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Introduction

In this work, we prove existence of solution to the following systems:x
∇(t) = f(t, x(t)), t ∈ Tk,

x(b) = x0,

(1)

and x
∇(t) = f(t, x(ρ(t)), ∇.a.e.t ∈ Tk,

x ∈ (BC).

(2)

Here T is an arbitrary bounded time scales, where we denote a := minT, b := maxT,

T◦ = T\{a}, and in (2) we have that f : T◦×Rn → Rn is a∇-Carathéodory function

and (BC) denotes one of the following boundary conditions:

x(b) = x0 (3)

or

x(b) = x(a). (4)

In (1) we suppose f : T◦ × Rn → Rn is a continuous function. Problem (2) (resp.

(1)) unifies continuous and discrete problems. We use the notion of tube solution for

system (2) (resp. (1)), in the spirit of the works of Gilbert and Frigon [30, 32, 34].

This notion is useful to get existence results for systems of differential equations of

first order, as a generalization of lower and upper solutions [20, 29, 46, 55]. Our main

result provides existence of solution to the nonlinear nabla boundary value problem

(2) (resp. (1)). A solution of this problem will be a function x ∈ W 1,1
∇ (T,Rn) (resp.

x ∈ C1
∇(T,Rn)), satisfying (2)(resp,(1)).
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Fractional calculus is a branch of mathematical analysis that studies the pos-

sibility of taking noninteger order powers of the differentiation and/or integration

operators. Even though the term “fractional” is a misnomer, it has been widely ac-

cepted for a long time: the term was coined by the famous mathematician Leibniz in

1695 in a letter to L’Hôpital [52]. In the paper What is a fractional derivative? [47],

Ortigueira and Machado distinguish between local and nonlocal fractional deriva-

tives. Here we are concerned with local operators only. Such local approach to the

fractional calculus dates back at least to 1974, to the use of the fractional incre-

mental ratio in [25]. For an overview and recent developments of the local approach

to fractional calculus we refer the reader to [45, 49, 56, 57] and references therein.

Recently, Khalil et al. introduced a new well-behaved definition of local fractional

(noninteger order) derivative, called the conformable fractional derivative [43]. The

new calculus is very interesting and is getting an increasing of interest – see [19, 28]

and references therein. In [1], Abdeljawad proves chain rules, exponential functions,

Gronwall’s inequality, fractional integration by parts, Taylor power series expan-

sions and Laplace transforms for the conformable fractional calculus. Furthermore,

linear differential systems are discussed [1]. In [11], Batarfi et al. obtain the Green

function for a conformable fractional linear problem and then introduce the study of

nonlinear conformable fractional differential equations. See also [4] where, using the

conformable fractional derivative, a second-order conjugate boundary value problem

is investigated and utilizing the corresponding positive fractional Green’s function

and an appropriate fixed point theorem, existence of a positive solution is proved.

For abstract Cauchy problems of conformable fractional systems see [2]. Here we

are concerned with the following problem:x
(α)(t) = f(t, x(t)), t ∈ [a, b], a > 0,

x(a) = x0,

(5)

where f : [a, b] × R → R is a continuous function, x(α)(t) denotes the conformable

fractional derivative of x at t of order α, α ∈ (0, 1). For the first time in the literature
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of conformable fractional calculus, we introduce the notion of tube solution. Such

idea of tube solution has been used with success to investigate existence of solutions

for ordinary differentiable equations [30, 31], delta and nabla differential equations

on time scales [12, 32, 34], and dynamic inclusions [33]. Roughly speaking, the tube

solution method generalizes the method of lower and upper solution [24, 26, 35, 51].

The study of fractional (noninteger) order derivatives on discrete, continuous

and, more generally, on an arbitrary nonempty closed set (i.e., a time scale) is a

well-known subject under strong current development. The subject is very rich and

several different definitions and approaches are available, either in discrete [9], con-

tinuous [53], and time-scale settings [16]. In continuous time, i.e., for the time scale

T = R, several definitions are based on the classical Euler Gamma function Γ. For

the time scale T = Z, the Gamma function is nothing else than the factorial, while

for the q-scale one has the q-Gamma function Γq [38]. For the definition of Gamma

function on an arbitrary time scale T see [21]. Similarly to [16, 17], here we introduce

a new notion of fractional derivative on an arbitrary time scale T that does not in-

volve Gamma functions. Our approach is, however, different from the ones available

in the literature [16, 17, 18, 19]. In particular, while in [16, 17, 18, 19] the frac-

tional derivative at a point is always a real number, here, in contrast, the fractional

derivative at a point is, in general, a complex number. For example, the derivative

of order α ∈ (0, 1] of the square function t2 is always given by tα + (σ(t))α, where

σ(t) is the forward jump operator of the time scale, which is in general a complex

number (e.g., for α = 1/2 and t < 0) and a generalization of the Hilger derivative

(t2)∆ = t+ σ(t).

Local, limit-based definitions of a so-called conformable derivative on time scales,

have been recently formulated in [19] by

Tα(f)(t) =
f(σ(t))− f(t)

µ(t)
t1−α, α ∈ (0, 1], (6)
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and then in [59] by

Tα(f)(t) =
fσ(t)− f(t)

σ(t)α − tα
, α ∈ (0, 1]. (7)

Note that if f is ∆-diferentiable at a right-scattered point t ∈ Tκ[0,∞) [22], then f is

α-differentiable in both cases: for the first definition (6) we have

Tα(f)(t) = t1−αf∆(t) (8)

while for the second definition (7) one has

Tα(f∆)(t) =
µ(t)

σα(t)− tα
f∆(t), (9)

where f∆(t) = fσ(t)−f(t)
µ(t)

. The conformable calculus in the time scale T = R is now

a well-developed subject: see, e.g., [1, 2, 44] and references therein. However, the

adjective conformable may not be appropriate, because T0f 6= f , that is, letting

α → 0 does not result in the identity operator. This is also the case for the recent

results of [58]. Moreover, according to (8) and (9), the variable t must satisfy t ≥ 0.

With this in mind, in this paper we extend the calculus of [6], by considering a truly

conformable derivative of order α, 0 ≤ α ≤ 1, on an arbitrary time scale T.
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Notations

Notation Definition

N0 N ∪ {0}

\ Difference of sets

[a, b]T [a, b] ∩ T

T◦ T\{a} where a = minT

a.e. Almost everywhere

〈·, ·〉 Inner product

µ∇ The Lebesgue nabla-measure

‖·‖X norm in the space X

C ([a, b]) Space of continuous functions on [a, b]

Ck ([a, b]) Space of functions of class K on [a, b]

L1 ([a, b])
{
f : [a, b]→ R : f measurable,

∫ b
a
|f (t)| dt <∞

}
Ck
ld (T) Space of functions of class K nabla-derivative onTandf∇

k
is ld-continuous on (T)κκ

L1
∇
(
T[a,b]

) {
f : T[a,b] → R : f nabla-measurable,

∫
T[a,b]
|f (t)| ∇t <∞

}
|x| Absolute value of x

Ω closed set of Ω
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Chapter 1

Preliminaries

1.1 Preliminaries on analysis

For further results and deeper explanations, see [36].

Definition 1.1.1. A map is a continuous tronsformation.

Definition 1.1.2 (See p. 112 of [36]). Let X, Y be topological spaces. A map

f : X → Y is called compact if f(X) is contained in a compact subset of Y .

Theorem 1.1.1. (chauder) Let E be a normed linear space and let C ⊂ E be convex.

Then any compact F : C → C has a fixed point.

Theorem 1.1.2 ( Arzelà-Ascoli theorem ). A subset of C(Ω̄) is relatively compact

if and only if it is bounded and equicontinuous.

1.2 Preliminaries on time scales

A time scale T is defined to be any nonempty closed subset of R. Then the forward

and backward jump operators σ, ρ : T→ T are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{t ∈ T : s < t}.
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For t ∈ T, we say that t is left-scattered (respectively right-scattered) if ρ(t) < t

(respectively σ(t) > t); that t is isolated if it is left-scattered and right-scattered.

Similarly, if t > inf(T) and ρ(t) = t, then we say that t is left-dense; if t < sup(T)

and σ(t) = t, then we say that t is right-dense. Points that are simultaneously left-

and right-dense are called dense. If T has a right-scattered minimum m, then we

define Tκ := T−{m}; otherwise, we set Tκ := T. If T has a left-scattered maximum

M , then we define Tκ := T − {M}; otherwise Tκ := T. Finally, the (backward)

graininess function ν : Tκ → [0,+∞[ is defined by ν(t) := t− ρ(t). And the (jump)

graininess function µ : Tκ → [0,+∞[ is defined by µ(t) = σ(t)− t.

1.2.1 Nabla-derivative on time scales

Definition 1.2.1. Assume f : T → Rn is a function and let t ∈ Tκ. We say that

f is ∇-differentiable at t if there exists a vector f∇(x) ∈ Rn such that for all ε > 0,

there exists a neighborhood U of t, where∥∥f(s)− f (ρ(t))− f∇(t) (s− ρ(t))
∥∥ ≤ ε|s− ρ(t)| (1.1)

for every s ∈ U . We call f∇(t) the ∇-derivative of f at t. If f is ∇-differentiable

at t for every t ∈ Tκ, then f∇ : Tκ → Rn is called the ∇-derivative of f on Tκ.

Theorem 1.2.1. Assume f : T → Rn is a function and let t ∈ Tκ.Then, we have

the following.

(i) If f is ∇-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and if t is left-scattered, then f is ∇-differentiable at t

and

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

(iii) If t is left dense, then f is ∇-differentiable at t if and only if

lim
s→t

f(t)− f(s)

t− s

exists in Rn. In this case, f∇(t) = lims→t
f(t)−f(s)

t−s .

11



(iv) If f is ∇-differentiable at t, then f(ρ(t)) = f(t)− ν(t)f∇(t).

Theorem 1.2.2. If f, g : T→ R are ∇-differentiable at t ∈ Tκ, then

(i) f + g is ∇-differentiable at t and (f + g)∇(t) = f∇(t) + g∇(t);

(ii) αf is ∇-differentiable at t for every α ∈ R and (αf)∇(t) = α(f)∇(t);

(iii) fg is ∇-differentiable at t and

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) = f(t)g∇(t) + f∇(t)g(ρ(t));

(iv) If g(t)g(ρ(t)) 6= 0, then f
g

is ∇-differentiable at t and (f
g
)∇(t) = f∇(t)g(t)−f(t)g∇(t)

g(t)g(ρ(t))
.

Theorem 1.2.3. Let W be an open set of Rn and t ∈ T be a left-dense point. If

g : T→ Rn is nabla-differentiable at t and f : W → R is differentiable at g(t) ∈ W ,

then f ◦ g is nabla-differentiable at t with (f ◦ g)∇ (t) = 〈f ′(g(t)), g∇(t)〉.

Proof. Let ε > 0. We need to show that there exists a neighborhood U of t such

that
∣∣f(g(t))− f(g(s))− 〈f ′(g(t)), g∇(t)〉(t− s)

∣∣ ≤ ε|t− s| for all s ∈ U . Let k > 0

be a constant and ε′ = ε
k
. By hypotheses, there exists a neighborhood U1 of t where∥∥g(t)− g(s)− g∇(t)(t− s)
∥∥ ≤ ε′|t − s| for all s ∈ U1. In addition, there exists

a neighborhood V ⊂ W of g(t) such that |f(g(t)) − f(y) − 〈f ′(g(t)), g(t) − y〉| ≤

ε′|g(t)−y| for all y ∈ V . Since function g is ∇-differentiable at t, it is also continuous

at this point, and there exists a neighborhood U2 of t such that g(s) ∈ V for all

s ∈ U2. Let U := U1 ∩ U2. In this case U is a neighborhood of t and if s ∈ U , then

|f(g(t))− f(g(s))− 〈f ′(g(t)), g∇(t)〉(t− s)|

≤ |f(g(t))− f(g(s))− 〈f ′(g(t)), g(t)− g(s)〉|

+
∣∣〈f ′(g(t)), g(t)− g(s)〉 − 〈f ′(g(t)), g∇(t)〉(t− s)

∣∣
≤ ε′ ‖g(t)− g(s)‖+

∣∣〈f ′(g(t)), g(t)− g(s)− g∇(t)(t− s)〉
∣∣

≤ ε′
(
ε′|t− s|+ ‖g∇(t)(t− s)‖

)
+ ‖f ′(g(t))‖ ‖g(t)− g(s)− g∇(t)(t− s)‖

≤ ε′(1 + ‖g∇(t)‖+ ‖f ′(g(t))‖)|t− s|.

Put k = 1 + ‖g∇(t)‖+ ‖f ′(g(t))‖ and the theorem is proved.

12



Example 1.2.1. Assume x : T→ Rn is nabla differentiable at t ∈ T. We know that

‖ · ‖ : Rn\{0} → [0,+∞[ is differentiable if t = ρ(t). It follows from Theorem 1.2.3

that

‖x(t)‖∇ =
〈x(t), x∇(t)〉
‖x(t)‖

.

Definition 1.2.2. A function f : T → Rn is called ld-continuous provided it is

continuous at left-dense points in T and its right-sided limits exist (finite) at right-

dense points in T. The set of all ld-continuous functions f : T → Rn is denoted by

Cld(T,Rn). The set of functions f : T→ Rn that are nabla-differentiable and whose

nabla-derivative is ld-continuous, is denoted by C1
ld(T,Rn).

1.2.2 Lebesgue nabla integration

In this section we define a theory of measure and integration for an arbitrary bounded

time scales T where a = minT < maxT = b. We recall the notion of ∇-measure in

time scales.

Definition 1.2.3. Let F1 be a family of intervals of T of the form

(c, d] = {t ∈ T : c < t ≤ d},

where c, d ∈ T and c ≤ d. We define an additive measure m1 : F1 → R by

m1 ((c, d]) = d− c.

Definition 1.2.4. An outer measure m∗1 : P (T) → R is defined as follows: for

E ⊂ T,

m∗1 (E) =

 inf

{∑k=n
k=1 m1 (Ak) : E ⊂

k=m⋃
k=1

Ak with Ak ∈ F1

}
if a /∈ E,

+∞ if a ∈ E.

Definition 1.2.5. A set A ⊂ T is said to be ∇-measurable if for every set E ⊂ T

m∗1 (E) = m∗1 (E ∩ A) +m∗1 (E ∩ (T\A)) .

13



Now, denote

M∇ (m∗1) = {A ⊂ T : A is ∇ mesurable} .

The Lebesgue ∇-measure on M∇ (m∗1), denoted by µ∇, is the restriction of m∗1 to

M∇ (m∗1). We get a complete measurable space with
(
T,M∇ (m∗1) , µ∇

)
. With

this definition of complete measurable space for a bounded time scale T, we can

define the notions of ∇-measurability and ∇-integrability for functions f : T → R,

following the same ideas of the theory of Lebesgue integration.

1.2.3 Nabla-measurability and nabla-integrability for func-

tions on time scales

Definition 1.2.6. Let E ⊂ T be a ∇-measurable set and f : T → R be a ∇-

measurable function. We say that f ∈ L1
∇(E) provided∫

E

|f(s)|∇s <∞.

We say that a ∇-measurable function f : T→ Rn is in the set L1
∇(E,Rn), provided∫

E

|fi(s)|∇s <∞

for each of its components fi : T→ R.

Proposition 1.2.1. Assume f ∈ L1
∇(E,Rn). Then,∥∥∥∥∫

E

f(s)∇s
∥∥∥∥ ≤ ∫

E

‖f(s)‖∇s.

Many results of integration theory are established for measurable functions f :

X → R where
(
X, τ, µ

)
is a complete measurable space. These results are in par-

ticular true for the measurable space
(
T,M∇ (m∗1) , µ∇

)
. We recall two results of

the theory of integration adapted to our situation.

Theorem 1.2.4 (Lebesgue-dominated convergence theorem). Let {fn}n∈N be a se-

quence of functions in L1
∇(T◦). If there exists a function f : T◦ → R such that

fn(t) → f(t) is ∇ a.e. in T◦ and if there exists a function g ∈ L1
∇(T◦) such that

‖fn(t)‖ ≤ g(t)∇ a.e. in t ∈ T◦,for every n ∈ N. Then fn → f in L1
∇(T◦).

