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Introduction

In the study of nonlinear phenomena in physics, engineering and many other applied

sciences, some mathematical models lead to multi-point boundary value problems associ-

ated with non-linear ordinary differential equations. Started to fairly late study this kind

of problem, initialed by II’in and Moiseev [19], they studied the existence of solutions

for a linear multi-point boundary value problem (BVP). Gupta studied some three-point

boundary value problems for nonlinear ordinary differential equations [16]. Since then,

more general multi-point boundary value problems have been studied [17],[26],[27],[31].

Within the following ten years, the study on nonlocal boundary value problems for ordi-

nary differential equations has been made great progress.

The purpose of the present thesis is to study nonlinear differential equations with non-

local conditions. We shall obtain existence and uniqueness results based on an operator

approach using fixed point theorems and the quadrature method.

This thesis consists of five chapters

In the first chapter, we introduce notations, definitions , lemmas and fixed point theorems

to be used in the next chapters.

In chapter 2, we present some existence results of positive solutions for a class of nonlinear

third order boundary value problem with delay given by
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(P1)



u′′′(t) + λa(t)f(t, u(t− τ)) = 0, t ∈ J = [0, 1],

u(t) = αu(η), −τ 6 t 6 0,

u(1) = βu(η),

u
′
(0) = 0,

where α, β, η and τ are positive constants such that η ∈ (0, 1), 0 < τ ≤ 1
2

and λ is a real

positive parameter.

By the mean of Krasnoselskii’s fixed point theorem, sufficient conditions are found to

obtain existence of positive solutions of (P1).

In chapter 3, we investigate the existence of positive solutions for second order nonlinear

boundary value problems. By using the Leray-Schauder fixed point theorem, some suffi-

cient conditions for the existence of positive solutions of the following nonlinear second

order delay boundary value problem are obtained

(P2)


u′′(t) + λa(t)f(t, u(t− τ)) = 0, t ∈ J = [0, 1],

u(t) = αu(η), −τ 6 t 6 0,

u(1) = βu(η),

where α, β, η and τ are positive constants such that η ∈ (0, 1) and λ is a positive param-

eter.

In chapter 4, we consider the following boundary value problem involving the p-Laplacian

(P3)


−(|u′(x)|p−2u′(x))′ = λf(u(x)), p.p. 0 < x < 1,

u(0) = u(1) = 0,

where λ ≥ 0 and p ∈ (1, 2]. We investigate the existence of positive solutions of the p-

Laplacian, using the quadrature method. We prove that the number of positive solutions
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depends on the asymptotic growth of the nonlinearity.

The purpose of chapter 5 is to study the existence of solutions to the following nonlocal

boundary value problem involving the p-Laplacian operator

(P4)


−(|u′(x)|p−2u′(x))′ = λf(u(x)), p.p. 0 < x < 1,

u(0) = 0 u(1) = u(ξ),

where λ ≥ 0, p ∈ (1, 2] and 0 < ξ < 1. The existence of multiple positive solutions of the

BVP (P4) is proved using the quadrature method. The number of solutions is depending

on the asymptotic behavior of f .
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Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions and preliminary results that will be

used in the sequel.

We shall consider the Banach space E = C([a, b],R) endowed with the maximum norm

‖y‖[a,b] = max
a≤t≤b

|y(t)| for y ∈ E.

Definition 1.0.1. An operator T : E → E is completely continuous if it is continuous

and maps bounded sets into relatively compact sets.

Definition 1.0.2. (Arzela-Ascoli Theorem). A subset A of C([a, b],R) is relatively com-

pact if and only if it is bounded and equicontinuous.

Definition 1.0.3. Let X be a real Banach space. A nonempty, closed and convex set

P ⊂ X is a cone if it satisfies the following two conditions:

1. If x ∈ P and λ ≥ 0 then λx ∈ P,

2. If x ∈ P and −x ∈ P then x = 0.

The cone P induces an ordering ≤ on X by
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x ≤ y if and only if y − x ∈ P.

Now we present the well-known Krasnosel’skii fixed point Theorem on cone.

Theorem 1.0.1. Let X be a Banach space, and let K ⊂ X be a cone. Assume that Ω1

and Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that

1. ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

2. ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1)

Theorem 1.0.2. (Leray-Schauder)

Let Ω be the convex subset of Banach space X, 0 ∈ Ω and T : Ω → Ω be completely

continuous operator. Then, either

1. T has at least one fixed point in Ω; or

2. the set {x ∈ Ω/x = λTx, 0 < λ < 1} is unbounded.

Definition 1.0.4. A function f : [a, b] → R is said to be absolutely continuous on [a, b]

if, given ε > 0, there exists some δ > 0 such that
n∑
i=1

|f(yi)− f(xi)| < ε.

whenever {[xi, yi] : i = 1, 2, ..., n} is a finite collection of mutually disjoint subintervals of

[a, b] with
n∑
i=1

|yi − xi| < δ.

Proposition 1.0.1. If f is absolutely continuous, then f ′ exists almost everywhere and

it is integrable.
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Chapter 2

Existence of positive solutions for a

third order multi-point boundary

value problem with delay

In this chapter, we consider the existence of positive solutions for the following multi-point

boundary value problem

u
′′′

(t) + λa(t)f(t, u(t− τ)) = 0, t ∈ J = [0, 1],

u(t) = αu(η), −τ 6 t 6 0,

u(1) = βu(η),

u
′
(0) = 0,

(2.0.1)

where α, β, η and τ are positive constants such that η ∈ (0, 1), 0 < τ ≤ 1
2

and λ is a
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positive real parameter. We study the existence of positive solutions for a class of bound-

ary value problems for the third order differential equations with delay by the mean of

Krasnosel’skii fixed point theorem on cone.

Let the following hypotheses be satisfied

(H1) 0 < β <
1

η2
, 0 < α <

1− βη2

1− η2
,

(H2) f : [0, 1]× [0,∞)→ [0,∞) is continuous,

(H3) a : [0, 1]→ [0,∞) is continuous and does not vanish identically on any subinterval.

2.1 Preliminaries

In this section, we give some preliminaries needed for the rest of this chapter.

Definition 2.1.1.

A function u ∈ C([−τ, 1]) is called a solution of (2.0.1) if it satisfies the following prop-

erties

1. u(t) ≥ 0 ∀t ∈ [−τ, 1],

2. u(t) = αu(η) ∀t ∈ [−τ, 0], u(1) = βu(η), u′(0) = 0,

3. u ∈ C3([0, 1]) and u
′′′

(t) = −λa(t)f(t, u(t− τ)) ∀t ∈ [0, 1].
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Furthermore, u is a positive solution of (2.0.1) if it is a solution of (2.0.1) with u(t) >

0 ∀t ∈ (0, 1).

Lemma 2.1.1.

For y ∈ C([0, 1]) the problem

w
′′′

(t) + y(t) = 0, t ∈ (0, 1), (2.1.1)

w(0) = w
′
(0) = w(1) = 0 (2.1.2)

has a unique solution

w(t) =

∫ 1

0

g(t, s)y(s)ds, (2.1.3)

where

g(t, s) =


t2(1− s)2 − (t− s)2

2
, 0 6 s 6 t 6 1,

t2(1− s)2

2
, 0 6 t < s 6 1.

(2.1.4)

Proof.

From (2.1.1), we have w(t) = −1
2

∫ t

0

(t− s)2y(s)ds + At2 +Bt+ C.

Then w
′
(t) = −t

∫ t

0

y(s)ds +

∫ t

0

sy(s)ds + 2At+B.

From (2.1.2), we obtain A =
1

2

∫ 1

0

(1− s)2y(s)ds,B = 0 and C = 0.

Therefore, the boundary value problem (2.1.1),(2.1.2) has a unique solution given by

w(t) = −1

2

∫ t

0

(t− s)2y(s)ds +

∫ 1

0

t2

2
(1− s)2y(s)ds

= −1

2

∫ t

0

(t− s)2y(s)ds +

∫ t

0

t2

2
(1− s)2y(s)ds+

∫ 1

t

t2

2
(1− s)2y(s)ds

=

∫ 1

0

g(t, s)y(s)ds .
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Lemma 2.1.2.

For any y ∈ C([0, 1]) the problem

u
′′′

(t) + y(t) = 0, t ∈ [0, 1], (2.1.5)

u(0) = αu(η), u
′
(0) = 0, u(1) = βu(η), (2.1.6)

has a unique solution u(t) =

∫ 1

0

G(t, s)y(s)ds, where

G(t, s) = g(t, s) +
βt2 + α (1− t2)

(1− βη2)− α (1− η2)
g(η, s). (2.1.7)

Proof.

Suppose that the solution of (2.1.5),(2.1.6) can be expressed by

u(t) = w(t) + A1t
2 +B1t+ C1, (2.1.8)

where A1, B1 and C1 are constants and w is the solution of (2.1.1),(2.1.2) given by (2.1.3).

From (2.1.2) and (2.1.8) we have u(0) = C1, u(1) = A1 + B1 + C1, u(η) = w(η) + A1η
2 +

B1η + C1, and u
′
(t) = w

′
(t) + 2A1t+B1.

Then B1 = u′(0)− w′(0) = 0.

From (2.1.6) we obtain (1−α)C1−αη2A1 = αw(η) and (1−β)C1 +(1−βη2)A1 = βw(η).

From (H1), we have α 6= 1− βη2

1− η2
, thenA1 =

(β − α)w(η)

(1− βη2)− α (1− η2)
, and C1 =

αw(η)

(1− βη2)− α (1− η2)
.

Hence

u(t) = w(t) +
βt2 + α(1− t2)

(1− βη2)− α(1− η2)
w(η).

