CLASSIC system (the first industrial-strength DL system) carefully

restricted the expressive power of their DL [34, 35].

Phase 2 (1990–1995)

started with the introduction of a new algorithmic paradigm into DLs, so-called tableau

based algorithms [36, 37, 38]. They work on propositionally closed DLs (i.e., DLs with all

Boolean operators), and are complete also for expressive DLs. To decide the consistency

of a knowledge base, a tableau based algorithm tries to construct a model of it by

structurally decomposing the concepts in the knowledge base, thus inferring new

constraints on the elements of this model. The algorithm either stops because all attempts

to build a model failed with obvious contradictions, or it stops with a “canonical” model.

Since, in propositionally closed DLs, the subsumption and the instance problem can be

reduced to consistency, a consistency algorithm can solve all the inference problems

mentioned above. The first systems employing such algorithms (KRIS and CRACK)

demonstrated that optimized implementations of these algorithms led to an acceptable

behavior of the system, even though the worst-case complexity of the corresponding

reasoning problems is no longer in polynomial time [39, 40]. This phase also saw a

thorough analysis of the complexity of reasoning in various DLs [37, 41, 42], and the

important observation that DLs are very closely related to modal logics [43].

Phase 3 (1995–2000)

 is characterized by the development of inference procedures for very expressive DLs,

either based on the tableau approach [44, 45], or on a translation into modal logics [46, 47,

48, 49]. Highly optimized systems (FaCT, RACE, and DLP [50, 51, 52]) showed that

tableau-based algorithms for expressive DLs led to a good practical behavior of the system

even on (some) large knowledge bases. In this phase, the relationship to modal logics [46,

53] and to decidable fragments of first order logic [54, 55, 56, 57, 58] was also studied in

more detail, and applications in databases (like schema reasoning, query optimization, and

integration of databases) were investigated [59, 60, 61].

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 14

We are now in Phase 4, where the results from the previous phases are being used to

develop industrial strength DL systems employing very expressive DLs, with applications

like the Semantic Web or knowledge representation and integration in Medicaland bio-

informatics in mind. On the academic side, the interest in less expressive DLs has been

revived, with the goal of developing tools that can deal with very large terminological

and/or assertional knowledge bases [62, 63, 64, 65].

The history of description logics illustrates the goals of DL-KRS implementors. We can

find the expressiveness which means the power of a representation to characterize

knowledge. The second one is the completeness of reasoning Algorithm. This last

completeness represents the ability to deduce all true facts using the rules on system. The

implementors must also preserve the consistency, efficiency and tractability.

3. STRUCTURES AND ARCHITECTURES

 The core of Description Logics is the concept language, a formal language designed to

describe classes and relationships between elements of the classes. DL based knowledge

bases are built using concept languages expressions, and they are usually divided in two

distinct parts: intentional and extensional. The intensional part describes the general

schema of the classes and relationships, while the extensional part constitutes a (partial)

instantiation of the schema, since it contains assertions about a set of individuals.

Historically the intentional part takes the name of terminology or TBox, and the

extensional part the name of assertional part or ABox [66].

A description logics system contains the knowledge part and processing part. The first is

represented by the terminology description and the assertions description. The second

represents the integration interface which allows the additions of definitions to the

knowledge base and the reasoner who use the represented knowledge to deduce implicit

correct facts.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 15

Figure 02: Architecture of DL-KRS

3.1. TBox and ABox

The knowledge base in DLs systems is composed by two parts terminological and

assertional. The first define concepts and rules by the use of relations and constructors.

And it s called TBox which is presented like a set of axioms that induce concepts

definitions. The axiom ���	��	 ⊂ ������ means that Mammal is generalisation of the

concept Gazelle and here the term used is Gazelle is subsumed by Mammal. Other kind of

axioms used to define roles which represent binary predicate. This lasts can be related with

each other, and also used to make restrictions and relies between individuals satisfying

concepts definitions. By this way is defined the hierarchy of concepts and the hierarchy of

roles.

Description logics languages allow also assertions definition. And give information about

individuals as instances of defined concepts and roles. For the roles it is a binary predicate

instances. Other way, the concept assertion states that an instance satisfies a concept

definition. For example Mounir is a Father and we note

Father(Mounir). However, role assertion makes two individuals in relation like Haschild

(Mounir, Ryad) which means that Ryad is a child of Mounir in natural language. Another

kind of assertions is possible; it’s called inequality assertion which allows making

difference between two near individuals like Meriem and Maria or M’hamed and

Mohamed. In this case the expression used is �’ℎ��	� ≠ ��ℎ��	�.

Reasoner Descripti

on

TBox

ABox

 Application

Figure 2 Architecture of DL-KRS

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 16

Assembling assertions leads to construct the ABox (assertional box). When assembling

concepts and roles definitions makes the TBox (terminological box) this two to gather

make a DL’s knowledge Base. This last can be defined like a minimal set of explicitly

represented knowledge that allows expansions by computing the implicit knowledge.

3.2. DESCRIPTION LANGUAGE AND EVOLUTION

 Description in DLs systems are based on a family of languages called concept languages.

The fundamental elements are concepts and roles description. Each concept has a

definition that can be satisfied by a set of individuals representing its assertions like in

object model the concept represents the class and the assertions are objects of the class.

The role is seen like relation between individuals or like attribute.

“The language is completely described by a formal syntax and a Tarsky-like semantics. A

formal definition of the language is essential for knowledge bases characterisation, and for

the definition of reasoning services”[13].

The expression in concept languages uses a set of constructors as operators and composed

alphabet distincting concept names CN and role names RN and individual name o.

these elements are used to define a finite set of axiom with respect to a formal syntax.

Axioms are of the form

� ⊑ ! �
 � ≡ !

Where C and D are concepts expressions.

Expressions figure in the form of

�# | ⊥ | ⊤ | ⇁ � | � ∩ ! | � ∪ ! |∃ (. � | ∀ (. �

DLs languages evolution is related to the goal of reaching more expressivity. It is why

augmentations consist of some additional tools which yield to represent new aspects of

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 17

knowledge. The table 01 shows AL languages evolution with specification of

augmentations from generation to other.

Table 1 DLs language extensions and evolutions [68]

Generation Augmentation

ALCN, ALCR and

ALCNR

ALC augmented with the number restriction concept expressions (N)

or/and role conjunction (R);

ALCF ALC augmented with attributes (sometimes called features), attribute

composition and attribute value map concept expressions;

ALCFN ALCF augmented with the number restriction concept expressions;

ALCFNR ALCFN augmented with role conjunction;

ALCN(_) ALCN augmented with role composition in number restriction

concept expressions;

ALC ALC augmented with transitively closed primitive roles (axioms of

the form RN 2 R);

ALC ALC augmented with union, composition and transitive closure role

expressions

ALC ALC augmented with a restricted form of primitive role introduction

axioms;

TSL ALC augmented with union, composition, identity, transitive reflexive

closure and inverse role expressions;

CIQ TSL augmented with qualified number restriction concept expressions

(inverse roles are the only form of role expression allowed inqualied

number restrictions);

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 18

The table shows the augmentation from a generation to other. It is clear that the criteria’s

touched here gives more specification capabilities which mean more expressivity. As

example from ALC to TSL the additional options are: the union, composition, identity,

transitive reflexive closure and the inverse role. The same thing for the evolution from

TSL to CIQ conceptors added inqualied restriction numbers to define an exact number of

individuals participating in a relation denoted by a defined role name.

3.3. DLs reasoner

A knowledge base described in DL-KRS (DLs knowledge representation systems) is a set

of concept definitions and assertions which define explicitly the minimal knowledge. To

be correctly used for deduction process, it must satisfy some properties which aim the

correctness and usability of the knowledge base by reasoner. These properties are formally

defined as follows [13]. Let T be a terminology.

Satisfiability: a concept C is satisfiable with respect to T if there is an existing model I of

T such that CI is nonempty. In this case we say also that I is a model of C.

Subsumption: a concept C is subsumed by a concept D with respect to T if CI ⊆ D I for

every model I of T . In this case we write C⊆T D or T |= C ⊆ D.

Equivalence: two concepts C and D are equivalent with respect to T if CI = D I for every

model I of T. In this case we write C ≡T D or T |= C ≡ D.

Disjointness: two concepts C and D are disjoint with respect to T if CI ∩D I = ∅ for

every model I of T .

 These properties are related by the possibilities of reduction to subsumption and to

unsatisfiability. This is possible due to the following propositions.

Proposition 1 (Reduction to Subsumption)[13] For concepts C, D we have

C is unsatisfiable ⇔ C is subsumed by ⊥;

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 19

C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;

C and D are disjoint ⇔ C ∩ D is subsumed by ⊥.

Note that ⊥ represent a bottom concept which is interpreted like empty set of individuals.

This means that when the unsatisfiability is defined by the non existence of individual

satisfying the definition of the concept.

Tow concepts are equivalents if and only if every individual of a concept is an individual

of the second one that means; every one of the two concepts is subsumed by the other one.

Disjointness is characterised by non existence of common individual that satisfy the two

definitions of the two disjoints concept. What means; the conjunction is empty set with no

individual who satisfy the definition of the conjunction expression.

 Proposition 2. [13] (Reduction to Unsatisfiability) for concepts C, D we have

C is subsumed by D ⇔ C∩ ￢D is unsatisfiable;

C and D are equivalent ⇔ both (C ∩ ￢D) and (￢C ∩ D) are unsatisfiable;

C and D are disjoint ⇔ C ∩ D is unsatisfiable.

When C and the complement of D is unsatisfiable means there is no common individual

between the negation of D and the subsumed concept C.

When the two concepts are equivalents means the double sense subsumption. Every

intersection subsumer/subsumed is unsatisfiable.

The reasoning process is the main part of the DLKRS. It allows the entailment of logical

consequences from the knowledge base. We can find two classes for reasoning services in

DLs systems, the basic services and the complex services. The firsts consist on cheeking

the truth value, which involve the satisfiability of knowledge base, the subsumption

checking, the concept satisfiability and the instance checking.

The complex reasoning services are different from system to system. The most services

provided are classification and retrieval. These services are additional to the top of the

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 20

basic services. The classification has the goal of defining the taxonomy of concept. This

last is presented like a graph in which nodes represent concepts and edges represent

subsumption relation between them. The retrieval unable to answer queries about

individuals occurring in defined concepts.

 According to the subject which is represented by the knowledge base concerned, there is

two kind of reasoning: terminological and assertional. The first use the TBox without

considering the ABox. This is coming from the property of dependency of the

terminology. due to this property the terminological reasoning is used for knowledge

representation systems especially.

The second kind of reasoning is called Hybrid reasoning. Because it is concerned by the

satisfiability checking and this last can replace each other property. By this way the hybrid

reasoning is defined like in follows “Hybrid reasoning takes account of both the parts of a

knowledge base. We consider algorithms for solving the problem of knowledge base

satisfiability. In principle, this approach is general enough because all reasoning services

can be reduced to knowledge base satisfiability” [66]. In the reality, the assertional

reasoning treats the concept satisfiability but if we speak about hybrid reasoning we speak

about KB satisfiability. Here there is an inclusion relationship because the concept

satisfiability is a part of the KB satisfiability.

 The reasoning algorithm, to check concept satisfiability begins with system constraints

and applies completion rules while precondition are satisfied. And it stops when no rule is

applicable. The result is that the system is completed with condition that there is no

contradictory constraint. The completion rules are given like in table 02.

To be mentioned that the most of modern DLs systems use tableau decision procedure, to

deal with more expressive DLs. This kind is called tableau Algorithms. It is based on KB

satisfiability checker in order to decide subsumption problem.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 21

 Table 2 Completion rules for ALCN

If A contains (C1 ∩ C2)(x), but not both C1(x) and C2(x) then

 -’ ≡ - . {�0(�), �4(�)}

-’ ≡ - . {�0(�)} ��� -” ≡ - . {�4(�)}

If A contains (�0 ∪ �4)(x), but neither C1(x) nor C2(x) then

-’ ≡ - . {�(7), ((�, 7)}

If A contains (ƎR.C)(x) but there is no individual name z such that C(z) and R(x,z) are

in A then

-’ ≡ - ∪ {�(7)}.

If A contains (∀R.C)(x) and R(x,y) , but it does not contains C(y) then

If A contains (≥ � (. �)(�) and there are no individual names z1,.....z2 such that

R(x, z;) (1 ≤ i ≤ n) ?@A z; ≠ zB (1 ≤ i < D ≤ �) are contained in A then

-E = - ∪ {((�, 7G)| 1 ≤ � ≤ �} ∪ H7G ≠ 7IJ1 ≤ � < D ≤ � }, where 70, … . , 7L are

distinct indivi duals names not occurring in A.

If A contains distinct individual names 70, … . . , 7LM0 such that

(≤ � ()(�) ��� ((�, 70), … … , ((�, 7LM0) are in A, and 7G ≠ 7I is not in A for

some � ≠ D then for each pair 7G, 7I such � < D and 7G ≠ 7I is not in A, the Abox

-G,I = N7G 7I⁄ P- is obtained from A by replacing each occurrence of 7G by 7I.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 22

We note that the hybrid reasoning Algorithm is considered like a generalisation of the

concept satisfiability. “For a large class of concept languages, including ALCN, the

algorithm can be a generalisation of that used for terminological reasoning. The notion of

constraint system is extended, allowing the presence of constraints for individuals as well

as variables”.[66]

A reasoning Algorithm can be qualified by correct if it is sound and complete. Soundness

and completeness are defined as flow. “An algorithm that decides, given two concepts C

and D, whether it holds that D subsumes C, is called complete if it is guaranteed that the

algorithm returns “yes” whenever the subsumption relationship holds and it is called

incomplete otherwise. The algorithm is called sound if it is guaranteed that, whenever the

algorithm returns “yes” that D indeed subsumes C and it is called unsound otherwise. [67]

3.4. COMPLEXITY OF REASONING ALGORITHM

The reasoning Algorithm applies rules combined by iteration until a stop point. This last

represents the case where no new inferences are given. The complexity is relative to how

the Algorithm applies rules.

