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Abstract

The present thesis is devoted to the study of global existence and asymptotic
behavior in time of solutions to nonlinear of the Kirchhoff equations and Viscoelastic
equations. This work consists of three chapters, will be devoted to the study of the
global existence and asymptotic behavior of some evolution equations with nonlinear
dissipative terms, viscoelastic term and delay term. In chapter 1, we consider a
degenerate Kirchhoff equation with a weak frictional damping and delay terms in
the internal feedback, we prove general stability estimates using some properties of
convex functions, without imposing any growth condition at the frictional damping
term. In chapter 2, we consider the non linear Petrovsky equation with general
nonlinear dissipative terms and a delay term, we prove the existence of global
solutions in suitable Sobolev and we prove general stability estimates. In chapter
3, we study a non-degenerate Kirchhoff equation with general nonlinear dissipation
term and time varying delay term, we prove existence of global solution under
condition on the weight of the delay term in the feedback and the weight of the term
without delay and the speed of delay. Also we prove that the energy of the system
decays to zero with an explicit decay rate estimate even if the nonlinear dissipation
term has not a polynomial behavior in zero. In this PhD thesis, chapter 2 -3, we prove
the existence of global solutions in suitable Sobolev spaces by using Faedo-Galarkin
method combined with the energy estimate method. Furthermore, the general decay
results of the energy are established via suitable Lyapunov functionals and by using

some properties of convex functions.

Key words and phrases: Global existence, Delay term, General decay, De-
generate or non degenerate Kirchhoff equation, Petrovsky equation, Multiplier
method, Lyapunov functional, Nonlinear feedback, Nonlinear dissipation, Relaxation

function, Viscoelastic, Convexity.
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Introduction

The mathematical description of transversal small vibrations of elastic string, fixed
at the ends, is an old question. The first investigations on this problem were done by
d’Alembert (1717-1793) and Euler (1707-1783). We consider an orthogonal Cartesian
coordinate system (z,u) in R?. Suppose that the string, in the rest position, is on the
x axis with fixed ends at the points M and N. If u(x, t) is the vertical displacement
of a point X of the string, with coordinate x at time t. The mathematical model
proposed by d’Alembert, in the modern notation, is:

Pu 0%

o2t~ o
where ¢? = %, with P, the initial tension and m the mass of the string MN.
D’Alembert observed that the configurations of the displacement of the string are
given by:

u(z,t) = ®(x + ct) + VU (z — ct),

where ® and ¥ are arbitrary functions. To obtain the d’Alembert model we impose
many restrictions on the physical problem.

Kirchhoff model [23] and Carrier [12] was proposed for the same physical problem
of the vertical displacement of the elastics strings when the ends are fixed, but the

tension is variable during the deformations of the string. It can be written as

2 2
Ou da;) ou_,, (1)

%(l‘vt)

oz~ \ph 2Ly ),

d%*u P, E [F
o0x?

where the function u = u(x,t) is the vertical displacement at the space coordinate

x varying in the segment [0, L] and the time ¢ > 0, p is the mass density, h is the
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area of the cross section of the string and 7 is the resistance modulus, F, is the initial
tension on the string, L is the length of the string, F is the Young’s modulus of the

material. The nonlinear coefficient

is obtained by the variation of the tension during the deformation of the string. The
model (1) is obtain as follow:

We denote by S(t) the length of the deformation curve presente by I'(¢). We represent
by % the tension at the point X of I'(¢) and it’s equal to Py at ¢t = 0. Let consider
a small vertical vibrations of a stretched elastic string in de section [0, L]. Thus, we
take care only of the vertical component of the vector P*(tg , which is:

P(t)sind,

where P(t) is the module of P(t) and 6 is the measure of the angle of the x axis with

P(t). Since the vibrations are small, # is small, so by the approximation:

cosf ~ 1 and Sinﬁztanﬁf:@ (2)

or
The variation of the tension with respect to x produce a force on I'(t). By Newtons

second law (Force=massxacceleration) we get:

8 i N 8Ut
%(P(t)smﬁ) = pha,

where v; is the transverse speed in the direction of u(x,t) and it defined by:

.
TS
Then 5 o
, u
g(P(t)st) = phﬁ. (3)
In the other hand and by using (2) we get:
0 0 0%u

5 (P(t)sind) = P(t) 5 (tan 6) = P(t) 5. )
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Hence from (3) and (4) we obtain:

0%u 0%u
PO 5z = P (5)
By the Hooke’s law we have
t)—L
Pt~ 7y = )

where S(t) = fOL(l + (2223 da.
Apply the Taylor’s development in a neighborhood of zero we get:

1 [* Ou,
S(t)_L+§/O (T2 da.

Then (6) become
Eh (% ou
Pt)=Py+ =2 [ (&4
®) 0t 2L J, (Gm

Substituting (7) in (5) and dividing both sides by ph, we get (1).

V2 dz. (7)

The natural generalization of the model (1) is given by the following nonlinear mixed

problem

Upt — M(:U,t, Jo \Vu|2dx>Au =0 inQx(0,7),
u(z,t) =0 on 09 x [0, T, (8)
U(.%', 0) = u0($)7 ut(x70) = ul(x) in {2,

where (2 is a bounded domain in R™ with a smooth boundary 02, M is a positive
real function on Q x (0,7) x [0; 00), A = El% is the Laplace operator and (u°, u')
are the initial data.

This problem which model the nonhomogeneous materials, has it’s origin in the
model (1) when the physic elements p, h and E are not constants, but depends on

the point x in the string and the instant ¢ .

In the Kirchhoff-Carrier model (1), the function M : [0;00) — R such that

M(T):pp—‘;l—i-%r.

We say that a problem is:
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1) Coercive iff M(r) > v > 0 for each r > 0.

2) Coercive at oo iff M(r) > 0 for each r > 0 and [ M(r)dr = +occ.

3) Mildly degenerate iff M (r) > 0.

4) Really degenerate iff M (r) = 0.

The kirchhoff equation have two cases, we say that

1) Degenerate case if M(0) = 0. For (1) this is equivalent to Py = 0.

2) Non-degenerate case if M > mg > 0. For (1) this is equivalent to P # 0.

We recall that viscoelastic materials exhibit natural damping, which is due to the
special property of these materials to retain a memory of their past history. From the
mathematical point of view, these damping effects are modeled by integro-differential

operators. A simple example is the viscoelastic membrane equation

Uy — Au — fg h(t — s)Au(s)dzr =0 in Q x (0,7,
u(z,t) =0 on 09 x [0,T7,
u(:v, 0) = u0(£)7 ut(xa 0) = ul(x) n Q>

in a bounded open domain €2 C R"™. The memory term, represented by the convolu-
tion term in the equation, expresses the fact that the stress at any instant t depends
on the past history of strains which the material has undergone from time 0 up to
t. Therefore, the dynamics of viscoelastic materials are of great importance and in-
terest as they have wide applications in natural sciences. Models of Petrovsky type
are of interest in applications in various areas in mathematical physics, as well as in
geophysics and ocean acoustics [42], [49].

The big problem of a mathematician is to represent a really systems with sufficiently
precision and a simple structure model. From a practical view’s point, more par-
ticularly in the science of engineers, we note that the delay’s phenomenons appear
naturally in the physical processes. Among the main sources have delays, we cited
catch or actuator reaction times, information transmission times, material transfer

times or measurement times. So in order to get closer to the really process, better
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modeling consists of designing delay systems, a better modeling consists in conceiving
delay systems, in which differential equations of evolution intervene, depend not only
by the valuer of their state variables at the instant present ¢ but also depend by a part
of theirs past valuer. More general time-delay effects arise in many practical problems,
in most instances, physical, chemical, biological, thermal, and economic phenomena
naturally depend not only on the present state but also on some past occurrences. In
recent years, the control of partial differential equations with time delay effects has
become an active area of research. In many cases it was shown that delay is a source
of instability and even an arbitrarily small delay may destabilize a system which is
uniformly asymptotically stable in the absence of delay unless additional conditions
or control terms have been used.

The problem of stabilization consists to determinate the asymptotic behaviour of the
energy by E(t), to study its limits in order to determine if this limit is null or not and
if this limit is null, to give an estimate of the decay rate of the energy to zero, they

are several type of stabilization

1) Strong stabilization: lim,_, ., E(t) = 0.

2) Uniform stabilization: if the energy satisfies
E(t) < Cf(t),

where C' depends on the norm of initials conditions and f : R, — R, is a

continues decreasing function with lim; ,, f(t) = 0.
3) Weak Stabilization: (u(t),u'(t)) — (0,0) when t — 400 in an Hilbert space.

One of the fundamental motivations for the study of evolution equations is to under-
stand qualitatively the long-term behavior of their solutions, especially when these
equations can not be solved explicitly.

In 1982, Lyapunov introduced an energy function that he used it to study the stability
of some nonlinear systems without calculate explicitly their solutions. This method
is known today by Lyapunov’s methode and it played an important role in the
stability theory of differential and ordinary equations.

This PhD Thesis consists of three chapters.
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e The chapter 1
We consider the initial boundary value problem for the nonlinear Kirchhoff

equation with general nonlinear dissipation term

v .
(Jue|=2ug)y — (fg [Vaul? dx) Au+ prg(ug(z,t)) + pag(ug(z,t — 7)) =0 in Qx]0, +o0f,

u(z,t) =0 on 99 x [0, +o0],
U(l’,O) = UO(ZL‘), Ut($,0) = ul(x) in Qa
u(x, t — 1) = folz,t — 1) in 2x]0, 7],

(9)

where 2 is a bounded domain in R", n € N*, [ > 2, ~ > 0, are given constants,
p1 and o are positive real numbers, 7 > 0 is a time delay and (u®, u?, fo) are

in a suitable space.

In this chapter, we well posed and determine the asymptotic behavior of the
solutions. Then we show that the energy of solutions decays to zero with explicit

decay rate estimate, we obtain a general stability estimates.

e The chapter 2
We consider the existence and decay properties of global solutions for the initial

boundary value problem of viscoelastic Petrovsky equation

,

g gy + A2 — Augy — fot h(t — 5)A%u(s) ds

+p191(u(x,t)) + page(u(z, t — 7)) =0 in 2x]0, 400/,

u(x,t) =0 on 09 x [0, +o0], (10)
u(z,0) = up(z), u(z,0)=ui(x) in Q,

u(x,t — 1) = folx,t —7) in Qx]0, 7],

where () is a bounded domain in R", n € N* 0 is a smooth boundary,
[ > 0, pu; and ue are positive real numbers, h is a positive non-increasing
function defined on R*, ¢g; and g, are two functions, 7 > 0 is a time delay and
(uo, u1, fo) are the initial data in a suitable function space.
We use the Faedo-Galerkin method combined with the energy estimate method
to prove the existence of global solutions and we use some properties of convex

functions to study the decay of the energy.
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e The chapter 3
It is devoted to study the global existence and decay properties of solutions
for the initial boundary value problem of viscoelastic non-degenerate Kirchhoff

equation of the form

Jug|'uge — M(|[Vul|?)Au — Aug + [3 h(t — s)Au(s) ds
+rgr(ue(z,t)) + poge(u(z, t —7(t)) =0 in 0x]0, +o0],
u(z,t) =0 on 9Q x [0, +oc[, (11)
u(z,0) = up(z), u(z,0)=ui(x) in Q,
[ w(z,t —7(0)) = fo(z,t —7(0)) in 2x]0,7(0)],

where ) is a bounded domain in R”, n € N*, with a smooth boundary 02,
[ > 0, pu1 and o are positive real numbers, h is a positive function which decays
exponentially, 7(¢) > 0 is a time varying delay, g; and g are two functions, and
the initial data (ug,u;, fo) are in a suitable function space. M (r) = a + br7 is a
C'-function for r > 0, with a,b > 0, and ~ > 1.

We prove the existence of global solutions in suitable Sobolev spaces by us-
ing Faedo-Galarkin approximations together with some energy estimates under
condition on the weight of the delay term in the feedback and the weight of the
term without delay and the speed of delay. Furthermore, we study a general

stability estimates by using some properties of convex functions.



Chapter 1
Preliminaries

In this chapter, we will introduce and state without proofs some important materials

needed in the proof of our results (See [11, 29]),

1.1 Banach Spaces-Definition and properties

We first review some basic facts from calculus in the most important class of linear

spaces " Banach spaces".

Definition 1.1.1. . A Banach space is a complete normed linear space X. Its dual

space X' is the linear space of all continuous linear functional f: X — R.

Proposition 1.1.1. X’ equipped with the norm ||.||x: defined by

[f1lxe = sup{[f(u)] - [Jul] <1}, (1.1)
is also a Banach space. We shall denote the value of f € X' at u € X by either f(u)

or (f,u)xs x.

Remark 1.1.1. From X'we construct the bidual or second dual X" = (X')'. Further-
more, with each u € X we can define p(u) € X" by o(u)(f) = f(u), f € X'. This
satisfies clearly ||o(x)|| < ||ul|. Moreover, for each w € X there is an f € X' with
f(u) = ||u|| and ||f|| = 1. So it follows that ||o(x)| = ||ul|-
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Definition 1.1.2. . Since ¢ is linear we see that
p: X - X"
is a linear isometry of X onto a closed subspace of X", we denote this by
X — X"

Definition 1.1.3. . If p is onto X" we say X is reflexive, X = X",

Theorem 1.1.1. . Let X be Banach space. Then X is reflexive, if and only if,
Bx ={zx e X :||z| <1},

is compact with the weak topology o(X, X"). (See the next subsection for the definition
of o(X, X")).

Definition 1.1.4. . Let X be a Banach space, and let (u,)nen be a sequence in X.

Then u,, converges strongly to u in X if and only if
lim ||u, — ul|x =0,
and this is denoted by w,, — w, or lim,, .., u, = u.

Definition 1.1.5. The Banach space E is said to be separable if there exists a count-
able subset D of E which is dense in E, i.e. D = E.

Proposition 1.1.2. If E is reflexive and if F' is a closed vector subspace of E, then

F is reflexive.

Corollaire 1.1.1. The following two assertions are equivalent:
(i) E is reflexive;
(i1) E' is reflexive.
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1.1.1 The weak and weak star topologies
Let X be a Banach space and f € X’'. Denote by

QOfZX—>R

r — pf(z),
when f cover X', we obtain a family () sexs of applications to X in R.

Definition 1.1.6. The weak topology on X, denoted by o(X, X'), is the weakest topol-

ogy on X for which every () sex: is continuous.

We will define the third topology on X', the weak star topology, denoted by o(X’, X).
For all z € X. Denote by

g0fiX/—>R
fr—=ea(f) = (f,2)x x,

when z cover X, we obtain a family (¢,).cxs of applications to X’ in R.

Definition 1.1.7. . The weak star topology on X' is the weakest topology on X' for

which every (@.)zex: 1S continuous.

Remark 1.1.2. Since X C X", it is clear that, the weak star topology o(X', X) is
weakest then the topology (X', X"), and this later is weakest then the strong topology.

Definition 1.1.8. A sequence (u,) in X is weakly convergent to x if and only if

lim f(un) = f(u),
n—oo
for every f € X', and this is denoted by u, — u
Remark 1.1.3. 1. If the weak limit exist, it is unique.
2. If u, — u € X(strongly) then u, — u(weakly).

3. If dimX < 400, then the weak convergent implies the strong convergent.

Proposition 1.1.3. On the compactness in the three topologies in the Banach space
X:
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1. First, the unit ball
B ={zxeX: |z <1}, (1.2)

in X is compact if and only if dim(X) < co.

2. Second, the unit ball B" in X'( The closed subspace of a product of compact

spaces) is weakly compact in X' if and only if X is reflexive.
3. Third, B’ is always weakly star compact in the weak star topology of X'.
Proposition 1.1.4. Let (f,) be a sequence in X'. We have:
1. [fo =" fino( X, X)] < [fulz) =" f(x), Vo € X].

2. If f, — f(strongly) then f, — f,in o(X', X"),
If fo = fino(X', X"), then f, =* f,in o(X', X).

3. If fr =" fino(X', X) then || f,.|| is bounded and || f|| < liminf || f,||.

4. 1If fr, = [in o(X', X) and x, — x(strongly) in X, then f,(x,) — f(z).

1.1.2 Hilbert spaces

Now, we give some important results on these spaces here.

Definition 1.1.9. A Hilbert space H is a vectorial space supplied with inner product
(u,v) such that ||ul] = \/(u,u) is the norm which let H complete.

Theorem 1.1.2. (Riesz). If (H;(.,.)) is a Hilbert space, (.,.) being a scalar product
on H, then H' = H in the following sense: to each f € H' there corresponds a unique

x € H such that f = (x,.) and |||y = ||z]|z.

Remark 1.1.4. : From this theorem we deduce that H" = H. This means that a

Hilbert space is reflexive.

Theorem 1.1.3. . Let (uy)nen s a bounded sequence in the Hilbert space H, it posses

a subsequence which converges in the weak topology of H.
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Theorem 1.1.4. . In the Hilbert space, all sequence which converges in the weak

topology 1s bounded.

Theorem 1.1.5. . Let (u,)nen be a sequence which converges to u, in the weak
topology and (vy)nen is an other sequence which converge weakly to v, then
lim (v, un) = (v, u) (1.3)
Theorem 1.1.6. . Let X be a normed space, then the unit ball
B={zeX:|z|| <1}, (1.4)

of X" is compact in o(X', X).

1.2 Functional Spaces

1.2.1 The LP(2) spaces

Definition 1.2.1. Let 1 < p < 0o and let 2 be an open domain in R™, n € N. Define
the standard Lebesgue space LP()) by

LP(Q) = {f : Q — R is measurable and / |f(z)]Pdx < oo} : (1.5)
Q
Notation 1.2.1. If p = oo, we have

L= (Q) ={f: Q — Ris measurable and there exists a constant C such that |f(z)| < Ca.e € Q}.

Also, we denote by
[fllee = mf{C, [f(2)] < Ca.e €} (1.6)

Notation 1.2.2. Forp € R and 1 < p < 0o, we denote by q the conjugate of p i.e.
1,1

st =1

Theorem 1.2.1. LP(Q) is a Banach space for all 1 < p < oo.

Remark 1.2.1. In particularly, when p = 2, L*(Q2) equipped with the inner product

(f. 9oy = / f(x)g(x)d, (L.7)

1s a Hilbert space.