Finally, we obtain

u(t) =

∫ 1

0

g(t, s)y(s)ds +
βt2 + α(1− t2)

(1− βη2)− α(1− η2)

∫ 1

0

g(η, s)y(s)ds. (2.1.9)

Thus, the Green’s function G(t, s) for the boundary value problem (2.1.5),(2.1.6) is given

by (2.1.7).
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To prove the uniqueness of the solution u, assume that v is another solution of the three-

point boundary value problem (2.1.5),(2.1.6).

Let z(t) := v(t) − u(t) ∀t ∈ [0, 1]. Then, we get z
′′′

(t) = v
′′′

(t) − u′′′(t) = 0 ∀t ∈ [0, 1],

therefore

z(t) = c0t
2 + c1t+ c2, z

′
(t) = 2c0t+ c1 (2.1.10)

where c0, c1, c2 are constants.

From (2.1.6), we have

z(0) = αz(η), z(1) = βz(η), z
′
(0) = 0. (2.1.11)

From (2.1.10), we obtain

z(0) = c2, z(1) = c0 + c1 + c2, z
′
(0) = c1, z(η) = c0η

2 + c1η + c2. (2.1.12)

From (2.1.11),(2.1.12) we have c1 = 0, (1−α)c2−αη2c0 = 0 and (1−β)c2+(1−βη2)c0 = 0.

Since α 6= 1− βη2

1− η2
, we obtain c0 = c1 = c2 = 0.

Therefore z ≡ 0, so v(t) = u(t) ∀t ∈ [0, 1].

Lemma 2.1.3. The function g has the following properties

(i) 0 6 g(t, s) 6 s(1− s)2 ∀t, s ∈ [0, 1],

(ii) g(t, s) > Φ(t)s(1− s)2 ∀t, s ∈ [0, 1], where

Φ(t) =



t2

2
t ∈
[
0,

1

2

]
,

t(1− t)
2

t ∈
[

1

2
, 1

]
.

Proof.

It is obvious that g is positive.
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Moreover, for 0 6 s 6 t 6 1

g(t, s) =
1

2

[
t2(1− s)2 − (t− s)2

]
=

1

2
s(1− t) [t(1− s) + (t− s)]

6
1

2

[
2s(1− s)2

]
= s(1− s)2.

For 0 6 t 6 s 6 1, g(t, s) =
1

2
t2(1− s)2 6 1

2
s2(1− s)2 6 s(1− s)2.

Thus (i) holds.

If s = 0 or s = 1, we easily see that (ii) holds.

If s ∈ (0, 1) and t ∈ [0, 1
2
], we have, for 0 < s 6 t 6 1

2
,

g(t, s)

s(1− s)2
=
t2(1− s)2 − (t− s)2

2s(1− s)2
=
s(1− t) [t(1− s) + (t− s)]

2s(1− s)2

>
s(1− t)t(1− s)

2s(1− s)2
>
t(1− t)

2
>
t2

2
∀t ∈

[
0,

1

2

]
.

For
1

2
6 t 6 s < 1, we have

g(t, s)

s(1− s)2
=
t2(1− s)2

2s(1− s)2
=
t2

2s
>
t2

2
>
t(1− t)

2
∀t ∈

[
1

2
, 1

]
.

Thus (ii) holds.

Lemma 2.1.4. The function G has the following properties

(i) G(t, s) > 0 ∀t, s ∈ [0, 1],

(ii) G(t, s) 6M1s(1− s)2 ∀t, s ∈ [0, 1] and M1 =
max (1 + αη2, 1 + β(1− η2))

(1− βη2)− α(1− η2)
,

(iii) min
t∈[σ, 12 ]

G(t, s) > M2s(1 − s)2 ∀t, s ∈ [0, 1] where σ ∈
(

0,
1

2

)
and M2 =

σ2

2
+(

βσ2 +
3

4
α

)
Φ(η)

(1− βη2)− α(1− η2)
.

Proof.

It is clear that (i) holds.

Two cases will be considered for the proof of (ii).
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Case(1)

For 0 6 t 6 η, by Lemma 2.1.3 (i) we have

G(t, s) 6 s(1− s)2 +
βη2 + α

(1− βη2)− α(1− η2)
s(1− s)2 ≤M1s(1− s)2.

Case(2)

For η 6 t 6 1, we have G(t, s) 6 s(1 − s)2 +
β + α(1− η2)

(1− βη2)− α(1− η2)
s(1 − s)2 ≤

M1s(1− s)2.

Then we have (ii).

From (ii) of Lemma 2.1.3, we have

min
σ6t6 1

2

G(t, s) > min
σ6t6 1

2

s(1− s)2
[
Φ(t) +

βt2 + α(1− t2)
(1− βη2)− α(1− η2)

Φ(η)

]

> s(1− s)2

σ2

2
+

βσ2 +
3

4
α

(1− βη2)− α(1− η2)
Φ(η)

 = M2s(1− s)2.

Thus (iii) holds.

Lemma 2.1.5.

If y ∈ C([0, 1]) and y > 0, then the unique solution u of the boundary value problem

(2.1.5),(2.1.6) satisfies min
σ6t6 1

2

u(t) > θ‖u‖1 where ‖u‖1 := sup{|u(t)|; 0 ≤ t ≤ 1} and

θ :=
M2

M1

.

Proof.

For any t ∈ [0, 1], by Lemma 2.1.4 we have

u(t) =

∫ 1

0

G(t, s)y(s)ds 6M1

∫ 1

0

s(1− s)2y(s)ds,
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thus ||u||1 6M1

∫ 1

0
s(1− s)2y(s)ds.

Moreover, from Lemma 2.1.4 for t ∈
[
σ,

1

2

]
and σ ∈

(
0, 1

2

)
, we have

u(t) =

∫ 1

0

G(t, s)y(s)ds >M2

∫ 1
2

σ

s(1− s)2y(s)ds >
M2

M1

||u||1.

Lemma 2.1.6.

If u is a positive solution of (2.0.1), then u(η) > γ||u||, where γ =
γ1
γ2

, γ1 = min

{
η2

2
,
η(1− η)

2

}
and γ2 = max

(
1,

γ1 max(α, β)

βη2 + α(1− η2)

)
.

Proof.

From (2.1.9), for every positive solution u of (2.0.1) we have

u(t) = λ

∫ 1

0

g(t, s)a(s)f(s, u(s− τ))ds

+λ βt2+α(1−t2)
(1−βη2)−α(1−η2)

∫ 1

0
g(η, s)a(s)f(s, u(s− τ))ds.

By Lemma 2.1.3 (i) we have

||u|| 6 λ

∫ 1

0

s(1− s)2a(s)f(s, u(s− τ))ds

+λ µ
(1−βη2)−α(1−η2)

∫ 1

0
g(η, s)a(s)f(s, u(s− τ))ds

where µ = max (α, β) .

Then

min

{
η2

2
;
η(1− η)

2

}
||u|| 6 λ

∫ 1

0

min

{
η2

2
;
η(1− η)

2

}
s(1− s)2a(s)f(s, u(s− τ))ds

+λ

µmin

{
η2

2
;
η(1− η)

2

}
(1− βη2)− α(1− η2)

∫ 1

0

g(η, s)a(s)f(s, u(s− τ))ds

By Lemma 2.1.3 (ii) we have

min

{
η2

2
,
η(1− η)

2

}
||u|| 6 λ

∫ 1

0

g(η, s)a(s)f(s, u(s− τ))ds

+λν
βη2 + α(1− η2)

(1− βη2)− α(1− η2)

∫ 1

0

g(η, s)a(s)f(s, u(s− τ))ds

16



where ν =
µγ1

βη2 + α(1− η2)
.

Then we deduce that γ1||u|| 6 max(1, ν)u(η) = γ2u(η).

We deduce from the results above that the boundary value problem (2.0.1) has a positive

solution u if and only if u is positive and it is a fixed point of the operator T defined by

Tu(t) =


αu(η), −τ 6 t 6 0,

λ

∫ 1

0

G(t, s)a(s)f(s, u(s− τ))ds, 0 6 t 6 1.
(2.1.13)

Let P be given by the following set

{u ∈ C([−τ, 1])
⋂
C1([0, 1]) : u(t) > 0 for t ∈ [−τ, 1],

u(t) = αu(η) for − τ 6 t 6 0, u(1) = βu(η), u
′
(0) = 0

}
and Kθ be a cone in the Banach space C([−τ, 1]) defined by

Kθ :=

{
u ∈ P, min

σ6t6 1
2

u(t) > θ||u||

}
where ||u|| = sup {|u(t)| : −τ 6 t 6 1} and σ ∈

(
0,

1

2

)
.

Lemma 2.1.7.

The fixed points of T are solutions of (2.0.1), furthermore T : Kθ → Kθ is completely

continuous.

Proof.

From (2.1.13), we have

(Tu)
′′′

(t) + λa(t)f(t, u(t− τ)) = 0, t ∈ J = [0, 1],

(Tu)(t) = α(Tu)(η), −τ 6 t 6 0,

(Tu)(1) = β(Tu)(η),

(Tu)
′
(0) = 0.
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Therefore, the fixed points of T are solutions of (2.0.1).

Moreover, from Lemma 2.1.5 we can see that T : Kθ → Kθ is well defined.

Thus T (Kθ) ⊂ Kθ.

Next, we shall show that T is completely continuous.

Suppose un → u (n → ∞) and un ∈ Kθ ∀n ∈ N, then there exists M > 0 such that

‖un‖ ≤M. Since f is continuous on [0, 1]× [0,M ], it is uniformly continuous.