A modified algorithm is constructed to deal with non deterministic rules is presented like

in follow. [13]

The Algorithm starts with {�Q(�Q)}

Applies the →∩ ��� →∪ as long as possible, and checks for clashes of form

 -(�Q), ⇁ -(�Q) ��� ⊥ (�Q);
Generates all the necessary direct successors of �Q using the → ∃ − ��� ≥ −
��	;
Generates all the necessary identifications of these direct successors using the →≤ − rules

and checks for clash caused by at-most restrictions;

Successively handles the successors in the same way.

Satisfiability of ALCN-concept descriptions is PSpace-complete.

The above argument shows that the problem is in PSpace. The hardness result follows

from the fact that the satisfiability problem is already PSpace-hard for the sublanguage

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 23

ALC, which can be shown by a reduction from validity of Quantified Boolean Formulae.

Since subsumption and satisfiability of ALCN-concept descriptions can be reduced to each

other in linear time, this also shows that subsumption of ALCN-concept descriptions is

PSpace complete.[13]

3.5. COMPOUND INFERENCE PROBLEMS

Some of the most important inference problems in DLs are of a compound nature [69] but

heir it is clearly confirmed that this problem can be solved by the reduction into more

basic inference problems mentioned above. At the same time if the target to achieve is the

efficient implementation, it is vital to consider compound inference problem as first class

citizens [70].

The compound inference problems take a part in DLs reasoners because they are used for

more efficient and the important such problems are:

Classification: compute the restriction of the subsumption relation ⊆ to the set of concept

names used in T.

Realization: compute the set R1, τ (a) of those concept names A that are used in

terminology T, satisfy A = τ A(a) and are minimal with this property w.r.t the

subsumption ⊆τ [69].

Retrieval: try to give a set of assertions A and a set of terminology and a concept C for

computing the set IA,T(C) of individuals names used in A satisfying

 A = C(a).

The compound inference problem offers a very important tools and services to DLs

reasoners. The hierarchy of concept names constructed by the classification can facilitate

the browsing and the structuring the Tbox by meaning that B is Abox A if and only if A⊆

τ B. also the realization facilitates the browsing and understanding of the knowledge

base. Add to that the realization offer tools for presuppositions of the concept

memberships of individuals. [69] And the retrieval service the main use of this service is

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 24

data base like querying of description logic’s knowledge base: in some applications, it is

natural to define ABox with huge number of individual names, and to query such ABox

likes a data base with deductive capabilities [71].

The compound inference problems can be reduced into more basic inference problems.

Obviously they becomes just use multiple invocations of instance checking and

subsumption. However, basic inferences such as subsumption and instance checking are

potentially vary costly, and thus it is vital for DLs reasoners to replace these “brute force”

methods of compound inferences by more subtle approaches [69].

For more efficiency in implementation of compound inference services we have to think

about reducing the number of subsumption tests because it’s clear that as beginning the

naïves approaches considers and performs n2 tests of subsumption for a terminological box

that’s contains n concept names. The strategies of this optimization are described next.

The strategies that can be used for optimization of the reasoning services can be

distinguished to two kinds, firstly non-DL context processing which is based on

combinatory analysis for the classification problem that is regarded « as an abstract

combinatorial problem on partial orders: compute a complete representation of a partial

ordering by making as few as possible comparisons. This quite general problem is also

considered in non-DL contexts » [72].

4. DESCRIPTION LOGICS SEMANTIC

The semantics of description logics leads to transform reflexions on represented

knowledge from expressions and names to sets. This fact begins from the definition of I

called the interpretation and figure as a no empty set, the second is the interpretation

function unable to assign each atomic concept A to a set of individuals denoted by A
I

containing as elements the individuals which satisfy the definition of the concept , by this

why we define the domain name ∆V . It represents a set including all concepts

interpretation.

The interpretation function is extended to concept descriptions by the following inductive

definitions [13]:

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 25

TV ≡ ΔV

⊥V ≡ Φ

￢-V ≡ ΔV -V⁄

(� ⊓ !) ≡ (�V ⊓ !V)

(∀(. �)V ≡ {� ∈ ∆\ | ∀]. (�,]) ∈ R\ → b ∈ C\}

(∃(. `)\ ≡ {� ∈ ∆V| ∃]. (�,]) ∈ (a }

The extensions of AL languages aiming more expressivity leads to express other aspects

like: numerical restriction, roles construction, roles type functional and transitive Sf. The

table 4 shows these extensions with their semantics.

The power of expressivity is coming from the operation allowed to describe complex

relations existing between concepts and individuals. By corresponding to the first order

logics in which we can find relation composition, inverse relations...Sf. these facilities can

provide high level of expressivity. The semantic of composition and the inverse relation

allowed computation of some complex interaction between predicates.

Some DLs language enable role composition, it is denoted by the symbol ○ and defined by

the followings expressions.

(V ∘ c V ≡ {(�, d) | ∃]. (�,]) ∈ (V ∧ (], d) ∈ cV }.[13]

Iterated composition is denoted in the form (RI)n. To be more precise,

((V)∘ ≡ {(�, �) | � ∈ fV} ��� ((V)LM0 = ((V)L ∘ (V } [13]

Transitive and reflexive-transitive closures are the only constructors among the ones

introduced so far that cannot be expressed in first-order predicate logic. [13] That means
the composition is presented like an associative operation associating at least three
Roles names or more.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 26

Table 3 Some Description Logic concept constructors [01].

Name Syntax Semantic Symbol

Top T ΔV AL

Bottom ⊥ Φ AL
Intersection � ∩ ! (�V ∩ !V) AL
Union � ∪ ! (�V ∪ !V) U
Negation ￢� ΔV -V⁄ C

Value restriction ∀ (. � {� ∈ ∆\ | ∀]. (�,]) ∈ R\ → b ∈ C\} AL

Existential quantifier ∃ (. � {� ∈ ∆V| ∃]. (�,]) ∈ (V } ℰ

Unqualified number restriction ≥ � (

≤ � (

= � (

 H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\z| ≥ n

H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\z ≤ n

H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\z = n

N

Qualified number restriction ≥ � (. �

≤ � (. �

= � (. �

H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\⋀ b ∈ C\z|
≥ n

H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\⋀ b ∈ C\z
≤ n

H� ∈ ∆\JJ] ∈ ∆\ J(�,]) ∈ R\⋀ b ∈ C\z
= n

|

Role value map (⊆ c

(= c

{� ∈ ∆\ J∀]. (�,]) ∈ R\ ⟶ (a, b) ∈ S\}

{� ∈ ∆\ J∀]. (�,]) ∈ R\ ↔ (a, b) ∈ S\}

Agreement and disagreement �0 = �4

�0 ≠ �4

{� ∈ ∆V|∃] ∈ ∆V . �0
V (�) =] = �4

V (�) }

{� ∈ ∆V|∃]0,]4 ∈ ∆V . �0
V (�) =] 0 ≠]4

= �4
V (�) }

ℱ

Nominal I aV ∈ ∆V with |aV| = 1 �

As mentioned before the description logics implementations use simplified syntax. This

aim to facilitate the manipulation of constructors and to avoid non ASCII chars used to

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 27

denote constructors and relations. In next table a concrete syntax is defined. In where

some words like are used to express every possible definition in respect to relatively new

AL generations.

The semantic do not change when using simplified syntax, because it is clear that every

symbol (some of them are non ASCII chars) are replaced by a word which indicate the

same meaning. But here it s to be noted that it s difficult to differentiate if this same word

is used to express a concept in a knowledge base. It’s why the notation is like polish

notation.

Table 4 Concrete syntax of concept constructors [01].

Name Abstract syntax Concrete syntax

Top T TOP

Bottom ⊥ BOTTOM

Intersection � ∩ … ∩ ! (and C ... D)

Union � ∪ … ∪ ! (or C ... D)

Negation ￢� (non C)

Value restriction ∀ (. � (all R C)

Existential quantifier ∃ (. T (Some R)

Limited existential
quantification

∃ (. � (some R C)

Unqualified number
restriction

≥ � (

≤ � (

= � (

(at-least n R)

(at-most n R)

(exactly n R)

Qualified number
restriction

≥ � (. �

≤ � (. �

= � (. �

(at-least n R C)

(at-most n R C)

(exactly n R C)

Role value map

Same as agreement

(0 ⊆ (4

(0 = (4

(subset R1 R2)

(same-as (0 (0)

Role fillers ∃ (. a0 ∩ … ∩ (. aL (fillers (0 a0 … aL)

One-of ∃ a0 ∪ … ∪. aL (one-of a0 … aL)

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 28

The syntax provides possibilities for roles constructors. The role composition is denoted

by (compose R1 ... Rn), the role inverse is (inverse R), the complement is (not R), the

transitive closer (transitive-closer R) and the role restriction (restrict R C). Like that is

defined the terminological box using the noun of the constructor.

The assertions are also giving with respect to this concrete syntax like (instance a C) for

indicating that a is an instance of C or a satisfy the definition of C. The instantiations of

role is denoted (related a b R). some additional concept can be considered in more recent

syntaxes.

5. APPLICATION DOMAINS

Description logics is known as a powerful formalism of KR. It provides tools that allow

modelling several parts of the real world. These capabilities makes that DLs are well

known by searchers in deferent domains like: Conceptual information modelling, natural

language processing, software engineering, configuration, medical informatics, databases,

digital libraries and web based information systems. Next we describe briefly how DLs

can be useful in some fields.

5.1. Conceptual information modelling

 This field is concerned by the expression of information in computable form. Other ways,

symbolizing a part of the real word with abstraction of some details to have computable

forms. Conceptual model creation is very helpful in applications modelling. It takes a big

importance for many fields. In follows: a summarization of this fields as presented by

Mylopoulos in 1998 [74].

Artificial intelligence programs turned out to require the representation of a great deal of

human knowledge in order to act “intelligently”. As a result, they relied on conceptual

models built up using knowledge representation languages, such as semantic networks

directed graphs labelled with natural language identifiers. DLs are the historical

descendants of attempts to formalize semantic networks.

The design of database systems was seen to have as an important initial phase the

construction of a “conceptual level schema”, which determined the information needs of

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 29

the users, and which was eventually converted to a physical implementation schema.

Chen’s Entity–Relationship model, and later semantic data models, were the result of

efforts in this direction.

“More generally, the development of all software has an initial requirements acquisition

stage, which nowadays is seen to consist of a requirements model that describes the

relationship of the proposed system and its environment. The environment in this case is

likely to be a conceptual model.

Independently, the object-oriented software community has also proposed viewing

software components (classes/objects) as models of real-world entities. This was evident

in the features of Simula, the first object-oriented programming language, and became a

cornerstone of most object-oriented techniques, including the current leader, UML.

An important claim regarding the benefits of abstraction in conceptual modelling is that it

results in a structured information model, which is easier to build and maintain.

Interestingly, Description Logics further this goal by supporting the automatic

classification of concepts with respect to others, thereby revealing generalizations that

may not have been recognized by the modeller” [13].

DLs offer tools to express conceptual models by the roles and concepts definitions also it

provides representation for particular situations using assertions expression. For A.

Borgida and R. J. Brachman the steps that lead to describe models in using DLs formalism

are [13]:

• Identify the individuals one can encounter in the U of D. Revisit this later

considering issues such as materialization and values.

• Enumerate concepts that group these values.

• Distinguish independent concepts from relationship-roles.

• Develop taxonomy of concepts. Revisit this later considering issues such as

Disjointness and covering for subconcepts.

• Identify any individuals (usually enumerated values) that are of interest in

all states of the world in this U of D.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 30

• Systematically search for part-whole relationships between objects,

creating roles for them. Later, make them sub-roles of the categories of

roles.

• Identify other “properties” of objects, and then general relationships in

which objects participate.

• Determine local constraints involving roles such as cardinality limits and

value restrictions.

• Elaborate any concepts introduced as value restrictions.

• Determine more general constraints on relationships, such as those that can

be modelled by sub-roles or same-as. (The latter often correspond to

“inheritance” across some relationship other than IS-A.)

• Distinguish essential from incidental properties of concepts, as well as

primitive from defined concepts.

• Consider properties of concepts such as rigidity, identifiers, etc., and use

the techniques of to simplify and realign the taxonomy of primitive

concepts.

5.2. Natural language processing

Description logics with the definition of a terminology is very adapted to be used for

natural processing systems, especially in constructing the lexical knowledge bases called

exactly the lexical semantics. The term in this case represents concepts of the knowledge

base described in AL.

Description logics offer a logical form of represented knowledge and by this way it allows

to drive the semantic interpretation process. Other ways, the DLs represents the concepts

based on properties and relation with other concepts which integrate at the same time the

contextual and the syntactic knowledge. This property makes the power of usability DLs

in natural language processing (NLP). For this lasts, developing KBs based on DLs has

been a subject of several works from the 1980s and beginning of 1990s.

To speak about the lexical semantic part of the knowledge base, it’s very simple to see that

concepts definitions. But it is not same case when interesting to the syntactic integration,

because it’s not directly made, the constructor must define roles able to make in relation

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 31

two words of different nature like in verb phrases a verb like “write” is make in relation to

the writer by a role defined that can be called “Subject” and by this same way we can

define a relation for complements which leads to implementing syntax of verb phrases

using roles definition.

It is known that the example cited bellow is for a simple form of verb phrases. In this case

subject or complement figures like a single word. The definition becomes more complex

when syntactic elements figure as combined words for example “Ahmed write his report”

here the definition is possible But with more complex relation that can be roles

combinations.