14



Theorem 1.2.5. The set L1
∇(T◦) is a Banach space endowed with the norm ‖f‖L1

∇
:=∫

T◦ |f(s)|∇s.

Lemma 1.2.1. The set of left-scattered points of T is at most countable: there is a

set of indexes J ⊂ N and a set {ti}i∈J ⊂ T such that LT := {t ∈ T : ρ(t) < t} =

{ti}i∈J .

Proof. Let g : [a, b]→ R be defined by

g (t) =

 t if t ∈ T,

ρ (s) if t ∈ (ρ (s) , s) , s ∈ T.

It is obvious that the function g is monotone on [a, b] and continuous over the set

[a, b] \ {t ∈ [a, b]T : ρ(t) < t}. As the set of all points of discontinuity of a monotone

function is countable, then the set LT is countable.

Proposition 1.2.2. Let A ⊂ T. Then, A is ∇-measurable if and only if A is

Lebesgue measurable. In such a case, the following properties hold for every ∇-

measurable set A.

i- If a is not in A, then

µ∇(A) =
∑
j∈JA

(tj − ρ(tj)) + µL(A);

ii- µ∇(A) = µL(A) if and only if a is not in A and A has no left-scattered points.

Here, JA = {j ∈ J : tj ∈ LT ∩ A}.

To establish the relation between ∇-integration on T and Lebesgue integration

on a real compact interval, the function f : T → R is extended to [a, b] in the

following way:

f̂ (t) :=

 f(t) if t ∈ T,

f (tj) if t ∈ (ρ (tj) , tj) , j ∈ JT.

15



Theorem 1.2.6. Let E ⊂ T be a ∇-measurable set such that a is not in E and

let Ê = E ∪
⋃
j∈JE (ρ(tj), tj). Let f : T → R be a ∇-measurable function and

f̂ : [a, b]→ R its extension on [a, b]. Then, f is ∇-measurable on E if and only if f̂

is Lebesgue integrable on Ê. In such a case, one has∫
E

f(s)∇s =

∫
Ê

f̂(s)ds. (1.2)

Function f : T → R can be extended on [a, b] in another way. Define f̄(t) :

[a, b]→ R by

f̄ (t) :=

 f(t) if t ∈ T,

f (tj) +
f(tj)−f(ρ(tj))

ν(tj)
(tj − t) if t ∈ (ρ (tj) , tj) , j ∈ JT.

Definition 1.2.7. A function f : T → R is said to be absolutely continuous on T

if for every ε > 0, there exists a δ > 0 such that if {(ak, bk]}nk=1 with ak, bk ∈ T is

a finite pairwise disjoint family of subintervals of T satisfying
∑n

k=1(bk − ak) < δ,

then
∑n

k=1 |f(bk)− f(ak)| < ε.

Lemma 1.2.2. If f̄ is differentiable at t ∈ (a, b]∩R, then f is ∇-differentiable at t

and f∇(t) = f̄ ′(t).

Theorem 1.2.7. Consider a function f : T → R and its extension f̄ : [a, b] → R.

Then, f is absolutely continuous on T if and only if f̄ is absolutely continuous on

[a, b].

Theorem 1.2.8. A function f : T→ R is absolutely continuous on T if and only if

f is ∇-differentiable ∇ almost everywhere on T◦, f∇ ∈ L1
∇(T◦) and∫

(t,b]∩T
f∇(s)∇s = f(b)− f(t), ∀t ∈ T. (1.3)

Proposition 1.2.3. Let E be a Banach space and u : [a, b] → E an absolutely

continuous function. Then the measure of the set {t ∈ [a, b] : u(t) = 0 and u′(t) 6= 0}

is zero.

16



Proposition 1.2.4. Let g ∈ L1
∇(T◦) and G : T→ R the function defined by

G(t) :=

∫
[b,t)∩T

g(s)∇s. (1.4)

Then, G∇(t) = g(t) ∇ almost everywhere on T◦.

Proposition 1.2.5. Let u : T→ R be an absolutely continuous function. Then the

∇-measure of the set {t ∈ T◦ \ LT◦ : u(t) = 0 and u∇(t) 6= 0} is zero.

Definition 1.2.8. The function p is ν-regressive if

1− ν(t)p(t) 6= 0 for all t ∈ Tκ.

Define the ν-regressive class of functions on Tκ to be

Rν = {p : T→ R is Id− continuous and ν − regressive}.

Definition 1.2.9 (See [23]). For ε > 0, the (nabla) exponential function êε(·, t0) :

T→ R is defined as the unique solution to the initial value problem

x∇(t) = εx(t), x(t0) = 1.

More explicitly, the exponential function êε(·, t0) : T→ R is given by the formula

êε(t, t0) = exp

(∫ t

t0

ξ̂ε(ν(s))∇s
)
,

where for h ≥ 0 we define ξ̂ε(h) as

ξ̂ε(h) =

 ε if h = 0,

− log(1−hε)
h

otherwise,

where log is the principal logarithm function.

Theorem 1.2.9 (See [23]). Let p ∈ Rν and s, t, r ∈ T. Then

(1) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;

(2) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);
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(3) ê	p(t, s) = 1
êp(t,s)

;

(4) êp(t, s) = 1
êp(s,t)

= ê	p(s, t);

(5) êp(t, s)êp(s, r) = êp(t, r);

(6)
(

1
êp(t,s)

)∇
= −p(t)

êρp(t,s)
.

Definition 1.2.10. A function f : Tκ × Rn → Rn is called a ∇-Carathéodory

function if the three following conditions hold:

(i) the map t→ f(t, x) is ∇-measurable for every x ∈ Rn;

(ii) the map x→ f(t, x) is continuous ∇ a.e. t ∈ Tκ;

(iii) for every R > 0, there exists a function hR ∈ L1
∇(Tκ, [0,∞)) such that ‖f(t, x)‖ ≤

hR(t) ∇ a.e. t ∈ Tκ and for every x ∈ Rn such that ‖x‖ ≤ R.

We recall the notion of Sobolev’s space for functions defined on a bounded time

scale T.

Definition 1.2.11. We say that a function u : T → R belongs to W 1,1
∇ (T) if and

only if u ∈ L1
∇(T◦) and there exists a function g : Tκ → R such that g ∈ L1

∇(T◦)

and ∫
T◦
u(s)φ∇(s)∇s = −

∫
T◦
g(s)φ(σ(s))∇s for every φ ∈ C1

0,ld(T) (1.5)

with

C1
0,ld(T) := {f : T→ R; f ∈ C1

ld(T), f(a) = 0 = f(b)}. (1.6)

We say that a function f : T→ Rn is in the set W 1,1
∇ (T,Rn) if each of its components

fi are in W 1,1
∇ (T).
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1.3 Preliminaries on a local fractional derivative

We consider fractional derivatives in the conformable sense [43].

Definition 1.3.1 (Conformable fractional derivative [43]). Let α ∈ (0, 1) and f :

[0,∞) → R. The conformable fractional derivative of f of order α is defined by

Tα(f)(t) := limε→0
f(t+εt1−α)−f(t)

ε
for all t > 0. Often, we write f (α) instead of Tα(f)

to denote the conformable fractional derivative of f of order α. In addition, if the

conformable fractional derivative of f of order α exists, then we simply say that f is

α-differentiable. If f is α-differentiable in some t ∈ (0, a), a > 0, and limt→0+ f (α)(t)

exists, then we define f (α)(0) := limt→0+ f (α)(t).

Theorem 1.3.1 (See [43]). Let α ∈ (0, 1] and assume f, g to be α-differentiable.

Then,

1. Tα(af + bg) = aTα(f) + bTα(g) for all a, b ∈ R;

2. Tα(fg) = fTα(g) + gTα(f);

3. Tα (f/g) = (gTα(f)− fTα(g)) /g2.

If, in addition, f is differentiable at a point t > 0, then Tα(f)(t) = t1−α df
dt

(t).

Remark 1.3.1. From Theorem 1.3.1 it follows that if f ∈ C1, then one has

lim
α→1

Tα(f)(t) = f ′(t)

and

lim
α→0

Tα(f)(t) = tf ′(t). (1.7)

So Tα(f) is “conformable” in the sense it coincides with f ′ in the case α → 1

and satisfies similar properties to the integer-order calculus. Note that the property

limα→0 Tα(f) 6= f is not uncommon in fractional calculus, both for local and nonlocal

operators: see, e.g., the local fractional derivative of [40, 41], for which property

(1.7) also holds [7]; and the classical nonlocal Marchaud fractional derivative, which
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is zero when α → 0 [52]. Note, however, that we only have Tα(f)(t) = t1−αf ′(t) in

case f is differentiable. If one considers a function that is not differentiable at a

point t, then the conformable derivative is not t1−αf ′(t). For applications we refer

the reader to [28].

Example 1.3.1. Let α ∈ (0, 1]. Functions f(t) = tp, p ∈ R, g(t) ≡ λ, λ ∈ R,

h(t) = ect, c ∈ R, and β(t) = e
1
α
tα, are α-differentiable with conformable fractional

derivatives of order α given by

1. Tα(f)(t) = ptp−α;

2. Tα(g)(t) = 0;

3. Tα(h)(t) = ct1−αect;

4. Tα(β)(t) = e
1
α
tα.

Remark 1.3.2. Differentiability implies α-differentiability but the contrary is not

true: a nondifferentiable function can be α-differentiable. For a discussion of this

issue see [43].

Definition 1.3.2 (Conformable fractional integral [43]). Let α ∈ (0, 1) and f :

[a,∞)→ R. The conformable fractional integral of f of order α from a to t, denoted

by Iaα(f)(t), is defined by

Iaα(f)(t) :=

∫ t

a

f(τ)

τ 1−αdτ,

where the above integral is the usual improper Riemann integral.

Theorem 1.3.2 (See [43]). If f is a continuous function in the domain of Iaα, then

Tα (Iaα(f)) (t) = f(t) for all t ≥ a.

Notation 1.3.1. Let 0 < a < b. We denote by αJ
b
a[f ] the value of the integral∫ b

a
f(t)
t1−α

dt, that is, αJ
b
a[f ] := Iaα(f)(b).

Proposition 1.3.1. Assume f ∈ L1([a, b],R), 0 < a < b. Then
∣∣
αJ

b
a[f ]
∣∣ ≤ αJ

b
a[|f |].
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Proof. Let f ∈ L1([a, b],R). Then,

∣∣
αJ

b
a[f ]
∣∣ =

∣∣∣∣∫ b

a

f(t)

t1−α
dt

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣f(t)

t1−α

∣∣∣∣ dt =

∫ b

a

|f(t)|
t1−α

dt.

Therefore,
∣∣
αJ

b
a[f ]
∣∣ ≤ αJ

b
a[|f |] and the proposition is proved.

Notation 1.3.2. We denote by C(α)([a, b],R), 0 < a < b, α > 0, the set of all

real-valued functions f : [a, b] → R that are α-differentiable and for which the α-

derivative is continuous. We often abbreviate C(α)([a, b],R) by C(α)([a, b]).

The next lemma is a consequence of the conformable mean value theorem proved

in [43] by noting the discussion under Definition 2.1 in [1]. Note that r(b)− r(a) =

Iaα
(
r(α)
)

(b) follows from Lemma 2.8 in [1].

Lemma 1.3.1. Let r ∈ C(α)([a, b]), 0 < a < b, such that r(α)(t) < 0 on {t ∈ [a, b] : r(t) > 0}.

If r(a) ≤ 0, then r(t) ≤ 0 for every t ∈ [a, b].

Proof. Suppose the contrary. If there exists t ∈ [a, b] such that r(t) > 0, then

there exists t◦ ∈ [a, b] such that r(t◦) = maxa≤t≤b(r(t)) > 0 because r ∈ C(α)([a, b])

and r(t) > 0. There are two cases. (i) If t◦ > a, then there exists an interval [t1, t◦]

included in [a, t◦] such that r(t) > 0 for all t ∈ [t1, t◦]. It follows from the assumption

r(α)(t) < 0 for all t ∈ [t1, t◦] and Lemma 2.8 of [1] that I t1α
(
r(α)
)

(t◦) = r(t◦)−r(t1) <

0, which contradicts the fact that r(t◦) is a maximum. (ii) If t◦ = a, then r(t◦) > 0

is impossible from hypothesis.

Theorem 1.3.3. If g ∈ L1([a, b]), then function x : [a, b]→ R defined by

x(t) := e−
1
α( ta)

α
(
e

1
αx0 + αJ

t
a

[
g(s)

e−
1
α

( s
a

)α

])
(1.8)

is solution to problemx
(α)(t) + 1

aα
x(t) = g(t), t ∈ [a, b], a > 0,

x(a) = x0.
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Proof. Let x : [a, b] → R be the function defined by (1.8). We know from Theo-

rems 1.3.1 and 1.3.2 that

x(α)(t) = t1−α
(
− 1

α

(
1

a

)α
αtα−1

)
e−

1
α( ta)

α
(
e

1
αx0 + αJ

t
a

[
g(s)

e−
1
α

( s
a

)α

])
+ e−

1
α

( t
a

)α
(

g(t)

e−
1
α

( t
a

)α

)
= −

(
1

a

)α
e−

1
α

( t
a

)α
(
e

1
αx0 + αJ

t
a

[
g(s)

e−
1
α( sa)

α

])
+ g(t)

= −
(

1

a

)α
x(t) + g(t).

We just obtained that x(α)(t) +
(

1
a

)α
x(t) = g(t). On the other hand,

x(a) = e−
1
α

(a
a

)α
(
e

1
αx0 + αJ

a
a

[
g(s)

e−
1
α( sa)

α

])
= e−

1
α

(
e

1
αx0 + 0

)
= x0

and the proof is complete.

Theorem 1.3.3 is enough for our purposes. It should be mentioned, however,

that it can be generalized by benefiting from Lemma 2.8 in [1] with its higher-order

version [1, Proposition 2.9].

Theorem 1.3.4. If g ∈ L1([a, b]) and p(t) is continuous on [a, b], then the function

x : [a, b]→ R defined by

x(t) =
1

µ(t)
(x(a)µ(a) + Iaα(µg)(t)) (1.9)

is a solution to the linear conformable equation

x(α)(t) + p(t)x(t) = g(t), x(a) = x0, a > 0. (1.10)

Proof. Consider the integrating factor function µ(t) = eI
a
α(p)(t). Then, by means of

item (3) of Example 1.3.1 and the Chain Rule [1, Theorem 2.11], one can see that

µ(α)(t) = p(t)µ(t). Then, multiply (1.10) by function µ(t). By means of the product

rule (item (2) of Theorem 1.3.1), (1.10) turns to

(x(t)µ(t))(α) = µ(t)g(t). (1.11)

Apply Iaα to (1.11) and use Lemma 2.8 in [1] to conclude that (1.9) holds.
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Theorem 1.3.3 follows as a corollary from Theorem 1.3.4 by putting µ(t) = e
1
α

( t
a

)α

and p(t) = e
1
α .

Proposition 1.3.2. If x : (0,∞)→ R is α-differentiable at t ∈ [a, b], then |x(t)|(α) =

x(t)xα(t)
|x(t)| .

Proof. From Definition 1.3.1 we have

|x(t)|(α) = lim
ε→0

|x(t+ εt1−α)| − |x(t)|
ε

= lim
ε→0

x (t+ εt1−α)
2 − x(t)2

ε (|x (t+ εt1−α) |+ |x(t)|)

= lim
ε→0

[
x(t+ εt1−α)2 − x(t)2

ε
· 1

|x(t+ εt1−α)|+ |x(t)|

]
=
[
x(t)2

](α) 1

2|x(t)|

= 2x(t)x(α)(t)
1

2|x(t)|
,

which proves the intended relation.
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Chapter 2

Existence of solution to a

nonlinear first-order dynamic

equation on time scales

In this chapter we prove existence of solution to the following systems:x
∇(t) = f(t, x(t)), t ∈ Tk,

x(b) = x(a)

(2.1)

and x
∇(t) = f(t, x(ρ(t)), ∇ a.e. t ∈ Tk,

x ∈ (BC).

