
N° d’ordre :

REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE

SCIENTIFIQUE

UNIVERSITE DJILLALI LIABES

FACULTE DES SCIENCES EXACTES

SIDI BEL ABBES

THESE
DE DOCTORAT EN SCIENCES

Présentée par ZAHAF AHMED

Spécialité : INFORMATIQUE
Option : INFORMATIQUE

Intitulée

« ………………………………………………………………
…… »

 Soutenue le 08 Juin 2017
 Devant le jury composé de :
Président :

Mme. SLAMA Zohra M.C.A UDL-SBA Président

Examinateurs :

Mr. BENSLIMANE Sidi Mohamed Prof. ESI-SBA Examinateur

Mr. AMAR BENSABER Djamel M.C.A ESI-SBA Examinateur

Mr. TOUMOUH Adil M.C.A UDL-SBA Examinateur

Mr. BOUKLI Hacene M.C.A UDL-SBA Examinateur

Directeur de thèse :

Mr. MALKI Mimoun Prof. ESI-SBA Directeur de thèse

Année universitaire : 2016-2017

Alignment Evolution under Ontology Change:
A formal Framework and Tools

 &&&

i

 بسم الله الرحمن الرحيم
الحمد لله الذي وفقني لإتمام هذا العمل و الصلاة و السلام على

 رسوله الكريم محمد بن عبد الله الذي لولاه ما حمدت ربي.
 اللهم اجعل هذا العمل في سبيلك.

 إلى كل عالم أو متعلم أو محب لهما.
 إلى روح والدتي الطاهرة، اللهم اجعل هذا العمل رحمة عليها.

 إلى والدي.
أرجو أن وسيم و لين. محمد ، ، دي ملاكولاأو إلى زوجتي

 .يسامحوني على انشغالي عنهم طوال مدة هذا العمل

 &&&

ii

Acknowledgement

First of all, I would like to express my sincere thanks to Prof. Dr. MALKI

Mimoun, my supervisor, for his encouragement and support during my

research.

I would like to thank Dr. SLAMA Zohra, (UDL-SBA) who was willing to

serve on my dissertation committee as president. Furthermore, I thank the

professors Prof. Dr. BENSLIMANE Sidi Mohamed (ESI-SBA), Dr. AMAR

BENSABER Djamel (ESI-SBA), Dr. BOUKLI HACENE Sofiane (UDL-

SBA), and Dr. TOUMOUH Adil (UDL-SBA), who served on the examination

committee.

I would also like to thank all the researchers I met and with whom I

discussed at least one of the points concerning this thesis. I especially want to

thank the Professor Atilla Elçi for his generosity, his advice and his warm

welcome in his department at Aksaray University. I also thank the Professor

Michel Simonet for his warm welcome in his laboratory. I thank his wife the

Professor Ana and her daughters for the hospitality in their home in Grenoble.

I also thank the Professor Ueno for his warm welcome in his laboratory at the

National Institute of Informatics in Tokyo. I also thank all the researchers I

met during the days of the summer school on the semantic web and ontologies

in Madrid. I especially thank the Professor Jérome Euzenat (INRIA -

Grenoble) with whom I conducted a fruitful discussion that has clarified very

much to me the light to find my way while trying to understand the problem

of alignment evolution.

Last but not least, I thank my colleagues Dr. Aissa Fellah and Dr. Bouchiha

Djelloul with whom I was in constant mutual discussion on problems related

to our doctoral theses.

 &&&

iii

Abstract. Alignment of ontologies is the backbone of semantic

interoperability. It facilitates the import of data from an ontology to another,

translating queries between them, or merging ontologies in a global one.

However, these services cannot be guaranteed throughout the l ife cycle of the

ontology. The problem is that the evolution of aligned ontologies may affect

and make obsolete the alignment. Contributions of this dissertation touch the

literature review and the methodology knowledge sides of the alignment

evolution problem. At the methodology knowledge side, the dissertation

proposes a formal framework that consists of a number of phases, each having

a specific purpose. The framework facilitates ontology change identification

for maintainers. On the light of base revision theory, the framework presents

a set of generic operators for evolving alignments from a consistent state to

another consistent state with a minimal of change. The framework adapts the

Hitting set algorithm of diagnosis theory to concretize these operators.

Besides, the framework is extended with a global method which is an

orchestration of a set of operations each of which is designed to take care of

one aspect of the alignment change process. Finally, the framework allows to

maintainers reviewing the change before implementation. In what concerns

the literature review side, the dissertation mentions the importance o f the

problem and recommends the separation of its study from the study of the

ontology evolution problem. Besides, the dissertation suggests classifying the

alignment evolution approaches in two categories. Approaches of the former

are corrective since they check and resolve inconsistences after change while

approaches of the latter are adaptive and perfective since they only adapt the

alignment according to detected changes in ontologies. Moreover, the

dissertation demonstrates the advantage of the proposed approach relatively to

others. The results show that neither ontology matching nor alignment

debugging methods fit well for the alignment evolution problem.

Keywords: Ontological Change, Alignment Evolution, Alignment Revision,

Belief Base Revision, Diagnosis theory.

 &&&

iv

Résumé. L'alignement des ontologies est l'épine dorsale de

l'interopérabilité sémantique. Il facilite l'importation de données d'une

ontologie à une autre, traduisant des requêtes entre elles, ou fusionner les

ontologies. Cependant, ces services ne peuvent pas être garantis tout au long

du cycle de vie de l'ontologie. Le problème est que l'évolution des ontologies

alignées peut affecter et rendre obsolète l’alignement. Les contributions de

cette dissertation touchent le côté de l’analyse de la littérature ainsi que le

côté méthodologique du problème de l'évolution de l'alignement. Sur le côté

méthodologique, la thèse propose un cadre formel qui consiste en un certain

nombre de phases, chacune ayant un but spécifique. Le cadre du travail

facilite l'identification des changements ontologiques pour les ingénieurs de

maintenance de l’alignement. À la lumière de la théorie de la révision des

bases de croyances, il présente un ensemble d’opérateurs génériques pour

l'évolution de l’alignement d'un état consistant à un autre état consistant avec

un minimum de changement. Il adapte l'algorithme Hitting Set de la théorie

du diagnostic pour concrétiser ces opérateurs. En outre, le cadre est étendu

avec une méthode globale qui est une orchestration d'un ensemble

d'opérations dont chacune est conçue pour prendre soin d'un aspect du

processus de changement de l'alignement. Enfin, il permet aux ingénieurs de

maintenance d'examiner le changement avant de sa mise en œuvre. En ce qui

concerne l’analyse de la littérature, la dissertation mentionne l'importance du

problème et recommande la séparation de son étude du problème de

l'évolution de l'ontologie. En outre, la thèse propose de classer les approches

d'évolution de l'alignement en deux catégories. Les approches de la première

sont correctives puisqu'elles vérifient et résolvent l ’inconsistance de

l’alignement. Alors que les approches de la deuxième sont adaptatives et

perfectives, puisqu'elles n'ont qu’adapter l'alignement en fonction des

changements détectés dans les ontologies. De plus, la thèse démontre

l'avantage de l'approche proposée par rapport aux autres. Les résultats

montrent que ni les outils de matching ni les méthodes de débogage de

l’alignement ne conviennent bien au problème de l'évolution de l'alignement.

Mots Clés: Changement d’ontologie, Evolution de l’alignement, Révision

de l’alignement, Révision des bases de croyances, Théorie des diagnostics.

 &&&

v

 استيراد يسهل فهو. الدلالي المشترك للعمل الفقري العمود مطابقة الأنطولوجياتتعتبر ملخص:

 هذه إن. واحدة الأنطولوجيات في دمج أو بينهما الاسئلة ترجمة آخرة، إلى أنطولوجيا من البيانات

 تطور أن ذلك.الأنطولوجيا حياة دورة مراحل جميع في مضمونة تكون أن يمكن لا الخدمات

 .على التطابق بينهمم ويجعله غير صالح للإستعمال يؤثر الأنطولوجيات قد

 الجانب المنهجيوكذلك الأدبيالجانب تلمس مراجعة هذه الأطروحةالمعرفية لمساهمات ال

طروحة الأمنهجي ، تقترح الالجانب مايخص. فيمطابقة الأنطولوجياتمشكلة تطور ب الخاص

ات طار تحديد التيييرالإيتكون من عدة مراحل، ولكل منها غرض محدد. يسهل ياضيا ر اإطار

 عمليتين،يعرض الإطار الإعتقادات مراجعة نظرية ضوء علىالأنطولوجيا. التي تطرأ على

دنى من التييير. الأحد لمبدأ ال الضمان متناسق مع بشكل مطابقة الأنطولوجياتلتطور تينعام

. اتعمليالإطار عدد كبير من الجسد يمجموعة من نظرية التشخيص الخوارزمية ضرب يف يتكب

مجموعة من العمليات كل منها اسقتنشكل على شاملةطريقة بيد الإطار زوالى جانب ذلك، تم ت

مراجعة ب أيضا. يسمح الإطارمطابقة الأنطولوجياتتطور جانب واحد من عملية ب كفلتلمصمم ل

 قبل التنفيذ. رحتالمقالتييير

ضرورة بأهمية المشكلة وتوصي على الأطروحة شددت ،يجانب الأدبالمراجعة بفي ما يتعلق

طروحة تصنيف الأ. الى جانب ذلك، تقترح الأنطولوجياتن مشكلة تطور دراستها ع لفص

تصحيح الى تهدف الفئة الأولىفئتين. الى مطابقة الأنطولوجياتمشكلة تطور مقاربات

 مطابقةاليف يتكتسعى الى الفئة الثانيةوحل التناقضات بعد التييير. في حين أن ديد حالتطوربت

. وعلاوة على بشكل واضح التناقضاتدون مراعات الأنطولوجيات الحاصل فيالتيييروفق

. وأظهرت خر الأ مقارباتال بعضعلى أفضلية المقاربة المطروحة طروحة تظهرالأذلك،

تناسب بشكل جيد مشكلة هاطرق تصحيحولا تالأنطولوجيامطابقة وسائل حساب النتائج أنه لا

 ت.مطابقة الأنطولوجياتطور

تيير الأنطولوجيا، تطوير تطابيق الأنطولوجيات ، مراجعة تطابيق الكلمات المفتاحية :

 نظرية التشخيص ،الإعتقادات الأنطولوجيات ، مراجعة قواعد

 &&&

vi

Contents

List of figures .. viii

List of tables ... ix

Chapitre 1 Introduction ... 1

1.1 Semantic Interoperability ... 1

1.2 Problem Statement ... 2

1.3 Position and contributions .. 6

1.4 Thesis Organization ... 9

Chapter 2. Background knowledge .. 10

2.1 Introduction .. 10

2.2 Belief change ... 10

2.2.1 History ... 10

2.2.2 Belief representations .. 11

2.2.3 Belief set change .. 12

2.2.4 Belief base change ... 19

2.3 Diagnosis Theory ... 24

2.4 Conclusion ... 26

Chapter 3. Alignment change: The state of the art .. 28

3.1 Introduction .. 28

3.2 Ontologies .. 29

3.3 Ontology Change .. 31

3.3.1 Origins ... 31

3.3.2 Change process .. 32

3.3.3 Change process support .. 38

3.4 Discussion .. 39

3.5 Ontology alignment .. 42

3.6 Ontology alignment life cycle .. 45

3.7 Alignment evolution ... 46

3.7.1 Naming disambiguation .. 46

3.7.2 Classification ... 47

3.7.2.1 Alignment adaptive and perfective maintenance 48

3.7.2.2 Alignment corrective maintenance ... 51

3.7.2.3 Alignment debugging ... 53

3.8 Conclusion ... 55

 &&&

vii

Chapter 4.ontology change: Identification and Semantics on Alignment 56

4.1 Introduction .. 56

4.2 Alignment Evolution Process ... 57

4.3 Ontology and alignment models ... 60

4.3.1 Ontology Model ... 60

4.3.2 Alignment Model ... 62

4.4 Ontology change identification .. 64

4.5 Semantics of change ... 65

4.6 Conclusion ... 75

Chapter 5. Methods ... 77

5.1 Introduction .. 77

5.2 Computing alignment Kernel and Incision Functions 78

5.3 Computing Confidence based incision functions .. 82

5.4 Alignment evolution method .. 85

5.5 Conclusion ... 90

Chapter 6. Implementation and applications ... 91

6.1 Introduction .. 91

6.2 Implementation .. 91

6.2.1 OWL API ... 92

6.2.2 Alignment API ... 93

6.2.3 Architecture ... 94

6.3 Applications ... 95

6.3.1 Selected evolution methods. ... 96

6.3.2 The Data set. .. 97

6.3.3 Accuracy measures. .. 98

6.3.4 Experimentation process. ... 99

6.4 Conclusion ... 103

Chapter 7. Conclusion and future works .. 104

7.1 Introduction .. 104

7.2 Summary .. 104

7.3 Contributions .. 106

7.4 Perspectives ... 109

Bibliographies .. 111

 &&&

viii

List of figures

Figure 1: An example of an alignment between two educational domain ontologies. 3

Figure 2: Ontologies spectrum ... 30

Figure 3: Six-phase ontology evolution process.. 31

Figure 4: On request and on response ontology evolution processes 33

Figure 5: Model theoretic based alignment global semantics 43

Figure 6: Model theoretic based alignment contextual semantics 44

Figure 7: The ontology alignment life cycle ... 46

Figure 8: The ontology alignment change process .. 57

Figure 9: an ontology of change ... 64

Figure 10: Hitting set tree of incision functions .. 82

Figure 11: Hitting set tree of confidence based incision functions 84

Figure 12: Alignment Evolution Method ... 85

Figure 13: Binary search based incision functions ... 89

Figure 14: A UML diagram showing the management of ontologies in the OWL

API. .. 92

Figure 15: A UML diagram showing the management of alignments in the

Alignment API. ... 93

Figure 16: The architecture of the alignment evolution system. 94

Figure 17: Data Set ... 98

Figure 18: Performances comparison of methods in alignment evolution and

ontology matching contexts. .. 102

 &&&

ix

List of tables

Table 1 : classification of alignment evolution approaches 53

Table 2 : Ontology change identification algorithm .. 66

Table 3: α-Alignment kernel algorithm. ... 78

Table 4: Alignment kernel and Incision functions algorithm 79

Table 5: Confidence based Incision functions algorithm 83

Table 6: Binary search based incision function algorithm. 84

Table 7 : Composition of basic set-theoretical relations .. 87

Table 8 : The ontology change of the data set. .. 99

Table 9 : Limits of ontology matching tools and alignment debugging methods .. 101

Introduction &&&

1

Chapitre 1 Introduction

1.1 Semantic Interoperability

Ontologies play an important role in many computer applications where it is

necessary to overcome the problem of heterogeneity and diversity in semantics.

They define a formal semantics for the information enabling the semantic

interoperability of information sources (Fensel , 2001). With the emergence of the

semantic web, ontologies have proliferated and are accessible to a wide audience.

This leads to the appearance of several, but overlapping ontologies for the same

domain and each source of information is free to choose the most appropriate

ontology to its needs. Consequently, the information interoperability problem

turns to a problem of ontology interoperability. Ontology interoperability can be

achieved by ontology matching tools (Euzenat & Shvaiko, 2013) which aim at

finding semantic correspondences between related entities of different ontologies.

These correspondences express semantic relations between entities of different

ontologies. The set of these correspondences constitutes an alignment between

ontologies. An alignment is used to import data from an ontology to another,

translating queries between them or merging ontologies in a global one (Euzenat

et al., 2008).

Early semantic web applications such as AquaLog (Lopez et al., 2005) and

Magpie (Dzbor et al., 2003) use ontologies and alignments between them in the

design time. Thanks to ontology repositories such as Swoogle (Ding et al., 2004),

Watson (d'Aquin et al., 2007), OntoSelect (Buitelaar et al., 2004), the DAML

ontology library1 and Schema.org2 that store, index, organize and share ontologies,

a new generation of applications (Motta & Sabou, 2006) can find and use

dynamically the appropriate ontologies in the run-time. For instance, PowerAqua

(Lopez et al., 2006) (the successor of AquaLog) is a cross-domain question

1 http://www.daml.org/ontologies/
2 http://schema.org/

Introduction &&&

2

answering system. It locates thanks to Watson3, online semantics documents that

match user’s queries. Besides ontologies, some repositories such as Bioportal4 and

Alignment server5 consider alignments as a first class object, enhancing the

dynamic interoperability of ontologies. They, store, index, organize and share

alignments. These infrastructures allow applications to seek and use on the fly the

appropriate alignments.

1.2 Problem Statement

Ontologies are continuously in evolution so that they reflect our gradual

understanding of reality (Hepp, 2007). The evolution reflects changes in the

application domain or in the business strategy and incorporating additional

functionality according to changes in the users’ needs (Stojanovic, 2004). The

dynamic aspect of ontologies can affect and make obsolete the alignment between

them. This is a special case of the known alignment evolution problem (Euzenat &

Shvaiko, 2013; Dos Reis et al., 2015; Groß et al., 2013; Dos Reis et al., 2013;

Martins &Silva, 2009). We call such a case as the alignment evolution under

ontology change problem. This problem can be refined to include others sub-

problems.

Problem 1(ontology change identification): In open and distributed

environments such as the semantic web where ontologies and alignments are

submitted to different authorities, the ontology change is often available in an

unreadable machine format or not delivered at all. Even the ontology evolution

approaches (Stojanovic, 2004; Plessers, 2006; Klein, 2004) deliver evolution logs

that store the implemented change, maintainers of alignments may not share the

same interpretation for the same change and they prefer to create their own set of

change which might be different from the delivered set of changes. Maintainers

want to identify and make explicit the ontology change in order to understand

what happen and correctly update their alignments.

 Problem 2(alignment consistency): As ontologies evolve from a consistent

state to another, an alignment evolution should follow this change by transition to

3 http://watson.kmi.open.ac.uk/WatsonWUI/
4 http://bioportal.bioontology.org
5 http://alignapi.gforge.inria.fr/aserv.html

Introduction &&&

3

a new consistent state too. The alignment consistency is expressed as a set of

constraints qualified as hard since their violation makes obsolete the alignment

and useless. We highlight the complexity of this problem via scenarios clarified

with simple and meaningful examples.

Figure 1: An example of an alignment between two educational domain ontologies .

Scenario 1: alignment correspondences refer only to entities that belong to the

aligned ontologies. The deletion of these ontological entities breaks the structure

of the concerned correspondences. An alignment which has such correspondences

is structurally inconsistent. An alignment should preserve its structure af ter the

ontology change. We call such constraint, the structure preservation constraint.

Example 1 describes a scenario where the ontology change can violate this

constraint.

Example 1: Considering the alignment 𝑀 of Figure 1. We use Description Logic

like syntax to describe both ontologies. Also, we use the index number in

ontologies notation as name space to designate entities. The ontologies 𝑂1 and 𝑂2

and the alignment 𝑀 are also described as follows.

𝑂1 = {

𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡,
 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊑ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

}, 𝑂2 = {

𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ,
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊑ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒,
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (𝐴ℎ𝑚𝑒𝑑)

}

𝑀 = {

1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡,
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
1: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 =0.97 2: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

}

Introduction &&&

4

Assuming the designer of ontology 𝑂2 decides to remove the concept Employee.

The new version is:

𝑂2
′ = {

𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ,
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ,
 𝑃ℎ𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (𝐴ℎ𝑚𝑒𝑑)

}

However, the alignment 𝑀 contains the correspondence

1: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 =0.97 2: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 while 𝑂2
′ don’t contain the concept 2: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒.

We say the alignment 𝑀 is structurally inconsistent.

Scenario 2: ontologies are logical theories. Even, ontologies ensure their logical

consistencies after the change; they can’t preserve this consistency when they are

used jointly with alignment. For preserving the logical consistency of ontologies,

we should prevent the alignment from generating these inconsistencies as logical

consequences. We call such constraint, the logical consistency preservation. The

following scenario highlights this problem:

Example 2: Following example 1, the designer sets the concepts Researcher and

Lecturer as disjoints. So, he revises 𝑂2
′ to add the axiom Researcher ⊥ Lecturer.

Now, the new version is

𝑂2
" = {

𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ,
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ,
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊥ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
 𝑃ℎ𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (𝐴ℎ𝑚𝑒𝑑)

}

He remarks that 𝑂2
" is inconsistent. He justifies this inconsistency by the following

sequence: from 𝑂2
" ⊨

𝑃ℎ𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (𝐴ℎ𝑚𝑒𝑑), 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟, 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟, he

can derive 𝑂2
" ⊨ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 (𝐴ℎ𝑚𝑒𝑑), 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 (𝐴ℎ𝑚𝑒𝑑) but 𝑂2

" ⊨ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊥

 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟. Hence, he decides to revise 𝑂2
" such that PhD Students will no longer

be lecturers. To do that, he removes the axiom 2:PhD Student ⊑ Lecturer and he

obtain the new version

 𝑂3 = {
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ,
 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊥ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
 𝑃ℎ𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (𝐴ℎ𝑚𝑒𝑑)

}.

Introduction &&&

5

When he tries to use the alignment 𝑀 he concludes that

𝑀 ⊨ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 (𝐴ℎ𝑚𝑒𝑑), 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 (𝐴ℎ𝑚𝑒𝑑). Therefore, the alignment 𝑀 is

inconsistent. These two axioms are alignment consequences of 𝑀. Indeed, from

2:Phd Student(Ahmed), 2:Phd Student ⊑ Researcher, 2:Researcher ≡

1:Researcher, 1:Researcher ⊑ Lecturer, 1:Lecturer ≡ 2: Lecturer, he derives

2:Lecturer(Ahmed). From 2:Phd Student(Ahmed), 2: Phd Student ≡ 1: Phd

Student, 1: Phd Student ⊑ Researcher, 1:Researcher ≡ 2:Researcher, he derives

2: Researcher(Ahmed).

Scenario 3: ontologies are the pillar of the semantic web; alignments maintainers

may have not the permission to modify the changed ontologies in order to

establish the consistency of alignments. In other words, alignments maintainers

should accept the ontological change and modifying alignments is the only

possible way to establish the new consistency. Accepting the change may not be

respected if some removed knowledge still entailed by alignments. In both cases,

alignments should follow the ontology change by preserving it. We call such

constraint, the ontological change preservation.

Example 3: In example 2, the designer accepts the ontological change by

considering the new version 𝑂3 instead of the previous versions 𝑂2
′ and 𝑂2

" . In this

case, it is easy to verify that 𝑀 ⊨ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊥ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟. One justification of

inconsistency of the alignment 𝑀 is even the axiom 2:PhD Student ⊑ Lecturer has

been removed, it stills entailed by M as the following logical consequences

demonstrate. From 𝑀 ⊨ 2:PhD Student ⊑ Researcher, 2:Researcher ≡

1:Researcher, 1:Researcher ⊑ Lecturer, 1:Lecturer ≡ 2:Lecturer we can derive

𝑀 ⊨ 2: PhD Student ⊑ Lecturer. We say the alignment 𝑀 preserve the change in

the former while violates the change preservation constraint in the latter.

Problem 3 (minimality of change): Many solutions can satisfy the consistency

constraints when we evolve the alignment. One of them is the empty alignment

where we discard all its correspondences. The empty alignment doesn’t make any

sense from a practical point of view and we need to compute the new alignment

from scratch. An ideal solution is to change only the relevant correspondences that

Introduction &&&

6

cause problems. We call such constraint, the constraint of minimal change. In

contrast with the consistency constraints which are qualified as hard we qualify

the minimal change as a soft constraint. Since the violation of this constraint don’t

hamper the use of alignments.

Problem 4 (User involvement): alignment evolution is a knowledge intensive

task which can’t be fulfilled without the involvement of users. The system

proposes the change and maintainers are invited to review it before

implementation. Maintainers may validate the change, recover the unnecessary

changes, adapt, track, or cancel the change. Hence, the system should facilitate the

interaction with users and enhance the interoperability with others tools .

1.3 Position and contributions

Recently, some approaches (Groß et al., 2013; Dos Reis et al., 2013; Martins

and Silva, 2009) have emerged to deal with the problem of alignment evolution

under ontology change. The main challenge of these approaches is how to adapt

the alignment following an ontology change. Influenced by the underlying

representation of ontology, logical properties of alignment are neglected.

Considering ontologies as logical theories allows a recent approach (Euzenat,

2015) to define a formal and general framework for alignment revision mirroring

the AGM6 model (Alchourrón et al., 1985) of belief revision theory. In this

framework, ontologies are closed sets under the logical consequence of the

underlying semantics of alignment. However, ontologies and hence alignments are

encoded in knowledge bases making applications only holds a subset of domain

knowledge as explicit and using reasoning services to derive implicit ones. This

practical representation of ontologies and alignments leads us to consider a

different approach based on base revision theory (Dalal, 1988; Hansson, 1994;

Hansson, 2006) to deal with this problem.

Contributions and accomplishments that are the result of this dissertation touch

the literature review and the methodology knowledge sides of the alignment

6 AGM model is the most influential work in belief revision theory (see chapter 2 for more details).

Introduction &&&

7

evolution problem. In what concerns the literature review side, our contribution is

two-fold.

- We have reviewed the main ontology evolution frameworks. Guiding by the

fixed requirements of the alignment evolution problem, we have concluded

that these frameworks should be adapted in order to embed the alignment

evolution problem. Moreover, we have recommended that the alignment

evolution problem should be separated from the ontology evolution problem

since alignment depending artifacts may create confusion with depending

artifacts of ontologies.

- Inspired by the classification of the software evolution and maintenance

approaches in software engineering, our second contribution is the

classification of the alignment evolution approaches in three classes:

adaptive, corrective, and perfective maintenance. After review, we observed

all approaches fall in two categories. The approaches of the former are

corrective since they check and resolve inconsistences after change. The

main challenge for these approaches is how to ensure a consistency

alignment with a minimal of change. While the approaches of the latter are

adaptive and perfective since they don’t consider explicitly the alignment

consistency and they only adapt the alignment according to the detected

changes in ontologies. Consequently, no guaranties are given to ensure the

alignment consistent even they claim it was their primary purpose.

 At the methodology knowledge side, the dissertation presents a new approach

for the alignment evolution under ontology change problem. The approach

proposes a general framework that consists of a change process with fourth

phases: a phase for ontology change identification, a phase for the semantics of

change, a phase for change validation, and a phase for change implementation.

Number of methods, each having a specific purpose, are designed for concretizing

the change process.