The semantic interpretation requires a knowledge base partitioned in two parts represented

by an Upper-Model and a Domain-Model this like a theoretical purpose is very hard to be

achieved. But the idea focus on the fact that “if selectional restrictions are too specific,

disambiguation is achieved, but probably many correct sentences will be rejected (e.g., the

sentences involving some form of metaphor, type shifting, or metonymy); if selectional

restrictions are too general, the opposite problem may appear. In principle, a good

linguistically motivated ontology should be abstract, large-scale, reusable. However, these

goals are very hard to achieve since they conflict with the practical need to implement

effective and discriminating Ontologies in specialized domains.” [13]

In practice, a number of works aiming the semantic interpretation are found. But the

results are not satisfiable in the field of natural language processing. DLs provide a

description formalism seen like powerful for the knowledge bases (called also Ontologies)

construction but the manipulation and processing Algorithms are always far to respond to

the requirements.

5.3. Description logics and semantic web

The earliest applications of description logics was concerned by digital library, we can

find as example Untangle and FindUR which represent a web based information systems

using DLs to express knowledge. The rise of semantic web caused the need of expressive

formalisms; this last is justified by the need to create meaningful and usable resources.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 32

Description logics are well adapted to describe elements of knowledge especially the

complex relation between them.

For the goal of reasoning on resources, Web languages describe knowledge using frame-

like syntax. But some extensions are needed to achieve height level of expressivity like

description logics. These extensions can be seen in OIL language like in follows (see

[13]):

• Arbitrary Boolean combinations of classes (called class expressions) can be

formed, and used anywhere that a class name can be used. In particular,

class expressions can be used as slot fillers, whereas in typical frame

languages slot fillers are restricted to being class (or individual) names.

• A slot-filler pair (called a slot constraint) can itself be treated as a class: it

can be used anywhere that a class name can be used, and can be combined

with other classes in class expressions.

• Class definitions (frames) have an (optional) additional field that specifies

whether the class definition is primitive (a subsumption axiom) or non-

primitive (an equivalence axiom). If omitted, this defaults to primitive.

• Different types of slot constraint are provided, specifying value restriction,

existential quantification and various kinds of cardinality constraint. Global

slot definitions are extended to allow the specification of supers lots

(subsuming slots) and of properties such as transitive and symmetrical.

• Unlike many frame languages, OIL has no restriction on the ordering of

class and slot definitions, so classes and slots can be used before they are

“defined”. This means that OIL Ontologies can contain cycles.

• In addition to standard class definitions (frames), which can be seen as DL

axioms of the form �# ⊆ � and �# ≡ � ≡ where CN is a concept name,

OIL also provides axioms for asserting Disjointness, equivalence and

coverings with respect to class expressions. This is equivalent to providing

general inclusion (or equivalence) axioms, i.e., axioms of the form �# ⊆ �

(C ≡ D), where both C and D may be non-atomic concepts.

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 33

Here an example of description using OIL language can make a highlight on the

formulation of description. The syntax of OIL use the term “slot-def” to define role name

and “inverse” for the inversed role. The concept are viewed like classes it’s why every

concept definition is placed after “class-def”..Sf.

Figure 03: family ontology described in OIL[13]

The DLs contribution in web based systems is provided by many languages either than

OIL like DALM or DALM+OIL.

name “Family”

documentation “Example ontology describing family relationships”

definitions

slot-def hasChild

inverse isChildOf

class-def defined Woman

subclass-of Person Female

class-def defined Man

subclass-of Person not Woman

class-def defined Mother

subclass-of Woman

slot-constraint hasChild

Figure 3 family ontology described in OIL[13]

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 34

5.4. Medical Informatics

There are more than one application in the field of medical informatics that can be

concerned by the use of description logics like representation formalism “terminology,

intelligent user interfaces, decision support and semantic indexing, language technology,

and systems integration.” [13]

For every kind of application knowledge are used. That means; powerful and expressive

formulation is required for effective system. It must respond to lot of constraints coming

from requirements like size, complexity, connectivity, and the wide range of granularity.

The two best known efforts – OpenGalen and Snomed-rt – both use idiosyncratic

Description Logics with generally limited expressivity but specialized extensions to cope

with issues around part–whole and other transitive relations. There is also a conflict

between the needs for re-use and the requirement for easy understandability by domain

expert authors. OpenGalen has coped with this conflict by introducing a layered

architecture with a high level “Intermediate Representation” which insulates authors from

the details of the Description Logic, which is treated as an “assembly language” rather

than the primary medium for expressing the ontology.[13]

5.5. Data bases

A knowledge base or a database booth of them existed for a goal of saving related data of

a model created by abstraction from the real word in coherent form. These resources

should be well structured for facilitating the manipulation. Each one of them is created

using specific tools with respect to integrity constraint, facilities of access, coherence and

significance.

But the thing that makes difference between KB and DB is that in the first the formulation

must enable the deduction of consequent knowledge from the explicitly represented ones,

where in the second we need just that “the explicitly represented knowledge” be efficiently

retrievable. From that point of view, it is clear that the DB need only a query language.

However, for a KB there is more than a querying data because of the integration of the

Part 01 Description logics formalism

Yasser YAHIAOUI - December 2016 35

semantic aspect. This last enable more possibilities such as question answering, schema

constraint checking, inference, .SF.

The main aimed goal for the research on databases is how to make DB knowledgeable, it

is why is required some kind of height level languages called Semantic Modelling

Languages. In these languages the Universe of discourse (reality to be modelled) is

viewed like population of entities which are enter-related by many relations and each one

is described by some atomic value called the attributes.

These transformations are based on the known Relational Model used such as beginning

point. From this description, the semantic phase defines the Logical Schema which

provides knowledge about data structure, relations and constraints that must be hold. But

it’s to be noted that there are works based on the object oriented formalization.

PART I: BACKGROUND

CHAPTER 03: DLS IMPLEMENTATIONS AND

CURRENTS SYSTEMS

Yasser YAHIAOUI - December 2016 36

1. DESCRIPTION LOGICS SYSTEMS IMPLEMENTATION

The earliest description logics systems were based on two kinds of operation called tell &

ask. The first one is for telling knowledge to the system where the second is used for

asking about what was previously told to the system or there logical consequences.

The implemented DLs knowledge representation systems can be categorized in tow

generations. This is coming from the additional represented aspect (augmentations aiming

more expressivity) like the inverse Roles and composition of roles.

The first generation are much related to the view inspired from the cognitive behaviour on

what focus the predecessor of DLs systems (SNs, Frame systems). These systems had the

finality of finding a simple formalization for knowledge being represented and possibility

of inferring implicit knowledge intuitively. In 1975 the beginning of development of the

named system KL-one which was not in first steps seen like logical based approach.

 “KL-One started the era of logic based representation systems which can be used to

formalize application problems as inference problems over the constructs supported by the

representation language.” [13]

For that, the KL-one based the representation on primitives which are concepts and the

roles, where the meaning of the concept is defined from the super concepts and restrictions

that associate it with others concepts. These restrictions are built using defined roles.

The first Algorithms developed were called classifiers, because they were interested

especially to the detection of the subsumption hierarchy (so called parent-child relation).

An additional reasoning component was the “realize”. This last check for each individual

in the ABox the most specific concept in which the individual is an instance.

Another developed system called KRYPTON. Based initially on the first order theorem

prover and developed to respond to other specific purposes related to terminological and

assertional reasoning. “Krypton can be regarded as one of the first efforts in combining

knowledge representation and theorem-proving techniques but was not used for industrial

applications”[13].

Yasser YAHIAOUI - December 2016 37

Thing to be noted that KRYPTON is deferent because “the focus of Krypton was not on

the structures to be maintained by the system but was centred around the question about

what the system should do for the user, i.e., what services should be made available”.[13]

For the inference this system proposes for the TBox services such as consistency

checking, subsumption and Disjointness and the most specific concept is computable. And

for the ABox reasoning consistency, realization, instance checking and instance retrieval.

The KRYPTON there is a specific characteristic which is “the idea that the user should

only know, at some level not dependent on implementation details, what questions the

system is capable of answering and what operations are permitted that allow new

information to be provided to it”.[13]

Others systems were developed at the same time with KRYPTON such as: Nikl, Penni,

Kl-Two. The first was developed to success KL-one with augmentations enabling the roles

classification by subsumption, with particularity that “the algorithms in the Nikl classifier

were faster in the average case because “obvious” information was exploited to a larger

degree” and that the provided Algorithm for subsumption was incomplete. This second

disadvantage has been omitted by the assertional reasoning add with the Penni system. But

with more augmentation concerning the quantificational reasoning components a system

rise named KL-two.

Another important system developed to omit disadvantages seen in precedent systems is

called KANDOR. “Basically, KANDOR supported conjunction, value restriction and

number restrictions as concept-forming operators. In minimum number restrictions, range

restricted roles could be used (hence, qualified minimum number restrictions were

allowed”[13]

The second generation of DLs systems was created for specific purpose which is being

usable in application domains. The first discussed system is called CLASSIC which is

basically “CLASSIC system supported the logic ALNFh−1 with TBoxes and ABoxes plus

facilities for dealing with numbers..... We use the lowercase letter h to indicate that Classic

supports role inclusion but not role conjunction, i.e., Classic supports “single-inheritance”

role hierarchies. Classic is available for research purposes. Implementation languages for

Classic are Common-Lisp.” [13]

Yasser YAHIAOUI - December 2016 38

CLASSIC provided complete subsumption reasoner after some augmentations from the

basic CLASSIC to the full version. “Furthermore, CLASSIC provides simple support for

closed-world reasoning”

LOOM is another known system, implemented with respect of the DLs ALCQRIFO

augmented by the addition of role conjunction. “The current version of Loom is

implemented in Common-Lisp and is available for research purposes. A new system

(called Power-Loom) for Common-Lisp as well as C and Java-based platforms can be

licensed as well.”[13]

There are two goals that motivated LOOM development. The first one is to incorporate an

expressive query language for querying the ABox, and the second is to support the rule-

based programming.

This system is characterized that is more expressive than the CLASSIC but the Algorithms

proposed for concept consistency and subsumption checking are incompletes. but “The

arguments for the Loom approach can be summarized as follows: The intractability of the

representation language can hardly be avoided if the requirements of users are to be

fulfilled. Therefore, the idea is to support the features in one system rather than as a set of

application-specific ad hoc supplements]...[Obviously, incompleteness is no problem as

long as the answers of the inference system are interpreted in the right way (i.e., “no”

answers should not be trusted).”[13]

Others proposed DLs environments are called BACK and FLEX developed for the same

initial goals of the Loom system. BACK is abbreviated from Berlin Advanced

Computational Knowledge, When FLEX is known for his flexibility of reasoning process.

 “The Description Logic of the initial Back system can be called ALQR−1. There was also

support for reasoning with numbers and attribute sets. Research on the inference

algorithms for the basic Back language stimulated the development of theoretical results

on the complexity of concept consistency reasoning.” [75]

“In order to provide a hybrid representation language, BACK was one of the first systems

in which TBox concept terms could also be used in an ABox to assert, e.g., disjunctive

Yasser YAHIAOUI - December 2016 39

information about individuals. In addition, distinct individuals were assumed to denote

distinct objects.”[13]

FLEX uses the description logics ALCQRIFO unequalled and equalled number restrictions.

The first version of FLEX was developed on PROLOG but successors called FLEX++

was implemented in C++. This implementation was faster but not enough expressive and

used incompletes Algorithms.

“Experiences with system implementations indicated that either limited expressiveness or

incompleteness of reasoning could possibly lead to problems in applications. Therefore,

other researchers investigated the implementation of systems based on sound and complete

algorithms.” [13] Note here that soundness means that reasoner prove just valid formulas

with respect to its semantic.

With the tableau Algorithms new DLs system architecture has been constructed. This

leads to implemented systems such as KRIS and CRACK.

KRIS is presented like DL system that guaranties completeness and soundness in

reasoning process with expressive DLs which is ALCNF, in where is allowed the numbers

restriction and role conjunction. The KRIS was implemented in Common-Lisp and

represents first system providing complete and sound Algorithm for reasoning on both

TBox and ABox for expressive description logics. Add to that KRIS act on a concrete

domain.

“One of the main results of the KRIS project was that sound and complete inference

algorithms are an important starting point for research on optimized sound and complete

algorithms for practical system development.”[13]

The system CRACK which is a description logics system typed ALCRIFO has as main

characteristic: that the inference Algorithm provided should be able to deal with

individuals in concept terms. It represents a better than its predecessors by the goals

achieved “but the inference techniques employed, which had been developed for

(manually) deriving decidability results, e.g., with tableau algorithms, were not suited for

Yasser YAHIAOUI - December 2016 40

direct implementation.”[13] The decidability problem roses as a beginning new horizon

for performing new systems to achieve the aimed systems.

2. CURRENT DESCRIPTION LOGICS REASONER

A number of changes are applied on reasoner for the aim of performing and optimizing.

As result a number of existing reasoner are characterized in a list established by searchers

in Manchester University [73] with links to source as verification this list is presented in

alphabetic order like in follow.

BaseVISor, hosted at VIStology, Inc., published under BaseVISor is licensed for

academic and research use free of charge; all other uses require a commercial license.

BaseVISor is a versatile, highly efficient forward-chaining inference engine, based on a

Rete network, specialized to handle facts in the form of RDF triples with support for OWL

2 RL and XML Schema Data types. It is written in Java and can be run as a standalone

application or be embedded in existing applications. BaseVISor is optimized for

ontological and rule-based reasoning. Users can develop procedural attachments that can

be invoked from within a rule to perform a complex calculation, access a Web service or

execute new processes, complementing a large set of BaseVISor’s built-in functions.

