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Abstract

The objective of this thesis is to present the existence of random solutions
for the fractional partial random differential equations in Banach spaces . Some
equations present delay which may be fnite, infinite, or state-dependent. Our
results will be obtained by means the measure of noncompactness and a ran-
dom fixed point theorem with stochastic domain.
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Résumé

L’objectif de cette thèse est de présenter, des résultats d’existence des
solutions du problème de Darboux pour des équations différentielles hyper-
boliques d’ordre fractionnaire avec un effet dans un espace de Banach. On a
considéré ce problème avec retard fini, infini et dépendant de l’etat. Nos résul-
tats sont basées sur théorème du point fixe et la mesure de non compacité.

Mots clé: Equations différentielles; l’intégrale d’ordre fractionnaire au sens de
Riemann-Liouville; dérivée de Caputo; espace de Banach; problème de Dar-
boux; mesure de non compacité.
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Introduction

Fractional calculus is generalization of ordinary differentiation and inte-
gration to arbitrary non-integer order. The subject is as old as the differen-
tial calculus, starting from some speculations of G.W. Lebeniz(1967) and L. Eu-
ler(1730) and since then, it has continued to be developed up to nowadays. In-
tegral equations are one of the most useful mathematical tools in both pure and
applied analysis. This is particulary true of problems in mechanical vibrations
and the related fields of engineering and mathematical physics. we can find nu-
merous applications of differential and integral equation of fractional order in
finance, hydrology, biophysics, thermodynamics, control theory, statistical me-
chanics, astrophysics, cosmology and bioengineering ( [16,38,55,56,60]). There
has been a significant development in ordinary and partial fractional differen-
tial equations in recent years; see the monographs of Abbas et al. [10], Baleanu
et al. [16], Kilbas et al. [44], Lakshmikantham et al, the papers of Abbas et al.

The theory of impulsive integer order differential equations and inclusions
have become important in some mathematical models of real processes and
phenomena studied in physics, chemical technology, population dynamics, biotech-
nology and economics. The study of impulsive fractional differential equations
and inclusions was initiated in the 1960’s by Milman and Myshkis [52, 53]. At
present the foundations of the general theory are already laid, and many of
them are investigated in detail in the books of Aubin [13], Berhoun [20] and the
references therein. There was an intensive development of the impulse theory,
especially in the area of impulsive differential equations and inclusions with
fixed moments; see for example [46, 57]. Recently in [2, 9], we have considered
some classes of hyperbolic partial differential equations involving the Caputo
fractional derivative and impulses at fixed time. The theory of impulsive differ-
ential equations and inclusions with variable time is relatively less developed
due to the difficulties created by the state-dependent impulses.Some interesting
extensions to impulsive differential equations with variable times have been
done by Bajo and Liz [15], Abbas et al. [1], Belarbi and Benchohra [17], Ben-
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chohra et al. [18, 19], Frigon and O’Regan [28, 29, 30], Kaul et al. [41], Kaul and
Liu [42, 43], Lakshmikantham et al. [47] and the references cited therein.

Functional differential equations with state-dependent delay appear fre-
quently in applications as model of equations and for this reason the study
of this type of equations has received great attention in the last year; see for
instance [33, 34] and the references therein. The literature related to partial
functional differential equations with state-dependent delay is limited; see for
instance [7, 37]. The literature related to ordinary and partial functional differ-
ential equations with delay for which ρ(t, ·) = t or (ρ1(x, y, ·), ρ2(x, y, ·)) = (x, y)
is very extensive; see for instance [5, 6, 32] and the references therein.

Random differential equations and random integral equations have been
studied systematically in Ladde and Lakshmikantham [45] and Bharucha-Reid
[21], respectively.They are good models in various branches of science and en-
gineering since random factors and uncertainties have been taken into con-
sideration. Hence, the study of the fractional differential equations with ran-
dom parameters seem to be a natural one. We refer the reader to the mono-
graphs [21, 45, 58], the papers [25, 26, 40] and the references therein.

Initial value problems for fractional differential equations with random pa-
rameters have been studied by Lupulescu and Ntouyas [50]. The basic tool
in the study of the problems for random fractional differential equations is to
treat it as a fractional differential equation in some appropriate Banach space.
In [51], authors proved the existence results for a random fractional equation
under a Carathéodory condition.

This thesis is devoted to the the existence of random solutions for the frac-
tional partial random differential equations. Some equations present delay
which may be finite, infinite, or state-dependent. The tools used include mea-
sure of noncompactness and a random fixed point theorem with stochastic do-
main. This thesis is arranged and organized as follows:

In Chapter 1, we introduce some notations, definitions,lemmas and fixed
point theorems which are used throughout this thesis.

In chapter 2, we prove the existence of random solutions for the fractional
partial random differential equations.
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In Chapter 3, in section two of chapter 3, we study the existence results for
the Darboux problem of partial fractional random differential equations with
delay. Later, we give similar results to nonlocal initial value problem.
In Section 3.3, we prove the existence of random solutions for the fractional
partial random differential equations with infinite delay.

In chapter 4, we shall be concerned to the existence for the fractional partial
random differential equations with state-dependent delay.
In Section 4.2, we study the existence results for the Darboux problem of partial
fractional random differential equations with finite delay.
In Section 4.3, we study the existence results for the Darboux problem of partial
fractional random differential equations with infinite delay.

Finally, in Chapter 5, we discuss the existence of random solutions for the
impulsive partial fractional random differential equations.



Chapter 1

Preliminary

In this chapter, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this thesis.

1.1 Some Notations and Definitions

Let J := [0, a] × [0, b], a, b > 0. Denote L1(J) the space of Bochner-integrable
functions u : J → E with the norm

‖u‖L1 =

∫ a

0

∫ b

0

‖u(x, y)‖Edydx.

L∞(J) the Banach space of functions u : J → R which are essentially bounded
with the norm

‖u‖L∞ = inf{c > 0 : ‖u(x, y)‖ ≤ c, a.e. (x, y) ∈ J}.

As usual, by AC(J) we denote the space of absolutely continuous functions
from J into E.

Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω → E is said
to be measurable if for any B ∈ βE, one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

To define integrals of sample paths of random process, it is necessary to
define a jointly measurable map.

4



1.1 Some Notations and Definitions 5

Definition 1.1.1. A mapping T : Ω × E → E is called jointly measurable if for
any B ∈ βE, one has

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE,

where A× βE is the direct product of the σ-algebras A and βE those defined in
Ω and E respectively.

Lemma 1.1.1. Let T : Ω × E → E be a mapping such that T (·, v) is measurable for
all v ∈ E, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, v) 7→ T (w, v) is
jointly measurable.

Definition 1.1.2. A function f : J×E×Ω→ E is called random Carathéeodory
if the following conditions are satisfied:

(i) The map (x, y, w)→ f(x, y, u, w) is jointly measurable for all u ∈ E, and

(ii) The map u → f(x, y, u, w) is continuous for almost all (x, y) ∈ J and
w ∈ Ω.

Let T : Ω × E → E be a mapping. Then T is called a random operator if
T (w, u) is measurable in w for all u ∈ E and it is expressed as T (w)u = T (w, u).
In this case we also say that T (w) is a random operator on E. A random oper-
ator T (w) on E is called continuous (resp. compact, totally bounded and com-
pletely continuous) if T (w, u) is continuous (resp. compact, totally bounded
and completely continuous) in u for all w ∈ Ω. The details of completely con-
tinuous random operators in Banach spaces and their properties appear in
Itoh [40].

Definition 1.1.3. [27] Let P(Y ) be the family of all nonempty subsets of Y and
C be a mapping from Ω intoP(Y ).A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} →
Y is called random operator with stochastic domain C if C is measurable (i.e.,
for all closed A ⊂ Y, {w ∈ Ω, C(w) ∩ A 6= ∅} is measurable) and for all open
D ⊂ Y and all y ∈ Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T
will be called continuous if every T (w) is continuous. For a random operator
T, a mapping y : Ω → Y is called random (stochastic) fixed point of T if for
P−almost all w ∈ Ω, y(w) ∈ C(w) and T (w)y(w) = y(w) and for all open
D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.
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1.2 Some Properties of Partial Fractional Calculus

In this section, we introduce notations, definitions and preliminary Lemmas
concerning to partial fractional calculus theory.

Let θ = (0, 0), r1, r2 > 0 and r = (r1, r2). For f ∈ L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(·)
is the (Euler’s) Gamma function defined by Γ(ξ) =

∫∞
0
tξ−1e−tdt; ξ > 0.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also that
when u ∈ C, then (Irθu) ∈ C, moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

By 1− r we mean (1− r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y
, the

mixed second order partial derivative.

Definition 1.2.1. [61] Let r ∈ (0, 1]×(0, 1] and u ∈ L1(J). The Caputo fractional-
order derivative of order r of u is defined by the expression

cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(cDσ
θu)(x, y) = (D2

xyu)(x, y); for almost all (x, y) ∈ J.

1.3 The phase space B
The notation of the phase space B plays an important role in the study of
both qualitative and quantitative theory for functional differential equations.
A usual choice is a semi-normed space satisfying suitable axioms, which was
introduced by Hale and Kato (see [31]). For further applications see for in-
stance the books [35, 39, 48] and their references. For any (x, y) ∈ J denote
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E(x,y) := [0, x]×{0}∪{0}× [0, y], furthermore in case x = a, y = b we write sim-
ply E .Consider the space (B, ‖(·, ·)‖B) is a seminormed linear space of functions
mapping (−∞, 0]× (−∞, 0] into Rn, and satisfying the following fundamental
axioms which were adapted from those introduced by Hale and Kato for ordi-
nary differential functional equations:

(A1) If z : (−∞, a] × (−∞, b] → Rn continuous on J and z(x,y) ∈ B, for all
(x, y) ∈ E , then there are constants H,K,M > 0 such that for any (x, y) ∈
J the following conditions hold:

(i) z(x,y) is in B;

(ii) ‖z(x, y)‖ ≤ H‖z(x,y)‖B,

(iii) ‖z(x,y)‖B ≤ K sup(s,t)∈[0,x]×[0,y] ‖z(s, t)‖+M sup(s,t)∈E(x,y) ‖z(s,t)‖B,

(A2) For the function z(., .) in (A1), z(x,y) is a B-valued continuous function on
J.