- The framework proposes a new method for the ontology change

identification which is published first in (Zahaf, 2012) and reproduced later

in (Zahaf and Malki, 2016b). This method compares between versions of the

same ontology and delivers the change as the changed vocabulary in one

https://en.wikipedia.org/wiki/Software_engineering

Introduction &&&

8

hand and the changed axiomatic meaning of this vocabulary in the other

hand. This format of change which constitutes an ontology of change helps

for understanding and sharing the change.

- To resolve the logical consistency and the change preservation consistency

the framework adapts the kernel framework (Hansson, 1994; Hansson, 2006)

of belief base revision theory to design a variety of operators. These

operators base their actions on notions of alignment kernel and incision

function. The framework adapts the Hitting set algorithm (Reiter, 1987) of

diagnosis theory to compute the alignment kernel as well as the

corresponding incision functions. This part of the framework is published in

(Zahaf and Malki, 2016a). For the purpose of satisfying the structural

consistency, the framework only suggests the removing of the concerned

correspondences.

- We are satisfied by proposing a weak form of the principle of minimal

change. The designed operators for the alignment consistency resolution

satisfy core-retainment postulate which means only correspondences that

participate somehow in the inconsistency implication need to be changed.

Sometimes, not all these correspondences should be changed but only a

subset of them. This is why we need the user involvement to achieve the

operation of alignment change.

- Besides inconsistency checking, our system of alignment evolution counts on

notions of the kernel and change log to facilitate the interaction with users

and enhance its interoperability with tiers. The former plays the role of

inconsistency explanations while the latter allows change tracking and

change sharing with depending applications.

- Besides the different proposed operators of change, the framework is

extended with a global method which is an orchestration of a set of

operations each of which is designed to take care of one aspect of the

alignment change process. The method is published in (Zahaf and Malki,

2016b).

- Mainly, some approaches from the adaptive and perfective category rely on

ontology matching techniques for evolving alignments. The dissertation

Introduction &&&

9

demonstrates the advantage of our approach relatively to these approaches.

Results which are published in (Zahaf and Malki, 2016b) show that neither

ontology matching nor alignment debugging methods fit well for the

alignment evolution problem.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 constitutes the

background of the thesis. Its content is two-folds: belief revision theory and

diagnosis theory. The belief revision theory presents change theory in an elegant

logical formalism and the diagnosis theory complement theory with practices to

fulfill real-world applications. In chapter 3, we explore the state of the art of

works done to resolve the problem of alignment evolution. We take the analysis of

these approaches in accordance with the aforementioned requirements of the

alignment evolution problem. Our framework is the subject of chapter 4. First, we

present our proposal for the alignment change process in which, we identify and

formalize the constraints and requirements that the alignment change should

satisfy. Then, we introduce the models of ontologies and alignments considered in

this framework. We connect the alignment revision under ontology change

problem and base revision theory. Meanwhile, we justify our choice to follow base

revision theory. Always, on the light of this theory, we design a set of operations

that satisfy these constraints and requirements. Chapter 5 represents the

computational aspect of our framework. We give a plethora of algorithms and

methods with different complexities varying from exponential time to polynomial

time for concretizing the designed operators. In Chapter 6, we discuss a prototype

implementation of our system of alignment evolution. Then we conduct an

experimental process to demonstrate the advantage of our approach relatively to

others. Finally, we summarize our thesis and we give an outline about future

works in chapter 7.

Background knowledge &&&

10

Chapter 2. Background knowledge

2.1 Introduction

Belief change is one of the several names that are being used to denote a

matured research field of how an agent rationally changes his beliefs. Some of the

others are theory change, theory revision, belief change, and belief revision. Belief

change research relies on nice and precise logical formalism, but it lacks the

implementation of realistic revision methods. Diagnosis theory is another field of

research with the objective to restore systems consistency after deficiencies. The

research field of diagnosis theory has powerful tools to prune computational

complexity to the problem of diagnosis, allowing them to deal with real -world

situations. However, many applications lack clear formalizations. Cross-field

applications have shown the relation of belief revision theory with diagnosis

theory practices. In this chapter, we present briefly both theories in two separate

sections. The AGM model is the most influential work in belief revision research

field. Section 2.2 describes this model and its extension of belief base revision as

well. Section 2.3 presents the diagnosis theory according to the approach of

diagnosis from the first principle.

2.2 Belief change

2.2.1 History

Belief change is a philosophical discipline beginning in 1970’s to discuss the

requirements of rational belief change. Two milestones can be highlighted

(Hansson, 1999). The former is a series of studies conducted by Levi and Harper

(as cited in Hansson, 1999). Problems posed by Levi have since been the main

concerns of this research area. Alchourrón and Makinson (as cited in Hansson,

1999) had previously cooperated in studies of changes in legal codes. Gärdenfors

early work (as cited in Hansson, 1999) was concerned with the connections

Background knowledge &&&

11

between belief change and conditional sentences (if-sentence). Facilitated by these

works, the trio Carlos Alchourrón, Petre Gärdenfors, and David Makinson

combined forces and developed the AGM model which is a general and versatile

formal framework for studies of belief change (Alchourrón et al., 1985). This

model gave the naissance of the second milestone of research on belief change.

The model has been extended beyond the studies of changes in legal codes to meet

new fields such as database updates and knowledge engineering. This practical

mutation was the direct impact that gave birth to the new model of base revision

theory. Database updating was largely influenced by the development of artificial

intelligence. Fagin et al. (1983) introduced the notion of ‘database priorities’ for

updating databases with integrity constraints. The truth maintenance systems

developed by Doyle (1979) was also important in this development. The AGM and

base revision models rely on a nice and a precise logical formalism to define a

variety of change operators each of which is characterized by a set of postulates to

constraint the performed change.

2.2.2 Belief representations

Beliefs are represented by sentences in some formal language. Hansson (2006)

claims “Sentences do not capture all aspects of belief, but they are the best

general-purpose representation that is presently available. The beliefs held by an

agent are represented by a set of such belief-representing sentences”. The formal

language defines a relation Cn called logical consequence on this set of beliefs.

For any set Κ of beliefs, Cn(Κ) is the set of beliefs that follow logically from Κ.

We say a belief α is a logical consequence of Κ if and only if α ∈ Cn(Κ). We also

use Κ ⊨ α to denote this. In what follows, Κ will denote a belief set. Κ ⊭ α for α ∉

(Κ). Cn(ϕ) is the set of tautologies.

Two types of sets are used to represent the beliefs. The former, just called belief

set7 is closed under logical consequence (Alchourrón et al., 1985). Formally,

Definition 2.1 (Belief sets): a belief set Κ is a set closed under logical

consequence if and only if Κ = Cn(Κ).

7 “In logic, logically closed sets are called theories. In formal epistemology, they are also called corpora, knowledge sets,

or (more commonly) belief sets” (Hansson, 2006).

Background knowledge &&&

12

Every sentence that follows logically from this set is already in the set. If the

language is sufficiently rich, a belief set might become very large to a point of

containing beliefs that the agent has never thought of. Furthermore, if the

language is infinite, then so does the belief set (Hansson, 1999). This usually

means dealing with infinite beliefs set which cannot be incorporated easily into a

computational framework (Peppas, 2008). Human minds and actual computers can

only hold a finite subset of beliefs that may (roughly) correspond to the explicit

beliefs (Hansson, 1999). Such sets are called belief bases which consist of sets not

necessarily closed under logical consequence. The formal definition is as follows:

Definition 2.2 (Belief bases): Any set B of sentences is a belief base. Let Κ be a

belief set. Then a set B of sentences is a belief base for Κ if and only if Κ = Cn(B).

According to Hansson (1999), “belief bases are not required by definition to be

finite, but in all realistic applications they will be so”. Nevertheless, some beliefs

can only be derived from others one. The elements of the base represent the basic

beliefs that are held independently of any others beliefs. Those elements of its

logical closure that are not elements of the belief base itself are called the derived

beliefs (Hansson, 2006). In contrast to a belief set, a sentence α is belief of a base

if and only if it is a consequence of that belief base, α ∈ Cn(B). In set-theoretical

language:

α is a belief if and only if α ∈ Cn(B).

α is a belief base if and only if α ∈ B.

α is a (merely) derived belief if and only if α ∈ Cn(B) B⁄ .

2.2.3 Belief set change

AGM (Alchourrón et al., 1985) is the most influential model in belief set

revision research (Fermé & Hansson, 2011). In the AGM model, beliefs are

represented as sentences of a formal language L governed by a Tarskian logic. For

any set Κ of sentences, a Tarskian consequence operation on a given language is a

function Cn from sets of sentences to sets of sentences. It satisfies the following

three conditions:

Inclusion: Κ ⊆ Cn(Κ)

Background knowledge &&&

13

Monotony: If Κ ⊆ 𝛫′, then Cn(Κ) ⊆ Cn(𝛫
′)

Iteration: Cn(Κ) = Cn(Cn(Κ))

AGM assumptions

In the AGM theory, a little is assumed about this language and its logic. The

language should be closed under all Boolean connectives . The language contains

the usual truth-functional connectives: the negation (¬), the conjunction (⋀), the

disjunction (∨), the implication (→), and the equivalence (↔) while the logic is

assumed to be:

Supraclassicality: if α can be derived from Κ by classical truth-functional logic,

then α ∈ Cn(Κ).

Deduction : for all α ∈ L and Κ ⊆ L, if α ∈ Cn(Κ⋃{β}) then β ⟶ α ∈ Cn(Κ).

Compactness : for all α ∈ L and Κ ⊆ L, if α ∈ Cn(Κ) then there is some subset

Κ′ ⊆ Κ such that α ∈ Cn(Κ
′).

Types of change

Three types of belief change are defined: expansion, revision, and contraction.

Expansion: if no inconsistency occurs when adding a belief to the previous set,

the expansion consists in a set-theoretical adding of the new beliefs. Formally, the

expansion of Κ by a sentence α is the operation that just adds α and removes

nothing, is denoted Κ + α and defined as follows: Κ + α = Cn(Κ ∪ {α}).

While expansion can be defined in a unique way, there exists a class of

operators for belief revision, as well as for contraction. Every class is

characterized by a set of postulates and a set of constructors that should satisfy

these postulates.

Revision: a revision change should incorporate new beliefs while ensuring

consistency of the new set of beliefs. The belief revision is modeled as a function

∗ mapping a theory K and a sentence α to a new theory K ∗ α. In order to capture

the notion of rational belief revision, some constraints are imposed on belief

revision operators. The principle of minimal change is an intuition guide in the

formulation of these constraints. According to this principle, a rational agent

Background knowledge &&&

14

should change his beliefs as little as possible to consistently receive the new

information (Peppas, 2008). Gärdenfors(1992) formulated a set of eight postulates,

known as the AGM postulates for belief revision.

The outcome of change should be a theory. This postulate is called the closure.

Formally,

K ∗ α = Cn(K ∗ α) (Closure).

The new information α should successfully be included in the new belief set.

This postulate is called the success. Agents trust enormously on the reliability of

the new information in a way that this new information outweighs any previous

contradictory beliefs, whatever those beliefs may be.

α ∈ K ∗ α (Success).

The new belief set K ∗ α will be a subset of the whole of K, the new information

α, all whatever follows from the logical closure of K and α, and nothing more.

This is formulated in the postulate of inclusion:

K ∗ α ⊆ K + α (Inclusion)

Whenever the new information α does not contradict the initial belief set K,

there is no reason to remove any of the original beliefs at all;

If ¬ α ∉ K then K + α ⊆ K ∗ α (Vacuity).

Essentially, the vacuity postulate expresses the notion of minimal change in the

limiting case where the new information is consistent with the initial beliefs.

Belief revision aims for consistency at any cost unless the new information in

itself is inconsistent. In which case, because of the success postulate, the revision

can’t do anything about the consistency.

If α is consistent then K ∗ α is also consistent (consistency).

The syntax of the new information has no effect on the revision process; all that

matters is the proposition it represents. This postulate says the revision change is

irrelevant of the syntax. Hence, logically equivalent sentences α and β change a

theory K in the same way. Formally,

If ⊨ α ↔ β then K ∗ α = K ∗ β (Extensionality).

Background knowledge &&&

15

The six above postulates are called the basic postulates. Gärdenfors (1992)

suggested that revision should also satisfy two further supplementary postulates.

The idea is that, if K ∗ α is a revision of K and K ∗ α is to be changed by a further

sentence β, such a change should be made by expansions of K ∗ α whenever

possible. More generally, the minimal change of K to include both α and β, that is,

K ∗ α⋀β, ought to be the same as the expansion of K ∗ α by β, so long as β does not

contradict the beliefs in K ∗ α. For technical reasons the precise formulation is

split into two postulates:

K ∗ (α ∧ β) ⊆ (K ∗ α) + β (Superexpansion).

If ¬β ∉ K ∗ α then (K ∗ α) + β ⊆ K ∗ (α ∧ β) (Subexpansion).

Contraction: Contraction is choosing what to believe. It is the operation of

removing a specified belief from the belief set. Like belief revision, the belief

contraction is formally defined as a function − mapping a theory K and a sentence

α to a new theory K − α. Once again a set of eight postulates was proposed,

motivated by the principle of minimal change, to constraint − in a way that

captures the essence of rational belief contraction. These postulates, known as the

AGM postulates for belief contraction, are the following:

When a belief set K is contracted by a sentence α, the outcome should be

logically closed.

K − α = Cn(K − α) (Closure).

Inclusion ensures no new beliefs should be added to the contracted set :

K − α ⊆ K (Inclusion)

If the sentence to be contracted is not included in the original belief set, then

contraction by that sentence involves no change at all. Such contractions should

leave the original set unchanged.

If α ∉ K then K − α = K (Vacuity)

The postulate success says that the retracted belief should not be believed after

contraction unless it is a tautology. Contraction should be successful, i.e., K −

 α should not imply α (or not contain α, which is the same thing if Closure is

satisfied). However, it would be too much to require that α ∉ Cn(K − α) for all

Background knowledge &&&

16

sentences α, since it cannot hold if α is a tautology. The success postulate has to

be conditional on α not being logically true.

If ⊭ α then α ∉ K − α (Success)

The contraction with syntactically different but logically equivalent sentences

should be the same. This is so called the extensionality postulate. Extensionality

tells us that contraction is syntax independent.

If ⊨ α ↔ β then K − α = K − β (Extensionality)

Belief contraction should be minimal in the sense of keeping as many beliefs as

possible in the original beliefs set. One way for guaranteeing this principle is to

require that everything can be recovered exactly to the same state before the

contraction when expanding the contracted set again by the same belief α. This is

so called the recovery postulate which enables the change undo.

If α ∈ K, then K ⊆ (K − α) + α (Recovery)

The six above cited postulates are called the basic postulates. Here again, two

further postulates relate the individual contractions by two sentences α and β, to

the contraction by their conjunction α ∧ β. To contract K by α ∧ β, we need to

give up either α or β or both. All beliefs that survive the contraction by α as well

as the contraction by β should not be affected by the contraction with their

conjunction α ∧ β. This postulate is formulated as follows:

(K − α) ∩ (K − β) ⊆ K − (α ∧ β) (Conjunctive overlap).

Finally, assume that α ∉ K − (α ∧ β). Since K − α is the minimal change of K to

remove α, it follows that K − (α ∧ β) can not be larger than K − α. The last

postulate, in fact, makes it smaller or equal to it; in symbols.

If α ∉ K − (α ∧ β) then K − (α ∧ β) ⊆ K − α (Conjunctive inclusion).

Constructors

Constructors for revision can be obtained from contraction constructors by

applying Levi identity. We can also get constructors for contraction from revision

constructors by applying Harper identity. Belief revision literature presents

several constructions for contraction that satisfies the AGM postulates . See

Background knowledge &&&

17

(Gärdenfors, 1992) for more details. In this section, we present one of these

constructions called the partial meet contraction which is relevant to the content of

this thesis. We prefer to present Levi and Harper identities first.

Levi and Harper Identities

The contraction and revision operators were distinctively characterized by sets

of postulates. The postulates for contraction are independent of postulates for

revisions and vice versa. Here we present two procedures to get revision operators

from contractions operators and vice versa.

A revision of a belief set can be seen as a composition of a contraction and an

expansion. More precisely, In order to construct the revision K ∗ α , one first

contracts K with respect to ￢α and then expands K −￢α by α. Formally, we have

the following definition which is called Levi identity:

K ∗ α = (K −￢α) + α

Conversely, a contraction can be defined in term of a revision. The idea is that a

sentence δ is accepted in the contraction K − α if and only if δ is accepted both in

K and in K ∗￢α. Formally, this amounts to the following definition which has

been called Harper identity:

K − α = K ∩ K ∗￢α

Partial Meet Contraction

The outcome of contracting K by α should be a subset of K that does not

imply α, but from which no elements of K have been unnecessarily removed. By

applying the principle of minimal change, the contracted belief set K − α should

be as large a subset of K as it can be without implying α. In general, there exist

more than one such maximal subset of K. The set of such maximal subsets of K

that do not imply α is called remainder set. More precisely,

Definition 2.3 (Remainder set): Let Κ be a set of sentences and α a sentence.

The remainder set of Κ by α noted Κ ⊥ α (Κ less α) is the set such that A ∈ Κ ⊥ α if

and only if:

Background knowledge &&&

18

{

A ⊑ K (it is a subset of Κ)

A ⊭ α (that don′t imply α)

∀A′, A ⊂ A′, A′ ⊨ α (and it is maximal)

If the principle of minimal change is strictly applied, then the outcome of

contracting K by α should be an element of K ⊥ α. An operation that satisfies this

property is called a choice contraction (Alchourrón et al., 1985).

Since K ⊥ α typically has many elements, we need a selection function to

choose among them. A selection function selects elements of K ⊥ α unless K ⊥ α is

empty. Formally,

Definition 2.4 (Selection function): a selection function γ for Κ is a function

that for all sentences α:

 {
 ∅ ≠ γ(Κ ⊥ α) ⊑ (Κ ⊥ α), if Κ ⊥ α ≠ ∅,

γ(Κ ⊥ α) = {Κ} otherwise

If the selection function selects exactly one element from K ⊥ α, we can

formulate the choice contraction as follows:

 K − α = γ(K ⊥ α).

The choice contraction doesn't allow the believer to contract cautiously. Full

meet contraction is an alternative contraction to choice. It forces the believer to be

cautious in all situations (Hansson, 1999). It is formulated as follows:

 K − α = ⋂(K ⊥ α).

The partial meet contraction is the intermediate solution between the extreme

caution of the full meet contraction and the extreme incautiousness of the choice

contraction (Hansson, 1999). It uses a selection function as in choice contraction,

but it allows it to choose several elements of K ⊥ α. The partial meet contraction is

then the intersection of selected elements of K ⊥ α. Formally,

Definition 2.5 (Partial meet Contraction): let Κ be a set of sentences and α a

sentence and γ is a selection function, the partial meet contraction of Κ by α is the

operator defined as Κ−γα = ⋂γ(Κ ⊥ α).

Alchourrón et al (1985) show that every partial meet contraction satisfies the

postulates of AGM model and every contraction that satisfies AGM postulates

Background knowledge &&&

19

should be a partial meet contraction. This result is known in the literature as the

representation theorem for the partial meet contraction:

Theorem 2.1 (Representation theorem): an operator – is a partial meet

contraction for a belief set Κ if and only if it satisfies the postulates of closure,

inclusion, vacuity, success, extensionality, and recovery.

A variant of the partial meet contraction that satisfies all AGM postulates is the

transitively relational partial meet contraction. Such an operator defines a

transitive reflexive ordering relation (≤) on the remainder set K ⊥ α. The idea is to

constrain the selection function to select the top elements of K ⊥ α.

2.2.4 Belief base change

In AGM theory, all beliefs are equal vis-à-vis the change. However, changes are

performed only on basic beliefs not on derived beliefs in base revision theory. The

underlying intuition is that a derived belief is not worth retaining if loses the

support that it had in basic beliefs. Then it will be automatically discarded

(Hansson, 2006).

Nebel (as cited in Peppas, 2008) distinguishes between approaches that aim to

take into account the difference between explicit and derived beliefs on one hand

and approaches that aim to provide a computational model for theory revision on

the other. The former (Hansson, 1999; Hansson & Wassermann, 2002) gives rise

to belief base revision operations, whereas the latter (Nebel, 1994) defines belief

base revision schemes. The main difference between these approaches is their

outcomes. The output of a belief base revision operation is again a belief base.

However the output of a belief base revision scheme is a theory.

We consider in this thesis belief base revision operations. Like AGM model, the

belief base revision accepts the same types of change: expansion, revision , and

contraction. Unlike AGM model, every constructor is characterized by a set of

postulates that is different from the set of postulates of another constructor.

Constructors in belief base revision are not equivalents. In what follows, we

introduce some operators as well as the set of postulates that characterize every

operator.

Background knowledge &&&

20

Base expansion

The expansion of a belief base B by a sentence α is the operation that just

adds α and removes nothing, is denoted B + α and defined as follows:

B + α = B ∪ {α}.

Base contraction

Given a belief base B and a particular belief α, the objective of contraction is to

compute a subset of B that fails to imply α. Hansson (1999) introduced two

operators for the base contraction: the Partial meet base contraction and the kernel

contraction.

Partial meet base revision

The operator of partial meet base contraction is similar to the partial meet

contraction for belief sets. The only difference is to apply the operator on belief

base B instead of belief set K. For a selection function γ, the partial meet base

contraction of B by α, is:

B−γα = ⋂γ(B ⊥ α)

Hansson (1999) characterizes the partial meet base contraction by the following

postulates:

Theorem 2.2 (Partial meet base Contraction Representation): the operator − is a

partial meet base contraction for a belief base B if and only if it satisfies the

following postulates:

[success] if ⊭ α then B − α ⊭ α

[Inclusion] B − α ⊆ B

[uniformity] if it holds for all B′ ⊆ B that B′ ⊨ α if and only if B′ ⊨ β, then

B − α = B − β

[relevance] if β ∈ B and β ∉ B − α , then there is a subset B′ of B such that,

B − α ⊆ B′ ⊆ B and B′ ⊭ α but B′ ⊔ {β} ⊨ α

As the contraction for a belief set, the partial meet contraction satisfies success

and inclusion but it needs to satisfy two new postulates: uniformity and relevance.

Background knowledge &&&

21

The uniformity postulate requires that if every subset that implies some belief α

implies also another belief β, then the contraction by α and β should be the same.

Uniformity is stronger than extensionality, i.e. it implies extensionality, but it is

not implied by it. The postulate recovery can’t hold in general in the theory of

base revision and is replaced by the relevance postulate. Relevance means only

beliefs that are responsible for implying the contracted belief should be discarded.

Kernel Contraction

The kernel contraction is a particular operation of contraction (Hansson, 1994).

It consists of finding the set of minimal subset of B that imply α. This set is called

the kernel of B by α and denoted by B ∥ α. An element of the kernel B ∥ α is called

α-kernel. Formally,

Definition 2.6 (Kernel): the kernel of B by α is the set of B′ such that:

{

B′ ⊑ B (it is a subset of B)

B′ ⊨ α (that imply α)

∀B" ⊑ B′, B" ⊭ α (and it is minimal)

Then, the kernel contraction uses a function to discard from B at least one

element from each α-kernel. The function is called an incision function.

Definition 2.7 (Incision function): an incision function σ for B is a function that

for all α:

 {
σ(B ∥ α) ⊑ ⨆(B ∥ α)

if ∅ ≠ X ∈ B ∥ α, then X ∩ σ(B ∥ α) ≠ ∅

Definition 2.8 (Kernel Contraction): let B a belief base, α a belief and σ an

incision function, the kernel contraction of B by α is the operator defined as

B−σα = B ∖ σ(B ∥ α)

The kernel contraction has proved to satisfy the following postulates (Hansson,

1994): success, inclusion, core-retainment, and uniformity. The following

representation theorem summarizes these postulates for every kernel contraction

operator.

Theorem 2.3 (Kernel Contraction Representation): the operator − is a kernel

contraction for a belief base B if and only if it satisfies the following postulates:

Background knowledge &&&

22

[success] if ⊭ α then B − α ⊭ α

[Inclusion] B − α ⊆ B

[Core − retainment] if β ∈ B and β ∉ B − α , then there is a subset B′ of B such

that, B′ ⊭ α but B′ ⊔ {β} ⊨ α

[uniformity] if it holds for all B′ ⊆ B that B′ ⊨ α if and only if B′ ⊨ β, then

B − α = B − β

Core-retainment is a weak version of the relevance postulate: Instead of

requiring B′ to be interposed between B and B − α, we are satisfied by requiring it

to be a subset of B. While relevance requires that excluded sentence β that in some

way contributes to the fact B, but not B − α, implies α, core-retainment requires

that it contributes to the fact B implies α. The elements of B that do not contribute

at all in making B imply α are called the α-core of B (Hansson, 1999).

Base revision

Just like the corresponding operators for belief sets, revision operators for belief

bases can be constructed from two sub-operations: an expansion by α and a

contraction by ¬𝛼 (Hansson, 2006). According to Levi identity (𝐵 ∗ α = (𝐵 −

¬α) + α), the contractive suboperation should take place first. Alternatively, the

two sub-operations may take place in reverse order, 𝐵 ∗ α = (𝐵 + α) − ¬α. This

latter possibility does not exist for belief sets. If 𝐾 ∪ {α} is inconsistent, then 𝐾 +

α is always the same (namely identical to the whole language) independently of

the identity of K and of α, so that all distinctions are lost. For belief bases, this

limitation is not present, and thus there are two distinct ways to base revision on

contraction and expansion:

Internal revision: 𝐵 ∗ α = (𝐵 − ¬α) + α

External revision: 𝐵 ∗ α = (𝐵 + α) − ¬α

Intuitively, the external revision accepts an intermediate inconsistent state in

which both α and ¬𝛼 are believed, however the internal revision has

an intermediate state in which neither α nor ¬𝛼 is believed. The two operators

differ in their logical properties (Hansson, 2006).

Background knowledge &&&

23

Base consolidation

Consolidation is an operation that makes consistent an inconsistent belief base

(Hansson, 1997). Unfortunately, this operation of inconsistent belief bases does

not have a plausible counterpart for inconsistent belief sets. The reason is that

there is only one inconsistent belief set and all distinctions are lost (Hansson,

2006). The consolidation of a belief base 𝐵 is denoted 𝐵!. It can be modeled as a

contraction by the contradictory belief α⊥(Hansson & Wassermann, 2002),

i.e. 𝐵! = 𝐵 − α⊥. In what follows we introduce two operators for the base

consolidation: the partial meet consolidation and the kernel consolidation as well

as the set of postulates that characterize each operator.

Partial meet consolidation

The partial meet consolidation is a partial meet contraction by the contradictory

belief.