(2.2)

Here T is an arbitrary bounded time scale, where we denote a := minT, b := maxT,

T◦ = T \ {a}, and in (2.2) f : T◦ × Rn → Rn is a ∇-Carathéodory (resp. in (2.1) is

a continuous) function and (BC) denotes one of the following boundary conditions:

x(b) = x0 (2.3)

or

x(b) = x(a). (2.4)

The original results of this chapter are published in [12].
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2.1 Main Result

2.1.1 Existence of solution to the system (2.1).

In this section we prove existence of solution to problem (2.1). A solution of this

problem is a function x ∈ C1
ld(T,Rn) satisfying (2.1). Let us recall that T is bounded

with a = minT and b = maxT.

Proposition 2.1.1. If g ∈ C1
ld(T,Rn), then the function x : T→ Rn defined by

x(t) = ê1(t, b)

[
ê1(a, b)

ê1(a, b)− 1

∫
(a,b]∩T

g(s)

ê1(ρ(s), b)
∇s−

∫
(t,b]∩T

g(s)

ê1(ρ(s), b)
∇s
]

is solution to the problem

x∇(t)− x(t) = g(t), t ∈ Tκ,

x(a) = x(b).
(2.5)

Proof. We check (2.5) for each pair (xi, gi), i ∈ {1, 2, . . . , n}, by direct calculation.

To simplify notation, we omit the indices i and we write

k =
ê1(a, b)

ê1(a, b)− 1

∫
(a,b]∩T

g(s)

ê1(ρ(s), b)
∇s.

From Theorem 1.2.2, we have that

x∇(t)− x(t)

= ê1(t, b)k − ê1(t, b)

∫
(a,b]∩T

g(s)

ê1(ρ(s), b)
∇s

+ ê1(ρ(t), b)
g(t)

ê1(ρ(t), b)
− ê1(t, b)k + ê1(t, b)

∫
(a,b]∩T

g(s)

ê1(ρ(s), b)
∇s

= g(t)

for all t ∈ Tκ. It is easy to verify that x(a) = x(b).

Lemma 2.1.1. Let r ∈ C1
ld(T,Rn) be a function such that r∇(t) < 0 for all t ∈ {t ∈

Tκ; r(t) > 0}. If r(b) ≥ r(a), then r(t) ≤ 0 for all t ∈ T.
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Proof. Suppose that there exists a t ∈ T such that r(t) > 0. Then there exists a

t0 ∈ T such that r(t0) = maxt∈T(r(t) > 0). If ρ(t0) < t0, then

r∇(t0) =
r(ρ(t0))− r(t0)

ρ(t0)− t0
≥ 0,

which contradicts the hypothesis. If t0 > a and t0 = ρ(t0), then there exists an

interval [t1, t0] such that r(t) > 0 for all t ∈ [t1, t0]. Thus∫ t0

t1

r∇(s)∇s = r(t0)− r(t1) < 0,

which contradicts the maximality of r(t0). Finally, if t0 = a, then by hypothesis

r(b) ≥ r(a) gives r(a) = r(b). Taking t0 = b, one can check that r(b) ≤ 0 by using

previous steps of the proof. The lemma is proved.

We introduce the notion of tube solution for problem (2.1) as follows.

Definition 2.1.1. Let (v,M) ∈ C1
ld(T,Rn) × C1

ld(T, [0,+∞[). We say that (v,M)

is a tube solution of (2.1) if

1. 〈x− v(t), f(t, x(t))− v∇(t)〉+M(t)‖x− v(t)‖ ≤M(t)M∇(t) for every t ∈ Tκ
and for every x ∈ Rn such that ‖x− v(t)‖ = M(t);

2. v∇(t) = f(t, v(t)) and ‖x − v(t)‖ − M∇(t) < 0 for every t ∈ Tκ such that

M(t) = 0;

3. ‖v(a)− v(b)‖ ≤M(a)−M(b).

Let T(v,M) := {x ∈ C1
ld(T,Rn) : ‖x(t) − v(t)‖ ≤ M(t) for every t ∈ T}. We

consider the following problem:

x∇(t)− x(t) = f(t, x̂(t))− x̂(t), t ∈ Tκ,

x(a) = x(b),
(2.6)

where

x̂(t) =


M(t)

‖x(t)−v(t)‖(x(t)− v(t)) + v(t) if ‖x(t)− v(t)‖ > M(t),

x(t) otherwise.
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Let us define the operator Tp̂ : C(T,Rn)→ C(T,Rn) by

Tp̂(x)(t) = ê1(t, b)

[
ê1(a, b)

ê1(a, b)− 1

∫
(a,b]∩T

f(s, x̂(s))− x̂(s)

ê1(ρ(s), b)
∇s

−
∫

(t,b]∩T

f(s, x̂(s))− x̂(s)

ê1(ρ(s), b)
∇s
]
.

Proposition 2.1.2. If (v,M) ∈ C1
ld(T,Rn) × C1

ld(T, [0,+∞[) is a tube solution of

(2.1), then Tp̂ : C(T,Rn)→ C(T,Rn) is compact.

Proof. We first prove the continuity of the operator Tp̂. Let {xn}n∈N be a sequence

of C(T,Rn) converging to x ∈ C(T,Rn). By proposition 1.2.1,

‖Tp̂(xn)(t)−Tp̂(x)(t)‖

≤ (1 + c)‖ê1(t, b)‖
∥∥∥∥∫

(a,b]∩T

f(s, x̂n(s))− f(s, x̂(s))− (x̂n(s)− x̂(s))

ê1(ρ(s), b)
∇s
∥∥∥∥

≤ k(1 + c)

M

(∫
(a,b]∩T

‖f(s, x̂n(s))− f(s, x̂(s))‖+ ‖x̂n(s)− x̂(s)‖∇s
)
,

where k := maxt∈T |ê1(t, b)|, M := mint∈T(ê1(t, b)), and c := ‖ ê1(a,b)
ê1(a,b)−1

‖. Since there

is a constant R > 0 such that ‖x̂‖C(T,Rn) < R, there exists an index N such that

‖x̂n‖C(T,Rn) < R for all n > N . Thus f is uniformly continuous on Tκ × BR(0).

Therefore, for ε > 0 given, there is a δ > 0 such that for all x, y ∈ Rn, where

‖x− y‖ < δ <
εM

2k(1 + c)(b− a)
,

one has

‖f(s, y)− f(s, x)‖ < εM

2k(1 + c)(b− a)
.

By assumption, for all s ∈ Tκ it is possible to find an index N̂ > N such that

‖x̂n − x̂‖C(T,Rn) < δ for n > N̂ . In this case,

‖Tp̂(xn)(t)−Tp̂(x)(t)‖ ≤ 2k(1 + c)

M

∫
[a,b)∩T

εM

2k(1 + c)(b− a)
∇s ≤ ε.

This proves the continuity of Tp̂. We now show that the set Tp̂(C(T,Rn)) is rel-

atively compact. Consider a sequence {yn}n∈N of Tp̂(C(T,Rn)) for all n ∈ N. It

exists xn ∈ C(T,Rn) such that yn = Tp̂(xn). From Proposition 1.2.1 one has

‖Tp̂(xn)(t)‖ ≤ k(1 + c)

M

(∫
[a,b)∩T

‖f(s, x̂n(s))‖∇s+

∫
[a,b)∩T

‖x̂n(s)‖∇s
)
.
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By definition, there is an R > 0 such that ‖x̂n(s)‖ ≤ R for all s ∈ T and all n ∈ N.

Function f is compact on Tκ × BR(0) and we deduce the existence of a constant

A > 0 such that ‖f(s, x̂n(s)‖ ≤ A for all s ∈ Tκ and all n ∈ N. The sequence

{yn}n ∈ N is uniformly bounded. Note also that

‖Tp̂(xn)(t2)−Tp̂(xn)(t1)‖ ≤ B‖ê1(t2, b)− ê1(t1, b)‖

+ k

∥∥∥∥∫
(a,b]∩T

f(s, x̂n(s))− x̂n(s)

ê1(ρ(s), b)
∇s
∥∥∥∥ < B‖ê1(t2, b)− ê1(t1, b)‖+

k(A+R)

M
|t2 − t1|

for t1, t2 ∈ T, where B is a constant that can be chosen such that it is higher than

sup
n∈N

∥∥∥∥ ê1(a, b)

ê1(a, b)− 1

∫
(a,b]∩T

f(s, x̂n(s))− x̂n(s)

ê1(ρ(s), b)
∇s+

∫
(t,b]∩T

f(s, x̂n(s))− x̂n(s)

ê1(ρ(s), b)
∇s
∥∥∥∥ .

This proves that the sequence {yn}n∈N is equicontinuous. It follows from the Arzelà–

Ascoli theorem, adapted to our context, that Tp̂(C(T,Rn)) is relatively compact.

Hence Tp̂ is compact.

Theorem 2.1.1. If (v,M) ∈ C1
ld(T, [0,+∞[)×C1

ld(T,Rn) is a tube solution of (2.1),

then problem (2.1) has a solution x ∈ C1
ld(T,Rn) ∩T(v,M).

Proof. By Proposition 2.1.2, Tp̂ is compact. It has a fixed point by Schauder’s

fixed point theorem. Proposition 2.1.1 implies that this fixed point is a solution to

problem (2.6). Then it suffices to show that for every solution x of (2.6) one has

x ∈ T(v,M). Consider the set A = {t ∈ Tκ : ‖x(t)− v(t)‖ > M(t)}. If t ∈ A is left

dense, then by virtue of Example 1.2.1 we have

(‖ x(t)− v(t) ‖ −M(t))∇ =
〈x(t)− v(t), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t).

If t ∈ A is left scattered, then

(‖x(t)−v(t)‖ −M(t))∇ = ‖x(t)− v(t)‖∇ −M∇(t)

=
‖x(t)− v(t)‖2 − ‖x(t)− v(t)‖‖x(ρ(t))− v(ρ(t))‖

ν(t)‖x(t)− v(t)‖
−M∇(t)

≤ 〈x(t)− v(t), x(t)− v(t)− x(ρ(t)) + v(ρ(t))〉
ν(t)‖x(t)− v(t)‖

−M∇(t)

=
〈x(t)− v(t), [f(t, x̂(t))− x̂(t) + x(t)]− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t).
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We will show that if t ∈ A, then (‖x(t)− v(t)‖ −M(t))∇ < 0. If t ∈ A and

M(t) > 0, then

(‖x(t)−v(t)‖ −M(t))∇ = ‖x(t)− v(t)‖∇ −M∇(t)

=
‖x(t)− v(t)‖2 − ‖x(t)− v(t)‖‖x(ρ(t))− v(ρ(t))‖

ν(t)‖x(t)− v(t)‖
−M∇(t)

≤ 〈x(t)− v(t), x(t)− v(t)− x(ρ(t)) + v(ρ(t))〉
ν(t)‖x(t)− v(t)‖

−M∇(t)

=
〈x(t)− v(t), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t)

=
〈x(t)− v(t), f(t, x̂(t))− v∇(t)〉

‖x(t)− v(t)‖
+
〈x(t)− v(t),−x̂(t) + x(t)〉

‖x(t)− v(t)‖
−M∇(t)

=
〈x̂∇(t)− v(t), f(t, x̂(t))− v∇(t)〉

M(t)
−M(t) + ‖x(t)− v(t)‖ −M∇(t)

≤ M(t)M∇(t)−M(t)‖x(t)− v(t)‖
M(t)

−M(t) + ‖x(t)− v(t)‖ −M∇(t)

= −M(t) < 0.

In addition, if M(t) = 0, then

(‖x(t)−v(t)‖ −M(t))∇ =
〈x(t)− v(t), f(t, x̂(t)) + [x(t)− x̂(t)]− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t)

≤ 〈x(t)− v(t), f(t, v(t))− v∇(t)〉
‖x(t)− v(t)‖

+ ‖x(t)− v(t)‖ −M∇(t) < 0.

If we set r(t) := ‖x(t)−v(t)‖−M(t), then r∇(t) < 0 for every t ∈ {t ∈ Tκ, r(t) > 0}.

Moreover, since (v,M) is a tube solution of (2.1), one has

r(a)− r(b) ≤ ‖v(a)− v(b)‖ − (M(a)−M(b)) ≤ 0

and thus the hypotheses of Lemma 2.1.1 are satisfied, which proves the theorem.

Example 2.1.1. Consider the following boundary value problem on time scales:

x∇(t) = a1‖x(t)‖2x(t)− a2x(t) + a3ϕ(t), t ∈ Tκ,

x(a) = x(b),
(2.7)

where a1, a2, a3 ≥ 0 are nonnegative real constants chosen such that a2 ≥ a1 +a3 +1

and ϕ : Tκ → Rn is a continuous function satisfying ‖ϕ(t)‖ = 1 for every t ∈ Tκ. It

29



is easy to check that (v,M) ≡ (0, 1) is a tube solution. By Theorem 2.1.1, problem

(2.7) has a solution x such that ‖x(t)‖ ≤ 1 for every t ∈ T.

In the following section we prove existence of solution to problem (2.2).

2.1.2 Existence of solution to the system (2.2)

We introduce the notion of tube solution for system (2.2).

Definition 2.1.2. Let (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)). We say that (v,M)

is a tube solution of (2.2) if

(i) 〈x − v(ρ(t)), f(t, x) − v∇(t)〉 ≤ M(t)M∇(t) ∇ a.e. t ∈ T◦ and for all x ∈ Rn

such that ‖x− v(ρ(t))‖ = M(ρ(t));

(ii) v∇(t) = f(t, v(ρ(t))) ∇ a.e. t ∈ T◦ such that M(ρ(t)) = 0;

(iii) M(t) = 0 for all t ∈ T◦ such that M(ρ(t)) = 0;

(iv) if (BC) denotes (2.3), then ‖x0 − v(a)‖ ≤ M(b); if (BC) denotes (2.4), then

‖v(b)− v(a)‖ ≤M(b)−M(a).

We denote

T(v,M) = {x ∈ W 1,1
∇ (T,Rn) : ‖x(t)− v(t)‖ ≤M(t),∀t ∈ T}. (2.8)

If T is a real interval [a, b], then our definition of tube solution is equivalent to the

notion of tube solution introduced in [46]. We consider the following problem:x
∇(t) + x(ρ(t)) = f(t, x̄(ρ(t))) + x̄(ρ(t)),∇ a.e. t ∈ Tκ,

x ∈ (BC),

(2.9)

where

x̄(s) =


M(s)
‖x−v(s)‖(x− v(s)) + v(s) if ‖x− v(s)‖ > M(s)

x(s) otherwise.

(2.10)
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Lemma 2.1.2. Assume r ∈ W 1,1
∇ (T) such that r∇(t) > 0 ∇ a.e. t ∈ {t ∈ T :

r(ρ(t)) > 0}. If one of the following conditions holds,

(i) r(b) ≤ 0;

(ii) r(b) ≤ r(a);

then r(t) ≤ 0 for every t ∈ T.

Proof. Suppose the conclusion is false. Then, there exists t0 ∈ T such that r(t0) =

maxt∈T{r(t)} > 0, since r is continuous on T. If t0 < σ(t0), then r∇(σ(t0)) exists,

since µ∇(σ(t0)) = σ(t0)− t0 > 0 and because r ∈ W 1,1
∇ (T). Thus

r∇(σ(t0)) =
r(σ(t0))− r(ρ(σ(t0)))

σ(t0)− ρ(σ(t0))
=
r(σ(t0))− r(t0)

σ(t0)− t0
≤ 0, (2.11)

which is a contradiction since r(ρ(σ(t0))) = r(t0) > 0. If t0 = σ(t0) < b, then there

exists an interval [σ(t0), t1] such that r(ρ(t)) > 0 for every t ∈ [σ(t0), t1]T. Therefore,

0 > r(t1) − r(σ(t0)) =
∫

[σ(t0),t1]T
r∇(s)∇s > 0 by hypothesis and by Theorem 1.2.8.

Hence, we get a contradiction. The case t0 = b is impossible if hypothesis (i) holds

and if r(b) ≤ r(a), then we must have r(a) = r(b). If we take t0 = a, by using

previous steps of this proof, one can check that r(a) ≤ 0 and, then, the lemma is

proved.

Lemma 2.1.3. Let r ∈ W 1,1
∇ (T) be a function such that r∇(t) < 0 ∇ a.e. t ∈ {t ∈

Tκ : r(t) > 0} if r(b) ≥ r(a). Then r(t) ≤ 0 for all t ∈ T.

