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Abstract

The research reported in this thesis deals with the problem of fractional stochastic differ-
ential equations and inclusions in Hilbert spaces. We have discussed the existence and unique-
ness result for an impulsive fractional stochastic evolution equations involving Caputo fractional
derivative and fractional partial neutral stochastic functional integro-differential inclusions with
state-dependent delay and analytic resolvent operators. Sufficient conditions for the existence
are established by using the nonlinear alternative of Leray-Schauder type for multivalued maps
due to O’Regan and the fractional power of operators. The main results are obtained by means
of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic
analysis theory and methods adopted directly from deterministic fractional equations.

The approximate controllability has also been investigated for a class of fractional neutral
stochastic functional integro-differential inclusions involving the Caputo derivative in Hilbert
spaces. A new set of sufficient conditions are formulated and proved for the approximate
controllability of fractional stochastic integrodifferential inclusions under the assumption that
the associated linear part of system is approximately controllable. The main techniques rely
on the fractional calculus, operator semigroups and Bohnenblust-Karlin’s fixed point theorem.
An example is given to illustrate the obtained theory.
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Introduction

D ifferential equations or inclusions with fractional order have recently proved to be strong
tools in the modeling of many phenomena in various fields of engineering, physics and

economics. As a consequence there was an intensive development of the theory of differential
equations and inclusions of fractional order. Due to this fact, the fractional order models are
capable to describe more realistic situation than the integer order models. Many articles have
been devoted to the existence of solutions for fractional differential equations and inclusions,
for example [3, 42, 125, 126].

In many cases, deterministic models often fluctuate due to environmental noise, which is
random or at least appears to be so. Therefore, we must move from deterministic problems
to stochastic ones. Taking the disturbances into account, the theory of differential equations
or inclusions has been generalized to stochastic case. The existence, uniqueness, stability, con-
trollability and other quantitative and qualitative properties of solutions of stochastic evolution
equations or inclusions have recently received a lot of attention (see [50, 82, 116, 76, 99, 101, 121]
and the references therein).

Fractional differential equations have been used in many field like fractals, chaos, electrical
engineering, medical science, etc. In recent years, we have seen considerable development on the
topics of fractional differential equations. For instance, we refer to the monographs of Abbas
et al. [1], Kilbas et al. [56], Miller and Ross [88], Podlubny [96], and the papers [5, 8, 126].

In particular, differential equations with impulsive conditions constitute an important field
of research due to their numerous applications in ecology, medicine, biology, electrical engineer-
ing and other areas of science. Many physical phenomena in evolution processes are modeled
as impulsive fractional differential equations and existence results for such equations have been
studied by several authors [25, 110, 124]. One of the important problems in the qualitative
theory of impulsive differential equations is the existence of almost periodic solutions. At the
present time, many results on the existence, uniqueness and stability of these solutions have
been obtained (see [7, 77, 112, 114] and the references therein). However, only few papers deal
with the existence of almost periodic solutions for impulsive fractional differential equations.
Recently, Debbouche et al. [28] studied the existence of almost periodic and optimal mild so-
lutions of fractional evolution equations with analytic semigroup in a Banach space. El Borai
et al. [31] established the existence and uniqueness of almost periodic solutions of a class of
nonlinear fractional differential equations with analytic semigroup in Banach space, and very
recently, Stamov et al. [115] studied the existence of almost periodic solutions for fractional
differential equations with impulsive effects. Due to the importance of stochastic approach, the
existence of almost periodic solutions for stochastic differential equations has been discussed
in [15, 20, 97]. The existence of almost periodic solutions for impulsive stochastic evolution
equations has been reported in [21, 78]. However, up to now the problem for the existence of
almost periodic solutions for impulsive fractional stochastic evolution equations have not been
considered in the literature. In order to fill this gap, one of the aims of this thesis is to study
the existence of square-mean piecewise almost periodic solutions of the impulsive fractional
stochastic differential equations.
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The fractional differential inclusions arise in the mathematical modeling of certain prob-
lems in economics, optimal controls, etc., so the problem of existence of solutions of fractional
differential inclusions has been studied by several authors for different kind of problems (see
[2, 3, 4, 79] and the references therein). In particular, delay fractional differential inclusions arise
in many physical and biological applications, but often demand the use of non-constant or state-
dependent delays. These inclusions are frequently called inclusions with state-dependent delay.
Recently, the analysis of fractional differential equations or inclusions with state-dependent
delay has received much attention [5]. Very recently, the existence of solutions to fractional dif-
ferential inclusions with state dependent delay has been established (see [14] and the references
therein).

The theory of differential inclusions has been generalized to stochastic functional differen-
tial inclusions (see [13] and the references therein). As the generalization of classical integro-
differential inclusions, neutral stochastic functional integro-differential inclusions have attracted
the researchers great interest, and some works have done on the existence results of mild so-
lutions for these equations (see [76] and the references therein). However, to the best of our
knowledge, it seems that little is known about fractional neutral stochastic integro-differential
inclusions, and our second aim of this thesis is to fill this gap. Recently, Yan and Zhang in [122]
studied the existence of mild solutions for a class of impulsive fractional partial neutral stochas-
tic integro-differential inclusions with state-dependent delay by using properties of the solution
operator and fixed point technique. Guendouzi et al. [37] investigated the existence of mild so-
lutions for a class of impulsive fractional stochastic differential inclusions with state-dependent
delay in Hilbert spaces. Sufficient conditions for the existence of solutions are derived by the
authors using the nonlinear alternative of Leray-Schauder type for multivalued maps due to
O’Regan. Motivated by the previously mentioned works [14, 37, 119, 122], in this thesis, we
also consider the existence of a class of fractional partial neutral stochastic integro-differential
inclusions with state-dependent delay.

On the other hand, controllability is one of the important fundamental concepts in math-
ematical control theory and plays an important role in both deterministic and stochastic con-
trol systems. Roughly speaking, controllability generally means that it is possible to steer
a dynamical control system from an arbitrary initial state to an arbitrary final state using
the set of admissible controls. Recently, controllability of stochastic dynamical control sys-
tems in infinite dimensional spaces is well-developed using different kind of approaches (see
[12, 27, 83, 99, 107, 108] and the references therein). It should be noted that it is generally
difficult to realize the conditions of exact controllability for infinite-dimensional systems and
thus the approximate controllability becomes a very important topic for dynamical systems.
At present, there are few works in approximate controllability problems for different kind of
systems described by fractional deterministic and stochastic differential equations such as work
done in [36, 102, 103, 123]. Recently, Sakthivel et al. [105] derived a new set of sufficient
conditions for approximate controllability of fractional stochastic differential equations. The
approximate controllability of neutral stochastic fractional integro-differential equation with
infinite delay in a Hilbert space has been studied in [106], and more recently, Guendouzi [36]
derived a set of sufficient conditions for the approximate controllability of impulsive fractional
stochastic system by using the Krasnoselskii’s fixed point theorem with stochastic analysis
theory.

However, to the best of our knowledge, it seems that little is known about approximate
controllability of fractional deterministic and stochastic differential inclusions, and the last aim
of this thesis is to close the gap. Yan et al. [119] studied the approximate controllability of par-
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tial fractional neutral stochastic functional integro-differential inclusions with state-dependent
delay. Sakthivel et al. [104] studied the approximate controllability for a class of fractional
nonlinear differential inclusions in Banach spaces. Inspired by the above mentioned works
[36, 104, 105, 106], in this thesis we will study the approximate controllability problem for a
class of fractional neutral stochastic functional integro-differential inclusions with infinite delay
in Hilbert spaces which are natural generalizations of controllability concepts well known in the
theory of infinite dimensional deterministic control systems.

The study of fractional stochastic differential equations, fractional stochastic functional
inclusion and their controllability problem have been the scene of intensive study, this is what
we will focus on in this thesis.

This thesis divided into four chapters. In the first one, we introduce the definitions, the basic
notation about the classical stochastic calculus, and we briefly recall some basic properties of
the Brownian motion in Hilbert space, then we discuss integration with respect to this process.
At the end of this chapter we will present the definitions and properties of semigroup. Secondly,
we will introduce and develop the concept of p-th mean almost periodicity. In particular, it
will be shown that each p-th mean almost periodic process defined on a probability space
(Ω,F ,P) is uniformly continuous and stochastically bounded [81]. Furthermore, the collection
of all p-th mean almost periodic processes is a Banach space when it is equipped with its
natural norm. Moreover, two composition results for p-th mean almost periodic processes are
established. These two resuts play a crucial role in the study of the existence (and uniqueness)
of p-th mean almost periodic solutions to various stochastic differential equations on Lp(Ω,H)
where H is a real separable Hilbert space. The third chapter is devoted to the controllability
theory. The main objective of this chapter is to review the major progress that has been made
on controllability of dynamical systems over the past number of years and present without
mathematical proofs a review of recent controllability problems for a wide class of dynamical
systems. In the last chapter which is the core of our present study, the first section is devoted
to give some basic definitions, notations and preliminary facts needed to establish our main
results, and we recall some results concerning fractional calculus. Then, we introduce some
basic definitions and results of multivalued maps. In the second section, we establish criteria
of the existence of square mean piecewise almost periodic solutions for impulsive fractional
stochastic differential equations and its exponential stability. In the third section, we give our
main results about the existence of solutions for a class of fractional partial neutral stochastic
integro-differential inclusions with state-dependent delay, an example is given to illustrate our
results. The fourth section in this chapter, is devoted to the existence results for fractional
neutral stochastic integro-differential inclusions with infinite delay and control. Precisely, we
study the approximate controllability for a class of fractional neutral stochastic functional
integro-differential inclusions under the assumption that the associated linear part of system is
approximately controllable. The application of our theoretical results is also given.



Chapter 1

Preliminary Background

In this chapter we summarize basic definitions and facts about real valued stochastic
processes and generalize some of these results to processes with values in Hilbert spaces. For
more detail we refer the reader to [73, 51, 46, 72, 35, 17, 26].

1.1 Notations and definitions
In this section the basic notations of the theory of stochastic calculus are considered. Let

(Ω,F ,P) be a complete probability space equipped with a normal filtration {Fs} satisfying the
usual conditions :

1. Fs =
⋂
t>sFt for all s ≥ 0;

2. All A ∈ F with P(A) = 0 are contained in Ft.

A family (x(t), t ≥ 0) of Rd-valued random variables on (Ω,F ,P) is called a stochastic
process, this process is adapted if all x(t) are Ft-measurable. Denoting B, the Borel σ-field on
[0,∞). The process x is measurable if (t, ω) 7→ x(t, ω) is a B

⊗
F -measurable mapping. We

say that (x(t), t ≥ 0) is continuous if the trajectories t 7→ x(t, ω) are continuous for all ω ∈ Ω.
One can show that a process is progressively measurable if it is right-continuous ([51], Prop.
1.13).

1.2 Brownian Motion
Brownian motion is a process of tremendous practical and theoretical significance. It

originated (a) as a model of the phenomenon observed by Robert Brown in 1828 that "pollen
grains suspended in water perform a continual swarming motion," and (b) in Bachelier’s (1900)
work as a model of the stock market. These are just two of many systems that Brownian motion
has been used to model. On the theoretical side, Brownian motion is a Gaussian Markov process
with stationary independent increments. It lies in the intersection of three important classes of
processes and is a fundamental example in each theory.

1.2.1 Definition of Brownian Motion (A standard one-dimensional)

A stochastic process is a measurable function x(t, w) defined on the product space [0,∞)×Ω.
In particular,

12
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(a) for each t, x(t, ·) is a random variable,

(b) for each w, x(·, w) is a measurable function (called a sample path).

For convenience, the random variable x(t, ·) will be written as x(t) or xt.
Thus a stochastic process x(t, w) can also be expressed as x(t)(w) or simply as x(t) or xt.

Definition 1.2.1. ([73]). A stochastic process B(t, w) is called a Brownian motion if it satisfies
the following conditions:

(1) P{w; B(0, w) = 0} = 1.

(2) For any 0 ≤ s < t, the random variable B(t)− B(s) is normally distributed with mean 0
and variance t− s, i.e., for any a < b,

P{a ≤ B(t)−B(s) ≤ b} =
1√

2Π(t− s)

∫ b

a

e−x
2/2(t−s)dx.

(3) B(t, w) has independent increments, i.e, for any 0 ≤ t1 < t2 < ... < tn, the random
variables B(t1), B(t2)−B(t1), ..., B(tn)−B(tn−1), are independent.

(4) Almost all sample paths of B(t, w) are continuous functions, i.e.,

P{w;B(·, w) is continuous} = 1.

Remark 1.2.1.1. • A Brownian motion is sometimes defined as a stochastic processB(t, w)
satisfying conditions (1), (2), (3) in Definition (1.2.1). Such a stochastic process always
has a continuous realization, i.e., there exists Ω0 such that P(Ω0) = 1 and for any
w ∈ Ω0, B(t, w) is a continuous function of t. This fact can be easily checked by ap-
plying the Kolmogorov continuity theorem. Thus condition (4) is automatically satisfied.

• A Brownian motion is also called a Wiener process since, it is the canoncial process defined
on the Wiener space.

1.2.2 Simple Properties of Brownian Motion

Let B(t) be a fixed Brownian motion. We give below some simple properties that follow
directly from the definition of Brownian motion.

• For any t > 0, B(t) is normally distributed with mean 0 and variance t. For any s, t ≥ 0,
we have E[B(s)B(t)] = min{s, t}.

• Translation invariance: For fixed t0 ≥ 0, the stochastic process B̃(t) = B(t+ t0)− B(t0)
is also a Brownian motion.

• Scaling invariance: For any real number λ > 0, the stochastic process B̃(t) = B(λt)/
√
λ

is also a Brownian motion.
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1.2.3 Quadratic Variation of Brownian Motion

The quadratic variation of Brownian motion [B,B](t) is defined as

[B,B](t) = [B,B]([0, t]) = lim
n∑
i=1

|B(tni −B(tni−1)|2, (1.1)

where the limit is taken over all shrinking partitions of [0, t], with δn = maxi(t
n
i+1 − tni ) as

n→∞. It is remarkable that although the sums in the definition (1.1) are random, their limit
is non-random, as the following result shows.

Proposition 1.2.1. Quadratic variation of a Brownian motion over [0, t] is t.

Proof. We refer the reader to [72].

1.2.4 Brownian paths

An occurrence of Brownian motion observed from time 0 to time T, is a random function
of t on the interval [0, T ]. It is called a realization, a path or trajectory.

Proposition 1.2.2. ([51]). A Brownian motion has its paths a.s. locally γ-Hölder continuous
for γ ∈ [0, 1/2).

Proposition 1.2.3. ([51]). The Brownian motion’s sample paths are a.s. nowhere differen-
tiable.

1.2.5 Three Martingales of Brownian Motion

Three main martingales associated with Brownian motion are given.

Definition 1.2.2. A stochastic process {x(t), t ≥ 0} is a martingale if for any t it is integrable,
E|x(t)| <∞, and for any s > 0

E(x(t+ s)\Ft) = x(t), a.s.

where Ft is the information about the process up to time t, and the equality holds almost surely.

The martingale property means that if we know the values of the process up to time t, and
x(t) = x then the expected future value at any future time is x.

Proposition 1.2.4. ([72]). Let B(t)t∈R+ be Brownian Motion. Then

1. B(t) is a martingale.

2. B2(t)− t is a martingale.

3. For any u, euB(t)−u
2

2
t is a martingale.

Proof. We refer the reader to [72].
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1.2.6 Markov Property of Brownian Motion

The Markov Property states that if we know the present state of the process; then the
future behaviour of the process is independent of its past. The process x(t) has the Markov
property if the conditional distribution of x(t+ s) given x(t) = x, does not depend on the past
values (but it may depend on the present value x). The process "does not remember" how it
got to the present state x. Let Ft denote the σ-field generated by the process up to time t.

Definition 1.2.3. x is a Markov process if for any t and s > 0, the conditional distribution of
x(t+ s) given Ft is the same as the conditional distribution of x(t+ s) given x(t), that is,

P (x(t+ s) ≤ y \ Ft) = P (x(t+ s) ≤ y \ x(t)), a.s. (1.2)

Theorem 1.2.1. Brownian motion B(t) possesses Markov property.

Proof. We refer the reader to [72].

1.3 Stochastic Integration with respect to Brownian Mo-
tion

1.3.1 Motivation

In applications, it is typical to characterize the current state of a physical system by a real
function of time x(t), t ≥ 0, called the state. Generally, the behavior of a physical system based
on an input w(t) for t ≥ 0, can be specified by a differential equation of the form

dx(t)

dt
= µ(x(t)) + σ(x(t))w(t), t ≥ 0, (1.3)

where the functions µ and σ depend on the system properties. In classical analysis, the study
of the solutions of such an equation is based on the assumptions that the system properties
and the input are perfectly known and deterministic.

Here, we generalize Eq.(1.3) by assuming that the input is a real stochastic process. Because
the input is random, the state becomes a real stochastic process.

Now, let x denote the solution of (1.3) with w replaced by a stochastic process Z. It is custom-
ary to assume that Z is a "white noise" process for which E[Z(t)] = 0 and Cov(Z(s), Z(t)) = 1
if s = t and is zero otherwise. It is important to note that for t1 < t2 < t3,

Cov

[ ∫ t2

t1

Z(s)ds,

∫ t2

t1

Z(s)ds

]
= 0 (1.4)

whereas

V ar

[ ∫ t

0

Z(s)ds

]
= t. (1.5)

The Gaussian white noise process is often used. Such a stochastic process {Z(t), t ∈ R} has
irregular sample paths and is very difficult to work with directly. As a result, it is easier to
work with its integral. This suggests writing (1.3) in the form

x(t) = x(0) +

∫ t

0

µ(x(s))ds+

∫ t

0

σ(x(s))Z(s)ds. (1.6)



1.3.2 Itô integrals 16

In this integrated version, we need to make mathematical sense of the stochastic integral in-
volving the integrator Z(s)ds. From a notational standpoint, it is common to write

dx(t) = µ(x(t))dt+ σ(x(t))Z(t)dt. (1.7)

Note that given a Brownian motion B, it is not difficult to verify that

Cov

[
B(t2)−B(t1), B(t3)−B(t2)

]
= 0 and V ar

[
B(t)−B(0)

]
= t.

Given the similarity with (1.4) and (1.5), the latter hints that B can be viewed as integrated
white noise so that we can rigorously define

∫ t
0
Z(t)dt to be B(t). This is quite an oversimplifi-

cation. To write B(t) =
∫ t

0
Z(t)dt would require that B is differentiable almost everywhere (in

time t). Unfortunately, this is not the case: B is non differentiable at t. This oversimplification
comes from the fact that white noise does not exist as a well-defined stochastic process. On
the other hand, Brownian motion is well defined, so this suggests that we should replace (1.6)
with

x(t) = x0 +

∫ t

0

µ(x(s))ds+

∫ t

0

σ(x(s))dB(s). (1.8)

and (1.7) with

dx(t) =

{
µ(x(t))dt+ σ(x(t))dB(t)
x(0) = x0.

(1.9)

Note that in (1.6), the integral
∫ t

0
µ(x(s))ds can be defined via a standard Riemann approxi-

mation. On the other hand,
∫ t

0
σ(x(s))dB(s) must be defined differently since the integrator is

a non differentiable stochastic process.
This leads us to outline the construction of the so-called Itô integral.

1.3.2 Itô integrals

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and let B = {B(t), t ≥ 0} be a one
dimensional Brownian motion defined on this space.

Definition 1.3.1. Let 0 ≤ S < T < ∞. Denote by V ([S, T ];R) the space of all real valued
measurable (Ft)-adapted processes Φ = {Φ(t), t ≥ 0} such that

‖Φ‖2
V = E

[ ∫ T

S

|Φ(t)|2dt
]
<∞.

We identify Φ and Φ in V ([S, T ];R) if ‖Φ−Φ‖2
V = 0. In this case we say that Φ and Φ are

equivalent and we write Φ = Φ.
The space V ([S, T ];R) equipped with the norm‖ · ‖V is a Banach space. Furthermore,

without loss of generality we may assume that every stochastic process Φ ∈ V ([S, T ];R) is
predictable.

Since full details on the construction of the Itô integral
∫ T
S

Φ(t)dB(t) for stochastic processes
Φ ∈ V ([S, T ];R) can be found in either [90], here we shall outline only its construction. The
idea of construction is as follows. First define the integral

∫ T
S

Ψ(t)dB(t) for a class of simple
processes Ψ then we show that each Φ ∈ V ([S, T ];R) can be approximated by such simple
processes Ψ′s and we define the limit of

∫ T
S

Ψ(t)dB(t) as the integral
∫ T
S

Φ(t)dB(t).
Let us first introduce the concept of simple stochastic processes.
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Definition 1.3.2. A stochastic process Ψ ∈ V ([S, T ];R) is called simple if it is of the form

Ψ(w, t) = α0(w)1[t0,t1)(t) +
k−1∑
i=0

αi(w)1[ti,ti+1)(t),

with a partition S = t0 < t1 < ... < tk = T of [S, T ] and bounded Fti-measurable random
variables αi, 0 ≤ i ≤ k − 1.

For any simple stochastic process Ψ ∈ V ([S, T ];R) we define∫ T

S

Ψ(t)dB(t) :=
k−1∑
i=0

αi[B(ti+1)−B(ti)].

Obviously, the integral
∫ T
S

Ψ(t)dB(t) is a well-defined random variable. Moreover, the following
properties hold:

E
[ ∫ T

S

Ψ(t)dB(t)

]
= 0, (1.10)

E
∣∣∣∣ ∫ T

S

Ψ(t)dB(t)

∣∣∣∣2 =

∫ T

S

E|Ψ(t)|2dt.

Also, for any simple stochastic processes Ψ1,Ψ2 ∈ V ([S, T ];R) and c1, c2 ∈ R, we have∫ T

S

[c1Ψ1(t) + c2Ψ2(t)]dB(t) = c1

∫ T

S

Ψ1(t)dB(t) + c2

∫ T

S

Ψ2(t)dB(t)

We can now extend the Itô integral from simple stochastic processes to stochastic processes in
V ([S, T ];R). This is based on the following approximation result.

Lemma 1.3.1. ([17]). For any Φ ∈ V ([S, T ];R), there exists a sequence (Ψn) of simple stochas-
tic processes such that

lim
n→∞

∫ T

S

E|Φ(t)−Ψn(t)|2dt = 0.

We are now prepared to outline the construction of the Itô integral for a stochastic process
Φ ∈ V ([S, T ];R). By Lemma (1.3.1), there is a sequence (Ψn) of simple stochastic processes
such that

lim
n→∞

∫ T

S

E|Φ(t)−Ψn(t)|2dt = 0.

Thus, by property (1.10),

E
∣∣∣∣ ∫ T

S

Ψn(t)dB(t)−Ψm(t)dB(t)

∣∣∣∣2 =

∫ T

S

E|Ψn(t)−Ψm(t)|2dt→ 0 as m,n→∞.

Hence, the sequence
{∫ T

S
Ψn(t)dB(t), n ≥ 1

}
is a Cauchy sequence in L2(Ω;R) which, in turn,

implies that it is convergent. This leads us to the following definition.



1.4 Stochastic Calculus in a Hilbert Space 18

Definition 1.3.3. ([17]). Let Φ ∈ V ([S, T ];R). The Itô integral Φ with respect to (B(t)) is
defined by ∫ T

S

Φ(t)dB(t) = lim
n→∞

∫ T

S

Ψn(t)dB(t) in L2(Ω;R),

where (Ψn) is a sequence of simple stochastic processes such that

lim
n→∞

E
[ ∫ T

S

|Φ(t)−Ψn(t)|2dt
]

= 0.

It is important to note that this integral does not depend on the choice of approximating
sequence.

The main properties of the Itô integral

Proposition 1.3.1. ([17]). Let Φ,Ψ be stochastic processes in V ([S, T ];R), and let 0 ≤ S <
U < T. Then

(a) E
[ ∫ T

S
Φ(t)dB(t)

]
= 0;

(b) E
∣∣∣∣ ∫ TS Φ(t)dB(t)

∣∣∣∣2 =
∫ T
S
E|Φ(t)|2dt (Itô Isometry);

(c)
∫ T
S

(cΨ(t) + Ψ(t))dB(t) = c
∫ T
S

Ψ(t)dB(t) +
∫ T
S

Ψ(t)dB(t) (c constant);

(d)
∫ T
S

Φ(t)dB(t) =
∫ U
S

Φ(t)dB(t) +
∫ T
U

Φ(t)dB(t)

(e)
∫ T
S

Φ(s)dB(s) is FT -measurable.

1.4 Stochastic Calculus in a Hilbert Space
In the previous section, we presented the elements of Stochastic Calculus for real stochastic

processes. These elements are also valid for stochastic processes taking their values in a sepa-
rable Hilbert space. However, the extensions can be connected with some difficulties when we
would be interested, for instance, in analytical properties of sample paths of such processes.

Of interest to us will be operator-valued random variables and their integrals. Let K and
H be two separable Hilbert spaces with norms ‖ · ‖K, ‖ · ‖H and inner products 〈·, ·〉K, 〈·, ·〉H,
respectively. From now on, without further specification we always use the same symbol ‖ · ‖
to denote norms of operators regardless of the spaces involved when no confusion is possible.

1.4.1 Operator valued random variables

Of great interest to us will be operator valued random variables and their integrals. Let K
and H be two separable Hilbert spaces and denote by L = L(K,H) the set of all linear bounded
operators from K into H. The set L is a linear space and, equipped with the operator norm,
becomes a Banach space. However, if both spaces are infinite dimensional, then L is not a
separable space. To see this we can assume that K = H = L2(R1). Define for arbitrary t ∈ R1

the isometry M(t) from H onto H

M(t)x(z) = x(z + t), z ∈ R1, x ∈ H. (1.11)
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Assume that t > s, x ∈ H, then

|(M(t)−M(s))x| = |M(s)(M(t− s)x− x)| = |M(t− s)x− x|.

If x ∈ H has support in the interval ((s−t)/2, (t−s)/2) then the functions x andM(t−s)x have
disjoint supports and therefore |(M(t)−M(s))x|2 = 2|x|2. Consequently ‖M(t)−M(s)‖ ≥

√
2

and L = L(H,H) is not separable.
The nonseparability of L has several consequences. First of all the corresponding Borel

σ-field B(L) is very rich, to the extent that very simple L-valued functions turn out to be
nonmeasurable. In particular, the function M(.) defined by (1.11), considered as a mapping
from (R1,B(R1)) into (L,B(L)), is not measurable. To see this fix a non-Borel subset µ of R1

and define an open subset D of L by the formula

D = {G ∈ L : ‖G−M(t)‖ <
√

2/2, for some t ∈ Γ}.

Since {t ∈ R1 : M(t) ∈ D} = Γ, therefore M(.) cannot be measurable.
The lack of separability of L implies also that Bochner’s definition cannot be applied directly

to the L-valued functions. To overcome these difficulties it is convenient to introduce a weaker
concept of measurability

A function Φ(.) from Ω into L is said to be strongly measurable if for arbitrary u ∈ K the
function Φ(.)K is measurable as a mapping from (Ω,F) into (H,B(H)). Let L be the smallest
σ-field of subsets of L containing all sets of the form

{Φ ∈ L : Φu ∈ A}, u ∈ K, A ∈ B(H),

then Φ : Ω→ L is a strongly measurable mapping from (Ω,F) into (L,L ). Elements of L are
called strongly measurable. If P is a nonnegative (and not necessarily a normalized) measure
on F then Φ is said to be Bochner integrable if for arbitrary u the function Φ(.)u is Bochner
integrable and there exists a bounded linear operator Ψ ∈ L(K, H) such that∫

Ω

Φ(w)uP(dw) = Ψu, ∀u ∈ K.

The operator Ψ is then denoted as

Ψ =

∫
Ω

Φ(w)P(dw)

and is called the strong Bochner integral of Φ. If K and H are separable then ‖Φ(.)‖ is a
measurable function and

‖Ψ‖ ≤
∫

Ω

‖Φ(w)‖P(dw).

It is obvious that the functionM(.) defined by (1.11) is Bochner integrable over arbitrary finite
interval [0, T ] and that ∥∥∥∥∫ T

0

M(t)dt

∥∥∥∥ ≤ ∫ T

0

‖M(t)‖dt.

If we restrict our investigation to smaller spaces-the space L1(K,H) of all nuclear operators
from K into H or the space L2(K,H) of all Hilbert-Schmidt operators from K into H-then
the non measurability problem mentioned above does not appear. See Appendix A for basic
definitions and properties of nuclear and Hilbert-Schmidt operators. This is because the spaces
L1(K,H) and L2(K,H) are separable Banach spaces (L2(K,H) is a Hilbert space). It is useful
to note that L1(K,H) and L2(K,H) are strongly measurable subsets of L(K,H).