Definition 2.9 (Partial Meet Consolidation): let B a belief base and a selection

function γ, the partial meet consolidation of B, is the operator defined by:

𝐵!γ = ⋂γ(B ⊥ α⊥)

The following theorem characterizes the partial meet consolidation operator

(Hansson & Wassermann, 2002).

Theorem 2.4 (Partial Meet Consolidation Representation): the operator ! is a

partial meet consolidation for a belief base B if and only if it satisfies the

following postulates:

[Consistency] B! ⊭ α⊥

[Inclusion] B! ⊆ B

[Relevance] if β ∈ B and β ∉ B! , then there is a subset B′ of B such that, B! ⊆

B′ ⊆ B B′ ⊭ α⊥ but B′ ⊔ {β} ⊨ α⊥

Kernel consolidation

The kernel consolidation is a kernel contraction by the contradictory belief. For

each inconsistency element of the kernel, the consolidation removes from the

Background knowledge &&&

24

belief base at least one element that is responsible for this inconsistency.

Formally,

Definition 2.10 (Kernel Consolidation): let B a belief base and σ an incision

function, the kernel consolidation of B is the operator defined as:

 B!σ = B ∖ σ(B ∥ α⊥)

The following theorem characterizes the kernel consolidation operator (Hansson

& Wassermann, 2002).

Theorem 2.5 (Kernel Consolidation Representation theorem): the operator ! is a

kernel consolidation for a belief base B if and only if it satisfies the following

postulates:

[Consistency] B! ⊭ α⊥

[Inclusion] B! ⊆ B

[Core − retainment] if β ∈ B and β ∉ B! , then there is a subset B′ of B such that,

B′ ⊭⊥ but B′ ⊔ {β} ⊨ α⊥

2.3 Diagnosis Theory

Diagnostic reasoning systems have known two different approaches (Reiter,

1987). In the first approach, often referred as a diagnosis from the first principle, a

diagnosis task is normally defined in terms of a set of components in which a fault

might have occurred, a system description defining the behavior of the system ,

and a set of observations (or symptoms). If there is a discrepancy between the

behavior and observations, a diagnose agent should determine the subset of

components which may be the responsible. The only information available for him

to solve the problem is system description. Under the second approach, the

structure of the system is weakly represented and heuristic information plays an

important role in the diagnosis task. The diagnosis task relies on the codified

experience of the human expert being modelled, rather than on the deep

knowledge of the system being diagnosed. We focus in this section on the first

approach.

Background knowledge &&&

25

In order to seek a very general diagnosis theory, Reiter (1987) used the first-

order language to represent task specific information.

Definition 2.11 (System description): a system is a pair (𝑆𝐷, 𝐶𝑂𝑀𝑃), where

1) 𝑆𝐷, the system description, is a set of first-order sentences.

2) 𝐶𝑂𝑀𝑃, the system components, is a finite set of constants.

The system description shows the normal behavior of system components. In all

applications, the system description should mention a distinguishable unary

predicate AB (Abnormal) to mean an abnormal behavior. Real world applications

integrate observations in order to control components behavior. An observation is

a finite set of first-order sentences. A diagnosis is called only if a discrepancy

between the observation and the system description appears.

Definition 2.12 (Diagnosis): A diagnosis for a system with an observation OBS,

(𝑆𝐷, 𝐶𝑂𝑀𝑃,𝑂𝐵𝑆) is a minimal subset ∆⊆ 𝐶𝑂𝑀𝑃, such that

 𝑆𝐷 ∪ 𝑂𝐵𝑆 ∪ {𝐴𝐵(𝑐)|𝑐 ∈ ∆} ∪ {¬𝐴𝐵(𝑐)|𝑐 ∈ 𝐶𝑂𝑀𝑃 − ∆} is consistent.

Hence, a diagnosis is defined as the minimal set ∆⊆ 𝐶𝑂𝑀𝑃 such that the

observations 𝑂𝐵𝑆 are explained by a subset of the components having abnormal

behavior.

In order to compute diagnosis, Reiter (1987) proposes a method based upon a

suitable formalization of the concept of a conflict set. A conflict set is a subset of

the system components that together produce an abnormal behavior.

Definition 2.13 (Conflict set): a conflict set for (𝑆𝐷, 𝐶𝑂𝑀𝑃,𝑂𝐵𝑆) is a subset of

components {𝑐1, 𝑐2, … , 𝑐𝑘} ⊆ 𝐶𝑂𝑀𝑃 such that

𝑆𝐷 ∪ 𝑂𝐵𝑆 ∪ {¬𝐴𝐵(𝑐1), ¬𝐴𝐵(𝑐2),… ,¬𝐴𝐵(𝑐𝑘)} is inconsistent

A conflict set is minimal if no proper subset of it is a conflict set. The minimal

conflict set presents the advantage to repair the problem of diagnosis by fixing one

element in the set. For that purpose, Reiter (1987) introduced the notion of Hitting

set:

Background knowledge &&&

26

Definition 2.14 (Hitting set): Given a collection 𝐶of sets, a Hitting set of 𝐶 is a

set 𝐻 such that 𝐻 ⊆ ⋃𝑆∈𝐶𝑆 for 𝑆 ∈ 𝐶and 𝐻⋂𝑆 = 𝜙. A Hitting set for 𝐶 is minimal if

there is no proper subset of it that is a Hitting set for 𝐶.

Since, the same symptom can caused by different conflict sets, the set of these

conflict set constitute the collection 𝐶 and the diagnosis should be the minimal

Hitting set of it. This is the main result of diagnosis theory from the first principle

as it was argued by Reiter (1987).

Theorem 2.6 (Diagnosis): ∆⊆ 𝐶𝑂𝑀𝑃 is a diagnosis for (𝑆𝐷, 𝐶𝑂𝑀𝑃,𝑂𝐵𝑆) if and

only if ∆ is a minimal Hitting set for the collection of conflict sets for

(𝑆𝐷, 𝐶𝑂𝑀𝑃,𝑂𝐵𝑆).

Computing all diagnosis turns then to compute the set of minimal Hitting sets.

For that purpose, Reiter (1987) proposed the following algorithm.

Definition 2.15 (Minimal Hitting sets Algorithm): Given a collection of sets F,

an edge-labeled and node-labeled tree T is an HS-tree for the collection F if and

only if it is the smallest tree such that,

(1) its root is labeled by √ if F is empty. Otherwise, it is labeled by an arbitrary

set of F.

(2) If n is a node of the tree T, define H(n) to be the set of edge labels on the

path from the root to the node n. if n is labeled by √, it has no successor

nodes in the tree. If n is labeled by a set Σ of F, then for each σ ∈ Σ, n has a

successor node nσ joined to n by an edge labeled by σ. The label for nσ is a

set S ∈ F such that S ∩ H(n) = ϕ. If such a set S exists. Otherwise, nσ is

labeled by √.

2.4 Conclusion

In this chapter, we presented in a nutshell separately both theories of belief

revision and diagnosis theory. The former is a philosophical discipline, whereas

the latter is originated from the artificial intelligence discipline. The AGM model

is the most influential work in belief revision theory. It was originally derived

from legal theory where beliefs are considered as closed sets under the logical

Background knowledge &&&

27

consequence relation. The model has been extended beyond this theory to meet

new fields such as database updates and knowledge engineering. This practical

mutation was the direct impact that gave birth to the new model of base revision

theory. The AGM and base revision models rely on a nice and a precise logical

formalism to define a variety of change operators each of which is characterized

by a set of postulates to constraint the performed change. However, both models

lack the implementation of realistic revision methods. Diagnosis theory from first

principle is another field of research with the objective to restore systems

consistency after deficiencies. The research field of diagnosis theory has powerful

tools to prune computational complexity to the problem of diagnosis computing,

allowing them to deal with real-world situations. The Hitting set algorithm is the

main result of this theory for computing diagnosis. In the next chapters of this

dissertation, we show how to applicate techniques from both theories of base

revision and diagnosis from first principle to resolve the alignment evolution

problem.

The state of the art &&&

28

Chapter 3. Alignment change: The state of the art

3.1 Introduction

Usually, alignment is subject to change during its life cycle. Many reasons can

trigger this change. Alignments cannot keep their consistency in time because of

the dynamicity of ontologies. For instance, adding new knowledge in ontologies

can make alignment inconsistent (Euzenat, 2015). Retracting knowledge from

ontologies in response to some needs forces also alignment to follow this change .

Often, created alignments are incomplete which may not satisfy all applications

needs. Alignment can be improved manually or automatically by adding some

correspondences which may cause alignment inconsistency. Hence, alignment

needs to be evolved and maintained in order to follow the change and restore

consistency. Another reason that can trigger alignment change is alignment

debugging and repair. Ontology matching tools may produce erroneous

correspondences that can lead to an inconsistent alignment as well (Meilicke &

Stuckenschmisdt, 2009; Meilicke et al., 2007; Qi et al., 2009). The matching

process should be followed by another process of debugging and repair to

determine and correct faults.

Since the ontology evolution frameworks (Stojanovic, 2004; Plessers, 2006;

Klein, 2004) integrate the evolution of depending artifacts as a particular task in

the ontology evolution process we review in section 3.3 the main works of this

field of research. Then we discuss their applicability for the case of the alignment

evolution problem in section 3.4. Before that we should first clarify the notion of

ontologies as it is used in computer science in section 3.2. Similarly, we present

the notion of ontology alignment in section 3.5 followed by its life cycle in

section 3.6. We review the state of art of the alignment change approaches in

section 3.7. We classify these approaches and we discuss their outcomes according

to the already fixed requirements in the introduction of this thesis. We conclude

the chapter in section 3.8.

The state of the art &&&

29

3.2 Ontologies

Ontology (with a big O) is a branch of philosophy for studying the nature and

identities of things. In this discipline, philosophers try to answer questions

concerning what things exist, which attributes characterize them and how such

things can be grouped. Transferred to Artificial Intelligence, ontologies (with a

little o) are computational artifacts that symbolize a special kind of knowledge.

According to Gruber (1993), “for AI system, what exist is that which can be

represented”. So, an ontology specifies explicitly the objects, concepts, and other

entities that are assumed to exist in some area of interest and the relationships that

hold among them. This was behind the Gruber definition of an ontology “explicit

specification of a conceptualization” (Gruber, 1993). An explicit specification of a

conceptualization can be done extensionally or intentionally (Guarino et al.,

2009). The extensional specification is listing all possible interpretations of the

vocabulary elements used by the conceptualization to name its elements. This is

not always possible if the universe of discourse or the set of possible

interpretations is infinite. However, the intentional specification constrains the

intended meaning of the vocabulary elements by using a set of suitable axioms.

The set of such axioms capture the intended interpretations corresponding to the

specified conceptualization and exclude the unintended ones.

In summary, an ontology is an axiomatization of the intended meaning of a

vocabulary used by a conceptualization of some area of interest. The m anner of

the axiomatization had led Uschold and Gruninger (2004) to give a continuum of

kinds of ontologies (Figure 2). The spectrum expresses the meaning

expressiveness as well as the formality of ontologies that increase from left to

right. We qualify the two poles of the spectrum by "weak meaning" and "strong

meaning" respectively. On the weak side, we can express a very simple meaning;

on the strong side, we can express an arbitrary and complex meaning. Hence, an

ontology ranges from a simple set of terms with less or no explicit meaning to a

simple notion of a taxonomy (knowledge with minimal hierarchy or structure), to

a thesaurus (words and synonyms), to a conceptual model (with much complex

knowledge) to a logical theory (which is very rich, complex, consistent, and a very

significant knowledge).

The state of the art &&&

30

Figure 2: Ontologies spectrum

In order to meet semantic interoperability goals, ontologies should express a

shared view of the domain of knowledge rather an individual view. The

specification as a set of axioms can be given in informal, semi-formal or formal

languages. If we want to extend semantic interoperability to encompass machines,

ontologies should be formal. Studer et al. (1998) redefine the ontology as follows:

“An ontology is a formal, explicit specification of a shared conceptualization”.

Basically, formal ontologies use languages that underlay different knowledge

representation paradigms. Traditional languages such as Cycl (Lenat & Guha,

1989), KIF (Genesereth &Fikes, 1992), Ontololingua (Farquhar et al., 1997),

Flogic (Kifer et al., 1995) are based on frames combined with fi rst order logic.

Classic (Patel-Schneider et al., 1991) and LOOM (MacGregor, 1991) are based on

description logics. With the advent of the semantic web, new ontology languages

have emerged. RDF (Lassila and Swick, 1999) is based on semantic networks to

describe web resources. RDFS (Brickley and Guha, 2004) add frame primitives to

RDF to organize web metadata. OWL (Dean et al., 2004) was built on top of

RDF(S). OWL include some features from frames and others from description

logics to specify more explicitly vocabulary meaning.

Semantic networks use directed graphs to represent individuals, objects, and

abstract classes as vertices and semantic relations as edges. Within frames

paradigm (Brachman & Levesque, 1992), we can view the world as frames

(classes). A frame is just a list of slots (attributes). Values that can be assigned to

slots are called fillers. Two particular slots are recognized in frames paradigm:

The state of the art &&&

31

instance-of and is-a. The slot instance-of relates an individual frame to a generic

frame. The slot is-a organizes generic frames in a hierarchy structure that take

inheritance as the main reasoning principle. A generic frame inherits slots and

fillers from more generic frames. Exceptions hold when the same slot is attached

to both frames but with different fillers. This is why frame reasoning is qualified

as non-monotone. Description logics (Baader & Nutt, 2003) view the world as

concepts which are sets of individuals that play roles. Roles are modeling

relationships between individuals. Subsumption is a particular relation between

concepts modeling generality between concepts. The more general concept

subsumes the specialized one. The main reasoning services for description logics

are consistency checking, computation of the taxonomy, testing for unsatisfiable

concepts, and instance retrieval. Unlike frames, reasoning in description logics is

monotone.

3.3 Ontology Change

3.3.1 Origins

As was mentioned earlier, an ontology is an explicit specification of a

conceptualization of a domain. An ontology change may occur following the

change of any element of this definition (Klein & Fensel 2001; Noy & Klein,

2004). Namely, the described domain, the conceptualization of this domain and its

specification are subjects of change. Changes in domains are not rare. For

instance, domains merging change the initial domains to their fusion. A change in

viewpoints and the usage of ontologies are some of many reasons that lead to

changes in the conceptualization. In turn, the specification change can occur when

translating an ontology from a language to another. A more expressive language

allows representing more explicitly implicit knowledge.

Figure 3: Six-phase ontology evolution process

The state of the art &&&

32

3.3.2 Change process

Ontology change is the result of an evolution and or a repair process. According

to Stojanovic (2004), “Ontology Evolution is the timely adaptation of an ontology

to the arisen changes and the consistent propagation of these changes to dependent

artifacts”. Since the change can affect other parts of the ontology as well as

dependent artifacts, she proposed a process to execute the change. This process

encompasses six phases: a phase for change capturing, a phase for change

representation, a phase for the semantics of change, a phase for change

propagation, a phase for change implementation, and a phase for change

validation. Figure 3 schematizes the different phases of the ontology evolution

process. During the first phase, changes are captured either from explicit

requirements or from the result of change discovery methods. In the change

representation phase, the captured change should be explicitly represented.

Applying change may introduce inconsistencies in the ontology. Thus, the main

concern of the semantics of change phase is to resolve these inconsistencies in

order to bring the ontology in a consistent state. The semantics of change should

be propagated to dependent artifacts as well. This is the task of the change

propagation phase. During the implementation phase, ontology engineer should be

informed about all consequences of any change request before changes are

applied. Usually, ontology change constitutes the trace of evolution which may be

used in the rollback to the old ontology. In this case, the ontology change is

explicit and often stored in which is called a journal of change. Finally, the change

validation phase enables justification of performed changes and undoing them at

user’s request. It has as purpose to increase the usability of the evolution process.

Change propagation of depending ontologies should follow the same change

process as the single ontology evolution change process model.

In general, the change propagation can’t hold for many reasons (Plessers, 2006).

The web is distributed and decentralized environment. Hence, we are usually

unaware of all depending artifacts of an ontology. Propagating changes to them

turns out to be even more problematic. Maintenance of ontologies and their

depending artifacts is not necessary delegated to the same persons. Consequently,

ontology engineer may have no permission to modify a given dependent artifact.

Furthermore, maintainers may not want to update artifacts at that moment or at all.

The state of the art &&&

33

For these reasons, Plessers (2006) distinguish between the evolution of an

ontology and their depending artifacts. The evolution of an ontology holds

following a request of change while the evolution of an artifact is a response to an

ontology change. The former executes the evolution process of an ontology in five

phases: change request, change maintenance, change detection, change recovery,

and change implementation while the latter performs the evolution process of a

depending artifact in three phases: a phase for change detection, a phase for the

cost of evolution analysis, and a phase for analysis of versions consistency. Figure

4 shows an overview of the different phases for both tasks of the ontology

evolution process. Ontology engineers express their request for change during the

change request phase. Check and resolving inconsistencies by introducing deduced

changes are the main concern of the consistency maintenance phase. In order to

provide a better understanding of the evolution of an ontology, changes that were

not explicitly listed in the change request are detected during this phase.

Unnecessary deduced changes can be recovered during the change recovery phase.

The goal of change implementation phase is to implement the requested and

deduced changes into an actual ontology. The change detection phase for the

evolution in response task allows maintainers of dependent artifacts to create their

own set of change regardless of the detected change during the evolution in

request task. The goal of the cost of evolution phase is to reveal the

inconsistencies that an update would introduce and to indicate the latest backward

compatible version. The purpose of the version consistency phase is to keep a

depending artifact consistent either by updating it with a backward compatible

version or not by the maintainer.

Figure 4: On request and on response ontology evolution processes

Schema evolution provides both access to the old and the new data via the new

schema and schema versioning permit both access to old and new data from

The state of the art &&&

34

different schema interfaces. In open environment such as the semantic web, this

traditional distinction is no longer applicable to ontologies. This means multiple

versions of the same ontology are bound to exist and must be supported.

Dependent artifacts of an ontology are free either to move to the new version or to

keep the connection with the old one. These leaded Klein (2004) to consider the

change management as the key issue in the support of ontology evolution. Hence,

he combined the ontology evolution and versioning in the same concept defined by

“the ability to manage ontology changes and their effects by creating and

maintaining different variants of the ontology”. Thus, the focus of attention of a

versioning management system is to represent the change as well as to specify

mappings, perform transformation, comparison, and identify compatibility

between versions of the same ontology. Ontology change in this setting is always

implicit and embedded in versions rather than in journals as in evolution

environment. It is the role of management systems to compute the change and

make it available for applications so that they can update their functionalities.

In the next section, we focus on some approaches that instantiate some or all

phases of these process of change.

(a) Change Representation

Ontology change is a set of operations applied to ontology elements. Two types

of operations are distinguished in the literature: elementary operations and

composite operations. Elementary operations can only apply to one ontology

element while composite operations are the composition of such elementary

operations and other composite operations. The expressiveness of change

representation is directly influenced by the expressiveness of the ontology

language. For instance, Stojanovic (2004) consider KAON ontologies. KAON

language is based on an extension of RDF(S). She distinguished three types of

change operations: elementary change, composite change, and complex change.

Elementary change is a basic operation that modifies an ontology element.

Composite change is any change that modifies elements neighbors and a complex

change is any change that can be decomposed into any combination of at least two

elementary and composite ontology changes. This classification of the ontology

change forms an ontology of change. This ontology models what changes, why,

when, by whom, and how are performed in an ontology. The main concepts of this

The state of the art &&&

35

ontology are additive change and contractive change. Additive change is to add a

new element to an ontology. Contractive change is to remove an element from the

ontology. A change log uses the vocabulary of this ontology to store change as an

instance of this ontology. Klein (2004) considers OWL ontologies which are more

expressive than KAON ontologies. He followed the same change classification as

the previous approach with the exception of basics operations where he includes

the modify operation as a subclass of this category of change although it can be

considered as the composition of a contractive followed by an additive change .

Elementary changes are called atomic operations and a composite change consists

of a composition of any set of atomic operations. Unlike the previous approach,

this ontology of change contains more types of change relatively to OWL, the

underlying ontology language.

Unlike to previous approaches, Palma et al. (2009) propose a generic ontology

for the representation of ontology changes. This ontology models generic

operations as taxonomy of changes that are expected to be supported by any

ontology language. The proposed taxonomy extends previous approaches with a

more granular classification which considers the actual atomic changes that can be

performed upon an ontology. Moreover, the taxonomy can be specialized for

different ontology languages.

(b) Change detection

The change detection allows ontology engineers to create their own set of

change by comparing versions. The comparison between versions has been the

subject of several approaches (Noy & Musen, 2002; Klein et al., 2002;

Papavassiliou et al., 2009; Redmond & Noy, 2011; Kremen et al., 2011; Hartung

et al., 2013). PromptDiff (Noy & Musen (2002) and COnto-Diff (Hartung et al.,

2013) consider directed acyclic graphs like ontologies. They support the detection

of several basic as well as complex changes including concept additions,

deletions, splits and merges. Both approaches achieve comparison in two steps:

version matching and a structural difference computing. The PormptDiff algorithm

(Noy & Musen, 2002) uses an extensible set of heuristic matchers (e.g., single

unmatched sibling, unmatched inverse slots, or same type/name) to detect changes

between two ontology versions and a fixed-point algorithm to combine the results

of matchers to produce a structural diff between them. COnto-Diff (Hartung et al.,

The state of the art &&&

36

2013) uses the system GOMMA (Kirsten et al., 2011) to determine corresponding

concepts in the input ontology versions and then it applies a set of rules to detect

ontology changes.

 OntoView (Klein et al., 2002) and Papavassiliou et al (2009) consider RDF

triple-based ontologies. The OntoView algorithm (Klein et al., 2002) uses a graph

representation as well as a set of rules to detect basic changes between versions.

Complex changes such as merges or splits are not supported. Papavassiliou et al

(2009) distinguishes between low level changes and high level changes between

versions of RDF(S) ontologies. Low level changes are the set of added and deleted

RDF triples. High level changes correspond to basic and composite changes. Basic

changes describe a change in one node or edge of the graph corresponding to the

RDF(S) ontology while composite changes describe changes affecting several

nodes and/or edges of the RDF(S) ontology. In order to insure determinism in

change detection, composite changes takes precedence over the detection of basic

ones.

A recent approach (Redmond & Noy, 2011) inspired by PromptDiff (Noy &

Musen, 2002) was born out of the need to support OWL 2. It determines the

difference between the signatures and axioms of the two versions and reorganizes

the axiom changes into a format that is more readable to a human. Unlike this

approach, another tool (Kremen et al., 2011) computes the difference between

OWL ontologies only as a set of axioms and it does not consider separately the

difference of signatures. While the former consider a purely structural difference,

the latter compute the logical difference by taking a more deep analysis to check

among the changed axioms that still entailed.

(c) Consistency checking and resolution

An ontology is consistent if it satisfies some consistent conditions . Haas and

Stojanovic (2005) distinguish three types of consistency: structural, logical and

user defined consistency. The structural consistency depends on the underlying

models of ontologies. Conditions of consistency are constraints that are defined

for the ontology model with respect to constructs that are allowed to form the

elements of an ontology. While the structural consistency is determined by a set of

conditions the logical consistency ensures no contradiction can be entailed from

The state of the art &&&

37

ontologies. The user-defined consistency refers to user requirements that need to

be expressed outside of the ontology language itself. In order to resolve

inconsistencies, additional change should be generated to bring the ontology in a

consistent state. They introduced different ways baptized strategies to resolve

every particular inconsistency. Different strategies may generate different

additional change and hence different ontologies.

While works on schema evolution have largely influenced the resolution of the

structural consistency, the theory of belief revision was the main inspiration of the

works of solving the logical inconsistency problem. In belief revision theory,

inconsistency is only one postulate from others that can constrain an evolutional

operator (Alchourrón et al. 1985). Some results related to the feasibility of

applying AGM model for ontology evolution have appeared in (Flouris 2006). The

author showed that some description logics cannot satisfy all the AGM postulates.

These logics are not AGM-compliant. The absence of negation is one of many

problems that hamper the application of AGM model in description logics. Ribeiro

and Wassermann (2007) have undertaken the problem of belief revision for logics

without negation by adapting kernel operators (Hansson, 1994). A base kernel is a

set of all minimal subset of a belief base that causes the entailment of some

sentences. One advantage of the base kernel is the simply removing of one

element from each set can stop the entailment. See chapter 2, for more details on

this point.

Justification is the same idea as the base kernel. It is an important notion for

explanations in ontologies (Horridge, 2011). Some errors such as contradictions

may occur following the design of ontologies which may hamper their usage.

Ontology debugging and repair is the process of diagnosing and repairing such

errors (Kalyanpur, 2006). The justification, a minimal subset of an ontology that is

sufficient for an entailment to hold, constitutes a good mean for explanations in

ontology debugging and repair research field.

(d) Change propagation

Klein (2004) shows how to deal with the tasks of ontology synchronization as

well as the integrity of modular ontologies problem in his framework. The

ontology synchronization introduced by Oliver (2000) consists of change

The state of the art &&&

38

propagation from a shared vocabulary to a local vocabulary in his framework. A

modular ontology refers to concepts of others ontologies. The integrity of a

modular ontology aims at keeping the local reasoning valid even the external

referred concepts are changed. Stojanovic (2004) studied change propagation to

dependent ontologies. In this approach, ontologies depend on replications instead

of their original ontologies. She investigated two ways of propagation. The former

is called Push-based approach. Changes are propagated as they happen to

dependent ontologies that reside on the same node as the original ontology. The

push-based approach which is suitable when strict dependent ontology consistency

is required since the information about the original state of the changed ontology

is available for the evolution of the dependent ontology. The latter is the pull -

based approach. Changes are propagated to distributed dependent ontologies

residing at a different node of the network only at their explicit request. The pull -

based approach is better suited for less stringent consistency requirements. This

technique of propagation might work for a controlled environment where

ontologies fall under the same authority. However, in uncontrolled setting

ontology engineers cannot be forced to update to the latest version of an ontology

they depend on but they can choose between deferring changes, updating to a

backward compatible, or to a non-backward compatible version of an ontology

(Plessers, 2006). To resolve the inconsistency, Plessers (2006) proposed the

rupture of dependencies between ontologies and copying the essentials entities

from changed ontologies to dependent one.