Therefore, ∀ε > 0 there exists δ > 0 such that |x − y| < δ implies |f(s, x) − f(s, y)| <

ε ∀s ∈ [0, 1], x, y ∈ [0,M ] and there exists N such that ‖un − u‖ < δ for n > N, so

|f(s, un(s− τ))− f(s, u(s− τ))| < ε, for n > N and s ∈ [0, 1]. This implies that

|Tun(t)− Tu(t)| = |λ
∫ 1

0

G(t, s)a(s)(f(s, un(s− τ))− f(s, u(s− τ)))ds|

≤ λ

∫ 1

0

G(t, s)a(s)|f(s, un(s− τ))− f(s, u(s− τ)|ds

≤ ελ

∫ 1

0

G(t, s)a(s)ds.

Therefore T is continuous.

Let Ω be any bounded subset of Kθ, then there exists γ > 0 such that ||u|| 6 γ for all

u ∈ Ω.

Since f is continuous on [0, 1]× [0, γ] there exists L > 0 such that |f(t, v)| < L ∀(t, v) ∈

[0, 1]× [0, γ]. Consequently, for all u ∈ Ω and t ∈ [0.1] we have

|Tu(t)| =
∣∣∣∣λ∫ 1

0

G(t, s)a(s)f(s, u(s− τ))ds

∣∣∣∣ 6 λM1L

∫ 1

0

s(1− s)2a(s)ds.

Which implies the boundedness of TΩ.

Since G is continuous on [0, 1]× [0, 1] it is uniformly continuous.

Then ∀ε > 0 there exists δ > 0 such that |t1 − t2| < δ implies that |G(t1, s)−G(t2, s)| <
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ε ∀s ∈ [0, 1].

So, if u ∈ Ω

|Tu(t1)− Tu(t2)| ≤ λ
∫ 1

0
|G(t1, s)−G(t2, s)|a(s)f(s, un(s− τ))ds

≤ λLε
∫ 1

0
a(s)ds.

From the arbitrariness of ε, we get the equicontinuity of TΩ.

The operator T is completely continuous by the mean of the Ascoli-Arzela theorem.

The following theorem will be used to prove the existence of solutions of (2.0.1).

Theorem 2.1.1. ([29])

Let X be a Banach space and K(⊂ X) be a cone. Assume that Ω1 and Ω2 are open subsets

of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2.

If A : K ∩
(
Ω2\Ω1

)
→ K is a completely continuous operator such that either

(i) ||Au|| 6 ||u|| for u ∈ K ∩ ∂Ω1, and ||Au|| > ||u|| for u ∈ K ∩ ∂Ω2, or

(ii) ||Au|| > ||u|| for u ∈ K ∩ ∂Ω1, and ||Au|| 6 ||u|| for u ∈ K ∩ ∂Ω2.

then A has a fixed point in K ∩
(
Ω2\Ω1

)
.
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2.2 Main results

First, we define some important constants by the following

f 0 = lim sup
u→0+

max
t∈J

f(t, u)

u
,

f0 = lim inf
u→0+

min
t∈J

f(t, u)

u
,

f∞ = lim sup
u→∞

max
t∈J

f(t, u)

u
,

f∞ = lim inf
u→∞

min
t∈J

f(t, u)

u
.

Let A and B be defined by

A = sup
06t61

(
αγ

∫ τ

0

G(t, s)a(s)ds+ θ

∫ 1
2
+τ

σ+τ

G(t, s)a(s)ds

)
and

B = M1

(
α

∫ τ

0

s(1− s)2a(s)ds +

∫ 1

τ

s(1− s)2a(s)ds

)
.

Theorem 2.2.1.

Suppose that Af∞ > Bf 0.

Then for each

λ ∈ ((Af∞)−1, (Bf 0)−1) (2.2.1)

the problem (2.0.1) has at least one positive solution.

Proof.

Let λ ∈ ((Af∞)−1, (Bf 0)−1), then there exists ε > 0 such that

0 <
1

A(f∞ − ε)
≤ λ ≤ 1

B(f 0 + ε)
. (2.2.2)

Let ε be fixed. By the definition of f 0, there exists r > 0 such that

f(s, u) 6 (f 0 + ε)u for 0 < u 6 r. (2.2.3)
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Let Ω1 = {u ∈ C([−τ, 1]) : ||u|| < r}, then for u ∈ Kθ ∩ ∂Ω1 we have by (2.2.3)

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f(s, u(s− τ))ds

6 λM1(f
0 + ε)

∫ 1

0

s(1− s)2a(s)u(s− τ)ds

= λM1(f
0 + ε)

(∫ τ

0

s(1− s)2a(s)αu(η)ds +

∫ 1

τ

s(1− s)2a(s)u(s− τ)ds

)
6 λM1(f

0 + ε)

(
α

∫ τ

0

s(1− s)2a(s)ds +

∫ 1

τ

s(1− s)2a(s)ds

)
||u||

= λB(f 0 + ε)||u||.

Then Tu(t) ≤ ||u||. Therefore ||Tu|| ≤ ||u||.

Moreover, there exists R > r such that f(s, u) > (f∞ − ε)u for u > R.

Let Ω2 = {u ∈ C[−τ, 1] : ||u|| < R}, then for u ∈ Kθ ∩ ∂Ω2 we have

||Tu|| > λ(f∞ − ε) sup
06t61

∫ 1

0

G(t, s)a(s)u(s− τ)ds

= λ(f∞ − ε) sup
06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1

τ

G(t, s)a(s)u(s− τ)ds

)
= λ(f∞ − ε) sup

06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1−τ

0

G(t, s+ τ)a(s+ τ)u(s)ds

)
> λ(f∞ − ε) sup

06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1
2

σ

G(t, s+ τ)a(s+ τ)u(s)ds

)

> λ(f∞ − ε) sup
06t61

(∫ τ

0

G(t, s)a(s)αγ||u||ds +

∫ 1
2

σ

G(t, s+ τ)a(s+ τ)θ||u||ds

)

> λ(f∞ − ε) sup
06t61

(
αγ

∫ τ

0

G(t, s)a(s)ds + θ

∫ 1
2
+τ

σ+τ

G(t, s)a(s)ds

)
||u||

= λA(f∞ − ε)||u||.

Then ||Tu|| ≥ ||u||.

Therefore, by (i) of Theorem 2.1.1, T has a fixed point u ∈ Kθ ∩ (Ω2 \ Ω1) and ||u|| > r.
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From Lemma 2.1.7, u is a positive solution of (2.0.1).

Theorem 2.2.2.

Suppose that Af0 > Bf∞, then for each

λ ∈ ((Af0)
−1, (Bf∞)−1) (2.2.4)

the problem (2.0.1) has at least one positive solution.

Proof.

From (2.2.4) there exists ε > 0 such that

0 <
1

A(f0 − ε)
≤ λ ≤ 1

B(f∞ + ε)
. (2.2.5)

Then there exists r∗ > 0 such that

f(s, u) > (f0 − ε)u for 0 < u 6 r∗. (2.2.6)

Let Ω1 = {u ∈ C[−τ, 1] : ||u|| < r∗}, then for u ∈ Kθ ∩ ∂Ω1 we have by (2.2.6)

||Tu|| > λ sup
06t61

∫ 1

0

G(t, s)a(s)(f0 − ε)u(s− τ)ds

= λ(f0 − ε) sup
06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1

τ

G(t, s)a(s)u(s− τ)ds

)
= λ(f0 − ε) sup

06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1−τ

0

G(t, s+ τ)a(s+ τ)u(s)ds

)
> λ(f0 − ε) sup

06t61

(∫ τ

0

G(t, s)a(s)αu(η)ds +

∫ 1
2

σ

G(t, s+ τ)a(s+ τ)u(s)ds

)

> λ(f0 − ε) sup
06t61

(∫ τ

0

G(t, s)a(s)αγ||u||ds +

∫ 1
2

σ

G(t, s+ τ)a(s+ τ)θ||u||ds

)

> λ(f0 − ε) sup
06t61

(
αγ

∫ τ

0

G(t, s)a(s)ds + θ

∫ 1
2
+τ

σ+τ

G(t, s)a(s)ds

)
||u||.

= λA(f0 − ε)||u||.
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Then ||Tu|| ≥ ||u||.

By definition of f∞ we can choose R∗ > r∗ such that for u > R∗, f(s, u) 6 (f∞ + ε)u.

Then

Tu(t) 6 λ

∫ 1

0

M1s(1− s)2a(s)f(s, u(s− τ))ds

6 λM1

∫ 1

0

s(1− s)2a(s)f(s, R∗)ds

= λM1(f
∞ + ε)R∗

(
α

∫ τ

0

s(1− s)2a(s)ds +

∫ 1

τ

s(1− s)2a(s)ds

)
= λB(f∞ + ε)R∗ ≤ R∗ = ||u||.

Then ||Tu|| ≤ ||u||.

Therefore, by (ii) of Theorem 2.1.1, T has a fixed point u ∈ Kθ ∩ (Ω2 \Ω1) and ||u|| > r∗.

From Lemma 2.1.7, u is a positive solution of (2.0.1).
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Chapter 3

Positive solutions for a second order

three-point boundary value problem

with delay

In this chapter, we investigate the existence and multiplicity of positive solutions to the

following nonlinear second order boundary value problem with delay

u
′′
(t) + a(t)f(t, u(t− τ)) = 0, t ∈ [0, 1],

u(t) = βu(η), −τ 6 t 6 0,

u(1) = αu(η),

(3.0.1)

where 0 < η < 1, 0 < α < 1
η

and 0 < β < 1−αη
1−η are given constants.
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3.1 Preliminaries

Lemma 3.1.1.