BaseVISor is licensed for academic and research use free of charge. Supported interfaces:

Command Line, Other. Supported reasoning services: realisation, classification,

satisfiability, conjunctive query answering, entailment, consistency. Supported syntaxes:

RDF/XML, OWL/XML, All OWL API.

BUNDLE, hosted at University of Ferrara, published under AGPL license Version 3.

BUNDLE (“Binary decision diagrams for Uncertain reasoNing on Description Logic

thEories”) is a probabilistic reasoner based on Pellet. It extends Pellet in order to allow the

computation of the probability of queries from a probabilistic knowledge base that follows

the DISPONTE probabilistic semantics. Supported interfaces: Jena, Command Line, OWL

API. Supported reasoning services: satisfiability, entailment, consistency,

explanation. Supported syntaxes: Turtle, RDF/XML, Krss2, Latex, OWL/XML,

Functional, All OWL API, Manchester.

Yasser YAHIAOUI - December 2016 41

CEL, hosted at Technische Universität Dresden, published under Apache License 2.0

(CEL) / GNU Lesser General Public License 3.0 (CEL Plug-in). CEL is a free (for non-

commercial use) Lisp-based reasoner for EL+. It implements a refined version of a

polynomial-time classification algorithm and supports new features like module extraction

and axiom pinpointing. It is distributed with a Java-base adapter to use the OWL API and

to be used as a Protégé plug-in. Supported interfaces: Protege, Command Line, OWL

API. Supported reasoning services: classification, satisfiability, consistency. Supported

syntaxes: Turtle, RDF/XML, Krss2, OBO, OWL/XML, Functional, All OWL API,

Manchester.

Chainsaw, hosted at The University of Manchester, published under LGPL. Chainsaw is a

free (LGPL) OWL 2 DL reasoner for very large ontologies. It uses a modular

decomposition to tackle the high complexity of the reasoning. Uses delegate reasoner(s) to

perform single reasoning tasks. Supported interfaces: Protege, OWL API. Supported

reasoning services: realisation, classification, satisfiability, entailment,

consistency. Supported syntaxes: All OWL API.

Clipper, hosted at Vienna University of Technology, published under Apache 2.0. Clipper

is a Reasoner for conjunctive query answering over Horn-SHIQ ontology via query

rewriting. Supported interfaces: OWL API. Supported reasoning services: conjunctive

query answering. Supported syntaxes: All OWL API Download, Core publication.

DBOWL, hosted at University of Malaga, published under GNU General Public License.

DBOWL is a scalable reasoner for OWL ontologies with very large Aboxes. DBOWL

stores ontologies and classifies instances in Named Classes and Properties using relational

database technology. It combines relational algebra expressions and fixed-point iterations

in order to compute the closure of the ontology, called the knowledge base creation. It also

supports SPARQL queries. Supported interfaces: Other. Supported reasoning services:

classification, satisfiability, conjunctive query answering, consistency. Supported

syntaxes: RDF/XML.

DeLorean, hosted at Not given, published under NA. DeLorean is a fuzzy rough

Description Logic reasoner. It supports a fuzzy rough extension of OWL 2. Supported

interfaces: Command Line, Other. Supported reasoning services: realisation,

Yasser YAHIAOUI - December 2016 42

classification, satisfiability, entailment, consistency, Service Fuzzy. Supported syntaxes:

NA.

DistEL, hosted at Wright State University, published under NA. DistEL is a distributed

reasoner that runs on a cluster of machines. It has support for a major part of OWL 2 EL

profile. As of now, it has support for only classification task. Supported interfaces:

Command Line. Supported reasoning services: realisation, classification. Supported

syntaxes: NADownload, Core publication.

DRAOn, hosted at University of Paris 8, IUT of Montreuil, published under LGPL.

DRAOn is an OWL reasoner that supports distributed reasoning over a networked

ontologies. It is based on local reasoners that implement an algorithm building compressed

models. Supported interfaces: OWL API. Supported reasoning services: entailment,

consistency. Supported syntaxes: All OWL API.

DReW, hosted at Vienna University of Technology, published under Apache 2.0. DReW

is a reasoner for DL-Programs over Datalog-rewritable Description Logics. The algorithm

is based on rewriting to Datalog. Supported interfaces: Command Line, OWL

API. Supported reasoning services: conjunctive query answering. Supported syntaxes: All

OWL API.

ELepHant, hosted at Not given, published under Apache License, Version 2.0. ELepHant

is a consequence-based reasoner that currently supports part of the OWL 2 EL fragment

for the reasoning tasks classification, consistency and realization. Its aim is to provide

lightweight and performant reasoning for the full OWL 2 EL fragment. Supported

interfaces: Command Line. Supported reasoning services: realisation, classification,

consistency. Supported syntaxes: Functional.

ELK, hosted at University of Ulm, Germany, published under Apache 2. ELK is a

reasoner for OWL 2 ontologies that currently supports a part of the OWL EL ontology

language. Supported interfaces: Protege, Command Line, OWL API. Supported reasoning

services: realisation, classification, satisfiability, entailment, consistency. Supported

syntaxes: Functional.

Yasser YAHIAOUI - December 2016 43

ELOG, hosted at Not given, published under GNU GPL v3. ELOG is a reasoner for log-

linear description logics, a probabilistic logical formalisms that combines description

logics and log-linear models. Supported interfaces: OWL API. Supported reasoning

services: realisation, entailment. Supported syntaxes: RDF/XML, OWL/XML, All OWL

API.

FaCT++, hosted at The University of Manchester, published under LGPL. FaCT++ is a

free (LGPL) highly optimised open-source C++-based tableaux reasoner for OWL 2

DL. Supported interfaces: Protege, Command Line, OWL API, Other. Supported

reasoning services: realisation, classification, satisfiability, entailment,

consistency. Supported syntaxes: NA.

fuzzyDL, hosted at ISTI – CNR, published under NA. fuzzyDL is a free Java/C++ based

reasoner for fuzzy SHIF with concrete fuzzy concepts (explicit definition of fuzzy sets +

modifiers). It implements a tableau + Mixed Integer Linear Programming optimization

decision procedure to compute the maximal degree of subsumption and instance checking

w.r.t. a general TBox and Abox. It supports Zadeh semantics, Lukasiewicz semantics and

is backward compatible with classical description logic reasoning. Supported interfaces:

Protege. Supported reasoning services: satisfiability, entailment, consistency, Service

Fuzzy. Supported syntaxes: OWL/XML.

HermiT, hosted at University of Oxford, published under LGPL. HermiT is an OWL 2

DL reasoner — to my knowledge, one of the few such systems that attempts (modulo

bugs) to fully and correctly support the OWL 2 DL specification. Supported interfaces:

Protege, Command Line, OWL API. Supported reasoning services: realisation,

classification, satisfiability, entailment, consistency. Supported syntaxes: All OWL API.

jcel, hosted at Technische Universität Dresden, published under Apache License 2.0 and

GNU Lesser General Public License 3.0. jcel is a free open-source Java-based reasoner for

EL+ and supports parts of the OWL 2 EL profile. It implements a polynomial-time

modular consequence-based algorithm for general TBoxes (subsumption, satisfiability,

classification) and ABoxes (retrieval). It supports the OWL API and can be used as a

Protégé plug-in. Supported interfaces: Protege, Command Line, OWL API. Supported

reasoning services: classification, satisfiability, entailment, consistency. Supported

Yasser YAHIAOUI - December 2016 44

syntaxes: Turtle, RDF/XML, Krss2, OBO, OWL/XML, Functional, All OWL API,

Manchester.

JFact, hosted at The University of Manchester, published under LGPL. JFact is a pure

Java port of FaCT++, with versions for Owlapi 3.x and 4.x. It is kept in step with FaCT++

and updated regularly. It has been used on Android devices with Owlapi 3.5. It is available

packaged as a Protégé plugin, for Protégé 4.3 and 5. Supported interfaces: OWL

API. Supported reasoning services: realisation, classification, satisfiability, entailment,

consistency. Supported syntaxes: NA.

Konclude, hosted at University of Ulm, derivo GmbH, published under LGPL 2.1.

Konclude is a parallel, high-performance reasoner for the Description Logic SROIQV(D).

It is implemented in C++ and uses a reasoning technique that is based on a highly

optimized tableau algorithm assisted by a completion-based saturation procedure. At the

moment, it supports many standard reasoning tasks such as consistency checking,

classification, realisation and can be used via command line or OWLlink. Supported

interfaces: OWLLink, Command Line. Supported reasoning services: realisation,

classification, satisfiability, consistency. Supported syntaxes: OWL/XML, Functional.

LiFR, hosted at Centre for Research and Technology Hellas (CERTH), published under

GNU LGPL. LiFR is a Lightweight Fuzzy DL Reasoner, capable of performing in

resource-constrained devices. It supports f-DLP (Zadeh fuzzy operators) by translating DL

axioms to first order clauses and by using the hyper-tableaux calculus. It accepts as input a

variant of the KRSS syntax. Supported interfaces: Other. Supported reasoning services:

satisfiability, entailment, consistency, Service Fuzzy. Supported syntaxes: NA.

Mastro, hosted at Sapienza University of Rome, published under Executable available for

research purposes. For other needs, please contact the developers.. Mastro is a free (for

non-commercial use) Java-based reasoner for OWL 2 QL and ontology languages of the

DL-Lite family. The main reasoning services provided by Mastro are: conjunctive query

answering, consistency checking, instance checking, and TBox reasoning (logical

implication, classification, and satisfiability). Mastro works in two settings: the classical

setting with ontologies composed by a TBox and an ABox, and the Ontology-based Data

Access setting in which the ontology is connected to external data management systems

Yasser YAHIAOUI - December 2016 45

through semantic mappings that associate SQL queries over the external data sources

(typically relational DBs) to the elements of the ontology. It supports the OWL-API and

comes with its own Java-based interface. Supported interfaces: Command Line, OWL

API. Supported reasoning services: classification, satisfiability, conjunctive query

answering, entailment, consistency. Supported syntaxes: RDF/XML, OWL/XML,

Functional, All OWL API, Manchester.

MORe, hosted at University of Oxford, published under GNU Lesser GPL. MORe uses

module extraction techniques to classify ontologies combining reasoners especially

optimised for different OWL 2 profiles. Supported interfaces: Protege, Command Line,

OWL API. Supported reasoning services: classification, satisfiability. Supported syntaxes:

All OWL API.

ontop, hosted at Free University of Bozen-Bolzano, published under Apache 2.0. Ontop is

a platform to query databases as Virtual RDF Graphs using SPARQL. It’s extremely fast

and is packed with features. Supported interfaces: Protege, OWL API, Other. Supported

reasoning services: realisation, conjunctive query answering. Supported syntaxes: All

OWL API.

Pellet, hosted at Clark & Parsia, LLC, published under AGPL v3. Pellet is a free open-

source Java-based reasoner for OWL 2 and SWRL. It supports the full expressivity of

SROIQ Description Logic, user-defined datatypes and DL-safe rules. Pellet uses a tableau-

based decision procedure to provide many reasoning services (subsumption, satisfiability,

classification, instance retrieval, conjunctive query answering) along with the capability to

generate explanations for the inferences it computes. It has bindings for both the OWL-

API and the Jena libraries. Supported interfaces: Jena, Protege, Command Line, OWL

API. Supported reasoning services: realisation, classification, satisfiability, conjunctive

query answering, entailment, consistency, explanation. Supported syntaxes: Turtle,

RDF/XML, Krss2, OWL/XML, Functional, Manchester.

Racer, hosted at Concordia University, Montreal, Canada; University of Lübeck,

Germany;, published under BSD-3. Racer (Renamed ABox And Concept Expression

Reasoner) is a knowledge representation system that implements a highly optimized

tableau calculus for the description logic SRIQ(D). Racer provides implementations of

Yasser YAHIAOUI - December 2016 46

standard reasoning problems for T-boxes and A-boxes. In addition, some non-standard

inference services are provided, such as, e.g., logical abduction. Racer also provides the

powerful and semantically well-defined conjunctive query language nRQL (new Racer

Query Language, to be pronounced as niracle and heard as miracle), which also supports

negation as failure, numeric constraints w.r.t. attribute values of different individuals,

substring properties between string attributes, etc. It has convenient APIs for accessing its

reasoning services from within Common Lisp and Java. Racer is distributed under the

BSD 3-clause license. Supported interfaces: OWLLink, Protege, Command Line, OWL

API, Other. Supported reasoning services: realisation, classification, satisfiability,

conjunctive query answering, consistency, explanation. Supported syntaxes: RDF/XML,

OWL/XML, Functional, All OWL API.

RDFox, hosted at University of Oxford, published under Oxford Academic Licence.

RDFox is a RDF triple store and parallel datalog/SWRL reasoner. It supports most

SPARQL builtins (used in BIND and FILTER). The data is separately supplied in Turtle

or N-Triple format. Supported interfaces: Other. Supported reasoning services:

conjunctive query answering, entailment.Supported syntaxes: Turtle, All OWL API.

RuQAR, hosted at Poznan University of Technology, published under NA. RuQAR is a

free (for non-commercial use) tool that provides the ABox reasoning and conjunctive

query answering with OWL 2 RL ontologies executed by forward chaining rule reasoners.

The tool implements also a method of transforming OWL 2 ontologies into Jess and

Drools engines. Supported interfaces: Other. Supported reasoning services: conjunctive

query answering. Supported syntaxes: RDF/XML, OWL/XML.

Snorocket, hosted at CSIRO, published under Apache 2.0. Snorocket is an open source,

high-performance ontology reasoner that supports a subset of the OWL EL

profile. Supported interfaces: Protege, OWL API. Supported reasoning services:

classification, consistency. Supported syntaxes: All OWL API.