3.3.3 Change process support

Nowadays, many ontology development tools exist. It is rare to found a tool that

supports completely the ontology evolution process. KAON implements the entire

six phases of change process (Stojanovic , 2004). Protégé (Noy et al. 2000) is one

of the most popular tools for ontology design and creation. The functionality of

Protégé has been enhanced so as to provide several interesting features useful for

both ontology design and evolution (Noy et al.2006). Two new plugins for change

handling come to join the set of protégé plugins. The Change-management plugin

provides access to a list of changes and enables users to add annotations to

individual changes or groups of changes; when this plugin is activated, the

The state of the art &&&

39

changes are stored as instances in an ontology of change. This ontology extends a

previously developed ontology jointly with Klein (2004). The Prmpt (Noy &

Musen., 2003) plugin is a suite of tools for ontology management. Besides,

versions comparison, it provides facilities to examine a list of users who

performed changes and to accept and reject changes.

The NeOn is a kit of ontology development tools. The development of

ontologies is considered within a network of ontologies (Haase et al. 2006),

defined as a collection of ontologies related together via a variety of different

relationships such as mapping, modularization, version, and dependency

relationships. NeOn permits the manual application of change to ontologies. It

contains a list of plugins such that each of them supports one aspect or more of the

ontology evolution process. The change capturing plugin supports the logging of

changes automatically from the NeOn ontology editor. It also supports the

application of logs generated by other systems. Additionally, it is also in charge of

propagating changes to the distributed copies of the same ontology. Evolva is a

plugin that supports change discovery from external data sources such as text,

folksonomies, and RSS feeds. RaDon supports change inconsistencies diagnosis

and repair. Finally, NeOn permits change verification and validation.

3.4 Discussion

Ontology evolution approaches don’t study the alignment evolution as a

particular depending artifact. Instead, they describe general frameworks for the

evolution of depending artifacts regardless of their natures. In what follows we

discuss the applicability of these frameworks to the problem of alignment

evolution under ontology change. The discussion will be guided by the already

introduced requirements of alignment evolution problem, namely, the ontology

change identification, the consistency, the minimality of change, and users’

involvement. First, we discuss globally how ontology evolution frameworks can

embed these requirements in their change process. Then we discuss their outcomes

for every requirement.

a) The change process: Stojanovic (2004) studied the propagation of an ontology

change to dependent ontologies. Change propagation of dependent ontologies

The state of the art &&&

40

should follow the same change process as the single ontology evolution change

process model (See figure 3). This process model can also be adapted for

alignment evolution problem. The change capturing phase can be refined to a

change identification phase. The change representation phase should be a part of

the change identification phase since the identification can’t hold without the

consideration of some patterns of change. The semantics of change phase ensures

the consistency of alignments following ontology change. In huge, distributed, and

decentralized environments such as the semantic web we can’t aware of all

applications depending to this alignment. Hence, we envisage two types of

propagation. A push-based approach that propagates alignment changes to

applications which are managed by the same maintainer as the alignment. A pull-

based approach that propagates changes to applications which are not under the

authority of the alignment maintainer. But we can satisfied by delivering an

evolution log as a journal of change to these applications. Alignment evolution log

shows the difference between the old and the new alignment. This is the role of

the change implementation phase. Before that, the alignment maintainer should

validate the change. The system shows the inconsistencies, gives explanations, and

proposes changes. In turn, alignments maintainers validate the change , recover the

unnecessary change, adapt it, or cancel the change by keeping connection with the

old version of the evolved ontology if it is available.

Plessers (2006) differentiates the change of ontologies from the change of their

dependent artifacts. He proposed a process of three phases for artifacts evolution

(See figure 4). The requirement of change identification can be fulfilled during the

phase of change detection. During this phase, the alignment evolution system

should offer an interface at the side of the alignment maintainer which allows him

to detect and represent changes according to its own vision. The requirements of

the consistency change and minimal change can be the subject of the phase of the

evolution cost. During this phase, the system shows inconsistencies, gives

explanations, and proposes changes. This assistance serves as a guide for

maintainers to decide or not the change. The main purpose of versions consistency

phase is helping maintainers to find previous backward compatible versions of the

changed ontology since they are free to choose updating or not their artifacts. This

helps change tracking by alignments maintainers. The maintainer can accept the

The state of the art &&&

41

change, recover the unnecessary changes, adapt the change before updating the

alignment or cancel it if an old backward compatible version is available. Like

ontologies, alignments have dependent applications that should be updated

following their changes. The alignment evolution system should implement and

deliver the alignment change to these applications. Fortunately, the alignment

change is not as complex as the ontology change and it can be easily understand

by applications maintainers. Hence, applications maintainers don’t need to create

their own sets of change. However, the delivered set helps them to evaluate the

cost of evolution, to check backward compatibility, and to decide updating or not

their applications. Also, versions consistency can facilitate to retrieve backward

compatible versions of alignments.

In summary, both discussed ontology evolution frameworks should be adapted

to fulfil the cited requirements. As ontologies, alignment evolution has its own

depending applications which may create a confuse evolution with artifacts of

evolved ontologies. Consequently, we think separating the task of ontology

evolution from that of alignment evolution helps in removing such confusion.

b) Change representation and detection: the change representation task aims at

drawing the set of patterns of change relating to a model of an evolved ontology.

While the change detection task match between an ontology change and these

patterns of change. These patterns of change constitute ontologies of change.

However, these ontologies of change are ontology languages dependent which

hamper them to reach the wished consensus. Nevertheless, these ontologies and

detection tools of change may constitute a library for alignments maintainers to

choose between them according to their needs.

c) Checking and resolving inconsistencies: the ontology inconsistency expresses a

set of hard constraints which condition the usefulness of ontologies. Checking

inconsistencies turns to checking the violation of at least one of these constraints.

Different ways may exist for resolving the same inconsistency. One criterion that

can guide the resolution is the minimal change. Unlike consistency, the minimal

change expresses a soft constraint since it doesn’t affect the usefulness of

ontologies. Which means; consistency constraints take precedence over minimal

change during the resolution of inconsistency. Sometimes, it is inevitable to

sacrifice the minimal change against the consistency satisfaction. The challenge

The state of the art &&&

42

question is how to ensure the compromise between the consistency and the

minimal of change constraints. Among all the above presented approaches, only

belief revision based approaches can reach this objective. In Belief revision

theory, a change is a set of rational operators constrained by a set of postulates

(See chapter 2 for more details). A promise investigation is how to apply this

theory for the alignment evolution problem as well. The alignment evolution is a

knowledge intensive task which needs users’ involvements. Justifications as

explanations approaches can also play big roles for the alignment evolution

problem.

3.5 Ontology alignment

According to Guarino et al (2009), an ontology can only approximate the

specification of a conceptualization and the degree of such specification depends

(1) on the richness of the universe of discourse (2) on the richness of the

vocabulary chosen (3) on the axiomatization. This divergence in the vocabulary

chosen as well as in its axiomatization also called terminology heterogeneity and

conceptual heterogeneity respectively (Euzenat & shvaiko, 2013) may lead to the

development of heterogenic ontologies of the same universe of discourse.

Overlapping universes of discourses may lead to overlapping ontologies as well.

Relating ontologies by stating semantic relations between their vocabularies

constitutes which is called an ontology alignment. A semantic relation expresses

how meanings of both vocabularies are related. Usually, the set-theoretical

relations are used to specify such relations. The equivalence relation expresses

related meanings are the same, the inclusion relation expresses meanings

inclusion, the overlapping relation expresses meanings overlapping, and the

exclusion relation expresses meanings disjointness. Even, a mapping should be a

mathematical function whereas an alignment is a general semantic relation

between ontologies; some authors (Kalfoglou & Schorlemmer, 2003; Noy, 2009)

use the term mapping instead of alignment.

The state of the art &&&

43

Figure 5: Model theoretic based alignment global semantics

Since alignments relate ontologies, interpretations of semantic relations should

remain compatible with interpretations of related vocabularies. In other words,

alignment should not impose new interpretations for ontologies or change the

previous one but only show how interpretations are related. We distinguish two

approaches to relate interpretations of ontologies relatively to the domains of

interpretations. When ontologies describe the same domain of interpretation, an

alignment interpretation becomes a part of the global interpretation formed by the

union of the different interpretations of the aligned ontologies. This is informally

presented in Figure 5. In this approach, the aligned ontologies together with the

alignment form a global ontology. We can use OWL constructs to express

alignments between entities of the different ontologies. The construct owl:import

allows to import all entities of the aligned ontologies in the space of the global

ontology and constructs such as owl:equivalentClass, rdfs:subclassOf, and

owl:disjointClasses permit to represent set-theoretical relations between them. For

contextual interpretations which reflect different points of view on the same real

world entities, semantic relations of an ontology alignment are interpreted as

bridge rules relating these interpretations (Bouquet et al, 2003). These rules

express how to translate instances from the source ontology to the target ontology.

The C-OWL language extends OWL by embedding bridge rules to represent

contextual alignments. Unlike OWL, C-OWL makes a clear separation between

alignments and ontologies. Figure 6 shows intuitive interpretations of some bridge

rules.

The state of the art &&&

44

Figure 6: Model theoretic based alignment contextual semantics

The above-cited approaches rely on model theoretic semantics to give an

extensional interpretation for alignments. The model theoretic semantics expresses

extensionally how meanings of two different vocabularies are related. An

alternative approach constraint intentionally the relations between meanings.

Reductionist semantics (Meilicke & Stuckenschmidt, 2009) gives an

axiomatization to constraint the alignment between entities in different ontologies.

Within this semantics, an alignment interpreted as a set of axioms together with

ontologies form a merged ontology. Reasoning on alignment turns to reasoning on

this merged ontology. Nevertheless, the model theoretic semantics and the

axiomatic semantics are not disjoint but we can move from the model theoretic

semantics to the axiomatic one and vice versa. For instance, the alignment natural

semantics which is a reductionist semantics where the semantic relations

translated to axioms in some ontology language are joined to all axioms of both

ontologies correspond to the model-theoretic semantics with one domain

interpretation for all aligned ontologies.

MAFRA framework (Martins & Silva, 2009) gives an operational semantics to

alignments by attaching services to their semantic relations. An alignment in this

approach is an instance of an ontology named SBO (for Semantic Bridge

The state of the art &&&

45

Ontology) to serve a representation and exchange mechanism of semantic

relationships between ontologies. SBO specifies, interrelates, and classifies the

types of alignment relations. Besides, the ontology provides other modelling

constructs necessary to express alignments. The SBO ontology contains two main

classes: SemanticBridge and Service. The SemanticBridge class in turn is

specialized into two classes: ConceptBridge and PropertyBridge. The relation

hasBridge associates a PropertyBridge to a ConceptBridge. The subBridgeOf

relation gives a hierarchy structure to ConceptBridges. The ConceptBridge

specifies a semantic relationship between source concepts of the first ontology

with target concepts of the second ontology. The Service class implements the

possibilities of transformation related to the class SemanticBridge. The service

copy, always attached to the ConceptBridge, is responsible for translating

instances of source concept to instances of the target concept during the execution

phase.

3.6 Ontology alignment life cycle

Many tasks are related to the ontology alignment development and they are

performed as long as its life cycle (Euzenat et al. 2008). We distinguish three main

phases of this life cycle: The design phase, the sharing phase, and the using phase.

Adapted from (Euzenat & shvaiko, 2013), figure 7 outlines these phases and their

related tasks. The design phase is an iterative process formed by three tasks: the

creation task, the evaluation task, and the enhancement task. The task of alignment

creation known also by the ontology matching task is the first task in the life cycle

which aims to create alignments. Nowadays, many performant ontology matching

tools are available (Euzenat & shvaiko, 2013). Based on different aspects of the

knowledge encoded in ontologies, they combine different techniques to match

ontologies. For instance, terminological techniques compare the lexicon used to

designate ontological entities. Some tools consider ontologies as directed acyclic

graphs and hence they compare the structures that surround entities. In order to be

useful, the obtained alignment should be evaluated. The evaluation task consists of

assessing the correctness as well as the completeness of this alignment which

might lead to an enhancement. The enhancement task may be the subject of a

debugging process if the alignment contains erroneous correspondences, an

The state of the art &&&

46

adapting process following an ontology change, enhancing an incomplete

alignment, or just a call of refinement procedures such as the alignment trimming

relatively to a fixed threshold. The tasks of creation, evaluation, and enhancement

might then go through an iterative process until an alignment is deemed worth

publishing. During the sharing phase, the alignment can be stored and

communicated to other parties interested in such an alignment. Open servers are

now available to store, index, organize and share alignments. For instance,

Bioportal8 is an open community-based repository of biomedical ontologies. Users

can browse alignments, upload new alignments, and download alignments that the

repository has (Noy et al. 2008). In the final phase, the alignment can be

exploited. Servers can deliver the alignment in different formats in order to ensure

its large usefulness. Then, applications interpret it according to their needs and

using it to perform actions, like mediation and merging.

Figure 7: The ontology alignment life cycle

3.7 Alignment evolution

3.7.1 Naming disambiguation

In the literature, approaches studied the alignment evolution problem under

various names: alignment adaptation, alignment maintenance, alignment evolution,

and alignment revision (Dos Reis et al., 2015). Under the name alignment

8 http://bioportal.bioontology.org

The state of the art &&&

47

revision, Euzenat (2015) study the problem of restoring consistency of a network

of ontologies formed by a set of ontologies connected by a set of alignments when

concerned ontologies were evolved or the alignment was improved by adding

some correspondences. This study considers ontologies as logical theories.

Changing logical theories is the classical philosophy problem of belief revision

where beliefs are logical theories (See chapter 2, for more details). While this

approach borrowed the name of alignment revision from philosophy community

other approaches (Groß et al., 2013; Dos Reis et al., 2013; Martins & Silva, 2009)

follow the line of software engineering to adopt alignment evolution, alignment

maintenance, and alignment adaptation names by considering ontologies and

alignments as software products.

Alignment debugging is a task performed before alignment delivery to diagnose and

repair alignment produced by ontology matching tools. Created alignments might

contain errors such as redundancy, inconsistency, imprecision, or an abnormal

behavior (Wang & Xu, 2008). Here again, alignment debugging knowns the same

problem of naming ambiguity as alignment evolution problem. When a produced

alignment between DL ontologies is inconsistent or incoherent, Meilicke et al

(2009) and Qi et al (2009) study this problem under the name of alignment

revision. By converting the alignment to a set of axioms and merging it with

ontologies, they obtain a global knowledge base. Making consistent an

inconsistent belief base is a particular operation in base revision theory (See

chapter 2, for more details). Whereas, the name debugging is the most useful

naming for programs debugging in software development domain, rev ision is the

conventional name used for base change theory which leads these approaches

adopting the name of revision instead of debugging name.

3.7.2 Classification

Software evolution and maintenance in software engineering is the set of

activities which keep systems operational and meet user needs. Swanson (1976)

identified three categories of maintenance: the corrective maintenance, the

adaptive maintenance, and the perfective maintenance. The corrective maintenance

is the reactive modification of a software product performed in response to the

https://en.wikipedia.org/wiki/Software_engineering

The state of the art &&&

48

assessment of failures. The adaptive maintenance is the modification of a software

product performed in anticipation of change within the data or processing

environments. The perfective maintenance is the modification of a software

product performed to eliminate inefficiencies, enhance performance, or improve

maintainability. The alignment maintenance task is of great importance as it aims

to keep the alignment useful and ready in time during its life cycle. Alignment

maintenance approaches follow different ways to maintain and evolve a lignments.

Some approaches view the problem of alignment evolution under ontology change

as an adaptive process. The main challenge for them is how to modify alignments

according to the detected changes in ontologies. Sometimes, ontology change such

as adding concepts has no impact on alignment but designers prefer to extend it

out of the need with new correspondences in order to enhance its usefulness. For

some scenarios, this extension can be classified as a perfective maintenance.

However, the same extension might become more than necessary for some

applications who request a full interoperability and integration. In this scenario,

the extension should be classified as an adaptive maintenance since it was born

following a change in applications needs. Hence, we qualify this type of

approaches as an adaptive and perfective maintenance. When an alignment

extension or an ontology change hamper the usefulness of the alignment by

introducing errors, other kind of approaches try to identify and correct these

errors. We qualify this kind of approaches as a corrective maintenance. Similar

techniques used by different approaches that aim to correct errors during

alignment debugging can also be applicable for the alignment maintenance

problem. Following this classification, we present and discuss the outcomes of

these approaches. The requirements of the alignment evolution under ontology

change problem fixed a priori in the introduction of this thesis are the main guide

of this discussion. Table 1 summarizes this discussion.

3.7.2.1 Alignment adaptive and perfective maintenance

The main objective of adaptive maintenance approaches is adapting alignments

according to changes in the implied ontologies. Approaches of this category (Groß

et al, 2013; Dos Reis et al, 2013; Khattak et al, 2015) consider an ontology as a

directed acyclic graph (DAG). They support the detection of several basic as well

The state of the art &&&

49

as complex changes including concepts addition, deletion, split, merge, and move.

Then, they use an ontology change handler to guide the alignment maintenance

process that converts the change either to an alignment between the versions of the

evolved ontology or to a set of actions that adapt the affected correspondences

according to the type of change.

Groß et al. (2013) present two approaches for adapting the ontology alignment:

the composition-based and diff-based adaptation approaches. Both approaches rely

on the composition of the old alignment with some generated alignment between

versions of the evolved ontology. The alignment composition adapts the old

alignment relying on the composition of the set-theoretic relations and using some

functions such as the maximum or the aggregation to combine their associated

semantics similarities. The composition based approach uses the ontology

matching tool GOMMA (Kirsten et al., 2011) to convert the implicit ontology

change represented by the presence of versions to an alignment while the diff-

based approach converts every type of change to a semantic relation between

entities concerned by this change. The diff-based approach uses COnto-Diff tool

(Hartung et al., 2013) to identify basic changes like attribute value changes as well

as complex change types such as concepts split or merge. Both approaches seek

new match for added concepts with concepts of the target ontology to enhance the

alignment with new correspondences. According to authors, the outcome of this

adaptation process is a valid alignment. However, alignment validity is not

explicitly defined but they let it to expert’s appreciation. The correctness of the

alignment composition depends on the correctness of the composed alignments.

Both proposals rely on heuristic rules to generate an alignment between versions.

Consequently, no guarantees are given to ensure the validity of the adapted

alignment. Furthermore, the alignment composition is an incomplete method

which might lead to unnecessary missing of some correspondences in the new

alignment.

Dos Reis et al. (2013) present an automatic adaptation approach relying on a

change handler which converts the change to mapping adaptation actions for

adapting the affected correspondences according to the type of change. Based on

the same tool COnto-Diff as the previous approaches, they compare versions and

categorize changes according to a revision change, an addition change, or a

The state of the art &&&

50

deletion change. They proposed five distinct mapping adaptation actions that

represent different possibilities for adapting alignment: correspondences addition,

correspondences remove, correspondences move, correspondences derivation, and

modification of semantic relations. Remove and addition of correspondences are

atomic actions while move, derive, and modification of semantic relations are

composed actions. The move action re-allocates a correspondence in the alignment

when it is judged invalid. The derivation action creates a modified copy of a

correspondence which is still considered as valid. Usually, the modification action

is used in conjunction with move and derivation action to change the type of

semantic relations. Before every mapping adaptation action, an operation of

matching is performed to determine the position (e.g, the concept) where the new

correspondence should be re-allocated or from which is derived. The change

handler associates an action or more to every type of change. The move action is

associated to a revision change or to a deletion change while the derivation action

is associated an addition change. Alike the previous approaches, the alignment

validity is not explicitly defined. Furthermore, the move and derivation actions

rely on matching operations. Consequently, it is not clear how the approach can

ensure the alignment validity relying only on performing such mapping adaptation

actions.

Regardless of the change type, Khattak et al (2015) act by deleting all

correspondences concerned by the change and then add new correspondences by

partially re-computing the alignment. Exploring the change history log (Khattak et

al, 2008) of the evolved ontologies, the approach reuses completely the unaffected

part of the alignment and the changed elements in the source or the target

ontology of the alignment are automatically matched with the complete current

version of the other ontology. Without affecting precision, the proposed approach

reduces significantly the time required to maintain alignment compared to the time

spent when alignments are fully re-computed from scratch using ontology

matching tools. The approach doesn’t much profit from the availability of the

ontology change to adapt alignment. Instead, the approach uses changes only for

filtering affected correspondences. Just seeking new match for changed entities

can’t ensure alignment validity. This is why alignments produced b y ontology

The state of the art &&&

51

matching tools should be debugged to detect and correct erroneous

correspondences (See section 3.7.2.3).

3.7.2.2 Alignment corrective maintenance

Unlike adaptive maintenance approaches, approaches of corrective maintenance

detect and correct erroneous correspondences. Erroneous correspondences may be

the consequences of the evolved ontologies or the evolution of the alignment by

itself.

 In (Martins & Silva, 2009), an alignment is an instance of Semantic Bridge

Ontology (SBO). This ontology serves a representation and an exchange

mechanism of semantic relationships between ontologies (See section 3.5). The

evolution of alignment in this approach is a process that aims to preserve the

semantics of this ontology when the deletion of concepts in the source or the

target ontology is observed. Deletion of concepts leads to invalid entities of the

ontology SBO such as invalid arguments for Concepts Bridge and Properties

Bridge. Inspired by strategies applied in Stojanovic’s ontology evolution

framework (Stojanovic, 2004), they propose a list of strategies to correct invalid

entities of SBO. In order to preserve as much as possible the old alignment, they

sort the list of invalid entities. For instance, since Properties bridges are always

defined in the context of Concepts Bridges, invalid Concepts bridges should be

corrected first. Two methods are proposed to correct invalid entities. The first

method is a user driven alignment evolution. The user chooses the strategy and the

system automatically takes care of the consequences of the changes following the

execution of the chosen development strategy. In the second method, the system

predicts the ontology evolution strategies from the journal of change. The changes

are captured in a log that stores the exact sequence of changes made to update

ontology. The authors establish a list of rules to identify the evolution of ontology

scenario which determines the alignment evolution strategy. According to authors,

ensuring SBO validity implies alignments validity. This is true at the structural

level since valid entities in SBO always give valid correspondences in alignment.

Moreover, this validity is given with a minimality of change by sorting invalid

entities. These approaches study only the impact of deleted concepts on

The state of the art &&&

52

alignments. It is not clear how they can ensure alignments validity for other types

of change.

Euzenat (2015) study the problem of restoring consistency of a network of

ontologies formed by a set of ontologies connected by a set of alignments when

concerned ontologies were evolved or the alignment was improved by adding

some correspondences. Inconsistency may manifest in two ways: local

inconsistencies or a global inconsistency. A local inconsistency is an ontology

inconsistency or an alignment inconsistency while global inconsistency arises in

the network but ontologies and alignments are consistent in isolation. Local

inconsistencies may only be solved by local revision of the concerned ontology or

the concerned alignment while these local operations can used independently to

resolve the global inconsistency. The author considers an ontology as a logical

theory (LT) formed by a set of axioms. According to him, the main problem in

semantic web is to accumulate knowledge rather than to contract it. So, he focuses

only on revision of the network with axioms. Mirroring the framework of AGM

model of belief revision (Alchourrón et al., 1985), the approach introduces a set of

postulates which constitute constraints to be fulfilled by any operator of local

change on alignments as well as on ontologies. Then it provides postulates for

revising the network of ontologies when an ontology of the network is revised by

an axiom or an alignment is revised by a new correspondence. The approach

showed that the global revision of the network is a generalization of local

revisions. Besides, the approach defines a partial meet operator for the alignment

revision that satisfies the fixed postulates. Unfortunately, this operator can’t be in

general a revision operator for the network. Instead a partial meet operator for a

network can be designed as the intersection of selected maximal consistent sub-

networks with respect to added axioms or correspondences. The approach provides

alternatives strategies in order to minimize the network change. For instance, one

can only change the concerned ontology while others can change only alignments

since ontologies are the pillar of knowledge and its worth do not modify them only

if there is not another way. As it is mentioned by the author, this work can be

considered as a first step to understand revision in networks of ontologies that

may help to consider the problem of base revision. Belief sets in the AGM

framework are closed sets under the logical consequence relation. While the

The state of the art &&&

53

framework presents nice results it lacks practicability since closed sets are infinite

or at least very large sets that cannot be incorporated easily into a computational

framework (Peppas, 2008).

Table 1 : classification of alignment evolution approaches

 Groß et al,

2013

Dos Reis et

al, 2013

Khattak et al,

2015

Martins &

Silva, 2009

Euzenat ,

2015

Category Adaptive and Perfective Maintenance Corrective Maintenance

Ontology

Model
DAG DAG DAG DAG LT

Ontology

Change

Basic and

Complex

Basic and

Complex

Basic and

Complex
Basic Basic

Alignment

Model
Syntactic Syntactic Syntactic Syntactic Semantic

Alignment

Consistency
Not defined Not defined Not Defined Structural Logical

Change

Minimality
No No No Yes Yes

User

Involvement

Adapting

semantic

relations

automatic automatic
Choose

strategies
automatic

3.7.2.3 Alignment debugging

Alignment produced by ontology matching tools may contain invalid

correspondences. Qualified as invalid, every correspondence contributes in the

violation of some defined constraints. Alignment debugging is the process of

diagnosis and repair of such correspondences. Techniques used in alignment

debugging can also be applicable in alignment maintenance, precisely, for the

alignment corrective maintenance.

For some tools, the diagnosis of invalid correspondences is based on patterns of

reasoning which are correct but incomplete reasoning methods. Lily (Wang & Xu,

The state of the art &&&

54

2008) uses four types of patterns: redundant mapping, imprecise mapping,

inconsistent mapping, and abnormal mapping. ASMOV (Jean-Mary et al., 2009)

uses five types of patterns to check semantics: multiple-entity correspondences,

crisscross correspondences, disjoint-subsumption contradiction, subsumption and

equivalence incompleteness, domain and range incompleteness. The pattern

disjoint-subsumption contradiction used by ASMOV corresponds to the

inconsistent mapping pattern used by Lily. YAM++ (Ngo & Bellahsene, 2012)

relies on ALCOMO9
system to debug alignments. ALCOMO (Meilicke &

Stuckenschmidt, 2007) uses disjoint-subsumption contradiction pattern to check

the satisfiability preservation of entities by alignments.

Independent approaches (Meilicke & Stuckenschmidt , 2009) and (Qi et al,

2009) use techniques adapted from diagnosis and belief revision theories to

establish the coherency of alignments between description logics based ontologies.