Proof. Suppose the conclusion is false. Then, there exists t0 ∈ T such that r(t0) =

maxt∈T{r(t)} > 0, since r is continuous on T. If t0 < b and ρ(t0) < t0, then r∇(σ(t0))

exists, since µ∇(t0) = t0 − ρ(t0) > 0 and because r ∈ W 1,1
∇ (T). Then

r∇(t0) =
r(t0)− r(ρ(t0))

t0 − ρ(t0)
≥ 0, (2.12)

which contradicts the hypothesis of the lemma, t0 > 0 and t0 = ρ(t0). There exists

an interval [t1, t0) such that r(t) > 0 for all t ∈ [t1, t0)T. Then

0 >

∫
[t1,t0)T

r∇(s)∇s = r(t0)− r(t1) (2.13)
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by Theorem 1.2.8, which contradicts the fact that r(t0) is a maximum. If t0 = a,

then by hypothesis, we must have r(a) = r(b). Thus, we can take t0 = b, and by

using the previous steps of this proof, one can check that r(b) ≤ 0.

Proposition 2.1.3. If g ∈ L1
∇(T,Rn), then the function x : T→ Rn defined by

x(t) =
1

ê1(t, b)

[
1

1− ê1(a, b)

∫
(a,b]T

g(s)ê1(s, b)∇s−
∫

(t,b]T

g(s)ê1(s, b)∇s
]

(2.14)

is a solution of the problemx
∇(t) + x(ρ(t)) = g(t), ∇ a.e. t ∈ Tk,

x(a) = x(b).

(2.15)

Proof. Assume that

K =
1

1− ê1(a, b)

∫
(a,b]T

g(s)ê1(s, b)∇s

and

x(t) =
1

ê1(t, b)

K − ∫
(t,b]T

g(s)ê1 (s, b)∇s

 .

Then

x∇(t) + x(ρ(t))

=

(
1

ê1(t, b)

)∇(
K −

∫
(t,b]T

g(s)ê1(s, b)∇s

)
+

1

ê1(ρ(t), b)

(
g(t)ê1(t, b)

)
+

1

ê1(ρ(t), b)

(
K −

∫
(ρ(t),b]T

g(s)ê1(s, b)∇s
)

=
−1

ê1 (ρ(t), b)

(
K −

∫
(t,b]T

g(s)ê1(s, b)∇s

)
+

g(t)

1− ν(t)
+

1

(1− ν(t))ê1(t, b)
(−ν(t)g(t)ê1(t, b))

+
1

ê1 (ρ(t), b)

(
K −

∫
(t,b]T

g(s)ê1(s, b)∇s

)
= g(t).
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Now, for the second condition, we have

x(a) =
1

ê1 (a, b)

[
1

1− ê1(a, b)

∫
(a,b]T

g(s)ê1(s, b)∇s−
∫

(a,b]T

g(s)ê1(s, b)∇s
]

=
1

ê1(a, b)

(
1

1− ê1(a, b)
− 1

)∫
(a,b]T

g(s)ê1(s, b)∇s

=
1

1− ê1(a, b)

∫
(a,b]T

g(s)ê1(s, b)∇s

= x(b).

Proposition 2.1.4. If g ∈ L1
∇(T,Rn), then the function x : T→ Rn defined by

x(t) =
1

ê1(t, b)

[
x0 −

∫
(t,b]T

g(s)ê1(s, b)∇s
]

(2.16)

is a solution of the problem

x
∇(t) + x(ρ(t)) = g(t) ∇ a.e. t ∈ Tk,

x(b) = x0.

(2.17)

Proof. Let x(t) = 1
ê1(t,b)

[
x0 −

∫
(t,b]T

g(s)ê1(s, b)∇s
]
. We calculate x

∇
(t). Then we
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obtain

x
∇

(t) + x (ρ(t))

=

(
1

ê1(t, b)

)∇(
x0 −

∫
(t,b]T

g(s)ê1(s, b)∇s
)

+
1

ê1(ρ(t), b)
(ê1(t, b)g(t)) +

1

ê1 (ρ(t), b)

(
x0 −

∫
(ρ(t),b]T

g(s)ê1(s, b)∇s

)

=
−1

ê(ρ(t), b)

(
x0 −

∫
(t,b]T

g(s)ê1(s, b)∇s
)

+
1

ê1 (ρ(t), b)
ê1(t, b)g(t) +

1

ê1(ρ(t), b)

(
x0 −

∫
(ρ(t),t]T

g(s)ê1(s, b)∇s−
∫

(t,b]T

g(s)ê1(s, b)∇s

)

=
−1

ê(ρ(t), b)

(
x0 −

∫
(t,b]T

g(s)ê1(s, b)∇s
)

+
1

(1− ν(t))ê(t, b)
g(t)ê1(t, b) +

1

ê(ρ(t), b)

(
x0 −

∫
(ρ(t),t)T

g(s)ê1(s, b)∇s−
∫

(t,b]T

g(s)ê1(s, b)∇s

)
=

1

(1− ν(t))ê(t, b)
g(t)ê1(t, b) +

1

(1− ν(t))ê(t, b)
(−ν(t)g(t)ê1(t, b))

= g(t).

For the second condition, we have

x(b) = ê1 (b, b)

(
x0 −

∫
(b,b]T

g(s)ê1(s, b)∇s
)

= x0.

Let us define the operator T1 : C(T,Rn)→ C(T,Rn) by

T1(x)(t) = ê1(t, b)

[
x0 −

∫
(t,b]∩T

ê1(s, b) (f (s, x̄ (ρ(s))) + x̄ (ρ(s)))∇s
]
. (2.18)

Proposition 2.1.5. If (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)) is a tube solution of

(2.2), (2.3), then T1 : C(T,Rn)→ C(T,Rn) is compact.

Proof. We first observe that from Definitions 1.2.10 and 2.1.2 there exists a function

h ∈ L1
∇(Tκ, [0,∞)) such that ‖f(t, x̄(ρ(t))) + x̄(ρ(t))‖ ≤ h(t) ∇ a.e. t ∈ Tκ for all

x ∈ C(T,Rn). Let (xn)n∈N ⊂ C(T,Rn) be a sequence of C(T,Rn) converging to
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x ∈ C(T,Rn). By Proposition 1.2.1,

∥∥T1(xn(t))− T1(x(t))
∥∥

=
∥∥ê1(t, b)

[
x0 −

∫
(t,b]∩T

ê1(s, b)(f(s, x̄n(ρ(s))) + x̄n(ρ(s)))∇s
]

− ê1(t, b)
[
x0 −

∫
(t,b]∩T

ê1(s, b)(f(s, x̄(ρ(s))) + x̄(ρ(s)))∇s
]∥∥

=
∥∥ê1(t, b)

∫
(t,b]∩T

ê1(s, b)[(f(s, x̄n(ρ(s))) + x̄n(ρ(s)))− (f(s, x̄(ρ(s))) + x̄(ρ(s)))]∇s
∥∥

≤ K
[ ∫

(t,b]∩T
‖(f(s, x̄n(ρ(s))) + x̄n(ρ(s))− (f(s, x̄(ρ(s))) + x̄(ρ(s))‖∇s

]
,

where K := maxt,t1∈T |ê2
1(t1, t)|. Then, we must show that the sequence (gn)n∈N

defined by

gn(s) =
[
f(s, x̄n(ρ(s))) + x̄n(ρ(s))

]
(2.19)

converges to the function g in L1
∇(T,Rn) where

g(s) = f(s, x̄(ρ(s))) + x̄(ρ(s)). (2.20)

We can easily check that x̄n(t) → x̄(t) for every t ∈ T and, then, by item (iii) in

Definition 1.2.10, gn(s) → g(s), ∇ a.e., s ∈ T. Using also the fact that ‖gn(s)‖ ≤

h(s), ∇ a.e., s ∈ T, we deduce that gn → g in L1
∇(T,Rn). This proves the continuity

of T1.

For the second part of the proof, we have to show that the set T1(C(T,Rn)) is

relatively compact. Let y = T1(x) ∈ T1(T,Rn). Therefore,

‖T1(x)(t)‖ ≤ K

(
‖x0‖+

∥∥∥∥∫
(t,b]∩T

ê1(s, b) (f (s, x̄ (ρ(s))) + x̄ (ρ(s)))∇s
∥∥∥∥)

≤ K
(
‖x0‖+ ‖h‖L1

∇(T)

)
.

(2.21)

So, T1(C(T,Rn)) is uniformly bounded. This set is also equicontinuous since for
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every t1, t2 ∈ T,∥∥T(x)(t2)− T(x)(t1)
∥∥

=
∥∥∥ê1(t2, b)[x0 −

∫
(t2,b]∩T

ê1(s, b)
(
f(s, x̄(ρ(s))) + x̄(ρ(s))

)
∇s]

− ê1(t1, b)[x0 −
∫

(t1,b]∩T
ê1(s, b)

(
f(s, x̄(ρ(s))) + x̄(ρ(s))

)
∇s]
∥∥∥

≤ ‖[ê1(t2, b)− ê1(t1, b)]x0‖+ ‖ê1(t2, b)

∫
(t2,b]∩T

ê1(s, b)
(
f(s, x̄(ρ(s))) + x̄(ρ(s))

)
∇s

− ê1(t1, b)

∫
(t1,b]∩T

ê1(s, b)(f(s, x̄(ρ(s))) + x̄(ρ(s)))∇s‖

≤ ‖x0‖‖ê1(t2, t1)‖+M‖
∫

(t1,t2)

(
f(s, x̄(ρ(s))) + x̄(ρ(s))

)
∇s‖

≤ ‖x0‖‖ê1(t2, t1)‖+M

∫
(t2,t1)

h(s)∇s

where M = maxt∈T{ê1(t, b)}. By an analogous version of the Arzelà-Ascoli Theorem

adapted to our context, T1(C(T,Rn)) is relatively compact. Hence, T1 is compact.

We now define the operator T2 : C(T,Rn)→ C(T,Rn) by

T2(x)(t) =
1

ê1(t, b)

[
1

ê1(a, b)− 1

∫
(a,b]T

g(s)ê1(s, b)∇s+

∫
(t,b]T

g(s)ê1(s, b)∇s
]
.

Proposition 2.1.6. If (v,M) ∈ W 1,1
∇ (T,Rn)×W 1,1

∇ (T, [0,∞)) is a tube solution of

(2.2), (2.4), then T2 : C(T,Rn)→ C(T,Rn) is compact.

Theorem 2.1.2. If (v,M) ∈ W 1,1
∇ (T,Rn) × W 1,1

∇ (T, [0,∞)) is a tube solution of

(2.2), then problem (2.2) has a solution x ∈ W 1,1
∇ (T,Rn) ∩T(v,M).

Proof. By Proposition 2.1.5 (resp. Proposition 2.1.6) T1 (resp. T2) is compact. It

has a fixed point by the Schauder fixed-point theorem. Proposition 2.1.3 (resp.,

Proposition 2.1.4) implies that this fixed point is a solution for the system (2.9).

Then, it suffices to show that for every solution x of (2.2), x ∈ T(v,M). Consider

the set A = {t ∈ Tκ : ‖x(ρ(t))− v(ρ(t))‖ > M(ρ(t))}. By Example 1.2.1 ∇ a.e. on
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the set Ã = {t ∈ A : t = ρ(t)}, we have

(‖x(t)− v(t)‖ −M(t))∇ =
〈x(t)− v(t), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), x∇(t)− v∇(t)〉

‖x(t)− v(t)‖
−M∇(t).

If t ∈ A is left scattered, then µ∇{t} > 0 and

(‖x(t)− v(t)‖ −M(t))∇

=
‖x(t)− v(t)‖ − ‖x(ρ(t))− v(ρ(t))‖

ν(t)
−M∇(t)

=
‖x(t)− v(t)‖‖x(ρ(t))− v(ρ(t))‖ − ‖x(ρ(t))− v(ρ(t))‖2

ν(t)‖x(ρ(t))− v(ρ(t))‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), x(t)− v(t)〉 − 〈x(ρ(t))− v(ρ(t)), x(ρ(t))− v(ρ(t))〉

ν(t)x(ρ(t))− v(ρ(t))
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)),

(
x(t)− x(ρ(t))

)
−
(
v(t)− v(ρ(t))

)
〉

ν(t)‖x(ρ(t))− v(ρ(t)‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), x∇(t)− v∇(t)〉(

x(ρ(t))− v(ρ(t))
) −M∇(t).

Therefore, since (v,M) is a tube solution of (2.2), we have ∇ a.e. t ∈ {t ∈ A :

M(ρ(t)) > 0} that

(‖x(t)− v(t)‖ −M(t))∇

≤ 〈x(ρ(t))− v(ρ(t)), f(t, x̄(ρ(t))) + x̄(ρ(t))− x(ρ(t))− v∇(t)〉
‖x(ρ(t))− v(ρ(t)‖

−M∇(t)

=
〈x̄(ρ(t))− v(ρ(t)), f(t, x̄(ρ(t)))− v∇(t)〉

M(ρ(t))
+
(
M(ρ(t))− ‖x(ρ(t))− v(ρ(t)‖

)
−M∇(t)

<
M(ρ(t))M∇(t)

M(ρ(t))
−M∇(t) = 0.
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On the other hand, we have ∇ a.e. on {t ∈ A : M(ρ(t)) = 0} that

(‖x(t)− v(t)‖ −M(t))∇

=
〈x(ρ(t))− v(ρ(t)), f (t, x̄ (ρ(t)))− x̄ (ρ(t))− x(ρ(t))− v∇(t)〉

‖x(ρ(t))− v(ρ(t))‖
−M∇(t)

=
〈x(ρ(t))− v(ρ(t)), f(t, x̄(ρ(t)))− v∇(t)〉

‖x(ρ(t))− v(ρ(t)‖
+
〈x(ρ(t))− v(ρ(t)), x̄(ρ(t))− x(ρ(t))〉

‖x(ρ(t))− v(ρ(t)‖
−M∇(t)

<
〈x(ρ(t))− v(ρ(t)), f(t, v(ρ(t)))− v∇(t)〉

‖x(ρ(t))− v(ρ(t)‖
−M∇(t)

= −‖x(ρ(t))− v(ρ(t)‖ −M∇(t)

< −M∇(t) = 0.

This last equality follows from item (iii) of Definition 2.1.2 and Proposition 1.2.3. If

we set r(t) = ‖x(t)− v(t)‖ −M(t), then r∇(t) < 0 ∇ a.e. t ∈ {t ∈ Tκ, r(ρ(t)) > 0}.

Moreover, since (v,M) is a tube solution of (2.2) and x satisfies (2.3) (resp. x

satisfies (2.4)), then r(b) ≤ 0 (resp. r(b)− r(a) ≤ x(b)− v(a)−M(a)−M(b) ≤ 0.

Lemma 2.1.2(resp.lemma 2.1.3) implies that A = ∅. Therefore, x ∈ T(v,M) and,

hence, the theorem is proved.
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Chapter 3

Existence of solution to a local

fractional differential equation

We prove existence of solution to a local fractional nonlinear differential equation

with initial condition:x
(α)(t) = f(t, x(t)), t ∈ [a, b], a > 0,

x(a) = x0,

(3.1)

where f : [a, b] × R → R is a continuous function, x(α)(t) denotes the conformable

fractional derivative of x at t of order α, α ∈ (0, 1). For that we introduce the notion

of tube solution. The original results of this chapter are published in [14].

3.1 Main Result

We begin by introducing the notion of tube solution to problem (3.1).

Definition 3.1.1. Let (v,M) ∈ C(α)([a, b],R) × C(α)([a, b], [0,∞)). We say that

(v,M) is a tube solution to problem (3.1) if

(i) (y − v(t))
(
f(t, y)− v(α)

)
≤ M(t)M (α)(t) for every t ∈ [a, b] and every y ∈ R

such that |y − v(t)| = M(t);

39



(ii) v(α)(t) = f(t, v(t)) and M (α)(t) = 0 for all t ∈ [a, b] such that M(t) = 0;

(iii) |x0 − v(a)| ≤M(a).

Notation 3.1.1. We introduce the following notation:

T(v,M) :=
{
x ∈ C(α)([a, b],R) : |x(t)− v(t)| ≤M(t), t ∈ [a, b]

}
.