TReasoner, hosted at Tyumen State University, published under GNU GPL 2. TReasoner

is a free tableau algorithm based reasoner. It is written on Java, uses OWL API and

supports SROIQ(D) logics. It was created for developing and new optimization techniques

for tableau algorithm. This reasoner used for many applied tasks: from database validation

Yasser YAHIAOUI - December 2016 47

to automated timetabling. Supported interfaces: Command Line, OWL API. Supported

reasoning services: classification, satisfiability, consistency. Supported syntaxes: All

OWL API.

TRILL, hosted at University of Ferrara, published under The Artistic License 2.0. TRILL

(“Tableau Reasoner for descrIption Logics in Prolog”) is a probabilistic reasoner which

implements a tableau algorithm in Prolog to find the set of all the explanations and

compute the probability of a query. TRILL is available for both Yap Prolog and SWI-

Prolog. Supported interfaces: Other. Supported reasoning services: satisfiability,

entailment, consistency, explanation. Supported syntaxes: NA Download, Core

publication.

TRILLP, hosted at University of Ferrara, published under The Artistic License 2.0.

TRILLP is based on the reasoner TRILL written in Prolog. TRILLP is a tableau

probabilistic reasoner which computes a Boolean formula that represents the set of the

explanations of the query. From this formula the probability of the query is then

computed. Supported interfaces: Other. Supported reasoning services: satisfiability,

entailment, consistency. Supported syntaxes: NA.

TrOWL, hosted at University of Aberdeen, published under AGPL for open source

applications. TrOWL is a Tractable reasoning infrastructure for OWL 2. TrOWL supports

not only standard TBox and ABox reasoning, but also conjunctive query answering in

SPARQL. Supported interfaces: Jena, Protege, Command Line, OWL API. Supported

reasoning services: realisation, classification, satisfiability, conjunctive query answering,

entailment, consistency. Supported syntaxes: NA.

WSClassifier, hosted at University of New Brunswick, Canada, published under MIT.

WSClassifier is a free prototypical (under MIT license) Java reasoner for classifying DL

ALCHOI(D-) with limited datatype support, using a hybrid of the consequence-based

reasoner ConDOR and the hypertableau-based reasoner HermiT. It supports OWL-

API. Supported interfaces:OWL API. Supported reasoning services:

classification. Supported syntaxes: All OWL API.

Yasser YAHIAOUI - December 2016 48

Due to the same reference (official web site of university of Manchester) there are other

existing reasoners we arrange them in the table:

 Table 5 Some Description Logic reasoners[01].

COROR RacerPro *SAT

BACK CB Cerebra Engine

CICLOP CLASSIC Condor

CRACK DLP Fact

FLEX HAM-ALC K-REP

Bossam KRIS LOOM

MSPASS QuOnto SHER

YAK OWLGres Pronto

DLEJena F-OWL Fresg

OWLer OntoMinD Screech

REQUIEM YARR Kaon2

Elly SoftFacts

PART II: PROPSED APPROACH

CHAPTER 01: DERIVATION OF REPRESENTATION

METHOD

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 49

1. THE SUBSUMPTION HIERARCHICAL ATTRIBUTE

The subsumption is a relationship that associates two sets of individuals satisfying

concepts. It means that one of these two sets is a sub set of the other and we say the first

one subsumes the second which is called the subsumed. The extension of this structure

gives a sort of a hierarchy of concepts. This last represents a dependency graph based on

the subsumption. This graph allowed the detection of the transitive closer of subsumption

relationship.

! ⊏ � � ⊏ �

The resulted graph can be used to transform the representation to Vectorial form based on

two major ideas: a sequential codification of nodes in one level (integration order). and the

second one represent gives the level in which concept (represented by node). These

structures (called SHA for subsumption hierarchical attribute) are created like in following (see

figure 4).

C

D
B

Figure 4 The subsumption hierarchical structure

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 50

Figure

The vector which represents the path from the root (more general concept) to the

concerned node is called a SHA of the concerned concept. Every concept is associated to

one or more vector relatively to existence of paths. The meaning of this representation can

reflect all direct or indirect subsumption relationships between represented concepts.

Because of this property the use of SHA enable the accomplishment the checking of KB

coherence. Also it allows the inference of implicit knowledge. These lasts are confirmed

by the property reducing all axioms (concepts definitions) to subsumption.

2. COHERENCE CHECKING

The definition of domain uses terminology noted Γ , which amount the system to define

concepts possibly in term of others already defined, this introduction of means concepts

must verify coherence constraints between defined concepts. From a logical point of view,

a concept makes a sense for us if there is some interpretation that satisfies the axioms of Γ

(that is, a model of Γ) such that the concept denotes a nonempty set in that interpretation.

[13]

Satisfiability: in a terminology of a domain called T if there is a model Γ of T such that C

Γ is nonempty model of C. Which means that the concept is satisfied in T if C defined in

C1

C2

C3

.

1

Figure 5 the subsumption hierarchical attribute creation

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 51

the terminological box contains at least an under concepts or an assertion if it is a bottom

concepts. With the integration of SHA we can check the satisfiability by looking for the

right side of his SHA from the beginning to the first extension component (first 0 in left

side). If this part exists in at least one vector of another concept, or if there is at least one

individual defined as assertion of the concerned concept.

Subsumption: as defined in precedent the subsumption represent a kind of inclusion

relation between two sets of individuals –concepts such as we can say that a concept A is

subsumed by a concept D if and only if CIAI ⊂⇒⊂∀ and we write in this case

DC ⊆ with respect to a domain T we write
DCT ⊆=

. That means that D is subset of C.

 Using the SHA the right side of this attribute for the D must be equal the right side of C,

but for C in the place of the first extension component (“0”) it must have the number of

the integration order of C.

D (D1, D2,…., 0, 0….)

C (D1, D2,…., Ci, 0….)

(C1, C2,…., 0, 0….)

Figure 6 SHA for checking the satisfiability

Figure 7 SHA for checking the Subsumption

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 52

Equivalence: tow concept can compared and we say that they are C1, C2, …. equivalent if

and only if their extensions are equal with respect to every model [24]. And represent

formally in propositional way by:)()(ACCACA ⊆∧⊆⇔≡ which means that A is

subsumed by C and C is subsumed by A at the same time.

Using SHA, for every SHA having the components of C in the left side there is another

SHA having in the left side component of D with same right side.

Disjointness: two concepts are disjoint if there are comment individuals which are

elements of the two concepts, we represent formally C, D are disjoints φ=∩⇒ DC .

For the SHA, all SHAs representing C are totally different from those representing D ie.

No common components in right sides (see figure 9 with Ai≠Ci).

All reasoning services can be reduced to subsumption based representation and we admit

that for two concepts C, D we have:

C is unsatisfiability ⇔ C is subsumed by ⊥ (bottom concepts)

D (D1, D2,…., Ci, Ci+1,….)

C (D1, D2,…., Ai, Ai+1,….)

D (D1, D2, A1, A2….)

 C (C1, C2, A1, A2….)

Figure 8 SHA for checking the Equivalence

Figure 9 SHA for checking the Disjointness

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 53

C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C

C and D are disjoint ⇔ C∩D is subsumed by ⊥

This reduction facilitate understanding checking ideas, because it makes them in sets form

which allowed obtaining decision procedures about this four constraints noted above. And

of course it’s evident to confirm that the SHA is useful in the reasoner implementation

because it is derived from subsumption.

3. SHASHASHASHA GENERATION PROCESS [76]

The first step of the SHA generation process is the direct subsumption detection which

consists in representing the axioms defined by equivalence relation in subsumption based

form. This representation is based on implications existing between the two kinds of

representation. Like sets treatment each definition using constructors can be reduced to a

group of subsumption (inclusion) relation as follows.

Ϲ\ ≡ D\ ∩ B\ => (�\ ⊂ !\) ∧ (�\ ⊂ �\)

Ϲ\ ≡ !\ U B\ => (!\ ⊂ Ϲ\) ∧ (B\ ⊂ Ϲ\)

Ϲ\ ≡ B � \ => B\ ∩ Ϲ\ ≡ Ф

Reducing The complex expressions to simple subsumption expressions needs some

iteration based on other rules after the application of this specified below as initial

treatments. For reasons of expressiveness, indicators, to represent the infinite and the finite

sub-domain, are needed. The infinite sub-domain comes from the relations of subsumption

between a concept and an expression like.

Ϲ\ ⊂ (!\ U B\)

Which means that there is a part of a set which can be a small part or big part or the whole

of the super set. This probable forms cause less expressive representation and make useful

the use of the infinity indicators for each sub-domain.

�!\ ∩ B\� ⊂ Ϲ\ => Ǝ - , �!\ ∩ B\� ∩ Ϲ\ ≡ - => (- ⊂ !\) ∧ (- ⊂ B\) ∧ (- ⊂ Ϲ\)

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 54

(!\ U B\) ⊂ C \ => (!\ ⊂ Ϲ\) ∧ (B\ ⊂ Ϲ\)

Ϲ\ ⊂ (!\ ∩ B\) => (Ϲ\ ⊂ !\) ∧ (Ϲ\ ⊂ B\)

Ϲ\ ⊂ (!\ U B\) => (Ϲ\ ⊂ !\) ∨ (Ϲ\ ⊂ B\) ∨ (Ϲ\ ⊂ (!\ ∩ B\))

For the roles level, the role is seen as binary relation between two sets of individuals. The

expression R.C corresponds to the individuals in relation with C by R. For example, the

sentence “individuals having a female child” is presented ∃hasChild.Female, and the

sentence “individuals all of whose children are female” is presented

∀hasChild.Females[13]. By the same way the number restriction is represented to integrate

cardinalities. (See figure10).

Direct

Subsumption

detection TBox described in

ALC

Subsumption relation

entailed from the

TBox

Construction of

the dependency

graph

Dependency graph

(in Tree form)

Vectors

generations

Vectors representation

Figure 10 SHA generation process

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 55

This proposed process is completely computable with high effectiveness degree. But it’s to

be mentioned that the implementation like all implementations of DLs systems use for the

integration interface a simplified syntax. In next we present the syntax used based polish

notation for expressing definition axioms.

S → % OP | C

OP → CON(S,S)| Neg (S)| T R.C|

T → EX | UN |<=Number |

>=Number

The terminal alphabet is giving like:

Conj for conjunction, Disj for

Disjunction,

CON→ Conj | Disj

C → <concept name>

R → <role name>

Figure 11 simplified concrete syntax

4. AUTOMATED PROCESS

To accomplish this task, a simplified syntax has been used. The implemented interface

analyse the introduced text respecting the polish notation generated by the proposed

reduced syntax and generate SHA vectors after inspecting the direct subsumption relation

between concepts.[76]

Using this rule the application is made to provide an interface for integration and

generation of SHA like in figures.

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 56

Figure 12 The main frame of the SHA generator soft ware.

After being analyzed and add line by line the resulted text representing a part of the

knowledge base is treated to inspect the direct subsumption relation between concepts.

This task is necessary to generate SHAs. (See figure 13)

While this manipulation concerned the codification of knowledge after being expressed

with respect to language, The possible choices were to create in interface between an

existing language compiler and SHA generator, or create an analyser for simplified syntax

to manipulate easily the expressed knowledge.

The pertinent choice was the second for two reasons: first to be well informed about the

respected syntax. The second is that the goal of the study is not the creation of language

but to check the utility and effectiveness of the SHA in KRS (Knowledge Representation

System).

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 57

Figure 13 indexed hierarchy generator

This second form shows steps of the process clearly. It begins by the TBox used which is

shown in the left side. When calling “Run” the first thing is to make torques of the form

(subsumer, subsumed), after that the system check concept never been in the right side like

concept of the same level and eliminate them from the list. This process will be repeated

until elimination of all concepts (list empty). For every level the program give sequential

value for each concept detected, finally the SHA is constructed from the result presented in

right bottom corner.

To illustrate let’s take as example the known human being knowledge base, for which the

TBox is presented in ALC like following:

Figure 14 human being TBox

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 58

The application of the process result of the graph of the figure 15. the codification in SHA

is realised after level detection and association of sequential code and concepts of the

same level.

Figure 15 automated process for the subsumption dependency tree deduction

As it is previously indicated to create the vectorial representation we must deal with a

valuation of the dependency graph, this is realized by attributing numbers sequentially to

nodes of the same level (see the figure 15). The vector can be defined using numbers of

nodes that construct the path from Root to the node corresponding to the defined concept.

 For example the concept Father can be defined by two vectors (1, 1, 1, 0) and (1, 2, 1, 0),

we can deduce that Father is the intersection of (1, 1, 0, 0) and (1, 2, 0, 0) which are Man

and Parent we write Father≡ Parent ∩ Man. All vectors for the human being TBox are

presented in the table 5

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 59

Table 6 vectorial representation

Concept Vectors

Person (1, 0, 0, 0)

Female (2,0,0,0)

Woman (1,4,0,0); (2,4,0,0)

Man (1,2,0,0)

Parent (-1,1,0,0)

Exist has child.Person (1,3,0,0)

Exist has husband (-1,5,0,0)

Univ. has child. not woman (-1,-1,1,0)

Exist has child parent (-1,-1,3,0)

>=3child (-1,-1,5,0)

Wife (1,4,6,0)

Father (1,2,2,0); (1,3,2,0)

Mother (1,3,4,0); (2,4,4,0); (1,4,4,0)

MotherWithManychildren (1,3,4,3); (1,4,4,3); (2,4,4,3); (-1,-1,5,3)

MotherWithoutDaughter (1,3,4,1); (1,4,4,1);(2,4,4,1)

GrandMother (1,3,4,2); (2,4,4,2); (-1,-1,3,2)

A simple attempt to use these SHAs can show that the meanings of conjunction and

disjunction are clearly represented. The SHAs attribution is an application which

associates concept with at least one vector. Mathematically saying, it is presented like

follows:

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 60

�: ! ⟶ ��

� (d��d	��) ⟶ {�ℎ�0, … . . , �ℎ�L}

Where “k” represents the maximum of dependency graph profound, “n” number of SHAs

for one concept (note that n≠0), D represents the domain a set of vectors of “k”

components. The function of attribution must be injective. This is evident because of the

sequential codification under every level.