We will need the following result on measurable decomposition of a L1(K,K) = L1(K)
valued random variable.
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Proposition 1.4.1. ([26]). Let K be a separable Hilbert space and assume that Φ is an
(L1(K),B(L1(K))) random variable on (Ω,F) such that Φ(w) is a nonnegative symmetric op-
erator for all w ∈ Ω. Then there exists a decreasing sequence {λn} of nonnegative random
variables and a sequence {gn} of K-valued random variables such that 1

Φ(w) =
∞∑
n=1

λn(w)gn(w)⊗ gn(w),

for w ∈ Ω. Moreover the sequences {λn} and {gn} can be chosen in such a way that

|gn(w)| =
{

1 if λn(w) > 0
0 if λn(w) = 0

(1.12)

and
〈gn(w), gm(w)〉 = 0, ∀n 6= m and ∀w ∈ Ω. (1.13)

Note that, since for each w the operator Φ(w) is compact and nonnegative, there exists a de-
creasing sequence {λn(w)} of real numbers and a sequence {gn(w)} in K such that (1.12−1.13)
hold.

If X, Y ∈ L2(Ω,F ,P;H) and H is a Hilbert space, with inner product 〈., .〉, we define the
covariance operator of X and the correlation operator of (X, Y ) by the formulae

Cov(X) = E(X − E(X))⊗ (X − E(X))),

and
Cov(X, Y ) = E[(X − E(X))⊗ (Y − E(Y ))].

Cov(X) is a symmetric positive and nuclear operator (see Appendix A) and

Tr[Cov(X)] = E(|X − E(X)|2).

In fact if {ek} is a complete orthonormal basis in H and, for simplicity, E(X) = 0, we have

Tr[Cov(X)] =
∞∑
h=1

〈Cov(X)eh, eh〉

+
∞∑
h=1

∫
Ω

|〈X(w), eh〉|2P(dw) = E|X|2.

1.4.2 Probability measures on Hilbert spaces

A probability measure µ on (H,B(H)) is called Gaussian if for arbitrary h ∈ H there exist
m ∈ R1, q ≥ 0 such that,

µ({x ∈ H; 〈h, x〉 ∈ A}) = N (m, q)(A), ∀A ∈ B(R1).

In particular, if µ is Gaussian, the following functionals,

H → R1, h→
∫
H

〈h, x〉µ(dx), (1.14)

1For arbitrary a, b ∈ H we denote by a⊗ b the linear operator defined by (a⊗ b)h = a〈b, h〉, h ∈ H.
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H×H → R1, (h1, h2)→
∫
H

〈h1, x〉〈h2, x〉µ(dx), (1.15)

are well defined. We show now that they are continuous. We need a lemma on general proba-
bility measures.

Lemma 1.4.1. ([26]). Let ν be a probability measure on (H,B(H)). Assume that for some
k ∈ N ∫

H

|〈z, x〉|kν(dx) < +∞, ∀z ∈ H,

then there exists a constant c > 0 such that∣∣∣∣ ∫
H

〈h1, x〉...〈hk, x〉ν(dx)

∣∣∣∣ ≤ c|h1|...|hk|, h1...hk ∈ H.

For a proof, see, e.g., Da Prato and Zabczyk [26].
It follows from the lemma that if µ is Gaussian, then there exist an element m ∈ H and a

linear operator Q, such that ∫
H

〈h, x〉µ(dx) = 〈m,h〉, ∀h ∈ H, (1.16)∫
H

〈h1, x−m〉〈h2, x−m〉µ(dx) = 〈Qh1, h2〉, ∀h1, h2 ∈ H. (1.17)

The vector m is called the mean and Q is called the covariance operator of µ. It is clear that
the operator Q is symmetric. Moreover, since

〈Qh, h〉 =

∫
H

〈h, x−m〉2µ(dx) ≥ 0, h ∈ H,

it is also nonnegative. It follows from (1.16) − (1.17) that a Gaussian measure µ on H with
mean m and covariance Q has the following characteristic functional

µ̂(λ) =

∫
H

ei〈λ,x〉µ(dx) = ei〈λ,m〉−
1
2
〈Qλ,λ〉, λ ∈ H.

It is therefore uniquely determined by m and Q. It is denoted by N (m,Q).
It turns out that the covariance operator has to be nuclear (see Appendix A for the definition

and basic properties).

Proposition 1.4.2. ([26]). Let µ be a Gaussian probability measure with mean 0 and covariance
Q. Then Q has finite trace.

For a proof, see, e.g., Da Prato and Zabczyk [26].
In the following considerations we denote by {ek} a complete orthonormal basis on H

which diagonalizes Q, and by {λk} the corresponding set of eigenvalues of Q. Moreover, for
any x ∈ H we set xk = 〈x, ek〉, k ∈ N. Note that the random variables x1, x2, ..., xn are
independent, because the covariance matrix of the Rn-valued random variable (x1, x2, ..., xn) is
precisely (λiδij).

Proposition 1.4.3. ([26]). Let Q be a positive, symmetric, trace class operator in H and let
m ∈ H. Then there exists a Gaussian measure in H with mean m and covariance Q.

Proof. We refer the reader to [26].
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1.4.3 Wiener Process and Stochastic Integrals in a Hilbert Space

Hilbert Space valued Wiener Processes

Assume that K is a separable Hilbert space, with the inner product 〈·, ·〉K, and W is a
K-valued Wiener process. Then, for each u ∈ K, the process

〈W (t), u〉, t ≥ 0,

is a real valued Wiener process. This implies in particular that L(W (t)) is a Gaussian measure
with mean vector 0. Note also that for arbitrary u, v ∈ K, t, s ≥ 0,

E[〈W (t), u〉〈W (s), u〉] = t ∧ sE[〈W (1), u〉2]

and
E[〈W (t), u〉〈W (s), u〉] = t ∧ sE[〈W (1), u〉〈W (1), v〉] = t ∧ s〈Qu, v〉,

where Q is the covariance operator of the Gaussian measure L(W (1)), see Subsection 1.4.2.
The operator Q is of trace class and it completely characterizes distributions of W .

Let Q be a trace class nonnegative operator on a Hilbert space K.

Definition 1.4.1. A K-valued stochastic process W (t), t ≥ 0, is called a Q-Wiener process if

1. W (0) = 0,

2. W has continuous trajectories,

3. W has independent increments,

4. L (W (t)−W (s)) = N (0, (t− s)Q), t ≥ s ≥ 0.

Note that there exists a complete orthonormal system {ek} in K and a bounded sequence
of nonnegative real numbers {λk} such that

Qek = λkek, k ∈ N.

and

TrQ =
∞∑
i=1

λi <∞.

Proposition 1.4.4. ([26]). Assume that W (t) is a Q-Wiener process. Then the following
statements hold.

(i) W is a Gaussian process on K and

E(W (t)) = 0, Cov(W (t)) = tQ, t ≥ 0.

(ii) For arbitrary t ≥ 0, W has the expansion

W (t) =
∞∑
j=1

√
λjwj(t)ej

where
wj(t) =

1√
λj
〈W (t), ej〉, j ∈ N,

are real valued Brownian motions mutually independent on (Ω,F , P ) .



1.4.3 Wiener Process and Stochastic Integrals in a Hilbert Space 23

For a proof, see, e.g., Da Prato and Zabczyk [26].

Proposition 1.4.5. ([26]). For any trace class symmetric nonnegative operator Q on a sepa-
rable Hilbert space K there exists a Q-Wiener process W (t), t ≥ 0.

For a proof, see, e.g., Da Prato and Zabczyk [26].
In case the time set is R,W can be obtained as follows: let {Wi(t), t ∈ R}, i = 1, 2, be

independent K-valued Q-Wiener processes, then

W (t) =

{
W1(t), if t ≥ 0,
W2(−t), if t ≤ 0.

is a Q-Wiener process with R as time parameter and with values in K.

Stochastic Integrals in a Hilbert Space

In order to define stochastic integrals with respect to the Q-Wiener processW , we introduce
the subset K0 = Q

1
2K, which is a Hilbert space equipped with the norm

‖u‖K0 = ‖Q
1
2u‖K, u ∈ K0,

and define a proper space of operators

L2
0 = L2

0(K0,H) = {ψ ∈ L(K0,H) : Tr[(ψQ
1
2 )(ψQ

1
2 )∗] <∞},

the space of all Hilbert-Schmidt operators from K0 into H. It turns out that L2
0 is a separable

Hilbert space with norm

‖ψ‖2
L2
0

= Tr[(ψQ
1
2 )(ψQ

1
2 )∗] for anyψ ∈ L2

0.

Clearly, for any bounded linear operator ψ ∈ L(K,H), this norm reduces to

‖ψ‖2
L2
0

= Tr[ψQψ∗].

For any T ≥ 0, let Φ = {Φ(t), t ∈ [0, T ]}, be an Ft-adapted, L2
0-valued process, and for any

t ∈ [0, T ], define the following norm:

‖Φ‖t =

{
E
∫ t

0

Tr[(ΦQ
1
2 )(ΦQ

1
2 )∗]ds

} 1
2

.

In general, we denote all L2
0-valued predictable processes Φ such that ‖Φ‖T <∞ by U2([0, T ], L2

0).
The stochastic integral

∫ t
0

Φ(s)dW (s) ∈ H may be well defined for all Φ ∈ U2([0, T ], L2
0) by∫ t

0

Φ(s)dW (s) = L2 − lim
n→∞

n∑
j=0

∫ t

0

Φ(s)
√
λjejdwj(s), t ∈ [0, T ],

where W is the Q-Wiener process defined above.

Proposition 1.4.6. For arbitrary T > 0, let Φ ∈ U2([0, T ], L2
0). Then the stochastic integral∫ t

0
Φ(s)dW (s) is a continuous, square integrable, H-valued martingale on [0, T ] and

E‖
∫ t

0

Φ(s)dW (s)‖2
H = ‖Φ‖2

t , t ∈ [0, T ]. (1.18)
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In fact, the stochastic integral
∫ t

0
Φ(s)dW (s), t ≥ 0 may be extended to any L2

0-valued
adapted process Φ satisfying

P
{
w :

∫ t

0

‖Φ(w, s)‖2
L2
0
ds <∞, 0 ≤ t ≤ T

}
= 1

Moreover, we may deduce the following generalized relation of (1.18):

E‖
∫ t

0

Φ(t)dW (s)‖2
H ≤ E

∫ t

0

‖Φ(s)‖2
L2
0
ds, 0 ≤ t ≤ T. (1.19)

Note that the equality holds if the right-hand side of this inequality is finite.
The following proposition is a particular case of the Burkholder-Davis-Gundy inequality.

Proposition 1.4.7. For any p ≥ 2 and for arbitrary L2
0-valued predictable process Φ(t), t ∈

[0, T ], one has

E
[

sup
s∈[0,t]

‖
∫ s

0

Φ(s)dW (s)‖p
]
≤ CpE

[ ∫ t

0

‖Φ(s)‖2
L2
0
ds

]p/2
. (1.20)

for some constant Cp > 0.

For a proof, see, e.g., Da Prato and Zabczyk [26].

1.4.4 GeneralizedWiener processes and Stochastic Integrals in a Hilbert
Space

Generalized Wiener processes on a Hilbert space

Let W (t), t ≥ 0, be a Wiener process on a Hilbert space K and let Q be its covariance
operator. For each a ∈ K define a real valued Wiener process Wa(t), t ≥ 0, by the formula

Wa(t) = 〈a,W (t)〉, t ≥ 0. (1.21)

The transformation a→ Wa is linear from K to the space of stochastic processes. Moreover it
is continuous in the following sense:

t ≥ 0, {an} ⊂ K, lim
n→∞

an = a⇒ lim
n→∞

E|Wa(t)−Wan(t)|2 = 0. (1.22)

Any linear transformation a → Wa whose values are real valued Wiener processes on [0,+∞)
satisfying (1.22) is called a generalized Wiener process.

From this definition it follows that there exists a bilinear form K(a, b), a, b ∈ K, such that

E[Wa(t)Wb(s)] = t ∧ sK(a, b), t, s ≥ 0, a, b ∈ K. (1.23)

Condition (1.22) easily implies that K is a continuous bilinear form in K and therefore there
exists Q ∈ L(K) such that

E[Wa(t)Wb(s)] = t ∧ s〈Qa, b〉, t, s ≥ 0, a, b ∈ K. (1.24)

The operator Q is self-adjoint and positive definite; we call it the covariance of the generalized
Wiener process a → Wa. If the covariance Q is the identity operator I then the generalized
Wiener process is called a cylindrical Wiener process in K.
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Denote by K0 the image Q1/2(K) with the induced norm. We call Q1/2(K) the reproducing
kernel (see Appendix B) of the generalized Wiener process a→ Wa.

It is easy to construct, for an arbitrary self-adjoint and positive definite operator Q, a
generalized Wiener process a → Wa satisfying (1.24). Let in fact {ej} be a complete and
orthonormal basis in K and {wj} a sequence of independent real valued standard Wiener
processes. Define

Wa(t) =
∞∑
j=1

〈Q1/2ej, a〉wj(t), t ≥ 0, a ∈ K. (1.25)

Since
∞∑
j=1

|〈Q1/2ej, a〉|2 = |Q1/2a|2 < +∞, (1.26)

for each a ∈ K there exists a version of Wa which is a Wiener process. Since

E[Wa(t)Wb(s)] = (t ∧ s)
∞∑
j=1

〈Q1/2ej, a〉〈Q1/2ej, b〉 = (t ∧ s)〈Qa, b〉, (1.27)

the result follows.

Proposition 1.4.8. ([26]). Let K1 be a Hilbert space such that K0 = Q1/2(K) is embedded into
K1 with a Hillbert-Schmidt embedding J. Then the formula

W (t) =
∞∑
j=1

Q1/2ejwj(t), t ≥ 0,

defines a K1-valued Wiener process. Moreover, if Q1 is the covariance of W then the spaces
Q

1/2
1 (K1) and Q1/2(K) are identical.

Proof. We refer the reader to [26].
Thus with some abuse of language we can say that an arbitrary generalized Wiener process

on K is a classical Wiener process in some larger Hilbert space K1.

Stochastic integral for generalized Wiener processes

The construction of the stochastic integral required the assumption that Q was a nuclear
operator; only then does the Q-Wiener process have values in K.We can, however, easily extend
the definition of the integral to the case of generalized Wiener processes with a covariance
operator Q not necessarily of trace class. One can perform this in several equivalent ways. The
following simple proposition plays an important role in these extensions. As before we denote
by K0 = Q1/2(K) (with the induced norm ‖u‖0 = ‖Q−1/2(u)‖, u ∈ K0) the reproducing kernel
of W (see Appendix B). We shall use again the notation,

L2
0 = L2(K0,H).

Proposition 1.4.9. ([26]). Assume that Z is a K-valued random variable with mean 0 and
covariance Q and that R is a Hilbert-Schmidt operator from K0 into H. If {Rn} ⊂ L2(K0,H)
is such that

lim
n→∞

‖R−Rn‖L2(K0,H) = 0,

there exists a random variable RZ such that

lim
n→∞

E‖RZ −Rn Z‖2
L2(K0,H) = 0.

RZ is independent of the sequence {Rn}.
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Proof. We refer the reader to [26].
If now Wa, a ∈ K, is a generalized Wiener process with covariance Q, then by Proposition

1.4.8 there exists a sequence {wj} of independent Wiener processes and an orthonormal basis
{ej} in K such that

Wa(t) =
∞∑
j=1

〈a,Q1/2ej〉wj(t), a ∈ K, t ≥ 0.

Moreover the formula

W (t) =
∞∑
j=1

Q1/2ejwj(t), t ≥ 0,

defines a Wiener process on any Hilbert space K1 ⊃ K0 with Hilbert-Schmidt embedding. If
Φ ∈ L2

0 then the random variables ΦW (t), t ≥ 0, described in Proposition 1.4.9, are given by
the formula,

ΦW (t) =
∞∑
j=1

ΦQ1/2ejwj(t), t ≥ 0,

and in particular we have
Wa(t) = 〈a,W (t)〉, t ≥ 0.

Thus the construction of the stochastic integral∫ t

0

Φ(s)dW (s), t ≥ 0,

can be done as in the case when TrQ < +∞. It is enough to take into account that random
variables of the form

Φtj(Wtj+1
−Wtj),

are defined in a unique way provided Φtj ∈ L2
0. The basic formula

E
∣∣∣∣ ∫ t

0

Φ(s)dW (s)

∣∣∣∣2 = E
(∫ t

0

‖Φ(s)‖2
L2
0
ds

)
, t ≥ 0, (1.28)

remains the same.
Equivalently one can repeat the definition of the stochastic integral for a K1-valued Wiener

processW determined byWa, a ∈ K. Again, the space of integrands and formula (1.28) remain
the same.

1.4.5 Stochastic Fubini theorem

Let (E, ξ) be a measurable space and let Φ(t, w, x)→ ϕ(t, w, x) be a measurable mapping
from (ΩT ×E,PT ×B(E)) into (L2

0,B(L2
0)). Thus, in particular, for arbitrary x ∈ E, Φ(·, ·, x)

is a predictable L2
0-valued process. Let in addition µ be a finite positive measure on (E, ξ).

The following stochastic version of the Fubini theorem will be frequently used. It generalizes
a similar result due to [22], see [49] for the finite dimensional case. (Sometimes to simplify
notation we will not indicate the dependence of Φ on w)

Theorem 1.4.1. ([26]). Assume that (E, ξ) is a measurable space and let

Φ : (t, w, x)→ Φ(t, w, x)
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be a measurable mapping from (ΩT ×E,PT ×B(E)) into (L2
0,B(L2

0)). Assume moreover that∫
E

‖Φ(·, ·, x)‖Tµ(dx) < +∞

then P-a.s.

∫
E

[ ∫ T

0

Φ(t, x)dW (t)

]
µ(dx) =

∫ T

0

[ ∫
E

Φ(t, x)µ(dx)

]
dW (t).

Proof. We refer the reader to [26].

1.5 Elements of Semigroup Theory
In this section we review the fundamentals of semigroup theory and refer the reader to [35].
Let (X, ‖.‖X) and (Y, ‖.‖Y ) be Banach spaces. Denote by L(X, Y ) the family of bounded

linear operators from X to Y . L(X, Y ) becomes a Banach space when equipped with the norm

‖T‖L(X,Y ) = sup
x∈X,‖x‖X=1

‖Tx‖Y , T ∈ L(X, Y ).

For brevity, L(X) will denote the Banach space of bounded linear operators on X.
The identity operator on X is denoted by I.
Let X∗ denote the dual space of all bounded linear functionals x∗ on X. X∗ is again a

Banach space under the supremum norm

‖x∗‖X∗ = sup
x∈X,‖x‖X=1

|〈x, x∗〉|,

where 〈·, ·〉 denotes the duality on X ×X∗.
For T ∈ L(X, Y ), the adjoint operator T ∗ ∈ L(Y ∗, X∗) is defined by

〈x, T ∗y∗〉 = 〈Tx, y∗〉, x ∈ X, y∗ ∈ Y ∗.

Definition 1.5.1. A family S(t) ∈ L(X), t ≥ 0, of bounded linear operators on a Banach space
X is called a strongly continuous semigroup (or a C0-semigroup, for short) if

1. S(0) = I,

2. (Semigroup property) S(t+ s) = S(t)S(s) for every t, s ≥ 0,

3. (Strong continuity property) limt→0+ S(t)x = x for every x ∈ X.

Let S(t) be C0-semigroup on a Banach space X. Then, there exist constants α ≥ 0 and
M ≥ 1 such that

‖S(t)‖L(X) ≤Meαt, t ≥ 0 (1.29)

• If M = 1, then S(t) is called a pseudo-contraction semigroup.

• If α = 0, then S(t) is called uniformly bounded, and if α = 0 andM = 1 (i.e,‖S(t)‖L(X) ≤ 1),
then S(t) is called a semigroup of contractions.

• If for every x ∈ X, the mapping t → S(t)x is differentiable for t > 0, then S(t) is called a
differentiable semigroup.
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• A semigroup of linear operators {S(t), t ≥ 0} is called compact if the operators S(t), t > 0,
are compact

Definition 1.5.2. A semigroup S(t) on x is called analytic whenever t → T (t) is analytic in
(0,∞) with values in L(x).

Definition 1.5.3. Let S(t) be a C0-semigroup on a Banach space X. The linear operator A
with domain

D(A) =

{
x ∈ X : lim

t→0+

S(t)x− x
t

exists

}
defined by

Ax = lim
t→0+

S(t)x− x
t

is called the infinitesimal generator of the semigroup S(t).

Theorem 1.5.1. Let A be an infinitesimal generator of a C0-semigroup S(t) on a Banach space
X. Then

1. For x ∈ X,

lim
h→0

1

h

∫ t+h

t

S(t)xds = S(t)x.

2. For x ∈ D(A), S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax

3. For x ∈ X,
∫ t

0
S(s)xds ∈ D(A), and

A

(∫ t

0

S(s)xds

)
= S(t)x− x.

4. If S(t) is differentiable then for n = 1, 2, ..., S(t) : X → D(An) and

S(n)(t) = AnS(t) ∈ L(X).

5. If S(t) is compact then S(t) is continuous in the operator topology for t > 0, i.e.,

lim
s→t,s,t>0

‖S(s)− S(t)‖L(X) = 0.

6. For x ∈ D(A),

S(t)x− S(s)x =

∫ t

s

S(u)Axdu =

∫ t

s

AS(u)xdu

7. D(A) is dense in X, and A is a closed linear operator.

8. The intersection
⋂∞
n=1D(An) is dense in X.

9. Let X be a reflexive Banach space. Then the adjoint semigroup S(t)∗ of S(t) is a C0-
semigroup whose infinitesimal generator is A∗, the adjoint of A.
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If X = H, a real separable Hilbert space, then for h ∈ H, define the graph norm

‖h‖D(A) = (‖h‖2
H + ‖Ah‖2

H)
1
2 .

Then (D(A), ‖ · ‖D(A)) is a real separable Hilbert space.

Let B(H) denote the Borel σ-field on H. Then D(A) ∈ B(H), and

A : (D(A),B(H)|D(A))→ (H,B(H)).

Consequently, the restricted Borel σ-field B(H)|D(A) coincides with the Borel σ-field on the
Hilbert space (D(A), ‖ · ‖D(A)), and measurability of D(A)-valued functions can be understood
with respect to either Borel σ-field.

Theorem 1.1. ([35]). Let f : [0, T ]→ D(A) be measurable, and let
∫ t

0
‖f(s)‖D(A) <∞.

Then ∫ t

0

f(s)ds ∈ D(A) and
∫ t

0

Af(s)ds = A

∫ t

0

f(s)ds

Definition 1.5.4. ([35]). The resolvent set ρ(A) of a closed linear operator A on a Banach
space X is the set of all complex numbers λ for which λI − A has a bounded inverse, i.e., the
operator (λI − A)−1 ∈ L(X). The family of bounded linear operators

R(λ,A) = (λI − A)−1, λ ∈ ρ(A),

is called the resolvent of A

We note that R(λ,A) is a one-to-one transformation of X onto D(A), i.e.,

(λI − A)R(λ,A)x = x, x ∈ X,
R(λ,A)(λI − A)x = x, x ∈ D(A).

In particular,
AR(λ,A)x = R(λ,A)Ax, x ∈ D(A).

In addition, we have the following commutativity property:

R(λ1, A)R(λ2, A) = R(λ2, A)R(λ1, A), λ1, λ2 ∈ ρ(A).

Proposition 1.5.1. ([35]). Let S(t) be a C0-semigroup with infinitesimal generator A on a
Banach space X. If α0 = lim

t→∞
t−1 ln ‖S(t)‖L(X), then any real number λ > α0 belongs to the

resolvent set ρ(A), and

R(λ,A)x =

∫ ∞
0

e−λtS(t)xdt, x ∈ X.

Furthermore, for each x ∈ X,

lim
λ→∞
‖λR(λ,A)x− x‖X = 0.

Theorem 1.2. (Hille-Yosida) ([35]). Let A : D(A) ⊂ X → X be a linear operator on a Banach
pace X. Necessary and suffcient conditions for A to generate a C0 semigroup S(t) are

(i) A is a closed operator and D(A) = X;

(ii) there exist real numbers M and α such that for every λ > α, λ ∈ ρ(A) (the resolvent set)
and

‖(R(λ,A))r‖L(X) ≤M(λ− α)−r, r = 1, 2, ...

In this case ‖S(t)‖L(X) ≤Meαt, t ≥ 0.



Chapter 2

P-th Mean Almost Periodic Random
Functions

The concept of almost periodicity is important in probability especially for investigations
on stochastic processes. The interest in such a notion lies in its significance and applications
arising in engineering, statistics, etc.

Let (Ω,F ,P) be a probability space. In this chapter, we introduce and develop the notion
of p-th mean almost periodicity. Among others, it will be shown that each p-th mean almost
periodic process is uniformly continuous and stochastically bounded [81]. Furthermore, the
collection of all p-th mean almost periodic processes is a Banach space when it is equipped
with its natural norm. Moreover, we also present two composition results for p-th mean almost
periodic processes (Theorems (2.2.1) and (2.2.2)).

2.1 Almost Periodic Functions
First of all, let us mention that most of the material on almost periodic functions here is

taken from the book of Diagana [30]. Obviously, there is a vast literature on almost periodic
functions. Here we chose, for convenience, to use the concept of almost periodicity in the sense
of H. Bohr (1887-1951), which is equivalent to the other classical definitions. For more almost
periodic functions, we refer to the landmark books by Bohr [19], Corduneanu [23], and fink
[32].

2.1.1 Basic Definitions

If (B, ‖ · ‖) is a Banach space, then C(R,B) will stand for the collection of continuous
functions from R in B. BC(R,B), is the space of all bounded continuous functions from R into
B, will be equipped with the sup norm. Similarly, BC(R×B) denotes the space of all bounded
continuous functions from R×B in B.

Definition 2.1.1. A function f ∈ C(R,B) is called (Bohr) almost periodic if for each ε > 0,
there exists T0(ε) > 0 such that every interval of length T0(ε) contains a number τ with the
following property:

‖f(t+ τ)− f(t)‖ < ε for each t ∈ R.

The number τ above is then called an ε-translation number of f, and the collection of such
functions will be denoted AP(B). It is well-known that if f ∈ AP(B), then its mean defined

30
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by

M(f) := lim
r→∞

1

2r

∫ r

−r
f(t)dt

exists [19]. Consequently, for every λ ∈ R, the following limit

a(f, λ) := lim
r→∞

1

2r

∫ r

−r
f(t)e−iλtdt

exists and is called the Bohr transform of f.
The set defined by

σb(f) := {λ ∈ R : a(f, λ) 6= 0}
is called the Bohr spectrum of f [17].

We also have the following properties of the mean ([17]):

Proposition 2.1.1. ([78]). Let f, g : R→ C be almost periodic functions and let α ∈ C. Then

(i) M(f(t)) =M(f(t));

(ii) M(αf(t)) = αM(f(t));

(iii) M(f(t)) ≥ 0 whenever f ≥ 0;

(iv) M(f(t) + g(t)) =M(f(t)) +M(g(t)).

Furthermore, if (fn(t)) is a uniformly convergent sequence of almost periodic functions which
converges to f(t), then

lim
n→∞

M(fn(t)) =M(f(t)).

Example 2.1.1. (i) Each periodic function ϕ : R→ B is almost periodic.

(ii) The function fα(t) = sin t + sin tα where α ∈ R − Q, is a classical example of an almost
periodic function on R, which is not periodic.

Remark 2.1.1. Let f, g : R → B be almost periodic functions and let α ∈ R. Then the
following hold:

(i) f + g is almost periodic; if f, g are C-valued, then f.g is also almost periodic.

(ii) t 7→ f(t+ α), t 7→ f(αt), and t 7→ αf(t) are almost periodic.

(iii) Each almost periodic function is bounded.

2.1.2 Properties of Almost Periodic Functions

1. If f : R → B is almost periodic, then f is uniformly continuous in t ∈ R. Moreover, the
range R(f) = {f(t) : t ∈ R} is precompact in B.

2. Let f ∈ AP(R). If g ∈ L1(R), then f ∗ g, the convolution of f with g on R, is almost
periodic.

3. If f, g : R → C are almost periodic functions and if there exists a constant m > 0 such
that

m ≤ |g(t)|
for each t ∈ R, then (f/g)(t) = f(t)/g(t) is almost periodic.
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4. Let (fn(t))n∈N be a sequence of almost periodic functions such that fn(t) converges f(t)
uniformly in t ∈ R. Then f is almost periodic.

5. Let f be an almost periodic function such that f ′ is uniformly continuous on R, then f ′
is also almost periodic.

Theorem 2.1.1. ([17]). (Bochner’s Criterion) A function f : R→ B is almost periodic if and
only if for every sequence of real numbers (sn)n∈N there exists a subsequence (σn)n∈N such that
{f(t+ σn)}n∈N converges uniformly in t ∈ R.