Let β 6= 1−αη
1−η . Then for y ∈ C([0, T ], R), the problem

u′′(t) + y(t) = 0, t ∈ [0, T ], (3.1.1)

u(0) = βu(η), u(1) = αu(η) (3.1.2)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds+
β + (α− β)t

(1− αη)− β(1− η)

∫ 1

0

G(η, s)y(s)ds (3.1.3)

where

G(t, s) =

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Proof.

From (3.1.1), we have

u(t) = u(0) + u′(0)t−
∫ t

0

(t− s)y(s)ds := A+Bt−
∫ t

0

(t− s)y(s)ds.

With

u(0) = A,

u(η) = A+Bη −
∫ η
0

(η − s)y(s)ds,

u(1) = A+B −
∫ 1

0
(1− s)y(s)ds.

By (3.1.2) and from u(0) = βu(η), we have

(1− β)A−Bβη = −β
∫ η

0

(η − s)y(s)ds.

From u(1) = αu(η), we have

(1− α)A+B(1− αη) =

∫ 1

0

(1− s)y(s)ds− α
∫ η

0

(η − s)y(s)ds.
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Therefore,

A =
βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds

− β1

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds

and

B =
1− β

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds

− α− β
(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds ,

from which it follows that

u(t) =
βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds

− β

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds

+
(1− β)t

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds

− (α− β)t

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds−
∫ t

0

(t− s)y(s)ds

= −
∫ t

0

(t− s)y(s)ds+
(β − α)t− β

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds

+
(1− β)t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds

=

∫ 1

0

G(t, s)y(s)ds+
β + (α− β)t

(1− αη)− β(1− η)

∫ 1

0

G(η, s)y(s)ds.

The function u presented above is a solution to the problem (3.1.1)-(3.1.2), and the

uniqueness of u is obvious.

Lemma 3.1.2.

Let 0 < α < 1
η
, 0 ≤ β < 1−αη

1−η . If y ∈ C([0, 1], [0,∞)), then the unique solution u of the

problem (3.1.1)-(3.1.2) satisfies

u(t) ≥ 0, t ∈ [0, 1].
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Proof.

It is known that the graph of u is concave down on [0, 1] from u′′(t) = −y(t) ≤ 0, so

u(η)− u(0)

η
≥ u(1)− u(0)

1
.

Combining this with (3.1.2), we have

1− β
η

u(η) ≥ α− β
1

u(η).

If u(0) < 0, then u(η) < 0. This implies that β ≥ 1−αη
1−η , which is a contradiction with

β < 1−αη
1−η .

If u(1) < 0, then u(η) < 0, and the same contradiction emerges.

Thus, it is true that u(0) ≥ 0, u(1) ≥ 0, together with the concavity of u, we have

u(t) ≥ 0, t ∈ [0, 1]

as required.

Lemma 3.1.3.

Let αη 6= 1 and β > max{1−αη
1−η , 0}. If y ∈ C([0, 1], [0,∞)), then problem (3.1.1)-(3.1.2)

has no nonnegative solutions.

Proof.

Suppose that problem (3.1.1)-(3.1.2) has a nonnegative solution u satisfying u(t) ≥ 0, t ∈

[0, 1] and there is a t0 ∈ (0, 1) such that u(t0) > 0.

If u(1) > 0, then u(η) > 0.

This implies

u(0) = βu(η) >
1− αη
1− η

u(η) =
u(η)− ηu(1)

1− η
,

that is

u(1)− u(0)

1
>
u(η)− u(0)

η
,
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which is a contradiction with the concavity of u.

If u(1) = 0, then u(η) = 0.

When t0 ∈ (0, η), we get u(t0) > u(η) = u(1), a violation of the concavity of u.

When t0 ∈ (η, 1), we get u(0) = βu(η) = 0 = u(η) < u(t0), another violation of the

concavity of u.

Therefore, no nonnegative solutions exist.

Lemma 3.1.4.

Let 0 < α < 1
η

and 0 < β < 1−αη
1−η . If y ∈ C([0, 1], [0,∞)), then the unique solution to the

problem (3.1.1)-(3.1.2) satisfies

min
t∈[0,1]

u(t) ≥ γ‖u‖, (3.1.4)

where

γ := min
{α(1− η)

1− αη
,
αη

1
,
β(1− η)

1
,
βη

1

}
. (3.1.5)

Proof.

It is known that the graph of u is concave down on [0, 1] from u′′(t) = −y(t) ≤ 0.

We divide the proof into two cases. Case 1.

0 < α < 1, then 1−αη
1−η > α.

For u(0) = βu(η) = β
α
u(1), it may develop in the following two possible directions.

(i) If 0 < α ≤ β, then u(0) ≥ u(1), so

min
t∈[0,1]

u(t) = u(1).

Assume ‖u‖ = u(t1) for t1 ∈ [0, 1), then either 0 ≤ t1 ≤ η < ρ(1), or 0 < η < t1 < 1.
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If 0 ≤ t1 ≤ η < ρ(1), then

u(t1) ≤ u(1) +
u(1)− u(η)

1− η
(t1 − 1)

≤ u(1) +
u(1)− u(η)

1− η
(0− 1)

=
u(η)− ηu(1)

1− η

=
1− αη
α(1− η)

u(1),

from which it follows that min
t∈[0,1]

u(t) ≥ α(1− η)

1− αη
‖u‖.

If 0 < η < t1 < 1, from

u(η)

η
≥ u(t1)

t1
≥ u(t1)

1
,

together with u(1) = αu(η), we have

u(1) >
αη

1
u(t1).

So min
t∈[0,1]

u(t) ≥ αη

1
‖u‖. (ii) If 0 < β < α, then u(0) ≤ u(1), so

min
t∈[0,1]

u(t) = u(0).

Assume ‖u‖ = u(t2) for t2 ∈ (0, 1], then either 0 < t2 < η < ρ(1), or 0 < η ≤ t2 ≤ 1.

If 0 < t2 < η < ρ(1), from

u(η)

1− η
≥ u(t2)

1− t2
≥ u(t2)

1
,

together with u(0) = βu(η), we have

u(0) ≥ β(1− η)

1
u(t2).

Hence, min
t∈[0,1]

u(t) ≥ β(1− η)

1
‖u‖.

If 0 < η ≤ t2 ≤ 1, from

u(t2)

1
≤ u(t2)

t2
≤ u(η)

η
,
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together with u(0) = βu(η), we have

u(0) ≥ βη

1
u(t2).

So min
t∈[0,1]

u(t) ≥ βη

1
‖u‖.

Case 2.

1
η
> α ≥ 1, then 1−αη

1−η ≤ α.

In this case, β < α is true. This implies that u(0) ≤ u(1). So,

min
t∈[0,1]

u(t) = u(0).

Assume ‖u‖ = u(t2) for t2 ∈ (0, 1]. Since α ≥ 1, it is known that u(η) ≤ u(1), together

with the concavity of u, we have 0 < η ≤ t2 ≤ 1. Similar to the above discussion,

min
t∈[0,1]

u(t) ≥ βη

1
‖u‖.

Summing up, we have

min
t∈[0,1]

u(t) ≥ γ‖u‖,

where

0 < γ = min
{α(1− η)

1− αη
,
αη

1
,
β(1− η)

1
,
βη

1

}
< 1.

This completes the proof.

By Lemma (3.1.1), it is easy to see that the BVP (3.1.1)-(3.1.2) has a solution u = u(t)

if and only if u is a solution of the operator equation u = Tu, where

Tu(t) =



βu(η), −τ ≤ t ≤ 0,

−
∫ t

0

(t− s)a(s)f(s, u(s− τ))ds

− (−β + α)t+ β

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(s, u(s− τ))ds

+
(1− β)t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds, 0 ≤ t < s ≤ 1.

We assume the following hypotheses:
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(A1) f ∈ C([0,∞), [0,∞)),

(A2) a ∈ C([0, 1], [0,∞)) and there exists t0 ∈ (0, 1), such that a(t0) > 0.

Define

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

And

M1 =

∫ 1

0

(1− s)a(s)ds, M2 = β

∫ τ

0

(1− s)a(s)ds+

∫ 1

τ

(1− s)a(s)ds.

Theorem 3.1.1.

Let Ω be the convex subset of Banach space X, 0 ∈ Ω and Φ : Ω → Ω be a completely

continuous operator.

Then either

1. Φ has at least one fixed point in Ω; or

2. the set {x ∈ Ω/x = λΦx, 0 < λ < 1}, is unbounded.

3.2 Main results

Theorem 3.2.1.

Assume (A1) and (A2) hold. If f0 = 0, then the boundary value problem (3.0.1) has at

least one positive solution.

Proof.

Choose ε > 0 such that ε ≤ (1− αη)− β(1− η)

(1 + β(1 + η))M2

.
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By f0 = 0, we know that there exists constant B > 0, such that f(u) < εu for 0 < u ≤ B.

Let

Ω =

{
u /u ∈ C([−τ, 1]), u ≥ 0, ‖u‖ ≤ B, min

0≤t≤1
u(t) ≥ γ‖u‖

}
.

Then Ω is the convex subset of X.

For u ∈ Ω, by Lemmas 3.1.2 and 3.1.4, we know that Tu(t) ≥ 0 and min
0≤t≤1

Tu(t) ≥ γ‖Tu‖|.