(A3) The space B is complete.

Now, we present some examples of phase spaces [23, 24].

Example 1.3.1. Let B be the set of all functions φ : (−∞, 0] × (−∞, 0] → Rn

which are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is isometric
to the space C([−α, 0] × [−β, 0],Rn) of all continuous functions from [−α, 0] ×
[−β, 0] into Rn with the supremum norm, this means that partial differential
functional equations with finite delay are included in our axiomatic model.

Example 1.3.2. Let Cγ be the set of all continuous functions φ : (−∞, 0] ×
(−∞, 0]→ Rn for which a limit lim‖(s,t)‖→∞ e

γ(s+t)φ(s, t) exists, with the norm

‖φ‖Cγ = sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)‖φ(s, t)‖.

Then we have H = 1 and K = M = max{e−(a+b), 1}.
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Example 1.3.3. Let α, β, γ ≥ 0 and let

‖φ‖CLγ = sup
(s,t)∈[−α,0]×[−β,0]

‖φ(s, t)‖+

∫ 0

−∞

∫ 0

−∞
eγ(s+t)‖φ(s, t)‖dtds.

be the seminorm for the space CLγ of all functions φ : (−∞, 0]× (−∞, 0]→ Rn

which are continuous on [−α, 0]× [−β, 0] measurable on (−∞,−α]× (−∞, 0]∪
(−∞, 0]× (−∞,−β], and such that ‖φ‖CLγ <∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β
eγ(s+t)dtds, M = 2.

1.4 Measure of noncompactness

LetMX denote the class of all bounded subsets of a metric space X.

Definition 1.4.1. Let X be a complete metric space. A map α :MX → [0,∞) is
called a measure of noncompactness onX if it satisfies the following properties
for all B,B1, B2 ∈MX .

(MNC.1) α(B) = 0 if and only if B is precompact (Regularity),

(MNC.2) α(B) = α(B) (Invariance under closure),

(MNC.3) α(B1 ∪B2) = α(B1) + α(B2) (Semi-additivity).

For more details on measure of noncompactness and its properties see [12].

Example 1.4.1. In every metric space X, the map φ : MX → [0,∞) with
φ(B) = 0 if B is relatively compact and φ(B) = 1 otherwise is a measure of
noncompactness, the so-called discrete measure of noncompactness [ [14], Ex-
ample1, p. 19].

Lemma 1.4.1. [22] If Y is a bounded subset of Banach space X, then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.

Lemma 1.4.2. [54] {uk}∞k=1 ⊂ L1(J) is uniformly integrable, then α({uk}∞k=1) is
measurable and for each (x, y) ∈ J,

α

({∫ x

0

∫ y

0

uk(s, t)dtds

}∞
k=1

)
≤ 2

∫ x

0

∫ y

0

α({uk(s, t)}∞k=1)dtds.
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1.5 Fixed Point Theorems

Fixed point theory plays an important role in our existence results, therefore
we state the following lemma.

Lemma 1.5.1. [49] Let F be a closed and convex subset of a real Banach space, let
G : F → F be a continuous operator and G(F ) be bounded. If there exist a constant
k ∈ [0, 1) such that for each bounded subset B ⊂ F,

α(G(B)) ≤ kα(B),

then G has a fixed point in F.



Chapter 2

Fractional Partial Random
Differential Equations

2.1 Introduction

We study in this chapter the existence of random solutions for the follow-
ing fractional partial random differential equations

cDr
θu(x, y, w) = f(x, y, u(x, y, w), w); for a.a. (x, y) ∈ J := [0, a]× [0, b], w ∈ Ω,

(2.1)
with the initial conditions

u(x, 0, w) = ϕ(x,w); x ∈ [0, a],

u(0, y, w) = ψ(y, w); y ∈ [0, b],

ϕ(0, w) = ψ(0, w),

w ∈ Ω, (2.2)

where a, b > 0, θ = (0, 0), cDr
θ is the fractional Caputo derivative of order

r = (r1, r2) ∈ (0, 1]× (0, 1], (Ω,A) is a measurable space, f : J × E × Ω → E is
a given continuous function, (E, ‖ · ‖E) is a real Banach space, ϕ : [0, a] × Ω →
E, ψ : [0, b]× Ω→ E are given are given functions such that ϕ(·, w) and ψ(·, w)
are absolutely continuous functions for all w ∈ Ω, and ϕ(x, ·) and ψ(y, ·) are
measurable for all x ∈ [0, a] and y ∈ [0, b] respectively, and C is the Banach
space of all continuous functions from J into E with the supremum (uniform)
norm ‖ · ‖∞.

10
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2.2 Existence Results

Definition 2.2.1. By a random solution of the random problem (2.1)-(2.2) we
mean a measurable function u : Ω→ AC(J) that satisfies the equation (2.1) a.a.
on J × Ω and the initial conditions (2.2) are satisfied.

Let h ∈ L1(J,Rn). We need the following lemma:

Lemma 2.2.1. [3, 10] A function u ∈ AC(J,Rn) is a solution of problem
cDr

θu(x, y) = h(x, y); for a.a. (x, y) ∈ J := [0, a]× [0, b],

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0).

if and only if u if and only if u(x, y) satisfies

u(x, y) = µ(x, y) + Irθh(x, y); for a.a. (x, y) ∈ J,

where
µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Let us assume that the function f is random Carathéeodory on J × E × Ω.
From the above Lemma, we have the following Lemma.

Lemma 2.2.2. Let 0 < r1, r2 ≤ 1. A function u ∈ Ω×AC is a solution of the random
fractional integral equation

u(x, y, w) = µ(x, y, w)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(s, t, w), w)dtds,

(2.3)
where

µ(x, y, w) = ϕ(x,w) + ψ(y, w)− ϕ(0, w),

if and only if u is a solution of the random problem (2.1)-(2.2).

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function f is random Carathéeodory on J × E × Ω,
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(H3) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(., w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖E,

for all u ∈ E, w ∈ Ω and a.e. (x, y) ∈ J,

(H4) for any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ p(x, y, w)α(B), for a.e. (x, y) ∈ J,

(H5) There exists a random function R : Ω→ (0,∞) such that

µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)
≤ R(w),

where

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E, p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2.

Theorem 2.2.1. Assume that hypotheses (H1)− (H5) hold. If

` :=
4q∗ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (2.1)-(2.2) has a random solution defined on J.

Proof. From th hypothesis (H2), (H3), for each w ∈ Ω and almost all (x, y) ∈
J, we have that f(x, y, u(x, y, w), w) is in L1. By using Lemma 2.2.2, the problem
(2.1)-(2.2) is equivalent to the integral equation

u(x, y, w) = µ(x, y, w) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds;

for each w ∈ Ω and a.e. (x, y) ∈ J.

Define the operator N : Ω× C → C by

(N(w)u)(x, y) = µ(x, y, w)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds.

Since the functions ϕ, ψ and f are absolutely continuous , then the function µ
and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
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all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, thenN(w) defines a mappingN : Ω×C → C.Hence
u is a solution for the problem (2.1)-(2.2) if and only if u = (N(w))u. We shall
show that the operatorN satisfies all conditions of Lemma 1.5.1. The proof will
be given in several steps.

Step 1: N(w) is a random operator with stochastic domain on C.
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is mea-
surable in view of Definition 1.1.1.
Similarly, the product (x − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w) of a continuous
and a measurable function is again measurable. Further, the integral is a limit
of a finite sum of measurable functions, therefore, the map

w 7→ µ(x, y, w) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds,

is measurable. As a result, N is a random operator on Ω× C into C.

Let W : Ω→ P(C) be defined by

W (w) = {u ∈ C : ‖u‖∞ ≤ R(w)},

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is mea-
surable by Lemma [ [27], Lemma 17]. Let w ∈ Ω be fixed, then from (H4), for
any u ∈ w(w), we get

‖(N(w)u)(x, y)‖E

≤ ‖µ(x, y, w)‖E +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(s, t, w), w)‖Edtds

≤ ‖µ(x, y, w)‖E +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds

≤ µ∗(w) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).
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Therefore,N is a random operator with stochastic domainW andN(w) : W (w)→
N(w). Furthermore, N(w) maps bounded sets into bounded sets in C.

Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C. Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w) →
N(w) is a continuous random operator with stochastic domainW, andN(w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(N(w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any



2.3 An Example 15

ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α((N(w)B)(x, y))

= α

({
µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds; u ∈ B

})
≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t;w), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α ({f(s, t, un(s, t, w), w)}∞n=1) dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α ({un(s, t, w)}∞n=1) dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2a
r1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(N(B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, N has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅ the hypothesis that a measurable selector

of intW exists holds. By Lemma 1.5.1, N has a stochastic fixed point, i.e., the
problem (2.1)-(2.2) has at least one random solution on C.

2.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Given a measurable function u : Ω→
AC([0, 1]× [0, 1]), consider the following partial functional random differential
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equation of the form

(cDr
θu)(x, y, w) =

w2e−x−y−3

1 + w2 + 5|u(x, y, w)|
; a.a. (x, y) ∈ J = [0, 1]× [0, 1], w ∈ Ω,

(2.4)
with the initial conditions{

u(x, 0, w) = x sinw; x ∈ [0, 1],

u(0, y, w) = y2 cosw; y ∈ [0, 1],
w ∈ Ω, (2.5)

where (r1, r2) ∈ (0, 1]× (0, 1]. Set

f(x, y, u(x, y, w), w) =
w2

(1 + w2 + 5|u(x, y, w)|)ex+y+3
, (x, y) ∈ [0, 1]×[0, 1], w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw and w 7→ ψ(0, y, w) = y2 cosw are mea-
surable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the conditions (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R
and hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× R× Ω.
For each u ∈ R, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
5

e3
|u|.