Definition 2.1.2. ([17]). A normed vector space (B, ‖ · ‖) is said to be uniformly convex if for
every 0 < ε < 2 there exists a number δ(ε) > 0 such that if x, y ∈ B satisfy

‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε,

then ‖(x+ y)/2‖ ≤ 1− δ(ε).

Remark 2.1.2. (a) Rn equipped with the Euclidean norm is uniformly convex.

(b) Hilbert spaces are uniformly convex.

Proposition 2.1.2. Suppose that the Banach space B is uniformly convex. If f : R → B is
almost periodic, then its antiderivative

F (t) =

∫ t

0

f(σ)dσ

is almost periodic if and only if it is bounded in B, i.e., supt∈R ‖F (t)‖ <∞

Definition 2.1.3. ([17]). A function F ∈ BC(R×B), (t, x) 7→ F (t, x) is called almost periodic
in t ∈ R uniformly in x ∈ Γ(Γ ⊂ B being a compact subset) if for each ε > 0 there exists
T0(ε) > 0 such that every interval of length T0(ε) > 0 contains a number τ with the following
property:

‖F (t+ τ, x)− F (t, x)‖ < ε, ∀x ∈ Γ,∀t ∈ R.

Here again, the number τ above is called an ε-translation number of F, and the class of such
functions will be denoted AP(R×B).

Proposition 2.1.3. Let (B, ‖ · ‖) and (B′, ‖ · ‖′) be two Banach spaces over the same field F.
Let f : R×B → B′, (t, x) → f(t, x) be almost periodic in t ∈ R uniformly in x ∈ B. Suppose
that f is Lipschitz in x ∈ B uniformly in t ∈ R, i.e., there exists L ≥ 0 such that

‖f(t, x)− F (t, y)‖′ ≤ L.‖x− y‖,∀x, y ∈ B, t ∈ R.

If φ : R→ B is almost periodic, then the function h(t) = f(t, φ(t)) : R→ B′ is also almost
periodic.

Definition 2.1.4. A function f ∈ BC(R,B) is called (Bochner) almost periodic if for any
sequence (σ′n)n∈N of real numbers there exists a subsequence (σn)n∈N of (σ′n)n∈N such that the
sequence of functions (f(t+ σn))n∈N converges uniformly in t ∈ R.

Theorem 2.1.2. ([17]). A function f ∈ BC(R,B) is Bohr almost periodic if and only if it is
Bochner almost periodic.
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2.2 p-th Mean Almost Periodic Processes
Let (Ω,F ,P) be a probability space. For p ≥ 2 the spaces Lp(Ω;B) and BUC(R;Lp(Ω;B))

are Banach spaces when they are equipped with their respective norms ‖ · ‖Lp(Ω;B) and ‖ · ‖∞.

Definition 2.2.1. A stochastic process x : R→ Lp(Ω;B) is said to be continuous whenever

lim
t→→s

E‖x(t)− x(s)‖p = 0.

Definition 2.2.2. A continuous stochastic process x : R→ Lp(Ω;B) is said to be stochastically
bounded whenever

lim
N→→∞

sup
t∈R

P{‖x(t)‖ > N} = 0.

Definition 2.2.3. A stochastic process x : R → Lp(Ω;B) is said to be p-th mean almost
periodic if for each ε > 0 there exists l(ε) > 0 such that any interval of length l(ε) contains at
least a number τ for which

sup
t∈R

E‖x(t+ τ)− x(t)‖p < ε

A continuous stochastic process x, which is 2-nd mean almost periodic will be called square-
mean almost periodic.

Like for classical almost periodic functions, the number τ will be called an ε-translation of
x.

The collection of all p-th mean almost periodic stochastic processes x : R → Lp(Ω;B) will
be denoted by AP(R;Lp(Ω;B)).

The next lemma provides some properties of p-th mean almost periodic processes ([17]).

Lemma 2.2.1. If X belongs to AP(R;Lp(Ω;B)), then

(i) the mapping t→ E‖x(t)‖p is uniformly continuous;

(ii) there exists a constant M > 0 such that E‖x(t)‖p ≤M , for each t ∈ R;

(iii) X is stochastically bounded.

Let CUB(R;Lp(Ω;B)) denote the collection of all stochastic processes x : R → Lp(Ω;B),
which are continuous and uniformly bounded. It is then easy to check that CUB(R;Lp(Ω;B))
is a Banach space when it is equipped with the norm:

‖x‖∞ = sup
t∈R

(E‖x(t)‖2)
1
2 .

Lemma 2.2.2. ([17]). AP(R;Lp(Ω;B)) ⊂ BUC(R;Lp(Ω;B)) is a closed subspace.

In view of Lemma 2.2.2, it follows that the space AP(R;Lp(Ω;B)) of p-th mean almost
periodic processes equipped with the sup norm ‖.‖∞ is a Banach space.

Let (B1, ‖ · ‖), (B2 , ‖ · ‖) be Banach spaces and let Lp(Ω;B1) and Lp(Ω;B2)be their corre-
sponding Lp-spaces, respectively.

Definition 2.2.4. A function F : R × Lp(Ω;B1) → Lp(Ω;B2), (t, y) → F (t, y), which is
jointly continuous, is said to be p-th mean almost periodic in t ∈ R uniformly in y ∈ K where
K ⊂ Lp(Ω;B1) is compact if for any ε > 0, there exists lε(K) > 0 such that any interval of
length lε(K) contains at least a number τ for which

supE‖F (t+ τ, y)− F (t, y)‖p2 < ε

for each stochastic process y : R→ K.
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2.2.1 Composition of p-th Mean Almost Periodic Processes

Theorem 2.2.1. ([17]). Let F : R × Lp(Ω;B1) → Lp(Ω;B2), (t, y) → F (t, y) be a p-th mean
almost periodic process in t ∈ R uniformly in y ∈ K where K ⊂ Lp(Ω;B1) is compact. Suppose
that F is Lipschitzian in the following sense:

E‖F (t, y)− F (t, z)‖2
p ≤ME‖y − z‖p1

for all y, z ∈ Lp(Ω;B1) and for each t ∈ R, where M > 0. Then for any p-th mean almost
periodic process Φ : R → Lp(Ω;B1), the stochastic process t → F (t,Φ(t)) is p-th mean almost
periodic.

Proof. We refer the reader to [17].

Theorem 2.2.2. ([17]). Let F : R × Lp(Ω;B1) → Lp(Ω;B2), (t, y) → F (t, y) be a p-th mean
almost periodic process in t ∈ R uniformly in y ∈ K where K ⊂ Lp(Ω;B1) is any compact
subset. Suppose that F (t, ·) is uniformly continuous on bounded subsets K ′ ⊂ Lp(Ω;B1) in the
following sense: For all ε > 0 there exists δε > 0 such that x, y ∈ K ′ and E‖x− y‖p1 < δε, then

E‖F (t, y)− F (t, z)‖p2 ≤ ε, ∀t ∈ R.

Then for any p-th mean almost periodic process Φ : R → Lp(Ω;B1), the stochastic process
t→ F (t,Φ(t)) is p-th mean almost periodic.

Proof. We refer the reader to [17].



Chapter 3

Stochastic Controlability

Control theory is an interdisciplinary branch of engineering and mathematics that deals
with influence behavior of dynamical systems. Controllability is one of the fundamental con-
cepts in mathematical control theory and plays an important role in both deterministic and
stochastic control theories (Klamka, 1991; Klamka, 1993; Mahmudov, 2003; Mahmudov and
Denker, 2000). Controllability is a qualitative property of dynamical control systems and it is
of particular importance in control theory. Systematic study of controllability was started at
the beginning of sixties in the last century, when the theory of controllability based on the state
space description for both time-invariant and time-varying linear control systems was worked
out.

Roughly speaking, controllability generally means, that it is possible to steer dynamical con-
trol system from an arbitrary initial state to an arbitrary final state using the set of admissible
controls. In the literature there are many different definitions of controllability for both linear
(Klamka, 1991; Klamka, 1993; Mahmudov, 2001; Mahmudov and Denker, 2000) and nonlinear
dynamic systems (Klamka, 2000; Mahmudov, 2002; Mahmudov, 2003; Mahmudov and Zorlu,
2003), which do depend on the class of dynamic control systems and the set of admissible
controls (Klamka, 1991; Klamka, 1996). Therefore, for linear and nonlinear deterministic dy-
namic systems there exist many different necessary and sufficient conditions for global and local
controllabilities (Klamka, 1991; Klamka, 1993; Klamka, 1996; Klamka, 2000).

In recent years various controllability problems for different types of linear semilinear and
nonlinear dynamical systems have been considered in many publications and monographs.
Moreover, it should be stressed, that the most literature in this direction has been mainly
concerned with different controllability problems for dynamical systems with unconstrained
controls and without delays in the state variables or in the controls.

For stochastic control systems (both linear and nonlinear) the situation is by far less sat-
isfactory. In recent years the extensions of deterministic controllability concepts to stochastic
control systems have been discussed only in a limited number of publications. In the papers
(Bashirov and Kerimov, 1997; Bashirov and Mahmudov, 1999; Ehrhard and Kliemann, 1982;
Mahmudov, 2001; Mahmudov and Denker, 2000; Zabczyk, 1991) different kinds of stochastic
controllability were discussed for linear finite dimensional stationary and nonstationary control
systems. The papers (Fernandez-Cara et al., 1999; Kim Jong Uhn, 2004; Mahmudov, 2001;
Mahmudov, 2003) are devoted to a systematic study of approximate and exact stochastic con-
trollability for linear infinite dimensional control systems defined in Hilbert spaces. Stochastic
controllability for finite dimensional nonlinear stochastic systems was discussed in (Arapostathis
et al., 2001; Balasubramaniam and Dauer, 2001; Mahmudov and Zorlu, 2003; Sunahara et al.,
1974; Sunahara et al., 1975). Using the theory of bounded nonlinear operators and linear semi-
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groups, various different types of stochastic controllability for nonlinear infinite dimensional
control systems defined in Hilbert spaces were considered in (Mahmudov, 2002; Mahmudov,
2003). In (Klamka and Socha, 1977; Klamka and Socha, 1980), Lyapunov techniques were
used to formulate and prove sufficient conditions for stochastic controllability of nonlinear fi-
nite dimensional stochastic systems with point delays in state variables. Moreover, it should
be pointed out that the functional analysis approach to stochastic controllability problems is
also extensively discussed for both linear and nonlinear stochastic control systems in the pa-
pers (Fernandez-Cara et al., 1999; Kim Jong Uhn, 2004; Mahmudov, 2001; Mahmudov, 2002;
Mahmudov, 2003; Subramaniam and Balachandran, 2002).

3.1 Controllability significance
Controllability plays an essential role in the development of modern mathematical control

theory. There are various important relationships between controllability, stability and stabiliz-
ability of linear both finite-dimensional and infinite-dimensional control systems. Controllabil-
ity is also strongly related with the theory of realization and so called minimal realization and
canonical forms for linear time-invariant control systems such as the Kalmam canonical form,
the Jordan canonical form or the Luenberger canonical form. It should be mentioned, that for
many dynamical systems there exists a formal duality between the concepts of controllability
and observability. Moreover, controllability is strongly connected with the minimum energy
control problem for many classes of linear finite dimensional, infinite dimensional dynamical
systems, and delayed systems both deterministic and stochastic.

Therefore, controllability criteria are useful in the following branches of mathematical con-
trol theory:

• Stabilizability conditions, canonical forms, minimum energy control and minimal realiza-
tion for positive systems,

• Stabilizability conditions, canonical forms, minimum energy control and minimal realiza-
tion for fractional systems,

• Minimum energy control problem for a wide class of stochastic systems with delays in
control and state variables,

• Duality theorems, canonical forms and minimum energy control for infinite dimensional
systems.

Controllability has many important applications not only in control theory and systems
theory, but also in such areas as industrial and chemical process control, reactor control, control
of electric bulk power systems, aerospce engineering and recently in quantum systems theory.

Systematic study of controllability was started at the beginning of the sixties in the 20-th
century, when the theory of controllability based on the description in the form of state space
for both time-invariant and time-varying linear control systems was worked out. The extensive
list of these publications can be found for example in the monographs [62] and [63] or in the
survey papers [64] and [69].

3.2 Nonlinear and semilinear dynamical systems
The last decades have seen a continually growing interest in controllability theory of dy-

namical systems. This is clearly related to the wide variety of theoretical results and possible
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applications. Up to the present time the problem of controllability for continuous-time and
discrete-time linear dynamical systems has been extensively investigated in many papers (see
e.g. [62, 63, 64, 111] for extensive list of references). However, this is not true for the nonlinear
dynamical systems especially with different types of delays in control and state variables, and
for nonlinear dynamical systems with constrained controls.

Similarly, only a few papers concern constrained controllability problems for continuous
or discrete semi-linear dynamical systems. It should be pointed out, that in the proofs of
controllability results for nonlinear and semi-linear dynamical systems linearization methods
and generalization of open mapping theorem [57] are extensively used. The special case of
nonlinear dynamical systems are semi-linear systems. Let us recall that semi-linear dynamical
control systems contain linear and pure nonlinear parts in the differential state equations [70,
9, 95, 109].

3.3 Infinite-dimensional systems
Infinite-dimensional dynamical control systems plays a very important role in mathematical

control theory. This class consists of both continuous-time systems and discrete-time systems
[62, 63, 64, 69, 111]. Continuous-time infinite-dimensional systems include for example, a very
wide class of so-called distributed parameter systems described by numerous types of partial
differential equations defined in bounded or unbounded regions and with different boundary
conditions.

For infinite-dimensional dynamical systems it is necessary to distinguish between the notions
of approximate and exact controllability [62, 63].

Exact controllability: The exact controllability property is the possibility to steer the
state of the system from any initial data to any target by choosing the control as a function of
time in an appropriate way.

Approximate controllability: The approximate controllability property is the possibility
to steer the state of the system from any initial data to a state arbitrarily close to a target by
choosing a suitable control.

It follows directly from the fact that in infinite-dimensional spaces there exist linear sub-
spaces which are not closed. On the other hand, for nonlinear dynamical systems there exist two
fundamental concepts of controllability; namely local controllability and global controllability
[62, 63]. Therefore, for nonlinear abstract dynamical systems defined in infinite-dimensional
spaces the following four main kinds of controllability are considered: local approximate con-
trollability, global approximate controllability, local exact controllability and global exact con-
trollability [62, 63, 64, 69].

Controllability problems for finite-dimensional nonlinear dynamical systems and stochastic
dynamical systems have been considered in many publications; see e.g. [62, 63, 69, 60], and [61],
for review of the literature. However, there exist only a few papers on controllability problems
for infinite-dimensional nonlinear systems [57].

Among the fundamental theoretical results, used in the proofs of the main results for non-
linear or semi-linear dynamical systems, the most important include:

• Generalized open mapping theorem,

• Spectral theory of linear unbounded operators,

• Linear semi-groups theory for bounded linear operators,
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• Lie algebras and Lie groups,

• Fixed-point theorems such as Banach, Schauder, Schaefer and Nussbaum theorems,

• Theory of completely positive trace preserving maps,

• Mild solutions of abstract differential and evolution equations in Hilbert and Banach
spaces.

3.3.1 Nonlinear neutral impulsive integro-differential evolution sys-
tems in Banach spaces

In various fields of science and engineering, many problems that are related to linear vis-
coelasticity, nonlinear elasticity and Newtonian or non-Newtonian fluid mechanics have math-
ematical models which are described by differential or integral equations or integro-differential
equations. This part of the paper centers around the controllability for dynamical systems
described by the integrodifferential models. Such systems are modelled by abstract delay dif-
ferential equations. In particular abstract neutral differential equations arise in many areas
of applied mathematics and, for this reason, this type of equation has been receiving much
attention in recent years and they depend on the delays of state and their derivative. Related
works of this kind can be found in [57].

The study of differential equations with traditional initial value problem has been extended
in several directions. One emerging direction is to consider the impulsive initial conditions. The
impulsive initial conditions are combinations of traditional initial value problems and short-term
perturbations, whose duration can be negligible in comparison with the duration of the process.
Several authors [57] have investigated controllability of the impulsive differential equations.

As far as the controllability problems associated with finite-dimensional systems modelled
by ordinary differential equations are concerned, this theory has been extensively studied during
the last decades. In the finite-dimensional context, a system is controllable if and only if the
algebraic Kalman rank condition is satisfied. According to this property, when a system is
controllable for some time, it is controllable for all time. But this is no longer true in the
context of infinite-dimensional systems modelled by partial differential equations.

The large class of scientific and engineering problems modelled by partial differential and
integrodifferential equations can be expressed in various forms of differential and integro-
differential equations in abstract spaces. It is interesting to study the controllability problem
for such models in Banach spaces. The controllability problem for first and second order non-
linear functional differential and integrodifferential systems in Banach spaces has been studied
by many authors by using semigroup theory, cosine family of operators and various fixed point
theorems for nonlinear operators [95] and [109] such as Banach theorem, Nussbaum theorem,
Schaefer theorem, Schauder theorem, Monch theorem or Sadovski theorem.

In recent years, the theory of impulsive differential equations has provided a natural frame
work for mathematical modelling of many real world phenomena, namely in control, biological
and medical domains. In these models, the investigated simulating processes and phenomena
are subjected to certain perturbations whose duration is negligible in comparison with the
total duration of the process. Such perturbations can be reasonably well approximated as
being instantaneous changes of state, or in the form of impulses. These process tend to be
more suitably modelled by impulsive differential equations, which allow for discontinuities in
the evolution of the state.
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On the other hand, the concept of controllability is of great importance in mathematical
control theory. The problem of controllability is to show the existence of a control function,
which steers the solution of the system from its initial state to final state, where the initial and
final states may vary over the entire space. Many authors have studied the controllability of
nonlinear systems with and without impulses, see for instance [68, 64, 71, 65, 9, 10, 89, 109]

In recent years, significant progress has been made in the controllability of linear and non-
linear deterministic systems [11, 93, 75] and the nonlocal initial condition which in many cases,
has much better effect in applications then the traditional initial condition. The nonlocal initial
value problems can be more useful than the standard initial value problems to describe many
physical phenomena of dynamical systems. It should be pointed out, that the study of Volterra-
Fredholm integro-differential equations plays an important role for abstract formulation of many
initial, boundary value problems of perturbed differential partial integro-differential equations.

Recently, many authors have studied about mixed type integro-differential systems without
(or with) delay conditions. Moreover, controllability of impulsive functional differential systems
with nonlocal conditions has been studied by using the measures of noncompactness and Monch
fixed point theorem and some sufficient conditions for controllability have been established.

It should be mentioned, that without assuming the compactness of the evolution system
the existence, uniqueness and continuous dependence of mild solutions for nonlinear mixed
type integro-differential equations with finite delay and nonlocal conditions has been also es-
tablished.. The results were obtained by using Banach fixed point theorem and semi-group
theory. More recently, the existence of mild solutions for the nonlinear mixed type integro-
differential functional evolution equations with nonlocal conditions was derived and the results
were achieved by using Monch fixed point theorem and fixed point theory.

To the best of our knowledge, up to now no work reported on controllability of impulsive
mixed Volterra- Fredholm functional integro-differential evolution differential system with a
finite delay and nonlocal conditions.

3.3.2 Second order impulsive functional integro-differential systems
in Banach spaces

Second order differential equations arise in many areas of science and technology whenever
a relationship involving some continuously changing quantities and their rates of change are
known. In particular, second order differential and integro-differential equations serve as an
abstract formulation of many partial integro-differential equations which arise in problems
connected with the transverse motion of an extensible beam, the vibration of hinged bars and
many other physical phenomena. So it is quite significant to study the controllability problem
for such systems in Banach spaces.

The concept of controllability involves the ability to move a system around in its entire
configuration space using only certain admissible manipulations. The exact definition varies
slightly within the framework of the type of models. In many cases, it is advantageous to treat
the second order abstract differential equations directly rather than to convert them to first
order systems. In the proofs of controllability criteria some basic ideas from the theory of cosine
families of operators, which is related to the second order equations are often used.

Damping may be mathematically modelled as a force synchronous with the velocity of the
object but opposite in direction to it. The occurrence of damped second order equations can be
found in [93] and [75]. The branch of modern applied analysis known as "impulsive" differential
equations furnishes a natural framework to mathematically describe some jumping processes.

The theory of impulsive integro-differential equations and their applications to the field of
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physics have formed a very active research topic since the theory provides a natural framework
for mathematical modelling of many physical phenomena [10] and [95]. In spite of the great
possibilities for applications, the theory of these equations has been developing rather slowly
due to obstacles of theoretical and technical character. The study of the properties of their
solutions has been of an ever growing interest.

Recently, most efforts have been focused on the problem of controllability for various kinds
of impulsive systems using different approaches [34] and [44]. In neutral delay differential
equations, the derivative of the unknown function at a certain time is given in terms of the
values of the function at previous times. Neutral differential equations arise in many fields and
they depend on the delays of state and its derivative. Related works of this kind of equation
can be found in [89] and [45]. For the fundamental solution of second order evolution system,
one can refer the paper [80].

3.4 Stochastic systems
Classical control theory generally is based on deterministic approaches. However, uncer-

tainty is a fundamental characteristic of many real dynamical systems. Theory of stochastic
dynamical systems is now a well-established topic of research, which is still in intensive develop-
ment and offers many open problems. Important fields of application are economics problems,
decision problems, statistical physics, epidemiology, insurance mathematics, reliability theory,
risk theory and others methods based on stochastic equations. Stochastic modelling has been
widely used to model the phenomena arising in many branches of science and industry such
as biology, economics, mechanics, electronics and telecommunications. The inclusion of ran-
dom effects in differential equations leads to several distinct classes of stochastic equations,
for which the solution processes have differentiable or non-differentiable sample paths. There-
fore, stochastic differential equations and their controllability require many different method of
analysis.

The general theory of stochastic differential equations both finite-dimensional and infinite-
dimensional and their applications to the field of physics and technique can be found in the many
mathematical monographs and related papers. This theory formed a very active research topic
since provides a natural framework for mathematical modelling of many physical phenomena.

Controllability, both for linear or nonlinear stochastic dynamical systems, has recently re-
ceived the attention of many researchers and has been discussed in several papers and mono-
graphs, in which where many different sufficient or necessary and sufficient conditions for
stochastic controllability were formulated and proved [59, 60, 61, 86, 87]. However, it should
be pointed out that all these results were obtained only for unconstrained admissible controls,
finite dimensional state space and without delays in state or control.

Stochastic controllability problems for stochastic infinite-dimensional semi-linear impulsive
integro-differential dynamical systems with additive noise and with or without multiple time-
varying point delays in the state variables are also discussed in the literature. The proofs of
the main results are based on certain theorems taken from the theory of stochastic processes,
linearization methods for stochastic dynamical systems, theory of semi-groups of linear oper-
ators, different fixed-point theorems as Banach, Schauder, Schaefer, or Nussbaum fixed-point
theorems and on so-called generalized open mapping theorem [57].
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3.5 Delayed systems
Up to the present time the problem of controllability in continuous and discrete time linear

dynamical systems has been extensively investigated in many papers (see e.g. [62, 64, 65, 59,
66, 52]). However, this is not true for the nonlinear or semi-linear dynamical systems, especially
with delays in control and with constrained controls. Only a few papers concern constrained
controllability problems for continuous or discrete nonlinear or semi-linear dynamical systems
with constrained controls [66, 67].

Dynamical systems with distributed [68] delays in control and state variable were also con-
sidered. Using some mapping theorems taken from functional analysis and linear approximation
methods sufficient conditions for constrained relative and absolute controllability will be derived
and proved.

Let us recall that semi-linear dynamical control systems with delays may contain different
types of delays, both in pure linear and pure nonlinear parts, in the differential state equations.
Sufficient conditions for constrained local relative controllability near the origin in a prescribed
finite time interval for semi-linear dynamical systems with multiple variable point delays or
distributed delays in the control and in the state variables, which nonlinear term is continuously
differentiable near the origin are presented in [66] and [67].

In the above mentioned papers it is generally assumed that the values of admissible controls
are in a given convex and closed cone with vertex at zero, or in a cone with nonemptyinterior.
The proof of the main result are based on a so called generalized open mapping theorem
presented in the paper [100]. Moreover, necessary and sufficient conditions for constrained
global relative controllability of an associated linear dynamical system with multiple point
delays in control are also discussed.

3.6 Positive systems
In recent years, the theory of positive dynamical systems has become a natural frame work

for mathematical modelling of many real world phenomena, namely in control, biological and
medical domains. Positive dynamical systems are of fundamental importance to numerous ap-
plications in different areas of science such as economics, biology, sociology and communication.

Positive dynamical systems both linear and nonlinear are dynamical systems with states,
controls and outputs belonging to positive cones in linear spaces. Therefore, in fact positive
dynamical systems are nonlinear systems. Among many important developments in control
theory over last two decades, control theory of positive dynamical systems [52] has played an
essential role.

Controllability, reachability and realization problems for finite dimensional positive both
continuous-time and discretetime dynamical systems were discussed for example in monograph
[52] and paper [58], using the results taken directly from the nonlinear functional analysis and
especially from the theory of semi-groups of bounded operators and general theory of unbounded
linear operators.

3.7 Fractional systems
The development of controllability theory both for continuous-time and discrete-time dy-

namical systems with fractional derivatives and fractional difference operators has seen consid-
erable advances since the publication of papers [53]- [56] and monograph [92]. Although classic
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mathematical models are still very useful, large dynamical systems prompt the search for more
refined mathematical models, which leads to better understanding and approximations of real
processes.

The general theory of fractional differential equations and fractional impulsive integrodif-
ferential equations and their applications to the field of physics and technique can be found
in the monograph [92]. This theory formed a very active research topic since provides a nat-
ural framework for mathematical modelling of many physical phenomena. In particular, the
fast development of this theory has allowed to solve a wide range of problems in mathemati-
cal modelling and simulation of certain kinds of dynamical systems in physics and electronics.
Fractional derivative techniques provide useful exploratory tools, including the suggestion of
new mathematical models and the validation of existing ones.

Mathematical fundamentals of fractional calculus and fractional differential and difference
equations are given in the monographs [92], and in [57]. Most of the earliest work on control-
lability for fractional dynamical systems was related to linear continuous-time or discrete-time
systems with limited applications of the real dynamical systems. In addition, the earliest theo-
retical work concerned time-invariant processes without delays in state variables or in control.

Using the results presented for linear fractional systems and applying linearization method
the sufficient conditions for local controllability near the origin are formulated and proved in
the paper [58]. Moreover, applying generalized open mapping theorem in Banach spaces [100]
and linear semi-group theory in the paper [111] the sufficient conditions for approximation
controllability in finite time with conically constrained admissible controls are formulated and
proved.

Controllability problems for different types of dynamical systems require the application
of numerous mathematical concepts and methods taken directly from differential geometry,
functional analysis, topology, matrix analysis and theory of ordinary and partial differential
equations and theory of difference equations. The state-space models of dynamical systems
provides a robust and universal method for studying controllability of various classes of systems.

Finally, it should be stressed, that there are numerous open problems for controllability
concepts for special types of dynamical systems. For example, it should be pointed out, that
up to present time the most literature on controllability problems has been mainly concerned
with unconstrained controls and without delays in the state variables or in the controls.



Chapter 4

Stochastic Evolutions Equations

4.1 Preliminaries And Basic Properties
In this section, we mention notations, definitions, lemmas and preliminary facts needed to

establish our main results.
Let (H, ‖ · ‖H) and (K, ‖ · ‖K) denote two real separable Hilbert spaces. For convenience,

we will use the same notation ‖ · ‖ to denote the norms in H, K and (·, ·) to denote the in-
ner product without any confusion. Let (Ω,F ,P) be a complete probability space equipped
with a normal filtration {Ft}t≥0 satisfying the usual conditions (i.e., right continuous and F0

containing all P-null sets). Let {ej}∞j=1 be a complete orthonormal basis of K. Suppose that
W = (Wt)t≥0 is a cylindrical K-valued Wiener process with a finite trace nuclear covariance
operator Q ≥ 0, denote Tr(Q) =

∑∞
j=1 λj = λ < ∞, which satisfies Qej = λjej. So, actually,

W (t) =
∑∞

j=1

√
λjwj(t)ej, where {wj(t)}∞j=1 are mutually independent one-dimentional stan-

dard Wiener processes. We assume that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated
by w and Fb = F .

Let L(K,H) denote the space of all bounded linear operators from K into H equipped with
the usual operator norm ‖ · ‖L(K,H) and we abbreviate this notations to L(H) when H = K. For
ψ ∈ L(K,H) we define

‖ψ‖2
Q = Tr(ψQψ∗) =

∞∑
j=1

‖
√
λjψej‖2.

If ‖ψ‖2
Q < ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space

of all Q-Hilbert-Schmidt operator ψ. The completion LQ(K,H) of L(K,H) with respect to the
topology induced by the norm ‖ · ‖Q where ‖ψ‖2

Q = (ψ, ψ) is a Hilbert space with the above
norm topology. For more details, we refer the reader to Da Prato and Zabezyk [26].