Moreover,

Tu(t) ≤ (β − α)t− β
(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(s, u(s− τ))ds

+
(1− β)t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds

≤ βt

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(s, u(s− τ))ds

+
t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds

≤ β

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(s, u(s− τ))ds

+
1 + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds

≤ 1 + β(1 + η)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds

≤ ε
1 + β(1 + η)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)u(s− τ)ds

= ε
1 + β(1 + η)

(1− αη)− β(1− η)

(∫ τ

0

(1− s)a(s)βu(η)ds+

∫ 1

τ

(1− s)a(s)u(s− τ)ds

)
≤ ε‖u‖ 1 + β(1 + η)

(1− αη)− β(1− η)

(
β

∫ τ

0

(1− s)a(s)ds +

∫ 1

τ

(1− s)a(s)ds

)
≤ ‖u‖ ≤ B.

Thus, ‖Tu‖ ≤ B. Hence, TΩ ⊂ Ω.

We shall show that T is completely continuous.
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Suppose un → u (n → ∞) and un ∈ Ω ∀n ∈ N, then there exists M > 0 such that

‖un‖ ≤M.

Since f is continuous on [0, 1]× [0,M ], it is uniformly continuous.

Therefore, ∀ε > 0 there exists δ > 0 such that |x − y| < δ implies |f(s, x) − f(s, y)| <

ε ∀s ∈ [0, 1], x, y ∈ [0,M ] and there exists N such that ‖un − u‖ < δ for n > N, so

|f(s, un(s− τ))− f(s, u(s− τ))| < ε, for n > N and s ∈ [0, 1].

This implies

|Tun(t)− Tu(t)| = |
∫ 1

0

G(t, s)a(s)(f(s, un(s− τ))− f(s, u(s− τ)))

+
β + (α− β)t

(1− αη)− β(1− η)

∫ 1

0

G(η, s)(f(s, un(s− τ))− f(s, u(s− τ)))ds|

≤ [1 +
β + (α− β)

(1− αη)− β(1− η)
]

∫ 1

0

G(s, s)a(s)|f(s, un(s− τ))− f(s, u(s− τ)|ds

≤ [1 +
β + (α− β)

(1− αη)− β(1− η)
]ε

∫ 1

0

G(s, s)a(s)ds.

Therefore T is continuous.

Let D be any bounded subset of Ω, then there exists γ > 0 such that ||u|| ≤ γ for all

u ∈ D.

Since f is continuous on [0, 1]× [0, γ] there exists L > 0 such that |f(t, v)| < L ∀(t, v) ∈

[0, 1]× [0, γ].

Consequently, for all u ∈ D and t ∈ [0.1] we have

|Tu(t)| ≤
∣∣∣∣[1 +

β + (α− β)

(1− αη)− β(1− η)
]

∫ 1

0

G(s, s)a(s)f(s, u(s− τ))ds

∣∣∣∣
≤ [1 +

β + (α− β)

(1− αη)− β(1− η)
]L

∫ 1

0

s(1− s)a(s)ds.

Which implies the boundedness of TD.

Since G is continuous on [0, 1]× [0, 1] it is uniformly continuous.
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Then ∀ε > 0 there exists δ > 0 such that |t1 − t2| < δ implies that |G(t1, s)−G(t2, s)| <

ε ∀s ∈ [0, 1]. So, if u ∈ D |Tu(t1)−Tu(t2)| ≤
∫ 1

0

|G(t1, s)−G(t2, s)|a(s)f(s, un(s−τ))ds ≤

Lε

∫ 1

0

a(s)ds.

From the arbitrariness of ε, we get the equicontinuity of TD.

The operator T is completely continuous by the mean of the Ascoli-Arzela theorem.

For u ∈ Ω and u = λTu, 0 < λ < 1, we have u(t) = λTu(t) < Tu(t) < B, which implies

‖u‖ ≤ B. So {x ∈ Ω/x = λΦx, 0 < λ < 1}, is unbounded.

By theorem 3.1.1, we know the operator T has at least one fixed point in Ω.

Thus the boundary value problem (3.0.1) has at least one positive solution. The proof is

complete.

Theorem 3.2.2.

Assume (H1) − (H4) hold. If f∞ = 0, then the boundary value problem (3.0.1) has at

least one positive solution.

Proof. Choose ε > 0 and ε ≤ (1− αη)− β(1− η)

2(1− β + βη)M1

. By f∞ = 0 we know that there exists

constant N > 0, such that f(t, u) < εu for u > N .

Select

B ≥ N + 1 +
2(1− β + βη)

(1− αη)− β(1− η)
M2 max

0≤s≤1
0≤u≤N

f(u).
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Let Ω = {u/u ∈ C[−τ, 1], ‖u‖ ≤ B, min
0<t<1

u(t) ≤ γ‖u‖}. Then for u ∈ Ω, we have

Tu(t) ≤ (1− β)t+ βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(s, u(s− τ))ds

≤ 1− β + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s) f(s, u(s− τ))ds

=
1− β + βη

(1− αη)− β(1− η)

∫
J1={s∈[0,1]/u>N}

(1− s)a(s)f(s, u(s− τ))ds

+
1− β + βη

(1− αη)− β(1− η)

∫
J2={s∈[0,1]/u≤N}

(1− s)a(s)f(s, u(s− τ))ds

≤ 1− β + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)εu(s− τ)ds

+
1− β + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s) max
0≤s≤1

0≤u≤N

f(s, u(s− τ))ds

≤ ε
1− β + βη

(1− αη)− β(1− η)

(
β

∫ τ

0

(1− s)a(s)ds +

∫ 1

τ

(1− s)a(s)ds

)
‖u‖

+
1− β + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s) max
0≤s≤1

0≤u≤N

f(s, u(s− τ))ds

≤ ε
1− β + βη

(1− αη)− β(1− η)
M1B +

1− β + βη

(1− αη)− β(1− η)
M2 max

0≤s≤1
0≤u≤N

f(s, u(s− τ))

=
1

2
B +

1− β + βη

(1− αη)− β(1− η)
M2 max

0≤s≤1
0≤u≤N

f(s, u(s− τ))

≤ 1

2
B +

1

2
B = B.
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Thus, ‖Tu‖ ≤ B. Hence, TΩ ⊂ Ω.

It is easy that T : Ω→ Ω is completely continuous.

For u ∈ Ω and u = λTu, 0 < λ < 1, we have u(t) = λTu(t) < Tu(t) < B, which implies

‖u‖ ≤ B. So {x ∈ Ω/x = λΦx, 0 < λ < 1}, is unbounded.

By theorem 3.1.1, we know the operator T has at least one fixed point in Ω. Thus the

boundary value problem (3.0.1) has at least one positive solution. The proof is complete.

36



Chapter 4

Multiple positive solutions of the

p-Laplacian

In this chapter, we consider the following boundary value problem involving the p-

laplacian

−(|u′(x)|p−2u′(x))′ = λf(u(x)), a.e. 0 < x < 1 (4.0.1)

u(0) = u(1) = 0 (4.0.2)

where λ ≥ 0, p ∈ (1, 2] and f : R+ → R∗+ smooth enough.

We investigate the existence of positive solutions of the p-Laplacian using the quadrature

method. We prove the existence of multiple positive solutions of (4.0.1), (4.0.2), in both

case lim
s→+∞

f(s)

sp−1
= A with 0 < A ≤ +∞ and lim

s→+∞

f(s)

sp−1
= 0.

4.1 Preliminaries

In this section, we give some definitions and preliminaries.
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Definition 4.1.1.

A pair (u, λ) ∈ C1([0, 1];R+)× [0,+∞[ is called a solution of (4.0.1), (4.0.2), if

1. (|u′|p−2u′) is absolutely continuous, and

2. −(|u′|p−2u′)′ = λf(u) a.e. in (0, 1), and u(0) = u(1) = 0.

Remarque 4.1.1.

The pair (0, 0) is a solution of (4.0.1), (4.0.2).

Definition 4.1.2.

The function f be called p-sublinear if lim
s→+∞

f(s)

sp−1
= 0, and it is called p-superlinear if

lim
s→+∞

f(s)

sp−1
= A, (0 < A ≤ ∞).

Let F : R+ → R+ be defined by F (u) =

∫ ρ

0

f(s)ds, and g : R+ → R+ be defined by

g(ρ) := 2

(
p− 1

p

) 1
p
∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

for ρ > 0, and g(0) = 0.

Then we have

Lemma 4.1.1.

The function g is continuous.

Proof.

Let r > 0 fixed and ρ ∈ [0, r], we have

(λ(ρ))
1
p = 2

(
p− 1

p

) 1
p
∫ ρ

0

ds

(F (ρ)− F (s))
1
p

= 2

(
p− 1

p

) 1
p
∫ 1

0

ρdv

(F (ρ)− F (ρv))
1
p

.(4.1.1)
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Let m(r) = inf
t∈[0,r]

{f(t)}. on a m(r) > 0, ∀r ≥ 0.

by using mean value theorem, for all v ∈ [0, 1]

∃c0 ∈]ρv, ρ[⊂]0, r[, tel que F (ρ)− F (ρv) = ρ(1− v)f(c0) ≥ ρ(1− v)m(r). (4.1.2)

from where

F (ρ)− F (ρv) ≥ ρ(1− v)m(r). (4.1.3)

so

0 ≤ ρ

(F (ρ)− F (ρv))
1
p

≤ ρ

(m(r)ρ(1− v))
1
p

=
ρ1−

1
p

(m(r)(1− v))
1
p

. (4.1.4)

Therefore

0 ≤ (λ(ρ))
1
p ≤ 2ρ1−

1
p

(
p− 1

p m(r)

) 1
p
∫ 1

0

dv

(1− v)
1
p

≤ 2r1−
1
p

(
p− 1

p m(r)

) 1
p
∫ 1

0

dv

(1− v)
1
p

<∞.(4.1.5)

The convergence of the improper integral

∫ 1

0

dv

(1− v)
1
p

implies that the improper integral∫ ρ

0

ds

(F (ρ)− F (s))
1
p

converges uniformly in [0, r].