The alignment coherency is a sort of logical consistency such that satisfiable

ontological entities should preserve their satisfiability even when ontologies are

connected by alignments. Both approaches use the notion of minimal conflict set

to designate the minimal set of correspondences responsible for alignment

incoherency. This set present the advantage to repair the problem of alignment

incoherency by fixing one element in the set. Meilicke and Stuckenschmidt (2009)

present two approaches to form diagnosis. The former called local diagnosis is

defined as a minimal Hitting set formed of the less confidence weighted

correspondences. The later called global optimal diagnosis is defined as the

smallest diagnosis with respect to the total of confidences. Qi et al (2009) propose

a conflict based mapping revision operator for the alignment revision. The

operator is based on incision function that select from each minimal conflict set

correspondences with less confidence values. These correspondences are then

discarded from the alignment to establish coherency. The authors show that this

operator can be characterized by two logical postulates adapted from some

existing postulates for belief base revision: the relevance and consistency

postulates (See chapter 2).

9 http://web.informatik.uni-mannheim.de/alcomo/

The state of the art &&&

55

3.8 Conclusion

In this chapter we have reviewed the main approaches of the ontology evolution

as well as the alignment evolution problems. Guiding by the fixed requirements of

the problem of alignment evolution, we have discussed the applicability of

ontology evolution frameworks to the problem of alignment evolution under

ontology change. First, we have discussed globally how ontology evolution

frameworks can embed these requirements in their change process. Then we have

discussed their outcomes for every requirement. We conclude that these

frameworks should be adapted in order to embed the alignment evolution problem.

Besides, the alignment evolution should be separated from ontology evolution

since alignment depending artifacts may create confusion with depending artifacts

of ontologies.

We distinguished two classes of alignment evolution approaches: adaptive and

perfective maintenance and corrective maintenance. The adaptive and perfective

approaches modify the alignment according to the detected changes in ontologies.

These approaches don’t consider explicitly the alignment consistency. Hence, no

guaranties are given to product a consistent alignment after evolution. While the

corrective maintenance approaches check and resolve inconsistences after change.

The main challenge for these approaches is how to ensure a consistency alignment

with a minimal of change. A promise investigation is to apply belief revision

theory for alignment evolution problem. The work of Euzenat (2015) is a first step

to understand revision in alignments of ontologies that may help to consider the

problems of base revision.

Ontology change: Identification and Semantics on Alignment

56

Chapter 4.ontology change: Identification and Semantics on

Alignment

4.1 Introduction

The change in ontologies may trigger change in depending artifacts such as

other ontologies, instances, annotations, and alignments. In general, ontology

evolution approaches don’t study the evolution of all such depending artifacts.

Instead, they describe general frameworks for the evolution of depending artifacts

regardless of their natures. As we have seen in the discussion of the previous

chapter, these approaches don’t meet all the expected requirements for a system of

alignment evolution problem. Furthermore, since alignment depending artifacts

may create confusion with depending artifacts of ontologies the alignment

evolution should be separated from ontology evolution. Following these

observations, we give in this chapter an independent change process for the

problem of alignment evolution under ontology change. First, we outline the

general process then we instantiate the two first phases of this process, namely,

the change identification phase and the semantics of change phase.

The objective of the change identification phase is detecting what has been

changed in a version relatively to another and to make explicit this change in a

machine readable format. Approaches of change detection and representation are

ontology language dependent which hamper them to reach the wished consensus.

In our approach (Zahaf, 2012; Zahaf and Malki, 2016a; 2016b), we consider a

general format that can encompass any ontology language. Checking and

resolution of alignment inconsistency are the main objective of the semantics of

change phase. Different ways may exist for resolving the same inconsistency. One

criterion that can guide the resolution is the minimal change. Sometimes, it is

inevitable to sacrifice the minimal change against the consistency satisfaction. The

challenge question is how to ensure the compromise between the consistency and

the minimal of change constraints. To reach this objective, we have investigated

Ontology change: Identification and Semantics on Alignment

57

how to apply belief base revision theory for alignment evolution problem (Zahaf

and Malki, 2016a).

The remainder of this chapter is organized as follows. In section 4.2, we give an

independent change process for the problem of alignment evolution under

ontology change. Section 4.3 outlines the models of ontologies and alignments

considered in our framework. We instantiate the two f irst phases of the change

process, namely, the change identification phase and the semantics of change

phase in the sections 4.4 and 4.5 respectively. We conclude the chapter in section

4.6.

4.2 Alignment Evolution Process

As already mentioned in the introduction of this thesis, an alignment evolution

under ontology change system should (1) facilitate the ontology change

identification for maintainers, (2) evolve alignment from a consistent state to

another consistent state, (3) conduct to a new consistent state with a minimal of

change, and (4) permit to maintainers validating the new alignment by accepting

the change, recovery from unnecessary changes, adapting the change, tracking it,

or cancelling all the change. Hence, the alignment evolution is a process rather

than a simple task that aims to keep the alignment consistent as much as possible

with the updates of ontologies on which it depends on. To fulfill the above

requirements, we propose the following alignment change process: a phase for the

ontology change identification, a phase for the semantics of change, a phase for

the change validation, and a phase for the change implementation. Figure 8

outlines this process.

Figure 8: The ontology alignment change process

(a) Ontology change identification: in open and distributed environments such

as the semantic web where ontologies and alignments are submitted to different

authorities, the journal of change is often available in an unreadable machine

Ontology change: Identification and Semantics on Alignment

58

format. Ontology evolution frameworks may not meet the ontology engineer’s

needs when he requests an ontology change. Instead, he turns to use ontology

development tools which are not dedicated to the evolution of ontologies but to

their modification. Unfortunately, the published new version is only associated

with a list of change in human readable format which may hamper its exploitation

by automatic tools. Even ontology evolution approaches deliver evolution logs

that store the implemented change in machine readable format, maintainers of

alignments may not share the same interpretation for the same change and they

prefer to create their own set of change which might be different from the

delivered set of changes. Maintainers want to identify and make explicit the

ontology change in order to understand what happen and correctly update their

alignments. The ontology change in this phase is obtained by comparing versions

of the same ontology. Comparing versions aims to detect what has been changed

in a version relatively to another and to make explicit this change in a machine

readable format.

(b) Semantics of change: the objective of this phase is resolving alignment

inconsistencies due to ontology change. As ontologies evolve from a consistent

state to another, alignment evolution should follow this change by a transition to a

new consistent state. Alignment consistency can be expressed as a set of

constraints qualified as hard since their violation makes the alignment obsolete

and useless. We distinguish three types of consistency for the problem of

alignment evolution under ontology change. Alignment correspondences refer only

to entities that belong to the aligned ontologies. The deletion of these ontological

entities breaks the structure of the concerned correspondences. An alignment

which has such correspondences is structurally inconsistent. An alignment should

preserve its structure after the ontology change. We call such constraint, the

structure preservation constraint. Ontologies are logical theories. Even, ontologies

ensure their logical consistencies after the change; they can’t preserve this

consistency when they are used jointly with alignment. To preserve the logical

consistency of ontologies, we should prevent the alignment from generating

inconsistencies as logical consequences. We call such constraint, logical

consistency preservation. Ontologies are the pillar of the semantic web;

alignments maintainers may have not the permission to modify the changed

Ontology change: Identification and Semantics on Alignment

59

ontologies in order to establish the consistency of alignments. In other words,

alignments maintainers should accept the ontological change and modifying

alignments is the only possible way to establish the new consistency. Accepting

the change may not be respected if some removed knowledge still entailed by

alignments. In both cases, alignments should follow the ontology change by

preserving it. We call such constraint, the ontological change preservation.

Many solutions can satisfy the above consistency constraints when we evolve the

alignment. One of them is the empty alignment where we discard all its

correspondences. It is obvious that empty alignment satisfies structure

preservation since it doesn’t connect any entities. Because we assumed that local

ontologies are revised and bugs are fixed, no knowledge propagation is expected.

Consequently, the empty alignment satisfies the constraints of consistence

preservation and ontological change preservation. The empty alignment doesn’t

make any sense from a practical point of view and we need to compute the new

alignment from scratch. An ideal solution is to change only the relevant

correspondences that cause problems. We call such constraint, the constraint of

minimal change. While the consistency constraints are qualified as hard we

qualify the minimal change as a soft constraint. Since the violation of this

constraint don’t hamper the use of alignments.

(c) Change validation: alignment evolution is a knowledge intensive task which

can’t be fulfilled without the involvement of users. During the phase of semantics

change, the system resolves the different types of inconsistencies by proposing

changes on alignment. Proposed changes should be review by users before

implementation. Alignments maintainers may validate the change, recover the

unnecessary changes, adapt, track, or cancel the change by keeping connection

with the old version of the evolved ontology if it is available. Hence, the objective

of this phase is to rationalize and to facilitate the interaction between users and

the system. To rationalize the interaction, the system should give explanations to

inconsistencies and justify the proposed change as well. Even the objective of the

previous phase is resolving inconsistencies with a minimal change; the proposed

change may still containing unnecessary changes. Hence, the user can request the

recovering of these changes. Detecting such changes is not an easy task. Thanks to

inconsistency checking and explanation as well as change justification; the user

Ontology change: Identification and Semantics on Alignment

60

will adapt the change, reject it partially or reject it completely if j ustifications are

not convincing. The system may propose discarding some correspondences while

the user may choose to adapt them instead. The user adapts the change by adding,

deleting, or modifying correspondences. He modifies correspondences by

changing the type of their semantic relations, renaming entities, rates

correspondences by attaching a new confidence values, or annotates them. All

changes are stored on a journal of change which helps for change tracking.

(d) Change implementation: the change in previous phases has been done on a

copy of the original old alignment. After the change is validated by users, the

system confirms the change by implement it and delivers the new alignment and

the final associated change. The final change is the difference between the old and

the new delivered alignment. The format of both alignment and associated change

should be machine readable. This allows the parsing and exploitation of changes

by maintenance tools of depending applications.

This change process is general and can be implemented in different ways. In the

rest of this chapter, we describe our approaches to concretize the two first phases:

the phase of ontology change identification and the semantics of change phase.

Before that, we present the models of ontologies and alignments used in our

approaches.

4.3 Ontology and alignment models

4.3.1 Ontology Model

As it is stated in chapter 3, an ontology is an axiomatization of the intended

meaning of a vocabulary used by a conceptualization of some area of interest.

According to Uschold and Gruninger (2004), an ontology ranges from simple set

of terms (folksonomy) with less or no explicit meaning to a simple notion of a

taxonomy (knowledge with minimal hierarchy or structure), to a thesaurus (words

and synonyms), to a conceptual model (with much complex knowledge) to a

logical theory (which is very rich, complex, consistent, very significant

knowledge). In this dissertation, we consider an ontology as a logical theory

which consist of a set of axioms that specify the intend interpretation of a

Ontology change: Identification and Semantics on Alignment

61

vocabulary. Kalfoglou & Schorlemmer (2003) and Grimm & al (2011) represent

ontologies as a pair (S, A), where S is a signature to designate a vocabulary and A

is a set of the axioms. The signature of an ontology is the set S = C ⊔ P ⊔ R ⊔ I,

where, C represents the subset of vocabulary to designate concepts. P is the subset

of vocabulary to designate objects properties. R is the subset of vocabulary to

designate data properties and I is the subset of vocabulary to designate

individuals. Axioms act as constraints for interpretations of this vocabulary. An

interpretation which satisfies all axioms of an ontology constitutes a model of that

ontology. Ontologies are expressed in logical languages such as RDF, RDFS and

OWL. These languages provide a consequence relation between axioms of the

language and ontologies.

Definition 4.1 (Ontology Consequence). An axiom δ is a logical consequence of

an ontology O (noted O ⊨ δ) if and only if every model of O satisfies δ.

We denote by Cn(O) = {δ|O ⊨ δ} the closure set of logical consequences of an

ontology O. We assume the logic of logical consequence relation satisfy the

following properties:

Inclusion O ⊆ Cn(O)

Iteration Cn(O) ⊆ Cn(Cn(O))

Monotonicity if O′ ⊆ O then Cn(O′) ⊆ Cn(O)

Compactness if O ⊨ δ then, there is some subset O′ ⊆ O such that O′ ⊨ δ.

Definition 4.2 (Inconsistent Ontology). An ontology O is inconsistent if and

only if O has no model. Otherwise, it is consistent.

Usually, inconsistency checking is turned to contradictory axioms entailment

checking (Hussain et al., 2011). When all models of an ontology lead to an

unsatisfiable concept, we say that ontology is incoherent (Flouris et al., 2006). A

concept is unsatisfiable if no individual belongs to that concept for all

interpretations.

Ontology change: Identification and Semantics on Alignment

62

4.3.2 Alignment Model

Ontology matching is the task to detect links between elements from two

ontologies. These links are referred to as correspondences and express semantic

relations. According to Euzenat and Shvaiko (2013), we define a correspondence

as follows and introduce an alignment as set of correspondences.

Definition 4.3 (Correspondence and Alignment). Given two ontologies ο1 and

ο2, let Q be a function that defines sets of matchable elements Q(o1) and Q(o2). A

correspondence between ο1 and ο2 is a 4-tuple (e, e′, r, n) such that e Q(o1),

e′ Q(o2), r is a semantic relation, and n  [0; 1] is a confidence value. An

alignment M between ο1 and ο2 is a set of correspondences between ο1 and ο2. We

restrict r to be one of the semantic relations from the set {Equivalence(≡

), Subsomption(⊑), Disjunction(⊥)}.

 In order to reason about alignment, we use a version of reductionist semantics

(Meilicke & Stuckenschmidt, 2009) called natural semantics. It involves building

a merged ontology through the union of the two ontologies to align and axioms

obtained by translating relations of the alignment. We introduce this semantic

through its merged ontology.

Definition 4.4 (Natural Semantics). Given an alignment M between two

ontologies ο1 and ο2 and trans: M ⟶ A , a function that transforms a

correspondence to an axiom. The aligned ontology is defined by

ο1 ∪M ο2 = ο1 ∪ ο2 ∪ trans(M).

Example 4. The transformation of the alignment M of example 1 to axioms is as

follows.

𝑇𝑟𝑎𝑛𝑠(𝑀) = {

1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡ 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡,
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ≡ 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ≡ 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
1: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ≡ 2: 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

}

Definition 4.5 (Alignment consequence): An axiom δ is a consequence of an

alignment M between two ontologies ο1 and ο2 if and only if δ is a logical

consequence of the aligned ontology ο1 ∪M ο2. We denote this relation by M ⊨ δ.

Ontology change: Identification and Semantics on Alignment

63

An axiom that is an alignment consequence either represents an ontological

axiom or the image of a correspondence by the transformation function of the

alignment.

Example 5. it is clear that 𝑂2 ⊭ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 but since, 𝑀 ⊨

 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ≡ 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟, 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 , 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ≡

2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟, we can derive that 𝑀 ⊨ 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟. Likewise, from

𝑀 ⊨ 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ≡ 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟, 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟, we derive

𝑀 ⊨ 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟. 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊑ 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 is an image of

some correspondence between 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 and 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟.

In the context of the natural semantics, we can easily verify that the alignment

consequence relation satisfies the following properties:

Inclusion M ⊆ Cn(M)

Iteration Cn(M) ⊆ Cn(Cn(M))

Monotonicity if M′ ⊆ M then Cn(M′) ⊆ Cn(M)

Compactness if M ⊨ δ then, there is some subset M′ ⊆ M such that M′ ⊨ δ.

Some alignment consequences are undesirables and can affect the consistency of

ontologies or the whole aligned ontology. In this case, the alignment is

inconsistent. When an ontology is inconsistent, the aligned ontology is also

inconsistent. Since inconsistency is due to ontologies and not to alignment, we

can’t consider this case as an alignment inconsistency.

Definition 4.6 (Alignment Inconsistency): given an aligned ontology ο1 ∪M ο2,

M is inconsistent with respect to ο1 and ο2 if and only if both ontologies ο1 and ο2

are consistent but the aligned ontology ο1 ∪M ο2 is inconsistent. Otherwise, M is

consistent.

Example 6. 𝑜2
" is inconsistent. Consequently, the aligned ontology 𝜊1 ∪𝑀 𝑜2

" is

also inconsistent. Since, inconsistency is due to the ontology 𝑜2
" and not due to the

alignment 𝑀, we cannot consider 𝑀 as inconsistent. However, if we consider 𝑜3

which is consistent but since 𝑀 ⊨ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊥ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 and

𝑀 ⊨ 𝑙𝑒𝑐𝑡𝑢𝑟𝑒𝑟(𝐴ℎ𝑚𝑒𝑑), 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟(𝐴ℎ𝑚𝑒𝑑), 𝜊1 ∪𝑀 𝑜3 is inconsistent and hence,

𝑀 is inconsistent.

Ontology change: Identification and Semantics on Alignment

64

In other words, a consistent alignment preserves the consistency of ontologies.

Alignment coherency which is a particular type of consistency ensures the

satisfiability preservation of ontological entities by the alignment.

Definition 4.7 (Incoherent Alignment): given an aligned ontology ο1 ∪M ο2, M

is incoherent with respect to ο1 and ο2 if and only if both ontologies ο1 and ο2 are

coherent but the aligned ontology ο1 ∪M ο2 is incoherent. Otherwise, M is

coherent.

Example 7. Following example 6, If we remove the assertion Phd Student (Ahmed)

from 𝑜3, we get

𝑀 ⊨ 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊥ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟, 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑙𝑒𝑐𝑡𝑢𝑟𝑒𝑟, 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑

 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 . So, Phd Student becomes unsatisfiable and hence the alignment 𝑀 is

incoherent

4.4 Ontology change identification

Ontology change is the result of any significant ontology modification. An

ontology is an axiomatization of the intended meaning of a vocabulary used by a

conceptualization of some area of interest. The modification can touch the

meaning axiomatization of the vocabulary or the vocabulary itself. The vocabulary

change is the set of added or deleted vocabulary elements. The axiomatic change

is the set of added or deleted axioms. This leads to a simple ontology of change

(See Figure 9). This format of change representation is general enough to

encompass any ontology language.

Figure 9: an ontology of change

Ontology change: Identification and Semantics on Alignment

65

For the purpose of the alignment between versions, we have developed a method

(Zahaf, 2012) to compute the difference between versions. In this method, we

consider the ontological change identification as the set theoretical difference

between signatures and axioms. These operations use the output of version

matching operation to compute persistent signatures and persistent axioms

respectively. The set theoretical difference operation between the total signature

and the persistent one constitutes the ontological change in signature. Similarly,

the set theoretical difference operation between the set of axioms and the

persistent one gives the ontological change in axioms. An axiom in a version is

considered as persistent if the other version contains its image. The image of an

axiom is obtained by systematically replacing signature elements of this axiom by

their correspondents, according to the version matching output. Finally, the

obtained difference is refined by discarding axioms that are still entailed. Table 2

schematizes the described algorithm. We use the following notation: Si
p
 to denote

the set of persistent signature of a version i. S− denotes the set of removed

signature. S+ is the set of added signature. Similarly, Ai
p
 is the set of persistent

axioms of a version i. A− is the set of deleted axioms and A+ is the set of added

axioms.

Example 8. the output of algorithm 1 for computing the difference between the two

versions 𝑜2 and 𝑜3 is illustrated by the following sets.

𝑆− = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒}, 𝐴− = {
𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ⊑ 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

} , 𝑆+ = ∅,

𝐴+ = {𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 ⊥ 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟}

4.5 Semantics of change

We consider the alignment evolution under ontology change as the set of

changes on correspondences of alignment to fulfil the satisfaction of some

semantics constraints. We distinguish three types of changes on alignment s:

expansion, contraction and revision. An expansion is a set-theoretically adding of

correspondences to an alignment. It can happen following adding new ontological

entities and we need to align them with others entities. A revision change restores

Ontology change: Identification and Semantics on Alignment

66

the alignment consistency following adding new correspondences or new axioms

in ontologies. A contraction is to discard correspondences when concerned entities

are deleted from ontologies or some successfully removed axioms from ontologies

still logical consequences of the alignment. We consider in this framework, the

revision change when new axioms in ontologies make alignment inconsistent and

the contraction change when successfully removed axioms still a logical

consequence of alignment.

Table 2 : Ontology change identification algorithm

Algorithm 1: ontological change identification

ontologicalChange (H, ο2, ο3)

Input: ο2, ο3 // two versions of the same ontology

 H // H is a mapping between ο2, ο3

Output : S−,S+ // set of removed vocabulary and the

 set of added vocabulary respectively

 A−,A+ // set of deleted axioms and the

 set of added axioms respectively

1. S1
p
← persistentSign(H, ο2)

2. S2
p
← persistentSign(H, ο3)

3. S− ← S1 − S1
p

4. S+ ← S2 − S2
p
;

5. A1
p
← persistentAxioms(H, ο2)

6. A1
p
← persistentAxioms(H, ο3)

7. A− ← A1 − A1
p

8. A+ ← A2 − A2
p

;

9. for δ ∈ A− do

10. if ο3 ⊨ H(δ)

11. then A− ← A− − {δ};

12. for δ ∈ A+ do

13. if ο2 ⊨ H
−(δ) // H− is the inverse of H

14. then A+ ← A+ − {δ}

Return {(S−, A−), (S+, A+)}

Ontology change: Identification and Semantics on Alignment

67

Viewing ontologies as logical theories allows us to consider the aligned

ontology formed by the alignment and the connected ontologies as a logical theory

too. In practical, ontologies are encoded in knowledge bases managed by

knowledge systems to have access to and to reason about domain knowledge

(Grimm & al., 2011). The set of axioms contained in these bases constitutes the

explicit knowledge and implicit knowledges are logical consequences of them.

Hence, our approach follows the belief base revision approach instead of the AGM

model. More precisely, our objective is to adapt the kernel contraction framework

(Hansson, 1994) to design rational operators for the alignment evolution under

ontology change. In what follows, we present two operators for the alignment

evolution under ontology change. The former discards correspondences when

some successfully removed axioms from ontologies still logical consequences of

the alignment violating the constraint of change preservation. We call it the

alignment kernel contraction. The latter baptized the alignment kernel

consolidation which restores the logical consistency of the alignment following

adding new axioms in ontologies.

4.5.1.1 Alignment Kernel Contraction

Given an alignment M between two ontologies ο1 and ο2 and α is a successfully

removed axiom from one ontology, the outcome of a contraction is to compute a

subset of M that fails to imply α. The alignment kernel contraction consists in

finding the set of minimal subsets of M that imply α. We call this set, the kernel of

M by α and we denote it by M ∥ α. We adapt the base kernel definition (See

Definition 2.6) to define the alignment kernel as follows:

Definition 4.8 (Alignment Kernel): the kernel of M by α (M ∥ α) is the set of

elements M′ such that:

{

M′ ⊑ M (subset of M)

M′ ⊨ α (α is a consequence of M)

∀M" ⊑ M′, M" ⊭ α (and it is minimal)

We call an element of the kernel (M ∥ α) an α-Alignment kernel.

Example 9. Considering example 3, alignment 𝑀 between 𝜊1 and 𝜊3 violates the

change preservation and still entails the contracted axiom 𝛼 = 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑

 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟. The kernel of 𝑀 by 𝛼 is as follows:

Ontology change: Identification and Semantics on Alignment

68

𝐾 = {
{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
} ,

{
 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ,

1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡
}
}

Lemma 4.1: the following two conditions are equivalents.

 For all M′ ⊑ M, M′ ⊨ α iff M′ ⊨ β

 M ∥ α = M ∥ β

Proof: (necessary condition). We should demonstrate that M ∥ α ⊂ M ∥ β and

M ∥ β ⊂ M ∥ α follows from the first condition. We give a proof for the first

inclusion and the same proof holds for the second inclusion.

Let M′ ∈ M ∥ α , we should demonstrate that M′ ∈ M ∥ β. From the alignment

kernel definition (See definition 4.8), M′ ∈ M ∥ α means M′ ⊑ M, M′ ⊨ α and

∀M" ⊑ M′, M" ⊭ α. According to the first condition, we have M′ ⊨ β. From the

alignment kernel definition (See definition 4.8), we conclude that M′ ∈ M ∥ β.

(Sufficient condition). We should demonstrate that the first condition , for all

M′ ⊑ M, M′ ⊨ α iff M′ ⊨ β follows from the second M ∥ α = M ∥ β. Let M′ ⊨ α for

M′ ⊂ M. By alignment compactness, there exists a subset M" ⊂ M′such that M" ⊨

α. Let M" be the minimal one. From the alignment kernel definition (See definition

4.8), M" ∈ M ∥ α. According to the second condition, we have M" ∈ M ∥ β and

hence, M" ⊨ β. By alignment monotony, we conclude that M′ ⊨ β. The same proof

holds for the inverse.

The alignment kernel contraction uses a function to discard from M at least one

correspondence from each α-Alignment kernel. We call such function an

alignment incision function. We adapt the base incision function definition (See

Definition 2.7) to define an alignment incision function as follows:

Definition 4.9 (Alignment Incision function): an incision function σ for M is a

function that for all α :

{
σ(M ∥ α) ⊑ ⨆(M ∥ α)

if ∅ ≠ X ∈ M ∥ α, then X ∩ σ(M ∥ α) ≠ ∅

Example 10. A possible incision function for the kernel K of the example 9 is.

Ontology change: Identification and Semantics on Alignment

69

𝐼 = {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

}

Therefore, we define the alignment kernel contraction by adapting the base

kernel contraction definition (See definition 2.8) as follows:

Definition 4.10 (Alignment Kernel Contraction): let M be an alignment between

two ontologies ο1 and ο2, α is a successfully removed axiom from one ontology,

and σ is an alignment incision function, the alignment kernel contraction of M by

α is the operator defined as: M−σα = M ∖ σ(M ∥ α)

Example 11. If we consider the incision function of example 10, the kernel

contraction of 𝑀 by PhD Student ⊑ Lecturer is,

𝑀−𝜎𝛼 = {1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 }

We adapt the postulates success, inclusion, core-retainment and uniformity of

the belief base kernel contraction (See Theorem 2.3) to define the postulates that

the alignment kernel contraction should satisfy. For the alignment kernel

contraction, a success means that successfully removed axioms from ontologies

should not be regenerated again by the alignment after contraction. The postulate

of success corresponds to the ontology change preservation constraint in case of

removing knowledge. Satisfying the core-retainment means a correspondence is

discarded only if it is responsible somehow for implying the contracted axiom. We

consider the postulate of core-retainment as a criterion to ensure the minimal

change requirement. Furthermore, the alignment kernel contraction satisfies two

others postulates. The postulate of inclusion ensures no new correspondence

should be added to the alignment when realizing contraction. The uniformity

postulate expresses there is no reason that the contraction by two different but

logically related axioms is not the same. These two postulates are out of the fixed

requirements for the alignment evolution problem. However, we need them to

more characterizing the contraction change. The postulates of inclusion together

with success ensure the pure contraction 10 and the uniformity postulate ensures a

deterministic change. The following theorem represents the alignment kernel

contraction operator.