Theorem 1.2.2. For 1 < p < oo, LP(Q) is a reflexive space.
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1.2.2  Some integral inequalities

We will give here some important integral inequalities. These inequalities play an

important role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.2.3. ( Holder’s inequality). Let 1 < p < co. Assume that f € LP(2) and
g € L), then fg € LP(Q) and

/ Faldz < 110l
Q

Lemma 1.2.1. ( Young’s inequality). Let f € L*(R) and g € LY(R) with 1 < p < 0o
and%:%jL%—lZO. Then f g e L"(R) and

I *gller@y < 1 fllzr@llgllzo)-

Lemma 1.2.2. . Let 1 <p <r <q, %:%—FI*TQ, and 1 <« <1. Then
lellor < Nlullgollel 72
Lemma 1.2.3. If u(Q) < oo, 1 <p < g < oo, then L9 — LP and

1_1
lullr < ()7~ [ul| -

1.2.3 The W™P(Q)) spaces

Proposition 1.2.1. Let Q be an open domain in RY. Then the distribution T € D'()
is in LP(S2) if there exists a function f € LP(Q)) such that

(T, o) = / f(@)p(@)dz, for all p € D(S),

where 1 < p < 0o and it’s well-known that f is unique.

Now, we will introduce the Sobolev spaces: The Sobolev space W*P?(Q) is defined to
be the subset of LP such that function f and its weak derivatives up to some order k

have a finite L” norm, for given p > 1.

WHhP(Q) = {f € LP(2); D f € LP(Q). Vas|a| <k}
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With this definition, the Sobolev spaces admit a natural norm:

1/p
f — HfHWk’P(Q) = Z HDainp(Q) ) for p < +00
laj<m
and
[ — Ifllwroe) = Z | D fll oo » for p = 400
la<m
Space WkP(Q) equipped with the norm || . |y, is a Banach space. Moreover is a

reflexive space for 1 < p < oo and a separable space for 1 < p < o0o. Sobolev spaces
with p = 2 are especially important because of their connection with Fourier series
and because they form a Hilbert space. A special notation has arisen to cover this

case:

WE2(Q) = H*(Q)
the H* inner product is defined in terms of the L? inner product:

(fs D v = Z (D*f, D) r2(0)-

la|<k

The space H™ () and W*?(Q) contain C=(Q2) and C™(f2). The closure of D() for
the H™(2) norm (respectively W™P(£2) norm) is denoted by H{'(2) (respectively
Whr(9).

Now, we introduce a space of functions with values in a space X (a separable Hilbert
space).

The space L?(a,b; X) is a Hilbert space for the inner product

b
(f7 g)LQ(a,b;X) = / (f(t)?g(t))X dt
We note that L>(a,b; X) = (L'(a,b; X))". Now, we define the Sobolev spaces with
values in a Hilbert space X. For k € N, p € [1,00], we set:

ov

81:1-

Wk’p(a,b;X):{veLp(a,b;X); € LP(a,b; X). ng} :

The Sobolev space W#?(a,b; X) is a Banach space with the norm
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k of 1/p
1 llwsr(apx) = (Z H%”i?(a,b;X)) , for p < +4o0
i=0 !

and

k
ov

||f||W’“v°°(a,b;X) = Z ||ax ||L°°(a,b;X) y for b= +00
i=0 v

The spaces W*?2(a,b; X) form a Hilbert space and it is noted H*(0,T;X). The
H%(0,T; X) inner product is defined by:

k b
ou v
(U, V) i (apix) = Z/a (%7 %)X dt .
=0
Theorem 1.2.4. Let 1 < p <n, then
WhP(R™) C LP" (R™)
11

where p* 1s given by 1% =3 (where p = n,p* = 00). Moreover there exists a

constant C = C(p,n) such that
lullp < ClVulli@n, Yue W&,
Corollaire 1.2.1. Let 1 < p <mn, then
WP (R") € LYR"), Vg € [p,p’]
with continuous tmbedding.
For the case p = n, we have
WE™(R™) ¢ LY(R™), Vq € [n,+oo]
Theorem 1.2.5. Let p > n, then
WHP(R") C L*(R")

with continuous tmbedding.
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Corollaire 1.2.2. Let Q a bounded domain in R™ of C* class with T' = 0Q and
1 <p<oo. We have

* 1
if 1<p<oo, then W(Q) C L () where — =

1
p n

D=

if p=mn, then W"(Q) C L1(),Vq € [p, +o<l.

if p>mn, then W'P(Q) C L>(Q)
with continuous imbedding. Moreover, if p > n we have:
Vue W(Q), |u(z) — u(y)| < Clz — y|*Jullwin@) a.e z,y € Q

with a =1 — % > 0 and C 1s a constant which depend on p,n and €2. In particular

WP (Q) © C(9Q).

Corollaire 1.2.3. Let Q a bounded domain in R™ of C* class with I' = 0Q and
1 <p<oo. We have

S

1
if p<mn, then WH(Q) C LYQ)Vq € [1,p*[ where e

D=

if p=mn, then WH(Q) C LY(Q),Yq € [p, +oo|.
if p>mn, then WH(Q) C C(Q)
with compact imbedding.

Remark 1.2.2. We remark in particular that
WhP(Q) C LYQ)
with compact imbedding for 1 < p < oo and for p < q < p*.

Corollaire 1.2.4.
1 1 1
if —— LB 0, then W™P(R") C LYR") where — = — — m
p n g p n
L1 m
if ———=0, then W™P(R") C LY(R"),Vq € [p, +o0].
p n

1
if == <0, then W™P(R") C L®(R")
P n

with continuous tmbedding.
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Lemma 1.2.4. (Sobolev-Poincarés inequality)

2
If 2<¢q< n2n23 and q>2,n=1,2,

n_ )
then
ully < Clq, DI Vully,  Vu e Hy(5).

Remark 1.2.3. For all ¢ € H*(Q), Ap € L*(Q) and for T sufficiently smooth, we

have

Proposition 1.2.2. ( Green’s formula). For all u € H*(Q), v € HY(Q) we have

—/Auvd:v:/VuVde— @vda,
Q Q oq o7

where g—z 1s a normal derivation of u at T.

1.2.4 The LP(0,T, X) spaces
Let X be a Banach space, denote by LP(0,7T, X) the space of measurable functions

Definition 1.2.2.

f:0,T[ — X
t — f(t)
such that
. .
( / ||f<t>||§dt) s < 00, for 1 < p < oo, (18)
0
If p = o0,
|0y = sup ess||F(®)]lx. (1.9
t€]0,T[

Theorem 1.2.6. . The space LP(0,T, X) is complete.

We denote by D'(0,T, X) the space of distributions in |0, 7| which take its values in
X and let us define
D'(0,T,X) = £(D]0,T[, X),
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where £(¢, ) is the space of the linear continuous applications of ¢ to . Since
u € D'(0,T,X), we define the distribution derivation as

G =-u(%). voe o,

and since u € LP(0,7T, X), we have

u(p) = / w(t)plt)dt, Vg € DOO,T]),

We will introduce some basic results on the LP(0,7T, X) space. These results, will be

very useful in the other chapters of this thesis.

Lemma 1.2.5. . Let f € LP(0,T,X) and % € LP(0,T,X), (1 <p < o0), then the
function f is continuous from [0,T] to X. i.e. f € C(0,T, X).

Lemma 1.2.6. . Let ¢ =|0,T[xQ an open bounded domain in R x R", and g, g are
two functions in L9(]0,T[, L(?)), 1 < ¢ < oo such that

19l Lago.r ey < C,Vu € N (1.10)
and g, =g in @, then g, =g in Li(p).

Theorem 1.2.7. . L?(0,T,X) equipped with the norm ||.||Laqor;x), 1 <p < 00 is a

Banach space.

Proposition 1.2.3. . Let X be a reflexive Banach space, X' it’s dual, and 1 < p,q <
00, % + % = 1. Then the dual of LP(0,T, X) is identify algebraically and topologically
with L0, T, X').

Proposition 1.2.4. Let X,Y be Banach space, X C Y with continuous embedding,

then we have

LP(0,T,X) C LP(0,T,Y),
with continuous embedding.

The following compactness criterion will be useful for nonlinear evolution problem,

especially in the limit of the nonlinear terms.
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Lemma 1.2.7. (Aubin -Lions lemma) Let By, B, By be Banach spaces with By C B C
By. Assume that the embedding By — B is compact and B — By are continuous. Let
1 < p,q < oo. Assume further that By and By are reflexive. Define

W ={ue LP(0,T,By):u € LY0,T, By)}. (1.11)

Then, the embedding W — LP(0,T, B) is compact.

1.2.5 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of

them here.

Lemma 1.2.8. ( The Cauchy-Schwartz’s inequality) Fvery inner product satisfies the

Cauchy-Schwartz’s inequality
(1, 22) < [l ll[z2]- (1.12)
The equality sign holds if and only if x1 and x1 are dependent.

Lemma 1.2.9. (Young’s inequalities). For all a,b € RY, we have

1
b< aa®+ —b? 1.13
ab < aa +4a ( )

where o 18 any positive constant.

Lemma 1.2.10. For a,b > 0, the following inequality holds

p q
<Y (1.14)
p q

1,1
where, = + = = 1.
’p+q

1.3 Existence Methods

1.3.1 Faedo-Galerkin’s approximations

We consider the Cauchy problem abstract’s for a second order evolution equation in

the separable Hilbert space with the inner product (.,.) and the associated norm |||
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{ u"(t) + A(t)u(t) = f(t) tin [0, 71, (1.15)

u(z,0) = up(z), v (z,0) =ui(x),
where u and f are unknown and given function, respectively, mapping the closed
interval [0,7] C R into a real separable Hilbert space H. A(t) (0 <t < T') are linear
bounded operators in H acting in the energy space V C H.
Assume that (A(t)u(t),v(t)) = a(t;u(t),v(t)), for all u,v € V; where a(t;.,.) is a
bilinear continuous in V. The problem (1.15) can be formulated as: Found the solution
u(t) such that

uwe C([0,T;V),u € C([0,T]; H)
(W (t),v) + a(t;u(t),v) = (f,v) tin D'(]0,T), (1.16)
u €V, uy € H,

This problem can be resolved with the approximation process of Fadeo-Galerkin.

Let V,,, a sub-space of V' with the finite dimension d,,, and let {w,,} one ba-

sis of V,,, such that .

1. V,, cV(dimV,, < o),¥m € N

2. V,, — V such that, there exist a dense subspace 9 in V and for all v € ¥ we

can get sequence {ty, tmen € Vi, and w,, — u in V.
3. Vin C Vs and UpenVi, = V.
we define the solution u,, of the approximate problem

um(t) = 23121 g; () wjm,

U € C([0,T); Vin), up, € C(10,T]; Vi), tm € L*(0, T Vi)
(up, (1), wim) + a(t; um(t), wim) = (f, wim), 1 <j < dm

U (0) = Y00 & (£)wjm, 1l (0) = 3297, 1 (£ W,

(1.17)

where
dm

ij(t)wjm — up in V as m — 00
j=1
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dm
an(t)wjm — uy in Vasm — oo
j=1

By virtue of the theory of ordinary differential equations, the system (1.17) has unique
local solution which is extend to a maximal interval [0, ¢,,[ by Zorn lemma since the
non-linear terms have the suitable regularity. In the next step, we obtain a priori esti-
mates for the solution, so that can be extended outside [0, t,,[ to obtain one solution
defined for all ¢ > 0.

1.3.2 A priori estimation and convergence

Using the following estimation

T
[t + N [I* < € {Hwn(O)H2 + [l (O +/0 |!f(8)|!2d8} ; 0<t<T

and the Gronwall lemma we deduce that the solution wu,, of the approximate problem
(1.17) converges to the solution u of the initial problem (1.15). The uniqueness proves

that u is the solution.

1.3.3 Gronwall’s lemma

Lemma 1.3.1. Let T >0, g € L'(0,T), g > 0 a.e and ¢y, ¢z are positives constants.
Let p € LY(0,T) ¢ > 0 a.e such that gp € L*(0,T) and

o(t) <1+ co /Otg(s)go(s)ds a.e in (0,7).

then, we have

(1) < creap <02 /O t g(s)ds) a.cin (0,T).



Chapter 2

Energy decay for degenerate
Kirchhofl equation with weakly

nonlinear dissipation and delay term

In collaboration with Salim A. Messaoudi

2.1 Introduction

In this paper we consider the initial boundary value problem for the nonlinear Kirch-

hoff equation

Y
(el 2ue)e = ( fo IVl do) A+ prglur(a, 1) + paglus(a,t = 7)) =0 in @x]0, +oc],

u(xz,t) =0 on 09 x [0, +o0],
u(z,0) = u'(z), wu(z,0)=u'(z) in Q,
ug(z,t — 1) = folx,t —7) in Qx]0, 7],

(2.1)

where €2 is a bounded domain in R", n € N* [ > 2, ~ > 0, are given constants,
py and gy are positive real numbers, 7 > 0 is a time delay and (u°,u!, fy) are in a

suitable space.
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In the absence of delay, (2.1) takes the form

(Jutg |12 )¢ — (/ﬂ |Vu|2dx>7Au+a(t)g(ut(x,t)) —0, (2.2)

where « is a positive and non increasing differentiable function. Equation (2.2) has
been studied by Abdelli and Messaoudi [4], they established an explicit and general
decay rate result by using some properties of convex functions. In [3] Abdelli and Be-
naissa treated (2.2) for g having a polynomial growth near the origin and established
energy decay results depending on v and ¢ under suitable relationship between [ and
.

When [ = 2 and v = 0, problem (2.2) was treated by Mustafa and Massaoudi [40],
where they studied the decay property of the energy of (2.2) and used the same
method as in [4].

Time delay is the property of a physical system by which the response to an applied
force is delayed in its effect. Whenever material, information or energy is physically
transmitted from one place to another, there is a delay associated with the transmis-
sion. Time delays so often arise in many physical, chemical, biological, and economical
phenomena. In recent years, the control of PDEs with time delay effects has become
an active area of research, see, for example [50] and the references therein. In [19],
the authors showed that a small delay in a boundary control could turn a well-behave
hyperbolic system into a wild one and therefore, delay becomes a source of instability.
However, sometimes it can also improve the performance of the system.

Benaissa and Louhibi [9] studied the problem (2.1), with [ = 2 and v = 0, and
proved the existence and uniqueness of a global solution with initial data (ug, u1, fo) €
H2(Q)NH(Q) x Hy (Q) x Hy (2, H3(0,1)). They used the Faedo-Galerkin method and
the multiplier method and some properties of convex functions to study the decay of
the energy.

In this article, we use some technique from Mustafa and Massaoudi [40] to establish
an explicit and general decay result. The proof is based on the multiplier method
and makes use of some properties of convex functions, the general Young inequality
and Jensen’s inequality. These convexity arguments were introduced and developed
by Lasiecka et al., [25], [27], [28] and used, with appropriate modications, by Liu

and Zuazua [30], Alabau-Boussouira [5] and others.
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The plan of this paper is as follows: In section 2, we give some hypotheses. In section

3, we state and prove the energy estimates.

2.2 Assumptions

To state and prove our result, we need some assumptions.

We shall use the embedding

2<k<2 ifn>3

(2.3)
2<k<+4o0 ifn=12

HY(Q) — LF(Q), if {

with the same embedding constant denoted by C, ; i.e
[ulls < Cul[Vull2.

(A1) g : R — R is non decreasing function of class C* and H : R, — R, is convex,

increasing and of class C'(R,) N C?(]0, +-o00|) satisfying

H(0) =0 and H is linear on [0,¢] or
H'(0)=0 and H” >0 on |0,e] such that
als™t < [g(s)| < cafslP if [s] > ¢

1"+ ()77 < H(sg(s)) if |s| <

(2.4)

where H~! denotes the inverse function of H and p, e, ¢y, ¢y are positive constants,
with p satisfying

2

[—1<p<™2 ifn>2
[—1<p< o ifn<2,

and
Brsg(s) < G(s) < Basg(s)
{ G(s) = [y g(r)dr,
where (5, and [y are positive constants.

(A2) We also assume that
Papia < Pipur.
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Remark 2.2.1. Let us denote by ®* the conjugate function of the differentiable convex
function @, i.e.,
®*(s) = sup (st — D(1)).

teR+
Then ®* is the Legendre transform of ®, which is given by (see Arnold [7], p. 61 -62)
©*(s) = s(2) 7' (s) — [(¥)"N(s)], o s€ (0, ()],
and ©* satisfies the generalized Young inequality
AB < ®*(A)+ ®(B), if A€ (0,9(r)] Be (0,7]. (2.6)
We introduce, as in [32], the new variable
2(x, p,t) = w(x,t — p7), 2€Q, pe(0,1),t>0. (2.7)
Then, we have

Tz(x, p, t) + 2,(z, p,t) =0, in Q x (0,1) x (0, +00). (2.8)

Therefore, problem (2.1) is equivalent to

(

(g 200)’ — (fQ|Vu\2dx> Au
+urg(ue(z,t)) + pog(z(z, 1,£)) =0 in Qx]0, +o0],
Tz (x, p,t) + 2,(x, p,t) =0, in 2x]0,1[x]0, +o0]
u(z,t) =0, on 99 x [0, 00| (2.9)
2(x,0,t) = uy(x, t), on €2 x [0, 00|
u(z, ) u®(z),u(z,0) = ul(z), inQ
2(z, p,0) = folx, —p7), in 2x]0,1[.

\

2.3 Uniform Decay of the Energy

In this section we study the asymptotic behavior of the solution of system (2.1).

We define the energy associated to the solution of system (2.9) by

B0 = ol + g Vi e [ [ Gt pndodn @10
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where £ is a positive constant such that
TMQ — B2 p1 — Btz
P By
Theorem 2.3.1. Assume That (A1), (A2) hold and | > 2(~y+1). Then, there exist

positive constants wy, wy, ws and £y such that the solution energy of (2.9) satisfies

<E<T (2.11)

E(t) < wsH; ' (wit +ws) Yt >0, (2.12)

where

d d Hy(t) =tH'(eot). 2.13
s (o) = (&) (213)
Here, Hy is strictly decreasing and convex on (0, 1] with lim,_o Hy(t) = +00.
The proof of this result relies on the following simple Lemma
Lemma 2.3.1. Let (u,z) be a solution of the problem (2.9). Then, the energy func-
tional, defined by (2.10), satisfies

E'(t) < —ay / ug(ug) de — ag/ 2(z,1,t)g(2(z,1,t) dz <0, (2.14)

Q Q

where ay = py — fiafo — 42 and ay = £41 — pa(1 — By).

Proof. Multiplying the first equation in (2.9) by u; and integrating over (2, using

integration by parts, we get

d 2(y+1
(Tl g IVl 3) [ e gttt do

(2.15)
+ po /Q ug(z,t)g(z(z,1,t)) dx = 0.