So λ(ρ) is contained in [0, r], r being arbitrary R+ so λ(ρ) is contained in R+.

Lemma 4.1.2.

If f is class C1, then g is differentiable and

g′(ρ) = 2

(
p− 1

p

) 1
p
∫ 1

0

H(ρ)−H(ρv)

[F (ρ)− F (ρv)]1+
1
p

dv, (4.1.6)

where H(s) = F (s)− s
p
f(s).

Proof.

Let r > 0 fixed and ρ ∈ [0, r], we have

g′(ρ) = 2

(
p− 1

p

) 1
p
∫ 1

0

H(ρ)−H(ρv)

[F (ρ)− F (ρv)]1+
1
p

dv
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= 2

(
p− 1

p

) 1
p
∫ 1

0

[F (ρ)− ρ
p
f(ρ)]− [F (ρv)− ρv

p
f(ρv)]

[F (ρ)− F (ρv)]1+
1
p

dv,

=
2

p

(
p− 1

p

) 1
p

[∫ 1

0

(p− 1)dv

[F (ρ)− F (ρv)]
1
p

−
∫ 1

0

ρ2

[F (ρ)− F (ρv)]1+
1
p

∫ 1

v

tf ′(tρ)dtdv

]
by using mean value theorem, for all v ∈ [0, 1]

∃c0 ∈]ρv, ρ[⊂]0, r[, tel que F (ρ)− F (ρv) = ρ(1− v)f(c0) ≥ ρ(1− v)m(r).

D’où

0 ≤
∫ 1

0

dv

[F (ρ)− F (ρv)]
1
p

≤
(

1

ρm(r)

) 1
p
∫ 1

0

dv

(1− v)
1
p

<∞.

On the other hand we have

|
∫ 1

v
tf ′(tρ)dt| ≤ max

0≤ρt≤ρ
|f ′(ρt)|(1− v) = max

0≤s≤ρ
|f ′(s)|(1− v) = M(ρ)(1− v), where M(ρ) =

max
0≤s≤ρ

|f ′(s)|

therefore∫ 1

0

1

[F (ρ)− F (ρv)]1+
1
p

|
∫ 1

v

tf ′(tρ)dt|dv ≤ M(ρ)

(ρm(r))1+
1
p

∫ 1

0

(1− v)−(1+
1
p
)(1− v)dv

=
M(ρ)

(ρm(r))1+
1
p

∫ 1

0

1

(1− v)
1
p

dv <∞.

It follows that f is continuously differentiable.

Lemma 4.1.3. 1. If lim
s→+∞

f(s)

sp−1
= 0, then lim

ρ→+∞
g(ρ) = +∞.

2. If lim
s→+∞

f(s)

sp−1
= +∞, then lim

ρ→+∞
g(ρ) = 0.

Proof.

1. Let lim
s→+∞

f(s)

sp−1
= 0. We have g(ρ) ≥ 2

(
p− 1

p

) 1
p
(

ρp

F (ρ)

) 1
p

.

Then lim
ρ→+∞

ρp

F (ρ)
= lim

ρ→+∞
p
ρp−1

f(ρ)
= +∞.

Hence lim
ρ→+∞

G(ρ) = +∞.
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2. Without loss of generality, assume that 0 < A < +∞ and M = A
2
. Then, there

exists a positive number R such that f(s) > Msp−1 for s ≥ R.

Thus, for R ≤ s ≤ ρ, we have

F (ρ)− F (s) =

∫ ρ

s

f(t)dt ≥ M

p
(ρp − sp). (4.1.7)

This implies ∫ ρ

R

(F (ρ)− F (s))−
1
pds ≤

(
M

p

)− 1
p

ρ−1
∫ 1

R
ρ

(1− w)−
1
pdw. (4.1.8)

That is ∫ ρ

R

(F (ρ)− F (s))−
1
pds ≤

(
M

p

)− 1
p p− 1

p
ρ−1

(
1− R

ρ

) p−1
p

. (4.1.9)

Then

lim
ρ→+∞

∫ ρ

R

(F (ρ)− F (s))−
1
pds = 0. (4.1.10)

Moreover, for 0 ≤ s ≤ R ≤ ρ we have F (ρ)−F (s) ≥ F (ρ)−F (R), using (4.1.7) we

obtain

F (ρ)− F (s) ≥ M

p
(ρp −Rp). (4.1.11)

Which gives∫ R

0

(F (ρ)− F (s))−
1
P ds ≤

∫ R

0

(
M

p
)−

1
P (ρp −Rp)−

1
P ds. (4.1.12)

That is ∫ R

0

(F (ρ)− F (s))−
1
P ds ≤ (

M

p
)−

1
P (ρp −Rp)−

1
PR. (4.1.13)

Then

lim
ρ→+∞

∫ R

0

(F (ρ)− F (s))−
1
pds = 0. (4.1.14)

From (4.1.10) and (4.1.14), we deduce that lim
ρ→+∞

g(ρ) = 0.
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The case A = +∞ can be handled by similar arguments.

For u ∈ C1([0, 1];R+), we define ||u|| := sup{u(s); s ∈ (0, 1)}.

Lemma 4.1.4.

If (u, λ) is a solution of (4.0.1), (4.0.2) with λ > 0, then λ
1
p = g(||u||).

Proof.

Let (u, λ) be a positive solution of (1), (2) with λ > 0, and u > 0 in (0, 1).

By the maximum principle and symmetry. We have u′(1
2
) = 0, u(1

2
) = ||u||.

Moreover, u′(x) > 0 for x ∈ (0, 1
2
) and u′(x) < 0 for x ∈ (1

2
, 1).

Let ρ = ||u||. Multiplying (4.0.1) by u′(x), and integrate it for x ∈ [0, 1
2
], we obtain

−
∫ 1

2

x

(|u′(t)|p−2u′(t))′u′(t)dt =

∫ 1
2

x

λf(u(t))u′(t)dt. (4.1.15)

We have in one hand∫ 1
2

x

λf(u(t))u′(t)dt = λ

∫ u( 1
2
)

u(x)

f(y)dy = λ(F (ρ)− F (u(x))), (4.1.16)

and in the other hand

−
∫ 1

2

x

(|u′(t)|p−2u′(t))′u′(t)dt =
(p− 1)

p
(u′(x))p. (4.1.17)

From (4.1.15),(4.1.16) and (4.1.17), we have

(p− 1)

p
(u′(x))p = λ(F (ρ)− F (u(x))). (4.1.18)

Then for all x ∈ (0, 1
2
), we have

(u′(x))
p

=

(
p

p− 1

)
λ(F (ρ)− F (u(x))), (4.1.19)
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which implies

u′(x) =

(
p

p− 1

) 1
p

[λ(F (ρ)− F (u(x)))]
1
p for x ∈ [0,

1

2
], (4.1.20)

and by symmetry

u′(x) = −
(

p

p− 1

) 1
p

[λ(F (ρ)− F (u(x)))]
1
p for x ∈ [

1

2
, 1]. (4.1.21)

From (4.1.16), we obtain

1

2
λ

1
p =

(
p− 1

p

) 1
p
∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

. (4.1.22)

Then λ
1
2 = g(ρ) = g(||u||).

Moreover, we have

g′(ρ) = 2

(
p− 1

p

) 1
p
∫ 1

0

H(ρ)−H(ρv)

[F (ρ)− F (ρv)]1+
1
p

dv. (4.1.23)

Where H(s) = F (s)− s
p
f(s).

4.2 Main results

In the section we give our main results.

Theorem 4.2.1.

If lim
s→+∞

f(s)

sp−1
= A, with 0 < A ≤ +∞, then there exists λ∗ > 0 such that the problem

(4.0.1), (4.0.2) has at least two positive solutions for λ ∈ (0, λ∗), and at least one positive

solution for λ = λ∗, and zero positive solution for λ > λ∗.
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Proof.

From lemma 4.1.3, lim
s→+∞

g(s) = g(0) = 0. Then g is bounded and reaches its maximum

at some point ρ0 > 0. Further λ∗ = (g(ρ0))
p.

Theorem 4.2.2.

If lim
s→+∞

f(s)

sp−1
= 0, then the problem (4.0.1), (4.0.2) has at least one positive solutions for

all λ > 0.

Proof.

Let lim
s→+∞

f(s)

sp−1
= 0. Then from lemma 5.1.10, we have lim

s→+∞
g(s) = +∞ and g(0) = 0,

then (5.0.1), (5.0.2) has at least one positive solution for all λ > 0.

Theorem 4.2.3.

If lim
s→+∞

f(s)

sp−1
= 0 and H is nondecreasing, then (4.0.1), (4.0.2) has a unique positive

solution for each λ > 0.

Proof.

If H is nondecreasing H(ρ) − H(ρv) ≥ 0 for all v ∈ (0, 1)and ρ > 0. From (4.1.23) we

have g′(ρ) > 0 for all ρ > 0. That is g increasing from 0 to +∞. hence (4.0.1), (4.0.2)

has one and only one positive solution for each λ > 0.

Corollaire 4.2.1.

If lim
s→+∞

f(s)

sp−1
= 0, and either (p− 2)f ′(s) > sf ′′(s) for all s > 0, or (p− 1)f(s) > sf ′(s)

for all s > 0, then (4.0.1), (4.0.2) has a unique positive solution for each λ > 0.

Proof.