10 According to Hansson (1999), “in pure contraction a belief should be given up without being replaced by any new

belief”.

Ontology change: Identification and Semantics on Alignment

70

Theorem 4.1 (Alignment Kernel Contraction Representation theorem): An

operator − is an alignment kernel contraction of an alignment M between two

ontologies ο1 and ο2 for a successfully removed axiom α from an ontology if and

only if it satisfies the following postulates:

[success] if ⊭ α then M− α ⊭ α

[Inclusion] M− α ⊆ M

[Core − retainment] if c ∈ M and c ∉ M − α , then there is a subset M′ of M such

that, M′ ⊭ α but M′ ⊔ {c} ⊨ α

[uniformity] if it hollds for all M′ ⊆ M that M′ ⊨ α if and only if M′ ⊨ β, then

M− α = M− β

Proof: (necessary condition). Let −σ be an alignment contraction operator such

that M−σα = M ∖ σ(M ∥ α) for some incision function σ and demonstrates that it

satisfies the postulates: success, inclusion, core-retainment, and uniformity.

Success and inclusion follow directly from the operator definition. Suppose

c ∈ M and c ∉ M−σα, then c ∈ σ(M ∥ α). From the definition of the alignment

incision function (See definition 4.9), we have σ(M ∥ α) ⊑ ⨆(M ∥ α), so there is

some set A such that c ∈ A ∈ (M ∥ α). Let M′ = A ∖ {c}, then M′ ⊭ α but M′ ⊔ {c} ⊨

α. This satisfies core-retainment. From lemma 4.1, For all subset M′ of M, M′ ⊨ α

if and only if M′ ⊨ β is equivalent to M ∥ α = M ∥ β. Since σ is a function then

σ(M ∥ α) = σ(M ∥ β). It follows M ∖ σ(M ∥ α)= M ∖ σ(M ∥ β). Hence, M−σα =

M−σβ. We conclude that −σsatisfies success, inclusion, core-retainment, and

uniformity.

(Sufficient condition). Let – be a contraction operator on an alignment M such

that the four postulates are satisfied. We are going to demonstrate that – is a

kernel contraction. For that purpose, let σ be such that for α: σ(M ∥ α) = M ∖ M −

 α. We need to verify that σ is an incision function for M. To be that, it must: first,

be a function and second such that it satisfies i) σ(M ∥ α) ⊑ ⨆(M ∥ α) and ii)if ∅ ≠

X ∈ M ∥ α, then X ∩ σ(M ∥ α) ≠ ∅. Furthermore, we need to verify that – applied to

M coincides with −σ.

Ontology change: Identification and Semantics on Alignment

71

Proof that σ is a function. Let α and β be two correspondences such that M ∥ α =

M ∥ β. It follows from Lemma 4.1 and uniformity that M− α = M− β. Following

our definition σ(M ∥ α) = M ∖ M − α, we conclude σ(M ∥ α)= σ(M ∥ β).

Proof that the condition i) σ(M ∥ α) ⊑ ⨆(M ∥ α) is satisfied. Let c ∈ σ(M ∥ α). By

core-retainment, it follows that there is some A ⊑ M such that A ⊭ α and A ⊔ {c} ⊨

α. By compactness, there is some finite subset A′ ⊑ A such that A′ ⊔ {c} ⊨ α. From

A′ ⊭ α and A′ ⊔ {c} ⊨ α, it follows that there is some α-alignment kernel A" that

contains c. Then, c ∈ A" ∈ ⨆(M ∥ α).

Proof that the condition ii) if ∅ ≠ X ∈ M ∥ α, then X ∩ σ(M ∥ α) ≠ ∅ is satisfied.

Suppose that ∅ ≠ X ∈ M ∥ α. Then ⊭ α and by success, we have M− α ⊭ α. Since

X ⊨ α, we may conclude that X ⊄ M − α, i.e., that there is some c such that c ∈ X

and c ∉ M − α. Since X ⊑ M, it follows c ∈ M ∖ M − α; i.e., c ∈ σ(M ∥ α). Thus,

c ∈ X ∩ σ(M ∥ α) which is sufficient to show condition ii) satisfaction.

Proof that – applied to M coincides with −σ. By inclusion (M− α ⊆ M) and our

definition of σ(M ∥ α) = M ∖ M − α , it follows M− α = M ∖ σ(M ∥ α). This

finishes the proof.

4.5.1.2 Alignment Kernel consolidation

We define an alignment consolidation as all operation that makes consistent an

alignment. An alignment kernel consolidation is the alignment kernel contraction

by the contradictory axiom (i.e., ⊥ (a)). For each inconsistency element of the

alignment kernel, the consolidation removes from the alignment at least one

element that is responsible for this inconsistency. Formally,

Example 12. The alignment M between the ontologies 𝜊1 and 𝜊3 of example 3 is

inconsistent. The kernel consolidation of M is.

𝐾 = {
{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
} ,

{
 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 ,

1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡
}
}

We can define the alignment kernel consolidation by adapting the base kernel

consolidation operator (See definition 2.10) as follows:

Ontology change: Identification and Semantics on Alignment

72

Definition 4.11 (Alignment Kernel Consolidation): let M be an alignment

between two ontologies ο1 and ο2 and σ an alignment incision function, the

alignment kernel consolidation of M is the operator defined as:

 M!C,σ = M ∖ σ(M ∥⊥ (a))

Example 13. If we choose 𝐼 = {1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟} as an incision

function for the kernel of example 11 the kernel consolidation of the alignment M

is 𝑀!𝐶,𝜎 = {
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡,
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟

}

We consider also, an operator that makes an alignment coherent as a particular

alignment consolidation. In this case, the contraction is done by the following

subsumption axiom (i.e., C ⊂⊥).

By adapting the postulates characterizing the belief base kernel consolidation

operator (See theorem 2.5) the alignment kernel consolidation is characterized by

the following postulates: consistency, inclusion and core-retainment. The

postulate of consistency corresponds to the logical consistency preservation

constraint. Again, the postulate of core-retainment expresses the minimal change

criterion. The postulate of inclusion imposes contraction as the only possible

strategy to restore consistency. By construction, the alignment kernel

consolidation operator doesn’t modify the ontologies but only alignment is

modified to restore consistency. Hence, the operator satisfies the change

preservation constraint. The following theorem represents the alignment kernel

consolidation operator.

Theorem 4.2 (Alignment Kernel Consolidation Representation theorem): An

operator ! is an alignment kernel consolidation of an alignment M between two

ontologies ο1 and ο2 if and only if satisfy the following postulates:

[Consistency] M! ⊭⊥ (a)

[Inclusion] M! ⊆ M

[Core − retainment] if c ∈ M and c ∉ M! , then there is a subset M′ of M such that,

M′ ⊭⊥ (a) but M′ ⊔ {c} ⊨⊥ (a)

Ontology change: Identification and Semantics on Alignment

73

The same holds for alignment consolidation in case of a coherent alignment.

However, we rename the consistency postulate by coherency postulate.

Proof: (necessary condition). Let M!C,σ = M ∖ σ(M ∥⊥ (a)) be an alignment

kernel consolidation operator. Inclusion follows from the definition. We are going

to demonstrate that M!C,σ satisfies the consistency. Suppose ⊥ (a) ∈ M!C,σ, by

compactness there is some subset A ⊆ M!C,σ and A ⊨⊥ (a). Hence, there is some

inclusion-minimal subset C ⊆ A such that C ⊨⊥ (a). Thus, C ∈ (M ∥⊥ (a)). Due to

⊭⊥ (a), then C ≠ ∅. Following the definition of the alignment incision function

C ∩ σ(M ∥⊥ (a)) ≠ ∅. Then, there is some element c ∈ C and c ∈ σ(M ∥⊥ (a)).

According to the operator definition, c ∈ C ⊆ A ⊆ M!C,σ. But c ∈ σ(M ∥⊥ (a)).

Hence, C cannot be a subset of M!C,σ. We conclude that ⊥ (a) ∉ M!C,σ. Let c ∈ M

and c ∉ M!C,σ. Then,c ∈ σ(M ∥⊥ (a). Following the definition of the alignment

incision function, there is some set C such that c ∈ C ∈ (M ∥⊥ (a)). Let X = C ∖ {c}.

Then, X ⊭⊥ (a) and X ⊔ {c} ⊨⊥ (a). This demonstrates the satisfaction of the core-

retainment postulate.

(Sufficient condition). Let ! be an alignment operator on M such that the three

postulates of inclusion, consistency, and core-retainment are satisfied. We are

going to demonstrate that ! is an alignment kernel consolidation based on some

function σ. For that purpose, let σ be such that for α: σ(M ∥ α) = M ∖ M!. We need

to verify that σ is an incision function for M and to verify that the operator !

applied to M coincides with !C,σ. Be that, it must satisfying i) σ(M ∥⊥ (a)) ⊑ ⨆(M ∥

⊥ (a)) and ii) if ∅ ≠ A ∈ M ∥⊥ (a), then A ∩ σ(M ∥⊥ (a)) ≠ ∅.

Clearly σ is a function. To show the first condition i) σ(M ∥⊥ (a)) ⊑ ⨆(M ∥⊥

(a)), let c ∈ σ(M ∥⊥ (a)). It follows from the core-retainment that there is some A

such that A ⊆ M, A ⊭⊥ (a) and A ⊔ {c} ⊨⊥ (a). By compactness, there is some

subset A′ ⊆ A such that A′ ⊔ {c} ⊨⊥ (a). Let A" an inclusion-minimal subset of A′

such that A" ⊔ {c} ⊨⊥ (a). Hence, there is some α-Alignment kernel C such that

c ∈ C ∈ (M ∥⊥ (a)). For the second condition ii), let ∅ ≠ A ∈ M ∥⊥ (a). By

consistency, M! ⊭⊥ (a). Since A ⊨⊥ (a), by monotony A ⊈ M!. That there is a

correspondence c ∈ A and c ∉ M!. Since, A ⊆ M, c ∈ M ∖ M!. This means c ∈ σ(M ∥

⊥ (a)). Thus, c ∈ A ∩ σ(M ∥⊥ (a)). This finishes the proof that σ is an alignment

incision function.

Ontology change: Identification and Semantics on Alignment

74

It follows from the inclusion and our definition of σ (i.e., σ(M ∥ α) = M ∖ M!),

M! = M ∖ σ(M ∥ α). We conclude that M! is an alignment kernel consolidation (i.e.,

M! = M!C,σ).

4.5.1.3 Confidence based operations

Incision as general functions are extra-logical means to choose between

correspondences of an alignment. We define a special incision function based on

confidence values associated to correspondences. For that purpose, we introduce

an order relation on correspondences of the alignment. This relation uses

confidence values associated to correspondences to establish such order. The

correspondence in an α-Alignment kernel that has the less confidence value

constitutes an element of this function.

Definition 4.12 (Confidence based incision function): Given, (M ∥ α) an

alignment kernel M with respect to an axiom α, σc is a confidence based incision

function for M if and only if for all α:

{

(i) σc(M ∥ α) ⊑ ∪ (M ∥ α)

(ii) if ∅ ≠ X ∈ (M ∥ α), then X ∩ σc(M ∥ α) ≠ ∅
(iii) if c = (e, e′, r, n)σc(M ∥ α), then there exists C(M ∥ α) such that,

 cC and n = min{ni|(ei, e
′
i, ri, ni)C}

The conditions say that a confidence based incision function takes a

correspondence from each α-Alignment kernel and this correspondence should

have the less confidence value when compared with the others.

Example 14. Since the correspondence 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 presents

the less confidence value relatively to others, the confidence based incision

function for the kernel K of example 9 is 𝐼 = { 1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,}

Therefore, we can define the confidence based alignment kernel contraction as

follows:

Definition 4.13 (Confidence based Alignment Kernel Contraction): let M an

alignment between two ontologies ο1 and ο2, α a successfully removed axiom from

one ontology and σ a confidence based alignment incision function, the confidence

Ontology change: Identification and Semantics on Alignment

75

based alignment kernel contraction of M by α is the operator defined as: M−σcα =

M ∖ σc(M ∥ α)

Similarly, we define the confidence based alignment kernel consolidation,

Definition 4.14 (Confidence based Alignment Kernel Consolidation): let M be

an alignment between two ontologies ο1 and ο2 and σc a confidence based

alignment incision function, the confidence based alignment kernel consolidation

of M is the operator defined as:

 M!C,σc = M ∖ σc(M ∥⊥ (a))

4.6 Conclusion

In this chapter, we have presented a framework for the problem of the alignment

evolution under ontology change. Briefly, we have outlined the different phases of

the change process of the alignment evolution. Then, we have instantiated the two

first phases of this process, namely, the change identification phase and the

semantics of change phase. In this framework, we have considered an ontology as

a vocabulary and a set of axioms specifying the meaning of thi s vocabulary.

Following this model of ontologies, an ontology change is the set of added and

deleted vocabulary elements on the one hand and the set of added and deleted

axioms on the other hand. This format of change representation is general enough

to encompass any ontology language. Encoding of ontologies as knowledges bases

within knowledge systems allowed us to consider the belief base revision theory

for designing rational operators for the alignment evolution problem. More

precisely, we have adapted the kernel framework of the base revision theory to

design two general operators: the kernel contraction and the kernel consolidation

for the alignment evolution. These operators are characterized by a set of

postulates. Some of these postulates match the constraints of alignment

consistency and the minimal change. Based on confidence values associated to the

alignment correspondences, we have given two particular operators: the

confidence based kernel contraction and the confidence based kernel

consolidation.

Ontology change: Identification and Semantics on Alignment

76

Besides, the kernel framework can support the alignment maintainer with means

for change explanation and justification. Indeed, an alignment kernel is a set of

minimal subsets responsible of alignment inconsistency. This is exactly what a

justification is in debugging of ontologies. Furthermore, incision functions select

among these justifications the accused correspondences to establish consistency.

The notions of kernel and incision function play an important role to rationalize

the interaction between maintainers and the alignment evolution system.

Methods &&&

77

Chapter 5. Methods

5.1 Introduction

The framework of the previous chapter describes general operators for the

resolution of the alignment inconsistency. Theses operators base their actions on

the notions of the alignment kernel and the incision function. The alignment

kernel is the set of the minimal subsets of correspondences causing the violation

of the alignment consistency. The incision function selects from each element of

the kernel at least one correspondence for resolving inconsistencies. In this

chapter, we will see how to compute the alignment kernel as well as the

corresponding incision functions. Incision functions are the Hitting set of the

alignment kernel since it intersect each element of this kernel. Hence , we adapt

the Hitting set algorithm (See Section 2.3) of the diagnosis theory to compute the

kernel and all the corresponding incision functions. We give another algorithm to

compute the confidence based incision functions as well. Both algorithms have an

exponential time in the worst case. To reduce the complexity, we sacrif ice the

computing of all confidence based incision functions by computing only one

incision function in an efficient time. The new algorithm runs in logarithmic time

at worst.

The defined operators deal only with inconsistencies of logical and change

preservation types. In this chapter, we extend our framework by a global method

(Zahaf and Malki, 2016b) that deals with all types of consistency, namely, the

logical consistency, the change preservation consistency, and the structural

consistency as well. This method is an orchestration of a set of operations each of

which is designed to take care of one aspect of the alignment change process. The

remainder of this chapter is organized as follows. Section 5.2 presents the

proposed algorithms for computing the alignment kernel and their corresponding

incision functions as well. Section 5.3 presents the proposed algorithms for

computing the confidence based incision functions. In section 5.4, we present and

Methods &&&

78

discuss the strength and the weakness of our proposed global method. We

conclude the chapter in section 5.5.

5.2 Computing alignment Kernel and Incision Functions

The algorithm to find an α-Alignment kernel is an adaptation of the algorithm

presented in (Baader et al., 2007) to compute a minimal subset of an ontology that

is responsible for an entailment of a given subsumption axiom (see Table3). It

consists in removing each element of M and testing if the resulting alignment still

implies the axiom α. If this is not the case the element is reintroduced in M. The

result of this process is a set M′ ⊑ M that do imply α which is minimal. Similar to

the algorithm presented in (Baader et al., 2007), algorithm 2 can compute an α-

Alignment kernel in polynomial time in the size of the aligned ontology.

Table 3: 𝛂-Alignment kernel algorithm.

Example 15. Following example 9, we demonstrate how to compute the first 𝛼-

Alignment kernel by using the algorithm 2. Let 𝛼 be PhD Student ⊑ Lecturer.

1. The algorithm iterates over the elements of M (Line 1). Let’s assume that it

iterates from left to right.

2. Checks 𝑀 ∖ {1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.0 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡} ⊨ 𝛼 (line 3). So it removes

1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.0 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 from 𝑀 (line 4).

Algorithm 2: 𝛼-Alignment kernel

𝛼-Alignment kernel (M, ο1, ο2, 𝛼)

Input : ο1, ο2 // two ontologies

 M // M is an alignment between ο1 and ο2

 𝛼 // 𝛼 is an axiom

Output : M // an 𝛼-Alignment kernel

1. for c ∈ M

2. do

3. if 𝑀 ∖ {𝑐} ⊨ 𝛼

4. then M ← M ∖{c}

5. return M

Methods &&&

79

3. Checks 𝑀 ∖ {1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟} ⊭ 𝛼. Then it does not change

𝑀 (line 3).

4. Checks 𝑀 ∖ {1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟} ⊭ 𝛼, so it does not change 𝑀(line 3).

5. Return 𝑀 = {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
} which is an 𝛼-Alignment

kernel (line 5).

Table 4: Alignment kernel and Incision functions algorithm

Algorithm 3: Alignment Kernel and Incision functions

AlignmentKernelAndIncisionFct (M, ο1, ο2, 𝛼)

Input : ο1, ο2 // two ontologies

 M // M is an alignment between ο1 and ο2

 𝛼 // 𝛼 is an axiom

Output : AKernel // an Alignment kernel

 Incision // set of incision functions

1. Incision ← ∅

2. Stack ← Empty

3. C ← 𝛼-Alignment kernel (M, ο1, ο2, 𝛼)

4. AKernel ← {𝐶}

5. for c ∈ C

6. do insert {𝑐} in the top of the stack

7. While Stack not Empty

8. do 𝐻𝑛 ← last element of the stack

9. remove last element of the stack

10. If 𝑀 ∖ {𝐻𝑛} ⊨ 𝛼

11. Then C ← 𝛼-Alignment kernel (𝑀 ∖ {𝐻𝑛}, ο1, ο2, 𝛼)

12. AKernel ← AKernel ∪ {𝐶}

13. for c ∈ C

14. do insert 𝐻𝑛 ∪ {𝑐} in the top of the stack

15. Else Incision ← Incision ∪ {𝐻𝑛}

16. End.

Methods &&&

80

To compute the alignment Kernel and incision functions, we adapt the Hitting

set algorithm proposed by Reiter (1987) to diagnose systems (See Chapter 2). The

alignment kernel is the collection of all 𝛼-Alignment kernel. By definition (See

definition 4.9), the alignment incision function intersects each α-Alignment

kernel. Hence, it seems naturel to consider the incision function as a Hitting set

(See definition 2.14) of the alignment kernel. The nodes of the tree are labeled by

α-Alignment kernels and edges are labeled by the elements of these α-Alignment

kernels. However, the kernel is not given explicitly and we should compute it. At

each node, an α-Alignment kernel of the set M ∖ H(n) is computed if such an α-

Alignment kernel exists. Otherwise, H(n) is an alignment incision function.

Unfortunately, the Hitting set algorithm has an exponential time (Rymon, 1991).

Table 4 outlines this algorithm. The progress of the algorithm is illustrated by the

example 16 and figure 10 as well.

Example 16. Following the example 15, we want to compute incision functions.

1. Algorithm 3 starts by computing one 𝛼-Alignment kernel. Let it the same as in

example 15:

 C= {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
} (line 3-4)

2. Push {𝑐} into the stack for every element of C (line 5-6). The content of the

stack is stack = {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
}.

3. Get the last element of the stack into 𝐻𝑛.

 𝐻𝑛 ={1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟} and

stack={ 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟} (line 8-9).

4. Checks 𝑀 ∖ {1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟} ⊭ 𝛼, then Incision=

{{1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟}} (lines 10 and 15).

5. Loop line(7).

6. Get the last element of the stack into 𝐻𝑛.

 𝐻𝑛 ={ 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟} and stack = ∅ (line 8-9).

7. Checks 𝑀 ∖ {1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟} ⊨ 𝛼 line(10), then

8. Run algorithm 2 again, we obtain

 C= {
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟,
} (line 11)

Methods &&&

81

9. Push 𝐻𝑛 ∪ {𝑐} into the stack for every element of C (line 13-14). The stack

contains now,

 stack = {
 {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

} ,

 {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
}
}.

10. Loop line(7).

11. Get the last element of the stack into 𝐻𝑛.

 𝐻𝑛 ={
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
} and stack

={ {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

}} (line 8-9).

12. Checks that 𝑀 ∖ {𝐻𝑛} ⊭ 𝛼 line(10), then

 Incision = {

{1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟},

{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
}
} (lines 10 and 15).

13. Loop line(7).

14. Get the last element of the stack into 𝐻𝑛.

𝐻𝑛 = {
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

}and stack = ∅ (line 8-9).

15. Checks that𝑀 ∖ {𝐻𝑛} ⊭ 𝛼 line(10), then Incision =

{

{1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟},

{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
} ,

{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,
1: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =1.00 2: 𝑃ℎ𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡

}
}

16. The stack is empty, line(7).

17. End (line 16)

Methods &&&

82

Figure 10: Hitting set tree of incision functions

5.3 Computing Confidence based incision functions

Confidence based incision functions select from each α-Alignment kernel the

correspondence that has the less confidence value. We refine algorithm 3 by

introducing a function that pick these correspondences before computing incision

functions. Table 5 schematizes the refined algorithm. Figure 11 illustrates the

outcome of this algorithm regarding the example 16.

Algorithm 4 reduces enormously the complexity time depending on confidence

values attached to correspondences. If all correspondences present the same

confidence value or no values the algorithm 4 is reduced to the algorithm 3. Both

algorithms compute all incisions functions. In real applications, we sacrifice this

need by computing only one incision function in efficient time. For that purpose,

we adapt algorithm 4 to compute only one incision function. The algorithm 5 (See

Table 6) acts as the binary search algorithm11. It develops just one branch of the

tree which corresponds to the correspondence with lowest confidence value in the

generated 𝛼-Alignment kernel. Hence, this algorithm runs in logarithmic time at

worst.

11 Binary search is a search algorithm that finds the position of a target value within a sorted array. Binary search

compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie

is eliminated and the search continues on the remaining half until it is successful or the remaining half is empty.

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Sorted_array

Methods &&&

83

Table 5: Confidence based Incision functions algorithm

Algorithm 4: Confidence based Incision functions

ConfidenceBasedIncisionFct (M, ο1, ο2, 𝛼)

Input : ο1, ο2 // two ontologies

 M // M is an alignment between ο1 and ο2

 𝛼 // 𝛼 is an axiom

Output : AKernel // an Alignment kernel

 Incision // set of incision functions

1. Incision ← ∅

2. Stack ← Empty

3. C ← 𝛼-Alignment kernel (M, ο1, ο2, 𝛼)

4. AKernel ← {𝐶}

5. minC ← CorrespWithLowestConfidValue(C)

6. for c ∈ minC

7. do insert {𝑐} in the top of the stack

8. While Stack not Empty

9. do 𝐻𝑛 ← last element of the stack

10. remove last element of the stack

11. If 𝑀 ∖ {𝐻𝑛} ⊨ 𝛼

12. Then C ← 𝛼-Alignment kernel (𝑀 ∖ {𝐻𝑛}, ο1, ο2, 𝛼)

13. AKernel ← AKernel ∪ {𝐶}

14. minC ← CorrespWithLowestConfidValue(C)

15. for c ∈ minC

16. do insert 𝐻𝑛 ∪ {𝑐} in the top of the stack

17. Else Incision ← Incision ∪ {𝐻𝑛}

18. Return Incision

19. End.

Methods &&&

84

Figure 11: Hitting set tree of confidence based incision functions

Table 6: Binary search based incision function algorithm.

Algorithm 5: Binary search based incision function

BinarySearchBasedIncisionFunction (M, ο1, ο2, 𝛼)

Input : ο1, ο2 // two ontologies

 M // M is an alignment between ο1 and ο2

 𝛼 // 𝛼 is an axiom

Output : Incision𝑐 // an incision function

1. Incision𝑐 ← ∅

2. If (𝛐𝟏 ⊭ 𝛼 𝑎𝑛𝑑 ο2 ⊭ 𝛼)

3. while 𝑀 ⊨ 𝛼

4. do

 5. C ← 𝛼-Alignment kernel (M, ο1, ο2, 𝛼)

6. Clv ← CorrespWithLowestConfidValue(C)

7. Incision𝑐 ← Incision𝑐 ∪ {Clv}

8. 𝑀 ← 𝑀 ∖ {Clv}

9. Return Incision𝑐

Methods &&&

85

5.4 Alignment evolution method

5.4.1 Overview

The alignment evolution under ontology change is a process that needs an

orchestration of operations in order to resolve the problem. Figure 12 schematizes

the orchestration of these operations.

Given an alignment M between two ontologies ο1 and ο2, ο3 is another version

of the second ontology, the method computes an alignment between versions of

the changed ontology following a matching operation. The ontological change

operation serves of this alignment to compute the ontological change as the

difference between the two versions of the evolved ontology. The proposed

method uses confidence based operations as main operations12 for the alignment

revision. It embeds these two operations in a generic one that adapts its input

according to the type of change. This operation sets its input to removed axioms in

case of an alignment contraction or to contradictory axioms in case of an

alignment consolidation. The objective of this operation is to identify the

correspondences that cause violation of the logical consistency and the ontology

change preservation constraints and to give means to choose among them which

must be eliminated.

Figure 12: Alignment Evolution Method

12 A confidence based operation uses a confidence based incision function to select correspondences from the α-

alignment kernel sets. In (Zahaf and Malki, 2016b), we have used the name alignment diagnosis instead the name of

incision function and the name of minimal conflict set instead the name of α-alignment kernel.

Ontological

change

Alignments

composition

Alignment

Revision

ch
an

g

e Jo
u

rn
al

Revised

Alignment

O3

Version

Matching

Versions

Alignment

Ontological

Change

O2

O1 Versions

Alignment Alignment

Old

Alignment

Methods &&&

86

Confidence based operators discard correspondences from the old alignment

based on confidence values associated to these correspondences. However, these

confidence values represent trust degrees in correspondences before the ontology

change. The challenging question is how to update these trust degrees in order to

reflect the change. For that purpose and to deal with the violation of structure

preservation constraint, we give a third operation which acts as a pre -operator of

the others to fulfil the global objective. This operation gives new confidence

values to correspondences after the change on which the others operations base

their decisions. To do that, this operation composes the old alignment with some

computed alignment between versions of the changed ontology following a

matching operation. The composition forms a new alignment whose

correspondences are established between elements of the new version of the

changed ontology and elements of the other ontology. The correspondences keep

their semantic relations while they update their associated confidence values by

taking the average number between the old values and the computed ones between

versions.