Hence the conditions (H3) is satisfied with p1(x, y, w) = p∗1 = 1 and p2(x, y, w) =
p∗2 = 5

e3
.

Also, the conditions (H4) is satisfied.
We shall show that condition ` < 1 holds with a = b = 1. For each (r1, r2) ∈

(0, 1]× (0, 1] we get

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
20

e3Γ(1 + r1)Γ(1 + r2)

<
20

e3

< 1.

Consequently, Theorem 2.2.1 implies that the problem (2.4)-(2.5) has a random
solution defined on [0, 1]× [0, 1].



Chapter 3

Fractional Partial Random
Differential Equations with Delay

3.1 Introduction

We study in this chapter existence results for the Darboux problem of
partial fractional random differential equations with delay

3.2 Fractional Partial Random Differential Equations
with finite Delay

3.2.1 Introduction

In this section, we discuss the existence of random solutions for the following
fractional partial random differential equations with finite delay

(cDr
0u)(x, y, w) = f(x, y, u(x,y), w), if (x, y) ∈ J := [0, a]× [0, b], w ∈ Ω, (3.1)

u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := [−α, a]× [−β, b]\(0, a]× (0, b], w ∈ Ω,
(3.2)

u(x, 0, w) = ϕ(x,w), x ∈ [0, a], u(0, y, w) = ψ(y, w), y ∈ [0, b], w ∈ Ω, (3.3)

where α, β, a, b > 0, cDr
0 is the standard Caputo’s fractional derivative of order

−r = (r1, r2) ∈ (0, 1]× (0, 1], (Ω,A) is a measurable space, f : J ×C ×Ω→ E is
a given function, φ : J̃ ×Ω→ E is a given continuous function, ϕ : [0, a]×Ω→
E,ψ : [0, b] × Ω → E are given absolutely continuous functions with ϕ(x,w) =
φ(x, 0, w), ψ(y, w) = φ(0, y, w) for each x ∈ [0, a], y ∈ [0, b], w ∈ Ω and C :=

17
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C([−α, 0]× [−β, 0], E) is the space of continuous functions on [−α, 0]× [−β, 0].

If u ∈ C(a,b) = C([−α, a] × [−β, b], E); a, b, α, β > 0 then for any (x, y) ∈ J
define u(x,y) by

u(x,y)(s, t, w) = u(x+ s, y + t, w),

for (s, t) ∈ [−α, 0]× [−β, 0]. Here u(x,y)(·, ·, w) represents the history of the state
from time x− α up to the present time x and from time y − β up to the present
time y.

Next we consider the following nonlocal initial value problem

(cDr
0u)(x, y, w) = f(x, y, u(x,y), w), if (x, y) ∈ J := [0, a]× [0, b], w ∈ Ω, (3.4)

u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := [−α, a]× [−β, b]\(0, a]× (0, b], w ∈ Ω,
(3.5){

u(x, 0, w) +Q(u) = ϕ(x,w); x ∈ [0, a],

u(0, y, w) +K(u) = ψ(y, w); y ∈ [0, b],
w ∈ Ω, (3.6)

where f, φ, ϕ, ψ are as in problem (3.1)-(3.3) and Q,K : C(J,E) → E are
given continuous functions.

3.2.2 Existence Results

Lemma 3.2.1. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ Ω × C(a,b) is a solution of the random problem (3.1)-(3.3) if u satisfies
condition (3.2) for (x, y) ∈ J̃ , w ∈ Ω and u is a solution of the equation

u(x, y, w) = µ(x, y, w) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(x, y, u(s,t), w)dtds

for (x, y) ∈ J, w ∈ Ω

We will need to introduce the following hypotheses which are be assumed
there after:

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéeodory on J × C × Ω,
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(H4) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(., w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖C ,

for all u ∈ C,w ∈ Ω and a.e. (x, y) ∈ J,

(H5) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ P2(x, y, w)α(B), for a.e. (x, y) ∈ J,

Set

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E, p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2.

Theorem 3.2.1. Assume that hypotheses (H1)− (H5) hold. If

` :=
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (3.1)-(3.3) has a random solution defined on [−α, a]× [−β, b].

Proof. Define the operator N : Ω× C(a,b) → C(a,b) by

N(u)(x, y) =


φ(x, y, w), (x, y) ∈ J̃ , w ∈ Ω,

µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(s,t), w)dtds, (x, y) ∈ J, w ∈ Ω.
(3.7)

Since the functions ϕ, ψ and f are absolutely continuous , the function µ
and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, thenN(w) defines a mappingN : Ω×C(a,b) → C(a,b).
Hence u is a solution for the problem (3.1)-(3.3) if and only if u = (N(w))u. We
shall show that the operator N satisfies all conditions of Lemma 1.5.1. The
proof will be given in several steps.

Step 1: N(w) is a random operator with stochastic domain on C(a,b).
Since f(x, y, u, w) is random Carathéodory, the mapw → f(x, y, u, w) is measur-
able in view of Definition 1.1.1. Similarly, the product (x−s)r1−1(y−t)r2−1f(s, t, u(s,t), w)
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of a continuous and a measurable function is again measurable. Further, the in-
tegral is a limit of a finite sum of measurable functions, therefore, the map

w 7→ µ(x, y, w) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s,t), w)dtds,

is measurable. As a result, N is a random operator on Ω× C(a,b) into C(a,b).

Let W : Ω→ P(C(a,b)) be defined by

W (w) = {u ∈ C(a,b) : ‖u‖∞ ≤ R(w)},

With R(·) is chosen appropriately. From instance, we assume that

R(w) ≥
µ∗(w) + p∗1(w) ar1br2

Γ(1+r1)Γ(1+r2)

1− p∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is mea-
surable by Lemma [ [27], Lemma 17]. Let w ∈ Ω be fixed, then from (H4), for
any u ∈ w(w), we get

‖(N(w)u)(x, y)‖E

≤ ‖µ(x, y, w)‖E +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(s,t), w)‖Edtds

≤ ‖µ(x, y, w)‖E +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s,t)‖∞dtds

≤ µ∗(w) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore,N is a random operator with stochastic domainW andN(w) : W (w)→
N(w). Furthermore, N(w) maps bounded sets into bounded sets in C(a,b).
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Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C(a,b). Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, un(s,t), w)− f(s, t, u(s,t), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w) →
N(w) is a continuous random operator with stochastic domainW, andN(w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(N(w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α((N(w)B)(x, y))

= α

({
µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s,t), w)dtds; u ∈ B

})
≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s,t), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s,t), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, un(s,t), w)}∞n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{un(s,t)}∞n=1

)
dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.
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Since ε > 0 is arbitrary, then

α(N(B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, N has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅, and the hypothesis that a measurable

selector of intW exists holds. By Lemma 1.5.1, N has a stochastic fixed point,
i.e., the problem (3.1)-(3.3) has at least one random solution on C(a,b).

Let us assume that the function f is random Carathéeodory on J × C × Ω.
From the above Lemma, we have.

Lemma 3.2.2. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ Ω × C(a,b) is a solution of the random problem (3.4)-(3.6) if u satisfies
condition (3.5) for (x, y) ∈ J̃ , w ∈ Ω, and the integral equation

u(x, y, w) = µ(x, y, w)−Q(u)−H(u)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(x, y, u(s,t), w)dtds

for (x, y) ∈ J, w ∈ Ω

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéeodory on J × C × Ω,

(H4) there exist constants d∗, d̃ > 0 such that

‖Q(u)‖ ≤ d∗(1 + ‖u‖),

and
‖Q(u)‖ ≤ d̃(1 + ‖u‖),

for u ∈ C(J,E),

(H5) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(·, w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖C ,

for all u ∈ C, w ∈ Ω, and a.e. (x, y) ∈ J,
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(H6) There exist functions p3, p4 : J × Ω→ [0,∞) with
pi(·, w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 3, 4 such that for each w ∈ Ω and
for any bounded B ⊂ C,

αc(f(x, y, B,w)) ≤ P2(x, y, w)αc(B), for a.e. (x, y) ∈ J,

αc(Q(B)) ≤ P3(x, y, w)αc(B), for a.e. (x, y) ∈ J,

and

αc(H(B)) ≤ P4(x, y, w)αc(B), for a.e. (x, y) ∈ J,

here α, αc designe respectively the measures of noncompactness on X and
C,

(H7) There exists a random function R : Ω→ (0,∞) such that

µ∗(w) + (d̃+ d∗)(1 +R(w)) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)
≤ R(w),

where

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E, p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2,

Theorem 3.2.2. Assume that hypotheses (H1)− (H7) hold. If

` := 2(p∗3(w) + p∗4(w)) +
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (3.4)-(3.6) has a random solution defined on [−α, a]× [−β, b].

Proof. Define the operator N : Ω× C(a,b) → C(a,b) by

(N(w)u)(x, y) =



φ(x, y, w), (x, y) ∈ J̃ ,w ∈ Ω

µ(x, y, w)−Q(u)−H(u)

+ 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(s,t), w)dtds, (x, y) ∈ J, w ∈ Ω.
(3.8)
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Since the functions ϕ, ψ andQ,H and f are absolutely continuous , the function
µ and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, thenN(w) defines a mappingN : Ω×C(a,b) → C(a,b).
Hence u is a solution for the problem (3.4)-(3.6) if and only if u = (N(w))u. We
shall show that the operator N satisfies all conditions of Lemma 1.5.1. The
proof will be given in several steps.

Step 1: N(w) is a random operator with stochastic domain on C(a,b).
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is mea-
surable in view of Definition 1.1.1.
Similarly, the product (x − s)r1−1(y − t)r2−1f(s, t, u(s,t), w) of a continuous and
a measurable function is again measurable. Further, the integral is a limit of a
finite sum of measurable functions, therefore, the map

w 7→ µ(x, y, w)−Q(u)−H(u)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(s,t), w)dtds,

is measurable. As a result, N is a random operator on Ω× C(a,b) into C(a,b).