The collection of all strongly measurable, square integrable, H-valued random variables, de-
noted by L2(Ω,H) is a Banach space equipped with norm ‖x(·)‖L2 = (E‖x(·, w)‖2

H)1/2, where
E(·) denotes the expectation with respect to the measure P. Let C(J, L2(Ω,H)) be the Banach
space of all continuous maps from J into L2(Ω,H) satisfying supt=J E‖x(t)‖2

H <∞. L
F0
2 (Ω,H)

denote the family of all F0-measurable, H-valued random variable x(0).

4.1.1 Fractional Calculus

Let us now recall some basic definitions and results of fractional calculus. For more details
see [56, 88, 96].
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Definition 4.1.1. The fractional integral of order α with the lower limit zero for a function f
is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−αds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the gamma function,
which is defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Definition 4.1.2. The Riemann-Liouville fractional derivative of order α > 0, n− 1 < α < n,
n ∈ N is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− s)n−α−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 4.1.3. The Caputo derivative of order α > 0 for a function f : [0,∞)→ R can be
written as

cDαf(t) = Dα

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < α < n.

Remark 4.1.1. i. If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−nds = In−αf (n)(t), t > 0, n− 1 < α < n.

ii. The Caputo derivative of a constant is equal to zero.

iii. If f is an abstract function with values in H, then integrals which appear in Definition
4.1.1 and 4.1.2 are taken in Bochners sense.

4.1.2 Multivalued Analysis

We introduce some basic definitions and results of multivalued maps. Fore more details on
multivalued maps, see the books of Deimling [29], Hu and Papageorgiou [48].

Definition 4.1.4. A multivalued map G : H → 2H\{∅} is convex (closed) valued if G(x) is
convex (closed) for all x ∈ H. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded
in H for any bouded set B of H, i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞.

Definition 4.1.5. G is called upper semicontinuous (u.s.c. for short) on H if for each x0 ∈ H,
the set G(x0) is a nonempty closed subset of H, and if for each open set V of H containing
G(x0), there exists an open neighborhood N of x0 such that G(N) ⊆ V.

Definition 4.1.6. The multi-valued operator G is called compact if G(H) is a compact subset of
H. G is said to be completly continuous if G(D) is relatively compact for every bounded subset
D of H.

If the multivalued map G is completly continuous with nonempty values, then G is u.s.c.,
if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

G has a fixed point if there is x ∈ H such that x ∈ G(x).
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4.2 Almost Periodic Solutions For Impulsive Fractional Stochas-
tic Evolution Equations

In this Section1 we studies the existence of square-mean piecewise almost periodic solu-
tions of the following impulsive fractional stochastic differential equations in the form

cDα
t x(t) + Ax(t) = F (t, x(t)) + Σ(t, x(t))

dW (t)

dt
+

∞∑
k=−∞

Gk(x(t))δ(t− τk), t ∈ J = R, (4.1)

where the state x(·) takes values in the space L2(Ω,H), H is a separable real Hilbert space
with inner product (·, ·) and norm ‖ · ‖; the fractional derivative cDα, α ∈ (0, 1), is under-
stood in the Caputo sense; −A : D(A) ⊂ L2(Ω,H) → L2(Ω,H) is the infinitesimal generator
of an analytic semigroup of a bounded linear operator S(t), t ≥ 0, on L2(Ω,H) satisfying
the exponential stability; {W (t) : t ≥ 0} is a given K-valued Wiener process with a finite
trace nuclear covariance operator Q ≥ 0 defined on a filtered complete probability space
(Ω,F , {Ft}t≥0,P), K is another separable Hilbert space with inner product (·, ·)K and norm
‖ · ‖K; Gk : D(Gk) ⊂ L2(Ω,H) → L2(Ω,H) are continuous impulsive operators, δ(·) is Dirac’s
delta-function, F (t, x) : R×L2(Ω,H)→ L2(Ω,H) and Σ(t, x) : R×L2(Ω,H)→ L2(Ω, L2

0(K,H))
are jointly continuous functions (here, L2

0(K,H) denotes the space of all Q-Hilbert-Schmidt op-
erators from K into H).

Let L2
0 = L2(Q

1
2K,H) be the space of all Hilbert-Schmidt operators from Q

1
2K to H with

the inner product (ϕ, φ)L2
0

= Tr[ϕQφ∗].

Let B = {{τk} : τk ∈ R, τk < τk+1, k ∈ Z} be the set of all sequences unbounded and
strictly increasing. We consider the impulsive fractional differential equation (4.1), and denote
by x(t) = x(t; t0, x0), t0 ∈ R, x0 ∈ H, the solution of (4.1) with the initial condition

x(t0) = x0. (4.2)

Definition 4.2.1. ([78]). A stochastic process x : R → L2(Ω,H), is said to be stochastically
bounded if there exists N > 0 such that E‖x(t)‖2 ≤ N for all t ∈ R.

Definition 4.2.2. ([78]). A stochastic process x : R → L2(Ω,H), is said to be stochastically
continuous in s ∈ R, if limt→s E‖x(t)− x(s)‖2 = 0.

For {τk} ∈ B and k ∈ Z, let PC(R, L2(Ω,H)) be the space consisting of all stochastically
bounded functions φ : R → L2(Ω,H) such that φ(·) is stochastically continuous at t for any
t 6∈ {τk}, τk ∈ R, k ∈ Z and φ(τ−k ) = φ(τk). In particular, we introduce the space PC(R ×
L2(Ω,H), L2(Ω,H)) formed by all piecewise stochastically continuous stochastic processes φ :
R×L2(Ω,H)→ L2(Ω,H) such that for any x ∈ L2(Ω,H), φ(·, x) is stochastically continuous at
t for any t 6∈ {τk} and φ(τ−k , x) = φ(τk, x) for all k ∈ Z, and for any t ∈ R, φ(t, ·) is stochastically
continuous at x ∈ L2(Ω,H).

Remark 4.2.1. ([78, 118]). The solution x(t) = x(t; t0, x0) of the problem (4.1)-(4.2) is a
piecewise stochastically continuous, Ft-adapted measurable process with points of discontinuity
at the moments τk, k ∈ Z, at which it is continuous from the left.

1The section is based on the paper [39].
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Definition 4.2.3. ([114]). The set of sequences {τ jk}, τ
j
k = τk+j − τk, k ∈ Z, j ∈ Z, {τk} ∈ B

is said to be equipotentially almost periodic, if for arbitrary ε > 0 there exists a relatively dense
set Bε of R such that for each κ ∈ Bε there is an integer q ∈ Z such that |τk+q − τk − κ| < ε for
all k ∈ Z.

Definition 4.2.4. ([20]). A stochastic process x ∈ PC(R, L2(Ω,H)), is said to be square-mean
piecewise almost periodic, if:

(i) The set of sequences {τ jk}, τ
j
k = τk+j−τk, k ∈ Z, j ∈ Z, {τk} ∈ B is equipotentially almost

periodic.

(ii) For any ε > 0, there exists a real number δ > 0 such that if the points t′ and t′′ belong
to one and the same interval of continuity of x(t) and satisfy the inequality |t′ − t′′| < δ,
then E‖x(t′)− x(t′′)‖2

H < ε.

(iii) For any ε > 0, there exists a relatively dense set T such that if τ ∈ T, then E‖x(t+ τ)−
x(t)‖2

H < ε, satisfying the condition |t − τk| > ε, k ∈ Z. The elements of T are called
ε-translation number of x.

We denote by AP(R, L2(Ω,H)) the collection of all square-mean piecewise almost periodic
processes, if thus is a Banach space with the norm ‖x‖∞ = supt∈R ‖x(t)‖L2 = supt∈R(E‖x(t)‖2)

1
2

for x ∈ AP(R, L2(Ω,H)).

Lemma 4.2.1. ([78]). Let F ∈ AP(R, L2(Ω,H)). Then, R(F ), the range of F is a relatively
compact set of L2(Ω,H).

Definition 4.2.5. ([21]).
For {τk} ∈ B, k ∈ Z, the function F (t, x) ∈ PC(R × L2(Ω,H), L2(Ω,H)) is said to be

square-mean piecewise almost periodic in t ∈ R and uniform on compact subset of L2(Ω,H) if
for every ε > 0 and every compact subset K ⊆ L2(Ω,H), there exists a relatively dense subset
T of R such that

E‖F (t+ τ, x)− F (t, x)‖2 < ε,

for all x ∈ K, τ ∈ T, t ∈ R satisfying |t− τk| > ε, k ∈ Z. The collection of all such processes is
denoted AP(R× L2(Ω,H), L2(Ω,H)).

Lemma 4.2.2. ([78]). Suppose that F (t, x) ∈ AP(R × L2(Ω,H), L2(Ω,H)) and F (t, ·) is
uniformly continuous on each compact subset K ⊆ L2(Ω,H) uniformly for t ∈ R. That is, for
all ε > 0, there exists δ > 0 such that x, y ∈ K and E‖x − y‖2 < δ implies that E‖F (t, x) −
F (t, y)‖2 < ε for all t ∈ R. Then F (·, x(·)) ∈ AP(R, L2(Ω,H)) for any x ∈ AP(R, L2(Ω,H)).

We obtain the following corollary as an immediate consequences of Lemma 4.2.2.

Corollaire 4.2.1. Let F (t, x) ∈ AP(R× L2(Ω,H), L2(Ω,H)) and F is Lipschitz, i.e., there is
a number c > 0 such that

E‖F (t, x)− F (t, y)‖2 < cE‖x− y)‖2,

for all t ∈ R and x, y ∈ L2(Ω,H), if for any x ∈ AP(R, L2(Ω,H)), then F (·, x(·)) ∈ AP(R, L2(Ω,H)).

Definition 4.2.6. A sequence x : Z → L2(Ω,H) is called a square-mean almost periodic
sequence if ε-traslation set of x

I(x; ε) = {τ ∈ Z : E‖x(n+ τ)− x(t)‖2 < ε, for all n ∈ Z}

is a relatively dense set in Z for all ε > 0.
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The collection of all square-mean almost periodic sequences x : Z → L2(Ω,H) will be
denoted by AP(Z, L2(Ω,H)).

Remark 4.2.2. If x(n) ∈ AP(Z, L2(Ω,H)), then {x(n) : n ∈ Z} is stochastically bounded.

Lemma 4.2.3. ([78]). Assume that F ∈ AP(R, L2(Ω,H)), the sequence {xk : k ∈ Z} is almost
periodic in L2(Ω,H) and {τ jk}, j ∈ Z, is equipotentially almost periodic. Then for each ε > 0

there are relatively dense sets Tε,F,xk of R and T̂ε,F,xk of Z such that the following conditions
hold:

(i) E‖F (t+ τ)− F (t)‖2 < ε for all t ∈ R, |t− τk| > ε, τ ∈ Tε,F,xk and k ∈ Z.

(ii) E‖xk+q − xk‖2 < ε for all q ∈ T̂ε,F,xk and k ∈ Z.

(iii) For every τ ∈ Tε,F,xk , there exists at least one number q ∈ T̂ε,F,xk such that |τ qk − τ | <
ε, k ∈ Z.

Consider the linear fractional impulsive stochastic differential equation corresponding to
(4.1)

cDα
t x(t) + Ax(t) = f(t) + σ(t)

dW (t)

dt
+

∞∑
k=−∞

gkδ(t− τk). (4.3)

where f ∈ PC(R, L2(Ω,H)), σ ∈ PC(R, L2(Ω, L2
0)) and gk : D(gk) ⊂ L2(Ω,H)→ L2(Ω,H).

Let us introduce the following conditions.

(C1) The set of sequences {τ jk}, τ
j
k = τk+j − τk, k ∈ Z, j ∈ Z, {τk} ∈ B is equipotentially

almost periodic and there exists θ > 0 such that infk τ
1
k = θ.

(C2) The function f is in AP(R, L2(Ω,H)) and locally Hölder continuous with points of dis-
continuity at the moment τk, k ∈ Z at which it is continuous from the left.

(C3) The function σ is in AP(R, L2(Ω, L2
0)) and locally Hölder continuous with points of

discontinuity at the moment τk, k ∈ Z at which it is continuous from the left.

(C4) {gk}, k ∈ Z, of impulsive operators is a square-mean almost periodic sequence.

Lemma 4.2.4. ([77, 78]). Let the condition (C1) holds. Then

(i) There exists a constant p > 0 such that, for every t ∈ R

lim
T→∞

ι(t, t+ T )

T
= p.

(ii) For each p > 0 there exists a positive integer N such that each interval of length p has no
more than N elements of the sequence {τk}, That is,

ι(s, t) ≤ N(t− s) +N,

where ι(s, t) is the number of point τk in the interval (s, t).

The following Lemma is an immediate consequence of Lemma 4.2.3.

Lemma 4.2.5. ([39]). Let the conditions (C1)-(C4) hold. Then, for each ε > 0 there are
relatively dense sets Tε,f,σ,gk of R and T̂ε,f,σ,gk of Z such that the following relations hold:
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(i) E‖f(t+ τ)− f(t)‖2 < ε, t ∈ R, τ ∈ Tε,f,σ,gk , |t− τk| > ε, k ∈ Z.

(ii) E‖σ(t+ τ)− σ(t)‖2 < ε, t ∈ R, τ ∈ Tε,f,σ,gk , |t− τk| > ε, k ∈ Z.

(iii) E‖gk+q − gk‖2 < ε, k ∈ Z, q ∈ T̂ε,f,σ,gk .

(iv) For each τ ∈ Tε,f,σ,gk , ∃q ∈ T̂ε,f,σ,gk , such that |τk+q − τk − τ | < ε, k ∈ Z.

Now we present the definition of mild solutions for the problem (4.2) − (4.3) based on the
paper [113].

Definition 4.2.7. A stochastic process x ∈ PC(J, L2(Ω,H)), J ⊂ R is called the mild solution
of the problem (4.2)− (4.3) if

(i) x0 ∈ LF0
2 (Ω,H);

(ii) xt ∈ L2(Ω,H) has càdlàg paths on t ∈ J a.s., and it satisfies the following integral equation

x(t) =



T (t− t0)x0 +

∫ t

t0

(t− s)α−1S(t− s)f(s)ds

+

∫ t

t0

(t− s)α−1S(t− s)σ(s)dW (s), t ∈ [t0, τ1],

T (t− t0)x0 + T (t− τ1)g1 +

∫ t

t0

(t− s)α−1S(t− s)f(s)ds

+

∫ t

t0

(t− s)α−1S(t− s)σ(s)dW (s), t ∈ (τ1, τ2],

...

T (t− t0)x0 +
∑

t0<τk<t
T (t− τk)gk +

∫ t

t0

(t− s)α−1S(t− s)f(s)ds

+

∫ t

t0

(t− s)α−1S(t− s)σ(s)dW (s), t ∈ (τk, τk+1],

(4.4)

where T (·) and S(·) are called characteristic solution operators and given by

T =

∫ ∞
0

ξα(θ)S(tαθ)dθ, S = α

∫ ∞
0

θξα(θ)S(tαθ)dθ,

and for θ ∈ (0,∞)

ξα(θ) =
1

α
θ−1− 1

α$α(θ−
1
α ) ≥ 0,

$α(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα + 1)

n!
sin(nπα),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞), and

∫ ∞
0

ξα(θ)dθ = 1.
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Remark 4.2.3. ∫ ∞
0

θνξα(θ)dθ =

∫ ∞
0

θ−αν$α(θ)dθ =
Γ(1 + ν)

Γ(1 + αν)
.

In this section, we will also assume that ξ2
α ∈ L1((0,∞)).

Let the operator −A in (4.1) and (4.3) be an infinitesimal generator of an analytic semigroup
S(t) in L2(Ω,H) and 0 ∈ ρ(A), the resolvent set of A. For any β > 0, we define the fractional
power A−β of the operator a by

A−β =
1

Γ(β)

∫ ∞
0

tβ−1S(t)dt,

where A−β is bounded, bijective and Aβ = (A−β)−1, β > 0 a closed linear operator on its domain
D(Aβ) and such that D(Aβ) = R(A−β) where R(A−β) is the range of A−β. Furthermore, the
subspace D(Aβ) is dense in L2(Ω,H) and the expression

‖x‖β = ‖Aβx‖, x ∈ D(Aβ),

defines a norm on L2(Ω,Hβ) := D(Aβ). The following properties are well known.

Lemma 4.2.6. ([94]). Suppose that the preceding conditions are satisfied. Then

(i) S(t) : L2(Ω,H)→ D(Aβ) for every t > 0 and β ≥ 0.

(ii) For every x ∈ D(Aβ), the following equality S(t)Aβx = AβS(t)x holds.

(iii) For every t > 0, the operator AβS(t) is bounded and

‖AβS(t)‖ ≤ Kβt
−βe−λt, Kβ > 0, λ > 0.

(iv) For 0 < β ≤ 1 and x ∈ D(Aβ), we have

‖S(t)x− x‖ ≤ Cβt
β‖Aβx‖, Cβ > 0.

When −A generates a semi-group with negative exponent, we deduce that if x(t) is a
bounded solution of (4.3) on R, then we take the limit as t0 → −∞ and using (4.4), we obtain
(see[16])

x(t) =

∫ t

−∞
(t−s)α−1S(t−s)f(s)ds+

∫ t

−∞
(t−s)α−1S(t−s)σ(s)dW (s)+

∑
τk<t

T (t−τk)gk. (4.5)

4.2.1 The Main Results

Now, we present and prove our main theorems.

Theorem 4.2.1. Assume that conditions (C1)-(C4) are satisfied and −A is the infinitesimal
generator of an analytic semi-group S(t), then system (4.2)− (4.3) has a square-mean piecewise
almost periodic mild solution.
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Proof. First, we shall show that the right-hand side of (4.5) is well defined.
From conditions (C2)-(C4), it follows that f(t), σ(t) and {gk} are stochastically bounded, and
let

max

{
E‖f(t)‖2

pc,E‖σ(t)‖2
pc,E‖gk‖2

L2(Ω,H)

}
≤ N0, N0 > 0.

In view of Lemma 4.2.6 and the definition of the norm in Hβ, we obtain

E‖x(t)‖2
β = E‖Aβx(t)‖2

≤ 3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)f(s)ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)σ(s)dW (s)

∥∥∥∥2

+ 3E
∥∥∥∥∑
τk<t

AβT (t− τk)gk
∥∥∥∥2

≤ 3α2E
∥∥∥∥∫ t

−∞

∫ ∞
0

θ(t− s)α−1ξα(θ)AβS((t− s)αθ)f(s)dθds

∥∥∥∥2

+3α2E
∥∥∥∥∫ t

−∞

∫ ∞
0

θ(t− s)α−1ξα(θ)AβS((t− s)αθ)σ(s)dθdW (s)

∥∥∥∥2

+3
∑
τk<t

E
∥∥∥∥∫ ∞

0

ξα(θ)AβS((t− τk)αθ)gkdθ
∥∥∥∥2

≤ 3α2E
[ ∫ t

−∞

∫ ∞
0

‖θ(t− s)α−1ξα(θ)AβS((t− s)αθ)f(s)‖dθds
]2

+3α2Tr(Q)E
[ ∫ t

−∞

∫ ∞
0

‖θ(t− s)α−1ξα(θ)AβS((t− s)αθ)σ(s)‖2
L2
0
dθds

]
+3
∑
τk<t

E
[ ∫ ∞

0

‖ξα(θ)AβS((t− τk)αθ)gk‖dθ
]2

≤ 3α2K2
β

∫ ∞
0

ξα(θ)

∫ t

−∞
θ1−β(t− s)−αβ+α−1e−λθ(t−s)

α

dsdθ

×
∫ ∞

0

ξα(θ)

∫ t

−∞
θ1−β(t− s)−αβ+α−1e−λθ(t−s)

αE‖f(s)‖2dsdθ

+3α2K2
βTr(Q)

∫ t

−∞

∫ ∞
0

θ2(1−β)ξ2
α(θ)(t− s)2(α−αβ−1)e−2λθ(t−s)αE‖σ(s)‖2

L2
0
dθds

+3K2
β

∑
τk<t

E
[ ∫ ∞

0

θ−βξα(θ)(t− τk)−αβe−λθ(t−τk)α‖gk‖dθ
]2

.

(4.6)

We have, for η = t− s,

E‖x(t)‖2
β ≤ 3α2K2

βN0

∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

×
∫ ∞

0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

+3α2K2
βN0Tr(Q)

∫ ∞
0

ξ2
α(θ)

∫ ∞
0

θ2(1−β)η2(α−αβ−1)e−2λθηαdηdθ

+3K2
βN0R(θ),

(4.7)
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where
R(θ) =

(∫ ∞
0

ξα(θ)

[ ∑
0<t−τk≤1

(θ(t− τk)α)−βe−λθ(t−τk)α

+
∞∑
j=1

∑
j<t−τk≤j+1

(θ(t− τk)α)−βe−λθ(t−τk)α
]
dθ

)2

.

By a standard calculation, we can deduce that(
α

∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

)2

=

(
1

λ1−β

∫ ∞
0

ξα(θ)

∫ ∞
0

(λθηα)−βe−λθη
α

dλθηαdθ

)2

=
Γ2(1− β)

λ2(1−β)
.

(4.8)

Since ξ2
α ∈ L1((0,∞)), we further derive that

α2

∫ ∞
0

ξ2
α(θ)

∫ ∞
0

θ2(1−β)η2(α−αβ−1)e−2λθηαdηdθ ≤ N1
Γ2(1− 2β)

λ2−2β
, (4.9)

where N1 = supθ≥0 ξ
2
α(θ).

By the help of (C1) and Lemma 4.2.4, we have

R(θ) ≤
(∫ ∞

0

ξα(θ)

(
2N

Nβ
2

+
2N

eβ − 1

)
dθ

)2

= 4N2

(
1

Nβ
2

+
1

eβ − 1

)2

.

(4.10)

where N2 = min{θ(t− τk)α, 0 < t− τk ≤ 1}.
Recalling (4.7), from (4.8)− (4.10), we obtain

E‖x(t)‖2
β ≤ 3K2

βN0

[
Γ2(1− β)

λ2(1−β)
+ Tr(Q)N1

Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2]
, (4.11)

and x(t) ∈ PC(R, L2(Ω,H)).

Let ε > 0, τ ∈ Tε,f,σ,gk and q ∈ T̂ε,f,σ,gk , k ∈ Z, where the sets Tε,f,σ,gk and T̂ε,f,σ,gk are defined
as in Lemma 4.2.5. We have

x(t+ τ)− x(t) =

(∫ t+τ

−∞
(t+ τ − s)α−1S(t+ τ − s)f(s)ds

+

∫ t+τ

−∞
(t+ τ − s)α−1S(t+ τ − s)σ(s)dW (s) +

∑
τk<t

T (t+ τ − τk)gk
)

−
(∫ t

−∞
(t− s)α−1S(t− s)f(s)ds

+

∫ t

−∞
(t− s)α−1S(t− s)σ(s)dW (s) +

∑
τk<t

T (t− τk)gk
)

=

∫ t

−∞
(t− s)α−1S(t− s)[f(s+ τ)− f(s)]ds

+

∫ t

−∞
(t− s)α−1S(t− s)[σ(s+ τ)− σ(s)]dW̃ (s)

+
−∞∑
τk<t

T (t− τk)[gk+q − gk],
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where W̃ (s) = W (s + τ)−W (τ) is also a Brownian motion and has the same distribution
as w.

Then

E‖x(t+ τ)− x(t)‖2
β = E‖Aβ(x(t+ τ)− x(t))‖2

≤ 3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[f(s+ τ)− f(s)]ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[σ(s+ τ)− σ(s)]dW̃ (s)

∥∥∥∥2

. +3E
∥∥∥∥ −∞∑
τk<t

T (t− τk)[gk+q − gk]
∥∥∥∥2

≤ Mβε,

(4.12)

where |t− τk| > ε and

Mβ = Kβ

[
Γ2(1− β)

λ2(1−β)
+ Tr(Q)N1

Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2]
.

The last inequality implies that x(t) is a square-mean piecewise almost periodic process, so
system (4.2) − (4.3) has a square-mean piecewise almost periodic solution. The proof is
complete. �

In order to obtain the existence of square-mean piecewise almost periodic solution to system
(4.1)− (4.2), we introduce the following conditions:

(C5) −A : D(A) ⊆ L2(Ω,H) → L2(Ω,H) is the infinitesimal generator of an exponentially
stable analytic semi-group S(t), t ∈ R, on L2(Ω,H).

(C6) F (t, x) ∈ AP(R × L2(Ω,Hβ), L2(Ω,H)) with respect to t ∈ R uniformly in x ∈ K, for
each compact set K ⊆ L2(Ω,H)), and there exist constants c̃ > 0, 0 < κ < 1, 0 < β < 1,
such that

E‖F (t1, x1)− F (t2, x2)‖2 ≤ c̃(|t1 − t2|κ + E‖x1 − x2‖2
β),

where (ti, xi) ∈ R× L2(Ω,Hβ), i = 1, 2.

(C7) Σ(t, x) ∈ AP(R × L2(Ω,Hβ), L2(Ω, L2
0)) with respect to t ∈ R uniformly in x ∈ K, for

each compact set K ⊆ L2(Ω,H), and there exist constants ĉ > 0, 0 < κ < 1, 0 < β < 1,
such that

E‖Σ(t1, x1)− Σ(t2, x2)‖2
L2
0
≤ ĉ(|t1 − t2|κ + E‖x1 − x2‖2

β),

(ti, xi) ∈ R× L2(Ω,Hβ), i = 1, 2.

(C8) The sequences {Gk(x)} is almost periodic in k ∈ Z uniformly in x ∈ K ⊆ L2(Ω,H), and
there exist constants c > 0, 0 < β < 1, such that

E‖Gk(x1)−Gk(x2)‖2 ≤ cE‖x1 − x2‖2
β,

where x1, x2 ∈ L2(Ω,Hβ).

Theorem 4.2.2. Assume that conditions (C1), (C5)-(C8) are satisfied, then the impulsive
fractional stochastic system (4.1)−(4.2) admits a unique square-mean piecewise almost periodic
mild solution.
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Proof. Let B the set of all x ∈ AP(R, L2(Ω,H)) with discontinuities of the first type at the
point τk, k ∈ Z, {τk} ∈ B, satisfying the inequality E‖x‖2 ≤ r, r > 0. Obviously, B is a closed
set of AP(R, L2(Ω,H)).

Define the operator Θ in B by

Θx(t) =

∫ t

−∞
(t− s)α−1AβS(t− s)F (s, A−βx(s))ds

+

∫ t

−∞
(t− s)α−1AβS(t− s)Σ(s, A−βx(s))dW (s)

+
−∞∑
τk<t

Aβτ(t− τk)Gk(A
−βx(τk)).

(4.13)

Proceeding in the same way as in the proof of theorem 4.2.1, from conditions (C6)-(C8) and
Lemma 2.2 in [21], we can show that Θ is well defined and Θx(t) ∈ PC(R, L2(Ω,H)).

First, we shall show that Θx(t) ∈ B. We define

Θ1x(t) =

∫ t

−∞
(t− s)α−1AβS(t− s)F (s, A−βx(s))ds

Θ2x(t) =

∫ t

−∞
(t− s)α−1AβS(t− s)Σ(s, A−βx(s))dW (s).