If (p− 2)f ′(s) > sf ′′(s) for all s > 0, then H ′′(s) = 1
p
[(p− 2)f ′(s)− sf ′′(s)] > 0 for s > 0.
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That is H ′ is increasing. Further, we have H ′(0) > 0, then H ′(s) > 0 for s > 0, which

implies that H is nondecreasing.

If (p − 1)f(s) > sf ′(s) for s > 0, then H ′(s) > 0 for s > 0, which implies that H is

nondecreasing.

Then, in both cases we have H nondecreasing, from theorem 4.2.3 we deduce the result.

Theorem 4.2.4.

Assume that lim
s→+∞

f(s)

sp−1
= 0 and lim

s→+∞
H(s) = +∞. If there exist M and σ > 0 such

that M > σ > 0, H is nondecreasing for s > M and pF (σ) < σf(σ), then there exist

λ1, λ2 with 0 < λ1 < λ2, such that the problem (4.0.1), (4.0.2) has at least three positives

solutions for λ ∈ (λ1, λ2), at least two positives solutions for λ = λ1 and λ = λ2, a unique

positive solution for λ ∈ (0, λ1) ∪ (λ2,+∞).

Proof.

We have in one hand H(0) = 0, H ′(0) > 0 and H(σ) < 0, then there exists s1 ∈ (0, σ)

such that H ′(s1) = 0, H(s1) > 0 and H(s1) > H(s) for s ∈ (0, s1). That is g′(s) > 0.

And in the other hand, H(s) is increasing in (M,+∞) , then there exists M0 ≥ M

such that H(M0) > H(s) for s ∈ (0,M0), we have H(s) ≥ H(M0) > H(s1) > 0 for

s ∈ [M0,+∞). for s ∈ [M0,+∞). That is g′(s) > 0 for s ∈ [M0,+∞).

Moreover, there exists s2 ∈ (s1, σ) such that H(s2) = 0, then g′(s2) < 0,

From the precedent arguments, we deduce the existence of nonnegative numbers λ1 and λ2,

such that (4.0.1), (4.0.2) has exactly one positive solution for each λ ∈ (0, λ1)∪ (λ2,+∞),

at least two positive solutions for λ = λ1 and λ = λ2, and at least three positive solutions

for λ ∈ (λ1, λ2).

Corollaire 4.2.2.

Assume that lim
s→+∞

f(s)

sp−1
= 0 and lim

s→+∞
((p− 1)f(s)− sf ′(s)) > 0.
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If there exists σ > 0 such that pF (σ) > σf(σ), then there exist λ1, λ2 with 0 < λ1 < λ2,

such that the problem (4.0.1), (4.0.2) has at least three positives solutions for λ ∈ (λ1, λ2),

at least two positives solutions for λ = λ1 and λ = λ2, a unique positive solution for

λ ∈ (0, λ1) ∪ (λ2,+∞).

Proof.

From lim
s→+∞

((p− 1)f(s)− sf ′(s)) > 0, we have lim
s→+∞

H ′(s) > 0, then there exists M > σ

such that H(s) is increasing in (M,+∞) and lim
s→+∞

H ′(s) = +∞. From the precedent

theorem we deduce the result.

Concluding remarks

As application, we can cite the example in Anuradha et al. ?? fc(u) = e
cu
c+u . Conditions of

theorem 4.2.2 and 4.2.3 are satisfied for 0 < c ≤ 4(p− 1) for all p ∈ (1, 2], and conditions

of theorem 4.2.4 are satisfied for c > 4(p− 1) and p = 2, by continuation we can say that

there exists a subinterval Iq := (q, 2] whit 1 < q < 2, for which conditions of theorem 4.2.4

are satisfied, but we could not prove that q = 1. So, we construct an example satisfying

conditions of theorem 4.2.4 for p ∈ (1, 2), it is given by the following equations:

fa,b(u) =

 u+ a, for 0 ≤ u ≤ b,

b+ a, for u > b

With σ = b such that σ > 2a
p− 1

2− p
and a, b > 0.

We have disussed the number of solutions only in the case where f is p-sublinear, because

of the approach adopted in this work we could not discuss the p-superlinear case, the

approach in Lakmeche and Hammoudi is more adapted to the last case.
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Chapter 5

Double solutions of three-point

boundary value problems for

p-Laplacian

In this chapter, we consider the following nonlocal boundary value problem

−(|u′(x)|p−2u′(x))′ = λf(u(x)), a.e. 0 < x < 1 (5.0.1)

u(0) = 0, u(ξ)− u(1) = 0 (5.0.2)

where λ ≥ 0, p ∈ (1, 2], 0 < ξ < 1, and f : R+ → R∗+ smooth enough.

When p = 2 the problem (5.0.1), (5.0.2) becomes similar to the problem studied by J.

Henderson [18]. He proved the following theorem

Theorem 5.0.1. ([18], th. 3.1)

Let r > 0 and 0 < a < b < c, such that 0 < a < r[r(1−r)+ξ(1−ξ)]
ξ(1−ξ) b < r[r(1−r)+ξ(r−ξ)]

(1−ξ) c.

And suppose that f satisfies the following conditions :
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(A) f(u) > 2c
ξ(1−ξ) , if c ≤ u ≤ c

ξ
,

(B) f(u) < 2b
ξ

, if 0 ≤ u ≤ b
ξ
,

(C) f(u) > 2(1−ξ)a
r[r(1−r)+ξ(1−ξ)] , if 0 ≤ u ≤ a.

Then (5.0.1), (5.0.2) (for p = 2, λ = 1) has at least two positive solutions, u1 and u2 such

that

a < max
0≤t≤r

u1(t), with max
0≤t≤ξ

u1(t) < b,

and

b < max
0≤t≤ξ

u2(t), with min
ξ≤t≤r

u2(t) < c.

The main aim of this work is to prove the existence of multiple positive solutions for

(5.0.1), (5.0.2). To reach our aim we use the quadrature method which is constructive

and simple.

5.1 Preliminaries

In this section we give some definitions and preliminaries.

Definition 5.1.1.

A pair (u, λ) ∈ C1([0, 1];R)× [0,+∞) is called a solution of (5.0.1), (5.0.2), if

1. (|u′|p−2u′) is absolutely continuous, and

2. −(|u′|p−2u′)′ = λf(u) a.e. in (0, 1), with u(0) = u(ξ)− u(1) = 0.

Remarque 5.1.1.

The pair (0, λ) is a solution of (5.0.1), (5.0.2) if and only if λ = 0.

Lemma 5.1.1.

If (u, λ) is a solution of the problem (5.0.1), (5.0.2) with λ 6= 0, then u(x) ≥ 0 ∀x ∈ [0, 1].
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Proof.

Assume that there exists x′ ∈]0, 1[ such that u(x′) < 0, where u(x′) = min
x∈[0,1]

u(x). Since

u is continuous there exists an interval [α, β] ⊂ [0, 1], such that x′ ∈ (α, β) and u(x) < 0

for x ∈ (α, β). Moreover, we have u(α) = 0 = u(β) and u′(α) < 0 < u′(β).

Then

|u′(α)|p−2u′(α) < 0 < |u′(β)|p−2u′(β).

Integrating (5.0.1) on [α, β], we obtain

|u′(β)|p−2u′(β)− |u′(α)|p−2u′(α) = −λ
∫ β

α

f(s)ds < 0,

since f(u(x)) > 0 for x ∈ [α, β], hence u′(β) ≤ 0 ≤ u′(α), which is impossible.

Then u ≥ 0 ∀x ∈ [0, 1].

Lemma 5.1.2.

Let (u, λ) be a solution of (5.0.1), (5.0.2) with λ 6= 0, then u 6= 0 and admits a unique

maximum at ξ+1
2

. Moreover u′(0) > 0 > u′(1) = −u′ (ξ), u′ is increasing on
[
0, ξ+1

2

)
and

decreasing on
(
ξ+1
2
, 1
]
, and u(ξ) = u(1) > 0.

Proof.

For λ 6= 0 we have u 6= 0 since f is positive.

The function u is continuous on the compact set [0, 1], then it reaches its maximum at some

point of [0, 1]. Since u(ξ) = u(1), then there exists x0 ∈ (ξ, 1) such that u′(x0) = 0. We

have |u′(x)|p−2u′(x) = −λ
∫ x
x0
f(s)ds < 0, for x > x0 and |u′(x)|p−2u′(x) = λ

∫ x0
x
f(s)ds >

0, for x < x0. Thus u′(x) > 0,∀x ∈ [0, x0) and u′(x) < 0,∀x ∈ (x0, 1].

By symmetry of the solution in the interval [ξ, 1] with respect to ξ+1
2

(see [11]), we find

x0 = ξ+1
2

and 0 = u(0) < u(ξ) = u(1).
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Let F : R+ → R+ be defined by

F (u) =

∫ ρ

0

f(s)ds,

and g : R+ → R+ be defined by

g(ρ) =


2
(
p−1
p

)1/p ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
, for ρ > 0,

0 for ρ = 0.

Let η ≥ 0, and define hη : [η,+∞)→ R∗+, by

hη(ρ) :=

(
p− 1

p

) 1
p

[∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

+

∫ ρ

η

ds

[F (ρ)− F (s)]
1
p

]
.

Remarque 5.1.2.

For η ≥ 0, the functions g and hη are continuous. Moreover g(ρ) ≤ 2hη(ρ) ≤ 2g(ρ),

h0(ρ) = g(ρ),∀ρ ≥ η and hη(η) = 2g(η).

For u ∈ C1([0, 1];R+), we define ||u|| := max
0≤x≤1

u(x) = ρ.

Lemma 5.1.3.