We multiply the second equation in (2.9) by £g(z) and integrate the result over
2 x (0,1), to obtain

5// (&, p g (1) d,odx—// o9, g2, p, 1) dp
// azxp’ (2(z, p,t) dpda
// (z(z, p,t) dpdx

_ ¢ Q(G( z(z,1,t) — G(2(z,0,t)) dz.
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Then, recalling (2.5), we have
gdt//G z(z, p,t) dpdx———/G (x,1,1) dm—l—g/Gutxt (2.16)
Combining (2.15) and (2.16), we obtain
E'(t) = /G x,l,tdx—l—f/Gutxt
(2.17)
~ [ e Ogtunta,t) ds = s [ e tg(e(a1,0) do.
Q Q
From (2.5), we obtain
E'(t)g—(,ul—@)/ut(xt (ug(z,t) dx——/ z(x,1,t))
T Ja (2.18)
— M2 / ut(:z:,t)g(z(z, 17t>) dz.
Q
Using (2.5) and Remark 2.2.1, we obtain
G*(s) = sg7'(s) = G(g~'(s)), ¥s=>0.
Hence
G*(g(Z(CC, 17t))) = Z(.T, ]_,t)g(Z(.T, 17t)) - G(Z(:U, 17t)) (219>

< (1 - ﬁl)z(xﬂ 17t)g(z(x7 17t))'

Using (2.5), (2.6) with A = g(z(x,1,t)) and B = w(z,t), we have from (2.18) that

E'(t) < —(u1 — )/Qut(x,t)g(ut(x,t)) dx — iﬂ /Q z(x,1,t)g(z(z, 1,t)) dz

—,ug/ﬂut(x t)g(z(z,1,t)) dx
§B2

< (,ul—)/Qw(a:,t)g(ut(a:,t))da:—éf1 Az(m,l,t}g(z(a:,l,t))dx

T o /Q (Glur(w,1)) + G*(gl2(z,1,1))) d

fa

£61

—(p1 — 72 — 1232) /Qut(x,t)g(ut(x,t)) dr — /Qz(a:, L t)g(z(z,1,1)) d

+,LL2/G z(x,1,1))

(2~ o) /Q (e g ez 1)) do

(57& — po(1 — 61))/Qz(w, 1,t)g(z(z,1,t)) dz.

(2.20)
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Then, by using (2.11), estimate (2.14) follows. O

To prove our main result, we construct a Lyapunov functional F' equivalent to F. For

this, we define some functionals which allow us to obtain the desired estimate.

Lemma 2.3.2. Let (u,z) be a solution of the problem (2.9). Then, the functional

1
:// e PG (2(z, p,t) dpdx, (2.21)
aJo

satisfies the estimate

I'( _ —27// z(z, p,t)) dpdx — 6_2751/Z($a17t)9(z<x’1’t))dw
T Q
+—/ut(x,t)g(ut($>t))dx-
T Ja

Proof. Differentiating (2.21) with respect to t and using (2.4), (2.8) we get

// _2”’ z(x, p,t)) dpdz

:// e_Qszt(x,p,t)g(z(l‘,p,t))dpdw
QJO

-1 1

—= [ [ eatan et 0) dpda

// _27,) (z,p,t)) dpdx

= 7 /Q/O o e_szG(z(az,p,t))> + 272G (2(x, p, t))] dpdx

(2.22)

= _7'1/Q [6—27G(z(95, 1,t) — G(ut(az,t))} dx — 2/{2/01 e 2PG(2(z, p, 1)) dpdz

— ol - &

z(:r,l,t))dx—i—l/ Glun(w, 1)) d

—27

. ,6’1/92(33,1,75)9(2(3:,1,75 dx—i—/ut z,t)g(u(z, 1)) de.
(2.23)

e

< —2I(t) —

Since 27" is a decreasing function for p € [0, 1], we deduce

I(t) > /Q/Ol e G (2(z, p,t)) dpda.

Thus, our proof is completed. O]
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Now, for M > 0, we introduce the following functional
F(t)= ME(t) + I(t) + / ulug |2y d. (2.24)
Q

Lemma 2.3.3. Let (u,z) be a solution of the problem (2.9). Assume that (A1) and
(A2) hold and that 1 > 2(y+1). Then F(t) satisfies, along the solution and for some

positive constants m,c > 0, the following estimate
F'(t) < —mE(t) + C/Q(|ut|l + |ug(ue)| + |ug(z(z, 1,1))|) dz, (2.25)
and F(t) ~ E(t).
Proof. By taking the time derivative of (2.24), we get
F'(t) = ME'(t) + I'(t) /\ut]ldx—i-/ (Jug| 2 uy)¢ dae
— ME'(t) + I'(t / el dz + / Vuf? de) / wAuder  (2.26)
— /Q ug(ur(a, 1)) do — iz /Q ug(=(w,1,t)) da.
Recalling Lemmas 2.3.1 and 2.3.2, we have

P < — <Ma1 _ ﬁz) /Q ez, £)g (e (2, 1)) da

T

- (Mag—kﬁli__QT)/Qz(:z,l,t)g(z(:z,l,t))dx—k/ |ut|ld$—u1/ugl(ut(:c,t))dx

—ug/u (z (x,l,t))d:c—HVu||2 (D) 27// G(z(z, p,t)dpdz.
Q

(2.27)

Now, let us choose M sufficiently large such that

(MOél — @) > 0.

T

Thus (2.27) becomes
Fi(t / ! da — i / wg(u, 1)) do — 1y / ug(2(z,1,)) d
Q

(1+7)\|Vu||§7+1) 2 f// G(z(z, p,t)dpdz.

(1+7)
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Noting by m = min{1 + ~, %}, we obtain that

Fl(t) < (1 + ml_Tl) et — 1 /ng(ut(x,t)) dz — ,ug/ﬂug(z(x, 1,1)) dx — mE(t).

Hence
F(t) < —mE(t) + C/Q(\utv  ug(us(z, )] + lug(=(z, 1,0)]) da.

To prove F(t) ~ E(t), we show that there exist two positive constants A\; and Ay such
that
ME(t) < F(t) < ME(T). (2.28)

We use (2.10) and (2.3) with k& = [ and Young’s inequalities with exponents - and

[, we get

‘/u|utll2utdaz‘ SCS/ |u]lda:+€/ |ug|! da
Q Q Q
< Cel|Vully + elluel

l
< C.E204D (t) 4+ ceE(t)

1=2(y+1)

< C.E 2040 (D) E(t) + ceE(t),
By noting that [ > 2(y + 1), we have
1—2(y+1)
‘/u|ut\lzut dr| < C.E26+0 (0)E(t) + ccE(t).
Q
Also,
1
101< [ [ e 6w p 0 dpdo
aJo
! 1
< // G(z(z, p,t)dpdr < -E(t).
aJo 3

Therefore, we arrive at

(11— C.E 26 (0) — (ce + %))E(t) <F(t) < (M+ C.E 260 (0)+ (ce + %))E(t),

1=2(y+1)

So, we can choose M large enough so that \y = M — (C.E2G+D (0) + (ce + %)) >0
and Moy — % > 0. Then (2.25) and (2.28) hold true. O
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2.3.1 Proof of Theorem 2.3.1

As in Komornik [24], we consider the following partition of {2
le{$€QZ|Ut|§€}, QQI{$EQI|U,5|>€},

and
Q={zeQ: |z(z,1,t)| <e}, Q={reQ: |z(z,1,t)] >}

We use (2.3), with k = p+ 1, (2.4), (2.10) and Hélder’s inequality, we get

% 141 %
Jug(ue)| do < ( / ) 7 / jo(ur)| "5 de)?
QQ QQ QQ

1+ P41
< CulVulla (| lg(un)"*s de)
2

<CuVula( [ wogtu) dz)™

Qo

< cE6 () (— B/ (1)) 71,

Then, we use Young’s inequality and recall the fact that p > 1 —1 > 2y + 1, we have,
for any ¢ > 0,

| lug(u)|de < 3B (0 + C5(-E (1)
Qo

< SEEIT (1) — C5E'(t) (2.29)

p—(2v+1)

< cdE 26+ (0)E(t) — CsE' ().

and
lug(z(z,1,0))| dz < SE"250 (0)E(t) — C5E'(L). (2.30)
Q3
So (2.4), (2.29) and (2.30) yield

¢ X ug\z\xr A
.t gl e+ [ gt 1, 1)1

QZ
p—(2v+1)
< c/ ug(ug) dz + c6E 2G40 (0)E(t) — CsE' ()
2, (2.31)

p—(2v+1)
< —cE'(t) + ¢dE 26+ (0)E(t) — C5E'(t)

p—(27+1)

< cdE 2040 (0)E(t) — CsE' ().
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Exploiting (2.10) and Young’s inequality, we get, for any 6 > 0,

L
/ Hut|l + |ug(uy)|] dz < / |Ut\l dx + 5/ |U|l dx + 05/ lg(ue) |1 d
1941 971 1951 l 0 l (232>
< |Ut‘ld$+céEm(t) + Cs \g(ut)\ﬁ dz,
91 o

and

/ lug(z(x, 1,t))|dx < 6 E7GT t)+Cs | g(z(z, 1, t))\l%l dx. (2.33)
0

i o
Now, for ¢ small enough, the function L(t) = F(t) + CsE(t) satisfies

; p=(2v+1) 1=2(y+1) 1
L'(t) < ( —m+ cdE 260 (0) 4 c6FE 20+D (0)>E(t) + Cs lg(z(x,1,t))|7T dx
0

U
v jultde+ Cs / lg(uw)| T dz
91 Q1

<—dn@+e [ (ful +lgulPT) de+C [ lg(etat )P do
91 Q;
l

< _dE(t)+c/ (\utyhr |g(ut)|ll)d3:—|—0/m (!z(w,1,t>\l+ \g(z(x,umﬁ) dz,

951

(2.34)

and
L(t) ~ E(t).

e Case 1. H is linear on [0,¢], Using (2.4) and Lemma 2.3.1, we deduce that

L'(t) < —dE(t) + c[al/

(941
< —dE(t) — cE'(1).

ur(x,t) g1 (u(z, b)) de + ag /

z(x,1,t)g(2(z, 1, t))dx]
o

Thus R = L + cF satisfies

R'(t) < —dE(t) < —R(t).

So,

/

R(t) < R(0)e™".

Hence,

/

E(t) < C(E(0))e " = C(E(0))H ' (—ct).
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e Case 2. H is nonlinear on [0, ¢] so, we define
1
Li(t) = — urg(uy) d,
1(1) 1] o 1g(ut)
and
1
]2(t) = Toxl Z(Z)’J,]_,t)g(Z(CC,l,t)) dCL’,
€] Jar
and exploit Jensen’s inequality and the concavity of H~! to obtain
HY (L) > ¢ | H ' (ug(ur))dz,
971
and
H™ (I(t) 2 ¢ | H ' (2(x,1,)g(2(z, 1,1))) da.
QF
Using (2.4), we obtain
/ (Il + lg@u)| ™ ) dw < e | H M(wg(u)) do < B (L (1), (2.35)
Ql Ql
and
9 LT do < [ (e 1O + lglew1,0)[7T) do
Q Q7
< [ HT((w 1, 0)g(2(2,1,0)) da (2.36)
Q*{
< cH Y(I,(t)).
For ¢y < € and wy > 0, we define Ly by
E(t)
Lo(t) = H' (2070 ) L{E) + wo B (1)
0() 6OEv(O) ()+w0 ()
Then, we easily see that, For a;, as > 0
a1 Lo(t) < E(t) < asLy(t), (2.37)

By recalling that £ <0, H >0, H” > 0 on (0,¢| and using (2.34), (2.35) and

(2.36), we obtain

E'(t)
E(0)

E(t) E(1)

Lo(t) = €0

E(0)
E(t)
E(0)

+cH' (50 g((é)) ) H™Y(L(t)) + wo E' (1),

£(0)

)+ et (50@)1{*1(11 )

< —dE(t)H’ (so 0)

H" (ao—) L(t)+ H' <50—> L'(t) + woE'(t)
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using Remark 2.2.1 with H*, the convex conjugate of H in the sense of Young,

we obtain
/ (. E@®) o (. EQ@) ,
Ly(t) < —dE(t)H' (=0 = o>> + el (H (som)) 4 el (t) + el(t) + woE' (1)
< —dE(t)H’ (505((8))> + ceo g((é)) H' (60 g((é))> —w E'(t) + wo E' (t),

where w; is a positive constant depending of 24, €], a1, ay. By taking ¢y small

enough and wy > w;, we obtain

/ E(t) .. E() E(t)
Ly(t) < —w i (50m> - —wﬂg(m), (2.38)

where Hy(t) = tH'(eot). Since
Hé(t) = Hl(€0t> -+ SotH//(€ot),

and H is convex on (0,¢], we find that H)(¢t) > 0 and Hy(t) > 0 on (0, 1]. By

setting L;(t) = GIEL(%()t), we easily see that, by (2.37), we have

Ly(t) ~ E(t). (2.39)
Using (2.38), we arrive at

Ly (t) < —wi1 Ha(Ly(t)).

By recalling (2.13), we deduce Hs(t) = H_,—(lt), hence
Li(t) <w 1
T H (L)

which gives
(H(L(0)] = OB (1) < w.

A simple integration leads to
Hl(Ll(t)) S wlt + Hl(Ll(O))

Consequently
Li(t) < HyHwit + ws). (2.40)

Using (2.39) and (2.40), we obtain (2.12). The proof is completed.
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Remark 2.3.1. If g satisfies

go(ls]) < lg(s)l < gg'(Is]) ~ forall|s] <, (2.41)

and
cl|s]l’1 < |g(s)] < ca|sl? for all |s| > ¢, (2.42)

(This kind of hypotheses, with ¢ = 1, [=2 and p=1, was considered by Liu and Zuazua
[30], and Alabau-Boussouira [5]) for a function go : Ry — Ry is convex and strictly
increasing of the class C*'(R )N C?(]0, 00)) with go(0) = 0, and for positive constants
¢1, o, €, then the condition (A1) is satisfied for H(s) = sTgo(s7).

2.3.2 Exemples

We give some examples to illustrate the energy decay rates given by Theorem 2.3.1.
Here we assume that ¢ satisfies (2.42) near the origin with the following various
examples for g :

Example 2.3.1. If go(s) = s’(—Ins)?, where p > 1 and q¢ > 0. Then
H(s) = cspTH(—lns%)q satisfies (A1) in a neighborhood of zero. Then, using

Theorem 2.5.1, we have

and
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We have tree cases:
o Case 1. If p=1—1andg=1
Hi(t) = cln(—Int), near zero,

we deduce that

Hl_l(t) =e° )

then

_ c/t

E(t) <ce ¢

o Case 2. If p=1—1 and g < 1. Then

Hi(t) = (—Int) 4

Hence

then

o (Case 3. Ifz%l>1:>p>l—1.
Applying Lemma (6.1) (see [10]), we obtain

1

p—1+41

H)~d e
)~ e (— Int)s

as t— 0,

we deduce that
HY(t) ~ et~ 7= (Int) e,

Then
E(t) < et~ (Int) 7o,
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Example 2.3.2. If go(s) = e, then H(s) = ste* " satisfies (A1). We have

By o1 !
/ ste™® ds = / —e “dz.
0 1 27+2

t

Applying Lemma (6.1)(see [10]), we obtain

Hy(t) = o et

1 s 1
e to2p
Hi(t)=c 5 ds=c [ z 1 “le*dz,
419
t 1

1

where we use the following change of variable s = —. Applying Lemma (6.1) (see
z

[10]), we obtain

Also, we have

Hi(t) ~ct e, as t—0,

and we deduce that
1
7

H{'(t) ~ (Int)" 1.

Then

E@) <c(n(dt+d)".

where Q) 1s a bounded domain in R™.



Chapter 3

Existence of global solutions and
decay estimates for a viscoelastic
Petrovsky equation with a delay term

in the non-linear internal feedback

In collaboration with Amira Rachah

3.1 Introduction

3.1.1 The model

In this article we consider the existence and decay properties of global solutions for

the initial boundary value problem of viscoelastic Petrovsky equation

| ug + A% — Augy — fot h(t — 5)A%u(s) ds

+p191(ug(x,t)) + poage(u(x,t — 7)) =0 in 2x]0, 400/,

u(z,t) =0 on 90 x [0, o0, (3.1)
u(z,0) = up(z), u(z,0)=ui(x) in Q,

ug(x, t — 1) = folz,t —7) in 2x]0, 7],

where (2 is a bounded domain in R", n € N*, 0f) is a smooth boundary, [ > 0, u;

and ps are positive real numbers, h is a positive non-increasing function defined on
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R*, ¢; and gy are two functions, 7 > 0 is a time delay and (ug, u1, fo) are the initial
data in a suitable function space. Cavalcanti et al. [14] studied the following nonlinear

viscoelastic problem with strong damping
t
g "y — A — Auy + / h(t — s)Au(s)ds —yAu, =0, z€Q, t > 0. (3.2)
0

Under the assumptions 0 < [ < % ifn>3o0orl >0ifn =12 and h decays
exponentially, they obtained the global existence of weak solutions for v > 0 and
the uniform exponential decay rates of the energy for v > 0. In the case of v = 0
when a source term competes with the dissipation induced by the viscoelastic term,

Messaoudi and Tatar [36] studied the equation
t
g "y — A — Auy + / h(t — s)Au(s)ds +blufP?u=0, z€Q, t > 0.
0

They used the potential well method to show that the damping induced by the vis-
coelastic term is enough to ensure global existence and uniform decay of solutions
provided that the initial data are in some stable set. Han and Wang [20], investi-

gated a related problem with linear damping
t
gy — Au— Anyy — / h(t —s)Au(s)ds+u;, =0, x € Q, t>0.
0

Using the Faedo-Galerkin method, they showed the global existence of weak solutions
and obtained uniform exponential decay of solutions by introducing a perturbed en-
ergy functional. Recently, these results have been extended by Wu [47] to a general
case where a source term and a nonlinear damping term are present. In the pres-
ence of the source term, problem (3.2) has been discussed by many authors, and
related results concerning local or global existence, asymptotic behavior and blow-up
of solution have been recently established (see [6], [31], [37]).

Park and Kang [41] studied the following nonlinear viscoelastic problem with damp-
ing

t
g "y + A% — Ay — M(||Vul|2)Au +/0 h(t — s)Au(s)ds+u; =0, z€Q, t>0.

Santos et al. [43] considered the existence and uniform decay for the following non-

linear beam equation in a non-cylindrical domain:

t
wy + A — M(||Vul|3)Au + / h(t — s)Au(s)ds + au, =0, in @,
0
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where Q = Jycycno 2 X {1}
Benaissa, Benguessoum and Messaoudi [8] proved the existence of global solution, as

well as, a general stability result for the following equation

Ugy —Au—i—/t h(t—s)Au(s) ds+ p1g1 (ue(x,t)) + poge(u(x,t—7)) =0, x € Q, t > 0.