What we can deduce from the SHAs in the table05?

 Conjunctions

Let’s imagine a concept C represented by a node in level “t”. If in SHAs representing C

there before the “tth” component different left-sides then C represent the intersection

between concepts represented by these left-sides. By this why we obtain the following

axioms.

Father ≡ man ∩ ∃ haschild. Person

Woman ≡ Person ∩ Female

Mother ≡ women ∩ Parent ∩ ∃ haschild. Person

���ℎ	
���ℎ���7d���
	� ≡ ���ℎ	
 ∩ > 2 ℎaschild

���ℎ	
���ℎ���!���ℎ�	
 ≡ ���ℎ	
 ∩ ∀ ℎaschild. ⇁ Woman

Grand���ℎ	
 ≡ ���ℎ	
 ∩ haschild. Parent

Disjunctions

Concept that never exists in definitions of SHAs of the same concepts are disjoint concept

as man and woman because there is no concept in which there are two SHAs having (1,

2... and [(1, 4, or (2, 4, ...] to gather. The same thing is available with female and man.

Part 01 derivation of representation approach

Yasser YAHIAOUI - December 2016 61

For the union of concept comparing SHAs allowed the detection of sub-concepts of a

super-concept by the checking for same left side that figure in SHAs of different concepts,

in this case we say that the union of these lasts is equivalent to the concept represented by

this SHA containing the common left side and “0” in all right component. From this point

of view we can find:

Person ≡ Woman ∪ Man

Parent ≡ Father ∪ Mother

Mother ≡ ���ℎ	
���ℎ���7d���
	� ∪ ���ℎ	
���ℎ���!���ℎ�	
 ∪ Grand���ℎ	

For the subsumption the detection is simpler, because the structure is constructed from the

sub direct subsumption relationship. That means that the transitive closer is allowed by

comparing vectors.

PART II: PROPSED APPROACH

CHAPTER 02: REASONING WITH SHA

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 62

1. ADAPTED TABLEAU ALCALCALCALC RULES

In this section we present how to adapt the reasoning rules on the new representation

structures. Each component in SHA has a signification thing that makes the deduction

process based on vectors comparing.

In follows the Tableau ALC rules can be transformed to deal with the vectorial

representation with graphical illustrates.

1.1. The ∩-rule

If A contains (C1 ∩ C2)(x), but not both C1(x) and C2(x) then

-’ ≡ - . {�0(�), �4(�)}

Let’s suppose A, C1 and C2 concepts represented by V(a1,a2,...ap), V1(c1,c2,.....cp) , and

V2(b1,b2,....bp)

P is the constructed by the conjunction between C1 & C2 which yields to two vectors

(c1,.......,ck,0,......,0) and (b1,..........,bk,0,.......,0) with ck= bk.

Condition

If we find another concept A with vector V of the form (a1,.........., ak,0,.......,0) where ak= ck=

bk

Action

• Create a node A’A’A’A’ with representative vector of the form (a1,-1,.......,-1,
t,0,.......,0) where t-1 is number of concepts in level k-1.

• Add new vectors to define A, CCCC1111 and CCCC2222 like follows

A�(a1,-1,.......,-1, t, ak,.......,0)

C1�(a1,-1,.......,-1, t, ck,.......,0)

C2�(a1,-1,.......,-1, t, bk,.......,0)

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 63

And by the way each concept subsumed by A, C1 or C2 must have new vector defined by

taking the left side of this three vectors.

1.2. The ∪-rule

If A contains (C1 ∩ C2)(x), but neither C1(x) nor C2(x) then

-’ ≡ - . {�0(�)} ��� -” ≡ - . {�4(�)}

Let’s suppose A, C1 and C2 concepts represented by V(a1,a2,...ap), V1(c1,c2,.....cp) and

V2(b1,b2,....bp)

P is the constructed by the disjunction between C1 & C2 which yields to two vectors

(a1,.......,ak-,ak,ck+1,......,0) and (a1,.........,ak-1,ak,bk+1,.......,0) representing C1 and C2 respectively

Condition

If A is represented by a vector in the form (a1,.......,ak-1,0,...,0) & P is represented by a vector

of the form (a1,.......,ak-1,ak,0,.....,0) and we find C1 and C2 having respectively vectors of the

form

(a1,.......,ak-1,ak,ck+1,......,0) , (a1,.........,ak-1,ak,bk+1,.......,0).

Action

• Create two new nodes A’ and A” with vectors (a1,-1,.......,-1, t,0,.......,0), (a1,-

1,.......,-1, t+1,0,.......,0) while t-1 is number of concept existing in level k-2.

A’

C1 A C2

P P ≡ C1 ∩ C2

Figure 16 Representation of the rule of conjunction applied to the vectorial form

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 64

• Add new vectors to define AAAA, CCCC1111 and CCCC2222 like follows

A � (a1,-1,.......,-1, t, ak-1,.......,0) , (a1,-1,.......,-1, t+1, ak-1,.......,0)

P � (a1,-1,.......,-1, t, ak-1,ak,0,.....,0) , (a1,-1,.......,-1, t+1, ak-1,ak,0,.....,0)

C1 � (a1,-1,.......,-1, t, -1, -1, ck+1,.......,0) , (a1,-1,.......,-1, t+1, -1,-1, ck+1,.......,0) , (a1,-

1,.......,-1, t, ak-1,ak, ck+1, 0,.....,0) , (a1,-1,.......,-1, t, ak-1,ak, ck+1, 0,.....,0)

C2 � (a1,-1,.......,-1, t+1,-1, -1, bk+1,.......,0) , (a1,-1,.......,-1, t+1, -1, -1, bk+1,.......,0) , (a1,-

1,.......,-1, t+1, ak-1,ak, ck+1, bk+1, 0,.....,0) , (a1,-1,.......,-1, t, ak-1,ak, bk+1, 0,.....,0)

By this same method we define new vectors for every subsumed concepts derived from

this concepts

1.3. The Ǝ-rule

If A contains (ƎR.C)(x) but there is no individual name z such that C(z) and R(x,z) are in A

then

-’ ≡ - . {�(7), ((�, 7)}

A’

C1

A

C2

A”

P ≡ C1 U C2 P

Figure 17 Representation of the rule of disjunction applied to the vectorial form

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 65

Where y is an individual name not occurring in A

In this rule the condition specified the individuals z such as R(x,z) occurring in C but not in

A which contains the concept defined by (ƎR.C)(x). This leads to a vectorial definition like

in follows.

Note that when the condition is verified the actions need to create some new nodes to

represent the sub concepts of C and A.

Lets define A1 ={a, A(a) ˄ R(x,a) with C(x)} and A2={y, C(y) ˄ R(x,y) with c(x) ˄ ̚A(y)}

then we imagine when A and C are represented by (a1,.......,ak,0,......,) and (a1,

a2’........ak’,0,.....,0)

Condition

If there is no individual z occurring in C and not in A having relation with x such as R(x,z),

which means an individual occurring in A2.

Action

• Create A’ (a0, -1,.......,-1,t,0,.....0) where (t-1) is the number of concept in level (k-1)

and A’≡ A U A2 , add new vectors in definitions of A, A2 and there sub concepts are

like in precedent.

A � (a1,-1,…....,-1, t, ak, 0,…....,0)

A2 � (a1, -1,…...., -1, t, ak, -1,-1, ak, 0,…..,0)

With this same method we define new vectors for every concept subsumed by all concepts

having new representatives’ vectors.

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 66

1.4. The ∀ rule

 If A contains (∀R.C)(x) and R(x,y) , but it does not contains C(y) then

-’ ≡ - . {�(7)}

We suppose that A(a1,........,ak , 0,0) and C(a0, a1’,......,ak’,0.....0)

The concept A1={x, A(x) ˄ R(x,y) with C(y)}

Condition

If A contains A1 and not C(y)

Action

• Create A’(a1, -1,, t, 0,, 0) while (t-1) is number of concept in level (k-1)

• Add vectors for A and C and all of their subsumed concepts

A � (a1,-1,…....,-1, t, ak, 0,…....,0)

A’

C A

A1

A2

P ≡ A ∩ C P

S P’
T

C’

S ≡ P ∩ A1

Figure 18 Representation of the rule of existential quantification applied to the vectorial form

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 67

C � (a1, -1,…...., -1, t, a’k , 0,…..,0)

The application of this basic Algorithm can result some augmentation of nodes number

from iteration to another until stability which represent case where there is no new

additional nodes (see figure 20).

prs fml

prt man Ehchdprs wn

ftr
mtr

Uhnw Echdprt 3chd

gmtr mtrwdtr Mtrmchd

wf

Ehhbnd

A’

C A

A1

Figure 19 Representation of the rule of universal quantification applied to the vectorial form.

Figure 20 Human Being KB augmented after one execution of reasoning rules

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 68

Note at this stage that the roles not being applied here concern the assertional level and

based on numbers restriction equalled, unequalled, qualified and unqualified. We consider

that there is no influence on the proposed representation approach. The numerical

restrictions means numbers of individuals which means that it can be computed by the

ordinary methods or at least using the SHAs of the more specific defined concept for

which individuals are instances.

This rules like presented in here:

1.5. The →≥rule

Condition A contains (≥n R)(x), and there are no individual names z1, . . . , zn such that

R(x, zi) (1 ≤ i ≤ n) and zi ≠ zj (1 ≤ i < j ≤ n) are contained in A.

Action A’ = A∪{R(x, yi) | 1 ≤ i ≤ n} ∪ {yi ≠ yj | 1 ≤ i < j ≤ n}, where y1, . . . , yn are

distinct individual names not occurring in A.

1.6. The →≤ rule

Condition: A contains distinct individual names y1, . . . , yn+1 such that (≤n R)(x) and R(x,

y1), . . . , R(x, yn+1) are in A, and yi ≠ yj is not in A for some i ≠ j.

Action: For each pair yi, yj such that i > j and yi ≠yj is not in A, the ABox Ai,j = [yi/yj]A is

obtained from A by replacing each occurrence of yi by yj.

That is confirmed by “The algorithm uses value restrictions in interaction with already

defined role relationships to impose new constraints on individuals.”[13]

2. CONVERGENCE OF THE ALGORITHM

Every one of the four rules is conditioned with binary condition (true /false). The rule

Figure in form of “if condition then action” every action makes new SHA to represent new

nodes. This means that the probability of creating new SHAs is a Bernoulli distribution.

And by iteration it becomes Binomial distribution. That means that we can calculate the

number of additional SHAs by the function flike in follows.

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 69

�(�0, �4, ��, ��) = #0. 0̀(�0) + #4 . 4̀(�4) + #�. �̀(��) + #�. �̀(��)

&

� = 1 −

Where

G̀(�) = C¡¢ . P¡ . (1 − P)¢£¡ With 0<x<n,

�GSuccess number; it represents the case when conditions of rule is satisfied,

n for number of iteration (experiments).

#G Represents number of new SHAs created by the rule i when condition is satisfied. Ni

is relative to the number of nodes created.

�¤L = �!
�! (� − �)!

Then

G̀(�) = �!
�! (� − �)! . P¡ . (1 − P)¢£¡

To prove that the Algorithm will attend a stop point means that we must find the limit of

the function �.when n is bigger. This limit must be equal to 0 ie. Not more additional

SHAs.

Now we accept that if all G̀(�) converge � converge also. And the limit of the

augmentation function must be equal to “0” to riche stability case in which the inference

stops.

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 70

lim¤→M¦L§¤
G̀(�) = lim¤→M¦L§¤

¨ �!
�! (� − �)! . P¡ . (1 – P)¢£¡ª

To prove the convergence, we know that 0 ≤ � ≤ � that means that if � → +∞ , � →
+∞ because if we like to have a big � we must have a bigger �.

Then

G̀(�) = �!
�! (� − �)! . P¡ . (1 – P)¢£¡

= �!
(� − �)! �¡ . (�P)¡

�! . (1 − P)L

(1 − P)¡

We accept these three additional constraints

limL→¦
�!

(� − �)! �¡ = 1

lim­→Q(1 − P)¡ = 1

���(1 − P)¢ = � ���(1 − ®) when � → ∞ ��� ® → 0.

We deduce that

limL→¦,
­→Q,

L­→¯

(1 − P)¢ = 	£¯

 As conclusion

When � → +∞, � → 0 and �® → ° where

Part 02 reasoning with SHA

Yasser YAHIAOUI - December 2016 71

L!
¤!(L£¤)! . P¡ . �1 – P�¢£¡ Can be approximate to 	£¯ (¯)±

¤!

Now, � → +∞ , (0 ≤ � ≤ �)

²³´µ→M¦¶§µ
·¸(µ) = ²³´µ→M¦¶§µ

¹£º (º)»

µ! = ¼

That means

²³´½→M¦¶§µ¸
¾(µ¿, µÀ, µÁ, µÂ) = ²³´µ→M¦¶§µ

¹£º (º)»¿

µ¿! + ²³´µ→M¦¶§µ
¹£º (º)»À

µÀ! + ²³´µ→M¦¶§µ
¹£º (º)»Á

µÁ! + ²³´µ→M¦¶§µ
¹£º (º)»Â

µÂ!