Let W : Ω→ P(C(a,b)) be defined by

W (w) = {u ∈ C(a,b) : ‖u‖∞ ≤ R(w)},

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is
measurable by Lemma [ [27], Lemma 17]. Let w ∈ Ω be fixed, then from (H4),
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for any u ∈ w(w), we get

‖(N(w)u)(x, y)‖E
≤ ‖µ(x, y, w)‖E + ‖Q(u)‖+ ‖H(u)‖

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(s,t), w)‖Edtds

≤ ‖µ(x, y, w)‖E + d̃(1 + ‖u‖) + d∗(1 + ‖u‖)

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s,t)‖∞dtds

≤ µ∗(w) + (d̃+ d∗)(1 +R(w)) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) + (d̃+ d∗)(1 +R(w)) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore,N is a random operator with stochastic domainW andN(w) : W (w)→
N(w). Furthermore, N(w) maps bounded sets into bounded sets in C(a,b).

Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C(a,b). Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤ ‖Q(un)−Q(u)‖+ ‖H(un)−H(u)‖

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, un(s,t), w)− f(s, t, u(s,t), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w) →
N(w) is a continuous random operator with stochastic domainW, andN(w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

αc(N(w)B) ≤ `αc(B).
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Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

αc((N(w)B)(x, y))

= α

({
µ(x, y)−Q(u)−H(u)

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s,t), w)dtds; u ∈ B

})
≤ 2α

{
−Q(un)−H(un) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s,t), w)dtds

}∞
n=1

+ ε

≤ 2α {Q(un)}+ 2α {H(un)}

+4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s,t), w)

}∞
n=1

)
dtds+ ε

≤ 2p3(s, t, w)α ({un}∞n=1) + 2p4(s, t, w)α ({un}∞n=1)

+4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, un(s,t), w)}∞n=1

)
dtds+ ε

≤ 2p3(s, t, w)αc(B) + 2p4(s, t, w)αc(B)

+4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{un(s,t)}∞n=1

)
dtds+ ε

≤ 2(p∗3(w) + p∗4(w))αc(B)

+

(
4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤ 2(p∗3(w) + p∗4(w))αc(B)

+

(
4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
αc(B) + ε

≤
(

2(p∗3(w) + p∗4(w)) +
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)

)
αc(B) + ε

= `αc(B) + ε.

Since ε > 0 is arbitrary, then

αc(N(B)) ≤ `αc(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, N has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅, and the hypothesis that a measurable

selector of intW exists holds. By Lemma 1.5.1, N has a stochastic fixed point,
i.e., the problem (3.4)-(3.6) has at least one random solution on C(a,b).
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3.2.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Consider the following partial func-
tional random differential equation of the form

(cDr
θu)(x, y, w) =

w2e−x−y−3

1 + w2 + 5|u(x, y, w)|
; a.a. (x, y) ∈ J = [0, 1]× [0, 1], w ∈ Ω,

(3.9)
u(x, y, w) = x sinw + y2 cosw, (x, y) ∈ [−1, 1]× [−2, 1]\(0, 1]× (0, 1], (3.10)

u(x, 0, w) = x sinw; x ∈ [0, 1], u(0, y, w) = y2 cosw; y ∈ [0, 1], w ∈ Ω. (3.11)

where (r1, r2) ∈ (0, 1]× (0, 1]. Set

f(x, y, u(x, y, w), w) =
w2

(1 + w2 + 5|u(x− 1, y − 2, w)|)ex+y+3
, (x, y) ∈ J, w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw , w 7→ ψ(0, y, w) = y2 cosw
and w 7→ Φ(x, y, w) = x sinw + y2 cosw are measurable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the conditions (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R
and hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× R× Ω.
For each u ∈ R, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
5

e3
|u|.

Hence the conditions (H4) is satisfied with p1(x, y, w) = p∗1 = 1 and p2(x, y, w) =
p∗2 = 5

e3
.

Also, the conditions (H5) is satisfied.
We shall show that condition ` < 1 holds with a = b = 1. For each (r1, r2) ∈

(0, 1]× (0, 1] we get

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
20

e3Γ(1 + r1)Γ(1 + r2)

<
20

e3

< 1.
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Consequently, Theorem 3.2.1 implies that the problem (3.9) − (3.11) has a ran-
dom solution defined on [−1, 1]× [−2, 1].

3.3 Fractional Partial Random Differential Equations
with infinite Delay

3.3.1 Introduction

We study in this section the existence of random solutions for the following
fractional partial random differential equations with infinite delay

(cDr
0u)(x, y, w) = f(x, y, u(x,y), w), if (x, y) ∈ J := [0, a]× [0, b], w ∈ Ω, (3.12)

u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := (−∞, a]× (−∞, b]\(0, a]× (0, b], w ∈ Ω,
(3.13)

u(x, 0, w) = ϕ(x,w), x ∈ [0, a], u(0, y, w) = ψ(y, w), y ∈ [0, b], w ∈ Ω, (3.14)

where a, b > 0, cDr
0 is the standard Caputo’s fractional derivative of order r =

(r1, r2) ∈ (0, 1] × (0, 1], (Ω,A) is a measurable space, f : J × B × Ω → E is
a given function, φ : J̃ × Ω → E is a given continuous function, ϕ : [0, a] ×
Ω → E,ψ : [0, b] × Ω → E are given absolutely continuous functions with
ϕ(x,w) = φ(x, 0, w), ψ(y, w) = φ(0, y, w) for each x ∈ [0, a], y ∈ [0, b], w ∈ Ω
and B is called a phase space that will be specified later. We denote by u(x,y) the
element of B defined by

u(x,y)(s, t, w) = u(x+ s, y + t, w); (s, t) ∈ (−∞, 0]× (−∞, 0],

here u(x,y)(·, ·, w) represents the history of the state from time −∞ up to the
present time x and from time −∞ up to the present time y.

3.3.2 Existence Results

Let us assume that the function f is random Carathéeodory on J×B×Ω. From
the above Lemma, we have the following Lemma.

Let the space

∆ = {u : (−∞, a]×(−∞, b]→ E : u(x,y) ∈ B for (x, y) ∈ E and u|J is continuous}.
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Lemma 3.3.1. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ Ω × ∆ is a solution of the random problem (3.12)-(3.14) if u satisfies
condition (3.13) for (x, y) ∈ J̃ , w ∈ Ω and u is a solution of the equation

u(x, y, w) = µ(x, y, w) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(x, y, u(s,t), w)dtds

for (x, y) ∈ J, w ∈ Ω

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéeodory on J × B × Ω,

(H4) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(., w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖B,

for all u ∈ B, w ∈ Ω, and a.e. (x, y) ∈ J,

(H5) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ P2(x, y, w)α(B), for a.e. (x, y) ∈ J,

where
p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2,

Theorem 3.3.1. Assume that hypotheses (H1)− (H6) hold. If

` :=
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (3.12)-(3.14) has a random solution defined on (−∞, a]× (−∞, b].

Proof.

Define the operator N : Ω×∆→ ∆ by
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(N(w)u)(x, y) =



φ(x, y, w), (x, y) ∈ J̃ ,w ∈ Ω

µ(x, y, w) + 1
Γ(r1)Γ(r2)

×
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(s,t), w)dtds, (x, y) ∈ J, w ∈ Ω.

(3.15)

Since the functions ϕ, ψ and f are absolutely continuous , then the function
µ and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, then N(w) defines a mapping N : Ω × ∆ → ∆.
Hence u is a solution for the problem (3.12)-(3.14) if and only if u = (N(w))u.

Let v(·, ·, ·) : (−∞, a]× (−∞, b]× Ω→ E be a function defined by,

v(x, y, w) =

{
φ(x, y, w), (x, y) ∈ J̃ ′, w ∈ Ω,
µ(x, y, w), (x, y) ∈ J, w ∈ Ω.

Then v(x,y) = φ for all (x, y) ∈ E . For each I continuous on J with I(x, y, w) = 0
for each (x, y) ∈ E we denote by I the function defined by

I(x, y, w) =

{
0, (x, y) ∈ J̃ ′, w ∈ Ω,
I(x, y, w) (x, y) ∈ J, w ∈ Ω.

If u(·, ·, ·) satisfies the integral equation,

u(x, y, w) = µ(x, y, w)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(s,t), w)dtds,

we can decompose u(·, ·, ·) as u(x, y, w) = I(x, y, w) + v(x, y, w); (x, y) ∈ J,
which implies u(x,y) = I(x,y) +v(x,y), for every (x, y) ∈ J, and the function I(·, ·, ·)
satisfies

I(x, y, w) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, I(s,t) + v(s,t), w)dtds.

Set
C0 = {I ∈ C(J,E) : I(x, y) = 0 for (x, y) ∈ E},

and let ‖.‖(a,b) be the seminorm in C0 defined by

‖I‖(a,b) = sup
(x,y)∈E

‖I(x,y)‖B + sup
(x,y)∈J

‖I(x, y)‖ = sup
(x,y)∈J

‖I(x, y)‖, I ∈ C0.
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C0 is a Banach space with norm ‖.‖(a,b). Let the operator P : Ω × C0 → C0

be defined by

(P (w)I)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y− t)r2−1f(s, t, I(s,t) +v(s,t), w)dtds,

(3.16)
for each (x, y) ∈ J. Then the operator N has a fixed point is equivalent to P has
a fixed point, and so we turn to proving that P has a fixed point.We shall show
that the operator P satisfies all conditions of Lemma 1.5.1. The proof will be
given in several steps.