’ (3.3)
when h is decays at a certain rate. In the absence of the viscoelastic term (i.e. if
h = 0), problem (3.3) has been studied by many authors. It is well known that in
the further absence of a damping mechanism, the delay term causes instability of
the system (see, for instance, Datko et al., [19]). On the contrary, in the absence of
the delay term, the damping term assures global existence for arbitrary initial data
and energy decay is estimated depending on the rate of growth of g; (see Alabau-
Boussouira, [5], Benaissa and Guesmia [10], Haraux [21], Komornik [24], Lasiecka
and Tataru [26]). Time delay is the property of a physical system by which the
response to an applied force is delayed in its effect (see Shinskey [45]). Whenever
material, information or energy is physically transmitted from one place to another,
there is a delay associated with the transmission. Time delays so often arise in many
physical, chemical, biological, and economical phenomena. In recent years, the control
of PDEs with time delay effects has become an active area of research (see Abdallah et
al [2], Suh and Bien [46] and Zhong [?]). To stabilise a hyperbolic system involving
delay terms, additional control terms are necessary (see Nicaise and Pignotti [32],
Nicaise and Pignotti [33], Xu et al., [48]). In Nicaise and Pignotti [32], the authors
examined the problem (P) in the linear situation (i.e. if gi(s) = ga2(s) = s for all
s € R) and determined suitable relations between p; and ps, for which the stability
or alternatively instability takes place. More precisely, they showed that the energy
is exponentially stable if o < py and they found a sequence of delays for which the
corresponding solution of (3.3) will be instable if ps > p1. The main approach used in
Nicaise and Pignotti (2006) is an observability inequality obtained with a Carleman
estimate. The same results were obtained if both the damping and the delay were
acting in the boundary domain. We also recall the result by Xu et al. [48] , where the
authors proved the same result as in Nicaise and Pignotti (2006) for the one space

dimension by adopting the spectral analysis approach. Very recently, Benaissa and
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Louhibi [9] extended the result of Nicaise and Pignotti [32] to the non-linear case.
Datko et al. In [19] showed that a small delay in a boundary control could turn such
well-behave hyperbolic system into a wild one and therefore, delay becomes a source
of instability. However, sometimes it can also improve the performance of the systems
(see Suh and Bien [46]).

The main purpose of this paper is to prove global solvability and energy decay es-
timates of the solutions of problem (3.1) when h is of exponential decay rate and
g1, 9o are non-linear. We would like to see the influence of frictional and viscoelastic
damping on the rate of decay of solutions in the presence of non-linear degenerate
delay term. Of course, the most interesting case occurs when we have delay term and
simultaneous and complementary damping mechanisms.

To obtain global solutions of problem (3.1), we use the Galerkin approximation scheme
(see Lions [29]) together with the energy estimate method. The technique based on
the theory of non-linear semi-groups used in Nicaise and Pignotti [32] does not seem
to be applicable in the non-linear case. To prove decay estimates, we use a perturbed
energy method and some properties of convex functions. These arguments of convexity
were introduced and developed by Cavalcanti et al. [13], Daoulatli et al. [16], Lasiecka
and Doundykov [27] and Lasiecka and Tataru [26] , and used by Liu and Zuazua
[30], Eller et al. [18] and Alabau-Boussouira [5].

3.1.2 Statement of results

We use the Sobolev spaces H*(Q2), HZ(Q2) and the Hilbert space LP(£2) with their
usual scalar products and norms.

The prime " and the subscript ¢ will denote time differentiation and we denote by (.,.)
the inner product in L?(Q).

The constant C' denotes a general positive constant, which may be different in different
estimates.

Now we introduce, as in the work of in Nicaise and Pignotti [32], the new variable

Z(.T,p,t) = ut<$7t_7—p)v VIS Q; pE (0,1),t > 0.
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Then, we have
T2 (2, p,t) + 2,(z, p,t) = 0, in Q x (0,1) x (0, 4+00). (3.4)

Therefore, the problem (3.1) is equivalent to

(

g |“ugy + A%u — Auyy — fg h(t — s)A%u(s) ds
+r191(ue(, 1)) + p2ga(2(z, 1,1)) =0 in 2x]0, +o0],
Tz (z, p,t) + 2,(z, p,t) =0, in 2x]0,1[x]0, +o0]
u(z,t) =0, on 99 x [0, 00| (3.5)
2(x,0,t) = uy(x, t), on  x [0, 00]
w(z,0) = ug(x), w(x,0)=u(z), in Q
| 2(z,p,0) = fo(w, —p7), in Q2x]0,1[.

To state and prove our result, we need some assumptions.
(A1) Assume that [ satisfies

0<I<25 ifn>3
O0<l<oo ifn=1,2.

(A2) g1 : R — R is non decreasing function of class C' and H : Ry — R, is convex,
increasing and of class C'(R) N C?%(]0, +-00]) satisfying

H(0)=0and H is linear on [0,¢] o

H'(0) =0 and H” >0 on ]0,e] such that
191(s)] < cols| if [s] > ¢

gi(s) < H '(sgu(s)) if |s| <e,

(3.6)

where H ! denotes the inverse function of H and ¢, ¢, are positive constants. g, : R —

R is an odd no decreasing function of class C''(R) such that there exist c3, oy, ag > 0,

195(s)] < ¢, (3.7)

a1592(8) < G(s) < asgy(s), (3.8)

where
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(A3)
Qofly < O fhy.

(A4) For the relaxation function h : R, — R, is a bounded C' function such that

/ h(s)ds =5 < 1, (3.9)
0
and we assume that there exist a positive constant ( verifying

B'(t) < —Ch(t). (3.10)

We define the energy associated to the solution of system (3.5) by

t 1 1
E(t) = z+2“ w5 + (1—/0 h(S)d8>|IAu||§+§||Vut||§+§(hoAu)(t)

+5// 25, p,1)) dpd,

where ¢ is a positive constant such that

(3.11)

1 — —
Aallza) o= onp
o1 Qg

and
(howv)(t) :/0 h(t = s)|lu(t) — v(s)]f3 ds.

Now we have the existence of a Global solution

Theorem 3.1.1. Let ug € H*(Q) N HZ(Q), uy € HZ(Q) and fo € HZ(Q, H*(0,1))
satisfy the compatibility condition

f(., 0) = Uuz.
Assume that (A1)-(A4) hold. Then the problem (3.1) admits a weak solution
u € L([0,00); HY() N HZ(Y)), us € L([0,00); HF(2)),uy € L*([0,00); H(2)).

Also we have a uniform decay rates for the energy.
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Theorem 3.1.2. Assume that (A1)-(A4) hold. Then, there exist a positive constants

wy, we, w3 and € such that the solution energy of (3.1) satisfies

E(t) < ngfl(U)lt + ’LUQ) vt > O,

where -
Hi(t) = —ds 3.12
0= 75 (3.12)
Ha(t) = t If His linear on [0, €]
? tH'(sot)  IfH'(0) =0 and H" >0, on]0, <],

here, Hy is strictly decreasing and convex on (0, 1] with lim,_,o Hy(t) = +00.

3.2 Preliminaries

Let Ay be the first eigenvalue of the spectral Dirichlet problem

A%u = \u, in Q, u:@zo in T,
on
1
[Vulls < —)\||AUH2- (3.13)
1

Next we have a Sobolev-Poincarés inequality [1].

Lemma 3.2.1. Let q be a number with
2<g<+4+oo(n=12) or 2<qg<2n/(n—2)(n>3),
then there exists a constant Cy = C4(£2, q) such that
lully < CIVulle for ue HAQ).

Lemma 3.2.2. [/1] For h, ¥ € C(]0, +o0o[,R) we have

[rowye)— ([ ats)as) o]

| =

/ hxUW, dx = —%h(t)||\1/(t)||§+%(h’o\l/)(t)—
Q

N —
Q.

t
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Remark 3.2.1. Let us denote by ®* the conjugate function of the differentiable convex
function @, i.e.,
®*(s) = sup (st — D(1)).

teR+

Then ®* is the Legendre transform of ®, which is given by (see Arnold [7], p. 61 -62)
®(s) = 5(®) " (s) — @[(¥) " (s)], if s€(0,(r)],

and ®* satisfies the generalized Young inequality
AB < ®*(A)+ ®(B), if A€ (0,9 (r)] Be (0,r]. (3.14)

Lemma 3.2.3. Let (u,z) be a solution of the problem (3.5). Then, the energy func-
tional defined by (3.11) satisfies

E,<t) S _Bl /Qutgl(ut) dSE - 62/{2'2(377 1,t)g2(2($, 1,t))dl’ (3 15)

- §h<t>||Au<t>u2 + 50 o Au)(#) <0,

where B = pi1 — for _ pory and By = &ﬂ - ,U2<1 - 041)-

Proof. By multiplying the first equation in (3.5) by u,, integrating over {2 and using
integration by parts, we obtain

d

1 1
gl g1 auE + S1vulE] + | et ) da
t
—l—ug/ut(x,t)gg(z(x,l,t))dx:// h(t — s)Au(s)Auy(t) ds dz.
Q QJOo

(3.16)

By applying the Lemma 3.2.2, the term on the right-hand side of (3.16) can be

rewritten as

[froo

(s)Aug(t) ds dx + h( t)[|Au(t)]f3

v

&‘Q‘

% UO B(s) ds||Au(®)|3 ~ (h o Au)(®)] + %(h’oAu)(t).
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Consequently,(3.16) becomes

dr 1 1 t 1 1

il + 5 (- / h(s) ds) |1 Aul} + IV ellf + 5 (h o Au)(t)

:—,u1/Ut(x,t)gl(ut(:z:,t))dx—m/ut(x,t)gg(z(gg,Lt))dx (3.17)
L Q

1 s 1.,
= ShOIAUB) + 5 0 Au)().

We multiply the second equation in (3.5) by £g2(2), we integrate the result over
2 x (0,1), to obtain

¢ /Q /O e Do (1) dpd = / / 1Zp(fﬁapvt)gQ(Z(x,p,t))dpda:
// 8p z(z, p, ))) dpdzx

=7/, (G(2(z,1,t)) — G(2(x,0,1))) dz.

Hence

§ §
fdt// 2(x, p,t) dpdx——— G(z (:v,l,t))d:v—i—;/QG(ut(x,t))d:p. (3.18)

Q
By combining (3.17) and (3.18), we obtain

B (1) = ~gh(O1Aut)]3 + 50 0 M) = 1 [ (o, Oga(un(a, 1)) d

—ug/ut(:v,t)gg( (x,1,t) d:r—/G (x,1,t))dx + > /Gutxt
Q

and by recalling (3.8), we obtain

E(0) <~ —*2) [ wile g (unle, ) do — @) |u®)] + 510 Au)t)
@ (3.19)
_MZ/Qut(:E’t)gz( (z,1,t) dx—/ G(z(z,1,1))

From the definition of G and by using the remark 3.2.1, we obtain
G*(5) = 595 (s) — Glg5 (), Vs > 0.
Hence

G*(QQ(Z(xa 17t))) = Z(.le, 1,t)gg(2($, 17t)) - G(Z(:B, 17t))
< (1 - al)z($7 1,t)92(z(1:, 1’t))'
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By using of (3.8) and (3.14) with A = ga(2(z, 1,¢)) and B = uy(z,t), we obtain from (3.19)
B0 <~ (10— 2) [ oo 0) do = GhOISU0 B + 50 0 At
—i—uz/ﬂ(G(ut(x,t)) + G (ga(2(x, 1, 1)) da — f/ﬂa(z(x, 1,4)) da
< —(m — 2 o) [ (oD (u(e. ) do

1

= ShOlAu@) + L' o A (t) <0,

2

This completes the proof. ]

3.3 Proofs of main results

3.3.1 Proof of Theorem 3.1.1

Throughout this section we assume uy € H*(Q) N HZ(Q), vy € HZ(Q) and fy €
HZ(Q, H*(0,1)). We will use the Faedo-Galerkin method to prove the existence of
global solution. Let T > 0 be fixed and let {w*},k € N be a basis of H3(Q), Vi
the space generated by w!, w?....... wk. Now, we define, for 1 < j < k, the sequence
@’ (x, p) as follows:

¢ (2,0) = w’.

Then, we may extend ¢’(z,0) by ¢’(z, p) over L*(Q x (0,1)) such that (¢’); forms
a base of L?(Q, H?(0,1)) and denote Zj, the space generated by {¢*}. We construct

approximate solutions (u*, 2*), k=1,2,3, ..., in the form

k

Wt = 32 Mt (@),

j=1

k
() =3 ),

j=1
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where ¢/* and d’*(j = 1,2, ..., k) are determined by the ordinary differential equations
(luf(t )’lutt(t)a 7) 4 (Agut(t), Ayw’) + (Vougy, Viw?)

fo t—S (S>7ij)d5+:ul(gl(uf)7wj>+M2(92(2k<'71)>?wj) :07
2F(2,0,t) = ul (:L‘,t),

(3.20)
k
ub(0) = uf = Z(uo, w))w! — ug, in H*(Q) N H3(Q) ask — +oo, (3.21)
j=1
k
uf(0) = ub = Z(ul,wj)wj — uy, in HY(Q) ask — +oo, (3.22)
j=1
and '
(T2 + 25, ¢7) = 0, (3.23)
1<j <k,
k
F(p,0) = 28 = Z(fo, ¢ — fo, in HZ(Q, H*(0,1)) ask — +oo. (3.24)
j=1

Since 0 < [ < ﬁ if n > 3, according to Sobolev embeddings, we have
H3 (Q) = L*HD(Q)

and the same occurs for n = 1,2 where [ > 0. Noting that 2(l+1) + ﬁ + % =1,
from the generalized Holder inequality, the nonlinear term (|uf (¢)|'uf,(t), w;) in (3.20)
makes sense. The standard theory of ODE guarantees that the system (3.20)-(3.24)
has an unique solution in [0, ¢;), with 0 < ¢, < T, by Zorn lemma since the nonlinear
terms in (3.20) are locally Lipschitz continuous. Note that u*(¢) is of class C2.

In the next step, we obtain a priori estimates for the solution of the system (3.20)-
(3.24), so that it can be extended outside [0, t) to obtain one solution defined for all

t > 0, using a standard compactness argument for the limiting procedure.

The first estimate. Since the sequences uf, u¥ and 2§ converge and from Lemma

3.2.3, we can find a positive constant C; independent of k£ such that

E*(t) — E*(0) < ﬂl//utglut dxds—ﬂg// (2,1, 8)g2(z5 (2,1, 5)) dz ds

3 [P as+ 5 [ 00 Aty as

51/ /utgl uf dl”ds—ﬁz// (2,1,5)g2(2" (2,1, )) da ds.
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As h is a positive non increasing function, so we obtain

t t
g t) +B1/0 /Qufm(uf)dxds—{—ﬁg/o /sz(l',l,S)QQ(Zk(.’L‘,l,S)) drds < Ek(o) < Cl,
(3.25)

where

t
PH0 = g 13+ 5 (1= [ As) ds) 1AM + SV + e Au)(0)

+§// b, put)) dpda,

and (' is a positive constant depending only on Hu0||Hg and [|ug HH& Noting (3.9) and (3.25),

we obtain the first estimate:

1
b 24 AGH2 + [k 3+ (o Aub)(t) + /Q / G (o, py 1)) dp

¢ t
+/ /ufgﬂuf)dxds%—/ /zk(x,l,s)gg(zk(:):,l,s))d:):dsSCQ,
0 JQ 0 JQ

where (5 is a positive constant depending only on Hu0||H§, HulHHS’ I, B, & fr1 and By .

(3.26)

These estimates imply that the solution (u¥, zF) exists globally in [0, +0c0).
Estimate (3.26) yields that

u* is bounded in L§2,(0, 00, H2(2)), (3.27)

uf is bounded in L2.(0, 00, HE(Q)), (3.28)

G(2"(x, p,t)) is bounded in L2 (0,00, L' (Q x (0,1))), (3.29)
uF (t)g1(uk (1)) is bounded in L'(Q x (0,T)), (3.30)
2F(2,1,8)go(2%(x,1,1)) is bounded in L1(Q x (0,T))). (3.31)

The second estimate. Replacing w’ by —A,w/ in (3.20), multiplying by czk and summing

over j from 1 to k, it follows that

37 1V B+ 18013] = [ okl do
t
- [ hie=s) [ VadEVAUG) deds o [ VadPdae 6332)

—I—,uz/ Vb V2P (2,1, 1) g5 (2% (2,1,t)) de = 0.
Q
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Using the Green’s formula, we have

d
- [kl At o= 5 [ OVl de = 0+ 1) [ V(09 da.
(3.33)

Replacing ¢/ by —A,¢’ in (3.23), multiplying by d’* and summing over j from 1 to k, it
follows that

7'/ szfvxzk dx +/ szlgvxzk dr = 0.
Q Q

Then, we obtain

k k
PRIV + V2t =
We integrate over (0, 1) to find
1
ro [ 19t 0B+ IV L0 - IVt @B =0, (@30)

Combining (3.32)-(3.34) and using Lemma 3.2.2, we obtain

1d t
il (1= [ ) a) V80 + 12wt + (ho Vol 7 [ 1924w 0B
0

1
+2 [ OV o] + 5 1Vo w1,
= (1) [ bV OVf do = [ (Vb P () da

1 1
—M2/9qutvxz (,1,0)g5(=" (%Lt))dfﬂJriHqutHg 5 OIIVAu 113 + (R "o VAU®).

(3.35)
From the first estimate (3.26) and Young’s inequality, we obtain
(1+1) / [ Vufy () Vouf do < (L+ 1)C T u
“ (3.36)
[ 4 1202/ H2)+1 :
<mivaf g+ G s
n
By using (3.7), (3.26) and Young’s inequality, we obtain
k k 1k k 5 (pac3)? k(12
2 vxutvwz (x717t)92(2 (‘T?l?t)) dx < 77”va (m717t)|’2+ Hvﬂ&ut||2
Q 4 (3.37)

(p2c3)*Co

n > 0.