In what follows we discuss the outcomes of these operations on the minimal

change requirement and the alignment evolution constraints satisfaction.

5.4.2 Discussion

Version matching: version matching is the starter operation of the evolution

process. It serves of any matcher as a plugin to computes an alignment between

versions of the evolved ontology. The alignment expresses equivalence relations

between matched entities in both versions. The ontological change and the

alignments composition operation base their actions on the alignment produced by

the version matching operation. Hence, the correctness and completeness of the

version matching operation are determining factor for the final result of the global

method. Indeed, missing correspondences in the produced alignment are missed in

the final alignment as well. In addition, erroneous correspondences may make the

operation of revision more burdensome by unnecessary inconsistencies. This can

have drastic results on the minimal change requirement. Instead to remove only

the concerned correspondences, some others are removed not by relevance to the

problem but following gaps in the versions matching operation. For these reasons,

we recommend the careful examination of versions matching results.

Methods &&&

87

Ontological change: As illustrated by algorithm 1, this operation computes the

ontological change as the set-theoretical difference between the signatures of

ontology versions as well as between the sets of axioms. The correctness and

completeness of this ontological change operation depend on the operation of

version matching. More the versions matching is precise and complete, more the

ontological change is correct and complete.

Alignments composition: the alignment composition operation noted by ∘

composes between the old alignment M and the alignment H obtained following

the version matching operation. M ∘ H is given by the set :

M ∘ H = {
)),(,,,(212131 nnavgrree 
| 22 oe  ,

HnreeMnree ),,,(),,,(22321121 }

Where 21 rr  is defined by table 7 which illustrates the composition of basic

relations. avg(n1, n2) is a function that return the average values of confidence

values n1 and n2.

Table 7 : Composition of basic set-theoretical relations

By definition, the alignment composition eliminates systematically the

correspondences connecting entities that are deleted after ontology change. These

correspondences are responsible for the violation of the structure preservation

constraint. By construction, the alignment between versions contains only

equivalence relations. Consequently, no change affects the semantic relations of

remained correspondences as it is illustrated in table 7. Similar to the ontological

change operation, the correctness and completeness of the composition operation

depend on the correctness and completeness of the version matching operation. If

the versions matching operation computes erroneous correspondences, the

alignment composition also generates erroneous ones which may gravely

complicate the problem. Furthermore, if the operation misses some

 =  

= =    

 

Methods &&&

88

correspondences, the completeness of the alignment composition decreases. Here,

we also would like to stress that the operation of version matching should be

conducted under carefully eyes.

Alignment revision operation: it is a generic operation that adapts its input

according to the type of change. For removed axioms, the method calls the

confidence based alignment kernel contraction operation. In case of the alignment

inconsistency, the method calls the confidence based alignment kernel

consolidation operation. In order to be a full automatic method, these operations

embed the algorithm 5 of the binary search based incision function which

computes one incision function for a given alignment. While the performances of

the previous operations depend only on techniques used to achieve version

matching, the performances of the alignment revision depend on the underlying

representation languages of ontologies. The correctness of this operation needs

ontology languages to be monotones and compact. Fortunately, like OWL such

languages exist. The alignment natural semantics respects the monotony and

compactness criteria since it only extends ontologies by axioms expressed within

the same language of ontologies. Following these conditions, the alignment

revision satisfies the constraints of consistency and the ontological change

preservation. Like the previous operations, the minimal change is also at stake for

the alignment revision. Confidence based incision functions may discard more

correspondences than necessary. This is can happen since some correspondences

may have the same confidence value within an α-Alignment kernel.

Example 17. we assume that algorithm 5 performs from left to right . Following

example 15, the outcome of the algorithm 5 is

{
 1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟,

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.62 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟
}. Instead of selecting only one

correspondence, algorithm 5 selects both correspondences at once.

Unfortunately, we can’t restrict the order relation based on confidence values to

be total. This is not realistic since we have no means to oblige ontology matching

to generate such alignments.

Methods &&&

89

Besides, the binary search based incision function is biased by the arrangement

of the correspondences in the alignment. The outcome of algorithm 5 depends on

the arrangement of correspondences in the alignment.

Example 18. If we assume that the correspondence 1: Lecturer =0.52 2: Lecturer

has 0.72 instead of 0.62 as a confidence value, the outcome of the algorithm 5 is

illustrated by Figure 13. If we assume that algorithm 5 performs from left to right,

the arrows with solid line in figure 13 show the outcome of this algorithm. Figure

13 shows that instead of selecting only the correspondence

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.72 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟, the algorithm 5 also selects the correspondence

1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 as well. This is because the correspondence

1: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 =0.62 2: 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 is arranged before

1: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 =0.72 2: 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 in the alignment.

However, we have no means to know how to arrange the correspondences in

such a way to get a minimal incision function.

Figure 13: Binary search based incision functions

Methods &&&

90

5.5 Conclusion

In this chapter, we have presented the computational aspect of our framework.

We have adapted the Hitting set algorithm of the diagnosis theory to compute the

alignment kernel as well as the corresponding incision functions. As a result, we

have proposed different algorithms with different complexities varying from an

exponential to a polynomial time.

Besides, this chapter extends the proposed framework by a global method that

deals with all types of consistency, namely, the logical consistency, the change

preservation consistency, and the structural consistency as well. This method is an

orchestration of a set of operations each of which is designed to take care of one

aspect of the alignment change process. Finally, we have discussed the weakness

and the strength of this method relatively to the minimal change requirement and

the alignment consistency constraints satisfaction. This method takes the version

matching at the starter operation of the whole process. Method’s results are biased

by the weakness and strength of this operation. Namely, incorrect version

matching may make the resolution of inconsistency more burdensome by

unnecessary inconsistencies. Furthermore, incomplete version matching may leads

to missing of correspondences in the final result. This may have drastic results on

the minimal change requirement

Implementation and applications &&&

91

Chapter 6. Implementation and applications

6.1 Introduction

In chapter 4, we have described a formal evolution framework to support and

guide maintainers of ontology alignments. The framework describes different

operators for the resolution of the alignment inconsistency. Chapter 5 presents the

computational aspect of this framework. Different methods with different

complexities varying from exponential to polynomial time have been presented to

concretize the defined operators. In this chapter, we focus on tools and their

applications. We discuss a prototype implementation that serve as a proof of

concept for the feasibility of the main ideas presented in this dissertation. Also,

we discuss the experiences from applying some methods of our framework for

demonstrating the limits of some approaches from the category of the adaptive and

perfective alignment maintenance approaches. Mainly, these approaches rely on

ontology matching techniques for evolving alignments. By selecting these methods

we want to show neither ontology matching nor alignment debugging methods fit

well for the alignment evolution problem. Hence, we signal the emergency need of

dedicated methods to deal with the alignment evolution problem. The remainder of

this chapter is composed of three sections. Section 6.2 discusses the

implementation of the proposed architecture of our alignment evolution system.

Section 6.3 discusses the advantage of our approach relatively to others in the

category of the adaptive and perfective alignment maintenance approaches. We

conclude the chapter in section 6.4.

6.2 Implementation

We have implemented a prototype of our alignment evolution system in java.

The platform of this prototype is based on OWL API (Horridge & Bechhofer,

2011) for manipulating OWL ontologies and Align API (David et al., 2011) for

manipulating alignments between them. The platform integrates pellet (Sirin et al.,

Implementation and applications &&&

92

2007) as the main reasoning engine on OWL ontologies. In what follows we

describe in a nutshell these APIs then we give the architecture of the alignment

evolution system illustrating its different components on top of these APIs.

6.2.1 OWL API

The OWL API provides a collection of interfaces supporting the use of OWL

ontologies within applications (Horridge & Bechhofer, 2011). The model

explicitly supports the recent OWL 2 Recommendation 13. The OWL API supports

reading and writing ontologies in several syntaxes, including RDF/XML, Turtle,

OWL/XML, OWL Functional Syntax, The Manchester OWL Syntax, KRSS

Syntax14 and the OBO flat file format 15. Besides, the API allows the imports

closure of ontologies written in different syntaxes.

An OWL ontology in the OWL API model is a set of OWL axioms (see Figure

14). The OWLOntology interface provides a point for accessing the axioms

contained in an ontology. The OWLOntologyManager provides methods for

creating, loading, changing and saving ontologies, which are instances of the

OWLOntology interface.

Figure 14: A UML diagram showing the management of ontologies in the OWL API.

13 https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
14 http://dl.kr.org/krss-spec.ps
15 http://www.geneontology.org/faq/what-obo-file-format

Implementation and applications &&&

93

Furthermore, the OWL API defines common interfaces for supporting tasks such

as consistency checking, computation of class or property hierarchies and axioms

entailment.

6.2.2 Alignment API

The Alignment API provides definitions of a set of Java interfaces and basic

implementations of them (David et al., 2011). The main representational classes

are represented in Figure 15. These classes provide methods for manipulating

alignments such as adding correspondences to alignments and cutting

correspondences under a confidence threshold.

Figure 15: A UML diagram showing the management of alignments in the Alignment API.

The Alignment class defines an alignment as a set of Cells. A Cell defines a

Relation between two ontological entities. Besides, the class Cell supports any

type of additional metadata including confidence values. Alignments and aligned

ontologies form together a container which is represented by the OntologyNetwork

class in the Alignment API.

Implementation and applications &&&

94

Furthermore, the Alignment API defines others classes for creating and

evaluating alignments. AlignmentProcess provides a minimal processing structure

for matching ontologies in order to create alignments. Evaluator provides methods

for evaluating alignments by comparing a first alignment which may be taken as

the reference and a second alignment.

6.2.3 Architecture

The alignment evolution system embeds the OWL API and Alignment API

libraries as a baseline for loading ontologies and for loading, modifying, and

storing alignments. The different components of the system and the interaction

between them are represented in Figure 16. An arrow interconnecting two

components indicates a using relation between them. The ontology change

component is responsible for identifying and representing the ontology change.

This component implements the algorithm 1 (See chapter 4) for computing the

difference between two versions of the same ontology. It performs version

matching by invoking the Alignment API services. For the moment, we don’t

implement any specific matcher but we are satisfied by loading any alignment

computed by any matcher between the concerned versions. The loaded alignment

serves as a mapping for relating the same entities in both versions. We serve of

OWL API libraries to represent and store the deduced change as instances of the

ontology of change (See Figure 9).

Figure 16: The architecture of the alignment evolution system.

Basically, the alignment evolution component implements the different

operators for the problem of alignment evolution under ontology change. Namely,

it implements the general operators for the alignment contraction and

consolidation and the special operators of the confidence based alignment

contraction and confidence based alignment consolidation. For that purpose, it

Implementation and applications &&&

95

implements algorithms 2, 3, 4, and 5 for computing an α-Alignment kernel, the

alignment kernel and incision functions, confidence based incision functions, and

binary search based incision function respectively. Besides, this component

implements the alignment evolution method (See chapter 5). The implemented

methods of this component invoke the service for computing the ontology cha nge

of the ontology change component and they use reasoning services offers by the

alignment semantics component. Within the alignment semantics component, we

can check the alignment consistency, the entailment of an ontology axiom or an

alignment correspondence, and deduce new alignments by the composition of

related alignments which have a common ontology. The separation of reasoning

services from alignment evolution methods may enhance the scalability to integer

different alignment semantics. Actually, our system embeds the natural semantics

where an alignment is converted to a global ontology by using the Alignment API

libraries. The global ontology consists of importing the aligned ontologies and the

conversion of the alignment correspondences to a set of axioms. Consequently,

reasoning on alignment turns to reasoning on this global ontology. We serve of

OWL API services for connecting to any reasoning engine. By default, our system

integrates pellet (Sirin et al., 2007). The alignment change is entrusted to the

alignment log component for representing, storing, and tracking the alignment

change.

6.3 Applications

There are many ways to evaluate our proposed methods. For instance, it is

judicious to evaluate the performances of the proposed method for alignments

evolving vis-à-vis the change minimal principle since it satisfies the core-

retainment which is only a weak form of it. Furthermore, we compare these

performances with those of alignment evolution approaches. But, it seems priority

to investigate if all these approaches deal with the identified alignment evolution

constraints. For this purpose, we applicate the algorithm 5 of our framework (See

chapter 5) to demonstrate the limits of some approaches from the category of the

adaptive and perfective maintenance approaches (See chapter 3). We define

measures for measuring the accuracies of these approaches as well as the cost

needed to change them. We compare the obtained results by these methods in the

Implementation and applications &&&

96

context of alignment evolution with those that can be obtained in ontology

matching context highlighting the divergence between both contexts. Hence, we

signal the emergency need of dedicated methods to deal with the alignment

evolution problem. However, some challenges such as the data set on which to

perform tests, the accuracy, and the cost of change measures used to evaluate the

results hinder the completion of our objectives.

6.3.1 Selected evolution methods.

Basically, the adaptive and perfective maintenance approaches rely on ontology

matching techniques to evolve alignments. Some of them (Khattak et al, 2015)

recomputed the affected correspondences from scratch by matching them with

elements of the new version of the evolved ontology. Others (Groß et al, 2013)

compose the result of matching between versions of the evolved ontology with the

old alignment. In this experiment, we don’t study these approaches as they are.

Instead, we prepare different variants of them by diversifying the ontology

matching tools used for generating the alignment. This strategy helps us avoiding

any bias in favor of a particular ontology matching tool.

 The ontology alignment evaluation initiative (OAEI16) organizes an annual

workshop. The workshop knows the participation of a plethora of competitive

ontology matching tools. Without exception, all of them perform well in the track

of systematic benchmark test and register high precision that is close to 1.00 . In

addition to matching, YAM++ (Ngo & Bellahsene, 2012), Lily (Wang & Xu,

2008), and ASMOV (Jean-Mary et al., 2009) integrate components for the

alignment debugging (See chapter 3). YAM++ 17 and Lily18 are open software and

they are available to download from the web. Even ASMOV19 is commercial

software and no shareware is available; its outputs for the systematic benchmark

test are available on its web sites. For these reasons, we have selected these tools

to consider three methods for representing methods of evolved alignments from

scratch. Only YAM++ and Lily are used to generate the alignments between

versions. Hence, we consider two methods for representing alignments

16 http://oaei.ontologymatching.org/
17 http://www.lirmm.fr/yam-plus-plus/
18 http://cse.seu.edu.cn/people/pwang/lily.htm
19 http://www.infotechsoft.com/products/asmov.aspx

Implementation and applications &&&

97

composition methods. The semantic relations of the new correspondences are

adapted according to table 7 (See chapter 5) and their new confidence values are

the average of confidence values of old correspondences and those values of

correspondences between versions. In total, we select five methods for this

experiment. By selecting these methods we want to show neither ontology

matching nor alignment debugging methods fit well for the alignment evolution

problem.

6.3.2 The Data set.

 The data set should contain a set of ontologies, alignments between these

ontologies, and the ontology change as an explicit journal or as some versions of

the changed ontologies. Regarding the ontologies, we have adapted a subset of the

systematic benchmark test owned by OAEI20, which is a coordinated international

initiative that organizes the evaluation of ontology matching systems. The

benchmark is formed from a bibliographic ontology, some of its variants

ontologies and alignments between these variants. These alignments are used as

references ones in order to measure the accuracy of ontology matching tools. The

domain of this ontology is the bibliographic references. It is based on a subjective

view of what must be a bibliographic ontology. The ontologies are described in

OWL-DL and serialized in the RDF/XML format. The reference ontology is that

of the test #101. It contains 33 named classes, 24 object properties, 40 data

properties, 56 named individuals and 20 anonymous individuals.

In what concerns the ontology change, we chose the ontologies

103,104,203,223,230, and 233 then we formed the following three tests: # 101-

103-104, #101-203-223, and #101-230-233. We consider the ontology 104 as a

version of the ontology 103, the ontology 223 as a version of 203 and the ontology

233 as a version of 230. These selected versions are variants of the reference

ontology 101 by discarding or adding some features. The version 103 is language

generalization of 101. 104 is language restriction variant of 101. The version 203

is 101 without comments. While 223 is an expanded hierarchy of 101 and 233 is

20 http://oaei.ontologymatching.org/

Implementation and applications &&&

98

devoid of hierarchy and properties. The version 230 is the flattened classes of 101.

Hence, the formed data set covers the most possible changes between ontologies.

We also consider the alignments between the following pairs of ontologies: 101 -

103, 101-203, and 101-230 as the old alignments. Since ontology matching

problem is not the same as alignment evolution problem, we cannot consider the

alignments between the following pairs of ontologies: 101-104, 101-223, and 101-

233 as new alignments for the considered old ones. Instead, we follow an

alternative approach to measure the accuracy of methods without the need of these

references alignments. Figure 17 schematizes this data set.

Figure 17: Data Set

6.3.3 Accuracy measures.

To show the limits of the selected methods when dealing with alignment

evolution problem, we use the number of constraints violation by changed axioms.

To compute the cost of change needed by these methods for evolving their

outputs, we apply the cardinality based degree of incoherence measure proposed in

(Meilicke & Stuckenschmidt, 2008). This measure gives an upper bound for

precision without any knowledge of the reference alignment also known as the

gold standard alignment. The cardinality based degree of incoherence C of an

alignment M between two ontologies o1 and o2 is defined by C(o1, o2, M) =
|∆|

|M|
,

where ∆ is the minimal diagnosis of M relatively to the number of

correspondences. The coherence degree of a method is given by 1 − C which is an

upper bound for methods precisions. The cardinality based degree of incoherence

C of an alignment M also gives the percentage of the number of correspondences

that should be changed to establish consistency. Hence, this measure gives the

cost of change needed to evolve the alignment. However, our algorithm 5 doesn’t

computing a minimal diagnosis relatively to the cardinality but an incision

103

104
101

203

223
101

230

233
101

Implementation and applications &&&

99

function which cannot be always the minimal one. Nevertheless, applying our

algorithm for computing this measure expresses at worst the cost of change for

evolving an alignment. Consequently, the coherence degree measure gives the safe

reusing percentage of an alignment after the ontology change. To measure

performances of the selected methods in ontology matching context, we use the

precision measure which expresses their correctness relatively to the available

reference alignments.

6.3.4 Experimentation process.

The experimental process had conducted in two steps. In the first step, we

generate the ontological change. In the second step, we use our algorithm 5 to

show performances and limits of the selected alignment evolution methods to

avoid the violation of the alignment evolution constraints. We compute the cost

needed for evolving alignments. We serve of the cost result to compute the safe

reusing percentage of alignments. We conclude the experimentation by comparing

the accuracy of selected methods in both contexts of ontology matching and

alignment evolution problem. In what follows, we detail these steps.

Table 8 : The ontology change of the data set.

Step 1 (Ontological change generation). To generate the ontological change, we

use the version 2012 of the system YAM++ available on its website21 for matching

versions and we use our algorithm 1 (See chapter section 4) for computing the

difference between versions. YAM++ prompts users to select matchers and to

integrate instances, similarity propagation, or semantic verification in the

21 http://www.lirmm.fr/yam-plus-plus/

Difference

Versions

Deleted

Signature

Added

Signature

Deleted

Axioms

Refined

Deleted

Axioms

Added

Axioms

Refined

Added

Axioms

103-104 0 0 11 11 0 0

203-223 0 34 49 9 78 78

230-233 52 8 220 220 0 0

Implementation and applications &&&

100

matching process. See (Ngo & Bellahsene, 2012) for more detail. Basically, the

performance of our method for the ontological change generation relies on the

persistent signature detection. For this reason and since there is no change in

naming convention of signature elements for the selected versions, we have

selected only the levenshtein22 matcher. Table 8 summarizes the difference

between each pair of versions. Axioms removed from 103 compared to 104 are

domains for object and data properties. Besides the addition of new entities and

related axioms to version 223, definitions of other entities had changed by adding

axioms. The same holds for definitions of some entities in version 203 by

removing axioms. The removing axioms are domains, ranges and some restrictions

on properties. The comparison between versions 230 and 233 shows an addition of

some entities and a removal of some entities and some axioms as well. The

deletion of axioms is due to the removal of the hierarchy between entities.

Step 2 (methods performances and limitations). The object ive of this step is to

show the limit of the selected methods to avoid the violation of the alignment

evolution constraints. Also we compare their performances in both contexts of

ontology matching and alignment evolution problems. The experimentation had

split into two folds: alignments composition methods and evolving alignments

from scratch. In order to be fair, reference alignments are considered as old

alignments and methods of the former generate new alignments by composition

between them and the generated ones between versions. Besides selecting all

proposed matchers, similarity propagation, and semantic verification are also

integrated in YAM based matching process between versions. With regards to

LILY based methods, we use its version 2 that is available for downloading on its

website23. Lily presents a user friendly interface to configure some parameters. We

choose 15 as the size of semantic subgraph and we enabled similarity propagation

option. Since we deal with semantics properties of alignments in this step, these

parameters setting are more than necessary in order to fit both systems with their

full potentialities. In what concerns the latter, YAM, Lily, and ASMOV are tools

used to compute the new alignments from scratch. We keep the same configuration

of YAM and Lily as in the previous fold to generate alignments between 101-104,

22 http://www.levenshtein.net/
23 http://cse.seu.edu.cn/people/pwang/lily.htm

Implementation and applications &&&

101

101-223 and 101-233. ASMOV presents outputs alignments between these

ontologies on its website24 and they are available for downloading.

In order to reach the drawn objective, we count the number of violations of the

ontological change and consistency preservation constraints caused by the

ontology change. When we applied algorithm 5 on the new computed alignments,

we observed no consistency preservation constraint violation. But all of them

violated the ontological change preservation constraint. Table 9 presents the

average of results of this experiment. The first column designates the method. The

second column shows the average size of old alignments used in the test. The third

column shows the average size of the computed alignments between versions. The

fourth column shows the average size of the new alignments generated by the

selected methods. The fifth column shows the average number of constraints’

violations.

At first glance, the number of constraints violation seems to be the same for all

methods. However, we cannot confirm that all methods register the same score

when dealing with this problem. Alignment quality depends on its content and its

size. For instance, an empty alignment avoids completely the violation of

constraints but it doesn’t present any interest. The sixth column shows the average

of diagnosis sizes that are sufficient to ensure constraints preservation . The

seventh column expresses at worst the cost of change for evolving an alignment.

 Table 9 : Limits of ontology matching tools and alignment debugging methods

Method #Old #Ver #New #Violation #Delta
Cost

(%)

Coh°

(%)

YAM based

Composition
89 73 73 8 9 20 80

Lily based

Composition
89 71 71 6 6 15 85

YAM 76 7 8 14 86

Lily 75 6 8 14 86

ASMOV 76 7 7 14 86

24 http://www.infotechsoft.com/products/asmov.aspx

Implementation and applications &&&

102

In order to show that ontology matching is different from alignment evolution

problem, we compare the accuracies of the selected methods in both contexts.

The selected data set was dedicated to compare the accuracies of tools in

ontology matching problem. It contains a reference alignment for each test which

allows us to measure the precision of each method. In alignment evolution

context, we haven’t these references alignment. Hence, it’s not possible to use the

same precision measure. Instead, we use the cardinality based degree of

incoherence. The coherence degree measure gives the safe reusing percentage of

an alignment after the ontology change. The last column of table 9 gives the

accuracy average of each method. Figure 18 summaries this comparison. It shows

the harmonic precision of our three tests and the correspondent average coherence

degree. Although a high precision of 100% have been registered in the context of

ontology matching, it can be considered as the safe reusing percentage in the

alignment evolution context.

0

0,2

0,4

0,6

0,8

1

1,2

YAM++ ASMOV LILY YAMCom LilyCom

precision

Coherence Degree

Figure 18: Performances comparison of methods in alignment evolution and

ontology matching contexts.

Implementation and applications &&&

103

6.4 Conclusion

In this chapter, we discussed the architecture of a prototype implementation of

our system of alignment evolution. Our system follows a modular architecture

which allows it to scale to the integration of different ontology formats, different

alignment interpretations, and others techniques of alignment evolution. Also, we

discussed experiences from applying some methods of our framework for

demonstrating the limit of some approaches from the category of the adaptive and

perfective alignment maintenance approaches. Results show that all selected

methods suffer from filling all gaps in the alignment evolution problem. Neither

ontology matching nor alignment debugging methods fit well for the alignment

evolution problem. While it seems normal for ontology matching tools and

debugging methods because there were not designed for this purpose, this is a

major drawback for alignment evolution methods. Hence, there is an emergency to

invest in dedicated methods. The experimentation also shows the advantage of our

approach relatively to these methods.

Conclusion and future works &&&

104

Chapter 7. Conclusion and future works

7.1 Introduction

This final chapter reflects on the achievements of this dissertation and to look

forward to possible new research directions. The reminder of this chapter is

structured as follows. Section 7.2 summarizes the work presented in this

dissertation. Section 7.3 discusses the main contributions and achievements of this

dissertation, thereby reflecting on the problem statement as described in the

introduction (see Section 1.2). Finally, Section 7.4 presents possible future works.

7.2 Summary

In this dissertation, we have presented a new approach for the alignment

evolution under ontology change problem. This approach proposes a formal

framework that consists of a number of phases, each having a specific purpose.

The framework facilitates the ontology change identification for maintainers,

evolves alignment from a consistent state to another consistent state, conducts to a

new consistent state with a minimal of change, and permits to maintainers

validating the new alignment by accepting the change, recovery from unnecessary

changes, adapting the change, tracking it, or cancelling all the change. In what

follows, we review the different phases and the main offered functionalities of this

framework.

In this framework, an ontology is a vocabulary and a set of axioms specifying

the meaning of this vocabulary. The framework computes the ontology change as

the difference between versions of the same ontology. An ontology change is

stored as instances of an ontology of change. The main concepts of this ontology

are added and deleted vocabulary elements on the one hand and the added and

deleted axioms on the other hand. This format of change representation i s general

enough to encompass any ontology language.

Conclusion and future works &&&

105

On the light of belief base revision theory, the framework offers different

rational operators for evolving alignments. More precisely, the framework adapts

the kernel framework of base revision theory to design two general operators: the

kernel contraction and the kernel consolidation for alignment evolution. The

former designed to deal with the problem of discarding axioms from ontologies .