Step 1: P (w) is a random operator with stochastic domain on C0.
Since f(x, y, u, w) is random Carathéodory, the mapw → f(x, y, u, w) is measur-
able in view of Definition 1.1.1. Similarly, the product (x−s)r1−1(y−t)r2−1f(s, t, u(s,t), w)
of a continuous and a measurable function is again measurable. Further, the in-
tegral is a limit of a finite sum of measurable functions, therefore, the map

w 7→ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, I(s,t) + v(s,t), w)dtds,

is measurable. As a result, P is a random operator on Ω× C0 into C0.

Let W : Ω→ P(C0) be defined by

W (w) = {I ∈ C0 : ‖I‖(a, b) ≤ R(w)},

With R(·) is chosen appropriately. From instance, we assume that

R(w) ≥
((k‖φ(0, 0)‖+M‖φ‖)p∗2(w) + p∗1(w)) ar1br2

Γ(1+r1)Γ(1+r2)

1−Kp∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is mea-
surable by Lemma [ [27], Lemma 17]. Let w ∈ Ω be fixed, then from (H4), for
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any u ∈ w(w), we get

‖(P (w)I)(x, y)‖

≤
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, I(s,t) + v(s,t), w)‖dtds

≤ p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R∗(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ (p∗1(w) + p∗2(w)R∗(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

where

‖I(s,t) + v(s,t)‖B ≤ ‖I(s,t)‖B + ‖v(s,t)‖B
≤ KR(w) +K‖φ(0, 0)‖+M‖φ‖B := R∗(w).

Therefore, P is a random operator with stochastic domain W and P (w) :
W (w) → W (w). Furthermore, P (w) maps bounded sets into bounded sets in
C0.

Step 2: P (w) is continuous.
Let {In} be a sequence such that In → u in C0. Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(P (w)In)(x, y)− (P (w)I)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, In(s,t) + vn(s,t), w)− f(s, t, I(s,t) + v(s,t), w)‖Fdtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖P (w)In − P (w)I‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that P (w) : W (w) →
W (w) is a continuous random operator with stochastic domainW, and P (w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(P (w)B) ≤ `α(B).
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Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
ε > 0, there exists a sequence {In}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α(P (w)B)(x, y))

= α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, I(s,t) + v(s,t), w)dtds; I ∈ B

})
≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, In(s,t) + vn(s,t), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, In(s,t) + vn(s,t), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, In(s,t) + vn(s,t), w)}∞n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{In(s,t) + vn(s,t)}∞n=1

)
dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α
(
{un(s,t)}∞n=1

)
+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({In}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(P (B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, P has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅ the hypothesis that a measurable selector

of intW exists holds. By Lemma 1.5.1, N has a stochastic fixed point, i.e., the
problem (3.12)-(3.14) has at least one random solution.
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3.3.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Consider the following partial func-
tional random differential equation of the form

(cDr
θu)(x, y, w) =

cex+y−γ(x+y)‖u(x,y)‖
(ex+y + e−x−y)(1 + w2 + ‖u(x,y))‖

; a.a. (x, y) ∈ J, w ∈ Ω,

(3.17)
u(x, y, w) = x sinw + y2 cosw, (x, y) ∈ (−∞, 1]× (−∞, 1]\(0, 1]× (0, 1], w ∈ Ω,

(3.18)
u(x, 0, w) = x sinw; x ∈ [0, 1], u(0, y, w) = y2 cosw; y ∈ [0, 1], w ∈ Ω. (3.19)

where J = [0, 1]× [0, 1]c = 8
Γ(r1+1)Γ(r2+1)

and γ a positive real constant.
Let

Bγ = {u ∈ C((−∞, 0]× (−∞, 0],R) : lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) exists in R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1]→ R such that u(x,y) ∈ Bγ for (x, y) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−x+η−y)u(θ, η)

= e−γ(x+y) lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) <∞.

Hence u(x,y) ∈ Bγ. Finally we prove that

‖u(x,y)‖γ = K sup{|u(s, t)| : (s, t) ∈ [0, x]×[0, y]}+M sup{‖u(s,t)‖γ : (s, t) ∈ E(x,y)},

where K = M = 1 and H = 1.
If x+ θ ≤ 0, y + η ≤ 0 we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]× (−∞, 0]},

and if x+ θ ≥ 0, y + η ≥ 0 then we have

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.
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Thus for all (x+ θ, y + η) ∈ [0, 1]× [0, 1], we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]×(−∞, 0]}+sup{|u(s, t)| : (s, t) ∈ [0, x]×[0, y]}.

Then

‖u(x,y)‖γ = sup{‖u(s,t)‖γ : (s, t) ∈ E}+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.

(Bγ, ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space. Set

f(x, y, u(x,y), w) =
cex+y−γ(x+y)‖u(x,y)‖

(ex+y + e−x−y)(1 + w2 + ‖u(x,y))‖
, (x, y) ∈ [0, 1]× [0, 1].

The functions w 7→ ϕ(x, 0, w) = x sinw , w 7→ ψ(0, y, w) = y2 cosw
and w 7→ Φ(x, y, w) = x sinw + y2 cosw are measurable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the conditions (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ Bγ
and hence jointly measurable for all u ∈ Bγ. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× Bγ × Ω.
For each u ∈ Bγ, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u(x,y))| ≤ 1 +
1

c
‖u‖B.

Hence the conditions (H4) is satisfied with p1(x, y, w) = p∗1 = 1 and p2(x, y, w) =
p∗2 = 1

c
.

Also, the conditions (H5) is satisfied.
We shall show that condition ` < 1 holds with a = b = 1. For each (r1, r2) ∈

(0, 1]× (0, 1] we get

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
4

cΓ(1 + r1)Γ(1 + r2)

<
1

2
< 1.

Consequently, Theorem 3.3.1 implies that the problem (3.17)− (3.19) has a ran-
dom solution defined on (−∞, 1]× (−∞, 1].



Chapter 4

Fractional Partial Random
Differential Equations with
State-Dependent Delay

4.1 Introduction

In this chapter, we shall be concerned to the existence for the following
fractional partial random differential equations with state-dependent delay

4.2 Fractional Partial Random Differential Equations
with finite Delay

4.2.1 Introduction

In this section, we shall be concerned with the existence of solutions for the
following fractional partial random differential equations:

(cDr
0u)(x, y, w) = f(x, y, u(ρ1(x,y,u(x,y),w),ρ2(x,y,u(x,y),w)), w), if J := [0, a]×[0, b], w ∈ Ω,

(4.1)
u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := [−α, a]× [−β, b]\(0, a]× (0, b], w ∈ Ω,

(4.2)
u(x, 0, w) = ϕ(x,w), x ∈ [0, a], u(0, y, w) = ψ(y, w), y ∈ [0, b], w ∈ Ω, (4.3)

where α, β, a, b > 0, cDr
0 is the standard Caputo’s fractional derivative of order

r = (r1, r2) ∈ (0, 1] × (0, 1], (Ω,A) is a measurable space, f : J × C × Ω →

36
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E, ρ1, ρ2 : J × C × Ω → E are given functions, φ : J̃ × Ω → E is a given
continuous function, ϕ : [0, a]× Ω→ E,ψ : [0, b]× Ω→ E are given absolutely
continuous functions with ϕ(x,w) = φ(x, 0, w), ψ(y, w) = φ(0, y, w) for each
x ∈ [0, a], y ∈ [0, b], w ∈ Ω, (E, ‖ · ‖E) a separable Banach space, and C :=
C([−α, 0]× [−β, 0], E) is the space of continuous functions on [−α, 0]× [−β, 0].

If u ∈ C([−α, a] × [−β, b], E); a, b, α, β > 0 then for any (x, y) ∈ J define
u(x,y) by

u(x,y)(s, t, w) = u(x+ s, y + t, w), for (s, t) ∈ [−α, 0]× [−β, 0].

Here u(x,y)(·, ·, w) represents the history of the state u.

4.2.2 Existence Results

Let us assume that the function f is random Carathéeodory on J×C×Ω. From
the above Lemma, we have the following Lemma.

Lemma 4.2.1. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ Ω × C(a,b) is a solution of the random problem (4.1)-(4.3) if u satisfies
condition (4.2) for (x, y) ∈ J̃ , w ∈ Ω and u is a solution of the equation

u(x, y, w) = µ(x, y, w)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds

for (x, y) ∈ J, w ∈ Ω

SetR :=R(ρ−1 ,ρ
−
2 )

= {(ρ1(s, t, u, w), ρ2(s, t, u, w)) : (s, t) ∈ J, u(s,t)(·, ·, w) ∈ C,w ∈ Ω, ρi(s, t, u, w) ≤ 0; i = 1, 2}.

We always assume that ρi : J × C × Ω → E; i = 1, 2 are continuous and the
function (s, t) 7−→ u(s,t) is continuous fromR into C.

Let us introduce the following hypotheses which are assumed after.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéeodory on J × C × Ω,
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(H4) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(·, w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖C ,

for all u ∈ C, w ∈ Ω and a.e. (x, y) ∈ J,

(H5) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ P2(x, y, w)α(B), for a.e. (x, y) ∈ J,

(H6) There exists a random function R : Ω→ (0,∞) such that

µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)
≤ R(w),

where

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E, p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2,

Theorem 4.2.1. Assume that hypotheses (H1)− (H6) hold. If

` :=
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (4.1)-(4.3) has a random solution defined on [−α, a]× [−β, b].

Proof. Define the operator N : Ω× C(a,b) → C(a,b) by

(N(w)u)(x, y) =


φ(x, y, w), (x, y) ∈ J̃ ,w ∈ Ω

µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)),w)dtds, (x, y) ∈ J, w ∈ Ω.
(4.4)

Since the functions ϕ, ψ and f are absolutely continuous, the function µ and
the indefinite integral are absolutely continuous for all w ∈ Ω and almost all
(x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, thenN(w) defines a mappingN : Ω×C(a,b) → C(a,b).
Hence u is a solution for the problem (4.1)-(4.3) if and only if u = (N(w))u. We
shall show that the operator N satisfies all conditions of Lemma 1.5.1. The
proof will be given in several steps.
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Step 1: N(w) is a random operator with stochastic domain on C(a,b).
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is mea-
surable in view of Definition 1.1.1. Similarly, the function (s, t) 7→ (x−s)r1−1(y−
t)r2−1f(s, t, u(s,t), w) is measure as the product of a continuous and a measurable
function. Further, the integral is a limit of a finite sum of measurable functions,
therefore, the map

w 7→ µ(x, y, w)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds,

is measurable. As a result, N is a random operator on Ω× C(a,b) into C(a,b).