²³´½→M¦¶§µ¸
¾(µ¿, µÀ, µÁ, µÂ) = ¼

We know that if every G̀(�) → 0 means that the Algorithm achieves stability. Other

way the limit “0” means that there is no inference, no augmentation or no new deductions

which means the case of stability.

PART II: PROPSED APPROACH

CHAPTER 03: STUDY CASE ARABIC LANGUAGE

RESSOURCE CREATION

Part 02 study case

Yasser YAHIAOUI - December 2016 72

1. STADY CASE DESCRIPTION

 this study case, the KB taken as example is developed like a Meta knowledge base

describing a higher level of knowledge for lexical Ontologies. The goal of creating this

KB was the integration of “syntactic role” which means the function of the word in a

sentence especially for the Arabic language.

The system is designed to allow the reuse of existing resources and consolidate them with

the Meta KB as an add-on. The first idea was represented using AL but for first

implementation it was translated to vectorial attribute associated to each node.

2. THE ALP SYSTEM ARCHITECTURE [77]

In the traditional DLs systems “A knowledge base (KB) comprises two components, the

TBox and the ABox. The TBox introduces the terminology, i.e., the vocabulary of an

application domain, while the ABox contains assertions about named individuals in terms

of this vocabulary”

 However; the addition of the Meta-Box in the present system (see figure 21) can be

considered as a consolidation for the traditional system. This fact makes the introduction

Word-Net Arabic

Translation

T-Box

A-box

Meta-Box

Subsumptio

Global T-BOX

Figure 21 architecture of the ALP system

Part 02

of the syntactic role of the term (concept) with its definition possible and

defined in the class of the word which is integrated by establishment of the link between

the Meta-Box and the T-Box using the relation of the subsum

existing in Word-Net Arabic ontology can be a subsumed by a concept among the Meta

Box concepts either directly or indirectly.

The T-Box / A-Box are traditionally constructed by the translation of definitions in the

Ontology of concepts and their relations to DLs know

description language.

3. THE WORD IN THE ARABIC LANGUAGE

The word in Arabic language can be viewed as an occurrence of a node of a dependency

graph representing a hierarchical organizati

as following : the word is called in Arabic “Kalima”, this model includes the three nodes

which are “Fiil” (verb) , “Ism” (noun) , and “harf” (propositions, conjunctions and so on).

And all of these terms have dependency with others to create the hierarchy of concepts.

(see Figure 22)

Figure 22 hierarchy of Syntactic Roles of Words in Arabic Language

Yasser YAHIAOUI - December 2016

of the syntactic role of the term (concept) with its definition possible and

defined in the class of the word which is integrated by establishment of the link between

Box using the relation of the subsumption. Since all the terms

Net Arabic ontology can be a subsumed by a concept among the Meta

Box concepts either directly or indirectly.

Box are traditionally constructed by the translation of definitions in the

oncepts and their relations to DLs knowledge base defined using the ALC

THE WORD IN THE ARABIC LANGUAGE

The word in Arabic language can be viewed as an occurrence of a node of a dependency

graph representing a hierarchical organization of the classes existing for the syntactic roles

as following : the word is called in Arabic “Kalima”, this model includes the three nodes

which are “Fiil” (verb) , “Ism” (noun) , and “harf” (propositions, conjunctions and so on).

have dependency with others to create the hierarchy of concepts.

ierarchy of Syntactic Roles of Words in Arabic Language

 study case

 73

of the syntactic role of the term (concept) with its definition possible and it is implicitly

defined in the class of the word which is integrated by establishment of the link between

ption. Since all the terms

Net Arabic ontology can be a subsumed by a concept among the Meta-

Box are traditionally constructed by the translation of definitions in the

ledge base defined using the ALC

The word in Arabic language can be viewed as an occurrence of a node of a dependency

on of the classes existing for the syntactic roles

as following : the word is called in Arabic “Kalima”, this model includes the three nodes

which are “Fiil” (verb) , “Ism” (noun) , and “harf” (propositions, conjunctions and so on).

have dependency with others to create the hierarchy of concepts.

ierarchy of Syntactic Roles of Words in Arabic Language

Part 02 study case

Yasser YAHIAOUI - December 2016 74

This hierarchy have been inspired from a lecture in the Arabic documentations especially

the poems of el ADJROUMIA and ELFIAT IBN MALEK; but for the sake of semantic

implementation we have focused on the classes which influence the meaning and the use

of the word in sentences. In order to realize this graph in fig 02 we use the same

techniques of the dependency graph construction known as a graphic representation which

is “a sample dependency graph in which word nodes are given in bold face and

dependency relations are indicated by labelled edges”[77].

In this proposition the relation represented by edges is “IS A” which is interpreted as

subsumption in DLs terminology or subset in the interpretation of DLs in set theory seeing

the concepts as a set of individuals.

4. THE REPRESENTATION IN AL LANGUAGE

The graph in the figure 22 here can reflect the concepts of the Meta-Box and the relation

between them, the thing that helps in defining the axioms and constructing the Meta-Box

which is the essential part because of the meaningful representation given implicitly with

the specification of the syntactic roles of each word defined in the second part. We present

here the description in the KL-One language written and constructed for the definition of

this first level part of the global knowledge base.

Ã����� ≡ `

Äî�� ⊂ kalima

a�� ⊂ kalima

ℎ�
� ⊂ kalima

Äî�� ≡ Motassarrif ∪ Djamid

Motassarrif ≡ Tam ∪ Nakis

Tam ≡ Motaâddi ∪ Ellazim

Part 02 study case

Yasser YAHIAOUI - December 2016 75

Motaâddi ≡ Mmafôul ∪ Mmafôul2 ∪ Mmafôul3

Nakis ≡ Istimrar ∪ Elmokaraba

Djamid ≡ Amr ∪ madhi

Nakis(m) ⊂ Madhi

���ℎ	 ⊂ Madhi

!Î	� ⊂ Madhi

dℎ�
��ê ⊂ Madhi

Ð���â�D��] ⊂ Madhi

Ä�î� ≡⇁ (a�� ∪ Î�
�) ≡⇁ a�� ∩ ⇁ ℎ�
�

a�� ≡⇁ (Ä�î� ∪ Î�
�) ≡⇁ Ä�î� ∩ ⇁ ℎ�
�

ℎ�
� ≡⇁ (Ä�î� ∪ a��) ≡⇁ Ä�î� ∩ ⇁ a��

a�� ≡ a��Ä�î� ∪ adℎ�
� ∪ Â��� ∪ ��������� ∪ !ℎ���
 ∪ -dℎ7�	 ∪ ���dℎ��Ò

Â��� ≡ Â
�]� ∪ -ê�D���

��������� ≡ Â�Ò�� ∪ �ℎ�
â�Ò��

!ℎ���
 ≡ ���������� ∪ ����������� ∪ ��������

���dℎ��Ò ≡ a����Ò�� ∪ c��� ∪ a��Ä�î�� ∪ a�����ô�� ∪ ��ô��������Ò

-dℎ7�	 ≡ !D���� ∪ Î�7�����	 ∪ a����	

Part 02 study case

Yasser YAHIAOUI - December 2016 76

ℎ�
� ≡ ��ℎ��� ∪ �ℎ����	� ∪ �ℎ�����ℎ� ∪
�]�ê� ∪ Òℎ������

This part contains concepts definitions. It uses the conjunction and the disjunction to make

the axioms. The Meta knowledge base allowed the integration of syntax by the use of

roles.

The noun can be Faîil (subject) or MafôulBih (complement) in verbal sentences, and it can

be Mobtadae (the first noun in nominale sentence) or khabar (2nd name in NS) in nominal

sentences. It can be also Maoussouf (qualified) for a Sifa (adjective). There are other links

between words in Arabic syntax that can be integrated like roles. By this way we can add

some axioms to the Meta-Box. (See following examples)

Faîil ≡ Ism ∩ ∃ ISFaîil. Fiîl

Mafôul ≡ Ism ∩ ∃ ISMafôu. Motaâddi

Moubtadae ≡ Ism ∩ ∃ ISMobtada. Ism

Sifa ≡ Ism ∩ ∃ ISSifa. Ism

5. THE REPRESENTATION USING SHAS

The SHA of these concepts can be deduced from the hierarchy (see figure 22) directly

because it is represents the dependency graph of the subsumption relationship. But the

restrictions will not be considered. It’s why the work must be completed before dealing

with SHAs creation.

Note at this step that we can define a specification for the role ISMafôul; coming from the

meaning of verbs that needs one, two and three complements. Here it is clear that if we

define three roles, the three roles be subsumed by the role ISMafôul.

This result a number of SHAs presented in Table 06 like follows.

Part 02 study case

Yasser YAHIAOUI - December 2016 77

Table 7 the Meta-base with SHAs

(1)Mafôul مفعول

(1)Moutaâddi
 المتعدي

(1) Tam التام

 Motassarif
 المتصرف
(1)

 فعل
Verb

Fiîl

(1)

 كلمة
Word

Kalim

a

(1)

(2) 2Mafôul مفعولين
(3) 3Mafôul ث#ث
 مفاعيل

 (2)Allazim ال#زم

(3)Istimrar
 ا(ستمرار

(2) Nakis كاد الناقص
(4)Mokaraba
 أوشك المقاربة

 ھب
(3) Amr ا6مر

 الجامد
Djamid
(2)

 تعلم
 حبذا

(4) Madhi الماضي

 كرب
 الناقصة
 الشروع
 المدح
 الذم
 التعجب

 (3)Âlam علم

 اسم
Noun
Ism
(2)

 (4) Ala آلة
 (5) Moutlak المطلقم

 Mouchtak
 (5) مشتق

(6)IsmMafôulالمفعول به
(7) Ism Faîil الفاعل
(8) Sifa الصفة
 (9) Elmakan المكان

 (6)Ichara
 اشارة

(10) Âakil (7) عاقل
Maoussol
 غير عاقل GhirÂakil(11) موصول

(12)Mounfassil منفصل
(8)
Dhamirضمير

(13)Mouttassilمتصل
(14)Mousstatir مستتر

(9) IsmFiîl اسم
 فعل

(15)Djamad جماد
 (10) Achyae
 الشيئ

 (16)Hayaouane حيوان
(17)Insane انسان

 (11)أحادي

 حرف
Particles
harf
(3)

 (12)ثنائي
 (13)ث#ثي

 (14)رباعي
 (15)خماسي

Part 02 study case

Yasser YAHIAOUI - December 2016 78

The restriction defined using roles can be the source of new nodes in the dependency

graph. The new nodes are indexed sequentially by the SHAs generation process. Like a

new modification of the TBox and they will be added by redefinition of the KB using the

automated generation application seen previously.

All Arabic words are seen like assertions for this Meta-Box and each word is an assertion

of one of the more specific concepts defined. To make the links between these two levels,

it is simple to associate every word with the SHA of the more specific concept where it is

classified.

As seen in example the SHA generation process is perfectly reversible. This makes that we

can return to the defined axioms from the existing SHAs using a correspondence checker

which compare the vectors and deduce relation before regenerating axioms with

conjunction and disjunction composition.

 اسم
∃ ISFaîil. Fiîl

Faîil

∃ ISMafôu. Motaâddi

Mafôul

∃ ISMobtada. Ism

∃ ISSifa. Ism

Sifa
Moubtadae

Figure 23 example of the additional restriction to hierarchy of words in Arabic

DISCUSSIONS

 Discussions

Yasser YAHIAOUI - December 2016 79

DISCUSSIONS ABOUT SHA

The advantages of this approach is that; in one hand, by structuring knowledge in

significant and easily computational way. This provides some facilities such as:

It enables an easier implementation, the choice to make between making an interface

between existing DLs language analysers and vectorial representation automated

generators or creating a new simple languages that result after analysis to the KB with

SHAs like concepts definitions.

It makes the reasoning Algorithm a simple process manipulating significant vectors. The

difference is clear between manipulating axioms and comparing vectors component. The

same deductions are allowed with leas complex Algorithms.

The generation of the SHAs is an easily automated process. We have experiment this

implementation and it’s clear that the process is based on the direct subsumption relation

detection which results of torques of the form (subsumer, subsumed). These last unable the

generation of the dependency graph and by consequence the SHAs.

 In the other hand, comparing the performance of ordinary systems the changes have no

negative effects on abilities and requirements needed from KRSs such as:

Intuitively we can say that effectiveness will not decrease. The part touched in this

approach is the codification of DLs existing representation. That means if the structured

code is enough meaningful to carry all represented aspects. The result required from the

DLs systems using SHAs will be the same comparing to ordinary systems.

Efficiency will increase because of the use of vectors comparing which makes the

algorithm leas complex. We imagine at this stage that the Algorithm which deals with

vectors by comparing their components is simplest than an algorithm dealing with defined

axiom using the AL syntax.

The possibility of making feed-back to the AL original representation confirms that the

vectorial approach represents a considered power ability to express the semantic in

 Discussions

Yasser YAHIAOUI - December 2016 80

comparable level with logical-based semantic approaches because basically this vectorial

representation is a translation of DLs representations.

The critical point is that at this step we can’t affirm that the SHAs are full expressive

because it is known that reducing equivalences to subsumption relationships decreases the

level expressivity. But also we can’t affirm in the other hand that the representation with

SHAs is leas expressive thing which is let for future study. But the feed-back that we have

experiment from the SHA representation to AL description yields to confirm the strength

of SHA like representation approach.

Also the number of SHAs in KB is not known from the beginning. It represents number of

paths found after the computation of the dependency graph.

CONCLUSION

 Conclusion

Yasser YAHIAOUI - December 2016 81

CONCLUSION

In this work we have investigate fundamentals domains such as logics, knowledge

representation and description logics. These fields related to the computational

semantic which is a big challenge of modern Artificial Intelligence.

The major constraint that faces the development of intelligent systems is that

when we achieve a high level of semantic integration we use complex procedure to

manipulate the representation structure.