3.3 Proofs of main results 58

Taking into account (3.36), (3.37) into (3.35) yields

1d

t
s (1= [ @) VA + 120t + (ho vty £ [ 19240 Bl

1
+2 [ b ||vxut| de] +m/|vxut g () da + (5 — )| Va2 (e, 1, D)3
< Vb3 — ShOIVAHZ + 5 o VAuF) + ol
(3.38)

Multiplying (3.20) by cgf and summing over j from 1 to k, it follows that

t
/ut\ |utt\2 dx+||Vutt||2— /A2u uttdx—i-/ h(t—s)/ Auk(s)Auft(t) dx ds
Q 0 Q

(3.39)
- m/ ugyg1 (uy) da — uz/ uyga (¥ (2, 1,1)) da.
Q Q
Differentiating (3.23) with respect to t, we obtain
(rzE + zfp, #) =0,
Multiplying by d{k and summing over j from 1 to k, it follows that
1d
3 IeH1E + 1B =
Integrating over (0, 1) with respect to p, we obtain
1
s [ Vet B+ J1et 1,008 - Slebe, 08 =0 (3.40)

Summing (3.39) and (3.40), we obtain

[t e+ Vb1 + 55 [ 1610+ Gt 1,013
/ A%FuE de + / h(t — s) /Q AuF(s)Auk(t) dx ds (3.41)
+ b1 = [ b do = o | (1,8 da
By using Young’s inequality, the right hand side of (3.41) can be estimated as follows:

| At do <l Va1 + IVAEE, 0 >0, (3.42
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and
! k k
/0 h(t—s)/QAu (s)Aug(t) dxds
t
= —/ h(t—s)/ VAuF(s)Vul,(t) de ds
0 , @ . ) (3.43)
<oVl + o [ ([ re=swadto)as) a

t
<olVuhli+ g [ ([ b= (90t = VA + VAR O] ds) do.

an Jo

Then we use Young’s inequality to obtain, for any n > 0
t 2
/Q(/O Wt —ts)(|VAuk(s)—VAu’f(t)|+|VAuk(t)|)ds) da |
g/g(/o h(t—s)|VAuk(s)—VAuk(t)]ds)de+/Q(/0 h(t — )| VAU (1)] ds) d
+2/Q (/0 h(t—s)|VAuk(s)—VAuk(t)|ds></0 h(t — )| VAUH(D) ds) da
t
< (1+n)/Q (/0 h(t—s)|VAuk(t)|ds)2dx
t 2
+(1+)/Q(/0 h(t—s)|VAuk(s)—VAuk(t)|ds) dz,
Using (3.9), we obtain

/Q (/Ot h(t — 8)|VAUF(s) — VAUF ()| + [VAuF (1) ds)2 dx

(3.44)
1
< B+ VAL + B+ (ko VA).
By Young’s inequality, we obtain
k k k|2 M% ky|2
i [ oo <y [ o do B[ jou(ul) P e

2
1
e AL NI
nJo

2
uzAUftgz(zk(xalat))dwSHCEIIVUZII%Lﬁ[)lgz(zk(ﬁ,l,t))\de- (3.46)
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Taking into account (3.42)- (3.46) into (3.41) yields

[t + (1200402 - ) Ivubig 4 3 [ 1B Sl 1013

B*(1+n) B k
T + E(l + E)(hOVAu )

M% k\(2 M% k 2
+/ ()] d:c+/ g2(F (2, 1,6)) do
4n Jo K 4n Jo

< IV AG* 3

(3.47)
Thus, from (3.38) and (3.47), we obtain

1d t
5[ (1= [ 0 as) V8 + 1200t + (ho vty 7 [ 1924w, 0 Bt
2 dt 0
v [ WOVl [ 1] b [ (9ot e+ VA0
+ [ bt de+ (1 n3+202) - ) Va1 + et 1013
Q
1 kp2 . Lo g, B2 +n) k2, B 1 k
< _Z Z AT = =
<~ hOIVAWHIE+ 50 0 VAW + = SRV AN 4 (14 (o VAW

2 2
+ 13 [P o+ 22 [ (a1 do+ Con)
4n Jo an Jo

By choosing 1 small enough such that 1 — n(3 + 20?) — %3 > 0, integrating over (0,¢) and
using (3.10), we obtain

t
(1= [ 1)) IV 13-+ 180k 4 (ho V) 7 [ 19240 Bt

0
v2 [ WOVl 1B+ [ [Vt o) s

Q

t
v [ IV 008 as + [ [ il e s

0 0o JQ

2 Cg ! k12 1 ! k 2

(1@ 202 = ) [ IVubldds 5 | 1) B ds

t
<51+77/ IV Ay k||2ds+f(1+ 1)/(hovm ) ds

//|91 ub) \deder //|gz (z,1,t))|*dx ds + Co(n)T
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Using (3.6), Jensen’s inequality and the concavity of H~!, we obtain

/ g () de < / lg1.(ub) 2 da + / g1.(ub) 2 da
Q |uf|2£ k

lug|<e

< / gy (ub) i+ / H (ub gy (b)) da
[uk|>e Q

< [ dbotd)doen ([ dael)ds)
jubl2e 0

/ () 2 d < / gy (uf) de + CHA (1) + ¢ / gy (uf) de
Q [uf|>e Q
</H*(1) + c’/ uf gy (uf) dzx (3.48)
Q
< dH*(1) + c(—E")
and

/ 1925 (@, 1,0)) 2 da < c'/ (1, 0ga (K@, 1, 1) do < o(—F)
Q Q

Using Gronwall’ Lemma, we obtain

1 1
IV A + [ Agub |3+ (h o VAG) + /0 Va2 (@, p. D)3 dp + /0 113 dp
t (3.49)
4 / IVuly ()3 ds < Cs
0

We observe that the estimate (3.26) and (3.49) that there exists a subsequence {u™} of {u*}

and a function u such that

u™ — u weakly star in L0, T, H*(Q) N H3(Q)) (3.50)
u™ — uy weakly star in L(0, T, HZ(Q)) (3.51)
g1 (u™) — x weakly star in L*(Q x (0,T)) (3.52)
ull — ug weakly star in L2(0, T, H (Q)) (3.53)
2™ — z weakly star in L>(0,T, H}(Q, L*(0,1))) (3.54)

2™ — 2 weakly star in L°°(0, T, L*(Q x (0,1))) (3.55)
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g2(2™(x,1,t)) — v weakly star in L*(Q x (0,7T)) (3.56)

From the first estimate (3.49) and Lemma 3.2.1, we deduce
(I+1
e bl o722 = / k202

Cy \ 2(+1) K 2(041) Cs \2(HD) o141y
< < .
< (%) / Al < (S2) T

On the other hand, from Aubin-Lions theorem, (see Lions [29]), we deduce that there exists

a subsequence {u™} of {u*} such that

u® — uy strongly in L2(0,T, L*(Q)) (3.57)
which implies
uy® — u; almost everywhere in A. (3.58)
Hence
lu™|"ul™ — |ug|'uy almost everywhere in A (3.59)

where A = Q x (0,7T). Thus, using (3.57), (3.59) and Lions Lemma, we derive
lu '™ — Jug|'uy weakly in - L2(0, T, L*(Q)) (3.60)

and
™ _ z strongly in L2(0, T, L*(Q2))

which implies 2™ — z almost everywhere in A.

Lemma 3.3.1. For each T > 0, gi(w), g2(2(z,1,t)) € LY(A) and
g1 ()l L1 (), llg2(2(z,1,t))|[L1a) < K, where K is a constant independent of t.

Proof. By (A2) and (3.58), we have
g1(uf*(z,t)) = g1(u(x,t)) almost everywhere in A,
0 < ulf(x,t)gr(u(z,t)) — u(x, t)g1 (us(x, t)) almost everywhere in A.

Hence, by (3.30) and Fatou’s Lemma, we have

T
/ / ug(x, t)g1(u(x, b)) dedt < Ky for T >0 (3.61)
0 Q
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Now, we can estimate fOT Jo lg1(ue(x,t))| da dt. By Cauchy-Schwarz inequality and using

(3.48) (3.61), we have

/ / 1 (u(, 1))| dr dt < cl AJ2 / /“t z,t)g1 (ue(z, t))dmdt)%

1
< c].A\%Kf =K.

Similarly, we have

/OT/Q!gz(z(x,Lt)))\dxdtgc!A! / / (,1,t)g2(z (a:,l,t))dxdt)
K.

1
< clAI2K K? =

Lemma 3.3.2. g1(uf) — g1(w) in LY (Q x (0,T)) and g2(2*) — g2(2) in L' (2 x (0,T))

Proof. Let E C Q x [0,T] and set

E, = {(x t) € E, |g1(uf(z,1))

BN

where |F| is the measure of E. If M(r) = inf{|s|, s € R and |g(s)| > 7}

1 —1
[ lawbldede < /BT + (1 () [ lukor bl daat
E Es

VIE|

By applying (3.30) we deduce that supy, [} |g1(uf)|dzdt — 0 as |E| — 0. From Vitali’s

convergence theorem we deduce that

gl(uf) — g1(uy) in LY(Q x (0,7)).

Similarly, we have
g2(%) = ga(z) in LY x (0,7)).

This completes the proof.

Hence

g1(uF) — g1(uy) weak in L2(Q x (0,T)),

and

g2(2F) — g2(2) weak in L2(Q x (0,T)).

(3.62)

(3.63)



3.3 Proofs of main results 64

By multiplying (3.20) by 0(t) € D(0,7T) and by integrating over (0,7, it follows that

- " Qb o) 01,90 6 + / LAt (), Aol dt + / C (Vi Vw00 dt

T [t ] T .
[ e a9, swhpte) dsae+ [ (o) w)ce) d
0 0 0
T .
T /0 (92(2*(, 1)), w)B(t) dt = 0
(3.64)

and multiplying (3.23) by 6(¢) € D(0,T") and integrating over (0,7") x (0,1), it follows that

//th—i—zp,qﬁj 6(t)dtdp = 0. (3.65)

The convergence of (3.50)- (3.56), (3.60), (3.62) and (3.63) are sufficient to pass to the limit
n (3.64) and (3.65) in order to obtain

1 [T T T
(Jug| g, w)0' () dt +/ (Azu, Azw)O(t) dt + (Vpug, Vow)0(t) dt
0 0 0

—/OT/Oth(t—s)(Au(S),Aw) dsdt+u1/0T (g1(ue), w)O(t) dt

T
+ o / (g2(2(, 1)), w)B(t) dt = 0,

T 1
/ / (r21 + 2, $)0(t) di dp = 0,
0 0

T t
/ (]ut|lutt+A2u — Auy — / h(t — s)A%u(s) ds
0 0

+ g () + paga(=(, 1), w ) 0(¢) dt =0,

N

and

By integrating, we have

This completes the proof of Theorem 3.1.1.

3.3.2 Proof of Theorem 3.1.2

To prove our main result, we define some functionals

://le2rpg(z(x,p7t))dpdx7 (3.66)
QJo
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o(t) = l—i—l/ |ut|lutud1‘+/ VuVudx (3.67)
o(t) = / (A - Hil\utylut) /0 h(t — s)(u(t) — u(s)) ds da (3.68)

Set
F(t) = ME(t) + e1y(t) + e20(t) + o(t), (3.69)

where M , e and e9 are suitable positive constants to be determined later.

Lemma 3.3.3. There exist two positive constants kg and k1 depending on €1 , €2 and M
such that for allt >0

koE(t) < F(t) < k1 E(t). (3.70)
Proof. Using (3.11), we have
1
(1) < EE(t)- (3.71)
From Young’s inequality and Lemma 3.2.1, we deduce
1 t+n— 1)t 1
60 < slhealtd + SED 3+ S Ival3 + 51wl
[+1)"1 Gy NI 1 1
< 42, ( s Aullbr2 o+ Aull2 + = 2
ﬂ+ﬂﬁm+l+2(ﬁ§ |Aully? + S Aul +5IVwl3 (3.72)
14+ 1)"1/ Oy \I+2/2E(0)\5 1 1
< 42 ( s S VAl &+ = 2
< slhalf3+ {5 () (5=3)" o 1Al + 519wl

Integrating by parts, we have

- / Vi / h(t — 8)(Vu(t) — Vu(s)) ds da
Q 0

1 t
[l [ = )t~ u(s) dsd

we use Young’s inequality applied with the conjugate exponents éi—% and [ 4+ 2, the second

term in the right hand side can be estimated as
1 t
E / |ut|lut/ (i = 5)(u(t) — u(s)) ds d|
al+1 0

-1 t
< ol %T;/'/mwﬁwwW@mf%x

1 1+2 / / l/t _ _ 142
l+ || t||l+2+ l+2 h(s)ds Oh(t s)|u(t) —u(s)|"* dsdx

1 I (I+1)7" g Cs 2 4E(0) 5
< gl + 5 5“(@) (1_5) (ho Au)(t)

(3.73)
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and

‘—/Vut/ (t — s)(Vu(t Vu(s))dsdx‘

||Vut||2 L /Q </0 h(t — s)|Vu(t) — Vu(s)|ds)2dx (3.74)
< 5IVull + (o Au)().

By combining (3.73) and (3.74), we deduce that

-1
o0) < gl 1w+ { G0 (S2) P (DY 4 S Yo
(3.75)

By combining (3.71), (3.72) and (3.75), we have

—1 1
P < 01+ DO + il + el = (F5) 7 (F25) " + 35 Haul?

¢ l+2 1+2
52+ i (L+ 1)L Oy \NH24E(0)\5 B
+ [ Vuel|5 + {6+ D (\/x) (1—ﬁ> +2)\1}(hoAu)()
SIﬂE(t).
Similarly,
€1 e+ 1 (l—l—l o\ (12 % 1
F(t) > (M = 2)B0) ~ T i — e ( -) (22 ) + gy flldul3
ea+1 (I+1)7t, Cs \H2/4E(0)\ 5 B
- 2Vl - {8 (m) (1*5) + gy f (o Au)()

> H%(M— {%1 + &9+ 1})”%”513 + ;(M_ {%1 tet 1}>||VUtH%

M{—el//G z(z, p,t)) dpdx
-1 1
(G020 [rea) e () () 3 1w

=D~ () ) e s

> HOE(t)a
for M large enough. O
Lemma 3.3.4. Let (u,z) be the solution to (3.5). Then, it holds

—27 a9
/z(m,l,t)gg(z(:c,l,t))da? —i—/ut(x,t)gl(ut(x,t))daf.
Q T Ja

(3.76)

T
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Proof. By differentiating (3.66) with respect to t and using (3.4) and (3.8), we get

:_// _QTP z(x, p,t)) dpdx

= —— . —27’p —27p
- /Q/o Bp e G(Z(%Pat))> dx + 27e G(z(:p,p,t))] dp dx

1 1
= —/ [e_zTG(z(x,l,t) — G(ug(x,t)) dx—2// e PG (2(z, p,t)) dp dx
T JQ
1
:—/ e TG (z(x, 1,t) dx + — /Gut x,t)) dac—2// PG (2(x, p,t)) dp da
-
= —2¢(t) z(z,1,t)) dx
< —210(15) + / ut($7t)gl(ut(xat)) dr — e / ($, 17t)92(z($7 1at)) de.
T Ja T Q
Thus, our proof is completed. O

Lemma 3.3.5. Let (u,z) be a solution of the problem (3.5). Then, for any n > 0, it holds

C2 B
iy« L nCs
() < 5 o) ) A3+

H2 2
+/ gi(u 2d:c+/ go(z(z,1,1))|" dzx.
] ntPde 52 [ (e 0)

el + IVudl3 = (1- 8- (h o Au)(t)

(3.77)

Proof. Differentiating (3.67) with respect to t and using the first equation of (3.5), we obtain

1
¢'(t) = 1

:/ |ut|luttud:£+
Q

— l 1+2
= /Q <|ut| Ut — Autt)ud:c + m”’dt”l+2 + ||VUtH2

(\ut]lut)’udm+ l+1/ |ug ]l+2dx+/ VuttVudm—i—/ VuVuy dz
Q

rlal = [ Augude + Va3

1+2
= m”“tHziz + ||V |?

t
— / <A2u + p1g1 (ue(z, t)) + poge(z(x,1,t)) — / h(t — s)A%u(s) ds)udm
Q 0
1 t
= iy lll3 IVl [8ul3 + [ Aute) [ e - s)du(s) dsdo
Q 0

—,ul/ngl(ut(;E,t))dx—,ug/ngg(z(x,l,t))dm
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By using Young’s inequality and Sobolev embedding, we can estimate the fourth term in

the right side as follow:

/Au / (t — $)Au(s) ds dz

/0 h(s) dsll Au(t Hz+// (t = )| Au(t)||Au(s) - Vu(t) ds de

t
B
< /0 h(s) ds|| Au(t)|3 + 0l Au(®)]3 + (hoAU)( )
B
< (B+n)|Au®)]3 + o (h o Au)(t)
Since
C? 1
[ wntu)do < T2 A + 1 [ Jor(un) da (3.78)
Q 1 nJa
7703 2 1 2
uga(z(z, 1,t)) de < |Aul|5 + — [ |g2(2(z,1,t))|" dx (3.79)
Q A1 4n Jo
This completes the proof. ]

Lemma 3.3.6. Let (u,z) be a solution of the problem (3.5). Then, for any § > 0, it holds

&(0) < 528 + ) Au()[} + (54 220 - / A(s) ds )|V}

[+1
1 ,u102 ,LL2C2 2
il s s t 3.80
+ ,8<25 + o5 + on T aon )(h o Vu)(t) + p16||g1 (ue(z,t))||5 (3.80)

hO) (. C2 N , 1 -
~ i (L G ) (0 V00 + dlane(o 1DIE = g [ o) dslun 3
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Proof. By using the Liebnitz formula, and the first equation of (3.5), we have
o (t) = —/ </Oth(t—s)Au( )ds)(/oth(t—s)(Au(t) —Au(s))ds) dx
/ Au(t / (t — s)(Au(t) — Au(s))ds) dx
tan [ onCue,) [ Bt = )(ult) ~ u(s) ds da
s [ ga(e(o1,0) [ WG = 5)(ul0) - ulo)) dsd
—/Vut/th’t—s Vu(t) — Vu(s)) ds d

l+1/’ut|“t/ R (t — s)(u(t) — u(s))dsdx

1 t
—/ h(s) ds||Vu(t)]]5 — h(s) ds|lus (1)
0 I+1 Jo
t 1 t
=hLh+DL+ I3+ 14+ 1Is+ Ig — /0 h(s) d5||Vut(t)H% - l—i—l/o h(s) dSHUt(t)Héig,
(3.81)

In what follows we will estimate Iq, ..., Is. So for 6 > 0, we have

|11|<5/ / (t — )| Au(s)] ds) dﬂc+4% (/ h(t — )| Au(t) — Au(s)|ds) da
ga/g /Oht—s (|Au(s) _Au(t)|+|Au(t)|)ds)2dm+L;(Ath(s)ds)(hom)(t)

§25(/0th ds)2\|Au()||g+<25~|—4%) /Oth(s)ds<hoAu)(t)

< 208%|Au(t) |3 + 8(26 + 45) (hoau)).