Consider the following problem:x
(α)(t) + 1

aα
x(t) = f(t, x̃(t)) + 1

aα
x̃(t), t ∈ [a, b], a > 0,

x(a) = x0,

(3.2)

where

x̃(t) :=


M(t)

|x(t)−v(t)|(x(t)− v(t)) + v(t) if |x(t)− v(t)| > M(t),

x(t) otherwise.

(3.3)

Let us define the operator N : C([a, b])→ C([a, b]) by

N(x)(t) := e−
1
α

( t
a

)α
(
e

1
αx0 + αJ

t
a

[
f(s, x̃(s)) + 1

aα
x̃(s)

e−
1
α

( s
a

)α

])
.

In the proof of Proposition 3.1.1, we use the concept of compact function. Compact

operators occur in many problems of classical analysis. Note that operator N is

nonlinear because f is nonlinear. In the nonlinear case, the first comprehensive

research on compact operators was due to Schauder [36, p. 137]. In this context,

the Arzelà–Ascoli theorem asserts that a subset is relatively compact if and only if

it is bounded and equicontinuous [36, p. 607].

Proposition 3.1.1. If (v,M) ∈ C(α)([a, b],R)×C(α)([a, b], [0,∞)) is a tube solution

to (3.1), then N : C([a, b])→ C([a, b]) is compact.

Proof. Let {xn}n∈N be a sequence of C([a, b],R) converging to x ∈ C([a, b],R). By
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Proposition 1.3.1,

|N(xn(t))−N(x(t))| =

∣∣∣∣∣e− 1
α

( t
a

)α
(
e

1
αx0 + αJ

t
a

[
f(s, x̃n(s)) + 1

aα
x̃n(s)

e−
1
α

( s
a

)α

])

− e−
1
α( ta)

α
(
e

1
αx0 + αJ

t
a

[
f(s, x̃(s)) + 1

aα
x̃(s)

e−
1
α( sa)

α

]) ∣∣∣∣∣
≤ K

C
αJ

t
a

[∣∣∣∣(f(s, x̃n(s)) +
1

aα
x̃n(s)

)
−
(
f(s, x̃(s)) +

1

aα
x̃(s)

)∣∣∣∣]
≤ K

C

(
αJ

t
a [|f(s, x̃n(s))− f(s, x̃(s))|] +

1

aα
αJ

t
a [|x̃n(s)− x̃(s)|]

)
,

where K := maxa≤s≤b{e−
1
α

( s
a

)α} and C := mina≤s≤b{e−
1
α

( s
a

)α}. We need to show

that the sequence {gn}n∈N defined by gn(s) := f(s, x̃n(s)) + 1
aα
x̃n(s) converges in

C([a, b]) to function g(s) = f(s, x̃(s)) + 1
aα
x̃(s). Since there is a constant R > 0

such that ‖x̃‖C([a,b],R) < R, there exists an index N such that ‖x̃n‖C([a,b],R) ≤ R for

all n > N . Thus, f is uniformly continuous on [a, b] × BR(0). Therefore, for ε > 0

given, there is a δ > 0 such that

|y − x| < δ <
Cεαaα

2K(bα − aα)

for all x, y ∈ R;

|f(s, y)− f(s, x)| < Cεα

2K(bα − aα)

for all s ∈ [a, b]. By assumption, one can find an index N̂ > N such that ‖x̃n −

x̃‖C([a,b],R) < δ for n > N̂ . In this case,

|N(xn)(t)−N(x)(t)| < K

C

(
αJ

b
a

[
Cεα

2k(bα − aα)

]
+

1

aα
αJ

b
a

[
Cεαaα

2k(bα − aα)

])
=

2KCεα

2kC(bα − aα)
αJ

b
a[1]

=
εα

bα − aα
bα − aα

α

= ε.

This proves the continuity of N. We now show that the set N(C([a, b])) is relatively

compact. Consider a sequence {yn}n∈N of N(C([a, b])) for all n ∈ N. It exists
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xn ∈ C([a, b]) such that yn = N(xn). Observe that from Proposition 1.3.1 we have

|N(xn)(t)| =
∣∣∣∣e− 1

α
( t
a

)α
(
e

1
αx0 + αJ

t
a

[
f(s, x̃n(s)) + 1

aα
x̃n(s)

e−
1
α( sa)

α

])∣∣∣∣
≤ K

(
e

1
α |x0|+

1

C
αJ

b
a

[∣∣∣∣f(t, x̃n(s)) +
1

aα
x̃n(s)

∣∣∣∣])
≤ K

(
e

1
α |x0|+

1

C
αJ

b
a [|f (t, x̃n(s))|] +

1

Caα
αJ

b
a [|x̃n(s)|]

)
.

By definition, there is an R > 0 such that |x̃n(s)| ≤ R for all s ∈ [a, b] and all n ∈ N.

The function f is compact on [a, b] × BR(0) and we can deduce the existence of a

constant A > 0 such that |f(s, x̃n(s))| ≤ A for all s ∈ [a, b]. The sequence {yn}n∈N
is uniformly bounded for all n ∈ N. Observe also that for t1, t2 ∈ [a, b] we have

|N(xn)(t2)−N(xn)(t1)|

≤ B
∣∣∣e− 1

α
(
t1
a

)α − e−
1
α

(
t2
a

)α
∣∣∣+

K(A+ Ŕ)

C

∣∣
αJ

t2
t1

[1]
∣∣

< B
∣∣∣e− 1

α
(
t1
a

)α − e−
1
α

(
t2
a

)α
∣∣∣+

K(A+ Ŕ)

C

1

α
|tα1 − tα2 | ,

where B := eαx0, Ŕ := R
aα

, K := maxa≤t≤b{e−
1
α

( t
a

)α}, and C := mina≤t≤b{e−
1
α

( t
a

)α}.

This proves that the sequence {yn}n∈N is equicontinuous. By the Arzelà–Ascoli

theorem, N(C([a, b])) is relatively compact and hence N is compact.

Theorem 3.1.1. If (v,M) ∈ C(α)([a, b],R)×C(α)([a, b], [0,∞)) is a tube solution to

(3.1), then problem (3.1) has a solution x ∈ C(α)([a, b],R) ∩ T(v,M).

Proof. By Proposition 3.1.1, the operator N is compact. It has a fixed point by the

Schauder fixed point theorem (see p. 137 of [36]). Therefore, Theorem 1.3.3 implies

that such fixed point is a solution to problem (3.2)–(3.3) and it suffices to show

that for every solution x to problem (3.2)–(3.3), x ∈ T(v,M). Consider the set

A := {t ∈ [a, b] : |x(t)− v(t)| > M(t)}. If t ∈ A, then by virtue of Proposition 1.3.2

we have

(|x(t)− v(t)| −M(t))(α) =
(x(t)− v(t))

(
x(α)(t)− v(α)(t)

)
|x(t)− v(t)|

−M (α)(t).
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Therefore, since (v,M) is a tube solution to problem (3.1), we have on {t ∈ A :

M(t) > 0} that

(|x(t)− v(t)| −M(t))(α)

=
(x(t)− v(t))

(
x(α)(t)− v(α)(t)

)
|x(t)− v(t)|

−M (α)(t)

=
(x(t)− v(t))

(
f(t, x̃(t)) +

(
1
aα
x̃(t)− 1

aα
x(t)

)
− v(α)(t)

)
|x(t)− v(t)|

−M (α)(t)

=
(x̃(t)− v(t))

(
f(t, x̃(t))− v(α)(t)

)
M(t)

+
(x̃(t)− v(t)) (x̃(t)− x(t))

aαM(t)
−M (α)(t)

=
(x̃(t)− v(t))

(
f(t, x̃(t))− v(α)(t)

)
M(t)

+

[
M(t)

|x(t)− v(t)|
− 1

]
|x(t)− v(t)|2

aα |x(t)− v(t)|
−M (α)(t)

=
(x̃(t)− v(t))

(
f(t, x̃(t))− v(α)(t)

)
M(t)

+

[
M(t)

aα
− |x(t)− v(t)|

aα

]
−M (α)(t)

≤ M(t)Mα(t)

M(t)
+

1

aα
[M(t)− |x(t)− v(t)|]−M (α)(t)

< 0.

On the other hand, we have on t ∈ {τ ∈ A : M(τ) = 0} that

(|x(t)− v(t)| −M(t))(α) =
(x(t)− v(t))

(
f(t, x̃(t)) +

(
1
aα
x̃(t)− 1

aα
x(t)

)
− v(α)(t)

)
|x(t)− v(t)|

−M (α)(t)

=
(x(t)− v(t))

(
f(t, x̃(t))− v(α)(t)

)
|x(t)− v(t)|

− 1

aα
|x(t)− v(t)| −M (α)(t)

< −M (α)(t)

= 0.

The last equality follows from Definition 3.1.1. If we set r(t) := |x(t)− v(t)|−M(t),

then r(α) < 0 on A := {t ∈ [a, b] : r(t) > 0}. Moreover, since (v,M) is a tube

solution to problem (3.1) and x satisfies |x0− v(a)| ≤M(a), we know that r(a) ≤ 0

and Lemma 1.3.1 implies that A = ∅. Therefore, x ∈ T(v,M) and the theorem is

proved.

43



3.2 An Example

Consider the conformable noninteger order systemx
( 1

2
)(t) = a

√
t

1+t
x3(t) + bx(t)ecx(t), t ∈ [1, 2],

x(1) = 0,

(3.4)

where a, b ∈ (∞, 0] and c is a real constant. According to Definition 3.1.1, (v,M) ≡

(0, 1) is a tube solution. It follows from our Theorem 3.1.1 that problem (3.4) has

a solution x such that |x(t)| ≤ 1 for every t ∈ [1, 2].
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Chapter 4

Complex-valued fractional

derivatives on time scales

We introduce a notion of fractional (noninteger order) derivative on an arbitrary

nonempty closed subset of the real numbers (on a time scale). Main properties of

the new operator are proved and several illustrative examples given. The original

results of this chapter are published in [13].

4.1 Main Result

Let f : T → R with T a given time scale. We introduce here a new definition of

fractional (noninteger) delta derivative of order α ∈ (0, 1] at a point t ∈ Tκ.

Definition 4.1.1 (The delta fractional derivative of order α). Assume f : T → R

with T a time scale. Let t ∈ Tκ and α ∈ (0, 1]. We define f∆α
(t) to be the number

(provided it exists) with the property that given any ε > 0 there is a neighborhood U

of t (i.e., U = (t− δ, t+ δ) ∩ T for some δ > 0) such that∣∣[fα(σ(t))− fα(s)]− f∆α

(t)[σ(t)α − sα]
∣∣ ≤ ε |σ(t)α − sα| (4.1)

for all s ∈ U . We call f∆α
(t) the delta derivative of order α of f at t or the delta

fractional (noninteger order) derivative of f at t. Moreover, we say that f is delta

45



differentiable of order α on Tκ provided f∆α
(t) exists for all t ∈ Tκ. Function

f∆α
: Tκ → C is then called the delta derivative of order α of f on Tκ.

Remark 4.1.1. In (4.1) we use fα to denote the power α of f . It is clear that the

new derivative coincides with the standard Hilger derivative in the integer order case

α = 1. Differently from α = 1, in general f∆α
(t) is a complex number.

Theorem 4.1.1. Assume f : T → R with T a time scale. Let t ∈ Tκ and α ∈ R.

Then the following properties hold:

1. If f is continuous at t and t is right-scattered, then f is delta differentiable of

order α at t with

f∆α

(t) =
fα(σ(t))− fα(t)

σα(t)− tα
. (4.2)

2. If t is right-dense, then f is delta differentiable of order α at t if and only if

the limit

lim
s→t

fα(t)− fα(s)

tα − sα

exists as a finite number. In this case

f∆α

(t) = lim
s→t

fα(t)− fα(s)

tα − sα
. (4.3)

3. If f is delta differentiable of order α at t, then

fα(σ(t)) = fα(t) + (σ(t)α − tα)f∆α

(t).

Proof. 1. Assume f is continuous at t and t is right scattered. By continuity,

lim
s→t

fα(σ(t))− fα(s)

σα(t)− sα
=
fα(σ(t))− fα(t)

σα(t)− tα
.

Hence, given ε > 0, there is a neighborhood U of t such that∣∣∣∣fα(σ(t))− fα(s)

σα(t)− sα
− fα(σ(t))− fα(t)

σα(t)− tα

∣∣∣∣ ≤ ε

for all s ∈ U. It follows that∣∣∣∣fα(σ(t))− fα(s)− fα(σ(t))− fα(t)

σα(t)− tα
[σα(t)− sα]

∣∣∣∣ ≤ ε |σα(t)− sα|

for all s ∈ U . Hence, we get the desired result (4.2).
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2. Assume f is differentiable at t and t is right-dense. Let ε > 0 be given. Since

f is differentiable at t, there is a neighborhood U of t such that

| [fα(σ(t))− fα(t)]− f∆α

(t)[σα(t)− sα] |≤ ε | σα(t)− sα |

for all s ∈ U . Since σ(t) = t, we have that

| [fα(σ(t))− fα(t)]− f∆α

(t)[tα − sα] |≤ ε | σα(t)− sα |

for all s ∈ U . It follows that
∣∣∣fα(t)−fα(s)

tα−sα − f∆α
(t)
∣∣∣ ≤ ε for all s ∈ U , s 6= t, and

we get the desired equality (4.3). Assume lims→t
fα(t)−fα(s)

tα−sα exists and is equal

to X and σ(t) = t. Let ε > 0. Then there is a neighborhood U of t such that∣∣∣∣fα(σ(t))− fα(s)

tα − sα
−X

∣∣∣∣ ≤ ε

for all s ∈ U . Because | fα(σ(t)) − fα(s) − X(tα − sα) |≤ ε|tα − sα| for all

s ∈ U ,

f∆α

(t) = X = lim
s→t

fα(t)− fα(s)

tα − sα
.

3. If σ(t) = t, then σα(t)− tα = 0 and

fα(σ(t)) = fα(t) = fα(t) + (σα(t)− tα)f∆α

(t).

On the other hand, if σ(t) > t, then by item 1

fα(σ(t)) = fα(t) + (σα(t)− tα)
fα(σ(t))− fα(t)

σ(t)α − tα
= fα(t) + (σα(t)− tα)f∆α

(t)

and the proof is complete.

Example 4.1.1. If T = R, then (4.3) yields that f : R → R is delta differentiable

of order α at t ∈ R if and only if f∆α
(t) = lims→t

fα(t)−fα(s)
tα−sα exists, i.e., if and only

if f is fractional differentiable at t. In this case we get the derivative f (α) of [39].

47



Example 4.1.2. If T = Z, then item 1 of Theorem 4.1.1 yields that f : Z → R is

delta-differentiable of order α at t ∈ Z with

f∆α

(t) =
fα(σ(t))− fα(t)

σα(t)− tα
=
fα(t+ 1)− fα(t)

(t+ 1)α − tα
.

Example 4.1.3. If f : T→ R is defined by f(t) ≡ λ ∈ R, then f∆α
(t) ≡ 0. Indeed,

if t is right-scattered, then by item 1 of Theorem 4.1.1 f∆α
(t) = fα(σ(t))−fα(t)

σα(t)−tα =

λα−λα
σα(t)−tα = 0; if t is right-dense, then by (4.3) we get f∆α

(t) = lims→t
λα−λα
tα−sα = 0.

Example 4.1.4. If f : T → R, t 7→ t, then f∆α ≡ 1 because if σ(t) > t (i.e., t

is right-scattered), then f∆α
(t) = fα(σ(t))−fα(t)

σα(t)−tα = σα(t)−tα
σα(t)−tα = 1; if σ(t) = t (i.e., t is

right-dense), then f∆α
= lims→t

fα(t)−fα(s)
tα−sα = tα−sα

tα−sα = 1.

Example 4.1.5. Let g : T → R, t 7→ 1
t
. We have g∆α

(t) = − 1
(tσ(t))α

. Indeed, if

σ(t) = t, then g∆α
(t) = − 1

t2α
; if σ(t) > t, then

g∆α

(t) =
gα(σ(t))− gα(t)

σα(t)− tα
=

(
1
σ(t)

)α
−
(

1
t

)α
σα(t)− tα

=

tα−σα(t)
tασα(t)

tα − σα(t)
= − 1

tασα(t)
.