The latter is defined to restore alignment consistency following adding axioms in

ontologies implied in alignment. Besides, the framework offers two particular

operators based on confidence values associated to alignment correspondences:

the confidence based kernel contraction operator and the confidence based kernel

consolidation operator. All these operators base their actions on the notions of the

alignment kernel and the incision function. The alignment kernel is the set of the

minimal subsets of correspondences causing the violation of the alignment

consistency. The incision function selects from each element of the kernel at least

one correspondence for resolving inconsistencies. For the general operators, no

assumptions are made about the incision functions which make the framework

very flexible and users are free to choose their own functions. The framework

adapts the Hitting set algorithm of diagnosis theory to compute the alignment

kernel as well as the corresponding incision functions. As a result, the framework

proposes different algorithms with different complexities varying from an

exponential to a polynomial time. All the designed operators are characterized by

a set of postulates which meet the constraints of the logical consistency, the

change preservation, and the minimal change but not the constraint of the

structural consistency. The framework is extended with a global method that deals

with all types of consistency, namely, the logical consistency, the change

preservation consistency, and the structural consistency as well. This method is an

orchestration of a set of operations each of which is designed to take care of one

aspect of the alignment change process.

Furthermore, the framework manages the alignment change in order to be

validated by users. Alignments maintainers may validate the change, recover the

unnecessary changes, adapt, track, or cancel the change. For this purpose, the

framework stores the change in a journal of change, informs the alignment

maintainer about the cost of change, explains inconsistencies, and justifies the

proposed change. The notions of kernel and incision function play an important

Conclusion and future works &&&

106

role to rationalize the interaction between maintainers and the alignment evolution

system. An alignment kernel is a set of explanations of alignment inconsistency.

Incision functions select among these explanations the accused correspondences to

establish consistency. Hence, we can consider incisions functions as change

justifications.

Finally, the framework delivers the new alignment and the final associated

change in a machine readable format. This allows parsing and exploitation of

changes by maintenance tools of depending applications. The final change is the

difference between the old and the new delivered alignment.

Finally, the dissertation presents the architecture of a prototype implementation

of this framework which constitutes a system for alignment evolution. This system

follows a modular architecture which allows it to scale to the integration of

different ontology formats, different alignment interpretations, and others

techniques of alignment evolution. Also, the dissertation demonstrates the

advantage of our approach relatively to some approaches from the category of the

adaptive and perfective alignment maintenance approaches. The results show that

neither ontology matching nor alignment debugging methods fit well for the

alignment evolution problem.

7.3 Contributions

In this section, we discuss the contributions and accomplishments that are the

result of this dissertation through the requirements of the alignment evolution

problem we formulated in the introduction (see Section 1.2). We begin with our

contributions to the methodology knowledge.

Problem 1(ontology change identification): Maintainers want to create their own

set of the ontology change in order to understand what happen and correctly

update their alignments.

To assist alignment maintainers for creating their own sets of change, the system

compares between versions of the same ontology and delivers the change as the

changed vocabulary in one hand and the changed axiomatic meaning of this

vocabulary in the other hand. This format of change which constitutes an ontology

Conclusion and future works &&&

107

of change facilitates change sharing not only with the alignment maintainer but

also with others tools of the alignment evolution system to automatically

manipulate it. Besides, this format of change representation is general enough to

encompass any ontology language and makes the change clear and easily

understandable.

Problem 2(alignment consistency): As ontologies evolve from a consistent state

to another, alignment evolution should follow this change by a transition to a new

consistent state. Alignment consistency is expressed as a set of constraints

qualified as hard since their violation makes obsolete the alignment and useless.

The framework distinguishes three types of alignment consistency, namely, the

logical consistency, the change preservation consistency, and the structural

consistency. To resolve the logical consistency and the change preservation

consistency the framework adapts the kernel framework of belief base revision

theory to design two rational operators: the kernel contraction and the kernel

consolidation operators. The kernel contraction changes the alignment to ensure

the change preservation consistency in such way that discarded axioms from the

aligned ontologies can’t be generated again. The kernel consolidation operator

restores the logical consistency of an alignment when some added axioms to the

aligned ontologies make this alignment inconsistent. To ensure the change

preservation consistency, the operator is only authorized to modify the alignment

and it can’t in any way affect ontologies. These operators base their actions on the

notions of the alignment kernel and the incision function. The framework adapts

the Hitting set algorithm of diagnosis theory to compute the alignment kernel as

well as the corresponding incision functions. Hence, the framework is enough

flexible by allowing users to choose among many possibilities of change. For the

purpose of satisfying the structural consistency, the framework only suggests

correspondences removing.

Problem 3 (minimality of change): In contrast with the consistency constraints

which are qualified as hard we qualify the minimal change as a soft constraint.

Since the violation of this constraint don’t hamper the use of alignments. Hence,

we are satisfied by proposing a weak form of this principle. The designed

operators for the alignment consistency resolution satisfy the core-retainment

postulate which means only correspondences that participate somehow in the

Conclusion and future works &&&

108

inconsistency implication need to be changed. Sometimes, not all these

correspondences should be changed but only a subset of them. This is why we

need the user involvement to achieve the operation of alignment change.

Problem 4 (User involvement): alignment evolution is a knowledge intensive

task which can’t fulfill without the involvement of users. The system proposes a

change and maintainers are invited to review it before implementation.

Maintainers may validate the change, recover the unnecessary change, adapt,

track, or cancel the change. Hence, the system should facilitate the interaction and

enhance the interoperability with users.

Besides inconsistency checking, our system of alignment evolution counts on the

notions of the kernel and the change log to facilitate the interaction with users and

enhance its interoperability with tiers. The former plays the role of inconsistency

explanations while the latter allows change tracking and change sharing with

applications depending of alignments.

In what concerns the literature review, our contribution is two-fold. First, we

have reviewed the main ontology evolution frameworks. Guiding by the fixed

requirements of the problem of alignment evolution, we have concluded that these

frameworks should be adapted in order to embed the alignment evolution problem.

Moreover, we have recommended the separation the study of the alignment

evolution problem from the ontology evolution problem since alignment

depending artifacts may create confusion with depending artifacts of ontologies.

These recommendations have leaded us to propose an alignment change process

with fourth phases: a phase for the ontology change identification, a phase for the

semantics of change, a phase for the change validation, and a phase for the change

implementation. This change process is general and can be concretized in different

ways. Besides the different proposed operators of change, the framework is

extended with a global method which is an orchestration of a set of operations

each of which is designed to take care of one aspect of the alignment change

process. Inspired by the classification of the software evolution and maintenance

approaches in software engineering, our second contribution is the classification

of the alignment evolution approaches in three classes: adaptive, corrective, and

perfective maintenance. After review, we observed all approaches fall in two

https://en.wikipedia.org/wiki/Software_engineering

Conclusion and future works &&&

109

categories. The approaches of the former are corrective since they check and

resolve inconsistences after change. The main challenge for these approaches is

how to ensure a consistency alignment with a minimal of change. While the

approaches of the latter are adaptive and perfective since they don’t consider

explicitly the alignment consistency and they only adapt the alignment according

to the detected changes in ontologies. Consequently, no guaranties are given to

ensure the alignment consistent even they claim it was their primary purpose. This

has leaded us to conduct an experimental process in order to demonstrate the

advantage of our approach relatively to some approaches from this category. The

results show that neither ontology matching nor alignment debugging methods fit

well for the alignment evolution problem.

7.4 Perspectives

A major conclusion that can be drawn from these experiences is that the

problem of alignment evolution has not received a lot of importance and many

investigations must be carried out to solve the issues related to this problem.

Investigations should touch the fundamental as well as the methodology aspects of

this problem.

Results of this dissertation are within the alignment natural semantics

framework. We need further investigations within the alignment contextual

semantics (Bouquet et al, 2003). Within the framework of belief base revision

theory, we have assumed that ontology languages verify some logical properties

such as monotony and compactness. What about non monotone and non-

compacted languages?

At the methodology side, our framework can be extended in many ways. We can

integrate others operators such as the partial meet contraction and the partial meet

contraction consolidation operators. Our framework is limited to alignment

revision under ontology change. Always on the light of base revision, we

investigate how to deal with the problem of adding and discarding

correspondences from alignments. Discarding correspondences from alignments is

the subject of alignment debugging approaches. This problem has been identified

as an important problem since the early years of semantic web project

Conclusion and future works &&&

110

development (Meilicke et al., 2009; Qi et al., 2009). We think that the study of

this problem is not investigated yet in its right framework. A promise

investigation is to apply belief revision theory for the alignment debugging

problem.

Furthermore, we hope to extend this study to deal with the problem of restoring

the consistency of a network of ontologies formed by a set of ontologies connected

by a set of alignments when concerned ontologies were evolved or the alignment

was improved by adding some correspondences. Inconsistency may manifest in

two ways: local inconsistencies or a global inconsistency. A local inconsistency is

an ontology inconsistency or an alignment inconsistency while global

inconsistency arises in the network but ontologies and alignments are consistent in

isolation. Local inconsistencies may only be solved by local revision of the

concerned ontology or alignment while these both operations of revision can be

used independently to resolve the global inconsistency. The work of Euzenat

(2015) is a first step to understand the revision of the network of ontologies that

may help to consider the problem within the framework of base revision theory.

Another related problem is the maintenance of semantic annotations.

Annotations express semantic links between documents contents and domain

ontologies. Ontology change might decrease the quality of annotations and make

them obsolete and useless. Although the recent advances for annotation systems,

the maintenance of existing annotations remains under studied (Cardoso et al.,

2016).

Bibliographies &&&

111

Bibliographies

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory

change: Partial meet contraction and revision functions. The journal of symbolic

logic, 50(02), 510-530.

Brachman, R. J., Levesque, H. J., & Reiter, R. (1992). Knowledge representation and

Reasoning. MIT press.

Brickley, D., Guha, R. V., & McBride, B. (2004). RDF vocabulary description language

1.0: RDF Schema. W3C Recommendation (2004). URL http://www. w3. org/tr/2004/rec-

rdf-schema-20040210.

Buitelaar, P., Eigner, T., & Declerck, T. (2004). OntoSelect: A dynamic ontology library

with support for ontology selection. In Proceedings of the Demo Session at the

International Semantic Web Conference. Hiroshima,Japan.

Bouquet, P., Giunchiglia, F., Van Harmelen, F., Serafini, L., & Stuckenschmidt, H.

(2003, October). C-owl: Contextualizing ontologies. InInternational Semantic Web

Conference (pp. 164-179). Springer Berlin Heidelberg.

Cardoso, S. D., Pruski, C., Da Silveira, M., Lin, Y. C., Groß, A., Rahm, E., & Reynaud-

Delaître, C. (2016). Leveraging the Impact of Ontology Evolution on Semantic

Annotations. In Knowledge Engineering and Knowledge Management: 20th

International Conference, EKAW 2016, Bologna, Italy, November 19-23, 2016,

Proceedings 20 (pp. 68-82). Springer International Publishing.

Dalal, M. (1988). Investigations into a theory of knowledge base revision: preliminary

report. In Proceedings of the Seventh National Conference on Artificial Intelligence (Vol.

2, pp. 475-479).

David, J., Euzenat, J., Scharffe, F., & Trojahn dos Santos, C. (2011). The alignment API

4.0. Semantic web, 2(1), 3-10.

Bibliographies &&&

112

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., ... &

Stein, L. A. (2004). OWL web ontology language reference.W3C Recommendation

February, 10.

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., ... & Sachs, J. (2004).

Swoogle: a search and metadata engine for the semantic web. In Proceedings of the

thirteenth ACM international conference on Information and knowledge

management (pp. 652-659). ACM.

Dos Reis, J. C., Dinh, D., Pruski, C., Da Silveira, M., & Reynaud-Delaître, C. (2013).

Mapping adaptation actions for the automatic reconciliation of dynamic ontologies.

In Proceedings of the 22nd ACM international conference on Information & Knowledge

Management (pp. 599-608). ACM.

Dos Reis, J. C., Pruski, C., & Reynaud-Delaître, C. (2015). State-of-the-art on mapping

maintenance and challenges towards a fully automatic approach.Expert Systems with

Applications, 42(3), 1465-1478.

Doyle, J. (1979). A truth maintenance system. Artificial intelligence, 12(3), 231-272.

Dzbor, M., Domingue, J., & Motta, E. (2003). Magpie–towards a semantic web browser.

In International Semantic Web Conference (pp. 690-705). Springer Berlin Heidelberg.

D'Aquin, M., Gridinoc, L., Angeletou, S., Sabou, M., & Motta, E. (2007). Watson: A

gateway for next generation semantic web applications. In Poster session at the

International Semantic Web Conference (ISWC 2007). Busan, Korea,

Euzenat, J. (2015). Revision in networks of ontologies. Artificial intelligence,228, 195-

216.

Euzenat, J., Mocan, A. & Scharffe, F. (2008). Ontology alignment: an ontology

management perspective. In M. Hepp, P. D. Leenheer, A. D. Moor, Y. Sure (eds.),

Ontology management: semantic web, semantic web services, and business

applications (177–206). New-York: Springer.

Bibliographies &&&

113

Euzenat, J., & Shvaiko, P. (2013). Ontology matching (Vol. 18). Heidelberg: Springer.

Fagin, R., Ullman, J. D., & Vardi, M. Y. (1983). On the semantics of updates in

databases. In Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles

of database systems (pp. 352-365). ACM.

Farquhar, A., Fikes, R., & Rice, J. (1997). The ontolingua server: A tool for collaborative

ontology construction. International journal of human-computer studies, 46(6), 707-727.

Fensel, D. (2001). Ontologies: Dynamic Networks Formally Represented Meaning.

Proceeding of the International Semantic Web Working Symposium (SWWS).

Fermé, E., & Hansson, S. O. (2011). AGM 25 years. Journal of Philosophical

Logic, 40(2), 295-331.

Flouris, G. (2006). On belief change and ontology evolution. Phd Thesis. Department of

Computer Science, University of Crete.

Flouris, G., Huang, Z., Pan, J. Z., Plexousakis, D., & Wache, H. (2006). Inconsistencies,

negations and changes in ontologies. In Proceedings of the National Conference on

Artificial Intelligence (Vol. 21, No. 2, p. 1295). Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press; 1999.

Gärdenfors, P. (1992). Belief Revision: An Introduction. In Gärdenfors (ed.), Belief

Revision (1–28). Cambridge: Cambridge University Press.

Genesereth, M. R., & Fikes, R. E. (1992). Knowledge interchange format-version 3.0:

reference manual. Technical Report Logic-92-1. Computer Science Department.

Stanford University, California. http://logic.stanford.edu/kif/Hypertext/kif-manual.html

Grimm, S., Abecker, A., Völker, J., & Studer, R. (2011). Ontologies and the semantic

web. In Handbook of Semantic Web Technologies (pp. 507-579). Springer Berlin

Heidelberg.

Groß, A., Dos Reis, J. C., Hartung, M., Pruski, C., & Rahm, E. (2013). Semi-automatic

adaptation of mappings between life science ontologies. In International Conference on

Data Integration in the Life Sciences (pp. 90-104). Springer Berlin Heidelberg.

Bibliographies &&&

114

Gruber, T. R. (1993). A translation approach to portable ontology

specifications. Knowledge acquisition, 5(2), 199-220.

Guarino, N., Oberle, D., & Staab, S. (2009). What is an Ontology?. In Handbook on

ontologies (pp. 1-17). Springer Berlin Heidelberg.

Haase, P., Rudolph, S., Wang, Y., Brockmans, S., Palma, R., Euzenat, J., & d'Aquin, M.

(2006). NeOn Deliverable D1. 1.1 Networked Ontology Model.

Haase, P., & Stojanovic, L. (2005, May). Consistent evolution of OWL ontologies.

In European Semantic Web Conference (pp. 182-197). Springer Berlin Heidelberg.

Hansson, S. O. (1994). Kernel contraction. The Journal of Symbolic Logic,59(03), 845-

859.

Hansson, S. (1997). Semi-revision. Journal of Applied Non-Classical Logics,7(1-2), 151-

175.

Hansson, S. O. (1999). A Textbook of Belief Dynamics. Theory Change and

Database Updating, Dordrecht: Kluwer.

Hansson, S. O., & Wassermann, R. (2002). Local change. Studia Logica,70(1), 49-76.

Hansson, S. O. (2006). Logic of belief revision. In E. N. Zalta (Ed.), The Stanford

encyclopedia of philosophy. The Metaphysics Research Lab.Center for the Study of

Lan-guage and Information.Stanford University, http://plato.stanford.edu/entries/logic-

belief-revision

Hartung, M., Groß, A., & Rahm, E. (2013). COnto–Diff: generation of complex evolution

mappings for life science ontologies. Journal of biomedical informatics, 46(1), 15-32.

Hepp, M. (2008). Ontologies: State of the art, business potential, and grand challenges.

In Martin Hepp, Pieter De Leenheer, Aldo de Moor, York Sure. (Eds.): Ontology

Bibliographies &&&

115

Management: Semantic Web, Semantic Web Services, and Business Applications (pp.

3-22). Springer US.

Horridge, M. (2011). Justification based explanation in ontologies. Phd Thesis, School

of computer science, University of Manchester.

Horridge, M., & Bechhofer, S. (2011). The owl api: A java api for owl

ontologies. Semantic Web, 2(1), 11-21.

Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with

semantic verification. Web Semantics: Science, Services and Agents on the World

Wide Web, 7(3), 235-251.

Kalfoglou, Y., & Schorlemmer, M. (2003). Ontology mapping: the state of the art. The

knowledge engineering review, 18(01), 1-31.

Kalyanpur, A. A. (2006). Debugging and repair of OWL ontologies. Phd Thesis, The

Graduate School, University of Maryland.

Khattak, A. M., Pervez, Z., Khan, W. A., Khan, A. M., Latif, K., & Lee, S. Y. (2015).

Mapping evolution of dynamic web ontologies. Information Sciences,303, 101-119.

Khattak, A. M., Latif, K., Khan, S., & Ahmed, N. (2008). Managing change history in

web ontologies. In Semantics, Knowledge and Grid, 2008. SKG'08. Fourth International

Conference on (pp. 347-350). IEEE.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and

frame-based languages. Journal of the ACM (JACM), 42(4), 741-843.

Kirsten, T., Gross, A., Hartung, M., & Rahm, E. (2011). GOMMA: a component-based

infrastructure for managing and analyzing life science ontologies and their

evolution. Journal of biomedical semantics, 2(6),1- 24.

Klein, M. (2004). Change management for distributed ontologies. 2004. PhD thesis,

University of Vrije, Netherlands.

Bibliographies &&&

116

Klein, M., & Fensel, D. (2001). Ontology versioning on the Semantic Web.

In Proceedings of the First International Conference on Semantic Web Working (pp. 75-

91). CEUR-WS. org.

Klein, M., Fensel, D., Kiryakov, A., & Ognyanoff, D. (2002). Ontoview: Comparing and

versioning ontologies. In Collected Posters of First Int. Semantic Web Conf.(ISWC

2002).

Kremen, P., Smid, M., & Kouba, Z. (2011). OWLDiff: A practical tool for comparison and

merge of OWL ontologies. In Database and Expert Systems Applications (DEXA), 2011

22nd International Workshop on (pp. 229-233). IEEE.

Lassila, O., & Swick, R. R. (1999). Resource Description Framework (RDF) model and

syntax specification. https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Lenat, D. B., & Guha, R. V. (1989). Building large knowledge-based systems;

representation and inference in the Cyc project. Addison-Wesley Longman Publishing

Co., Inc..

Lopez, V., Pasin, M., & Motta, E. (2005). Aqualog: An ontology-portable question

answering system for the semantic web. In European Semantic Web Conference (pp.

546-562). Springer Berlin Heidelberg.

Lopez, V., Motta, E., & Uren, V. (2006). Poweraqua: Fishing the semantic web.

In European Semantic Web Conference (pp. 393-410). Springer Berlin Heidelberg.

Baader, F., & Nutt, W. (2003). Basic description logics. In Description logic

handbook (pp. 43-95). Cambridge University Press.

Baader, F., Penaloza, R., & Suntisrivaraporn, B. (2007). Pinpointing in the Description

Logic EL+. In Annual Conference on Artificial Intelligence (pp. 52-67). Springer Berlin

Heidelberg.

MacGregor, R. (1999). Retrospective on LOOM. Information Sciences Institute,

University of Southern California, Tech. Rep.

https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Bibliographies &&&

117

Martins, H., & Silva, N. (2009). A User-driven and a Semantic-based Ontology Mapping

Evolution Approach. In ICEIS (1) (pp. 214-221). Milan, Italy

Meilicke, C., & Stuckenschmidt, H. (2007). Applying logical constraints to ontology

matching. In Annual Conference on Artificial Intelligence (pp. 99-113). Springer Berlin

Heidelberg.

Meilicke, C., & Stuckenschmidt, H. (2008). Incoherence as a basis for measuring the

quality of ontology mappings. In Proceedings of the 3rd International Conference on

Ontology Matching-Volume 431 (pp. 1-12). CEUR-WS. org.

Meilicke, C., & Stuckenschmidt, H. (2009). An efficient method for computing alignment

diagnoses. In International Conference on Web Reasoning and Rule Systems (pp. 182-

196). Springer Berlin Heidelberg.

Motta, E., & Sabou, M. (2006). Next generation semantic web applications. In Asian

Semantic Web Conference (pp. 24-29). Springer Berlin Heidelberg.

Nebel,B. (1994). Base Revision Operations and Schemes: Semantics, Representation,

and Complexity. In Proceedings of the 11th European Conference on Artificial

Intelligence (341-345). Amsterdam, the Netherlands: John Wiley & Sons

Ngo, D. H., & Bellahsene, Z. (2012). YAM++:(not) Yet Another Matcher for Ontology

Matching Task. In BDA: Bases de Données Avancées.

Noy, N. F. (2009). Ontology mapping. In Handbook on ontologies (pp. 573-590).

Springer Berlin Heidelberg.

Noy, N. F., Fergerson, R. W., & Musen, M. A. (2000). The knowledge model of Protege-

2000: Combining interoperability and flexibility. In International Conference on

Knowledge Engineering and Knowledge Management (pp. 17-32). Springer Berlin

Heidelberg.

Noy, N. F., Chugh, A., Liu, W., & Musen, M. A. (2006). A framework for ontology

evolution in collaborative environments. In International semantic web conference (pp.

544-558). Springer Berlin Heidelberg.

Bibliographies &&&

118

Noy, N. F., & Klein, M. (2004). Ontology evolution: Not the same as schema

evolution. Knowledge and information systems, 6(4), 428-440.

Noy, N. F., & Musen, M. A. (2002). Promptdiff: A fixed-point algorithm for comparing

ontology versions. AAAI/IAAI, 2002, 744-750. Edmonton, Alberta, Canada

Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: interactive tools for ontology

merging and mapping. International Journal of Human-Computer Studies, 59(6), 983-

1024.

Noy, N. F., Griffith, N., & Musen, M. A. (2008). Collecting community-based mappings in

an ontology repository. In International Semantic Web Conference (pp. 371-386).

Springer Berlin Heidelberg.

Oliver, D. E. (2000). Change Management and Synchronization of Local and Shared

Versions of Controlled Vocabulary. Phd Thesis.

Palma, R., Haase, P., Corcho, O., & Gómez-Pérez, A. (2009). Change representation

for OWL 2 ontologies. In Proceedings of the 6th International Conference on OWL:

Experiences and Directions-Volume 529(pp. 142-151). CEUR-WS. org.

Peppas,P. (2008). Belief revision. In Van Harmelen, F., Lifschitz, V., & Porter, B.

(Eds.). Handbook of knowledge representation (317–359). Elsevier.

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., & Christophides, V. (2009).

On detecting high-level changes in RDF/S KBs. InInternational Semantic Web

Conference (pp. 473-488). Springer Berlin Heidelberg.

Patel-Schneider, P. F., McGuinness, D. L., Brachman, R. J., & Resnick, L. A. (1991).

The CLASSIC knowledge representation system: Guiding principles and

implementation rationale. ACM SIGART Bulletin, 2(3), 108-113.

Plessers, P. (2006). An Approach to Web-based Ontology Evolution. PhD thesis,

University of Brussels, Belgium.

Bibliographies &&&

119

Qi, G., Ji, Q., & Haase, P. (2009). A conflict-based operator for mapping revision.

In International Semantic Web Conference (pp. 521-536). Springer Berlin Heidelberg.

Redmond, T., & Noy, N. (2011). Computing the changes between ontologies. In Joint

Workshop on Knowledge Evolution and Ontology Dynamics (pp. 1-14).

Ribeiro, M. M., & Wassermann, R. (2007, June). Base revision in description logics-

preliminary results. In Proceedings of the International Workshop on Ontology

Dynamics (IWOD-07) (Vol. 6982).

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial intelligence, 32(1),

57-95.

Rymon, R. (1991). A Final Determination of the Complexity of Current Formulations of

Model-Based Diagnosis (Or Maybe Not Final?). Technical Report No. MS-CIS-91-

13.University of Pennsylvania.

Hussain, S., De Roo, J., Daniyal, A., & Abidi, S. S. R. (2011). Detecting and resolving

inconsistencies in ontologies using contradiction derivations. InComputer Software and

Applications Conference (COMPSAC), 2011 IEEE 35th Annual (pp. 556-561). IEEE.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical

owl-dl reasoner. Web Semantics: science, services and agents on the World Wide

Web, 5(2), 51-53.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles

and methods. Data & knowledge engineering, 25(1-2), 161-197.

Stojanovic, L. (2004). Methods and tools for ontology evolution. PhD thesis, University

of Karlsruhe.

Swanson, E. B. (1976). The dimensions of maintenance. InProceedings of the 2nd

international conference on Software engineering (pp. 492-497). IEEE Computer

Society Press.

Bibliographies &&&

120

Uschold, M., & Gruninger, M. (2004). Ontologies and semantics for seamless

connectivity. ACM SIGMod Record, 33(4), 58-64.

Wang, P., & Xu, B. (2008). Debugging ontology mappings: a static approach.Computing

and Informatics, 27(1), 21-36.

Zahaf, A. (2012). Alignment Between Versions of the Same Ontology. In ICWIT (pp.

318-323).

Zahaf, A., & MALKI, M. (2016a). Kernel Contraction and Consolidation of Alignment

under Ontology Change. Journal of Information Technology and Computer

Science(IJITCS), 8(8), 31-42.

Zahaf, A., & Malki, M. (2016b). Alignment Evolution under Ontology

Change.International Journal of Information Technology and Web Engineering

(IJITWE), 11(2), 14-38.