Let us show that Θ1x ∈ B, let x ∈ B. Using condition (C6), since Aβ is closed and F (t, x) ∈
AP(R×L2(Ω,Hβ), L2(Ω,H)), we have from Corollary 4.2.1, that A−βx ∈ B and F (·, A−βx(·)) ∈
AP(R, L2(Ω,H)). Therefore, it follows from Definition 4.2.4, and Lemma 4.2.3, that for any
ε > 0, there exists a relatively dense set T such that for τ ∈ T the following property

E‖F (t+ τ, A−βx(t+ τ))− F (t, A−βx(t))‖2 <
ελ2(1−β)

K2
βΓ2(1− β)

hold, satisfying the condition |t− τk| > ε, for each t ∈ R and k ∈ Z.
By virtue of Lemma 4.2.6, we have

E‖Θ1x(t+ τ)−Θ1x(t)‖2

= E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[F (s+ τ, A−βx(s+ τ))− F (s, A−βx(s))]ds

∥∥∥∥2

≤ α2K2
β

∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

×E‖F (t+ τ − η, A−βx(t+ τ − η))− F (t− η, A−βx(t− η))‖2dηdθ

≤ α2K2
β

(∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

)2

× sup
t∈R

E‖F (t+ τ, A−βx(t+ τ))− F (t, A−βx(t))‖2

= K2
β

Γ2(1− β)

λ2(1−β)
sup
t∈R

E‖F (t+ τ, A−βx(t+ τ))− F (t, A−βx(t))‖2

< K2
β

Γ2(1− β)

λ2(1−β)
× ελ2(1−β)

K2
βΓ2(1− β)

= ε

Hence, Θ1x(·) ∈ B.
Similarly, by using condition (C7), sinceAβ is closed and Σ(t, x) ∈ AP(R×L2(Ω,Hβ), L2(Ω, L2

0)),
we have from Corollary 4.2.1 that A−βx ∈ B and Σ(·, A−βx(·)) ∈ AP(R, L2(Ω, L2

0)). Therefore,
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it follows from Definition 4.2.4, and Lemma 4.2.3, that for any ε > 0, there exists a relatively
dense set T such that for τ ∈ T the following property

E‖Σ(t+ τ, A−βx(t+ τ))− Σ(t, A−βx(t))‖2
L2
0
<

ελ2−2β

N1K2
βTr(Q)Γ(1− 2β)

hold, satisfying the condition |t− τk| > ε, for each t ∈ R and k ∈ Z.
By virtue of Lemma 4.2.6, for W̃ (t) := W (t+ τ)−W (τ), we have

E‖Θ2x(t+ τ)−Θ2x(t)‖2

= E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[Σ(s+ τ, A−βx(s+ τ))− Σ(s, A−βx(s))]dW̃ (s)

∥∥∥∥2

≤ α2K2
βTr(Q)

∫ ∞
0

ξ2
α(θ)

∫ ∞
0

θ2(1−β)η2(α−αβ−1)e−2λθηα

×E‖Σ(t+ τ − η, A−βx(t+ τ − η))− Σ(t− η, A−βx(t− η))‖2
L2
0
dηdθ

≤ α2K2
βTr(Q)

∫ ∞
0

ξ2
α(θ)

∫ ∞
0

θ2(1−β)η2(α−αβ−1e−2λθηαdηdθ

× sup
t∈R

E‖Σ(t+ τ, A−βx(t+ τ))− Σ(t, A−βx(t))‖2
L2
0

≤ K2
βTr(Q)N1

Γ2(1− 2β)

λ2−2β
sup
t∈R

E‖Σ(t+ τ, A−βx(t+ τ))− Σ(t, A−βx(t))‖2
L2
0

< K2
βTr(Q)N1

Γ2(1− 2β)

λ2−2β
× ελ2−2β

N1K2
βTr(Q)Γ2(1− 2β)

= ε

Thus, Θ2x(·) ∈ B. And in view of the above, it is clear that Θ maps B into itself.
Next, we show that Θ is a contracting operator on B. Let x1, x2 ∈ B. Then, we have

E‖Θx1(t)−Θx2(t)‖2

≤ 3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[F (s, A−βx1(s))− F (s, A−βx2(s))]ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

−∞
(t− s)α−1AβS(t− s)[Σ(s, A−βx1(s))− Σ(s, A−βx2(s))]dW (s)

∥∥∥∥2

+3E
∥∥∥∥∑
τk<t

Aβτ(t− τk)[Gk(A
−βx1(τk))−Gk(A

−βx2(τk))]

∥∥∥∥2

≤ 3K2
βc∗

[
α2

(∫ ∞
0

ξα(θ)

∫ ∞
0

θ1−βη−αβ+α−1e−λθη
α

dηdθ

)2

+ α2Tr(Q)

∫ ∞
0

ξ2
α(θ)

×
∫ ∞

0

θ2(1−β)η2(α−αβ−1)e−2λθηαdηdθ +R(θ)

]
sup
t∈R

E‖x1(t)− x2(t)‖2,

where c∗ = max{ĉ, c̃, c} > 0 is sufficiently small and R(θ) is defined as in above.
By following similar arguments like those used in (4.7) , we have

E‖Θx1(t)−Θx2(t)‖2

≤ 3c∗K
2
β

[
Γ2(1− β)

λ2(1−β)

+Tr(Q)N1
Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2]
sup
t∈R

E‖x1(t)− x2(t)‖2.

Therefore, if c∗ is chosen in the form

c∗ ≤
(

3K2
β

[
Γ2(1− β)

λ2(1−β)
+ Tr(Q)N1

Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2])−1

.
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we have

E‖Θx1(t)−Θx2(t)‖2

≤ 3c∗K
2
β

[
Γ2(1− β)

λ2(1−β)
+ Tr(Q)N1

Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2]
‖x1 − x2‖2

∞,

implies that,
‖Θx1 −Θx2‖∞ ≤

√
Λ‖x1 − x2‖∞,

Λ = 3c∗K
2
β

[
Γ2(1− β)

λ2(1−β)
+ Tr(Q)N1

Γ2(1− 2β)

λ2(1−β)
+ 4N2

(
1

Nβ
2

+
1

eβ − 1

)2]
.

Thus, Θ is a contracting operator on B. So by the contraction principle, we conclude that there
exists a unique fixed point x for Θ in B, such that x = Θx, that is

x(t) =

∫ t

−∞
(t− s)α−1AβS(t− s)F (s, A−βx(s))ds

+

∫ t

−∞
(t− s)α−1AβS(t− s)Σ(s, A−βx(s))dW (s)

+
∑
τk<t

AβT (t− τk)Gk(A
−βx(τk)).

(4.14)

for all t ∈ R.
Now, from conditions (C6)-(C8) and since Aβ is closed, Gk ∈ AP(Z, L2(Ω,H)), F (t, x) ∈

AP(R × L2(Ω,Hβ), L2(Ω,H)), and Σ(t, x) ∈ AP(R × L2(Ω,Hβ), L2(Ω, L2
0)), we have from

corollary 4.2.1 that F (·, A−βx(·)) ∈ AP(R, L2(Ω,H)),Σ(·, A−βx(·)) ∈ AP(R, L2(Ω, L2
0)) and

Gk(A
−βx(·)) is square-mean almost periodic sequence. Therefore, by Lemma 2.2 in [21], and

Remark 4.2.2, it follows that F (·, A−βx(·)), Σ(·, A−βx(·)) and Gk(A
−βx(·)) are stochastically

bounded, and E‖F (t, A−βx(t))‖2, E‖Σ(t, A−βx(t))‖2
L2
0
are uniformly continuous in t. We also

get

A−βx(t) =

∫ t

−∞
(t− s)α−1S(t− s)F (s, A−βx(s))ds

+

∫ t

−∞
(t− s)α−1S(t− s)Σ(s, A−βx(s))dW (s) +

∑
τk<t

T (t− τk)Gk(A
−βx(τk)).

with A−βx is stochastically bounded in the sense that for r > 0, for each t ∈ R, E‖A−βx(t)‖2 ≤
r. Hence, A−βx ∈ B is mild solution of the problem (4.1)− (4.2). �

Theorem 4.2.3. Assume that the conditions (C1), (C5)-(C8) are satisfied, then the im-
pulsive fractional stochastic system (4.1) − (4.2) has an exponentially stable almost periodic
solution.

Proof. Let u(t) be the solution of the following integral equation

u(t) =

∫ t

−∞
(t− s)α−1AβS(t− s)F (s, A−βu(s))ds

+

∫ t

−∞
(t− s)α−1AβS(t− s)Σ(s, A−βu(s))dW (s) +

∑
τk<t

AβT (t− τk)Gk(A
−βu(τk)).

(4.15)
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Consider the equation

cDα
t x(t) +Ax = F (t, A−βu(t)) + Σ(t, A−βu(t))

dW (t)

dt
+
∑
t0<τk

Gk(A
−βu(τk))δ(t− τk), t ∈ R.

(4.16)
In view of Theorem 4.2.2, it follows that there exists a unique square-mean piecewise almost
periodic solution in the form

ψ(t) =

∫ t

−∞
(t− s)α−1S(t− s)F (s, A−βu(s))ds

+

∫ t

−∞
(t− s)α−1S(t− s)Σ(s, A−βu(s))dW (s) +

∑
τk<t

T (t− τk)Gk(A
−βu(τk)).

(4.17)
Then

Aβψ(t) =

∫ t

−∞
Aβ(t− s)α−1S(t− s)F (s, A−βu(s))ds

+

∫ t

−∞
Aβ(t− s)α−1S(t− s)Σ(s, A−βu(s))dW (s)

+
−∞∑
τk<t

Aβτ(t− τk)Gk(A
−βu(τk))

= u(t).

(4.18)

The last equality shows that ψ(t) = A−βu(t) is a solution of (4.1)− (4.2), and the uniqueness
follows from the uniqueness of the solution of (4.15) from (4.14).

Let u(t) = u(t; t0, u0) and v(t) = v(t; t0, v0) be two solutions of equation (4.1), then

u(t) =

∫ t

−∞
(t− s)α−1S(t− s)F (s, A−βu(s))ds

+

∫ t

−∞
(t− s)α−1S(t− s)Σ(s, A−βu(s))dW (s) +

∑
τk<t

T (t− τk)Gk(A
−βu(τk)),

(4.19)

v(t) =

∫ t

−∞
(t− s)α−1S(t− s)F (s, A−βv(s))ds

+

∫ t

−∞
(t− s)α−1S(t− s)Σ(s, A−βv(s))dW (s) +

∑
τk<t

T (t− τk)Gk(A
−βv(τk)),

(4.20)
and z(t) = u(t)− v(t) is in AP(R, L2(Ω,H)),

z = T (t− t0)z(t0). (4.21)

The proof follows from (4.21), the estimates from Lemma 4.2.6, and the fact that ι(t0 − t) −
p(t−t0) = o(t) for t→∞. �
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4.3 Existence Of Solutions For Fractional Partial Neutral
Stochastic Functional Integro-Differential Inclusions With
State-Dependent Delay and Analytic Resolvent Oper-
ator

In this Section2 we consider the existence of a class of fractional partial neutral stochastic
integro-differential inclusions with state-dependent delay of the form

cDα
t [x(t)−g(t, xt)] ∈ Ax(t)+

∫ t

0

R(t−s)x(s)ds+F (t, xρ(t,xt))
dW (t)

dt
, t ∈ J := [0, b], (4.22)

x0 = ϕ ∈ B, x′(0) = 0, (4.23)
where the state x(·) takes values in a separable real Hilbert space H with inner product (·, ·)H
and norm ‖ · ‖H; cDα is the Caputo fractional derivative of order α ∈ (1, 2); A, (R(t))t≥0 are
closed linear operators defined on a common domain which is dense in (H, ‖ · ‖H); Dα

t σ(t)
represents the Caputo derivative of order α > 0 defined by

Dα
t σ(t) =

∫ t

0

ηn−α(t− s) d
n

dsn
σ(s)ds,

n is the smallest integer greater than or equal to α and ηβ(t) := tβ−1/Γ(β), t > 0, β ≥ 0. The
time history xt : (−∞, 0]→ H is given by xt(θ) = x(t+θ), belongs to some abstract phase space
B defined axiomatically. Let K be another separable Hilbert space with inner product (·, ·)K
and norm ‖ · ‖K. Suppose {W (t) : t ≥ 0} is a given K-valued Wiener process with a finite trace
nuclear covariance operator Q > 0 defined on a complete probability space (Ω,F ,P) equipped
with a normal filtration {Ft}t≥0 which is generated by the Wiener process W. The initial data
ϕ = {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted, B- valued random variable independent of the
Wiener process W with finite second moments. F, g, ϕ ∈ B and ρ are given functions to be
specified later.

Then, we will study only the existence of mild solutions for the fractional partial neutral
stochastic integro-differential inclusion (4.22)− (4.23), which are natural genaralizations of the
concept of mild solution for fractional evolution equations well known in the theory of infinite
dimensional deterministic system. This is the difference between this work and the work men-
tioned in [119]. Specifically, sufficient conditions for the existence are given by means of the
nonlinear alternative of Leray-Schauder type for multivalued maps due to O’Regan with the
analytic α-resolvent operator. The known results appeared in [5, 14] are generalized to the
fractional stochastic multi-valued settings and the case of infinite delay.

In this section, A and R(t), t ≥ 0 are closed linear operators defined on a common domain
D(A) which is dense in H. The notation [D(A)] represents the domain of A endowed with the
graph norm. We denote by (−A)β the fractional power of the operator −A for β ∈ (0, 1].
Furthermore, the subspace D((−A)β) is dense in H and the expression ‖x‖β = ‖(−A)βx‖, x ∈
D((−A)β), defines a norm on D((−A)β). Hereafter, let Hβ be the Banach space D((−A)β)
endowed with the norm ‖x‖β, which is equivalent to the graph norm of (−A)β. For more details
about the above preliminaries, we refer to [94].

In this work, we assume that the phase space (B, ‖.‖B) is a seminormed linear space of
F0-measurable functions mapping (−∞, 0] into Hβ, and satisfying the following fundamental
axioms due to Hale and Kato [41].

2The section is based on the paper [40].
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(i) If x : (−∞, b) → H, b > 0, is continuous on [0, b) and x0 in B, then for every t ∈ [0, a)
the following conditions hold:

(a) xt is in B;

(b) ‖x(t)‖β ≤ H̃‖xt‖B;

(c) ‖xt‖B ≤ K(t) sup{‖x(s)‖β : 0 ≤ s ≤ t} + M(t)‖x0‖B, where H̃ ≥ 0 is a constant;
K,M : [0,∞) → [0,∞), K is continuous, M is locally bounded, and H̃,K,M are
independent of x(·).

(ii) For the function x(·) in (i), xt is a B-valued function on [0, a).

(iii) The space B is complete.

Now, we consider the closed subspace Z of all continuous processes x that belongs to the
space C((−∞, b], LF2 (Ω,B)) consisting of measurable and Ft-adapted processes such that ϕ ∈ B
ad the restriction x : J → LF2 (Ω,B) is continuous. Let ‖ · ‖Z be a seminorm in Z defined by

‖x‖Z = (sup
t∈J
‖xt‖2

B)
1
2 .

It is easy to verify that Z furnished with the norm topology as defined above, is a Banach
space.

The following result is a consequence of the phase space axioms.

Lemma 4.3.1. ([120]). Let x : (−∞, b] → Hβ be an Ft-adapted measurable process such
that the F0-adapted process x0 = ϕ(t) ∈ LF0

2 (Ω,B) and the restriction x : J → LF2 (Ω,B) is
continuous, then

‖xs‖B ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖β,

where Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

Throughout this section, we use the notation P(H) for the family of all nonempty subsets
of H. Let us introduce the following notations:

Pcl(H) = {Y ∈ P(H) : Y is closed }, Pbd(H) = {Y ∈ P(H) : Y is bounded },
Pcv(H) = {Y ∈ P(H) : Y is convex }, Pcp(H) = {Y ∈ P(H) : Y is compact },
Pcd(H) = {Y ∈ P(H) : Y is compact-acyclic }.

For x ∈ H and Y, Z ∈ Pbd,cl(H), we denote by D(x, Y ) = inf{‖x − y‖ : y ∈ Y } and
ε(Y, Z) = supa∈Y D(a, Z), and the Hausdorff metric Hd : Pbd,cl(H) × Pbd,cl(H) → R+ by
Hd(A,B) = max{ε(A,B), ε(B,A)}.

A multi-valued map G : J → Pbd,cl,cv(H) is measurable if for each x ∈ H, the function
t→ D(x,G(t)) is a measurable function on J.

Definition 4.3.1. ([33]). Let G : H → Pbd,cl(H) be a multi-valued map. Then G is called a
multi-valued contraction if there exists a constant 0 < κ < 1 such that for each x, y ∈ H we
have

Hd(G(x)−G(y)) ≤ κ‖x− y‖.
The constant κ is called a contraction constant of G.



4.3 Integro-Differential Inclusions With State-Dependent Delay 59

Now, we give knowledge on the α-resolvent operator which appeared in [6].

Definition 4.3.2. A one-parameter family of bounded linear operators (Rα(t))t≥0 on H is called
an α-resolvent operator for

cDαx(t) = Ax(t) +

∫ t

0

R(t− s)x(s)ds, (4.24)

x0 = ϕ ∈ H, x′(0) = 0, (4.25)

if the following conditions are verified.

(i) The function Rα(·) : [0,∞)→ L(H) is strongly continuous and Rα(0)x = x for all x ∈ H
and α ∈ (1, 2).

(ii) For x ∈ D(A),Rα(·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞),H) and

Dα
t Rα(t)x = ARα(t)x+

∫ t

0

R(t− s)Rα(s)xds,

Dα
t Rα(t)x = Rα(t)Ax+

∫ t

0

Rα(t− s)R(s)xds

for every t ≥ 0.

The consideration of this section is based on the following conditions:

(C1) The operator A : D(A) ⊆ H → H is a closed linear operator with [D(A)] dense in H, and
for some φ0 ∈ (0, Π

2
], for each φ < φ0 there is a positive constant C0 = C0(φ) such that

λ ∈ ρ(A) for each
λ ∈ Σ0,αϑ = {λ ∈ C, λ 6= 0, | arg(λ)| < αϑ},

where 1 < α < 2, ϑ = φ+ Π
2
and ‖R(λ,A)‖ ≤ C0

|λ| for all λ ∈ Σ0,αϑ.

(C2) For all t ≥ 0, R(t) : D(R(t)) ⊆ H → H is a closed linear operator, D(A) ⊆ D(R(t)) and
R(·)x is strongly measurable on (0,∞) for each x ∈ D(A). There exists b(·) ∈ L1

loc(R+)

such that b̂(λ) exists for Re(λ) > 0 and ‖R(t)x‖H ≤ b(t)‖x‖1 for all t > 0 and x ∈
D(A). Moreover, the operator-valued function R̂ :

∑
0,Π/2 → L(D(A),H) has an analytical

extension (still denoted by R̂) to
∑

0,ϑ such that ‖R̂(λ)x‖H ≤ ‖R̂(λ)‖H‖x‖1 for all x ∈
D(A), and ‖R̂(λ)‖H = o(1/|λ|), as |λ| → ∞.

(C3) There exists a subspace D̃ ⊆ D(A) dense in [D(A)] and a positive constant C1 such that
A(D̃) ⊆ D(A), R̂(λ)D̃ ⊆ D(A), and ‖AR̂(λ)x‖H ≤ C1‖x‖H for every x ∈ D̃ and all
λ ∈ Σ0,ϑ.

In the sequel, for r > 0 and Π
2
< θ < ϑ,

Σr,θ = {λ ∈ C, |λ| > r, | arg(λ)| < θ},

Γir,θ, i = 1, 2, 3, are the paths
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Γ1
r,θ = {teiθ : t ≥ r}, Γ2

r,θ = {teiξ : |ξ| ≤ θ}, Γ3
r,θ = {te−iθ : t ≥ r},

and Γr,θ = ∪3
i=1Γir,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI − A− R̂(λ))−1 ∈ L(H)}.

We now define the operator family (Rα(t))t≥0 by

Rα(t) :=

{ 1
2Πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I , t = 0.

Definition 4.3.3. An Ft-adapted stochastic process x : (−∞, b]→ Hβ is called a mild solution
of the problem (4.22) − (4.23) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ J ; the function s →
ASα(t−s)g(s, xs) and s→

∫ s
0
R(s− τ)Sα(s− τ)g(τ, xτ )dτ is integrable on [0, t) for all t ∈ (0, b]

and the restriction of x(·) to the interval [0, b) is a continuous stochastic process, such that the
following stochastic integral inclusion is verified:

x(t) ∈ Rα(t)[ϕ(0)− g(0, ϕ)] + g(t, xt) +

∫ t

0

ASα(t− s)g(s, xs)ds

+

∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, xτ )dτds+

∫ t

0

Sα(t− s)F (s, xρ(s,xs))dW (s), t ∈ J := [0, b].

Definition 4.3.4. ([6]). Let α ∈ (1, 2), we define the family (Sα(t))t≥0 by

Sα(t) :=

∫ t

0

gα−1(t− s)Rα(s)ds

for each t ≥ 0.

Lemma 4.3.2. ([8]). There exists r1 > 0 such that
∑

r1,ϑ
⊆ ρα(Gα) and the function Gα :∑

r1,ϑ
→ L(H) is analytic. Moreover,

Gα(λ) = λα−1(λα − A)−1

[
I − R̂(λ)(λα − A)−1

]−1

,

and there exist constants M̃i, i = 1, 2 such that

‖Gα(λ)‖ =
M̃1

|λ|
; ‖AGα(λ)x‖ =

M̃2

|λ|
‖x‖1, x ∈ D(A); ‖AGα(λ)‖ =

M̃2

|λ|1−α

for every λ ∈
∑

r1,ϑ

Lemma 4.3.3. ([6]). Assume that the condition (C1) − (C3) are satisfied. Then there exists
a unique α-resolvent operator for the problem (4.24)− (4.25).

Lemma 4.3.4. ([6]). The function Rα : [0,∞) → L(H) is strongly continuous and Rα :
(0,∞)→ L(H) is uniformly continuous.

Lemma 4.3.5. ([6]).

(i) If the function Rα(·) is exponentially bounded in L(H), then Sα(·) is exponentially bounded
in L(H).
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(ii) If the function Rα(·) is exponentially bounded in L(D(A)), then Sα(·) is exponentially
bounded in L(D(A)).

Lemma 4.3.6. ([6]). If R(λα0 , A) = (λα0 − A)−1 is compact for some λ0 ∈ ρ(A), then Rα(t)
and Sα(t) are compact for all t > 0.

Lemma 4.3.7. ([8]). Assume that the conditions (C1)− (C3) are satisfied. Let α ∈ (1, 2) and
β ∈ (0, 1) such that αβ ∈ (0, 1), then there exists a positive number Mβ such that

‖(−A)βRα(t)‖ ≤Mβe
rtt−αβ, ‖(−A)βSα(t)‖ ≤Mβe

rttα(1−β)−1

for all t > 0. If x ∈ [D((−A)β)], then

(−A)βRα(t)x = Rα(t)(−A)βx, (−A)βSα(t)x = Sα(t)(−A)βx.

At the end, we recall the nonlinear alternative of Leray-Schauder type for multivalued maps
due to O’Regan.

Lemma 4.3.8. ([91]). Let H be a Hilbert space with V an open convex subset of H and y ∈ H.
Suppose that

(a) Φ : V → Pcd(H) has closed graph;

(b) Φ : V → Pcd(H) is a condensing map with Φ(V ) a subset of a bounded set in H hold.
Then either

(i) Φ has a fixed point in V , or

(ii) There exist y ∈ ∂V and λ ∈ (0, 1) with y ∈ λΦ(y) + (1− λ){y0}.

4.3.1 The Main Results

In this section, we shall present and prove our main result. Assume that ρ : J×B → (−∞, b]
is continuous. In addition, we make the following hypotheses: for some β ∈ (0, 1)

(H1) : The operator families Rα(t) and Sα(t) are compact for all t > 0, and there exist
constants M and M1 such that ‖Rα(t)‖L(H) ≤M and ‖Sα(t)‖L(H) ≤M for every t ∈ J and

‖(−A)βSα(t)‖ ≤M1t
α(1−β)−1, 0 < t ≤ b.

(H2) : R(·)x ∈ C(J,H) for every x ∈ [D((−A)1−β)], and there exist a positive integrable
function m ∈ L1([0, b]) and a constant M2 such that

‖R(s)Sα(t)‖L([D((−A)β)],H) ≤M2m(s)tαβ−1, 0 ≤ s < t ≤ b.

(H3) : There exists a constant δ ∈ (0, 1) such that g : J × B → [D((−A)δ+β)] satisfies the
Lipschitz condition, i.e., there exists a constant Lg > 0 such that

E‖(−A)δ+βg(t, ψ1)− (−A)δ+βg(t, ψ2)‖2 ≤ Lg‖ψ1 − ψ2‖2
B, t ∈ J, ψ1, ψ2 ∈ B,

E‖(−A)δ+βg(t, ψ)‖2 ≤ Lg

(
1 + ‖ψ‖2

B

)
, t ∈ J, ψ ∈ B.

(H4) : The function t → ϕt is continuous from ε(ρ−) = {ρ(s, ψ) ≤ 0, (s, ψ) ∈ J × B}
into B and there exists a continuous and bounded function Jϕ : ε(ρ−) → (0,∞) such that
‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for each t ∈ ε(ρ−).
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(H5) : The multi-valued map F : J × B → Pbd,cl,cv(L(K,H)); for each t ∈ J, the function
F (t, ·) : B → Pbd,cl,cv(L(K,H)); is u.s.c. and for each ψ ∈ B, the function F (·, ψ) is measurable;
for each fixed ψ ∈ B, the set

SF,ψ = {f ∈ L2(J, L(K,H)) : f(t) ∈ F (t, ψ) for a.e. t ∈ J}

is nonempty.
(H6) : There exists a positive function l : J → R+ such that the function s 7→ (t −

s)2α(1−β)−2l(s) belongs to L1([0, t],R+), t ∈ J, and

lim sup
‖ψ‖2B→∞

‖F (t, ψ)‖2

l(t)‖ψ‖2
B

= γ

uniformly in t ∈ J for a nonnegative constant γ, where

‖F (t, ψ)‖2 = sup{E‖f‖2 : f(t) ∈ F (t, ψ)}.

Lemma 4.3.9. ([43]). Let x : (−∞, b]→ H such that x0 = ϕ. If (H4) is satisfied, then

‖xs‖B ≤ (Mb + Jϕ0 )‖ϕ‖B +Kb sup{‖x(θ)‖; θ ∈ [0,max[0, s]]}, s ∈ ε(ρ−) ∪ J,

where Jϕ0 = supt∈ε(ρ−) J
ϕ(t).

Remark 4.3.1. Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function defined by
ϕt = ϕ(t + θ). Consequently, if the function x(·) in axiom (i), (fundamental axioms of phase
space), is such that x0 = ϕ, then xt = ϕt. We observe that ϕt is well-defined for t < 0 since the
domain of ϕ is (−∞, 0].

Lemma 4.3.10. ([74]). Let J be a compact interval and H be a Hilbert space. Let F be a
multivalued map satisfying (H5) and let Γ be a linear continuous operator from L2(J,H) to
C(J,H). Then, the operator ΓoSF : C(J,H) → Pcp,cv(C(J,H)) is a closed graph in C(J,H) ×
C(J,H).

Theorem 4.3.1. Let ϕ ∈ LF0
2 (Ω,Hβ). If the assumptions (H1) − (H6) are satisfied and

ρ(t, ψ) ≤ t for every (t, ψ) ∈ J × B, then the system (4.22) − (4.23) has at least one mild
solution on J, provided that

6LgK
2
b ‖(−A)−(δ+β)‖2

[
1 + ‖m‖2

2

M2
2 b

2α(δ+β)−1

2α(δ + β)− 1

]
+ 6LgK

2
b

M2
1 b

2α(δ+β)

α2(δ + β)2
< 1. (4.26)

Proof. Let B′ = {x : (−∞, b]→ HB such that x0 = 0 ∈ B, x\J ∈ C(J,Hβ)} endowed with
the uniform convergence topology. Let Z ′ = C((−∞, b], L2(Ω,B′)). Consider the multivalued
map Φ : Z ′ → P(Z ′) defined by: Φx the set of h ∈ Z ′ such that

h(t) =


0 if t ∈ (−∞, 0],

Rα(t)[ϕ(0)− g(0, ϕ)] + g(t, xt) +
∫ t

0
ASα(t− s)g(s, xs)ds

+
∫ t

0

∫ s
0
R(s− τ)Sα(t− s)g(τ, xτ )dτds+

∫ t
0
Sα(t− s)f(s)dW (s) for a.e. t ∈ J,

where f ∈ SF,xρ = {f ∈ L2(L(K,H)) : f(t) ∈ F (t, xρ(t, xt)) for a.e. t ∈ J} and x : (−∞, 0]→
Hβ is such that x0 = ϕ and x = x on J.

We shall show that the operator Φ has a fixed point, which is then a mild solution for
the problem (4.22) − (4.23). Let ϕ : (−∞, 0) → Hβ be the extension of (−∞, 0] such that
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ϕ(θ) = ϕ(0) = 0 on J and Jϕ0 = sup{Jϕ(s) : s ∈ ε(ρ−)}. We now show that Φ satisfies all the
conditions of Lemma 4.3.8. The proof will be given in several steps.

Step 1. We shall show that there exists an open set V ⊆ Z ′ with x ∈ λΦx for 0 < λ < 1
and x 6∈ ∂V. Let λ ∈ (0, 1) and x ∈ λΦx, then there exists f ∈ SF,xρ such that

x(t) = λRα(t)[ϕ(0)− g(0, ϕ)] + λg(t, xt) + λ

∫ t

0

ASα(t− s)g(s, xs)ds

+λ

∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, xτ )dτds+ λ

∫ t

0

Sα(t− s)f(s)dW (s), t ∈ J.