If (u, λ) is a solution of (5.0.1), (5.0.2) with λ > 0, then ||u|| > u(1) > 0 and λ
1
p = hη(||u||)

where η = u(1).

Proof.

Let (u, λ) be a positive solution of (5.0.1), (5.0.2) with λ > 0, then u 6= 0. From lemmas
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5.1.1 and 5.1.2, we have ||u|| = u
(
ξ+1
2

)
> u(1) = u(ξ) = η > 0, u′

(
ξ+1
2

)
= 0, u′(x) > 0

for x ∈
(
0, ξ+1

2

)
, and u′(x) < 0 for x ∈

(
ξ+1
2
, 1
)
.

Multiplying (5.0.1) by u′(x), and integrating it for x ∈
[
0, ξ+1

2

]
. We obtain

−
∫ ξ+1

2

x

(|u′(t)|p−2u′(t))′u′(t)dt =

∫ ξ+1
2

x

λf(u(t))u′(t)dt. (5.1.1)

We have in one hand∫ ξ+1
2

x

λf(u(t))u′(t)dt = λ

∫ u( ξ+1
2

)

u(x)

f(y)dy = λ(F (ρ)− F (u(x))), (5.1.2)

and in the other hand

−
∫ ξ+1

2

x

(|u′(t)|p−2u′(t))′u′(t)dt =
(p− 1)

p
(u′(x))p. (5.1.3)

From (5.1.1), (5.1.2) and (5.1.3), we have

(p− 1)

p
(u′(x))p = λ(F (ρ)− F (u(x))). (5.1.4)

Then for all x ∈
(
0, ξ+1

2

)
, we have

(u′(x))
p

=

(
p

p− 1

)
λ(F (ρ)− F (u(x))), (5.1.5)

which implies

u′(x) =

(
p

p− 1

) 1
p

[λ(F (ρ)− F (u(x)))]
1
p for x ∈

[
0,
ξ + 1

2

]
, (5.1.6)

and by symmetry

u′(x) = −
(

p

p− 1

) 1
p

[λ(F (ρ)− F (u(x)))]
1
p for x ∈

[
ξ + 1

2
, 1

]
. (5.1.7)

Integrate (5.1.6) between 0 and ξ+1
2

, we obtain

λ
1
p

(
ξ + 1

2

)
=

(
p− 1

p

) 1
p
∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

. (5.1.8)
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Similarly, by integration of (5.1.7) between ξ+1
2

and 1, we obtain

λ
1
p

(
1− ξ + 1

2

)
=

(
p− 1

p

) 1
p
∫ ρ

η

ds

[F (ρ)− F (s)]
1
p

. (5.1.9)

From (5.1.8) and (5.1.9) we deduce that

λ
1
p =

(
p− 1

p

) 1
p

[∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

+

∫ ρ

η

ds

[F (ρ)− F (s)]
1
p

]
. (5.1.10)

From equation (5.1.10) , we deduce the results of lemma (5.1.3) .

Consider the Dirichlet boundary value problem constituted by (5.0.1) and the Dirichlet

boundary conditions

u(0) = u(1) = 0 (5.1.11)

The problem (5.0.1), (5.1.11) has been studied in [22],[23] where the authors proved the

following results.

Lemma 5.1.4. ([22])

1. If lim
s→+∞

f(s)

sp−1
= 0, then lim

s→+∞
g(s) = +∞

2. If lim
s→+∞

f(s)

sp−1
= +∞, then lim

s→+∞
g(s) = 0

Theorem 5.1.1. ([23])

If lim
s→+∞

f(s)

sp−1
= 0, then the problem (5.0.1), (5.1.11) has at least one positive solution for

all λ > 0.

Proof.

From lemma (5.1.4), g(0) = 0 and lim
s→+∞

g(s) = +∞, then for all λ > 0 there exist at least

one positive solution.
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Theorem 5.1.2. ([23])

If lim
s→+∞

f(s)

sp−1
= +∞, then there exist λ∗ > 0 such that the problem (5.0.1), (5.1.11) has

at least two positive solutions for λ ∈ (0, λ∗), and no positive solution for λ > λ∗.

Proof.

From lemma (5.1.4), g(0) = lim
s→+∞

g(s) = 0, then g is bounded and admits a maximum at

some point ρ∗ > 0, we have then λ∗ = g(ρ∗)p > 0.

5.2 Main results

Let (u, λ) be a solution of (5.0.1), (5.1.11), u(1) = η with 0 < η < ρ and u( ξ+1
2

) =

max
x∈[0,1]

|u(x)| = ρ.

From equation (5.1.7) we obtain

λ
1
p ξ =

(
p− 1

p

) 1
p
∫ η

0

ds

[F (ρ)− F (s)]
1
p

. (5.2.1)

Hence

λ
1
p =

1

ξ

(
p− 1

p

) 1
p
∫ η

0

ds

[F (ρ)− F (s)]
1
p

. (5.2.2)

From (5.1.10) and (5.2.2), we have∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

+

∫ ρ

η

ds

[F (ρ)− F (s)]
1
p

=
1

ξ

∫ η

0

ds

[F (ρ)− F (s)]
1
p

. (5.2.3)

Theorem 5.2.1. Let ρ > 0, then

1. there exist a unique η∗(ρ) ∈ (0, ρ), such that (5.2.3) is satisfied for η = η∗(ρ), further

η∗ is continuously differentiable,

2. for each η∗ satisfying (5.2.3), there is a unique λ = λ(η∗(ρ)) given by (5.1.10)

or (5.2.2) such that (5.0.1), (5.0.2) has exactly one solution (u, λ), with ||u|| =

u
(
ξ+1
2

)
= ρ, u(1) = u(ξ) = η∗(ρ) and u′

(
ξ+1
2

)
= 0,
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Proof.

Let G : [0, ρ]→ R+ be defined by

G(η) =

∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

+

∫ ρ

η

ds

[F (ρ)− F (s)]
1
p

. (5.2.4)

We have G(0) = 2G(ρ) = 2

∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

and G is differentiable on (0, ρ), with

G′(n) =
−1

[F (ρ)− F (η)]
1
p

< 0, ∀η ∈ (0, ρ) (5.2.5)

Hence G(η) is a decreasing function of η.

Let H : [0, ρ]→ R+ be defined by

H(η) =
1

ξ

∫ η

0

ds

[F (ρ)− F (s)]
1
p

. (5.2.6)

Then H(0) = 0, H(ρ) =
1

ξ

∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

> g(ρ) and H is differentiable on (0, ρ),

with

H ′(n) =
1

ξ

1

[F (ρ)− F (η)]
1
p

> 0, ∀η ∈ (0, ρ). (5.2.7)

Hence, H(η) is an increasing function of η.

Thus there exist a unique η = η∗(ρ) ∈ (0, ρ) such that G(η∗) = H(η∗). From the implicit

function theorem η∗(ρ) is continuously differentiable.

There exist unique λ = λ(η∗(ρ)) given by (5.2.2) for η = η∗, hence the problem (5.0.1),

(5.0.2) has unique positive solution.

Corollaire 5.2.1.

Let ρ > 0, then the bifurcation diagram (λ, ρ) of the positive solutions of (5.0.1), (5.0.2)

is given by

λ
1
p (ρ) =

(
p− 1

p

) 1
p

[∫ ρ

0

ds

[F (ρ)− F (s)]
1
p

+

∫ ρ

η∗(ρ)

ds

[F (ρ)− F (s)]
1
p

]
, where η∗ is the solu-

tion of (5.2.3).
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Theorem 5.2.2.

1) If lim
s→+∞

f(s)

sp−1
= 0, then (5.0.1), (5.0.2) has at least one positive solution for all λ > 0.

2) If lim
s→+∞

f(s)

sp−1
= +∞, then there exist λ∗0 =

(
sup

{
hη∗(s) (s) ; s ∈ (0,+∞)

})p
such that

(5.0.1), (5.0.2) has at least two positive solutions for λ ∈ (0, λ∗0), and zero positive solution

for λ > λ∗0.

Proof.

We have g(ρ) ≤ 2hη∗(ρ)(ρ) ≤ 2g(ρ), for all ρ > 0. From theorems 5.1.1 and 5.1.2, we

deduce the results above.

5.3 Concluding remarks

In this work we have studied a nonlocal boundary value problem involving the p-Laplacian,

this problem has been studied by J. Henderson [[18].], who proved the existence of two

positive solutions, for specific function f using the Avery-Henderson double fixed points

theorem [4]. In our work we proved that the generalized problem, considered in this

paper, has at least one positive solution for all λ > 0 when lim
s→+∞

f(s)

sp−1
= 0, and at least

two positive solutions when lim
s→+∞

f(s)

sp−1
= +∞, for λ ∈ (0, λ∗). These results extend those

obtained in [[18].], for p 6= 0. We have used the quadrature method which gives more

information than the method used in [[18].], in fact, in lemma 2 we have information

on the maximum of the solutions and on the signs of its derivative on [0, 1], and the

description of the bifurcation diagram of the solutions in corollary 1.

It will be very interesting to study the exact number of solutions of (5.0.1), (5.0.2) when

lim
s→+∞

f(s)

sp−1
= A where 0 ≤ A ≤ ∞, we might obtain three or more positive solutions

for A = 0, if we combine the conditions assumed by J. Henderson (theorem 1) and the
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conditions in 1) of theorem 5. Some recent works related to our problem (see [17]) consider

a multi-point boundary value problem with u(1) =
m∑
i=1

αiu(ξi), ξi ∈ (0, 1), αi > 0, in our

knowledge there is no works on this problem using the quadrature method, it will be very

interesting to see if this method is useful in this case.
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