Let W : Ω→ P(C(a,b)) be defined by

W (w) = {u ∈ C(a,b) : ‖u‖∞ ≤ R(w)},

with R(·) is chosen appropriately. From instance, we assume that

R(w) ≥
µ∗ + p∗1(w) ar1br2

Γ(1+r1)Γ(1+r2)

1− p∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

Clearly, W (w) is bounded, closed, convex and solid for all w ∈ Ω. Then W is
measurable by Lemma 17 of [27]. Let w ∈ Ω be fixed, then from (H4), for any
u ∈ w(w), we get

‖(N(w)u)(x, y)‖E

≤ ‖µ(x, y, w)‖E +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)‖Edtds

≤ ‖µ(x, y, w)‖E +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))‖Edtds

≤ µ∗(w) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).
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Therefore,N is a random operator with stochastic domainW andN(w) : W (w)→
N(w). Furthermore, N(w) maps bounded sets into bounded sets in C(a,b).

Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C(a,b). Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)− f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w) →
N(w) is a continuous random operator with stochastic domainW, andN(w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(N(w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
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ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α((N(w)B)(x, y))

= α

({
µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)

×f(s, t, u(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds; u ∈ B
})

≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t))), w)}∞n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{un(ρ1(s,t,u(s,t)),ρ2(s,t,u(s,t)))}

∞
n=1

)
dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(N(B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, N has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅, and a measurable selector of intW ex-

ists, Lemma 1.5.1 implies that N has a stochastic fixed point, i.e., the problem
(4.1)-(4.3) has at least one random solution on C(a,b).

4.2.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Consider the following partial func-
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tional random differential equation of the form

(cDr
0u)(x, y) =

|u(x− σ1(u(x, y, w)), y − σ2(u(x, y, w)), w)|+ 2

ex+y+4(1 + w2 + 5|u(x− σ1(u(x, y, w)), y − σ2(u(x, y, w)), w)|)
, if (x, y) ∈ J,

(4.5)
u(x, y, w) = x sinw+y2 cosw, (x, y) ∈ [−1, 1]×[−2, 1]\(0, 1]×(0, 1], w ∈ Ω, (4.6)

u(x, 0, w) = x sinw; x ∈ [0, 1], u(0, y, w) = y2 cosw; y ∈ [0, 1], w ∈ Ω, (4.7)

where σ1 ∈ C(R, [0, 1]), σ2 ∈ C(R, [0, 2]). Set

ρ1(x, y, ϕ, w) = x− σ1(ϕ(0, 0, w)),

ρ2(x, y, ϕ, w) = y − σ2(ϕ(0, 0, w)),

where (x, y) ∈ J = [0, 1]× [0, 1], ϕ(·, ·, w) ∈ C([−1, 0]× [−2, 0],R), w ∈ Ω,

f(x, y, ϕ, w) =
|ϕ|+ 2

(ex+y+4)(1 + w2 + 5|ϕ|)
, (x, y) ∈ J, ϕ ∈ C([−1, 0]× [−2, 0],R).

The functions w 7→ ϕ(x, 0, w) = x sinw , w 7→ ψ(0, y, w) = y2 cosw
and w 7→ Φ(x, y, w) = x sinw + y2 cosw are measurable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the conditions (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R
and hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× R× Ω.
For each ϕ ∈ C([−1, 0]× [−2, 0],R), (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
5

e3
|u|.

Hence the conditions (H4) is satisfied with

p1(x, y, w) = p∗1 = 1, p2(x, y, w) = p∗2 =
5

e3
.

Also, the conditions (H5) is satisfied.
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We shall show that condition ` < 1 holds with a = b = 1. For each (r1, r2) ∈
(0, 1]× (0, 1] we get

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
20

e3Γ(1 + r1)Γ(1 + r2)

<
20

e3

< 1.

Consequently, Theorem 4.2.1 implies that the problem (4.5) − (4.7) has a ran-
dom solution defined on [−1, 1]× [−2, 1].

4.3 Fractional Partial Random Differential Equations
with infinite Delay

4.3.1 Introduction

In this section, we shall be concerned with the existence of solutions for the
following fractional partial random differential equations:

(cDr
0u)(x, y, w) = f(x, y, u(ρ1(x,y,u(x,y),w),ρ2(x,y,u(x,y),w))), if (x, y) ∈ J, w ∈ Ω, (4.8)

u(x, y, w) = φ(x, y, w), if (x, y) ∈ J̃ := (−∞, a]× (−∞, b]\(0, a]× (0, b], w ∈ Ω,
(4.9)

u(x, 0, w) = ϕ(x,w), x ∈ [0, a], u(0, y, w) = ψ(y, w), y ∈ [0, b], w ∈ Ω, (4.10)

where α, β, a, b > 0, J := [0, a]× [0, b] cDr
0 is the standard Caputo’s fractional

derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], (Ω,A) is a measurable space,
f : J × B × Ω→ E, ρ1, ρ2 : J × B × Ω→ E are given functions, φ : J̃ × Ω→ E
is a given continuous function, ϕ : [0, a] × Ω → E,ψ : [0, b] × Ω → E are given
absolutely continuous functions with ϕ(x,w) = φ(x, 0, w), ψ(y, w) = φ(0, y, w)
for each x ∈ [0, a], y ∈ [0, b], w ∈ Ωand B is called a phase space that will be
specified later. We denote by u(x,y) the element of B defined by

u(x,y)(s, t, w) = u(x+ s, y + t, w); (s, t) ∈ (−∞, 0]× (−∞, 0],

here u(x,y)(·, ·, w) represents the history of the state from time −∞ up to the
present time x and from time −∞ up to the present time y.
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4.3.2 Existence Results

Let us assume that the function f is random Carathéeodory on J × B × Ω.
Let the space

∆ = {u : (−∞, a]×(−∞, b]→ E : u(x,y) ∈ B for (x, y) ∈ E and u|J is continuous}.

From the above Lemma, we have.

Lemma 4.3.1. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ Ω × ∆ is a solution of the random problem (4.8)-(4.10) if u satisfies
condition (4.9) for (x, y) ∈ J̃ , w ∈ Ω, and the integral equation

u(x, y, w) = µ(x, y, w)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w), w)dtds

for (x, y) ∈ J, w ∈ Ω

SetR′ :=R′(ρ−1 ,ρ−2 )

= {(ρ1(s, t, u, w), ρ2(s, t, u, w)) : (s, t, u, w) ∈ J×B×Ω, ρi(s, t, u, w) ≤ 0; i = 1, 2}.

We always assume that ρi : J × B × Ω → E; i = 1, 2 are continuous and the
function (s, t) 7−→ u(s,t) is continuous fromR into B.

We will need to introduce the following hypothesis:

(Cφ) There exists a continuous bounded function L :R′(ρ−1 ,ρ−2 ) → (0,∞) such
that

‖φ(s,t)‖B ≤ L(s, t)‖φ‖B, for any(s, t) ∈ R′.

In the sequel we will make use of the following generalization of a consequence
of the phase space axioms ( [36], Lemma 2.1).

Lemma 4.3.2. If u ∈ Ω, then

‖u(s,t)‖B = (M + L′)‖φ‖B +K sup
(θ,η)∈[0,max{0,s}]×[0,max{0,t}]

‖u(θ, η)‖,

where
L′ = sup

(s,t)∈R′
L(s, t).

The following hypotheses will be used in the sequel.
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(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function Φ is measurable for (x, y) ∈ J̃

(H3) The function f is random Carathéeodory on J × B × Ω,

(H4) There exist functions p1, p2 : J × Ω→ [0,∞) with
pi(·, w) ∈ AC(J, [0,∞))L∞(J, [0,∞)); i = 1, 2 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖B,

for all u ∈ B, w ∈ Ω and a.e. (x, y) ∈ J,

(H5) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ P2(x, y, w)α(B), for a.e. (x, y) ∈ J,

where
p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2,

Theorem 4.3.1. Assume that hypotheses (H1)− (H5) and (Cφ) hold. If

` :=
4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (4.8)-(4.10) has a random solution defined on (−∞, a]× (−∞, b].

(N(w)u)(x, y) =


φ(x, y, w), (x, y) ∈ J̃ ,w ∈ Ω

µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds, (x, y) ∈ J, w ∈ Ω.
(4.11)

Since the functions ϕ, ψ and f are absolutely continuous , then the function
µ and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the map µ is continuous for all w ∈ Ω and the indefinite
integral is continuous on J, then N(w) defines a mapping N : Ω × ∆ → ∆.
Hence u is a solution for the problem (4.8)-(4.10) if and only if u = (N(w))u.

Let v(·, ·, ·) : (−∞, a]× (−∞, b]× Ω→ E be a function defined by,

v(x, y, w) =

{
φ(x, y, w), (x, y) ∈ J̃ ′, w ∈ Ω,
µ(x, y, w), (x, y) ∈ J, w ∈ Ω.
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Then v(x,y) = φ for all (x, y) ∈ E . For each I continuous on J with I(x, y, w) = 0
for each (x, y) ∈ E we denote by I the function defined by

I(x, y, w) =

{
0, (x, y) ∈ J̃ ′, w ∈ Ω,
I(x, y, w) (x, y) ∈ J, w ∈ Ω.

If u(·, ·, ·) satisfies the integral equation,

u(x, y, w) = µ(x, y, w) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

× f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds,

we can decompose u(·, ·, ·) as u(x, y, w) = I(x, y, w) + v(x, y, w); (x, y) ∈ J,
which implies u(x,y) = I(x,y) +v(x,y), for every (x, y) ∈ J, and the function I(·, ·, ·)
satisfies

I(x, y, w) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds.