It follows from assumption (H6) that there exist two nonnegative real numbers a1 and a2 such
that for any ψ ∈ B and t ∈ J,

‖F (t, ψ)‖2 ≤ a1l(t) + a2l(t)‖ψ‖2
B. (4.27)

Then, by (H1)− (H3) and (4.27), from the above equation, for t ∈ J, we have

E‖x(t)‖2

≤ 5E‖Rα(t)[ϕ(0)− g(0, ϕ)]‖2 + 5E‖g(t, xt)‖2 + 5E
∥∥∥∥∫ t

0

ASα(t− s)g(s, xs)ds

∥∥∥∥2

+5E
∥∥∥∥∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, xτ )dτds

∥∥∥∥2

+ 5E
∥∥∥∥∫ t

0

Sα(t− s)f(s)dW (s)

∥∥∥∥2

≤ 10M2

(
E‖ϕ(0)‖2 + ‖(−A)−(δ+β)‖2Lg

(
1 + ‖ϕ‖2

B

))
+ 5‖(−A)−(δ+β)‖2

×Lg
(

1 + ‖xt‖2
B

)
+ 5M2

1

bα(β−δ)

α(β − δ)

∫ t

0

(t− s)α(β−δ)−1Lg

(
1 + ‖xs‖2

B

)
ds

+5M2
2‖(−A)−(δ+β)‖2

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1)Lg

(
1 + ‖xτ‖2

B

)
dτds

+5M2
1‖(−A)−β‖2Tr(Q)

∫ t

0

(t− s)2(α(1−β)−1)[a1l(s) + a2l(s)‖xρ(s,xs)‖2
B]ds

≤ 10M2

(
H̃2E‖ϕ‖2

B + ‖(−A)−(δ+β)‖2Lg

(
1 + ‖ϕ‖2

B

))
+ 5‖(−A)−(δ+β)‖2

×Lg
(

1 + ‖xt‖2
B

)
+ 5M2

1

bα(β−δ)

α(β − δ)

∫ t

0

(t− s)α(β−δ)−1Lg

(
1 + ‖xs‖2

B

)
ds

+5M2
2‖(−A)−(δ+β)‖2

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1)Lg

(
1 + ‖xτ‖2

B

)
dτds

+5M2
1‖(−A)−β‖2Tr(Q)a1

∫ t

0

(t− s)2(α(1−β)−1)l(s)ds

+5M2
1‖(−A)−β‖2Tr(Q)a2

∫ t

0

(t− s)2(α(1−β)−1)l(s)‖xρ(s,xs)‖2
Bds

≤ M̃ + 5‖(−A)−(δ+β)‖2Lg‖xt‖2
B + 5M2

1

bα(β−δ)

α(β − δ)
Lg

∫ t

0

(t− s)α(β−δ)−1‖xs‖2
Bds

+5M2
2‖(−A)−(δ+β)‖2Lg

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1)‖xτ‖2
Bdτds

+5M2
1‖(−A)−β‖2Tr(Q)a2

∫ t

0

(t− s)2(α(1−β)−1)l(s)‖xρ(s,xs)‖2
Bds,
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where

M̃ = 10M2

(
H̃2E‖ϕ‖2

B + ‖(−A)−(δ+β)‖2Lg

(
1 + ‖ϕ‖2

B

))
+ 5‖(−A)−(δ+β)‖2Lg + 5M2

1

× b2α(β−δ)

α2(β − δ)2
Lg + 5M2

2‖(−A)−(δ+β)‖2Lg

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1)dτds

+5M2
1‖(−A)−β‖2Tr(Q)a1

∫ t

0

(t− s)2(α(1−β)−1)l(s)ds.

By Lemma 4.3.1, it follows that ρ(s, xs) ≤ s, s ∈ [0, t], t ∈ [0, b] and

‖xρ(s,xs)‖2
B ≤ 2[(Mb + Jϕ0 )E‖ϕ‖B]2 + 2K2

b sup
0≤s≤b

E‖x(s)‖2. (4.28)

Then, for each t ∈ [0, b], we have

E‖x(t)‖2 ≤ M̂ + 10‖(−A)−(δ+β)‖2LgK
2
b sup

0≤t≤b
E‖x(t)‖2

+10M2
1

bα(β−δ)

α(β − δ)
LgK

2
b

∫ t

0

(t− s)α(β−δ)−1 sup
0≤υ≤s

E‖x(υ)‖2ds

+10M2
2‖(−A)−(δ+β)‖2LgK

2
b

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1) sup
0≤υ≤s

E‖x(υ)‖2dτds

+10M2
1‖(−A)−β‖2Tr(Q)a2K

2
b

∫ t

0

(t− s)2(α(1−β)−1)l(s) sup
0≤υ≤s

E‖x(υ)‖2ds,

where

M̂ = M̃ + 5‖(−A)−(δ+β)‖2LgĈ + 5M2
1

b2α(β−δ)

α2(β − δ)2
LgĈ

+5M2
2‖(−A)−(δ+β)‖2LgĈ

∫ t

0

∫ s

0

m2(t− τ)(t− s)2(α(δ+β)−1)dτds

+5M2
1‖(−A)−β‖2Tr(Q)a2Ĉ

∫ b

0

(b− s)2(α(1−β)−1)l(s)ds,

Ĉ = 2[(Mb + Jϕ0 )E‖ϕ‖B]2.
Hence by the condition (4.26), we have

sup0≤t≤b E‖x(t)‖2

≤ M̂

1− C̃
+

∫ b

0

[
K1(t− s)α(β−δ)−1 +

∫ s

0

K2m
2(t− τ)(t− s)2(α(δ+β)−1)dτ

+K3(t− s)2(α(1−β)−1)l(s)

]
sup

0≤υ≤s
E‖x(υ)‖2ds,

where

K1 =
10M2

1LgK
2
b b
α(β−δ)

(1− C̃)α(β − δ)
, K2 =

10M2
2‖(−A)−(δ+β)‖2LgK

2
b

1− C̃
,

K3 =
10M2

1‖(−A)−β‖2a2K
2
bTr(Q)

1− C̃
, and C̃ = 10‖(−A)−(δ+β)‖2LgK

2
b < 1.

Applying Gronwall’s inequality in the above expression, we obtain

sup0≤t≤b E‖x(t)‖2

≤ M̂

1− C̃
exp

{
K1b

α(β−δ)

α(β − δ)
+
K2‖m‖2

2b
2α(δ+β)−1

2α(δ + β)− 1
+K3

∫ b

0

(t− s)2(α(1−β)−1)l(s)ds

}
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and therefore

‖x‖2
Z ≤ M̂

1− C̃
exp

{
K1b

α(β−δ)

α(β − δ)
+
K2‖m‖2

2b
2α(δ+β)−1

2α(δ + β)− 1

+K3

∫ b

0

(t− s)2(α(1−β)−1)l(s)ds

}
<∞

then there exists r∗ such that ‖x‖2
Z 6= r∗. Set V = {x ∈ Z ′ : ‖x‖2

Z < r∗}. From the choice of V,
there is no x ∈ ∂V such that x ∈ λΦx for 0 < λ < 1.

Step 2. Φ has closed graph. Let x(n) → x∗, hn ∈ Φx(n), x(n) ∈ V = Br(0,Z ′) and hn → h∗.

From Axiom (i), it is easy to see that (x(n))s → x∗s uniformly for s ∈ (−∞, b] as n → ∞. We
prove that h∗ ∈ Φx∗. Now, hn ∈ Φx(n) means that there exists fn ∈ SF,x(n)ρ such that for each
t ∈ [0, b],

hn(t) = Rα(t)[ϕ(0)− g(0, ϕ)] + g(t, (x(n))t) +

∫ t

0

ASα(t− s)g(s, (x(n))s)ds

+

∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x(n))τ )dτds+

∫ t

0

Sα(t− s)fn(s)dW (s).

We must prove that there exists f∗ ∈ SF,x∗ρ such that for each t ∈ [0, b],

h∗(t) = Rα(t)[ϕ(0)− g(0, ϕ)] + g(t, (x∗)t) +

∫ t

0

ASα(t− s)g(s, (x∗)s)ds

+

∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x∗)τ )dτds+

∫ t

0

Sα(t− s)f∗(s)dW (s).

For every t ∈ [0, b], we have∥∥∥∥(hn(t)−Rα(t)[ϕ(0)− g(0, ϕ)]− g(t, (x(n))t)−
∫ t

0

ASα(t− s)g(s, (x(n))s)ds

−
∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x(n))τ )dτds

)
−
(
h∗(t)−Rα(t)[ϕ(0)− g(0, ϕ)]

−g(t, (x∗)t)−
∫ t

0

ASα(t− s)g(s, (x∗)s)ds

−
∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x∗)τ )dτds

)∥∥∥∥2

Z
→ 0 as n→∞.

Consider the linear continuous operator Θ : L2(L(K,H))→ Z,

Θ(f)(t) =

∫ t

0

Sα(t− s)f(s)dW (s).

From Lemma 4.3.10, it follows that Θ ◦ SF is a closed graph operator. Moreover,(
hn(t)−Rα(t)[ϕ(0)− g(0, ϕ)]− g(t, (x(n))t)−

∫ t

0

ASα(t− s)g(s, (x(n))s)ds

−
∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x(n))τ )dτds

)
∈ Γ(S

F,x(n)
).
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Since x(n) → x∗ for some f∗ ∈ SF,x∗ρ , it follows from Lemma 4.3.10 that

h∗(t)−Rα(t)[ϕ(0)− g(0, ϕ)]− g(t, (x∗)t)−
∫ t

0

ASα(t− s)g(s, (x∗)s)ds

−
∫ t

0

∫ s

0

R(s− τ)Sα(t− s)g(τ, (x∗)τ )dτds

=

∫ t

0

Sα(t− s)f∗(s)dW (s).

Therefore, Φ has a closed graph.

Step 3. We show that the operator Φ is condensing. For this purpose, we decompose Φ as
Φ = Φ1 + Φ2, where the map Φ1 : V → P(Z ′) be defined by Φ1x the set of h1 ∈ Z ′ such that

h1(t) =


0 if t ∈ (−∞, 0],

−Rα(t)− g(0, ϕ) + g(t, xt) +
∫ t

0
ASα(t− s)g(s, xs)ds

+
∫ t

0

∫ s
0
R(s− τ)Sα(t− s)g(τ, xτ )dτds for a.e. t ∈ J,

and the map Φ2 : V → P(Z ′) be defined by Φ2x the set of h2 ∈ Z ′ such that

h2(t) =

{
0 if t ∈ (−∞, 0],

Rα(t)ϕ(0) +
∫ t

0
Sα(t− s)f(s)dW (s) for a.e. t ∈ J,

We will verify that Φ1 is a contraction while Φ2 is a completly continuous operator.
We first show that Φ1 is a contraction on Z ′. Let t ∈ J and y∗, y∗∗ ∈ Z ′. From (H3) and

Lemma 4.3.1, we have

E‖(Φ1y
∗)(t)− (Φ1y

∗∗)(t)‖2

≤ 3E
∥∥∥∥(−A)−(δ+β)[(−A)δ+βg(t, y∗t)− (−A)δ+βg(t, y∗∗t)]

∥∥∥∥2

+3E
∥∥∥∥∫ t

0

(−A)1−δ−βSα(t− s)[(−A)δ+βg(s, y∗s)− (−A)δ+βg(s, y∗∗s)]ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

0

∫ s

0

R(s− τ)Sα(t− s)(−A)−δ−β[(−A)δ+βg(τ, y∗τ )− (−A)δ+βg(τ, y∗∗τ )]dτds

∥∥∥∥2

≤ 3‖(−A)−δ−β‖2Lg‖y∗t − y∗∗t‖2
B

+3M2
1

bα(δ+β)

α(δ + β)

∫ t

0

(t− s)α(δ+β)−1E‖(−A)δ+βg(s, y∗s)− (−A)δ+βg(s, y∗∗s)ds‖2

+3M2
2‖(−A)−δ−β‖2

∫ t

0

∫ s

0

m2(s)(t− s)2α(δ+β)−2

×E‖(−A)δ+βg(τ, y∗τ )− (−A)δ+βg(τ, y∗∗τ )‖2dτds

≤ 3‖(−A)−δ−β‖2Lg‖y∗t − y∗∗t‖2
B + 3M2

1Lg
bα(δ+β)

α(δ + β)

×
∫ t

0

(t− s)α(δ+β)−1‖y∗s − y∗∗s‖2
Bds

+3M2
2Lg‖(−A)−δ−β‖2

∫ t

0

∫ s

0

m2(s)(t− s)2α(δ+β)−2‖y∗τ − y∗∗τ‖2
Bdτds
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≤ 6LgK
2
b

[
‖(−A)−δ−β‖2 +

M2
1 b

2α(δ+β)

α2(δ + β)2
+ ‖(−A)−δ−β‖2‖m‖2

2

M2
1 b

2α(δ+β)−1

2α(δ + β)− 1

]
× sup

s∈[0,b]

E‖y∗(s)− y∗∗(s)‖2

= 6LgK
2
b

[
‖(−A)−δ−β‖2 +

M2
1 b

2α(δ+β)

α2(δ + β)2
+ ‖(−A)−δ−β‖2‖m‖2

2

M2
1 b

2α(δ+β)−1

2α(δ + β)− 1

]
× sup

s∈[0,b]

E‖y∗(s)− y∗∗(s)‖2 (since y = y on J).

Taking supermum over t, we get

‖Φ1y
∗ − Φ1y

∗∗‖2
Z ≤ C∗‖y∗ − y∗∗‖2

Z ,

where

C∗ = 6LgK
2
b

[
‖(−A)−δ−β‖2 +

M2
1 b

2α(δ+β)

α2(δ + β)2
+ ‖(−A)−δ−β‖2‖m‖2

2

M2
2 b

2α(δ+β)−1

2α(δ + β)− 1

]
< 1.

Thus Φ1 is a contraction on Z ′.
Now, we prove that Φ2x is convex for each x ∈ V . In fact, if h1

2, h
2
2 belong to Φ2x, then there

exist f1, f2 ∈ SF,xρ such that

hi2(t) = Rα(t)ϕ(0) +

∫ t

0

Sα(t− s)fi(s)dW (s), t ∈ J, i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ J, we have

(λh1
2 + (1− λ)h2

2)(t) = Rα(t)ϕ(0) +

∫ t

0

Sα(t− s)[λf1(s) + (1− λ)f2(s)]dW (s).

Since SF,xρ is convex (because F has convex values), we have (λh1
2 + (1− λ)h2

2) ∈ Φ2x.

Next, we show that the operator Φ2(V ) is completely continuous. We first show that Φ2(V )
is equicontinuous. if x ∈ V , from Lemma 4.3.1, it follows that

‖xρ(s,xs)‖2
B ≤ [(Mb + Jϕ0 )‖ϕ‖B]2 + 2K2

b r
∗ := r′.

Let 0 < τ1 < τ2 ≤ b and ε > 0 be small. For each x ∈ V , h2 ∈ Φ2x, there exists f ∈ SF,xρ
such that

h2(t) = Rα(t)ϕ(0) +

∫ t

0

Sα(t− s)f(s)dW (s). (4.29)

Then

E‖h2(τ2)− h2(τ1)‖2

≤ 4E‖[Rα(τ2)−Rα(τ1)ϕ(0)]‖2 + 4E
∥∥∥∥∫ τ1−ε

0

[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dW (s)

∥∥∥∥2

+4E
∥∥∥∥∫ τ1

τ1−ε
[Sα(τ2 − s)− Sα(τ1 − s)]f(s)dW (s)

∥∥∥∥2

+ 4E
∥∥∥∥∫ τ2

τ1

Sα(τ2 − s)f(s)dW (s)

∥∥∥∥2

≤ 4E‖[Rα(τ2)−Rα(τ1)ϕ(0)]‖2 + 4‖(−A)−β‖2(a1 + a2r
′)(τ1 − ε)2(1−α(1−β))Tr(Q)

×
∫ τ1−ε

0

‖(−A)β[Sα(τ2 − s)− Sα(τ1 − s)]‖2(τ1 − ε− s)2(α(1−β)−1)l(s)ds

+4M2
1‖(−A)−β‖2(a1 + a2r

′)Tr(Q)

∫ τ1

τ1−ε
[(τ2 − s)2(α(1−β)−1)l(s) + (τ1 − s)2(α(1−β)−1)l(s)]ds

+4M2
1‖(−A)−β‖2(a1 + a2r

′)Tr(Q)

∫ τ2

τ1

[(τ2 − s)2(α(1−β)−1)l(s)ds.
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The right-hand side of the above inequalities tends to zero independent of x ∈ V , as τ2 −
τ1 → 0, with ε sufficiently small, since the compactness of Rα(t), Sα(t) for t > 0 implies the
continuity in the uniform operator topology. Thus the set {Φ2x : x ∈ V } is equicontinuous.
The equicontinuity for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ b is very simple.

It remains to prove that Φ2(V )(t) = {h2(t) : h2(t) ∈ Φ2(V )} is relatively compact in Hβ for
every t ∈ J. Let 0 < t ≤ s ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For
each x ∈ V , we define

h2,ε(t) = Rα(t)ϕ(0) +

∫ t−ε

0

Sα(t− s)f(s)dW (s),

where f ∈ SF,xρ . Using the compactness of Sα(t) for t > 0, we deduce that the set Uε(t) =

{h2,ε(t) : x ∈ V } is relatively compact in Hβ for every ε, 0 < ε < t. Moreover, for every x ∈ V
we have

E‖h2(t)− h2,ε(t)‖2 ≤ E
∥∥∥∥∫ t

t−ε
Sα(t− s)f(s)dW (s)

∥∥∥∥2

≤ M2
1‖(−A)−β‖2(a1 + a2r

′)Tr(Q)

∫ t

t−ε
(t− s)2(α(1−β)−1)l(s)ds.

The right-hand side of the above inequality tends to zero as ε → 0. Since there are relatively
compact sets arbitrarily close to the set U(t) = {h2(t) : x ∈ V }, hence the set U(t) is relatively
compact in Hβ. By Arzelá-Ascoli theorem, we conclude that Φ2(V ) is completely continuous.

As a consequence of the above Steps 1-3, we conclude that Φ is a condensing map. All of the
conditions of Lemma 4.3.8. are satisfied, we deduce that Φ has a fixed point x ∈ Z ′, which is a
mild solution of the problem (4.22)−(4.23). The proof is complete. �

4.3.2 An Example

Consider the following fractional partial neutral stochastic functional integro-differential
inclusions of the form

Dα
t

[
z(t, x)−

∫ t

−∞

∫ Π

0

µ1(t− s, τ, x)z(s, τ)dτds

]
∈ ∂2

∂x2
z(t, x) +

∫ t

0

(t− s)γe−η(t−s) ∂
2

∂x2
z(s, x)ds

+

∫ t

−∞
µ2(t, s− t, x, z(s− ρ1(t)ρ2(‖z(t)‖, x))dW (s), 0 ≤ t ≤ b, 0 ≤ x ≤ Π,

(4.30)

z(t, 0) = z(t,Π) = 0, 0 ≤ t ≤ b, (4.31)

zt(0, x) = 0, 0 ≤ x ≤ Π, (4.32)

z(τ, x) = ϕ(τ, x), −∞ < τ ≤ 0, 0 ≤ x ≤ Π, (4.33)

where Dα
t is a Caputo fractional partial derivative of order α ∈ (0, 1), γ and η are positive

numbers, ϕ is continuous and W (t) denotes a standard cylindrical Wiener process in H defined
on a stochastic space (Ω,F ,P). Let H = L2([0, π]) with the norm ‖ · ‖ and Define the operator
A : D(A) ⊆ H → H by Aw = w′′ with the domain

D(A) = {w ∈ H; w,w′ are absolutely continuous, w′′ ∈ H and w(0) = w(π) = 0} .
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It is well known that then A generates a strongly continuous semigroup T (·) which is com-
pact, analytic, and self-adjoint. Furthermore, A has a discrete spectrum; the eigenvalues are
−n2, n ∈ N, with the corresponding normalized eigenvectors wn(x) =

√
2
π

sin(nx). We also use
the following properties:

i. If w ∈ D(A), then Aw =
∑∞

n=1 n
2〈w,wn〉wn.

ii. For each w ∈ H, A−1/2w =
∑∞

n=1
1
n
〈w,wn〉wn. In particular, ‖A−1/2‖ = 1.

iii. The operator A1/2 is given by A1/2w =
∑∞

n=1 n〈w,wn〉wn on the space D(A1/2) = {w(·) ∈
H,
∑∞

n=1 n〈w,wn〉wn ∈ H}.

Hence, A is sectorial-type operator and (C1) is satisfied. The operator R(t) : D(A) ⊆ H →
H, t ≥ 0, R(t)x = tγe−ηtx′′ for x ∈ D(A). Moreover, it is easy to see that conditions (C2) and
(C3) are satisfied with b(t) = tγe−ηt and D(A) = C∞0 ([0,Π]), where C∞0 ([0,Π]) is the space of
infinitely differentiable functions that vanish at x = 0 and x = Π.

Let H 1
2

:= (D((−A)
1
2 , ‖ · ‖ 1

2
), where ‖ · ‖ 1

2
:= ‖(−A)

1
2x‖ for each x ∈ D((−A)

1
2 ).

Let r ≥ 0, 1 ≤ p < 1 and let h : (−∞,−r)→ R be a nonnegative measurable function which
satisfies the conditions (h-5), (h-6) in the terminology of Hino et al. [47]. Briefly, this means
that h is locally integrable and there is a non-negative, locally bounded function ϑ on (−∞, 0]
such that h(ξ + τ) ≤ ϑ(ξ)h(τ) for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a
set whose Lebesgue measure zero. We denote by Zr×Lp(h,H 1

2
) the set consisting of all classes

of functions ϕ(−∞, 0] → H 1
2
such that ϕ|[−r,0] ∈ Z([−r, 0],H 1

2
), ϕ(·) is Lebesgue measurable

on (−∞,−r) and h‖ϕ‖p1
2

is Lebesgue integrable on (−∞,−r). The seminorm is given by

‖ϕ‖B = sup
−r≤τ≤0

‖ϕ(τ)‖ 1
2

+

(∫ −r
−∞

h(τ)‖ϕ(τ)‖p1
2

dτ

) 1
p

.

The space B = Zr × Lp(h,H 1
2
) satisfies axioms (i), (ii). Moreover, when r = 0 and p = 2, we

can take H̃ = 1,M(t) = ϑ(−t) 1
2 and K(t) = 1 + (

∫ 0

−t h(τ)dτ)
1
2 for t ≥ 0 (see [47], Theorem

1.3.8 for details.)
In addition, we choose δ = 1

2
and assume that the following conditions hold:

(h-1) the functions ρi : [0,∞)→ [0,∞), i = 1, 2, are continuous.
(h-2) the functions µ1(s, τ, x), ∂µ1(s,τ,x)

∂x
, ∂

2µ1(s,τ,x)
∂x2

are measurable, µ1(s, τ,Π) = µ1(s, τ, 0) = 0
for every (−∞, 0]× [0,Π] and

Lg = max

{(∫ Π

0

∫ 0

−∞

∫ Π

0

1

h(s)

(
∂iµ1(s, τ, x)

∂xi

)2

dτdsdx

) 1
2

: i = 0, 1, 2

}
<∞.

(h-3) the function µ2 : R4 → R is continuous and there exist continuous functions a1, a2 :
R→ R such that

|µ2(t, s, x, y)| ≤ a1(t)a2(s)|y|, (t, s, x, y) ∈ R4

with LF = (
∫ 0

−∞
(a2(s))2

h(s)
ds)

1
2 <∞.

In the sequel, B will be the phase space Z0 × L2(h,H 1
2
) with ϕ(s)(τ) = ϕ(s, τ). Let g :

[0, b]× B → H, F : [0, b]× B → Pbd,cl,cv(H) be the operators defined by

g(t, ϕ)(x) =

∫ 0

−∞

∫ Π

0

µ1(−s, v, x)ϕ(s, v)dvds,
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F (t, ϕ)(x) =

∫ 0

−∞
µ2(t,−s, x, ϕ(s, x))ds, ρ(t, ϕ) = ρ1(t)ρ2(‖ϕ(0)‖).

Using these definitions, we can represent the system (4.30)−(4.33) in the abstract form (4.22)−
(4.23). Moreover, using (h-2), we can prove that g is D(A)-valued and ‖Ag(t, ϕ)‖ ≤ Lg‖ϕ‖B.
Similarly, using (h-3), we see that F is continuous and ‖F (t, ϕ)‖ ≤ at‖ϕ‖B for all (t, ϕ) ∈
[0, b]×B, where a(t) = LFa1(t), t ∈ [0, b]. Furthermore, we can impose some suitable conditions
on the above-defined functions to verify the assumptions on Theorem 4.3.1, we can conclude
that system (4.30)− (4.33) has at least one mild solution on [0, b].
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4.4 Approximate Controllability of Fractional Neutral Stochas-
tic Functional Integro-Differential Inclusions with Infi-
nite Delay

In this Section3, we investigate the approximate controllability for a class of fractional
neutral stochastic functional integro-differential inclusions with infinite delay of the form

cDα
t [x(t)− g(t, xt)] ∈ Ax(t) +Bu(t) + f

(
t, xt,

∫ t
0
H(t, s, xs)ds

)
+Σ

(
t, xt,

∫ t
0
K(t, s, xs)ds

)
dW (t)
dt

, t ∈ J := [0, b],

x0 = φ ∈ Bh, t ∈ (−∞, 0],

(4.34)

where cDα
t is the Caputo fractional derivative of order 0 < α < 1; x(.) takes value in the Hilbert

space H; A is the infinitesimal generator of a strongly continuous semigroup of a bounded lin-
ear operator {T (t), t ≥ 0} on H; W = {W (t) : t ≥ 0} is a given K-valued Wiener process
with a finite trace nuclear covariance operator Q ≥ 0 defined on the filtered complete prob-
ability space (Ω,F , {Ft}t≥0,P); the control function u(·) is given in L2(J,U) of admissible
control functions, U is a Hilbert space; B is a bounded linear operator from U into H. The
histories xt : (−∞, 0] → H defined by xt(θ) = x(t + θ), θ ≤ 0, belongs to an abstract phase
space Bh; g : J × Bh → H, f : J × Bh × H → H, Σ : J × Bh × H → BCC(L(K,H))
and H,K : J × J × Bh → H are appropriate functions to be specified later. The initial data
φ = {φ(t) : t ∈ (−∞, 0]} is an F0 mesurable, Bh-valued random variable independent of W
with finite second moments.

In this section, we assume that A : D(A) ⊂ H → H is the infinitesimal generator of a
strongly continuous semigroup of a bounded linear operator T (t), t ≥ 0 on H. That is to say,
‖T (t)‖ ≤ M for some constant M ≥ 1 and every t ≥ 0. Without loss of generality, we assume
that 0 ∈ ρ(A), the resolvent set of A. Then it is possible to define the fractional power Aα for
0 < α ≤ 1, as a closed linear operator on its domain D(Aα) with inverse A−1.

The following are basic properties of Aα :

i. Hα = D(Aα) is a Hilbert space with the norm ‖x‖α = ‖Aαx‖ for x ∈ D(Aα).

ii. T (t) : H → Hα for t ≥ 0.

iii. AαT (t)x = T (t)Aαx for each x ∈ D(A) and t ≥ 0.

iv. for every t > 0, AαT (t) is bounded on H and there exists Mα > 0 such that

‖AαT (t)‖ ≤ Mα

tα
.

v. A−α is a bounded linear operator for 0 ≤ α ≤ 1 in H.

Now we present the abstract phase space Bh, which has been used in [24, 98]. Assume that
h : (−∞, 0] → (0,+∞) is a continuous function with l =

∫ 0

−∞ h(t)dt < +∞. Define the phase

3The section is based on the paper [38].
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space Bh by

Bh =

{
φ : (−∞, 0]→ H, for any a > 0, (E|φ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] with
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)1/2ds <∞

}
.

If Bh is endowed with the norm

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ))|2)1/2ds, φ ∈ Bh,

then (Bh, ‖.‖Bh) is a Banach space.

Now we consider the space

B′h =

{
x : (−∞, b]→ H such that x|J ∈ C(J,H), x0 = φ ∈ Bh

}
.

Set ‖ · ‖b be a seminorm in B′h defined by

‖x‖b = ‖φ‖Bh + sup
s∈[0,b]

(E‖x(s)‖2)1/2, x ∈ B′h.

Lemma 4.4.1. ([99]). Assume that x ∈ B′h, then for t ∈ J , xt ∈ Bh. Moreover,

l(E‖x(l)‖2)1/2 ≤ ‖xt‖Bh ≤ l sup
s∈[0,t]

(E‖x(s)‖2)1/2 + ‖φ‖Bh ,

where l =
∫ 0

−∞ h(s)ds <∞.

In the following, BCC(H) denotes the set of all nonempty bounded, closed and convex
subset of H.

Definition 4.4.1. A multi-valued map G : J → BCC(H) is said to be measurable if, for each
x ∈ H, the function ϑ : J → R, defined by

ϑ(t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)}.

belong to L1(J,R).

Definition 4.4.2. The multi-valued map Σ : J ×H → BCC(H) is said to be L2-Carathéodory
if

i. t 7→ Σ(t, x) is measurable for each x ∈ H;

ii. x 7→ Σ(t, x) is u.s.c. for almost all t ∈ J ;

iii. for each r > 0, there exists lr ∈ L1(J,R) such that

‖Σ(t, x)‖2 := sup
σ∈Σ(t,x)

E‖σ‖2 ≤ lr(t), for all ‖x‖2
b ≤ r and for a.e. t ∈ J.