Example 4.1.6. Let h : T→ R, t 7→ t2. We have h∆α
(t) = σα(t) + tα. Indeed, if t

is right-dense, then h∆α
(t) = lims→t

t2α−s2α
tα−sα = 2tα; if t is right-scattered, then

h∆α

(t) =
hα(σ(t))− hα(t)

σα(t)− tα
=
σ2α(t)− t2α

σα(t)− tα
= σα(t) + tα.

Example 4.1.7. Consider the time scale T = hZ, h > 0. Let f be the function

defined by f : hZ→ R, t 7→ (t− c)2, c ∈ R. The fractional derivative of order α of

f at t is

f∆α

(t) =
fα(σ(t))− fα(t)

σα(t)− tα
=

((σ(t)− c)2)α − ((t− c)2)α

σα(t)− tα

=
(t+ h− c)2α − (t− c)2α

(t+ h)α − tα
.

Remark 4.1.2. Examples 4.1.5, 4.1.6 and 4.1.7 show that in general f∆α
(t) is a

complex number (for instance, choose α = 1
2

and t < 0).
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Theorem 4.1.2. Assume f, g : T → R are continuous and delta differentiable of

order α at t ∈ Tκ. Then the following proprieties hold:

1. For any constant λ, function λf : T → R is delta differentiable of order α at

t with (λf)∆α
= λαf∆α

.

2. The product fg : T→ R is delta differentiable of order α at t with

(fg)∆α

(t) = f∆α

(t)gα(t) + fα(σ(t))g∆α

(t) = f∆α

(t)gα(σ(t)) + fα(t)g∆α

(t).

3. If f(t)f(σ(t)) 6= 0, then 1
f

is delta differentiable of order α at t with

(
1

f

)∆α

(t) =
−f∆α

(t)

fα(σ(t))fα(t)
.

4. If g(t)g(σ(t)) 6= 0, then f
g

is delta differentiable of order α at t with

(
f

g

)∆α

(t) =
f∆α

(t)gα(t)− fα(t)g∆α
(t)

gα(σ(t))gα(t)
.

Proof. 1. Let ε ∈ (0, 1). Define ε∗ = ε
|λ|α ∈ (0, 1). Then there exists a neighbor-

hood U of t such that |fα(σ(t))− fα(s)− f∆α
(t)(σα(t)− sα)| ≤ ε∗|σα(t)− sα|

for all s ∈ U . It follows that

|(λf)α(σ(t))− (λf)α(s)− λαf∆α

(t)(σα(t)− sα)|

= |λ|α | fα(σ(t))− fα(s)− f∆α

(t)(σα(t)− sα) |

≤ ε∗|λ|α|σα(t)− sα| ≤ ε

|λ|α
|λ|α|σα(t)− sα| = ε|σα(t)− sα|

for all s ∈ U . Thus (λf)∆α
(t) = λαf∆α

(t) holds.

2. Let ε ∈ (0, 1). Define ε∗ = ε[1 + |fα(t)| + |gα(σ(t))| + |g∆α
(σ(t))|]−1. Then

ε∗ ∈ (0, 1) and there exist neighborhoods U1, U2 and U3 of t such that

|fα(σ(t))− fα(s)− f∆α

(t)(σα(t)− sα)| ≤ ε∗|σα(t)− sα|
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for all s ∈ U1, |gα(σ(t)) − gα(s) − g∆α
(t)(σα(t) − sα)| ≤ ε∗|σα(t) − sα| for all

s ∈ U2 and such as f is continuous. Then |f(t) − f(s)| ≤ ε∗ for all s ∈ U3.

Define U = U1 ∩ U2 ∩ U3 and let s ∈ U . It follows that

|(fg)α(σ(t))− (fg)α(s)− [g∆α

(t)fα(t) + gα(σ(t))f∆α

(t)][σα(t)− sα]|

= |[fα(σ(t))− fα(s)− f∆α

(t)(σα(t)− sα)](gα(σ(t))) + gα(σ(t))fα(s)

+ gα(σ(t))f∆α

(t)(σα(t)− sα)− fα(s)gα(s)

− [g∆α

(t)fα(t) + gα(σ(t))f∆α

(t)][σα(t)− sα]|

= |[fα(σ(t))− fα(s)− f∆α

(t)(σα(t)− sα)](gα(σ(t)))

+ [gα(σ(t))− gα(s)− g∆α

(t)(σα(t)− sα)](fα(t))

+ [gα(σ(t))− gα(s)− g∆α

(t)(σα(t)− sα)](fα(s)− fα(t)) + fα(s)gα(s)

+ g∆α

(t)fα(s)(σα(t)− sα) + gα(σ(t))f∆α

(t)(σα(t)− sα)− gα(s)fα(s)

+ g∆α

(t)fα(s)(σα(t)− sα) + gα(σ(t))f∆α

(t)(σα(t)− sα)− fα(s)gα(s)

− [g∆α

(t)fα(t) + gα(σ(t))f∆α

(t)][σα(t)− sα]|

≤ |fα(σ(t))− fα(s)− f∆α

(t)(σα(t)− sα)||(gα(σ(t)))|

+ |gα(σ(t))− gα(s)− g∆α

(t)(σα(t)− sα)||(fα(t))|

+ |gα(σ(t))− gα(s)− g∆α

(t)(σα(t)− sα)||fα(s)− fα(t)|

+ |g∆α

(t)||fα(t)− fα(s)||σα(t)− sα|

= ε∗|(gα(σ(t)))||σα(t)− sα|

+ ε∗|(fα(t))||σα(t)− sα|+ ε∗|σα(t)− sα|ε∗ + ε∗|g∆α

(t)||σα(t)− sα|

≤ ε∗|σα(t)− sα|(ε∗ + |(fα(t))|+ |g∆α

(t)|+ |g∆α

(t)|)

≤ ε∗|σα(t)− sα|(1 + |(fα(t))|+ |g∆α

(t)|+ |g∆α

(t)|) = ε|σα(t)− sα|.

Thus (fg)∆α
(t) = fα(t)g∆α

(t) + f∆α
(t)gα(σ(t)) holds at t. The other product

rule follows from this last equality by interchanging functions f and g.

3. We use the delta derivative of a constant (Example 4.1.3). Since
(
f · 1

f

)∆α

(t) =

0, it follows from item 2 that
(

1
f

)∆α

(t)fα(σ(t)) + f∆α
(t) 1

fα(t)
= 0. Because

we are assuming f(t)f(σ(t)) 6= 0, one has
(

1
f

)∆α

(t) = −f∆α (t)
fα(σ(t))fα(t)

.
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4. For the quotient formula we use items 2 and 3 to compute(
f

g

)∆α

(t) =

(
f · 1

g

)∆α

(t) = fα(t)

(
1

g

)∆α

(t) + f∆α

(t)
1

gα(σ(t))

= −fα(t)
g∆α

(t)

gα(σ(t))gα(t)
+ f∆α

(t)
1

gα(σ(t))

=
f∆α

(t)gα(t)− fα(t)g∆α
(t)

gα(σ(t))gα(t)
.

This concludes the proof.

Remark 4.1.3. The delta derivative of order α of the sum f + g : T→ R does not

satisfy the usual property, that is, in general (f +g)∆α
(t) 6= (f)∆α

(t)+(g)∆α
(t). For

instance, let T be an arbitrary time scale and f, g be functions defined by f : T→ R,

t 7→ t, and g : T → R, t 7→ 2t. One can easily find that (f + g)∆α
(t) =

√
3 6=

f∆α
(t) + g∆α

(t) = 1 +
√

2.

Proposition 4.1.1. Let α ∈ R and m ∈ N, m > 1. For g defined by g(t) = tm we

have

g∆α

(t) =
m−1∑
k=0

(tα)m−k−1(σα)k(t). (4.4)

Proof. We prove the formula by induction. If m = 2, then g(t) = t2 and from

Example 4.1.6 we know that g∆α
(t) =

∑1
k=0(tα)1−k(σα)k(t) = tα + σα(t). Now

assume

g∆α

(t) =
m−1∑
k=0

(tα)m−k−1(σα)k(t)

holds for g(t) = tm and let G(t) = tm+1 = t · g(t). We use the product rule of

Theorem 4.1.2 to obtain

G∆α

(t) = gα(t) + σα(t)g∆α

(t) = (tα)m + σα(t)
m−1∑
k=0

(tα)m−k−1(σα)k(t)

= (tα)m +
m−1∑
k=0

(tα)m−k−1(σα)k+1(t) = (tα)m +
m−1∑
k=1

(tα)m−k(σα)k(t)

=
m∑
k=0

(tα)m−k(σα)k(t).
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Hence, by mathematical induction, (4.4) holds.

Example 4.1.8. Choose m = 3 in Proposition 4.1.1. Then (t3)
∆α

= t2α+(tσ(t))α+

σ2α(t).

The notion of fractional derivative here introduced can be easily extended to any

arbitrary real order α.

Definition 4.1.2. Let α > 0 and N ∈ N0 be such that N < α ≤ N + 1. Then we

define f∆α
=
(
f∆N

)∆α−N

, where f∆N
is the usual Hilger derivative of order N .
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Chapter 5

A Truly Conformable Calculus on

Time Scales

We introduce the definition of conformable derivative on time scales and develop

its calculus. Fundamental properties of the conformable derivative and integral

on time scales are proved. Linear conformable differential equations with constant

coefficients are investigated as well as hyperbolic and trigonometric functions. The

original results of this chapter were publication [15]

5.1 Main results

We begin by introducing the notion of conformable differential operator of order

α ∈ [0, 1] on an arbitrary time scale T.

Definition 5.1.1. Assume f : T → R and let t ∈ Tκ. We define f∆(t) to be

the number (provided it exists) with the property that given any ε > 0, there is a

neighborhood U of t (i.e., U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε |σ(t)− s|

for all s ∈ U . We call f∆(t) the delta derivative of f at t.
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Definition 5.1.2 (Conformable delta differential operator of order α). Let T be a

time scale and let α ∈ [0, 1]. An operator ∆α is conformable if and only if ∆0 is

the identity operator and ∆1 is the standard differential operator on T. Precisely,

operator ∆α is conformable if and only if for a differentiable function f in the sense

of Definition 5.1.1, one has ∆0f = f and ∆1f = f∆.

Proposition 5.1.1 gives an extension of [6] to time scales T: for T = R, (5.2)

subject to (5.1) gives Definition 1.3 of [6].

Definition 5.1.3. A function f : T→ R is rd-continuous provided it is continuous

at right-dense points in T and its left-sided limits exist (finite) at left-dense points

in T. A function k : [0, 1] × T → [0,∞) is rd-continuous if k(α, ·) : T → [0,∞)

is rd-continuous for all α ∈ [0, 1] and k(·, t) : [0, 1] → [0,∞) is continuous for all

t ∈ T.

Proposition 5.1.1 (A conformable derivative ∆α on time scales). Let T be a time

scale, α ∈ [0, 1], and κ0, κ1 : [0, 1]×T→ [0,∞) be rd-continuous functions such that

lim
α→0+

κ1(α, t) = 1, lim
α→0+

κ0(α, t) = 0,

lim
α→1−

κ1(α, t) = 0, lim
α→1−

κ0(α, t) = 1,

κ1(α, t) 6= 0, κ0(α, t) 6= 0, α ∈ (0, 1],

(5.1)

for all t ∈ T. Then, the differential operator ∆αf , defined by

∆αf(t) = κ1(α, t)f(t) + κ0(α, t)f∆(t) (5.2)

in the class of ∆-differentiable functions f , is conformable in the sense of Defini-

tion 5.1.2.

Proof. The result is a trivial consequence of (5.1)–(5.2): ∆0f = f and ∆1f =

f∆.

Remark 5.1.1. Let α ∈ (0, 1], κ1(α, t) ≡ 0, and κ0(α, t) = t1−α. Then, formally,

we recover (8) from (5.2). However, such choice of κ0 and κ1 is not allowed by (5.1)

because (8) is not conformable in agreement with Definition 5.1.2.
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Many examples of conformable derivatives on time scales are easily obtained

from Proposition 5.1.1.

Example 5.1.1. One can take κ1 ≡ (1 − α)ωα and κ0 ≡ αω1−α for ω ∈ (0,∞) or

κ1(α, t) = (1−α)|t|α and κ0(α, t) = α|t|1−α on T \ {0} in Proposition 5.1.1. In this

last case,

∆αf(t) = (1− α)|t|αf(t) + α|t|1−αf∆(t).

Example 5.1.2. Similarly to Example 5.1.1,

∆αf(t) = cos
(απ

2

)
|t|αf(t) + sin

(απ
2

)
|t|1−αf∆(t)

is a conformable derivative.

Lemma 5.1.1. Let α, β ∈ [0, 1] and the functions κi, i = 0, 1 are ∆t- differentiable

and continuous compared to α . Note that, in general, ∆α∆β 6= ∆β∆α.

Proof. Let ∆αf(t) = κ1(α, t)f(t)+κ0(α, t)f∆(t) and ∆βf(t) = κ1(β, t)f(t)+κ0(β, t)f∆(t)

we calculated ∆β∆αf(t) we have

∆β∆αf(t)

= κ1(β, t)
(
κ1(α, t)f(t) + κ0(α, t)f∆(t)

)
+ κ0(β, t)

(
κ1(α, t)f(t) + κ0(α, t)f∆(t)

)∆

= κ1(β, t)κ1(α, t)f(t) + κ1(β, t)κ0(α, t)f∆(t) + κ0(β, t)
[
κ∆

1 (α, t)fσ(t) + κ1(α, t)f∆(t)

+ κ∆
0 (α, t)f∆σ

(t) + κ0(α, t)f∆2
(t)
]

= κ1(β, t)κ1(α, t)f(t)+κ1(β, t)κ0(α, t)f∆(t)+κ0(β, t)κ∆
1 (α, t)fσ(t)+κ0(β, t)κ∆

1 (α, t)f∆(t)

+ κ0(β, t)κ∆
0 (α, t)f∆σ

(t) + κ0(β, t)κ0(α, t)f∆2
(t)

We follow the same calculation we find

∆α∆βf(t)

= κ1(α, t)κ1(β, t)f(t)+κ1(α, t)κ0(β, t)f(t)f∆(t)+κ0(α, t)κ∆
1 (β, t)fσ(t)+κ0(α, t)κ1(β, t)f∆(t)

+ κ0(α, t)κ∆
0 (β, t)f∆σ

(t) + κ0(α, t)κ0(β, t)f∆2
(t)

since κ0(α, t)κ∆
1 (β, t) 6= κ0(β, t)κ∆

1 (α, t) and κ0(β, t)κ∆
0 (α, t) 6= κ0(α, t)κ∆

0 (β, t)

and hence

∆β∆α 6= ∆α∆β
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Example 5.1.3. :One can take κ1 ≡ (1− α)ωα and κ0 ≡ αω1−α for ω ∈ (0,∞)T

Let α = 1
2
, β = 1 we have ∆∆

1
2f(t) = 1

2

[
σ

1
2 (t)−t

1
2

µ(t)

(
fσ(t) + f∆σ

(t)
)

+ t
1
2

(
f∆(t) + f∆2

(t)
)]

on the other hand ∆
1
2 ∆f(t) = 1

2
t

1
2

(
f∆(t) + f∆2

(t)
)

if σ(t) 6= t then

∆∆
1
2f(t) 6= ∆

1
2 ∆f(t)

Definition 5.1.4 (Conformable exponential function on time scales). Let α ∈ (0, 1],

s, t ∈ T with s ≤ t and let function p : T → R be rd-continuous. Let κ0, κ1 :

[0, 1] × T → [0,∞) be rd-continuous and satisfy (5.1) with 1 + µ(t)p(t)−κ1(α,t)
κ0(α,t)

6= 0

for all t ∈ Tκ. Then, the conformable exponential function on the time scale T with

respect to ∆α in (5.2) is defined to be

Ep(t, s) = e p(t)−κ1(α,t)
κ0(α,t)

(t, s), E0(t, s) = e−κ1(α,t)
κ0(α,t)

(t, s), (5.3)

where eq(t)(t, s) denotes the exponential function on the time scale T – see definition

(2.30) in [22].