Set
C0 = {I ∈ C(J,E) : I(x, y) = 0 for (x, y) ∈ E},

and let ‖.‖(a,b) be the seminorm in C0 defined by

‖I‖(a,b) = sup
(x,y)∈E

‖I(x,y)‖B + sup
(x,y)∈J

‖I(x, y)‖ = sup
(x,y)∈J

‖I(x, y)‖, I ∈ C0.

C0 is a Banach space with norm ‖.‖(a,b). Let the operator P : Ω × C0 → C0

be defined by

(Pw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds. (4.12)

for each (x, y) ∈ J. Then the operator N has a fixed point is equivalent to P has
a fixed point, and so we turn to proving that P has a fixed point.We shall show
that the operator P satisfies all conditions of Lemma 1.5.1. The proof will be
given in several steps.

Step 1: P (w) is a random operator with stochastic domain on C0.
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is mea-
surable in view of Definition 1.1.1.
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Similarly, the product (x− s)r1−1(y− t)r2−1f(s, t, u(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w) of
a continuous and a measurable function is again measurable. Further, the inte-
gral is a limit of a finite sum of measurable functions, therefore, the map

w 7→ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds,

is measurable. As a result, P is a random operator on Ω× C0 into C0.

Let W : Ω→ P(C0) be defined by

W (w) = {I ∈ C0 : ‖I‖(a, b) ≤ R(w)},

With R(·) is chosen appropriately. From instance, we assume that

R(w) ≥
((k‖φ(0, 0)‖+ (M + L′)‖φ‖B)p∗2(w) + p∗1(w)) ar1br2

Γ(1+r1)Γ(1+r2)

1−Kp∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is mea-
surable by Lemma [ [27], Lemma 17]. Let w ∈ Ω be fixed, then from (H4), for
any u ∈ w(w), we get

‖(P (w)I)(x, y)‖ ≤
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)

×‖f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)‖dtds

≤ p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R∗(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ (p∗1(w) + p∗2(w)R∗(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

where

‖I(s,t) + v(s,t)‖B ≤ ‖I(s,t)‖B + ‖v(s,t)‖B
≤ KR(w) +K‖φ(0, 0)‖+ (M + L′)‖φ‖B := R∗(w).
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Therefore, P is a random operator with stochastic domain W and P (w) :
W (w) → W (w). Furthermore, P (w) maps bounded sets into bounded sets in
C0.

Step 2: P (w) is continuous.
Let {In} be a sequence such that In → I in C0. Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(P (w)In)(x, y)− (P (w)I)(x, y)‖E

≤ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, In(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + vn(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)

−f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)‖Edtds

≤ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, In(s,t) + vn(s,t), w)− f(s, t, I(s,t) + v(s,t), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖P (w)In − P (w)I‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that P (w) : W (w) →
W (w) is a continuous random operator with stochastic domainW, and P (w)(W (w))
is bounded.

Step 3: For each bounded subset B of W (w) we have

α(P (w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
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ε > 0, there exists a sequence {In}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α(P (w)B)(x, y))

= α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)

×f(s, t, I(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + v(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds; I ∈ B
})

≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)

×f(s, t, In(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)) + vn(ρ1(s,t,u(s,t),w),ρ2(s,t,u(s,t),w)), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, In(s,t) + vn(s,t), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α
(
{f(s, t, In(s,t) + vn(s,t), w)}∞n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α

(
{In(s,t) + vn(s,t)}∞n=1

)
dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α
(
{un(s,t)}∞n=1

)
+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({In}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤ 4p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(P (B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, P has at least one fixed
point in W. Since

⋂
w∈Ω intW (w) 6= ∅ the hypothesis that a measurable selector

of intW exists holds. By Lemma 1.5.1, N has a stochastic fixed point, i.e., the
problem (4.8)-(4.10) has at least one random solution on.
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4.3.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Consider the following partial func-
tional random differential equation of the form

(cDr
0u)(x, y) =

cex+y−γ(x+y)

ex+y + e−x−y

× |u(x− σ1(u(x, y)), y − σ2(u(x, y)))|
1 + w2 + |u(x− σ1(u(x, y)), y − σ2(u(x, y)))|

; a.a.(x, y) ∈ [0, 1]× [0, 1], w ∈ Ω,

(4.13)
u(x, y, w) = x sinw + y2 cosw, (x, y) ∈ (−∞, 1]× (−∞, 1]\(0, 1]× (0, 1], w ∈ Ω,

(4.14)
u(x, 0, w) = x sinw; x ∈ [0, 1], u(0, y, w) = y2 cosw; y ∈ [0, 1], w ∈ Ω. (4.15)

where c = 8
Γ(r1+1)Γ(r2+1)

and γ a positive real constant.
Let

Bγ = {u ∈ C((−∞, 0]× (−∞, 0],R) : lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) exists in R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1]→ R such that u(x,y) ∈ Bγ for (x, y) ∈ E , then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(x,y)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−x+η−y)u(θ, η)

= e−γ(x+y) lim
‖(θ,η)‖→∞

eγ(θ+η)u(θ, η) <∞.

Hence u(x,y) ∈ Bγ. Finally we prove that

‖u(x,y)‖γ = K sup{|u(s, t)| : (s, t) ∈ [0, x]×[0, y]}+M sup{‖u(s,t)‖γ : (s, t) ∈ E(x,y)},

where K = M = 1 and H = 1.
If x+ θ ≤ 0, y + η ≤ 0 we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]× (−∞, 0]},
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and if x+ θ ≥ 0, y + η ≥ 0 then we have

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.

Thus for all (x+ θ, y + η) ∈ [0, 1]× [0, 1], we get

‖u(x,y)‖γ = sup{|u(s, t)| : (s, t) ∈ (−∞, 0]×(−∞, 0]}+sup{|u(s, t)| : (s, t) ∈ [0, x]×[0, y]}.

Then

‖u(x,y)‖γ = sup{‖u(s,t)‖γ : (s, t) ∈ E}+ sup{|u(s, t)| : (s, t) ∈ [0, x]× [0, y]}.

(Bγ, ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.Set

ρ1(x, y, ϕ, w) = x− σ1(ϕ(0, 0, w)),

ρ2(x, y, ϕ, w) = y − σ2(ϕ(0, 0, w)),

where (x, y) ∈ J, ϕ(·, ·, w) ∈ Bγ, w ∈ Ω,

f(x, y, ϕ, w) =
cex+y−γ(x+y)|ϕ|

(ex+y + e−x−y)(1 + w2 + |ϕ|)
, (x, y) ∈ [0, 1]×[0, 1], ϕ ∈ Bγ, w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw , w 7→ ψ(0, y, w) = y2 cosw
and w 7→ Φ(x, y, w) = x sinw + y2 cosw are measurable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the conditions (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ Bγ
and hence jointly measurable for all u ∈ Bγ. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× Bγ × Ω.
For each u ∈ Bγ, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u(x,y))| ≤ 1 +
1

c
‖u‖B.

Hence the conditions (H4) is satisfied with p1(x, y, w) = p∗1 = 1 and p2(x, y, w) =
p∗2 = 1

c
.

Also, the conditions (H5) is satisfied.
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We shall show that condition ` < 1 holds with a = b = 1. For each (r1, r2) ∈
(0, 1]× (0, 1] we get

` =
4p∗2a

r1br2

Γ(1 + r1)Γ(1 + r2)

=
4

cΓ(1 + r1)Γ(1 + r2)

<
1

2
< 1.

Consequently, Theorem 4.3.1 implies that the problem (4.13)− (4.15) has a ran-
dom solution defined on (−∞, 1]× (−∞, 1].



Chapter 5

Random Impulsive Partial
Hyperbolic Fractional Differential
Equations

5.1 Introduction

In this chapter, we discuss the existence of random solutions for the following
impulsive partial fractional random differential equations:



cDr
xk
u(x, y, w) = f(x, y, u(x, y, w), w); if (x, y) ∈ Jk, k = 0, . . . ,m,w ∈ Ω,

u(x+
k , y, w) = u(x−k , y, w) + Ik(u(x−k , y, w)); if y ∈ [0, b], k = 1, . . . ,m,w ∈ Ω,

u(x, 0, w) = ϕ(x,w); x ∈ [0, a], w ∈ Ω,

u(0, y, w) = ψ(y, w); y ∈ [0, b], w ∈ Ω,

ϕ(0, w) = ψ(0, w),
(5.1)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, a, b > 0, θk =
(xk, 0); k = 0, . . . ,m, cDr

xk
is the fractional Caputo derivative of order r =

(r1, r2) ∈ (0, 1] × (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, (Ω,A) is a
measurable space, f : J × E × Ω → E; Ik : E → E; k = 1, . . . ,m are given
continuous functions, ϕ : [0, a] × Ω → E and ψ : [0, b] × Ω → E are given
absolutely continuous functions. Here u(x+

k , y, w) and u(x−k , y, w) denote the
right and left limits of u(x, y, w) at x = xk, respectively.
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5.2 Existence Results

Let the space

PC =
{
u : J → E : u ∈ C(Jk); k = 0, 1, . . . ,m, and there

exist u(x−k , y) and u(x+
k , y); k = 1, . . . ,m,

with u(x−k , y) = u(xk, y) for each y ∈ [0, b]
}
.

We need the following auxiliary lemma.

Lemma 5.2.1. [8] Let 0 < r1, r2 ≤ 1, µ(x, y) = ϕ(x) + ψ(y) − ϕ(0) and let f :
J × E → E be continuous. A function u ∈ PC(J) is a solution of the fractional
integral equation

u(x, y) =



µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds;

if (x, y) ∈ [0, x1]× [0, b],

µ(x, y) +
∑k

i=1(Ii(u(x−i , y))− Ii(u(x−i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi
xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m,

if and only if u is a solution of the problem

cDr
xk
u(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)); if y ∈ [0, b], k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0).