We have the following lemma due to Lasota and Opial [74]
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Lemma 4.4.2. ([74]). Let J be a compact real interval, BCC(H) be the set of all nonempty,
bounded, closed, and convex subset of H and Σ be a L2-Carathéodory multi-valued map SΣ,x 6= ∅
and let Γ be a linear continuous mapping from L2(J,H) to C(J,H). Then, the operator

Γ ◦ SΣ : C(J,H)→ BCC(C(J,H)), x 7→ (Γ ◦ SΣ)(x) := Γ(SΣ,x),

is a closed graph operator in C(J,H) × C(J,H), where SΣ,x is known as the selectors set from
Σ, is given by

σ ∈ SΣ,x = {σ ∈ L2(L(K,H)) : σ(t) ∈ Σ(t, x), for a.e. t ∈ J}.

Now, we present the definition of mild solutions for the system (4.34) based on the papers
[24, 117].

Definition 4.4.3. An Ft-adapted stochastic process x : (−∞, b]→ H is called a mild solution
of the system (4.34) if x0 = φ ∈ Bh on (−∞, 0] satisfying x0 ∈ LF0

2 (Ω,H) and the following
integral inclusion

x(t) ∈ T (t)[φ(0)− g(0, φ(0))] + g(t, xt) +

∫ t

0

(t− s)α−1AS(t− s)g(s, xs)ds

+

∫ t

0

(t− s)α−1S(t− s)Bu(s)ds+

∫ t

0

(t− s)α−1S(t− s)f
(
s, xs,

∫ s

0

H(s, τ, xτ )dτ

)
ds

+

∫ t

0

(t− s)α−1S(t− s)Σ
(
s, xs,

∫ s

0

K(s, τ, xτ )dτ

)
dW (s), t ∈ J,

(4.35)
is satisfied, where T (·) and S(·) are the characteristic solution operators.

The following properties of T (t) and S(t) appeared in [126] are useful.

Lemma 4.4.3. The operator T (t) and S(t) have the following properties:

i. For any fixed t ≥ 0, T and S are linear and bounded operators, that is, for any x ∈ H,

‖T (t)x‖ ≤M‖x‖, ‖S(t)x‖ ≤ αM

Γ(α + 1)
‖x‖;

ii. {T (t), t ≥ 0} and {S(t), t ≥ 0} are strongly continuous;

iii. for every t ≥ 0, {T (t), t ≥ 0} and {S(t), t ≥ 0} are also compact if {T (t), t ≥ 0} is
compact;

iv. For any x ∈ H, β, δ ∈ (0, 1), we have ATα(t)x = A1−βTα(t)Aβx and

‖AδTα(t)‖ ≤ αCδΓ(2− δ)
tαδΓ(1 + α(1− δ))

, t ∈ (0, b].

At the end, we recall the fixed point theorem of Bohnenblust-Karlin’s [18] which is used to
establish the existence of the mild solution to the system (4.34).

Lemma 4.4.4. Let D be a nonempty subset of H, which is bounded, closed, and convex.
Suppose G : D → 2H\{∅} is u.s.c. with closed, convex values, and such that G(D) ⊆ D and
G(D) is compact. Then G has a fixed point.
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4.4.1 The Main Results

In this subsection, we shall formulate and prove sufficient conditions for the approximate
controllability of the system (4.34). To do this, we first prove the existence of solutions for
fractional control system. Then, we show that under certain assumptions, the approximate
controllability of the fractional stochastic control system (4.34) is implied by the approximate
controllability of the associated linear part.

Definition 4.4.4. Let xb(φ;u) be the state value of (4.34) at the terminal time b corresponding
to the control u and the initial value φ. Introduce the set

R(b, φ) = {xb(φ;u)(0) : u(·) ∈ L2(J,U)},

which is called the reachable set of (4.34) at the terminal time b and its closure in H is denoted
by R(b, φ). The system (4.34) is said to be approximately controllable on the interval J if
R(b, φ) = H; that is, given an arbitrary ε > 0, it is possible to steer from the point π(0) to
within a distance ε from all points in the state space H at time b.

In order to a study the approximate controllability for the fractional control system (4.34),
we consider its fractional linear part

Dα
t x(t) ∈ Ax(t) + (Bu)(t), t ∈ [0, b]

x(0) = φ ∈ Bh.
(4.36)

It is convenient at this point to introduce the controllability and resolvent operators associated
with (4.36) as

Lb0 =

∫ b

0

(b− s)α−1S(b− s)Bu(s)ds : L2(J,U)→ H,

Γb0 = Lb0(Lb0)∗ =

∫ b

0

(b− s)α−1S(b− s)BB∗S∗(b− s)ds : H → H,
(4.37)

respectively, where B∗ denotes the adjoint of B and S∗(t) is the adjoint of S(t). It is straight-
forward that the operator Γb0 is a linear bounded operator.

In order to establish the existence result, we need the following hypothesis:

(H1) : A generates a strongly continuous compact semigroup {T (t) : t ≥ 0} in H.
(H2) : The function g : J ×Bh is continuous and there exists a constant Mg > 0, 0 < β < 1

such that g is Hβ valued and

‖Aβg(t, ψ)− Aβg(t, ϕ)‖2 ≤Mg‖ψ − ϕ‖2
Bh , ψ, ϕ ∈ Bh, t ∈ J := [0, b],

‖Aβg(t, ψ)‖2 ≤Mg(1 + ‖ψ‖2
Bh).

(H3) : The function f : J × Bh ×H → H satisfies the following:

i. f(., ψ, x) : J → H is measurable for each (ψ, x) ∈ Bh ×H and f(t, ·, ·) : Bh ×H → H is
continuous for a.e. t ∈ J , and for ψ ∈ Bh, f(·, ·, ψ) : J ×H → H is strongly measurable;

ii. There is a positive integrable function n ∈ L1(J,R+) and a continuous nondecreasing
function Ξf : [0,∞)→ (0,∞) such that for every (t, ψ, x) ∈ J × Bh ×H, we have

E‖f(t, ψ, x)‖2 ≤ n(t)Ξf (‖ψ‖2
Bh + E‖x‖2), lim inf

r→∞

Ξf (r)

r
= Υ.
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(H4) : the multi-valued map Σ : J × Bh × H → BCC(L(K,H)) is an L2-Carathéodory
function satisfies the following conditions:

i. For each t ∈ J , the function Σ(t, ·, ·) : Bh × H → BCC(L(K,H)) is u.s.c; and for each
(ψ, x) ∈ Bh×H, the function Σ(·, ψ, x) is measurable. And for each fixed (ψ, x) ∈ Bh×H,
the set

SΣ,ψ,x = {σ ∈ L2(L(K,H)) : σ(t) ∈ Σ(t, ψ, x) for a.e. t ∈ J}

is nonempty;

ii. There exists a positive function lr : J → R+ such that

sup{E‖σ‖2 : σ(t) ∈ Σ(t, ψ, x)} ≤ lr(t)

for a.e. t ∈ J and the function s 7→ (t− s)2(α−1)lr(s) belongs to L1([0, t],R+) such that

lim inf
r→∞

∫ t
0
(t− s)2(α−1)lr(s)ds

r
= Λ < +∞.

(H5) : The function H : J × J × Bh → H satisfies:

i. For each (t, s) ∈ J × J , the function H(t, s, ·) : Bh → H is continuous, and for each
ψ ∈ B

h
, the function H(·, ·, ψ) : J × J → H is strongly measurable.

ii. There exists a constant M0 > 0 such that hat E‖H(t, s, ψ)‖2 ≤ M0(1 + ‖ψ‖2
Bh), for all

t, s ∈ J and ψ ∈ Bh.

(H6) : The function K : J × J × Bh → H satisfies:

i. For each (t, s) ∈ J × J , the function K(t, s, ·) : Bh → H is continuous, and for each
ψ ∈ Bh, the function K(·, ·, ψ) : J × J → H is strongly measurable.

The following lemma is required to define the control function.

Lemma 4.4.5. ([84]). For any x̃b ∈ L2(Fb,H) there exists φ̃ ∈ LF2 (Ω, L2(J, L(K,H))) such
that x̃b = Ex̃b +

∫ b
0
φ̃(s)dW (s).

Now for any ε > 0, x̃b ∈ L2(Fb,H) and for σ ∈ SΣ,ψ,x, we define the control function

uε(t, x) = B∗S∗(b− t)(εI + Γb0)−1

{
Ex̃b +

∫ b

0

φ̃(s)dW (s)− T (b)[φ(0)− g(0, φ(0))]− g(b, xb)

}

−B∗S∗(b− t)
∫ b

0

(εI + Γbs)
−1(b− s)α−1AS(b− s)g(s, xs)ds

−B∗S∗(b− t)
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)f

(
s, xs,

∫ s

0

H(s, τ, xτ )dτ

)
ds

−B∗S∗(b− t)
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)σ(s)dW (s).

Let us now explain and prove the following theorem about the existence of solution for the
fractional system (4.34).
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Theorem 4.4.1. Assume that the assumptions (H1) − (H6) hold. Then for each ε > 0, the
system (4.34) has a mild solution on J provided that[

4Mg‖A−β‖2l2 +
4l2MgC

2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)
+

4l2(1 +M0b)ΥM
2b2α

Γ2(1 + α)
sup
s∈J

n(s)

+
M2α2ΛTr(Q)

Γ2(1 + α)

]
×

(
6 +

(
MMBb

α

Γ(1 + α)

)2
42

ε2

(
αMMB

Γ(1 + α)

)2
)
< 1.

Proof. In order to prove the existence of mid solutions for system (4.34) transform it into
a fixed point problem. For any ε > 0, we consider the operator Φε : B′h → 2B

′
h defined by Φεx

the set of z ∈ B′h such that

z(t) =


φ(t), t ∈ (−∞, 0],

T (t)[φ(0)− g(0, φ(0))] + g(t, xt) +
∫ t

0
(t− s)α−1AS(t− s)g(s, xs)ds

+
∫ t

0
(t− s)α−1S(t− s)Buε(s, x)ds+

∫ t
0
(t− s)α−1S(t− s)f(s, xs,

∫ s
0
H(s, τ, xτ )dτ)ds

+
∫ t

0
(t− s)α−1S(t− s)σ(s)dW (s), t ∈ J,

(4.38)
Where σ ∈ SΣ,ψ,x.

For φ ∈ Bh, define

φ̂(t) =

{
φ(t), t ∈ (−∞, 0],
T (t)φ(0), t ∈ J.

then φ̂ ∈ B′h. Let x(t) = y(t) + φ̂(t),−∞ < t ≤ b. It is easy to see that x satisfies (4.35) if and
only if y satisfies y0 = 0 and

y(t) ∈ −T (t)g(0, φ(0)) + g(t, yt + φ̂t) +

∫ t

0

(t− s)α−1AS(t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1S(t− s)Buε(s, y + φ̂)ds

+

∫ t

0

(t− s)α−1S(t− s)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

+

∫ t

0

(t− s)α−1S(t− s)Σ
(
s, ys + φ̂s,

∫ s

0

K(s, τ, yτ + φ̂τ )dτ

)
dW (s), t ∈ J,

where for σ ∈ SΣ,ψ,x,

uε(s, y + φ̂)

= B∗S∗(b− t)(εI + Γb0)−1

{
Ex̃b +

∫ b

0

φ̃(s)dW (s)− T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

}
−B∗S∗(b− t)

∫ b

0

(εI + Γbs)
−1(b− s)α−1AS(b− s)g(s, ys + φ̂s)ds

−B∗S∗(b− t)
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)f

(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

−B∗S∗(b− t)
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)σ(s)dW (s).
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Let B′′h = {y ∈ B′h : y0 = 0 ∈ Bh}. For any y ∈ B′′h, we have

‖y‖b = ‖y0‖Bh + sup
s∈[0,b]

(E‖y(s)‖2)
1
2 = sup

s∈[0,b]

(E‖y(s)‖2)
1
2 ,

thus(B′′h, ‖ · ‖b) is a Banach space. Set Br = {y ∈ B′′h : ‖y‖2
b ≤ r} for some r > 0, then Br is

clearly a bounded closed convex set in B′′h, and for y ∈ Br, from Lemma 4.4.1, we have

‖yt + φ̂t‖2
Bh ≤ 2(‖yt‖2

Bh + ‖φ̂t‖2
Bh)

≤ 4

(
l2 sup
s∈[0,t]

E‖y(s)‖2 + ‖y0‖2
Bh + l2 sup

s∈[0,t]

E‖φ̂(s)‖2 + ‖φ̂0‖2
Bh

)

≤ 4l2(r +M2E‖φ(0)‖2
H) + 4‖φ‖2

Bh = r′.

(4.39)

Define the multi-valued map Ψ : B′′h → 2B
′′
h by Ψy the set of z ∈ B′′h and there exists

σ ∈ L2(L(K,H)) such that σ ∈ SΣ,ψ,x and

z(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ(0)) + g(t, yt + φ̂t) +
∫ t

0
(t− s)α−1AS(t− s)g(s, ys + φ̂s)ds

+
∫ t

0
(t− s)α−1S(t− s)Buε(s, y + φ̂)ds

+
∫ t

0
(t− s)α−1S(t− s)f(s, ys + φ̂s,

∫ s
0
H(s, τ, yτ + φ̂τ )dτ)ds

+
∫ t

0
(t− s)α−1S(t− s)σ(s)dW (s), t ∈ J,

(4.40)

Obviously, the operator Φε has a fixed point is equivalent to Ψ has on. So, our aim is to show
that Ψ has a fixed point. For the sake of convenience, we subdivise the proof into in several steps.

Step 1 Ψ is convex for each y ∈ Br. In fact, if z1, z2 belong to ψy, then there exist σ1, σ2 ∈ SΣ,ψ,x

such that

zj(t) = −T (t)g(0, φ(0)) + g(t, yt + φ̂t) +

∫ t

0

(t− s)α−1AS(t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1S(t− s)Buε(s, y + φ̂)ds

+

∫ t

0

(t− s)α−1S(t− s)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

+

∫ t

0

(t− s)α−1S(t− s)σj(s)dW (s), t ∈ J.

Let 0 ≤ λ ≤ 1. Then for each t ∈ J, we have
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(λz1 + (1− λ)z2)(t) = −T (t)g(0, φ(0)) + g(t, yt + φ̂t) +

∫ t

0

(t− s)α−1AS(t− s)g(s, ys + φ̂s)ds

+

∫ t

0

(t− s)α−1S(t− s)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

+

∫ t

0

(t− s)α−1S(t− s)BB∗S(b− t)

×
[
(εI + Γb0)−1

{
Ex̃b +

∫ b

0

φ̃(s)dW (s)− T (b)[φ(0)− g(0, φ(0))]− g(b, yb + φ̂b)

}

−
∫ b

0

(εI + Γbs)
−1(b− s)α−1AS(b− s)g(s, ys + φ̂s)ds

−
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)f

(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

−
∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)[λσ1(s) + (1− λ)σ2(s)]dW (s)

]
ds

+

∫ t

0

(t− s)α−1S(t− s)[λσ1(s) + (1− λ)σ2(s)]dW (s).

It is easy to see that SΣ,ψ,x is convex since Σ has convex values. So, λσ1 + (1− λ)σ2 ∈ SΣ,ψ,x.
Thus, (λz1 + (1− λ)z2) ∈ Ψy.

Step 2 We show that there exists some r > 0 such that Ψ(Br) ⊆ Br. If it is not true,
then there exists ε > 0 such that for every positive number r and t ∈ J , there exists a function
yr(.) ∈ Br, but Ψ(yr) 6∈ Br, that is, E‖(Ψyr)(t)‖2 ≡ {‖Zr‖2

b : zr ∈ (Ψyr)} ≥ r. For such ε > 0,
an elementary inequality can show that

r ≤ E‖(Ψyr)(t)‖2

≤ 6E‖ − T (t)g(0, φ(0))‖2

+6E‖g(t, yrt + φ̂t)‖2 + 6E
∥∥∥∥∫ t

0

(t− s)α−1AS(t− s)g(s, yrs + φ̂s)ds

∥∥∥∥2

+6E
∥∥∥∥∫ t

0

(t− s)α−1S(t− s)f
(
s, yrs + φ̂s,

∫ s

0

H(s, τ, yrτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+6E
∥∥∥∥∫ t

0

(t− s)α−1S(t− s)Buε(s, yr + φ̂)ds

∥∥∥∥2

+ 6E
∥∥∥∥∫ t

0

(t− s)α−1S(t− s)σr(s)dW (s)

∥∥∥∥2

= 6
6∑
i=1

Ii,

(4.41)
for some σr ∈ SΣ,ψ,x.

Let us estimate each term above Ii, i = 1, ..., 6. By Lemma 4.4.1 and assumptions (H1)-
(H2), we have
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I1 ≤M2‖A−β‖2E‖Aβg(0, φ)‖2 ≤M2‖A−β‖2Mg(1 + ‖φ‖2
Bh), (4.42)

I2 ≤ ‖A−β‖2E‖Aβg(t, yrt + φ̂t)‖2 ≤Mg‖A−β‖2(1 + ‖yrt + φ̂t‖2
Bh)

≤ Mg‖A−β‖2(1 + r′).

(4.43)

By a standard calculation involving Lemma 4.4.3, assumption (H2), Eq. (4.39) and the Hölder
inequality, we can deduce that

I3 ≤ E
[ ∫ t

0

‖(t− s)α−1A1−βS(t− s)Aβg(s, yrs + φ̂s)‖ds
]2

≤ K1(α, β)

∫ t

0

(t− s)αβ−1ds

∫ t

0

(t− s)αβ−1E‖Aβg(s, yrs + φ̂s)‖2ds

≤ K1(α, β)bαβ

αβ

∫ t

0

(t− s)αβ−1E‖Aβg(s, yrs + φ̂s)‖2ds

≤ K1(α, β)bαβ

αβ

∫ t

0

(t− s)αβ−1Mg(1 + ‖yrs + φ̂s‖2
Bh)ds

≤ K1(α, β)b2αβ

(αβ)2
Mg(1 + r′),

(4.44)

where K1(α, β) =
α2C2

1−βΓ2(1+β)

Γ2(1+αβ)
.

Together with assumption (H3), (H5) and (4.39), we have

I4 ≤ E
[ ∫ t

0

‖(t− s)α−1S(t− s)f
(
s, yrs + φ̂s,

∫ s

0

H(s, τ, yrτ + φ̂τ )dτ

)
‖ds
]2

≤
(

Mα

Γ(1 + α)

)2 ∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1E
∥∥∥∥f (s, yrs + φ̂s,

∫ s

0

H(s, τ, yrτ + φ̂τ )dτ

)∥∥∥∥2

ds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1E
∥∥∥∥f (s, yrs + φ̂s,

∫ s

0

H(s, τ, yrτ + φ̂τ )dτ

)∥∥∥∥2

ds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1n(s)Ξf

(
‖yrt + φ̂t‖2

Bh + E‖
∫ s

0

H(s, τ, yrτ + φ̂τ )dτ‖2

)
ds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1n(s)Ξf (r
′ +M0(1 + r′)b)ds

≤
(

Mα

Γ(1 + α)

)2
b2α

α2
Ξf (r

′
+M0(1 + r′)b) sup

s∈J
n(s).

(4.45)
A similar argument involves Lemma 4.4.3 and assumptions (H4), (H6); we obtain
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I5 ≤
(

Mα

Γ(1 + α)

)2

Tr(Q)

∫ t

0

(t− s)2(α−1)E‖σr(s)‖2ds

≤
(

Mα

Γ(1 + α)

)2

Tr(Q)

∫ t

0

(t− s)2(α−1)lr(s)ds.

(4.46)

Now, we have

I6 ≤ E
[ ∫ t

0

‖(t− s)α−1S(t− s)Buε(s, yr + φ̂)‖ds
]2

≤
(
αMMB

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1E‖uε(s, yr + φ̂)‖2ds,

where MB = ‖B‖. By using (H2)-(H6) Hölder’s inequality, Eq.(4.39) Lemma 4.4.3, for some
σr ∈ SΣ,ψ,x, we get

E‖uε(s, yr + φ̂)‖2 ≤ 1

ε2
M2

B

(
αM

Γ(1 + α)

)2{
7‖Ex̃b +

∫ b

0

φ̃(s)dW (s)‖2 + 7E‖τ(b)φ(0)‖2

+7E‖τ(b)g(0, φ(0))‖2 + 7E‖g(b, yrb + φ̂b)‖2

+7E
∥∥∥∥∫ b

0

(b− s)α−1AS(b− s)g(s, yrs + φ̂s)ds

∥∥∥∥2

+7E
∥∥∥∥∫ b

0

(b− s)α−1S(b− s)f
(
s, yrs + φ̂s,

∫ s

0

H(s, τ, yrτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+7E
∥∥∥∥∫ b

0

(b− s)α−1S(b− s)σr(s)dW (s)

∥∥∥∥2}

≤ 7

ε2

(
αMMB

Γ(1 + α)

)2[
2‖Ex̃b‖2 + 2

∫ b

0

E‖φ̃(s)‖2ds+M2‖φ(0)‖2

+M2Mg‖A−β‖2Mg(1 + ‖φ‖2
Bh) +Mg‖A−β‖2(1 + r′) +

K1(α, β)b2αβ

(αβ)2
Mg(1 + r′)

+

(
Mα

Γ(1 + α)

)2
b2α

α2
Ξf (r

′ +M0(1 + r′)b) sup
s∈J

n(s)

+

(
Mα

Γ(1 + α)

)2

Tr(Q)

∫ t

0

(t− s)2(α−1)lr(s)ds

]
.

Thus,

I6 ≤
(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2

M̂ (4.47)
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where

M̂ =

[
2‖Ex̃b‖2 + 2

∫ b

0

E‖φ̃(s)‖2ds+M2‖φ(0)‖2 +M2Mg‖A−β‖2(1 + ‖φ‖2
Bh)

+Mg‖A−β‖2(1 + r
′
)
K1(α, β)b2αβ

(αβ)2
Mg(1 + r′)

+

(
Mα

Γ(1 + α)

)2
b2α

α2
Ξf (r

′ +M0(1 + r′)b) sup
s∈J

n(s).

+

(
Mα

Γ(1 + α)

)2

Tr(Q)

∫ t

0

(t− s)2(α−1)lr(s)ds

]
.

Combining these estimate yields (4.41)− (4.47)

r ≤ E‖(Ψyr)(t)‖2

≤ L0 + 24Mg‖A−β‖2l2
[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]
r

+
24l2MgC

2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)

[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]
r

+6

(
Mbα

Γ(1 + α)

)2[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]

×Ξf

(
M0b+ 4l2(1 +M0b)r + 4l2M2E‖φ(0)‖2

H(1 +M0b)

+4‖φ‖2
Bh(1 +M0b)

)
sup
s∈J

n(s) + 6

(
Mα

Γ(1 + α)

)2

×
[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]
Tr(Q)

∫ t

0

(t− s)2(α−1)lr(s)ds

]
,

(4.48)

where

L0 = 6M2‖A−β‖2Mg(1 + ‖φ‖2
Bh) + 6Mg‖A−β‖2

[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]
×(1 + 4l2M2E‖φ(0)‖2

H + 4‖φ‖2
Bh) +

6l2MgC
2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)

×
[
1 +

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2]
(1 + 4l2M2E‖φ(0)‖2

H + 4‖φ‖2
Bh)

+6

(
MMBb

α

Γ(1 + α)

)2
7

ε2

(
αMMB

Γ(1 + α)

)2(
2‖Ex̃b‖2 + 2

∫ b

0

E‖φ̃(s)‖2ds+M2‖φ(0)‖2

+M2Mg‖A−β‖2(1 + ‖φ‖2
Bh)

)
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Dividing both sides of (4.48) by r and taking r →∞, we obtain that(
4Mg‖A−β‖2l2 +

4l2MgC
2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)
+

4l2(1 +M0b)ΥM
2b2α

Γ2(1 + α)
sup
s∈J

n(s)

+
M2α2ΛTr(Q)

Γ2(1 + α)

)
×
[
6 +

(
MMBb

α

Γ(1 + α)

)2
42

ε2

(
αMMB

Γ(1 + α)

)2]
≥ 1,

which is a contradiction to our assumptions. Thus for α > 0, for some positive number r and
some σr ∈ SΣ,ψ,x,Ψ(Br) ⊆ Br.

Step 3 Ψ(Br) is equicontinuous. Indeed, let ε > 0 small, 0 < t1 < t2 ≤ b. For each y ∈ Br and
z belong to Ψ1y, there exists σ ∈ SΣ,ψ,x such that for each t ∈ J, we have

E‖z(t2)− z(t1)‖2

≤ 22E‖ − (T (t2)− T (t1))g(0, φ)‖2 + 22E‖g(t2, yt2 + φ̂t2)− g(t1, yt1 + φ̂t1)‖2

+22E
∥∥∥∥∫ t2

t1

(t2 − s)α−1AS(t2 − s)g(s, ys + φ̂s)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
(t2 − s)α−1A[S(t2 − s)− S(t1 − s)]g(s, ys + φ̂s)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]AS(t1 − s)g(s, ys + φ̂s)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

(t2 − s)α−1A[S(t2 − s)− S(t1 − s)]g(s, ys + φ̂s)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]AS(t1 − s)g(s, ys + φ̂s)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S(t2 − s)Buε(s, y + φ̂)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
(t2 − s)α−1[S(t2 − s)− S(t1 − s)]Buε(s, y + φ̂)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)Buε(s, y + φ̂)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

(t2 − s)α−1[S(t2 − s)− S(t1 − s)]Buε(s, y + φ̂)ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)Buε(s, y + φ̂)ds

∥∥∥∥2
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+22E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S(t2 − s)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
(t2 − s)α−1[S(t2 − s)− S(t1 − s)]f

(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)f

(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

(t2 − s)α−1[S(t2 − s)− S(t1 − s)]f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
ds

∥∥∥∥2

+22E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S(t2 − s)σ(s)dW (s)

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
(t2 − s)α−1[S(t2 − s)− S(t1 − s)]σ(s)dW (s)

∥∥∥∥2

+22E
∥∥∥∥∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)σ(s)dW (s)

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

(t2 − s)α−1[S(t2 − s)− S(t1 − s)]σ(s)dW (s)

∥∥∥∥2

+22E
∥∥∥∥∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]S(t1 − s)]σ(s)dW (s)

∥∥∥∥2

.

Applying Lemma 4.4.3 and the Hölder inequality, we obtain

E‖z(t2)− z(t1)‖2

≤ 22‖(T (t2)− T (t1))‖2E‖g(0, φ)‖2 + 22E‖g(t2, yt2 + φ̂t2)− g(t1, yt1 + φ̂t1)‖2

+22
K1(α, β)(t2 − t1)αβ

αβ

∫ t2

t1

(t2 − s)αβ−1E‖Aβg(s, ys + φ̂s)‖2ds

+22ε2
∫ t1

t1−ε
(t2 − s)αβ−1‖A1−β‖2‖S(t2 − s)− S(t1 − s)‖2E‖Aβg(s, ys + φ̂s)‖2ds

+22K1(α, β)

∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]E‖Aβg(s, ys + φ̂s)‖2ds

+22(t− ε)2

∫ t1−ε

0

(t2 − s)αβ−1‖A1−β‖2‖S(t2 − s)− S(t1 − s)‖2E‖Aβg(s, ys + φ̂s)‖2ds
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+22K1(α, β)

∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]E‖Aβg(s, ys + φ̂s)‖2ds

+22N(α)M2
B

(t2 − t1)α

α

∫ t2

t1

(t2 − s)α−1E‖uε(s, y + φ̂)‖2ds

+22
εα

α
M2

B

∫ t1

t1−ε
(t2 − s)α−1‖S(t2 − s)− S(t1 − s)‖2E‖uε(s, y + φ̂)‖2ds

+22N(α)M2
B

∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]E‖uε(s, y + φ̂)‖2ds

+22
(t1 − ε)α

α
M2

B

∫ t1−ε

0

(t2 − s)α−1‖S(t2 − s)− S(t1 − s)‖2E‖uε(s, y + φ̂)‖2ds

+22N(α)M2
B

∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]E‖uε(s, y + φ̂)‖2ds

+22N(α)
(t2 − t1)α

α

∫ t2

t1

(t2 − s)α−1E
∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

+22
εα

α

∫ t1

t1−ε
(t2 − s)α−1‖S(t2 − s)− S(t1 − s)‖2E

∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

+22N(α)

∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]E

∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

+22
(t1 − ε)α

α

∫ t1−ε

0

(t2 − s)α−1‖S(t2 − s)− S(t1 − s)‖2E
∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

+22N(α)

∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

×
∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]E
∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds
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+22N(α)Tr(Q)

∫ t2

t1

[(t2 − s)2(α−1)lr(s)ds

+22Tr(Q)

∫ t1

t1−ε
[(t2 − s)2(α−1)‖S(t2 − s)− S(t1 − s)‖2lr(s)ds

+22N(α)Tr(Q)

∫ t1

t1−ε
[(t2 − s)α−1 − (t1 − s)α−1]2lr(s)ds

+22Tr(Q)

∫ t1−ε

0

[(t2 − s)2(α−1)‖S(t2 − s)− S(t1 − s)‖2lr(s)ds

+22N(α)Tr(Q)

∫ t1−ε

0

[(t2 − s)α−1 − (t1 − s)α−1]2lr(s)ds.

with K1(α, β) =
α2C2

1−βΓ2(1+β)

Γ2(1+αβ)
and N(α) = ( Mα

Γ(1+α)
)2. Therefore, for ε sufficiently small, we

can verify that the right-hand side of the above inequality tends to zero as t2 → t1. On the
other hand, the compactness of S(t) (Lemma 3.4 in [126]),implies the continuity in the uniform
operator topology. Thus Ψ maps Br into an equicontinuous family of functions.