(3.82)
Similarly,
5] < SAu(t)[3 + (o Au)(t) (3.83)
551 < Splln (o DI + P10 10 A1) (3.5)
123C?2

4] < Opualga(=(a 1.0) |3 + P2 (o Au) 1) (3.55)
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2
|I5] < (5/ \Vut\Qd:U—&— / |B'(t — 5)||Vu(t) u(s)]ds) dx

SéHvuAP+—&SA;A —h%ﬁdslg—h%t—sﬂVu@)—Yhd@Pdsdp (3.86)

h(0)

< 8|V ||* - 00

(W o Au)(t)

|Is] < 71 / e Mg |2 dz + 41(5 (/t R (t — s)(u(t) — u(s)) ds)Qdm}

1 @+ h(0)CF
137 L0l wela) = gy o Aw)()]

(3.87)

oCs™ 2041y RO)CT
I 9l - 0% 0o au

h(0)C?2
4N (4 1)

(R o Au)(t),
where ag = CS(ZH)(QE(O))Z. O

Lemma 3.3.7. Let (u,z) be a solution of the problem (3.5). Assume that (A1)- (A4) hold,
then F'(t) satisfies the following estimate, along the solution and for some positive constants
m,ag > 0,

F'(t) < =mE(t) + agl|g1 (ue(z, 1) |3. (3.88)

Proof. From (3.15), (3.69), (3.76) and (3.77), we conclude that for any ¢ > ¢ty > 0,
F/(t) = ME'(t) + e1¢'(t) + €20/ (t) + ¢'(¢)

(B~ 21 %2) /Q wn (g (e (2, 1)) d

—27

(Mﬁ2—03u2{5+45 _610416 )/Qz(x,l,t)gg(z(x,l,t))dx
= 22(0) = 5 (ho — el — (o — 22— 3(1+ 7)) IVl
(M- %ml )} - 0(262 1) ) dul3
M h(O) Cs2 ,
(3”‘Mh{1+1+1}yhOAW@)
+<%? g %A yhOAm“)

+ 1 (0 + )Hgl(ut(ﬂﬁ 3
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where hg = fgo h(s)ds > 0 and h; = min{h(t)|Vt > to}. We take €2 < hg and § > 0
sufficiently small such that

1

Zm(h0—€2)>0, a2=h0—€2—5<1+ﬂ> > 0.

“ I+1

We choose M large enough such that

Mh 5C?2
a3 = T +52{1—B—6—T;(N1+M2)}—5<2,82+1) >0,
and
_ (M h(0) C: Bea g, C:
“4_C<?_45A1{1+1+1}> - (E+255+%+25A1{‘“+“2}> >0
«@ € are 2
Mﬁlfa?z > 0, Mﬁ2—03y2{5+4f§}751 Z__>o.

Then

1
F(0) < = unl}£3 = ool V= aall Sl = as(ho Au)(0) =5 [ [ Gleta,put)) o

%E(t) + aglg1 (us (2, 1)) |13

+

where a5 = 2e1 and ag = p1 (6 + 32). O

Proof of Theorem 3.1.2 As in Komornik [24], we consider the following partition of
N ={zeQ: |u|>c}, Q={zeQ: |u|<e}

By using (3.6), we have

g1 (up)|? dz < 62/ ug1 (ug) do < —cE'(t). (3.89)
Ql Ql
Case 1. H is linear on [0,¢]. In this case, one can easily check that there exists ¢; > 0,

such that |g1(s)| < ¢1s for all s < e, and thus,

g1 (up)|? dz < cl/ ug1 (ug) do < —cE'(t). (3.90)
Q2 Qa
(F(t) + cE(t)) < —mH(E(t)). (3.91)

Case 2. H'(0) = 0 and H” > 0 on ]0, e] we define

() =

= — urg(ue) de,
Q0] Ja,
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and exploit Jensen’s inequality and the concavity of H~! to obtain

HY(I(t) > ¢ 0 H™ M ug(uy)) d,

by using (3.6), we obtain

/ ) Pdr <c [ H M (ug(u)) d
Qo Qo (392)

< cH YI(t)) < cH Y (—cE'(t)).
A combination of (3.88), (3.89) and (3.92) yields
(F(t) + cE(t)) < —mE(t) + cH Y (—cE'(t)), t > t,. (3.93)
By recalling that E' <0, H' >0, H” > 0 on (0, ] and using (3.93), we obtain

(' (B} F() + B} +cB()
= o' (t)H" (eoE(t))(F(t) + cE(t)) + H' (o E(t))(F(t) + cE(t)) + cE'(t) (3.94)
< —mH' (eoE(t))E(t) + cH' (o E(t))H Y (—cE'(t)) + cE'(t),

by using Remark 3.2.1 with H*, the convex conjugate of H in the sense of Young, we obtain

(H’(EOE(t)){F(t) +eE(0)} + cB(t))
H'(e0E()E(t) + cH"(H' (20 E(1)))
—mH’(soE( NE(t) + ceoH' (eo E(t))E(t) (3.95)
< —cH'(e0E(1))E(t)
= —cHy(E(t)).

| /\

IA

F(t)+ cE(t) If His linear on [0, €],
F(t) = (3.96)
H'(eoE(t){F(t)+cE(t)}+cE(t) If H(0)=0and H" >0 ]0,¢],

From (3.91) and (3.95), it follows that

d ~

th( ) —CHQ(E(t)), Vit Z t().
On the other hand, after choosing M > 0 larger if needed, we can observe from Lemma
3.3.3 that F(t) is equivalent to E(t). So, F(t) is also equivalent to E(t), for some positive
constants €1 and €3

GE1) < F(t) < &E®). (3.97)



3.3 Proofs of main results 73

By setting

A
&
9}
5
h

=

then

()
(L) = )

By recalling (3.12), we deduce Ha(t) = —1/H{(t), hence
L'(t)H{(L(t)) > ec, Vt>ty.
A simple integration over (to,t) yields
Hy(L(8)) > Hy(L(to) + eclt — to).

By choosing € > 0 sufficiently small such that Hy(L(tp)) — ecto > 0, and exploiting the fact

that H| is decreasing, we infer that
L(t)) < Hy ' (ect + Hy(L(to)) — ecto). (3.99)
Consequently, the equivalence of F F , L and F yields the estimate
E(t) < waH| (w1t + wo),

where wy = ec and we = Hy(F'(tg)) — ecto.

This completes the proof of Theorem 3.1.2.



Chapter 4

(Global existence and energy decay of
solutions to a viscoelastic
non-degenerate Kirchhoff equation

with a time varying delay term

4.1 Introduction

4.1.1 The model

In this paper we consider global existence and decay properties of solutions for the initial
boundary value problem of viscoelastic non-degenerate Kirchhoff equation of the form

;

ug|'uge — M(|[Vul|?)Au — Aug + [§ h(t — s)Au(s) ds

+p1g1(ue(x,t) + poge(u(z, t — 7(t))) =0 in 2x]0, o0/,

u(z,t) =0 on 99 x [0, +o0], (4.1)
u(z,0) = ug(z), w(x,0)=ui(zx) in Q,

ut(z,t —7(0)) = folz,t — 7(0)) in 2x]0,7(0)],

where () is a bounded domain in R™, n € N*, with a smooth boundary 99 , I > 0, u1 and
o are positive real numbers, h is a positive function which decays exponentially, 7(¢) > 0
is a time varying delay, g1 and gy are two functions, and the initial data (ug,u1, fo) are in a

suitable function space. M (r) = a+ br” is a C'-function for » > 0, with a,b > 0, and v > 1.
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In the absence of delay term (i.e.ue = 0), Hang and Wang [20] considered the following

nonlinear viscoelastic equation with damping:
t
g |'ugy — Au — Augg + / h(t — s)Au(s)ds + w(x,t) =0, in Q2x]0, +o0].
0

They proved the global existence and established uniform decay results. Time delay is often
present in applications and practical problems . In recent years, the control of PDEs with
time delay effects has become an active area of research, see, for example [35],[50] and the
references therein. In [19], the authors showed that a small delay in a boundary control
could turn a well-behave hyperbolic system into a wild one and therefore, delay becomes a
source of instability. However, sometimes it can also improve the performance of the system.
Shun-Tang Wu [44] treated the problem (4.1) for g;(x) = g2(z) = x and 7 is a constant
time delay. He proved the local existence result by Faedo-Galerkin method and established
the decay result by suitable Lyapunov functionals under appropriate conditions on 1, o
and on the kernel h.

In the case when | = 0 and M(r) = 1 and 7 is a constant time delay, Benaissa et al [8]

proved the global existence and uniform decay for the following problem:

t
ug — Au + / h(t — s)Au(s) ds + p1g1(ue(z,t)) + poge(u(x,t — 7)) =0, in 2x]0, 400l
0

(4.2)

Also, the problem (4.2) was treated by Kirane and Said Houari [22] for ¢1(z) = g2(z) = =
and 7 is a constant time delay. Daewook [15] studied the following viscoelastic kirchhoff

equation with varying time delay and nonlinear source term:

t

wy — M (a1, Hqu?)Au+/ h(t — $)div(a(z)Vu(s)) ds + |u/™u
0

+urug(x,t) + pou(z, t — 7(t)) = 0, in 2x]0,4o00],

which is a description of axially moving viscoelastic materials. Under the smallness

condition with respect to Kirchhoff coefficient and the relaxation function and by summing

0<m< % if n >2o0r 0 < mifn < 2, he obtained the uniform decay rate of the

Kirchhoff type energy.

The main of this paper is to give a global solvability in Sobolev spaces and energy decay

estimate of the solution to problem (P) for a weakly nonlinear damping and in the presence
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of a time varying delay term. We proof the existence of global solutions in suitable Sobolev
spaces by combining the energy method with Fadeo-Galerkin procedure and we use a per-
turbed energy method and some proprieties of convex functions to establish an explicit and
general decay result. These convexity arguments were introduced and developed by Lasiecka
et al., [25], [27], [28] and used, with appropriate modications, by Liu and Zuazua [30],
Alabau-Boussouira [5] and others.

This paper is organized as follows: In section 2, we give some hypotheses and state our main
result. In section 3, we prove the global existence of weak solutions. In section 4, we derive

the uniform decay of the energy.

4.1.2 Formulation of the results

We use the Sobolev spaces H?(2), H}(2) and the Hilbert space LP(2) with their usual
scalar products and norms.

The prime ' and the subscript ¢ will denote time differentiation.

The constant C' denotes a general positive constant, which may be different in different
estimates.

Now we introduce, as in [32], the new variable
z(x, p,t) = w(x, t — pr(t)), x€Q, pe(0,1),t>0.
Then, we have
T(t)ze(z, p,t) + (1 — p7' () 2p(z, p,t) = 0, in Q x (0,1) x (0, +00). (4.3)

Therefore, problem (4.1) is equivalent to

;

uglfuge — M (|| Vu]|?)Au — Auge + [3 h(t — s)Au(s) ds
+r191(ue(@, ) + p2ge(z(z,1,1)) = 0 in 2x]0, 400,
7(t)ze(z, p, ) + (1 — p7'(t))zp(x, p,t) = 0, in 2x]0, 1[x]0, +o0]
u(z,t) = on 99 x [0, 00| (4.4)
z(x,0,t) = ut(a: t), on Q x [0, 00|
u(z,0) = up(z), u(z,0)=ui(x), in
z(x, p,0) = fo(z, —p7(0)), in Qx]0,1][.

\

To state and prove our result, we need some assumptions.
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(A1)Assume that [ satisfies

0<I<-% ifn>2,
O<l<oo ifn<2.

(A2)For the relaxation function h : Ry — Ry is a bounded C! function such that

(o)
a—/ h(s)ds =k >0,
0
and suppose that there exist a positive constant { verifying

R (t) < —Ch(t).

. . . . 1 . .
. . + )
(A3) g1 : R — R is non decreasing function of class C' and H : Ry — R, is convex

increasing and of class C*(R4) N C?(]0, +o0) satisfying

H(0) =0 and H is linear on [0,¢] or
H'(0) =0 and H” >0 on |0,¢] such that
erls] < J1(s)] < cals] i s > ¢

2 +91(5) < H '(sgi(s)) if s| <e

(4.5)

where H~! denotes the inverse function of H and ¢, ¢1, ¢p are positive constants.
g2 : R = Ris an odd non decreasing function of class C!(R) such that there exist c3, a1, ag >
0,

|95(s)| < cs, (4.6)

and

{ a15ga(s) < G(s) < azsgi(s), (4.7)

G(s) = [ g2(r)dr.
(A4) 7 is a function in W27°°([0,T]), T > 0, such that

O<mo<7(t)<m, Vt>0
Pt <d<1, V>0

Where 1y and 7 are positive numbers.

(A5) We also assume that

a1(1 - d)
— .
az(1l — aqd)
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We define the energy associated to the solution of system (4.4) by

20v+1) , 1 ¢ 1
B = 5 Il 3+ 5 1 9ulE ™ 4 5 (o= [ bo)ds) IVulf + 5|Vl
I+ 2 2(y+1) 2 0 2
(4.8)
+ 3 hoVu)e) + ér(t) [ / G(e(, p, 1)) dp i,
aJo
where £ is a positive constant such that
1— _
2 ( 1) £ < M1 Ozz/LQ’ (4.9)

051(1 — d) a9
and

(hov)(t) = /0 h(t — s)||v(.,t) —v(.,s)|*ds.

Theorem 4.1.1. (Global existence)Let (ug,ui,fo) € H?(2) N HYQ) x HI(Q) x
HE(Q, H'(0,1)) satisfy the compatibility condition

fU('a 0) = ur.
Assume That (A1)-(A5) hold. Then the problem (4.1) admits a weak solution
u € L°([0,00); H*(Q) N HY (), ur € L>®([0,00); H(Q)), ue € L>([0, 00); L*()).

Theorem 4.1.2. (Uniform decay rates of energy) Assume That (A1)-(A5) hold. Then,

there exist positive constants wy, wa, ws and g such that the solution energy of (4.1) satisfies
E(t) < wzH; Mwit +wsg) V>0, (4.10)

where .
1
H = —_— d H- =tH' . 4.11
0 /t ol ond Ha(t) = tH (e (4.11)

Here, Hy is strictly decreasing and convex on (0,1] with limy_,o H1(t) = +00.

4.2 Preliminaries

The following lemma states an important property of the convolution operator.

Lemma 4.2.1. (Sobolev-Poincarés inequality ). Let q be a number with
2<g<+oo(n=1,2) or 2<qg<2n/(n—2)(n>3),

then there exists a constant Cs = Cs(2,q) such that

lully < Cs|Vullz for ue Hy(Q).
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Lemma 4.2.2. [41]For h,p € C1([0,+00[,R) we have

1, 1 t
/Qh*wtdx——h Dlle(t) \2+2<ho<p><t>—M[(how)(t)—% h(s) ds)|¢]°)

Remark 4.2.1. Let us denote by ®* the conjugate function of the differentiable convex
function @, i.e.,

®*(s) = sup (st — D(1)).
teR+
Then ®* is the Legendre transform of ®, which is given by (see Arnold [7], p. 61 -62)
©*(s) = s(@) "' (s) — @) ()], if s€ (0,2 (r)],
and ®* satisfies the generalized Young inequality

AB < &*(A) + ®(B), if Ac (0,8 (r)] B e (0,r]. (4.12)

Lemma 4.2.3. Let (u,z) be a solution of the problem (4.4). Then, the energy functional
defined by (4.8) satisfies

Et) < —)\/Qutgl(ut)dx—ﬂfﬂz(x,1,15)92(2(33,1,t))dw—;h(t)HVu(t)H2+;(h’oVu)(t) <0,
where X = p11 — oy — pocg and B = E(1 — d)oy — po(1 — o)

Proof. Multiplying the first equation in (4.4) by wu;, integrating over 2 and using integration
by parts, we get

d 2, b oy+1) | 1 s 1 )
G gt + 5 IVl + SVl + 17wl
+ / (6= V(s Vault) dsde + s [ e Ogn e ) e (413)
Q

+ o /Q ut(x,t)g2(z(x,1,t)) dx = 0.

Consequently, by applying the Lemma 4.2.2, equation (4.13) becomes

ALl + g 19w+ 2o [ L
i gttt + gy 19w+ 5 (o [ o)) IVal + 59wl + 5oV (o)

h(t)||Vu(t)|? — %(h'oVu)(t) + /Q ur(z, ) g1 (ug(x, b)) de + uz/gut(x,t)gg(z(x, 1,t))dz = 0.

(4.14)
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We multiply the second equation in (4.4) by £g2(z) and integrate the result over
Q2 x (0,1), to obtain

1 1 , 8
& | /0 . pot)an( (o) dpde = —¢ | /O (1= p7'(0) 5 Gl p.))dpda.

Consequently

i(&-(t)/ﬂ/ol G(z(:c,p,t))dpdx) :gf'(t)/ﬂ/ol G(2(z, p,1)) dp da
1 )
_5/9/0 (1= p7' (1) 5, Ol p, 1) dpda
= [ [ (0= @)0tete 1) dods

:—5(1—T’(t))/QG(Z(;U,1,t))dac+§/QG(ut(:L‘,t))dx.
(4.15)

Combining (4.14) and (4.15), we obtain

B(0) = =0 =7'() [ G 1,0)do+¢ [ Glule.0) do = ShOITuOI

1

+ = (WoVu)(t) — pu1 | w(z,t)g1(u(z,t)) dz — po /Q ug(x,t)go(z(x,1,t)) du.

O |
2

From (4.7) and (A4), we get

E'(t) < —(p1 — €az) /Qut(a:,t)gl(ut(m,t)) dx — (1 — d)ag / z(x,1,t)g2(2(z, 1,1)) dzx

Q
. /Q uie, 0g2(=(a, 1,0) dr — () [Vu(t) | + S (WoTu) 1)
(4.16)

Using (4.7) and Remark 4.2.1, we obtain
G*(5) = 595 (5) — Glg5 (), Vs > 0.

Hence

G*(92(2(, 1,1))) = 2(z, 1,t)g2(2(z, 1, 1)) — G(2(, 1,1))
<(1—oq)z(z,1,t)g2(2(x, 1,1)).
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Using (4.7), (4.12) with A = ga(2(x,1,t)) and B = w(x,t), we have from (4.16) that
E'(t) < —(u1 — fag)/ ug(x, t) g1 (u(x,t)) de — (1 — d)al/ z(z,1,t)g2(2(z, 1,t)) dzx

Q Q

[ (Glul,) + G (ga(e(w. 1.6)) do — ShO)Tu@)|P + 5 (oVa) (2
Q
< (i~ a2~ p202) | w0 (un(a, 1)) d
Q
(61 = s — a1 — a) [ 21, 0ol 1,0) de
Q

— SHOIVUOI? + (0 oVu) ().

This completes the proof.