Consider the space

PC = PC(J × Ω) =
{
u : J × Ω→ E : u(·, ·, w) is continuous on Jk;
k = 0, 1, . . . ,m, and there exist u(x−k , y, w)

and u(x+
k , y, w); k = 1, . . . ,m, with

u(x−k , y, w) = u(xk, y, w) for each y ∈ [0, b], w ∈ Ω
}
.

This set is a Banach space with the norm

‖u‖PC = sup
(x,y)∈J

‖u(x, y, w)‖E.

we have the following lemma.
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Lemma 5.2.2. Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) + ψ(y, w) − ϕ(0, w). A
function u ∈ PC is a solution of the random fractional integral equation

u(x, y, w) =



µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ [0, x1]× [0, b], w ∈ Ω,

µ(x, y, w) +
∑k

i=1(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi
xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m, w ∈ Ω,
(5.2)

if and only if u is a solution of the random problem (5.1).

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and
bounded for almost each x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function f is random Carathéeodory on J × E × Ω,

(H3) There exist functions p1, p2, p3 : J × Ω→ [0,∞) with
pi(·, w) ∈ L∞(J, [0,∞)); i = 1, 2, 3 such that

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖E,

and
‖Ik(u)‖E ≤ p3(x, y, w)‖u‖E,

for all u ∈ E, w ∈ Ω and almost each (x, y) ∈ J,

(H4) For any bounded B ⊂ E,

α(f(x, y, B,w)) ≤ p2(x, y, w)α(B), for almost each (x, y) ∈ J,

and
α(Ik(B)) ≤ p3(x, y, w)α(B), for almost each (x, y) ∈ J.

Set
µ∗(w) = sup

(x,y)∈J
‖µ(x, y, w)‖E,

p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2, 3.
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Remark 5.2.1. Conditions (H3) and (H4) are equivalent [12].

Theorem 5.2.1. Assume that hypotheses (H1)− (H3) hold. If

` := 2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (5.1) has a random solution defined on J.

Proof. By Lemma 5.2.2, the problem (5.1) is equivalent to the integral equa-
tion

u(x, y, w) =



µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ [0, x1]× [0, b], w ∈ Ω,

µ(x, y, w) +
∑k

i=1(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi
xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m, w ∈ Ω,

for each w ∈ Ω and almost each (x, y) ∈ J.

Define the operator N : PC → PC by

(Nu)(x, y) = µ(x, y, w) +
k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds.

Since the functions ϕ, ψ and Ik and f are absolutely continuous, the function µ
and the indefinite integral are absolutely continuous for all w ∈ Ω and almost
all (x, y) ∈ J. Again, as the maps µ and Ik are continuous for all w ∈ Ω and the
indefinite integral is continuous on J, then N(w) defines a mapping N : PC →
PC. Hence u is a solution for the problem (5.1) if and only if u = Nu. We shall
show that the operatorN satisfies all conditions of Lemma 1.5.1. The proof will
be given in several steps.

Step 1: N is a random operator with stochastic domain on PC.
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is mea-
surable in view of Definition 1.1.1.
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Similarly, the product (x − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w) of a continuous
and a measurable function is again measurable. Further, the integral is a limit
of a finite sum of measurable functions and Ik is measurable. Therefore, the
map

w 7→ µ(x, y, w) +
k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

is measurable. As a result, N is a random operator from PC into PC.

Let W : Ω→ P(PC) be defined by

W (w) = {u ∈ PC : ‖u‖PC ≤ R(w)},

with R(·) being chosen appropriately. For instance, we assume that

R(w) ≥
µ∗ +

(m+1)p∗1(w)ar1br2

Γ(1+r1)Γ(1+r2)

1− 2mp∗3(w)− (m+ 1)p∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

The set W (w) is bounded, closed, convex and solid for all w ∈ Ω. Then W is
measurable (Lemma 17 ( [27]). Let w ∈ Ω be fixed, then from (H4), for any
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u ∈ w(w), we get

‖(Nu)(x, y)‖E

≤ ‖µ(x, y, w)‖E +
k∑
i=1

‖Ii(u(x−i , y, w))‖+ ‖Ii(u(x−i , 0, w))‖

+ +
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1‖f(s, t, u(s, t, w), w)‖Edtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t, w), w)‖Edtds,

≤ ‖µ(x, y, w)‖E +
k∑
i=1

(p3(x, y, w)‖u‖+ (p3(xi, 0, w))‖u‖)

+
1

Γ(r1)Γ(r2)

k∑
i=1

(∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1p1(s, t, w)dtds

+

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds
)

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds

≤ µ∗(w) + 2mp∗3(w)R(w)

+
k∑
i=1

(
p∗1(w)

Γ(r1)Γ(r2)

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

)
+

p∗1(w)

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) + 2mp∗3(w)R(w) +
(p∗1(w) + p∗2(w)R(w))(m+ 1)ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore, N is a random operator with stochastic domain W and N : W (w)→
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W (w). Furthermore, N maps bounded sets into bounded sets in PC.
Step 2: N is continuous.
Let {un} be a sequence such that un → u in PC. Then, for each (x, y) ∈ J and
w ∈ Ω, we have

‖(Nun)(x, y)− (N(w)u)(x, y)‖E

≤
k∑
i=1

(‖Ii(un(x−i , y, w))− Ii(u(x−i , y, w))‖+ ‖Ii(un(x−i , 0, w))− Ii(u(x−i , 0, w))‖)

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

× ‖f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w)‖Edtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

× ‖f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w)‖Edtds.

Using the Lebesgue dominated convergence theorem, we get

‖Nun −Nu‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N : W (w)→ W (w)
is a continuous random operator with stochastic domain W, and N(W (w)) is
bounded.
Step 3: For each bounded subset B of W (w) we have

α(NB) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 1.4.1 and 1.4.2, for any B ⊂ W and any
ε > 0, there exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have
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α((NB)(x, y))

= α

{
µ(x, y, w) +

k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+
k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds; u ∈ B

}
≤ α

{
k∑
i=1

(Ii(un(x−i , y, w))− Ii(un(x−i , 0, w)))

+
k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)dtds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)dtds

}∞
n=1

+ ε

≤ α

{
k∑
i=1

(Ii(un(x−i , y, w))− Ii(un(x−i , 0, w)))

}∞
n=1

+2
k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α{f(s, t, un(s, t, w), w)}∞n=1dtds

+2

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α{f(s, t, un(s, t, w), w)}∞n=1dtds+ ε

≤ 2mp3(x, y, w)α ({un(s, t, w)}∞n=1)

+4
k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α ({un(s, t, w)}∞n=1) dtds

+4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α ({un(s, t, w)}∞n=1) dtds+ ε

≤ 2mp3(x, y, w)α ({un}∞n=1)

+

(
4

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)

)
α ({un}∞n=1) dtds

+

(
4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε
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≤ 2mp3(x, y, w)α(B)

+

(
4

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B)

+

(
4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤
(

2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)

)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, we haven

α(N(B)) ≤ `α(B).

It follows from Lemma 1.5.1 that for each w ∈ Ω, N has at least one fixed
point inW. Since

⋂
w∈Ω intW (w) 6= ∅, there exists a measurable selector of intW ,

thus N has a stochastic fixed point, i.e., the problem (5.1) has at least one ran-
dom solution.

5.3 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0). Given a measurable function u : Ω→
AC([0, 1] × [0, 1]), consider the following impulsive partial fractional random
differential equations of the form{
cDr

xk
u(x, y, w) = w2e−x−y−3

1+w2+5|u(x,y,w)| ; if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+
k , y, w) = u(x−k , y, w) + w2

(1+w2+10|u(x,y,w)|)ex+y+10 ; if y ∈ [0, 1], k = 1, . . . ,m,

(5.3)
where J = [0, 1]× [0, 1], w ∈ Ω, (r1, r2) ∈ (0, 1]× (0, 1] with the initial conditions{

u(x, 0, w) = x sinw; x ∈ [0, 1],

u(0, y, w) = y2 cosw; y ∈ [0, 1].
w ∈ Ω, (5.4)

Set

f(x, y, u(x, y, w), w) =
w2

(1 + w2 + 5|u(x, y, w)|)ex+y+10
, (x, y) ∈ [0, 1]×[0, 1], w ∈ Ω,



5.3 An Example 62

and

Ik(u(x−k , y, w)) =
w2

(1 + w2 + 10|u(x, y, w)|)ex+y+10
, y ∈ [0, 1], k = 1, . . . ,m, w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw and w 7→ ψ(0, y, w) = y2 cosw are mea-
surable and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the condition (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R
and hence jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is
continuous for all (x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on
[0, 1]× [0, 1]× R× Ω.
For each u ∈ R, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
5

e10
|u|,

and
|Ik(u)| ≤ 10

e10
|u|.

Hence the condition (H4) is satisfied with

p1(x, y, w) = p∗1(w) = 1, p2(x, y, w) = p∗2(w) =
5

e10
, p3(x, y, w) = p∗3(w) =

10

e10
.

We shall show that condition ` < 1 holds with a = b = 1. Indeed, if we assume,
for instance, that the number of impulses m = 3, then we have

` = 2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)

=
60

e10
+

80

e10Γ(1 + r1)Γ(1 + r2)
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1] × (0, 1]. Consequently, Theorem 5.2.1
implies that the problem (5.3)-(5.4) has a random solution defined on [0, 1] ×
[0, 1].



Conclusion and Perspective

In this thesis, we have considered the problem of existence results of ex-
istence of random solutions for the fractional partial random differential equa-
tions in Banach spaces . Some equations present delay which may be finite, in-
finite, or state-dependent. Our results will be obtained by means the measure
of noncompactness and a random fixed point theorem with stochastic domain.

We project to look for similar problems in the case when the impulses are
variable, that is they depend on the state variable.
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