The Subsumption Hierarchical Attribute is simple and meaningful representation

structure. It represents in simple form of vector carrying semantics, context and

relational knowledge. The power of this representation comes from being derived

from DLs representation formalism especially the meanings of subsumption

relation between concepts. It’s known that a reduction of any other definition in

DLs to subsumption is possible using an automated generation of SHAs. This last is

proved by the implantation.

The reasoning Algorithm readapted to the vectorial representation is a simple

vectors comparator and generator, which shows that SHAM (Subsumption

hierarchical Attribute) is an efficient method of knowledge representation. It

yields to simplified reasoning Algorithm without any negative influence on

knowledge system achieved performances.

In this work we presented the first step that consists on proposed approach. This

work is based on DLs languages simplification. This is a real beginning of long

studies and researches to respond to all currents problematic of DLs system when

using SHAs representation.

The future works, will have a beginning by implementation of SHAMs system as

first step which will be followed by the description of resources designed

essentially for ALP systems as generic application field. These steps and others

lead to the consolidation of our idea about the SHA representation. Also it’s to be

noted clearly that we have to proceed to integrate the augmentations of DLs

 Conclusion

Yasser YAHIAOUI - December 2016 82

languages to achieve more expressivity and study the opportunities to deal with

complete and sound reasoning Algorithms.

Finally, this study enabled us to touch very interesting domains such as knowledge

engineering, logics and semantics. It enabled us also to make links with some

previously learned fields like cognition and cognitive psychology. This is a big

motivation to continue our works on artificial intelligence and especially the

knowledge representation domain.

REFERENCES
[1] Ian Horrocks, “optimising tableau decision procedures for description logics”, PhD

thesis university of Manchester, 1997.

[2] Uwe Keller, “Towards Novel Techniques for Reasoning in Expressive Description

Logics based on Binary Decision Diagrams”, Knowledge Web PhD Symposium 2007,

Innsbruck, Austria, June 6, 2007.

[3] Stuart J. Russell and Peter Norveg. “ artificial intelligence a modern approach”,

second edition, (Prentice Hall) Pearson Education international.2003.

[4] Chamak E. And McDermott D, “introduction to artificial intelligence” Addison-

Wesley reading Massachusetts, 1985.

[5] Winston P.H., “artificial intelligence Addison-Wesley” reading Massachusetts, third

edition, 1992.

[6] Pool D., Mackworth A. K., And Goeble R., “A computational intelligence: A logical

approach”, Oxford university Press, Oxford UK, 1998.

[7] Nilson N. J. “Artificial intelligence: A new synthesis”, San Mateo, California 1998.

[8] Haugeland J., “artificial intelligence: the very Idea” MIT Press Cambredge,

Massachusetts, 1985.

[9] Bellman R. E., “An Introduction to Artificial intelligence: can the computer think?”

Boyd & Faster Publication Company, San Francisco, 1978.

[10] Kurzweil R., “ the age of intelligent machine”, MIT Press Cambredge, Massachusetts,

1990.

[11] Rich, E., and Knight, K., Artificial Intelligence (second edition), New York:

McGraw-Hill, 1991.

[12] Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader et al.

[13], pp. 5–44.

[13] Baader F., Calvanese D., McGuinness D., Nardi D., and. Patel-Schneider P.F, editors.

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge

University Press, 2003.

[14] Peter D. Karp, "The design space of frame knowledge representation systems",

Technical Report 520, SRJ International Al Centre, 1992

[15] Lou GOBLE , The Blackwell Guide to Philosophical Logic, Blackwell: Malden,

Mass., und Oxford 2001

[16] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.

Studia Logica, 69(1):5–40, October 2001.

[17] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expressive

description logics. In A. Robinson and A. Voronkov, editors. Handbook of Automated

Reasoning, pages 1581–1634. Elsevier Science Publishers (North-Holland), Amsterdam,

2001 (Chapter 23).

[18] Porter P., Lifschitz V. and HarmelenF. V., “Handbook of knowledge

representation”, Oxford : Elsevier, 2007.

[19] M.R. Quillian. Word concepts: A theory and simulation of some basic capabilities.

Behavioral Science, 12:410–430, 1967.

[20] M. Minsky. A framework for representing knowledge. In J. Haugeland, editor. Mind

Design. MIT Press, 1981. A longer version appeared in The Psychology of Computer

Vision (1975).

[21] W.A. Woods. What’s in a link: Foundations for semantic networks. In D.G. Bobrow

and A.M. Collins, editors. Representation and Understanding: Studies in Cognitive

Science, pages 35–82. Academic Press, 1975.

[22] R.J. Brachman. What’s in a concept: Structural foundations for semantic networks.

Int. Journal of Man-Machine Studies, 9(2):127–152, 1977.

[23] P.J. Hayes. “In defence of logic.” In Proc. of the 5th Int. Joint Conference on

Artificial Intelligence (IJCAI’77), pages 559–565, 1977. A longer version appeared in The

Psychology of Computer Vision (1975).

[24] P.J. Hayes. The logic of frames. In D. Metzing, editor. “Frame Conceptions and Text

Understanding”, pages 46–61. Walter de Gruyter and Co., 1979.

[25] R.J. Brachman and J.G. Schmolze. “An overview of the KL-ONE knowledge

representation system”, Cognitive Science, 9(2):171–216, 1985.

[26] E. Mays, R. Dionne, and R. Weida. K-Rep system overview. SIGART Bull., 2(3):93–

97, 1991.

[27] R.J. Brachman, R.E. Fikes, and H.J. Levesque. KRYPTON: A functional approach to

knowledge representation. IEEE Computer:67–73, October 1983.

[28] Peltason C. The BACK system—an overview. SIGART Bull., 2(3):114–119, 1991.

[29] R. MacGregor. “The evolving technology of classification-based knowledge

representation systems”. In J.F. Sowa, editor. Principles of Semantic Networks, pages

385–400. Morgan Kaufmann, Los Altos, CA, 1991.

[30] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture Notes

in Artificial Intelligence, vol. 422. Springer, 1990.

[31] R.J. Brachman and H.J. Levesque, editors. Readings in Knowledge Representation.

Morgan Kaufmann, Los Altos, CA, 1985.

[32] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1–26, 1991.

[33] L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with

counting. In Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97),

pages 318–327. IEEE Computer Society Press, 1997.

[34] P.F. Patel-Schneider, D.L. McGuinness, R.J. Brachman, L.A. Resnick, and A.

Borgida. The CLASSIC knowledge representation system: Guiding principles and

implementation rational. SIGART Bull., 2(3):108–113, 1991.

[35] R.J. Brachman. “Reducing” CLASSIC to practice: Knowledge representation meets

reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Rep resentation and

Reasoning (KR’92), pages 247–258. Morgan Kaufmann, Los Altos, CA, 1992.

[36] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1–26, 1991.

[37] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept

languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR’91), pages 151–162, 1991.

[38] B. Hollunder, W. Nutt, and M. Schmidt-Schauß. Subsumption algorithms for concept

description languages. In Proc. of the 9th Eur. Conf. on Artificial Intelligence (ECAI’90),

pages 348–353, London (United Kingdom), 1990. Pitman.

[39] F. Baader and B. Hollunder. A terminological knowledge representation system with

complete inference algorithms. In Proc. of the Workshop on Processing Declarative

Knowledge (PDK’91), Lecture Notes in Artificial Intelligence, vol. 567, pages 67–86.

Springer, 1991.

[40] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive

description logics: Preliminary report. In Proc. of the 1995 Description Logic Workshop

(DL’95), pages 131–139, 1995.

[41] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept

languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge

Representationand Reasoning (KR’91), pages 151–162, 1991.

[42] F.M. Donini,M. Lenzerini, D. Nardi, andW. Nutt. Tractable concept languages. In

Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 458–463,

1991.

[43] K. Schild. A correspondence theory for terminological logics: Preliminary report. In

Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471,

1991.

[44] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and

role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

[45] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description

logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors. Proc. of the 6th Int.

Conf. on Logic for Programming and Automated Reasoning (LPAR’99), Lecture Notes in

Artificial Intelligence, vol. 1705, pages 161–180. Springer, 1999.

[46] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description

logics and propositional dynamic logics. In Proc. of the 12th Nat. Conf. on Artificial

Intelligence (AAAI’94), pages 205–212, 1994.

[47] G. De Giacomo and M. Lenzerini. Concept language with number restrictions and

fixpoints, and its relationship with µ-calculus. In Proc. of the 11th Eur. Conf. on Artificial

Intelligence (ECAI’94), pages 411–415, 1994.

[48] G. De Giacomo. Decidability of class-based knowledge representation formalisms.

PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La

Sapienza”, 1995.

[49] G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive

description logics. In Proc. of the 5th Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR’96), pages 316–327, 1996.

[50] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the

6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages

636–647, 1998.

[51] V. Haarslev and R. Möller. RACE system description. In Proc. of the 1999

Description Logic Workshop (DL’99), volume 22 of CEUR Electronic Workshop

Proceedings, 1999.

[52] P.F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Workshop

(DL’99), volume 22 of CEUR Electronic Workshop Proceedings, 1999.

[53] K. Schild. Querying knowledge and data bases by a universal description logic with

recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

[54] A. Borgida. On the relative expressiveness of description logics and predicate logics.

Artificial Intelligence, 82(1–2):353–367, 1996.

[55] L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with

counting. In Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS’97),

pages 318–327. IEEE Computer Society Press, 1997.

[56] E. Grädel, P.G. Kolaitis, and M.Y. Vardi. On the decision problem for two variable

first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[57] E. Grädel. Guarded fragments of first-order logic: A perspective for new description

logics? In Proc. of the 1998 Description Logic Workshop (DL’98), volume 11 of CEUR

Electronic Workshop Proceedings, 1998.

[58] E. Grädel. On the restraining power of guards. J. of Symbolic Logic, 64:1719–1742,

1999.

[59] M. Buchheit, F.M. Donini, W. Nutt, and A. Schaerf. A refined architecture for

terminological systems: Terminology = schema+views. Artificial Intelligence, 99(2):209–

260, 1998.

[60] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query

containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART

Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.

[61] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description

logic framework for information integration. In Proc. of the 6th Int. Conf. On Principles of

Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.

[62] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int.

Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369, 2005.

[63] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for

life science ontologies. In U. Furbach and N. Shankar, editors. Proc. of the Int. Joint Conf.

on Automated Reasoning (IJCAR 2006), Lecture Notes in Artificial Intelligence, vol.

4130, pages 287–291. Springer-Verlag, 2006.

[64] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:

Tractable description logics for ontologies. In M.M. Veloso and S. Kambhampati, editors.

Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI-05), pages 602–607. AAAI

Press/The MIT Press, 2005.

[65] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, and

R. Rosati. Quonto: Querying ontologies. In M.M. Veloso and S. Kambhampati, editors.

Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI-05), pages 1670–1671.

AAAI Press/The MIT Press, 2005.

[66] Sergio Tessaris : Questions And Answers:Reasoning And Querying In Description

Logic. a thesis submitted to the university of Manchester for PHD degree. April 2001.

[67] Birte Glimm : Querying Description Logic Knowledge Bases. a thesis submitted to

the University of Manchester for the degree of PHD in the Faculty of Engineering and

Physical Sciences, 2007.

[68] Yasser YAHIAOUI, Ahmed LEHIRECHE, Djelloul Bouchiha “A Proposed

Reasoning Algorithm Using DLs in Vectorial Form” ACM digital library in proceeding of

IPAC2015, Batna- Algeria- November 2015

[69] Woods W. A. & Schmolze J. G. “the KL-one family computers and mathematics with

applications”, Special Issue on Artificial Intelligence 23(2-5) 133-177, 1992.

[70] Baader F. Franconi E. Hollunder B. Nebel B. Profitlich H.J. “An Empirical Analysis

of Optimization Techniques for Terminological Representation Systems” Applied

Intelligence, 4(2):109-132, 1994

[71] Volker Haarslev & Ralf MMöller “High Performance Reasoning with Very Large

Knowledge Bases: {A} PracticalCase Study” Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence, {IJCAI} 2001 Seattle, Washington, USA,

August 4-10, 2001

[72] Ulrich Faigle , György Turán “Sorting and recognition problems for ordered

sets” Lecture Notes in Computer Science, Volume 182 pp 109-118, Date: 18 June 2005

[73] http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ seen 10/01/2016

[74] John Mylopoulos. Information modelling in the time of the revolution. Information

Systems, 23(3–4):127–155, 1998.

[75] Bernhard Nebel. Terminological cycles: Semantics and computational properties. In

John F. Sowa, editor, Principles of Semantic Networks, pages331–361. Morgan

Kaufmann, LosAltos , 1991.

[76] Yasser Y. Ahmed L. Djelloul B. “proposed representation approach based on

description logics formalism” IJISA volume 8 (05) 2016.

[77] Yasser Y. Ahmed L “a Meta description logics knowledge base for Arabic language

processing” The Third International Conference on Digital Information Processing and

Communications(ICDIPC2013)- United Arab Emirates, 4/02/2013

APPENDICES

EXAMPLE

The human being TBox described in the simplified syntax.

women EQUIV %Conj(person,female)

man EQUIV %Conj(person,%Neg(women))

mother EQUIV %Conj(women,%EX haschild.Person)

father EQUIV %Conj(man,%EX haschild.Person)

parent EQUIV %Disj(father,mother)

grandmother EQUIV %Conj(mother, %EX haschild.parent)

womenwithmanychildren EQUIV %Conj(mother,>2 haschild)

womenwithoutdaughter EQUIV %Conj(mother,%UNhaschild.%Neg (women))

wife EQUIV %Conj(women,%EXhashusband.man)