Next, we prove that V (t) = {(Ψ1y)(t) : y ∈ Br} is relatively compact in H. Obviously, V (t)
is relatively compact in B′′h for t = 0. Let 0 < t ≤ b be fixed and ε be a real number satisfying
0 < ε < t. For δ > 0 and y ∈ Br, define an operator Ψε,δ on Br by Ψε,δy the set of zε,δ ∈ B′′h
such that

zε,δ = −
∫ ∞
δ

ξα(θ)T (tαθ)g(0, φ(0))dθ + g(t− ε, yt−ε + φ̂t−ε)

+α

∫ t−ε

0

(t− s)α−1A

(∫ ∞
δ

θξα(θ)T ((t− s)αθ)dθ
)
g(s, ys + φ̂s)ds

+α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)uε(s, y + φ̂)dθds

+α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
dθds

+α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)σ(s)dθdW (s)

= −T (εαδ)

∫ ∞
δ

ξα(θ)T (tαθ − εαδ)g(0, φ(0))dθ + g(t− ε, yt−ε + φ̂t−ε)

+T (εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)AT ((t− s)αθ − εαδ)g(s, ys + φ̂s)dθds

+T (εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ − εαδ)uε(s, y + φ̂)dθds

+T (εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ − εαδ)f

×
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
dθds

+T (εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ − εαδ)σ(s)dθdW (s),

σ ∈ SΣ,ψ,x. Since T (εαδ), (εαδ > 0), is a compact operator, then the set V ε,δ(t) = {(Ψε,δ
1 y)(t) :

y ∈ Br} is relatively compact in H for every ε, 0 < ε < t and for all δ > 0. Moreover, for every
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y ∈ Br, we have

E‖z(t)− zε,δ(t)‖2

≤ 10E
∥∥∥∥∫ δ

0

ξα(θ)T (tαθ)g(0, φ(0))dθ

∥∥∥∥2

+ 10E
∥∥∥∥g(t, yt + φ̂t)− g(t− ε, yt−ε + φ̂t−ε)

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)AT ((t− s)αθ)g(s, ys + φ̂s)dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)AT ((t− s)αθ)g(s, ys + φ̂s)dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)uε(s, y + φ̂)dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)uε(s, y + φ̂)dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)f
(
s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)
dθds

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)T ((t− s)αθ)σ(s)dθdW (s)

∥∥∥∥2

+10α2E
∥∥∥∥∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)T ((t− s)αθ)σ(s)dθdW (s)

∥∥∥∥2

=
10∑
i=1

Ji

(4.49)
A similar argument as before can show that

J1 ≤ 10M2‖A−β‖2E‖Aβg(0, φ)‖2

(∫ δ

0

ξα(θ)dθ

)2

≤ 10M2‖A−β‖2Mg(1 + ‖φ‖2
Bh)

(∫ δ

0

ξα(θ)dθ

)2

.

(4.50)

J2 ≤ 10‖A−β‖2E‖Aβg(t, yt + φ̂t)− Aβg(t− ε, yt−ε + φ̂t−ε)‖2

≤ 10‖A−β‖2Mg(ε+ ‖(yt − yt−ε) + (φ̂t − φ̂t−ε)‖2
Bh).

(4.51)
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J3 ≤ 10α2E
[ ∫ t

0

∫ δ

0

‖θ(t− s)α−1ξα(θ)A1−βT ((t− s)αθ)Aβg(s, ys + φ̂s)ds‖dθds
]2

≤ 10α2M2
1−β

∫ t

0

(t− s)α+αβ−2ds

∫ t

0

(t− s)α+αβ−2E‖Aβg(s, ys + φ̂s)‖2ds

(∫ δ

0

ξα(θ)dθ

)2

≤ 10

(
αM1−β

α + αβ − 1

)2

b2α+2αβ−2Mg(1 + r
′
)

(∫ δ

0

ξα(θ)dθ

)2

.

(4.52)

J4 ≤ 10α2M2
1−β

∫ t

t−ε
(t− s)α+αβ−2ds

∫ t

t−ε
(t− s)α+αβ−2E‖Aβg(s, ys + φ̂s)‖2ds

(∫ ∞
0

ξα(θ)dθ

)2

≤ 10

(
αM1−β

(α + αβ − 1)Γ(1 + α)

)2

ε2α+2αβ−2Mg(1 + r
′
).

(4.53)
Where we have used the equality given in Remark 4.2.3.

J5 ≤ 10α2(MMB)2

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1E‖uε(s, y + φ̂)‖2ds

(∫ δ

0

ξα(θ)dθ

)2

≤ 10α(MMB)2bα
∫ t

0

(t− s)α−1 7

ε2

(
αMMB

Γ(1 + α)

)2

M̂ds

(∫ δ

0

ξα(θ)dθ

)2

.

(4.54)

J6 ≤ 10α2(MMB)2

∫ t

t−ε
(t− s)α−1ds

∫ t

t−ε
(t− s)α−1E‖uε(s, y + φ̂)‖2ds

(∫ ∞
0

ξα(θ)dθ

)2

≤ 10α(MMB)2εα

Γ2(1 + α)

∫ t

t−ε
(t− s)α−1 7

ε2

(
αMMB

Γ(1 + α)

)2

M̂ds.

(4.55)

J7 ≤ 8α2M2

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1E
∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

×
(∫ δ

0

ξα(θ)dθ

)2

≤ 8αM2bα
∫ t

0

(t− s)α−1n(s)Ef (r
′
+M0(1 + r

′
)b)ds

(∫ δ

0

ξα(θ)dθ

)2

.

(4.56)
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J8 ≤ 8α2M2

∫ t

t−ε
(t− s)α−1ds

∫ t

t−ε
(t− s)α−1E

∥∥∥∥f (s, ys + φ̂s,

∫ s

0

H(s, τ, yτ + φ̂τ )dτ

)∥∥∥∥2

ds

×
(∫ ∞

0

ξα(θ)dθ

)2

≤ 8αM2εα

Γ2(1 + α)

∫ t

t−ε
(t− s)α−1n(s)Ef (r

′
+M0(1 + r

′
)b)ds.

(4.57)

J9 ≤ 8α2M2Tr(Q)

∫ t

0

(t− s)2(α−1)E‖σ(s)‖2ds

(∫ δ

0

ξα(θ)dθ

)2

≤ 8α2M2Tr(Q)

∫ t

0

(t− s)2(α−1)lr(s)ds

(∫ δ

0

ξα(θ)dθ

)2

.

(4.58)

J10 ≤ 8α2M2Tr(Q)

∫ t

t−ε
(t− s)2(α−1)E‖σ(s)‖2ds

(∫ δ

0

ξα(θ)dθ

)2

≤ 8α2M2

Γ2(1 + α)
Tr(Q)

∫ t

t−ε
(t− s)2(α−1)lr(s)ds.

(4.59)

Recalling (4.49), from (4.50)− (4.59), we see that for each y ∈ Br,

E‖z1(t)− zε,δ1 (t)‖2 → 0 as ε→ 0+, δ → 0+.

Therefore, there are relative compact sets arbitrary close to the set V (t), t > 0. Hence, the set
V (t), t > 0 is also relatively compact in H.
Step 4 Ψ has a closed graph. Let yn → y∗ as n→∞, zn ∈ Ψyn for each yn ∈ Br, and zn → z∗
as n → ∞. We shall show that z∗ ∈ Ψy∗. Since zn ∈ Ψyn, then there exists σn ∈ SΣ,ψ,yn such
that

zn(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ(0)) + g(t, (yn)t + φ̂t) +
∫ t

0
(t− s)α−1AS(t− s)g(s, (yn)s + φ̂s)ds

+
∫ t

0
(t− s)α−1S(t− s)Buε(s, (yn) + φ̂)ds

+
∫ t

0
(t− s)α−1S(t− s)f(s, (yn)s + φ̂s,

∫ s
0
H(s, τ, (yn)τ + φ̂τ )dτ)ds

+
∫ t

0
(t− s)α−1S(t− s)σn(s)dW (s), t ∈ J,

(4.60)
We must prove that there exists σ∗ ∈ SΣ,ψ,y∗ such that

z∗(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ(0)) + g(t, (y∗)t + φ̂t) +
∫ t

0
(t− s)α−1AS(t− s)g(s, (y∗)s + φ̂s)ds

+
∫ t

0
(t− s)α−1S(t− s)Buε(s, (y∗) + φ̂)ds

+
∫ t

0
(t− s)α−1S(t− s)f(s, (y∗)s + φ̂s,

∫ s
0
H(s, τ, (y∗)τ + φ̂τ )dτ)ds

+
∫ t

0
(t− s)α−1S(t− s)σ∗(s)dW (s), t ∈ J,

(4.61)
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Now, for every t ∈ J, since g is continuous, and from the definition of uε we get∥∥∥∥(zn(t) + T (t)g(0, φ(0))− g(t, (yn)t + φ̂t)−
∫ t

0

(t− s)α−1AS(t− s)g(s, (yn)s + φ̂s)ds

−
∫ t

0

(t− s)α−1S(t− s)Buε(s, (yn) + φ̂)ds

−
∫ t

0

(t− s)α−1S(t− s)f
(
s, (yn)s + φ̂s,

∫ s

0

H(s, τ, (yn)τ + φ̂τ )dτ

)
ds

)

−
(
z∗(t) + T (t)g(0, φ(0))− g(t, (y∗)t + φ̂t)−

∫ t

0

(t− s)α−1AS(t− s)g(s, (y∗)s + φ̂s)ds

−
∫ t

0

(t− s)α−1S(t− s)Buε(s, (y∗) + φ̂)ds

−
∫ t

0

(t− s)α−1S(t− s)f
(
s, (y∗)s + φ̂s,

∫ s

0

H(s, τ, (y∗)τ + φ̂τ )dτ

)
ds

)∥∥∥∥2

b

→ 0 as n→∞.

Consider the linear contiuous operator Θ : L2(J,H)→ C(J,H),

σ 7→ (Θσ)(t) =

∫ t

0

(t− s)α−1S(t− s)σ(s)dW (s)−
∫ t

0

(t− s)α−1S(t− s)BB∗S∗(b− t)

×
(∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)σ(s)dW (s)

)
ds.

We can see that the operator Θ is linear and continuous. Moreover, on has

‖Θσ‖2 ≤
(

Mbα

Γ(1 + α)

)2

Tr(Q)‖σ‖2
L2(L(K,H))

[
2 +

(
MMBb

α

Γ(1 + α)

)2
2

ε2

(
αMMB

Γ(1 + α)

)2]
.

From Lemma 4.4.2, it follows that Θ ◦ SΣ is a closed graph operator. Also, from the definition
of Θ, we have that(

zn(t) + T (t)g(0, φ(0))− g(t, (yn)t + φ̂t)−
∫ t

0

(t− s)α−1AS(t− s)g(s, (yn)s + φ̂s)ds

−
∫ t

0

(t− s)α−1S(t− s)uε(s, (yn) + φ̂)ds

−
∫ t

0

(t− s)α−1S(t− s)f
(
s, (yn)s + φ̂s,

∫ s

0

H(s, τ, (yn)τ + φ̂τ )dτ

)
ds

)
∈ Θ(SΣ,ψ,yn).
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Since yn → y∗, for some y∗ ∈ SΣ,ψ,y∗ , it follows from Lemma 4.4.2 that(
z∗(t) + T (t)g(0, φ(0))− g(t, (y∗)t + φ̂t)−

∫ t

0

(t− s)α−1AS(t− s)g(s, (y∗)s + φ̂s)ds

−
∫ t

0

(t− s)α−1S(t− s)uε(s, (y∗) + φ̂s)ds

−
∫ t

0

(t− s)α−1S(t− s)f
(
s, (y∗)s + φ̂s,

∫ s

0

H(s, τ, (y∗)τ + φ̂τ )dτ

)
ds

)
∈ Θ(SΣ,ψ,y∗).

therefore Ψ has a closed graph.
As a consequence of step 1 to step 4 with the Arzela-Ascoli theorem, we conclude that Ψ is a

compact multivalued map, u.s.c. with convex closed values. As a consequence of Lemma 4.4.4,
we can deduce that Ψ has a fixed point x which is a mild solution of system (4.34). �

Further, in order to prove the approximate controllability result, the following additional
assumption is required;
(H7) : The linear fractional inclusion (4.36) is approximately controllable.
(H8) : The functions g(t, ψ) : J × Bh → Hβ, f(t, ψ, x) : J × Bh × H → H and Σ(t, ψ, x) :
J × Bh ×H → BCC(L(K,H)) are uniformly bounded for all t ∈ J, ψ ∈ Bh and x ∈ H.

Remark 4.4.1. In view of [85], (H7) is equivalent to εR(ε,Γb0) := ε(εI + Γb0)−1 → 0, as ε→ 0
in the strong operator.

Theorem 4.4.2. Assume that the assumptions of Theorem 4.4.1 hold and in addition, hypoth-
esis (H7) and (H8) are satisfied. Then, the fractional stochastic differential inclusion (4.34) is
approximately controllable on J.

Proof. Let xε ∈ Br be a fixed point of the operator Φε. By Theorem 4.4.1, any fixed point of
Φε is a mild solution of (4.34) under the control function u(s, xε) and satisfies, by the stochastic
Fubini theorem, that for some σε ∈ SΣ,ψ,xε

xε(b) = x̃b − ε(εI + Γb0)−1

[
Ex̃b +

∫ b

0

φ̃(s)dW (s)− T (b)[φ(0)− g(0, φ(0))]− g(b, xεb)

]

+ε

∫ b

0

(εI + Γbs)
−1(b− s)α−1AS(b− s)g(s, xεs)ds

+ε

∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)f

(
s, xεs,

∫ s

0

H(s, τ, xετ )dτ

)
ds

+ε

∫ b

0

(εI + Γbs)
−1(b− s)α−1S(b− s)σε(s)dW (s).

(4.62)
Moreover, by the boundedness of Σ, g and f (assumption (H8)) and Dunford-Pettis Theorem,
we have that the sequences {σε(s)}, {Aβg(s, xεs)} and {f(s, xεs,

∫ s
0
H(s, τ, xετ )dτ)} are weakly

compact in L2(L(K,H)), L2([0, b];Hβ) and L2([0, b];H), so there are a subsequences still de-
noted by {Aβg(s, xεs)}, {f(s, xεs,

∫ s
0
H(s, τ, xετ )dτ)} and {σε(s)}, that weakly converge to, say,

g, f and σ respectively in L2([0, b];Hβ), L2([0, b];H), and L2(L(K,H)). Thus, from the above
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equation, we have
E‖xε(b)− x̃b‖2 ≤ 9‖ε(εI + Γb0)−1[Ex̃b − T (b)(φ(0)− g(0, φ(0)))]‖2

+9E
(∫ b

0

‖ε(εI + Γb0)−1φ̃(s)‖2
L2(K,H)ds

)
+ 9E‖ε(εI + Γb0)−1g(b, xεb)‖2

+9E
(∫ b

0

(b− s)α−1‖ε(εI + Γbs)
−1AS(b− s)[g(s, xεs)− g(s)]‖ds

)2

+9E
(

(b− s)α−1‖ε(εI + Γbs)
−1AS(b− s)g(s)‖ds

)2

+9E
(∫ b

0

(b− s)α−1‖ε(εI + Γbs)
−1S(b− s)[f

(
s, xεs,

∫ s

0

H(s, τ, xετ )dτ

)
− f(s)]ds

)2

+9E
(∫ b

0

(b− s)α−1‖ε(εI + Γbs)
−1S(b− s)f(s)‖ds

)2

+9E
(∫ b

0

(b− s)α−1‖ε(εI + Γbs)
−1S(b− s)[σε(s)− σ(s)]‖2

L2ds

)

+9E
(∫ b

0

(b− s)α−1‖ε(εI + Γbs)
−1S(b− s)σ(s)‖2

L2(K,H)ds

)
On the other hand, by assumption (H7) for all 0 ≤ s ≤ b, the operator ε(εI+Γb0)−1 → 0 strongly
as ε→ 0+, and moreover ‖ε(εI+Γb0)−1‖ ≤ 1 Thus, by the Lebesgue dominated convergence the-
orem and the compactness of S(t) we obtain E‖xε(b)− x̃b‖2 → 0 as ε→ 0+. This proves the ap-
proximate cotrollability of (4.34). �

4.4.2 An Application

As an application to theorem 4.4.2, we study the following simple example. Consider a
control system governed by the fractional order neutral functional stochastic integro-differential
inclusion of the form

cDα
t

[
z(t, η) +

∫ 0

−∞
b(θ, η)z(t, θ)dθ

]
∈ ∂2

∂η2
z(t, η) + µ̂(t, η)

+µ

(
t,

∫ t

−∞
µ1(s− t)z(s, η)ds,

∫ t

0

∫ 0

−∞
µ2(s, η, τ − s)z(τ, η)dτds

)
+ν

(
t,

∫ t

−∞
µ1(s− t)z(s, η)ds,

∫ t

0

∫ 0

−∞
µ3(s, η, τ − s)z(τ, η)dτds

)
dW (t)

dt
,

η ∈ [0, π], t ∈ [0, b],
z(t, 0) = z(t, π) = 0, t ≥ 0,
(0, η) = ψ(t, η), 0 ≤ η ≤ π, t ∈ (−∞, 0],

(4.63)

β(t) is a standard cylindrical wiener process in H defined on a stochastic space (Ω, {Ft},F ,P);
the fractional derivative cDα

t , 0 < α < 1 is understood in the Caputo sense; ψ(t, η), µ, ν, µ2 and
µ3 are continuous.
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To rewrite this system into the abstract form (4.34), let H = L2([0, π]) with the norm ‖ · ‖.
Define A : D(A) ⊂ H → H by Ay = y′′ with the domain

D(A) = {y ∈ H; y, y′ are absolutely continuous, y′′ ∈ H and y(0) = y(π) = 0} .

Then A is an infinitesimal generator of strongly continuous semigroup (T (t))t≥0 which is
compact, analytic and self-adjoint. Furthermore, A has a discrete spectrum with eigenval-
ues of the form −n2, n = 0, 1, 2... and corresponding normalized eigenfunctions are given by
zn(η) =

√
2
π

sin(nη). We also use the following properties:

i. If y ∈ D(A), then Ay =
∑∞

n=1 n
2〈y, zn〉zn.

ii. For each y ∈ H, A−1/2y =
∑∞

n=1
1
n
〈y, zn〉zn. In particular, ‖A−1/2‖ = 1.

iii. The operator A1/2 is given by A1/2y =
∑∞

n=1 n〈y, zn〉zn on the space D(A1/2) = {y(·) ∈
H,
∑∞

n=1 n〈y, zn〉zn ∈ H}.

Now, we present a special phase space Bh. Let h(s) = e2s, s < 0; then l =
∫ 0

−∞ h(s)ds = 1
2
.

Let

‖ϕ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖ϕ(θ)‖)

1
2 ;

then (Bh, ‖ · ‖Bh) is a banach space.
For (t, ϕ) ∈ [0, b] × Bh, where ϕ(θ)(η) = ψ(θ, η), (θ, η) ∈ (−∞, 0] × [0, π], let z(t) = z(t, ·),

that is z(t)(η) = z(t, η).
Define an infinite-dimensional space U by U = {u\u =

∑∞
n=2 unvn, with

∑∞
n=2 U2

n <∞} for
each v ∈ H. The norm in U is defined by ‖u‖2

U =
∑∞

n=2 U2
n. Now, we define a continuous linear

mapping B from H into H as Bu = 2u2v1 +
∑∞

n=2 unvn for u =
∑∞

n=2 unvn ∈ U .
Define the bounded linear operator B : U → H by (Bu)(t)(η) = µ̂(t, η), 0 ≤ η ≤ π, u ∈

U , g : J × Bh → L2([0, π]), f : J × Bh × L2([0, π]) → L2([0, π]) and Σ : J × Bh × L2([0, π]) →
L(L2([0, π]), L2([0, π])) by

g(t, ϕ)(η) =

∫ 0

−∞
b(θ)ϕ(θ)(η)dθ,

f

(
t, ϕ,

∫ t

0

g1(s, t)ds

)
(η) = µ

(
t,

∫ 0

−∞
µ1(θ)ϕ(θ)dθ,

∫ t

0

∫ 0

−∞
µ2(s, η, θ)ϕ(θ, η)dθds

)
Σ

(
t, ϕ,

∫ t

0

g2(s, t)ds

)
(η) = ν

(
t,

∫ 0

−∞
µ1(θ)ϕ(θ)dθ,

∫ t

0

∫ 0

−∞
µ3(s, η, θ)ϕ(θ, η)dθds

)
.

On the other hand, the linear system corresponding to (4.63) is approximately controllable (but
not exactly controllable). Thus, with the above choices, the system (4.63) can be written in
the abstract form of (4.34) and all the conditions of Theorem 4.4.2, are satisfied. Further, we
can impose some suitable conditions on the above-defined functions to verify the assumptions
on Theorem 4.4.2, we can conclude that system (4.63) is approximately controllable on [0, b].



Conclusion

T he main goal of this thesis is to investigate the subject of fractional stochastic differential
equations and inclusions in Hilbert spaces. We have discussed the existence and unique-

ness result for an impulsive fractional stochastic evolution equations involving Caputo fractional
derivative and fractional partial neutral stochastic functional integro-differential inclusions with
state-dependent delay and analytic resolvent operators. Sufficient conditions for the existence
are established by using the nonlinear alternative of Leray-Schauder type for multivalued maps
due to O’Regan and the fractional power of operators. The main results are obtained by means
of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic
analysis theory and methods adopted directly from deterministic fractional equations.

In the same line of thought, we have explored some results about the approximate con-
trollability of fractional neutral stochastic functional integro-differential inclusions in Hilbert
spaces by using the natural assumption that the corresponding linear system is approximately
controllable. With the use of the fractional calculus and stochastic analysis technique, control
function has been constructed. Moreover, the control function, together with operator semi-
group, has helped us to obtain sufficient conditions for the approximate controllability of the
control system via Bohnenblust-Karlin’s fixed point theorem. An application is provided to
illustrate the applicability of the new result.

Our future work will try to make some the above results and study the approximate con-
trollability for impulsive fractional neutral stochastic functional integro-differential inclusions
with state-dependent delay.
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Appendix A

Nuclear and Hilbert-Schmidt Operators
Let E, G be Banach spaces and let L(E,G) be the Banach spaces of all linear bounded operators
from E into G endowed with the usual supremum norm. We write L1(E) instead of L1(E,E).
We denote by E∗ and G∗ the dual space of E and G respectively. An element T ∈ L(E,G) is
said to be a nuclear or trace class operator if there exist two sequences {aj} ⊂ G, {ϕj} ⊂ E∗

such that
∞∑
i=1

‖aj‖‖ϕj‖ < +∞ (4.64)

and T has the representation

Tx =
∞∑
i=1

ajϕj, x ∈ E.

The spaces of all nuclear operators from E into G, endowed with the norm

‖T‖1 = inf

{ ∞∑
j=1

‖aj‖‖ϕj‖ : Tx =
∞∑
j=1

ajϕj

}
is a Banach space (see ([26])), and will be denoted as L1(E,G). LetK be another Banach space;
it is clear that if T ∈ L1(E,G) and S ∈ L(G,K) then TS ∈ L1(E,K) and ‖TS‖1 ≤ ‖T‖‖S‖1.
Let H be a separable Hilbert space and let {ek} be a complete orthonormal system in H. If
T ∈ L1(H,H) then we define

TrT =
∞∑
j=1

〈Tej, ej〉.

Proposition 4.4.1. If T ∈ L1(H) then Tr T is a well defined number independent of the choice
of the orthonormal basis {ek}.

Proof. We refer the reader to [26].
Note also that

|Tr T | ≤ ‖T‖1, ∀T ∈ L1(H)

Corollaire 4.1. If T ∈ L1(H) and S ∈ L(H), then TS ∈ L1(H) and

Tr TS = Tr ST ≤ ‖T‖1‖S‖.

Proposition 4.4.2. A nonnegative operator T ∈ L(H) is of trace class if and only if for an
orthonormal basis {ek} on H

∞∑
i=1

〈Tej, ej〉 < +∞.
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Moreover in this case Tr T = ‖T‖1.
Proof. We refer the reader to [26].

Let E and F be two separable Hilbert spaces with complete orthonormal bases {ek} ⊂
H, {fj} ⊂ F, respectively. A linear bounded operator T : H → E is said to be Hilbert-Schmidt
if

∞∑
k=1

|Tek|2 <∞.

Since
∞∑
k=1

|Tek|2 =
∞∑
k=1

∞∑
j=1

|〈Tek, fj〉|2 =
∞∑
k=1

|T ∗fj|2,

the definition of Hilbert-Schmidt operator, and the number ‖T‖2 = (
∑∞

k=1 |Tek|2)1/2, is
independent of the choice of the basis {ek}. Moreover ‖T‖2 = ‖T ∗‖2.

One can check easily that the set L2(E,F ) of all Hilbert-Schmidt operators from E into F ,
equipped with the norm

‖T‖2 =

( ∞∑
k=1

|Tek|2
)1/2

is a separable Hilbert space, with the scalar product

〈S, T 〉2 =
∞∑
k=1

〈Sek, T ek〉.

The double sequence of operators {fj ⊗ ek}j,k∈N is a complete orthonormal basis in L2(E,F ). 4

Proposition 4.4.3. Let E, F, G be separable Hilbert spaces. If T ∈ L2(E,F ) and S ∈ L2(F,G)
then ST ∈ L1(E,G) and

‖ST‖1 ≤ ‖S‖2‖T‖2.

Proof. We refer the reader to [26].

4For arbitrary b ∈ E, a ∈ F we denoteby b⊗ a the linear operator defined by (b⊗ a).h = 〈a, h〉b, h ∈ F .



Appendix B

Reproducing Kernels
Let µ be a symmetric Gaussian measure on a Banach space E. A linear subspace H ⊂ E

equipped with a Hilbert norm |.|H is said to be a reproducing kernel space for µ if H is complete,
continuously embedded in E and such that for arbitrary ϕ ∈ E∗

L (ϕ) = N (0, |ϕ|2H),

where
|ϕ|H = sup

|h|H≤1

|ϕ(h)|.

Theorem 4.4.3. For an arbitrary symmetric Gaussian measure µ on a separable Banach space,
there exists a unique reproducing kernel space (H, |.|H).

Proof. We refer the reader to [26].
The reproducing kernel space of µ will be denoted by Hµ. In a sense it is independent of

the Banach space E.

Proposition 4.4.4. Assume that a Banach space E1 is continuously and as a Borel set imbedded
in E. If the measure µ is symmetric and Gaussian on E and E1, then the reproducing kernel
space calculated with respect to E or E1 is the same.

Proof. We refer the reader to [26].
Note that if h = Jϕ, ϕ ∈ E∗, then we have

〈h, x〉H = ϕ(x), x ∈ H. (4.65)

Therefore the functional 〈h, x〉H can be naturally extended to the whole space E. If h is an
arbitrary element on H, then there exists a sequence {hn} = {Jϕn}, ϕn ∈ E∗, n ∈ N, such that

lim
n→∞

|h− hn| = 0.

Moreover, for some ϕ ∈ L2, ϕn → ϕ. Functional ϕ does not belong in general to E∗ but is
defined in a unique way as an element of L2(E,B(E), µ). In this way definition 4.65 can be
extended to all remaining h ∈ H and µ-almost all x ∈ E. We have the following reproducing
kernel formula: ∫

E

〈h, x〉H〈g, x〉Hµ(dx) = 〈h, g〉H , h, g ∈ H.

The following result will be used to check that a given measure µ on a separable Banach space
is Gaussian and to identify its reproducing kernel.

Proposition 4.4.5. Let µ be a measure in a separable Banach space E andM a linear subspace
of E∗ generating the Borel s-field B(E).

(i) If arbitrary ϕ ∈M has a symmetric Gaussian law then µ is symmetric Gaussian.

(ii) If in addition H0 is a Hilbert space continuously embedded into E and such that L (ϕ) =
N (0, |ϕ|20) for arbitrary ϕ ∈M , then H0 is the reproducing kernel of µ.

Proof. We refer the reader to [26].
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