Note that if T = R, then Ep(t, s) = e
∫ t
s
p(τ)−κ1(α,τ)

κ(α,τ)
dτ and E0(t, s) = e−

∫ t
s
κ1(α,τ)
κ(α,τ)

dτ .

5.1.1 Fundamental properties of the conformable operators

Using (5.2) and (5.3), we begin by proving several basic but important results.

Theorem 5.1.1 (Basic properties of conformable derivatives). Let the conformable

differential operator ∆α be given as in (5.2), where α ∈ [0, 1]. Let κ0, κ1 : [0, 1]×T→

[0,∞) be rd-continuous and satisfy (5.1) with 1 + µ(t)p(t)−κ1(α,t)
κ0

6= 0 for all t ∈ Tκ.

Assume functions f and g are differentiable, as needed. Then,

(i) ∆α(af + bg) = a∆α(f) + b∆α(g) for all a, b ∈ R;

(ii) ∆αc = cκ1(α, ·) for all constants c ∈ R;

(iii) ∆α(fg) = f∆α(g) + gσ∆α(f)− fgσκ1(α, ·);

(iv) ∆α
(
f
g

)
= g∆α(f)−f∆α(g)

ggσ
+ f

g
κ1(α, ·);
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(v) ∆αEp(t, s) = p(t)Ep(t, s) for all α ∈ (0, 1];

(vi) ∆α
(∫ t

a
f(s)E0(t,s)
κ0(α,s)

∆s
)

= f(t) for all α ∈ (0, 1].

Proof. Relations (i) and (ii) are obvious. From (5.2), it also follows (iii)–(vi):

(iii)

∆α(fg) = κ0(fg∆ + f∆gσ) + κ1(fg)

= fκ0g
∆ + gσκ0f

∆ + κ1(fg)

= f(κ0g
∆ + κ1g) + gσ(κ0f

∆ + κ1f)− gσκ1f

= f∆αg + gσ∆αf − gσκ1f ;

(iv)

∆α

(
f

g

)
= κ0

(
f∆g − fg∆

ggσ

)
+ κ1

(
f

g

)
=
κ0(f∆g − fg∆)

ggσ
+ κ1

(
f

g

)
=

(κ0f
∆ + κ1f)g − κ1fg −

(
κ0g

∆ + κ1g
)
f + fκ1g

ggσ
+ κ1

(
f

g

)
=
g∆αf − f∆αg

ggσ
+ κ1

(
f

g

)
;

(v) ∆αEp(t)(t, s)

= κ1(α, t)e p(t)−κ1(α,t)
κ0(α,t)

(t, s) + κ0(α, t)

(
e p(t)−κ1(α,t)

κ0(α,t)

(t, s)

)∆

= κ1(α, t)

(
e p(t)−κ1(α,t)

κ0(α,t)

(t, s)

)
+ κ0(α, t)

(
p(t)− κ1(α, t)

κ0(α, t)
e p(t)−κ1(α,t)

κ0(α,t)

(t, s)

)
= p(t)e p(t)−κ1(α,t)

κ0(α,t)

(t, s)

= p(t)Ep(t, s);
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(vi) ∆α

∫ t

a

f(s)E0(t, s)

κ0(α, s)
∆s

= κ1(α, t)

∫ t

a

f(s)E0(t, s)

κ0(α, s)
∆s

+ κ0(α, t)

(
f(t)E0(t, t)

κ0(α, t)
+

∫ t

a

f(s)(−κ1(α,t)
κ0(α,t)

)E0(t, s)

κ0(α, s)
∆s

)

= κ1(α, t)

∫ t

a

f(s)E0(t, s)

κ0(α, s)
∆s+ f(t)− κ1(α, t)

∫ t

a

f(s)E0(t, s)

κ0(α, s)
∆s

= f(t).

The proof is complete.

Definition 5.1.5 (Conformable integrals of order α). Let α ∈ (0, 1] and let κ0, κ1 :

[0, 1]×T→ [0,∞) be rd-continuous and satisfy (5.1) with 1 + µ(t)κ1(α,t)
κ0(α,t)

6= 0 for all

t ∈ Tκ and t0 ∈ T. In light of (5.3) and items (v) and (vi) of Theorem 5.1.1, we

define the conformable antiderivative of order α by∫
∆αf(t)∆αt = f(t) + cE0(t, t0), c ∈ R.

The conformable α-integral of f over T[a,t] is defined by∫ t

a

f(s)E0(t, s)∆αs :=

∫ t

a

f(s)E0(t, s)

κ0(α, s)
∆s, (5.4)

where on the right-hand side we have the standard ∆-integral of time scales [22, 23].

Theorem 5.1.2 (Basic properties of the conformable α-integral). Let the con-

formable differential operator on time scales ∆α be given as in (5.2); the integral

be given as in (5.4); with α ∈ (0, 1]. Let functions κ0, κ1 be rd-continuous and sat-

isfy (5.1) with 1 + µ(t)κ1(α,t)
κ0(α,t)

6= 0 for all t ∈ Tκ and let f and g be ∆-differentiable,

as needed. Then,

(i) the derivative of the definite integral of f is given by

∆α

(∫ t

a

f(s)E0(t, s)∆αs

)
= f(t);
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(ii) the definite integral of the derivative of f is given by

∫ t

a

∆α[f(s)]E0(t, s)∆αs = f(s)E0(t, s)
∣∣s=t
s=a

= f(t)− f(a)E0(t, a);

(iii) an integration by parts formula is given by

∫ b

a

f(t)∆α[g(t)]E0(b, t)∆αt = f(t)g(t)E0(b, t) |t=bt=a

−
∫ b

a

g(t) (∆α[f(t)]− κ1(α, t)f(t))E0(b, t)∆αt;

(iv) a version of the Leibniz rule for differentiation of an integral is given by

∆α

[∫ t

a

f(t, s)E0(t, s)∆αs

]
= f(t, t)

+

∫ t

a

(∆α
t [f(t, s)]− κ1(α, t)f(t, s))E0(t, s)∆αs,

where the derivative inside the last integral is with respect to t, or

∆α

[∫ t

a

f(t, s)∆αs

]
= f(t, t) +

∫ t

a

∆α[f(t, s)]∆αs,

if E0 is absent.

Proof. The proof of (i) is clear. Note that (ii) is a special case of (iii). Now we prove

(iii):

∫ b

a

f(t)∆α(g)(t)E0(b, t)∆αt

=

∫ b

a

[∆α(fg)(t)− gσ(t)∆αf(t) + f(t)gσ(t)κ1(α, t)]E0(b, t)∆αt

=

∫ b

a

∆α(fg)(t)E0(b, t)∆αt−
∫ b

a

gσ(t) [∆α(f)(t)− f(t)κ1(α, t)]E0(b, t)∆αt

= f(t)g(t)E0(b, t)|ba −
∫ b

a

gσ(t)[∆α(f)(t)− f(t)κ1(α, t)]E0(b, t)∆αt.
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For the first part of (iv), we have:

∆α

[∫ t

a

f(t, s)E0(t, s)∆αs

]
= ∆α

∫ t

a

f(t, s)E0(t, s)

κ0(α, s)
∆s

= κ0(α, t)

[∫ t

a

f(t, s)E0(t, s)∆αs

]∆

+ κ1(α, t)

∫ t

a

f(t, s)E0(t, s)∆αs

= κ0(α, t)

[
f(t, t)

κ0(α, t)
+

∫ t

a

(
f∆(t, s)E0(t, s)

κ0(α, s)
− f(t, s)

κ1(α, t)

κ0(α, t)

E0(t, s)

κ0(α, s)

)
∆s

]
+ κ1(α, t)

∫ t

a

f(t, s)E0(t, s)

κ0(α, t)
∆s

= f(t, t) + κ0(α, t)

∫ t

a

[
f∆(t, s)E0(t, s)

κ0(α, s)
− f(t, s)κ1(α, t)

κ0(α, t)

E0(t, s)

κ0(α, s)

]
∆s

+ κ1(α, t)

∫ t

a

f(t, s)E0(t, s)

κ0(α, s)
∆s

= f(t, t) +

∫ t

a

[∆α
t f(t, s)− κ1(α, t)f(t, s)]E0(t, s)∆αs.

For the second expression in (iv), in the case E0(t, s) is absent from the integral

expression, one has

∆α

[∫ t

a

f(t, s)∆αs

]
= ∆α

[∫ t

a

f(t, s)

κ0(α, s)
∆s

]
= κ0(α, t)

(∫ t

a

f(t, s)

κ0(α, s)
∆s

)∆

+ κ1(α, t)

∫ t

a

f(t, s)

κ0(α, s)
∆s

= κ0(α, t)
f(t, t)

κ0(α, t)
+ κ0(α, t)

∫ t

a

(
f(t, s)

κ0(α, s)

)∆

∆s+ κ1(α, t)

∫ t

a

f(t, s)

κ0(α, s)
∆s

= f(t, t) +

∫ t

a

∆α
t f(t, s)∆αs.

Note that we use ∆α
t f(t, s) to denote the derivative of f with respect to t.

5.1.2 Conformable polynomials

Let functions κ0, κ1 : [0, 1]× T → [0,∞) be rd-continuous such that the conditions

in (5.1) are satisfied with 1 + µ(t)κ1(α,t)
κ0(α,t)

6= 0 for all t ∈ Tκ. We define, recursively,
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the functions hn : T× T→ R, n ∈ N0, by

h0(t, s) ≡ 1, hn(t, s) =

∫ t

s

hn−1(τ, s)∆ατ, n ∈ N, (5.5)

for all t, s ∈ T.

Remark 5.1.2. If α = 1 and n ∈ N0, then hn(t, s) = 1
n!

(t− s)n.

In the follow examples, we explore the new functions hn(t, s) given by (5.5).

Example 5.1.4. Let α ∈ (0, 1], T = Z, ω0, ω1 ∈ (0,∞), and κ1 satisfy (5.1). Take

κ0(α, t) ≡ αω1−α
0 . Because ∆ατ = 1

κ0(α,τ)
∆τ = 1

αω1−α
0

∆τ , letting h0(t, s) ≡ 1, we

calculate h1 via (5.5), getting

h1(t, s) =

∫ t

s

h0(τ, s)∆ατ =

∫ t

s

∆τ

αω1−α
0

=
1

αω1−α
0

∫ t

s

∆τ =
1

αω1−α
0

(t− s)

and

h2(t, s) =

∫ t

s

τ − s
αω1−α

0

∆ατ =
1

(αω1−α
0 )2

[
(τ − s)2

2

]t
s

=
1

(αω1−α
0 )2

(t− s)2

2
.

The factorial function tk for n ∈ N0 is defined (see [42]) by

t0 = 1, tk = t(t− 1)(t− 2) · · · (t− k + 1), k ∈ N.

We claim that

hk(t, s) =
1

(αω1−α
0 )k

(t− s)k

k!
=

1

(αω1−α
0 )k

(
k−s
k

)
(5.6)

for t, s ∈ T, t ≥ s, and k ∈ N. Assume (5.6) holds for k replaced by m. Then,

hm+1(t, s) =

∫ t

s

hm(τ, s)∆τ =
1

(αω1−α
0 )m

∫ t

s

(τ − s)m

m!
∆ατ =

(t− s)m+1

(αω1−α
0 )m+1

.

Example 5.1.5. Let T = hZ, h > 0, κ0(α, t) = αω1−α, α ∈ (0, 1], t, s ∈ T, t ≥ s,

k ∈ N. Again, starting with h0(t, s) ≡ 1, we see that

h1(t, s) =

∫ t

s

h0(τ, s)∆ατ =

∫ t

s

1∆ατ =

∫ t

s

∆τ

αω1−α =
1

αω1−α (t− s),
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h2(t, s) =

∫ t

s

h1(τ, s)∆ατ

=

∫ t

s

1

αω1−α (τ − s)∆ατ

=
1

αω1−α

∫ t

s

τ − s
αω1−α∆τ

=
1

(αω1−α)2

∫ t

s

(τ − s)∆τ

=
1

(αω1−α)2

(t− s)(t− h− s)
2

,

h3(t, s) =

∫ t

s

h2(τ, s)∆ατ

=
1

(αω1−α)2

∫ t

s

(τ − s)(τ − h− s)
2αω1−α ∆τ

=
1

(αω1−α)3

(t− s)(t− h− s)(t− 2h− s)
3!

.

We claim that for k ∈ N0 we have

hk(t, s) =
1

(αω1−α)k

∏k−1
i=0 (t− ih− s)

k!
. (5.7)

Assume (5.7) holds for k replaced by m. Then,

hm+1(t, s) =

∫ t

s

1

(αω1−α)m

∏m−1
i=0 (τ − ih− s)

m!
∆ατ

=
1

(αω1−α)m

∫ t

s

∏m−1
i=0 (τ − ih− s)

m!

∆τ

αω1−α

=
1

(αω1−α)m+1

∏m
i=0(τ − ih− s)

(m+ 1)!
.

Example 5.1.6. Let T = qZ, q > 1, q ∈ Z, t, s ∈ T, t ≥ s, k ∈ N0, and κ0 = αω1−α.

From h0(t, s) ≡ 1, it follows that

hk(t, s) =

∫ t

s

hk−1(τ, s)∆ατ =
1

(αω1−α)k

k−1∏
m=0

(
t− qms∑m

j=0 q
j

)
.

Proposition 5.1.2. Assume hn is a function satisfying (5.5). Then,

∆αhn(t, s) = hn−1(t, s) + κ1(α, t)hn(t, s).
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Proof. By Theorem 5.1.1 (ii) and Theorem 5.1.2 (iv), the following relationship

holds:

∆α
t hn(t, s) = ∆α

t

∫ t

s

hn−1(τ, s)∆ατ

= κ1(α, t)

∫ t

s

hn−1(τ, s)∆ατ + κ0(α, t)
hn−1(t, s)

κ0(α, t)

= hn−1(t, s) + κ1(α, t)hn(t, s).

The proof is complete.

5.1.3 Linear second-order conformable differential equations

on time scales

Let T be an arbitrary time scale, α ∈ [0, 1], and let κ0, κ1 : [0, 1]×T→ [0,∞) be rd-

continuous functions such that (5.1) holds Considering that the functions κi(α, t), i =

0, 1 are ∆t- differentiable and continuous compared to α with 1 + µ(t)κ1(α,t)
κ0(α,t)

6= 0 for

all t ∈ Tκ. In addition, let ∆α be as in (5.2), and let t0 ∈ T. In this section we are

concerned with the following linear second-order conformable dynamic equation on

time scales with constant coefficients:

∆α∆αy(t) + a∆αy(t) + by(t) = f(t), t ∈ Tκ2

[t0,∞), (5.8)

where we assume a, b ∈ R, f ∈ Crd. Introduce the operator L2∆α : C2
rd → Crd by

L2∆α(y)(t) = ∆α∆αy(t) + a∆αy(t) + by(t) (5.9)

for all t ∈ Tκ2

[t0,∞).

Lemma 5.1.2. The operator L2∆α defined by (5.9) is a linear operator, i.e.,

L2∆α (py1 + qy2) = pL2∆α(y1) + qL2∆α(y2),

where p, q ∈ R and y1, y2 ∈ C2
rd. If y1 and y2 solve the homogeneous equation

L2∆αy = 0,

then so does y = py1 + qy2, p, q ∈ R.
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Proof. Using (i) of Theorem 5.1.1, we find that

L2∆α(py1 + qy2)(t)

= ∆α∆α(py1(t) + qy2(t)) + a∆α(py1(t) + qy2(t)) + b(py1(t) + qy2(t))

= pL2∆α(y1)(t) + qL2∆α(y2)(t) = 0

for all t ∈ Tκ2

[t0,∞) and all p, q ∈ R.

Definition 5.1.6. Let a, b ∈ R and f ∈ Crd. Equation (5.8) is called regressive if

κ2
0 − µκ0(a+ 2κ1) + µ2(b+ aκ1 + κ2

1) 6= 0

for all t ∈ Tκ.

Theorem 5.1.3 (uniqueness of solution). Let t0 ∈ Tκ the functions κi(α, t), i = 0, 1

are ∆t- differentiable and continuous compared to α . Assume that the dynamic

equation (5.8) is regressive.if the equation L2∆αy(t) = 0 admitting a solutions y1, y2,

with y1(t)∆αy2(t) − ∆αy1(t)y2(t) 6= 0 for all t ∈ Tκ2

[t0,∞), Then the initial value

problem

L2∆αy(t) = 0, y(t0) = y0, ∆αy(t0) = yα0 , (5.10)

where y0 and yα0 are given constants, has a unique solution defined on T[t0,∞).