4.3 Global existence-Proof of Theorem4.1.1

Throughout this section we assume uy € H2(Q) N HY(Q),u; € HI(Q) and fo €
HE(Q, H'(0,1)). We will use Faedo-Galerkin method to prove the existence of global so-
lution. Let T > 0 be fixed and let w*, k € N be a basis of H?(2) N H}(), V. the space
generated by w”. Now, we define, for 1 < j < k, the sequence ¢’ (z, p) as follows:

¢ (x,0) = w.
Then, we may extend ¢/(x,0) by ¢’(z, p) over L?(Q x (0,1)) such that (¢7); forms a basis

of L2(, H'(0,1)) and denote Zj, the space generated by {¢*}. We construct approximate

solutions (u¥, z*)k =1,2,3, ..., in the form
k . .
uF(t) = It
j=1

k
M)y =) &),

j=1
where ¢/* and d*(j = 1,2, ..., k) are determined by the following ordinary differential equa-

tions:
(Jup "y, w?) + M(([Vur ()]2)(Va*, Vo) + (Vug, Vio?)
— Jo h(t = $)(Vur(s), Val) ds + (g1 (uf), w?) + pa(ga (¥ (., 1)), w?) = 0,
1<j<k,
2F(2,0,t) = ul(x,t),

(4.17)
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k

uF(0) = uf = (ug, w’)w’ — ug, in H*(Q) N Hy (Q) ask — +o0, (4.18)

j=1

k
uf(0) = uf = Z(ul,wj)wj — uq, in Hy(Q)ask — +oo, (4.19)
j=1
and
_ k 1\ —
{ (r(t)=f + (1 = pr'(1)2f, #/) = 0, (4.20)
1<j<k,

k

2F Z fo, )¢ — fo, in HY(Q, H'(0,1)) as k — +oo, (4.21)

Here we denote by (., ) the inner product in L?(€2).
Noting that

( ) + ( 0 + 2 = 1, from the generalized Holder inequality, we obtain

)
k(l k2(1 2(1+1) k
(luf oy, 105) / uf ufyw; do < ( /Q 2D da ) 5 g o

Since (A1) holds, according to Sobolev embedding the nonlinear term (|uf|'uf,, w;) in (4.17)
makes sense.

The standard theory of ODE guarantees that the system (4.17)-(4.21) has a unique solution
in [0,%), with 0 < t; < T, by Zorn lemma since the nonlinear terms in (4.17) are locally
Lipschitz continuous. Note that u*(t) is of class C2.

In the next step, we obtain a priori estimates for the solution of the system (4.17)-(4.21), so
that it can be extended outside [0, ;) to obtain one solution defined for all ¢ > 0, using a
standard compactness argument for the limiting procedure.

A. The first estimate.

Since the sequences ulg,u’f and zlg converge and from lemma 4.2.3, we can find a positive

constant C; independent of k such that
t t
B - B0 < A [ [ by deds =5 [ [ et s)gaH (e 1,9) do ds
0 Jo 0o Ja
I k(o2 Lt ok
— = [ h(s)||Vu"(s)|[|[*ds+ = | (KoVu®)(s)ds
2 Jo 2 Jo

t ¢
—)\/ /ufgl(uf)dzvds—ﬁ/ /zk(m,1,s)g2(zk(az,1,s))dazd$
0 Jo 0o Ja
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As h is a positive non increasing function, so we get

t ¢
F(t) + )\/ / uf gy (ul) dz ds —|—ﬁ/ / 2K (x,1,8)g0(2" (2,1, 5)) dzds < EF(0) < Oy
0 JQ 0 JQ
(4.22)
Where

t
k 42 4 uF 20+ Lo k2, 1 k2
BH0) = g b33 + g 1957+ 5 (o= [ o)) Va1 + vt

+§(h0Vu )+ E7(t // G(Z*(x, p,t)) dp dz,

Noting (A1) and (4.22), we obtain the first estimate:

1
b (24 Va2 + [k 2+ (o Vb)Y (t) + /Q /0 G (2. p, 1)) dpde

¢ ¢
+/ /ufgl(uf)dxds—k/ /zk(az,1,s)gg(zk(x,1,s))da:ds§C'2,
0 JQ 0 JQ

where C5 is a positive constant depending only on ||u0||Hé, ||“1||H3> I, v, & 1, ANand 3 .

These estimate imply that the solution (u*, 2*) exists globally in [0, 4-00).

Estimate (4.23) yields

(4.23)

u* is bounded in L{2.(0, 00, Hi(R2)), (4.24)

u¥ is bounded in L2,(0, 00, L*(Q)), (4.25)
G(2*(x, p,t)) is bounded in LS, (0, 00, L' (Q x (0,1))), (4.26)
uF (t)g1(u¥ (t)) is bounded in LY(Q x (0,T)), (4.27)
2F(2,1,t)g2(2%(x, 1, 1)) is bounded in LY(Q x (0,T))). (4.28)

B. The second estimate.
Replacing w’/ by —Aw’ in (4.17), multiplying by cgk, summing over j from 1 to k, it follows
that

/|Ut () |"uk (1) (— Auk) dx—|—/M (|IVu®||?) AuF Auk d:v—{—/ Aub Auf dx

/ (t—s) /AukAut dxds—,ul/Autgl ut)d$—,u2/Aut92 Fz,1,t))dx = 0.
0
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Noting that M (||Vu*||?) > a and by using the lemma 4.2.2, we obtain
— )|} 1d _ ' k2 k2 k
Jug ()| "y (8) Auf de + a h(s)ds ) [| Au®[3 + [|Aug]]z + (hoAu”)
Q 2dt 0
1 1
+ G POIAEIE = S0od) 4 [ [Vub Py (ul) da (429)
Q
+M2/Vu R, 1,8)gh (25 (x,1,1)) dz < 0.
By using the Green formula, we have
d
- [ @b e = L[ [ bOvadRa] - @+ 1) [ oV v o
Consequently I'equation (4.29) yields
1d (L, k2 ! k|2 k|2 k
S22 [ @IV P de + (a= | h(s) ds) |AuF3 + | Auf 3+ (hoau?)
1 1
—(1+1) / Jug (0] Vug Vg da+ Sh(t) | Au® (3 — S (W oAu®) (4.30)
+,u1/ |Vuf |2 g) (uf dm+u2/ VubVz(x,1,t) g5 (z1(x,1,1)) dz < 0.

Replacing ¢/ by —A¢’ in (4.20), multiplying by d’*, summing over j from 1 to k, it follows
that

7(t) b / b ko
1 . T/(t)p /szt VZ d.’I,' + QVZPVZ d.I' = 0
Then, we get
1rd 7(t) P T(t) |, i L
Q[dt(l—T’(t)pHvz ||2) (1—7"(t)p) ||VZ H } + ”V H2 =0.

We integrate over (0, 1), we find

1d Y (@ 1
Ld [T O k(e p p)2dp+ LIV 1,02
2dt J, T—+(0)p 2

(4.31)

t 1-—
Lt 7(t) k 2 Lo k2
=5 [ (550 ) IV @i do + 51 9ut )5

T

7_/
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Combining (4.30) , (4.31) and using (A2), we get
t
/]ut OFTutPdo+ (o= [ hs)ds) 8013 + k(3 + (hodu®)
th 0
+/IT(,)||VZk(wapyt)|!§dﬂ} +u1/ Vg9 (uf) da + *HVZ (z, 1,013
o 1L=7(t)p Q
su+w/WWWW@WWM—W/vﬁv%@me%mmwwx
Q Q

[ G, 0l o+ LI 012
2 Jo ‘1—1(t)p N2 gl A
(4.32)
From the first estimate (4.23) and Young’s inequality, we get
1/(142)+1/2
| 1T vl de < Y I,
20/(142)+1 (4.33)

< || Vup|l5 + n > 0.

-2
4n ’
Using (4.6), Chaucy-Schwarz inequality, we obtain

/Vu V2F (@, 1,t)g5(2% (2, 1,1)) da:) <cis /|V M2dr+ = /]Vz (z,1,t)|* dz. (4.34)
Taking into account (4.33), (4.34) into (4.32) yields
t
33 (2 [ 1OVl P do -+ (= [ b ds) A3 + a1 + (o)
0

T(t
+/0 1_£/2t)p||v,z’f(m,p,t)|!% dp} +,u1/ |Vl |2g) (uF) dz + ¢| V25 (2,1, 1) ||3

1
T(t
<@ DIVl + G0+ [ T 19w p ) o+ T @)
(4.35)
Multiplying (4.17) by c{f , summing over j from 1 to k, it follows that
[l e+ Vbl =~ [ M) TV de
Q Q
t
+/ h(t — 5)/ Vuk (s)Vul,(t) de ds (4.36)
0 Q

[ @) de = e [ (a1 0) o
Q Q
Differentiating (4.20) with respect to t, we get

( 7(t) 7(t)

/Zk
T pr®) T T o)

zﬁ#—zfp,gzﬁ) =0.
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Multiplying by d{k, summing over j from 1 to k, it follows that

7(t) 7(t) d 1d B
() 118 + 5y B+ 5 413 = 0

then we have

1 7(t) 1d 7(t)
2T ey 1B+ 5.5 (= oy 14413 )+f—u S

Integrate over (0, 1) with respect to p, we obtain

IRE() Ld ftoT)
5 | () I do +2dt Ty ot do

| . (4.37)
Summing (4.36) and (4.37), we get

1d (! 7(t)

T e o C1 LN G

kil
/ b oy 2 d - [Vl 4+

L)
Lk 2 1 HokN2 g ki2ve, ko, k
sk 018 =5 [ (2 k1o — [ MOVt Vv o

t
+ / h(t —s) | Vuk(s)Vuk(t) dzds — Ml/ ul g1 (ul) de — ,u,g/ ul go(2F (x,1,1)) da.
0 Q Q Q

(4.38)

By Cauchy-Schwarz,Sobolev and Young’s inequalities, the right hand side of (4.38) can be

estimated as follows:
|/M(|]Vuk|]2)VukVuftdm| < (a—l—bHVukH%)/ Vur vk da
Q Q
2y
< (a+ bE(0)TD) / Vb Vb, da (4.39)
Q

k2 m% k|2
< nlIVul? + v
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‘/Oth(t_s)/g)VUk(s)vuft(t) d$d$‘

k2 1 ¢ k 2
< 0| Vug| +477/Q</0 h(t —s)Vu (s)ds) dx

1 t t
377”V“ft|’2+4n/0 h(s)ds/Q/O h(t — 5)|Vu®(s)|* ds dz
(4.40)

1 t

<Vl + 4-(a— k) /Q/O h(t — 8)[Vuk(s)[2 ds da
1 t

< || Vup|* + E(a — k) /0 h(t — s)||VuF(s)||* ds
1 t

< IVl + (o = B)h(0) /0 IVt (s)]2 ds,

and from (4.5)

1 1
| [ oty de] < 5 [ P ae 5 [ Jortul)
Q Q Q
|[ug |~ dow + |91 (ug)|" dz + |91 (ug)|” dz
2 Ja 2 Jyuk|>e 2 Jyub|<e

1 1 1 _
3 f il [ b e g [ ) dr
uy|>e

IN

IN

Using lemma4.2.3, Jensen’s inequality and the concavity of H~! , we obtain

1 1
| [horhyde] <5 [uiPdo [ ubgudydo s et ([ ol do)
Q 2 Ja 2 Jjub|>e Q

1 1
2/ ]uft|2dac+2/ ufgﬂuf)dx—l—c’H*(l)%—c”/ufgl(uf)dm
Q |uk|>e Q

1
§HUZH§ dr + H"(1) + C"/ ufgr (uf) da
Q

IN

IN

< Ol Vug|I3 + ¢ H* (1) + o(—E).

(4.41)
From(4.6) (that is |g(s)| < c|s|Vs € R) we get
1 1
| [ty de] < 5 [ bR+ [ R )R
0 2 Ja 2 Ja
1
<l +e [ FernpEted G4
Q

< CllVugll + ¢ (—E).
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Taking into account (4.39)-(4.42) into (4.38) yields
1d [t 7(t) 1
/Q Jug | [ufy* dz + || Vugy | > + 2dt J, TT’()HZ}CH% dp + szk(x, 1L,t)[f5
< (204 3C)|| Vug||* + *HV "1? + / V" (s)|| ds (4.43)
1 [t T(t)
_E/ _ - R S k 2d .
+o-B) -5 | (52g) 12 e
Combining (4.35) and (4.43), we get
1 d 2 ! k2 k(2 k
531 2 [ 1 OITut o+ (o= [ h(s) )13 + a1 + (o)
0
L7 t) ()
[ T IVt [ T Dt e+ (o) + [ Jull i da
1
§\|Zf(w,1,t)\lz+ (1= (+3)n—3C; )HVuttHerm/ Vg g1 (up) da + | V2* (2,1, 0)][3
<c'c —l—c"/l (ﬁ) V25 (2, p, 1) |15 dp + || Vui (£)3 + ajHVukH2
> Uy 1 0 1 —pT ) ) 2 t 2 4,)7
b to 00 [ 1veRas L [ (DY 1 igap
4n 0 2 Jo \1—p7'(t) !
(4.44)

Then from (4.23) and by integration over (0,t), (4.44) yields

¢ Lo
(@ [ B asadt 1B + 1AuE + (hodit) + [TV 0l dp

1 T(t
+/ T t||2dp+cE<>+2/|ut<>||Vu,’$r dw+2//|ut||utt|2dxds
o 1—pr'(t)
t
T / | 1, 0|3 ds + 21— (1 + 2)n — Cu) / IVuly|2ds + c. / IV2* (2, 1,6) 3 ds
0 0

< (CIC1+¢ +—+ 1( — B)R(O)T)T + E(0) + Cs

+// - et NERCYY ||2dpds+c"// 1_ ot dpds



4.3 Global existence-Proof of Theorem4.1.1 89

For a suitable n, we get

')
8018 + 18015 + (o) + [ 9w ) o

o) k)2 !
+/ — ||z |lad +/ Vb ||? ds
0 l—pT’(t)” ¢ ll2dp ) [ Vugl

< (C}CL++C)T + C +c”/ M 2Fl2d
—( -1 l) 2 0 1—/)7'/(15)” t”2 P

Lot () Y
+C:/o/o (m) IV2F(z, p, t)|13 dp ds.

Using Gronwall’ lemma, we obtained

(4.45)

1 T(t
A + 80 + (hodit) + [ T V54w ) B

+ /1 LHz’”"’H%dp—i— /t HVuk |12 ds < Cs.
o (L—pr'(t)"" 0 " -

We observe from the estimate (4.23) and (4.46) that there exists a subsequence u" of u

(4.46)

k

and a functions wu, z, x, 1 such that

u™ — u weakly star in L0, T, H*(Q) N Hy(Q)), (4.47)
u® — uy weakly star in L>(0, T, H3(S2)), (4.48)
g1 (u™) — x weakly star in L*(Q x (0,7)), (4.49)
up — uy weakly star in L*(0, T, H} (), (4.50)
2™ — z weakly star in L>(0, T, H} (Q, L*(0,1))), (4.51)
2" — z weakly star in L°°(0, T, L*(€2 x (0,1))), (4.52)
go(2™(z,1,t)) — 1 weakly star in L*(Q x (0,T)). (4.53)

In the follow, we have to show that u is the solution of (4.1).
Firstly we will treat the nonlinear terms. From the first estimate (4.23) and Lemma 2.3, we

deduce
kil k T en20+1)
Il lemomaoy = [ I3 ae

T
<20 [ a3 dr < et Ici T,
0
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On the other hand, from Aubin-Lions theorem, (see Lions [29]), we deduce that there exists
a subsequence of {u™}still denoted by {u™} such that

u® — uy strongly in L2(0, T, L*(Q)), (4.54)
which implies
uy® — uy almost everywhere in A. (4.55)
Hence
lu '™ — Jug|'uy almost everywhere in A, (4.56)

where A = Q x (0,7). Thus, using (4.54), (4.56) and Lions Lemma, we derive
[u )l — |ug|'us weakly in - L2(0, T, L*(Q)), (4.57)

and

2™ — z strongly in L*(0,T, L*(Q)),
which implies 2™ — 2z almost everywhere in \A.

Lemma 4.3.1. For each T > 0, gi(w), go(2(z,1,t)) € LY (A) and
g1 ()l L1 (), llg2(2(z,1,t))|[L1a) < K, where K is a constant independent of t.

Proof. By (A2) and (4.55), we have
g1(ui*(x,t)) = g1(us(z,t)) almost everywhere in A,
0 < uf(z,t)g1(ul(2,t)) = ug(x, t)g1(us(z, ) almost everywhere in A.
Hence, by (4.27) and Fatou’s Lemma, we have

T
/ / we(w, g1 (ue(w, 1)) dadt < Ky for T > 0. (4.58)
0 Q

By Cauchy-Schwarz inequality and using (4.41) (4.58), we have

T 1 T 1
/ / lg1 (ug(x,t))| da dt < c]A2</ / ug(x,t)g1(we(x, t)) dz dt) °
0 Q 0 Q
1
< c]A\%KE =K.

O

Lemma 4.3.2. g1(uf) — g1(w) weak in L*(Q2x(0,T)) and ga(2F) — go(2) weak in L*(Qx
(0,7))
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Proof. Let EC Q2 x [0,T] and set

E, = {(l‘ t) € E, |g1(uf(z,1)) } E; = E\Eq,

f

where |E| is the measure of E. If M (r) = inf{|s|, s € R and |[g(s)| > r}

/E\gl(ufﬂ drdt < c\/|E| + <M<\/|1f|>>_1 /152 [ul g1 (ul)| de dt.

By applying (4.27) we deduce that supy, [, [g1(uf)|dzdt — 0 as |E| — 0. From Vitali’s

convergence theorem we deduce that

gl(uf) — g1(ug) in Ll(Q x (0,7)).

Hence
g1(ulF) — g1(uy) weak in L2(Q x (0,T)). (4.59)
Similarly, we have
g2(2F) — ga(2) weak in L2(Q x (0,T)). (4.60)
O

By multiplying (4.17) and (4.20)) by 6(¢) € D(0,T) and by integrating over (0, 7"),it follows
that

— i Sy (b Ol (), w0 (2 dt + [y M HVu OI2)(Vuk (t), Vuwd)o(t) dt
+ [T (Vul, V)0t dt — [ Lt — s)(Vab(s), Vw?)o(t) ds dt

1 fy (1 ( uf) wJ)H( )dt + o [ (g2(z (.,1)),wj)0(t) dt =0,

fo fo Ja(r( + (1= p7'(1)) ’;)ﬁbje(t)dxdpdt:(),

For all j = 1...k. The convergence of (4.47)- (4.53), (4.57), (4.59) and (4.60) are sufficient to
pass to the limit in (4.61) in order to obtain

(4.61)

fOT Jo (|ut\lutt + A%y — Auy — fg h(t — 5)A%u(s) ds + pigr (us)
292 (=(., 1>>)we< )da dt = 0,
Jo Jo Jor @)z + (1= p7'(£)2,)$70(t) da dp dt = 0,

This completes the proof of Theorem 4.1.1.
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4.4 Uniform Decay of the Energy-Proof of
Theorem4.1.2

In this section we study the solution’s asymptotic behavior of system (4.1).
To prove our main result, we construct a Lyapunov functional F' equivalent to E. For this,

we define some functionals which allow us to obtain the desired estimate.