Proof. If y1, y2 are two solutions of L2∆αy(t) = 0, then y(t) = py1(t)+qy2(t), p, q ∈ R,

is a solution of L2∆αy(t) = 0. Therefore, we want to see if we can pick p and q so

that y0 = y(t0) = py1(t0) + qy2(t0), yα0 = p∆αy1(t0) + q∆αy2(t0). Let

M =

 y1(t0) y2(t0)

∆αy1(t0) ∆αy2(t0)

 , X =

 p

q

 , B =

 y0

yα0

 .

System M ×X = B has a unique solution provided matrix M is invertible.

Definition 5.1.7. For two ∆α-differentiable functions on T[t0,∞) y1 and y2, we define

the Wronskian W = W (y1, y2) by

W (t) = det

 y1(t) y2(t)

∆αy1(t) ∆αy2(t)

 , t ∈ T[t0,∞).
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We say that two solutions y1 and y2 of L2∆αy = 0 form a fundamental set of solutions

for L2∆αy = 0 provided W (y1, y2)(t) 6= 0 for all t ∈ Tκ2

[t0,∞).

Theorem 5.1.4. If the pair of functions y1 and y2 form a fundamental system of

solutions for L2∆αy = 0, t ∈ Tκ2

[t0,∞), then

y(t) = py1(t) + qy2(t), p, q ∈ R, (5.11)

is a general solution of L2∆αy = 0, t ∈ Tκ2

[t0,∞). In particular, the solution of the

initial value problem (5.10) is given by

y(t) =
∆αy2(t0)y0 − y2(t0)yα0

W (y1, y2)(t0)
y1(t) +

y1(t0)yα0 −∆αy1(t0)y0

W (y1, y2)(t0)
y2(t).

Remark 5.1.3. By general solution we mean that every function of form (5.11) is

a solution and every solution is of this form.

Proof. The proof is similar to the one of Theorem 3.7 of [22].

5.1.4 Hyperbolic and trigonometric functions

Now we consider the linear second-order homogeneous dynamic conformable equa-

tion with constant coefficients

∆α∆αy(t) + a∆αy(t) + by(t) = 0, a, b ∈ R, t ∈ Tκ2

[t0,∞). (5.12)

We assume (5.12) to be regressive, i.e., κ0 − µ(a + 2κ1) + µ2(b + aκ1 + κ2
1) 6= 0,

t ∈ Tκ. Let λ ∈ C be such that 1 + µ(t)λ−κ1(α,t)
κ0(α,t)

6= 0, t ∈ Tκ, and y(t) = Eλ(t, t0),

t ∈ Tκ[t0,∞), be a solution of (5.12). If y(t) = Eλ(t, t0), then

∆α∆αy(t) + a∆αy(t) + by(t) = (λ2 + aλ+ b)Eλ(t, t0)

and, because Eλ(t, t0) 6= 0, y(t) = Eλ(t, t0) is a solution of (5.12) if and only if λ

satisfies the characteristic equation of (5.12):

λ2 + aλ+ b = 0. (5.13)
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The solutions λ1 and λ2 of (5.13) are given by

λ1 =
−a−

√
a2 − 4b

2
and λ2 =

−a+
√
a2 − 4b

2
(5.14)

and, since (5.12) is regressive, 1 +µ(t)λ1−κ1(α,t)
κ0(α,t)

6= 0 and 1 +µ(t)λ2−κ1(α,t)
κ0(α,t)

6= 0 for all

t ∈ Tκ.

Theorem 5.1.5. Suppose equation (5.12) is regressive and a2 − 4b 6= 0. Then,

Eλ1(·, t0) and Eλ2(·, t0) form a fundamental system of (5.12), where t0 ∈ T and λ1

and λ2 are given as in (5.14), and the solution of the initial value problem

∆α∆αy(t) + a∆αy(t) + by(t) = 0, y(t0) = y0, ∆αyt0 = yα0 , (5.15)

is given by

y0(t) =
Eλ1(t, t0) + Eλ2(t, t0)

2
+
ay0 + 2yα0√
a2 − 4b

Eλ2(t, t0)− Eλ1(t, t0)

2
,

t ∈ Tκ2

[t0,∞).

Proof. Since λ1 and λ2, given by (5.14), are solutions of the characteristic equation

(5.13), we know that both Eλ1(·, t0) and Eλ2(·, t0) are solutions of (5.12). Moreover,

W (Eλ1(t, t0), Eλ2(t, t0)) = det

 Eλ1(t, t0) Eλ2(t, t0)

λ1Eλ1(t, t0) λ2Eλ2(t, t0)


= λ2Eλ1(t, t0)Eλ2(t, t0)− λ1Eλ1(t, t0)Eλ2(t, t0)

= (λ2 − λ1)Eλ1(t, t0)Eλ2(t, t0)

=
√
a2 − 4bEλ1(t, t0)Eλ2(t, t0),

so that W (Eλ1(t, t0)Eλ2(t, t0)) 6= 0 for all t ∈ Tκ[t0,∞), unless a2 − 4b = 0. Having

obtained a fundamental system y1 = Eλ1(·, t0) and y2 = Eλ2(·, t0) of (5.12), now we

obtain a solution of (5.15), namely y(t) = c1y1(t) + c2y2(t). For that we solve the

linear system of equationsy0 = c1y1(t0) + c2y2(t0)

∆αy(t0) = λ1c1y1(t0) + λ2c2y2(t0)

in the unknowns c1 and c2, obtaining c1 = y0

2
− ay0+2yα0

2
√
a2−4b

and c2 = y0

2
+

ay0+2yα0
2
√
a2−4b

.
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Hyperbolic functions are associated with the case a = 0 and b < 0.

Definition 5.1.8 (Hyperbolic functions). Let T be a time scale and t0 ∈ T. If

p ∈ Crd and κ2
0 − 2µκ0κ1 + µ2(−p2 + κ2

1) 6= 0 for all t ∈ Tκ, then we define the

hyperbolic functions coshp∆α(·, t0) and sinhp∆α(·, t0) on T[t0,∞) by

coshp∆α(·, t0) =
Ep(·, t0) + E−p(·, t0)

2
and sinhp∆α(·, t0) =

Ep(·, t0)− E−p(·, t0)

2
.

Remark 5.1.4. The condition κ2
0 − 2µκ0κ1 + µ2(−p2 + κ2

1) 6= 0 of Definition 5.1.8

is equivalent to 1 + µ(t)p(t)−κ1(α,t)
κ0(α,t)

6= 0 and 1− µ(t)p(t)+κ1(α,t)
κ0(α,t)

6= 0.

Lemma 5.1.3. Let κ2
0 − 2µκ0κ1 + µ2(−p2 + κ2

1) 6= 0 for all t ∈ Tκ. Then,

∆α coshp∆α(·, t0) = p sinhp∆α(·, t0),

∆α sinhp∆α(·, t0) = p coshp∆α(·, t0),

cosh2
p∆α(·, t0)− sinh2

p∆α(·, t0) = Ep(·, t0)E−p(·, t0),

for all t ∈ T[t0,∞).

Proof. The first two formulas are trivially verified. The last relation follows from(
cosh2

p∆α − sinh2
p∆α

)
(·, t0) =

(
Ep(·, t0) + E−p(·, t0)

2

)2

−
(
Ep(·, t0)− E−p(·, t0)

2

)2

=
E2
p(·, t0) + 2Ep(·, t0)E−p(·, t0) + E2

−p(·, t0)

4

−
E2
p(·, t0)− 2Ep(·, t0)E−p(·, t0) + E2

−p(·, t0)

4

= Ep(·, t0)E−p(·, t0)

for all t ∈ T[t0,∞).

Theorem 5.1.6. If γ ∈ R\{0}, κ2
0− 2µκ0κ1 + µ2(−γ2 + κ2

1) 6= 0, and t0 ∈ Tκ, then

y(t) = c1 coshγ∆α(t, t0) + c2 sinhγ∆α(t, t0)

is a general solution of

∆α∆αy − γ2y = 0 (5.16)

on t ∈ Tκ2

[t0,∞), where c1 and c2 are arbitrary constants.
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Proof. One can easily prove that coshγ∆α(·, t0) and sinhγ∆α(·, t0) are solutions of

(5.16). We prove that they form a fundamental set of solutions for (5.16):

W (coshγ∆α(t, t0), sinhγ∆α(t, t0)) = det

 coshγ∆α(t, t0) sinhγ∆α(t, t0))

γ sinhγ∆α(t, t0)) γ coshγ∆α(t, t0)


= γ cosh2

γ∆α(t, t0)− γ sinh2
γ∆α(t, t0)

= γ
(
cosh2

γ∆α(t, t0)− sinh2
γ∆α(t, t0)

)
= γEγ(t, t0)E−γ(t, t0)

is different from zero for all t ∈ Tκ[t0,∞), unless γ = 0.

Example 5.1.7. Let T be a time scale, t0 ∈ Tκ. If κ2
0− 2µκ0κ1 +µ2(−γ2 +κ2

1) 6= 0,

with γ ∈ R\{0}, then the solution of the initial value problem

∆α∆αy(t)− γ2y(t) = 0, y(t0) = y0, ∆αy(t0) = yα0 ,

is given by

y(t) = y0 coshγ∆α(t, t0) +
yα0
γ

sinhγ∆α(t, t0)

for all t ∈ Tκ2

[t0,∞).

Definition 5.1.9 (Trigonometric functions). Let T be a time scale, p ∈ Crd, t0 ∈ T,

and κ2
0− 2µκ0κ1 + µ2(p2 + κ2

1) 6= 0 for all t ∈ Tκ. Then we define the trigonometric

functions cosp∆α(·, t0) and sinp∆α(·, t0) by

cosp∆α(·, t0) =
Eip(·, t0) + E−ip(·, t0)

2
and sinp∆α(·, t0) =

Eip(·, t0)− E−ip(·, t0)

2i
.

Remark 5.1.5. The condition κ2
0 − 2µκ0κ1 + µ2(p2 + κ2

1) 6= 0 of Definition 5.1.9 is

equivalent to 1 + µ(t)
(
ip(t)−κ1(α,t)

κ0(α,t)

)
6= 0 and 1− µ(t) ip(t)+κ1(α,t)

κ0(α,t)
6= 0.

Lemma 5.1.4. Let p ∈ Crd. If κ2
0 − 2µκ0κ1 + µ2(p2 + κ2

1) 6= 0 for all t ∈ Tκ, then

∆α cosp∆α(·, t0) = −p sinp∆α(·, t0),

∆α sinp∆α(·, t0) = p cosp∆α(·, t0),

cos2
p∆α(·, t0) + sin2

p∆α(·, t0) = Eip(·, t0)E−ip(·, t0).
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Remark 5.1.6. If α = 1, then Eip(·, t0) = eip(·, t0) = cosp(·, t0) + i sinp(·, t0).

Proof. Similarly to Lemma 5.1.3, the first two formulas are easily verified. We have

cos2
p∆α(·, t0) + sin2

p∆α(·, t0)

=

(
Eip(·, t0) + E−ip(·, t0)

2

)2

+

(
Eip(·, t0)− E−ip(·, t0)

2i

)2

=
E2
ip(·, t0) + 2Eip(·, t0)E−ip(·, t0) + E2

−ip(·, t0)

4

−
E2
ip(·, t0)− 2Eip(·, t0)E−ip(·, t0) + E2

−ip(·, t0)

4

= Eip(·, t0)E−ip(·, t0)

and the last relation also holds.

Example 5.1.8. Let T = R, γ ∈ R, and t0 ∈ T. Then, the conformable trigono-

metric functions cosine and sine are given by

cosγ∆α(t, t0) =
Eiγ(t, t0) + E−iγ(t, t0)

2

=
e
∫ t
t0

iγ−κ1(s,t0)
κ0(s,t0)

ds
+ e

∫ t
t0

−iγ−κ1(s,t0)
κ0(s,t0)

ds

2

=
e
i
∫ t
t0

γ
κ0(s,t0)

ds
e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds
+ e

−i
∫ t
t0

γ
κ0(s,t0)

ds
e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds

2

=
e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds
(

2 cos(
∫ t
t0

γ
κ0(s,t0)

ds)
)

2

= e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds
cos

(∫ t

t0

γ

κ0(s, t0)
ds

)
and

sinγ∆α(t, t0) =
Eiγ(t, t0)− E−iγ(t, t0)

2i

=
e
∫ t
t0

iγ−κ1(s,t0)
κ0(s,t0)

ds − e
∫ t
t0

−iγ−κ1(s,t0)
κ0(s,t0)

ds

2i

=
e
i
∫ t
t0

γ
κ0(s,t0)

ds
e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds − e−i
∫ t
t0

γ
κ0(s,t0)

ds
e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds

2i

= e
−

∫ t
t0

κ1(s,t0)
κ0(s,t0)

ds
sin

(∫ t

t0

γ

κ0(s, t0)
ds

)
.
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Theorem 5.1.7. Let T be a time scale and t0 ∈ Tκ. If κ2
0−2µκ0κ1+µ2(γ2+κ2

1) 6= 0,

γ ∈ R\{0}, then y(t) = c1 cosγ∆α(t, t0) + c2 sinγ∆α(t, t0) is a general solution of

∆α∆αy + γ2y = 0, t ∈ Tκ2

. (5.17)

Proof. One can easily show that cosγ∆α(·, t0) and sinγ∆α(·, t0) are solutions of (5.17).

We prove that they form a fundamental set of solutions for (5.17): for γ 6= 0,

W (cosγ∆α(t, t0), sinγ∆α(t, t0)) = det

 cosγ∆α(t, t0) sinγ∆α(t, t0))

−γ sinγ∆α(t, t0)) γ cosγ∆α(t, t0)


= γ

(
cos2

γ∆α(t, t0) + sin2
γ∆α(t, t0)

)2
= γEip(t, t0)E−ip(t, t0) 6= 0

for all t ∈ Tκ[t0,∞). We conclude that y(t) = c1 cosγ∆α(t, t0) + c2 sinγ∆α(t, t0), t ∈

T[t0,∞), is a general solution of (5.17).
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Abstract

Our PhD thesis consists with two part, the common denominator between them is

the time scales. The first part devoted for the existence of solution. To get the

result We introduce the notion of tube solution. The Part 1 of thesis to riders are

separated at two points. In the first points we study a non-linear first order dynamic

equation on arbitrary compact time scales. In the second points we study the exis-

tence of Solution to a local fractional differential equation. In the part 2 of thesis we

are interested to introduce two new notions. The first notion is a Complex-valued

fractional derivatives on time scales here we prove the properties of this derivative.

Finally we introduce the concept of conformable derivative on time scales and we

developed its calculs..

Keywords and phrases: nabla dynamic equations; existence; tube solution;

fractional differential equations; initial value problems; conformable fractional deriva-

tives.

AMS (MOS) Subject Classifications: 34B15; 34N05; 26A33; 34A12; 26E70.
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Résumé

Notre Thèse de doctorat se compose en deux parties, le dénominateur commun en-

tre eux est l’échelles de temps. La premier partie est consacrée a l’existence de

solutions. Pour obtenir le rsultat Nous introduisons la notion de tube solution. La

part 1 de thèse se consiste de deux points. Dans le premier point nous étudions

un problème d’équations dynamiques de premier ordre non-linaire sur un arbitraire

compacts échelles de temps. Dans la deuxième point nous étudions un problème

d’équations différentielles fractionnaire local. Dans la part 2 de thèse nous sommes

intéressés a présenter deux nouvelles notions. La première notion est la dérivée

fractionnaire complexe sur l’échelles de temps ici nous démontrons les propriétés

de cette dérivation. Et enfin, nous introduisons le concept de dérivée fractionnaire

conforme sur l’échelles de temps et développer leur calcul.

Mots et Phrases Clefs: nabla équations dynamiques; non linéaires des problèmes

de valeur limite; existence; tube solution; équations diffrentielles fractionnaires;

problèmes de valeur initiale; dérivées fractionnaires conforme.

Classification AMS: 34B15; 34N05; 26A33; 34A12; 26E70.
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