Lemma 4.4.1. Let (u,z) be a solution of the problem (4.4). Then, the functional

1
e 27 WP (2 (2 T )
0 [ | G0 dpda. (4.62)

satisfies the estimate

JII()] < ¢ B()

i) I'(t) < =27 (t)e 2™ [, f G(z(z,p,t))dpdz— oy (1—d)e ™ [ z(z, 1,t)g2(2(x, 1,t)) do+
(0%) fQ U x7t)gl( t('rat)) dr.

Proof. ii)Differentiating (4.62) with respect to t and using (4.5), (4.3),(A4) we get

= ’t)/ /1 e 7 WrG(2(z, p,t)) dp da:
// —27(t 6G ;p’ t) 2T,(t)p6_27(t)pG(Z(.§C,p,t))] dp dx

_ oy , 0G(z(x, p,t))
_/Q e O [ ()G((a,p,0)) + () TSP dp

1

—2/9/0 ()7 () pe " DPG (2 (x, p, 1)) dp da
b o O /

--/ /0 20 (1= o7 ()Gl 1)) dpda
1

—2//0 ()7 () pe " DPG(2(x, p, 1)) dp da

Q
= [ [ (2 (e -t t>>)
+27(8)e 270 (1 — 7' (1) p) G (2(x, p, t))) dpdx — 27(t / / pe TP (2(z, p,t)) dp dx:

—/G(ut(x,t))d:);’—e_QT(t)(l—T'(t))/ G2, 1,1)) da
Q Q

1
2 (1) /Q /O (1= 7(1)p) + ' (D)ple TG (2 (z, p.1)) dp e

< —2I(t) + az /Q up(z, ) g1 (ue(z, 1)) dz — e 7D (1 — d)ay /Q 2(z,1,8)g2(2(x, 1, 1)) da.



4.4 Uniform Decay of the Energy-Proof of Theorem4.1.2 93

Since e=27(7 is a decreasing function for p € [0,1] and 7(t) € [ro, 1], we deduce

0 /Q /D MG (e o) dp

Thus, our proof is completed. O

Lemma 4.4.2. Let (u,z) be a solution of the problem (4.4). Then, the functional

o(t) = /\ut]lutudx—l—/VutVuda:

I+1

satisfies the estimate

. -1 12

i) 16(1)] < a2 + (G2 (2ED)z 4 1) | Vul]? + 5|V

i) ¢'(£) < rhplludlFE3 = MOIVul®) [Vul + (1 +0)(0 — k) [Vl + & (hoVu)(£) + | Va2
i Jo w(@, t)g1(we(z, b)) dz — po Jou(,t)go(2(2, 1,1)) da.

Where 1 > 0 and cs is the sobolev embedding constant.

Proof. 1) From Young’s inequality ,the Sobolov embedding and lemma 4.2.3, we deduce

+2 I+t 1 9 1 2
6] < s a3+ LD g2 4 22 4 2l

1 I (+1)" ! 1 1
el 3 + “““*C;QHV”4|+24‘§HV”HH2+‘§HV”4F

< —
—l+2 42 1+ 2
[+ 1)71 2E(0),: 1 1
< l+2 ( I+2 + 2, © 2
< sl + (=2 (2R 4 59l + 21V

ii)Differentiating ¢(t) with respect to t and using the first equation of (4.4), we get

1
[+1

:/ [|ut|lutt}uda:+ I 1||u HHQ / Auyudr + HVutH2
Q

1
' (t) = (|ut|lut)'ud$—|—/ | |12 da:+/ VuttVudx—l—/ VuVu dx
Q Q

1
=T HutHlJr2 + / [\ut| Uy — Autt}udx + || Vg ||?
+ Q

= iHu 172 + /Q [M(HWHz)Au —/0 h(t — s)Au(s)ds — p1gr (w(z, 1))  (4.63)

[+1
~ p2ga(=(a, 1,0)) [uda + || V|
1 t
L a2 = Ml + / Vu(t) / Wt — 5)Vu(s) ds da
l+ 1 Q 0

— ,ul/ ug (u(z, b)) de — ug/ uge(z(x,1,t)) dx + HVutHQ.
Q Q
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By use of Young’s inequality and Sobolev embedding, we can estimate the third term in the

right side as follow:
/Q Vu(t) /0 Bt — $)Vu(s) ds de < /O “hit—s) /Q [Vu(t)(Vu(s) ~ Vu(t))| dr ds
+HVu(t)||2/0th(t—s)ds

t

< | Vu(t)[? /0 h(s)ds + [ Vu(t)] / h(s) ds

0

1 t
4+ — / h(t —s)||Vu(s) — Vu(t))”2 ds
an Jo
1
< (14 n)(a —k)||Vu(t)]* + %(hOVU)(t).
Thus, our proof is completed. O

Lemma 4.4.3. Let (u,z) be a solution of the problem (4.4). Then, the functional

60 = [ (8 gl | At — $)(u(t) — u(s)) ds de.

satisfies the estimates
i) [P < 3 Vull® + (1<a—k> G (@ = k)22 () ) (hoV ) (1) + g 2
) §/(0) < 8o = KMVl + 260 — R2IVul
+( 20+ g5+ (n + ) )@ — ) (o) () — M2 (14 £5) ) (Wovu)(¢)
+ 258 — [ h(s) ds) | Vel + 1 gn (wr(, )] bl 1, )
z+1 fo ds”“tH%igr
Where My = a + b(%(o))v,ao = CE(ZH)(zEaO))Z,n > 0 and cs is the sobolev embedding

constant.

Proof. 1)
U(t) = — Jo Vue fo s)(Vu(t) = Vu(s)) ds dx — [ l%’utvut fg h(t—s)(u(t)—u(s)) ds dzx.
We use Young’s and Holder’s inequality with the conjugate exponents p = éj:—% and ¢ =
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I 4+ 2,the second term in the right hand side can be estimated as
t
‘ - z gl ut/o h(t — s)(u(t) — u(s)) ds daz‘

< g 4 L /Q ([ (- >)$(<h<t—s>>zi2|u<> u(s)l) ds] o

1 Lo (+1)7

< T +2 4 . B 142

ST ||u|| T /ht sds //ht s)u(t) —u(s)| " dsdx
1 e U+1)7! 141 142, E(0)

< YT a— - ,

< l+2HUtH g (a = k) Tle 2 (4= =) (hoVu)(#)

(4.64)

We get the last inequality from (4.8) and lemma 4.2.3.

The same , we use Young’s and Holder’s inequalities with p = ¢ =2 | we get

t 1 t 2
—/Vut/ h(t — 5)(Vu(t) — Vu(s)) dsde| < / (/ h(t — )| Vu(t) — Vu(s)|ds) de
Q 0 2 Ja\Jo
1
+ §||V%t||2
1 1
< a= R oTu)©) + 21T ul?
Combining (4.64) and (4.65), we deduce

1 1 (I+1)7t
POl < 51Vl + (Gla—h+ =5

. (k)22 O)) (hovuy(t) + L el 2
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ii)We use the Licbnitz formula and the first equation of (4.4), we have
Y(t) = /Q (Autt—\ut!lutt) /0 th(t—s)(u(t)—u(s))dsdx

+/Q (Aut—mw ut)</0t(h’(t—s)(u(t)—u(s))—i—h(t—s)ut(t))ds) do
/M Vull2)Vu(t )/th(t—s)(Vu(t)—Vu(s))dsda:
// (t— $)Vu(s ds/ h(t — $)(Vu(t) — Vu(s)) ds da

+M1/le(ut(:n,t))/0 h(t — s)(u(t) — u(s)) ds da

tin [ on(ete 1.0) [ Bt = ) — uls) ds do
/Vut/ Bt — $)(Vu(t) — Vu(s)) ds do
z+1/ |ut]ut/ t—s)(u(t)—u(s))dsd:v—||Vut|]2/0th(s)ds

- gl [ hgs)ds

t 1 t
L T+ s+ pols + T + Tg — ||Vut||2/ h(s)ds — H_1||ut||l+2/ h(s) ds.
0 0
(4.66)

In what follows we will estimate I, ..., Ig

For I, we use Holder’s and Young’s inequalities with p = ¢ = 2 , we get

< 219y [ 1vuol( [ asras) ([ vt =19t - vuGo) ds) e
M(||Vu||2)[5/Q|Vu(t)|2/O dsda:—i—// (t — 5)[Vu(t) — Vu(s)|ds da]

< M(|[7ull?) (3] u(®)|? /0 (s) ds + 45 (hoVu) 1))

+ M oy 1),

< OM(|[Vul*)[Vu®)[*(a — k) +

(4.67)

Where My = a + b(%(o))"Y obtained by recalling (4.8)and lemma 4.2.3.
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Similarly,
|12|<5/ / (t — )| Vu(s)| ds ) d:c+/ / (t— 8)|Vult) ~ Vu(s)] ds) da
<5/ / (t— 5)([Vu(s) — Vu(t)] + [Vu(t)]) ds) d:c+415(/th(s)ds)(hoVu)(t)
§25||Vu(t)||2(/0 h(t) ds)? d:z+(26+415)(/th(s)ds)(hoVu)(t)

< 26)|Vu(t)||*(a — k)2 da + (26 + %)(a — k) (hoVu)(t).

(4.68)
2
T3] < 6llga (ue(z, 1)) + 45( — k)(hoVu)(t). (4.69)
2
114 < 8llg2(a(e, LO)IP + 55 (a — B)(BoVu)(0). (4.70)
2
|I5]§6/|Vut|2dx+ /|h’t—s V() ~ Vu(s)|ds)” da
Q
< 5|V |? + /|h’t—s|ds// (L — 8)|[Vu(t) — Vu(s) [ ds da.
As h is a positive decreasing function so |h/(t — s)| = —h/(t — s) and then
5| < u||” + —= t—s))ds t—3s))|Vu Vu(s sdzx
<01Vl + g [ W= 9ds [ [ ITate) - Tuls)P s
e (4.71)
< 8[|V — ié)(h/oVu)(t).
t 2
Te| ST[ /Hut\lut|2daz+ (/ Wt = ) [u(t) — u(s)| ds) de]
1 a+1)  h(0)c?
< g [0 B - = (Wovu) ()
520D O (4.72)
ST | Vel W(hovm(t)
(5@0 h(O) ’
< Tl = g (oY),

Where ag = cg(lﬂ)( EQ© )) obtained by recalling (4.8) and lemma 4.2.3.
Combining (4.66)and (4.67)—(4.72), we finish the proof. O
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Now, for M,e1 > 0, we introduce the following functional
F(t) = ME(t) + e1¢(t) + ¢(t) + I(t). (4.73)

Lemma 4.4.4. Let (u,z) be a solution of the problem (4.4). Assume that (A1)- (A5) hold
and that Then F(t) satisfies, along the solution and for some positive constants m,c > 0,

the following estimate
F'(t) < —mE(t) + C[llgl(ut(ﬂfﬂf))H2 + [lga(z (2, 1,0) |7
(4.74)
+ [ Jute g ) de+ [ (e, ga(e(w. 1.0 da].
Q Q
and F(t) ~ E(t).
Proof. By recalling ii) of lemmas 4.2.3-4.4.3 and by (A2), we deduce that for ¢t > tg > 0
F'(t) = ME'(t) + e1¢/(t) + ' (t) + I'(t)

< —(M)\—ag)Aut(x,f)gl(Ut(%t))dx

— (MB + ai(1 —d)e™ ™) /Q z(x,1,t)g2(2(z, 1,t)) dz

1
— 2@ [ [ Gala(o.put)) dpde = (61 = 3= k) MUVl

— (o — en) el 3 = (ho — 801 + 1520) — )] Vea
~ (B a4 )~ k) — 250 — B Vu(t)
62 CQ
[ - B ) - (B G+ 5 g5+ G ) e - ) (hoTu)e)

+M15H§/1(Ut($7t))|!2+M25Hg2(z($alat))\\2—€1M1/Qu(96,t)gl(ut($vt))dx
- 51,112/Qu(x,t)g2(z(x, 1,t)) dx.

Where hg = JO h(s)ds and hy = min{h(t),t > to > 0}. We take hy > €1 and § > 0
sufficiently small such that
a4:h0—5(1—|—ﬁ_—01)—51 > 0 and a2:£1—5(a—k) >0.

As long as €1 and § are fixed,we choose M large enough such that

Mh
ar =MN— a2 >0, a5:T1—51(1+77)(a—k)—26(a—k:)2>O,
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and
a—g&{me@+ Cz))(61+MO+(2M1+( + f%@m)>o
6= Ty I+ 1 Y 45 TRy ‘
Thus
F'(t) < —as; 1 luel45 — ae M (|Vul) [ Vul|* = as| Vur||* — ag(hoVu)(t)

1
—27(75)6_271/9/0 Go(z(z, p,t)) dpdx
+C[Hgl(ut($at))||2+ ||92(Z(95717t))\|2+/Q|u($,t)gl(ut($at))ld$
—1—/9\u(x,t)gg(z(x,l,t))]dx}
< —mE(t)+C[H91(ut(wat))|!2+ |!92(Z(96,1,t))||2+/ﬂ|U($at)91(ut(wat))|diﬁ

+ [ futa (w1, do]

Where m = min{2as, 2e271€, 2a4, az}.

To prove F(t) ~ E(t), we show that there exist two positive constants k1 and kg such that
r1E(t) < F(t) < ko E(t). (4.75)
From i) of lemmas 4.4.1-4.4.3, we get k > 0 depending the 1, a,l, cs, E(0), k, £ such that
e10(t) + () + T(1)| < KE(1).

For a choose of M large enough such that k1 = M — k > 0, we get our result. O

4.4.1 Proof of Theorem 4.1.2
As in Komornik [24], we consider the following partition of €
N ={reQ: || <e}, Q={zeQ: |u|>c}

We use Young’s inequality (with p = ¢ =2), (2.10) and lemma 3.2.1,we have

1
/Q fugs (u)| d + g2 (w3 < lull? + (= + 1)l g (o) 3

48
< 6C2||Vul3
1 _1 (4.76)
+ (—=+1)( H™ (ug1(up)) dz + co urg(ug) dr)
46 ol Qs
20C2

< Et)+cs [ H Murgi(up)) de — C5E'(t).

a N
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Similarly and by application of (4.6), we obtain
/Q!um(z(ﬂ?, L,t) dz + |lg2(2(2,1,0)[I3 < 6CF[|Vul|2

1
9]
2002

a

Combining (4.76) and (4.77) the (4.74) becomes

46C, _
. VE(t) — C’(';/E/(t) + cs H l(utgl(ut)) dx.
Q1

<

E(t) — C5E'(t).

F(t) < —(m —
Now, for § small enough, the function L(t) = F'(t) + C§E(t) satisfies
L'(t) < —dE(t) + ¢ i H™ uggr (uy)) da, (4.78)
1
and

L(t) ~ E(t).
e Case 1. H is linear on [0,¢], Using (4.5) and Lemma 4.2.3, we deduce that

L'(t) < —dE(t) — cE'(t).

Thus R = L + cFE ~ FE satisfies
R(t) < R(O)e_Ct

Hence,

E(t) < C(E(0))e™°".
e Case 2. H is nonlinear on [0, €] so, we exploit Jensen’s inequality and the concavity of
H~! to obtain

! ugg(ug)de) > ¢ [ H N (upg(uy)) d.

H'(—
(|Q1\ o o

Then (4.78) becomes
1
L'(t) < —dBE(t) + cH (i~
€u] Jo,
For g < € and wg > 0, we define Lg by

Lo(t) = H' (505((8))>L(t) FwoE(t).

urg(uy) dx). (4.79)
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Then, we easily see that, For by, bo > 0
bi1Lo(t) < E(t) < baLo(t). (4.80)

By recalling that E' <0, H > 0, H” > 0 on (0, ] and using (4.79) , we obtain

?E/((g)) H (eog((é))> L(t) + (5027((8) L(t) + wo (1)

Ly(t) = eo

< —dE(t)H' (50 g((é))) +cH' (sO%)H_I(mll‘ X wg(ug) dz) + woE' (t),

using Remark 4.2.1 with H*, the convex conjugate of H in the sense of Young, we

obtain
Ly(t) < ~dBE(H (=, gggg) vt (' (= g((g)))) o / g(u) d) + 0 ()
< —dE(t)H’ (605((3))) + ceoggé))H’ (605((3))> — w1 B'(t) + woE'(t),

where wy is a positive constant depending of €21, as. By taking £¢ small enough and

wy > wi, we obtain

L) < —wg(((t)))H’ (505((8) - —wﬂg(g((é))), (4.81)
where Hs(t) = tH'(eot) a positive increasing function on (0, 1].

By setting Ly (t) = blé(%()t), we easily see that, by (4.80), we have

Li(t) ~ E(t). (4.82)
Using (4.81), we arrive at
Li(t) < —wiHa(L1 (1))

By recalling (2.13), we deduce
1

Lll(t) < w1m7

which gives
/
[Hl(Ll(t))} < wy.
A simple integration leads to
Hi(L1(t)) < wit + Hi(L1(0)),

consequently
Ll(t) < Hfl(wlt + wg), (4.83)

using (4.82) and (4.83), we obtain (4.10). The proof is completed.
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Abstract

In this thesis, we considered the problem with partial differential equations of hyperbolic type (wave
equations, Kirchhoff equations and petrovsky equations) with the presence of different mechanisms
of dissipation, damping and for more general forms of nonlinearities, addressed from a different
angle. Under some assumptions on initial data, conditions on damping, delays and viscoelastic terms,

we proved the global existence and asymptotic behavior of the solutions.

Résume

Dans cette these, nous avons considéré le probléeme aux dérivées partielles de type
hyperbolique (Equations des Ondes, Equations de Kirchhoff et Equations de Petrovsky) avec
la présence de différents mécanismes de dissipation, d'amortissement de différent point de
vue. Sous quelques hypothéses sur les données initiales, conditions sur les termes de
dissipation, les termes de retards et viscoélastiques, nous avons montreé |'existence globale et

le comportement asymptotique des solutions.
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