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Introduction

In the study of nonlinear phenomena in physics, engineering and many other applied
sciences, some mathematical models lead to multi-point boundary value problems associ-
ated with non-linear ordinary differential equations. Started to fairly late study this kind
of problem, initialed by II'in and Moiseev [19], they studied the existence of solutions
for a linear multi-point boundary value problem (BVP). Gupta studied some three-point
boundary value problems for nonlinear ordinary differential equations [16]. Since then,
more general multi-point boundary value problems have been studied [17],[26],[27],[31].
Within the following ten years, the study on nonlocal boundary value problems for ordi-
nary differential equations has been made great progress.

The purpose of the present thesis is to study nonlinear differential equations with non-
local conditions. We shall obtain existence and uniqueness results based on an operator
approach using fixed point theorems and the quadrature method.

This thesis consists of five chapters

In the first chapter, we introduce notations, definitions , lemmas and fixed point theorems
to be used in the next chapters.

In chapter 2, we present some existence results of positive solutions for a class of nonlinear

third order boundary value problem with delay given by



u”(t) + Xa(t)f(t,u(t —7)) =0, teJ=1]0,1],
(P u(t) = au(n), -7 <t <0,

u(1) = Bu(n),

u (0) =0,

where a, 3,m and 7 are positive constants such that n € (0,1),0 < 7 < % and A is a real
positive parameter.

By the mean of Krasnoselskii’s fixed point theorem, sufficient conditions are found to
obtain existence of positive solutions of (P;).

In chapter 3, we investigate the existence of positive solutions for second order nonlinear
boundary value problems. By using the Leray-Schauder fixed point theorem, some suffi-
cient conditions for the existence of positive solutions of the following nonlinear second

order delay boundary value problem are obtained

;

u’'(t) + Xa(t) f(t,u(t — 1)) =0, teJ=]0,1],
(P2) § u(t) = au(n), —7 <t <0,

u(l) = pu(n),

\

where «, 3,1 and 7 are positive constants such that n € (0,1) and X is a positive param-
eter.

In chapter 4, we consider the following boundary value problem involving the p-Laplacian

— (| (@) [P/ () = M (u(z)), pp.0<z <1,
(P3)

where A > 0 and p € (1,2]. We investigate the existence of positive solutions of the p-

Laplacian, using the quadrature method. We prove that the number of positive solutions
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depends on the asymptotic growth of the nonlinearity.
The purpose of chapter 5 is to study the existence of solutions to the following nonlocal
boundary value problem involving the p-Laplacian operator

(P —(Ju/ ()|~ () = M (u(x)), pp.0<z<I1,

where A >0, p € (1,2] and 0 < £ < 1. The existence of multiple positive solutions of the
BVP (P4) is proved using the quadrature method. The number of solutions is depending

on the asymptotic behavior of f.



Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions and preliminary results that will be
used in the sequel.

We shall consider the Banach space E' = C([a,b],R) endowed with the maximum norm

1Yllan) = max ly(t)| for y € E.

Definition 1.0.1. An operator T : E — FE is completely continuous if it is continuous

and maps bounded sets into relatively compact sets.

Definition 1.0.2. (Arzela-Ascoli Theorem). A subset A of C([a,b],R) is relatively com-

pact if and only if it is bounded and equicontinuous.

Definition 1.0.3. Let X be a real Banach space. A monempty, closed and convex set

P C X is a cone if it satisfies the following two conditions:
1. Ifxr € P and A > 0 then \xz € P,
2. If x € P and —x € P then x = 0.

The cone P induces an ordering < on X by
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x <y if and only if y —x € P.
Now we present the well-known Krasnosel’skii fixed point Theorem on cone.

Theorem 1.0.1. Let X be a Banach space, and let K C X be a cone. Assume that €2y

and €y are open subsets of X with 0 € q, Q1 C Qs and let
A:KN(Q\ ) = K
be a completely continuous operator such that

1 ||Au|| < ||ul| for w e K N0OQy and ||Aul| > ||ul| for u e K N 0Q,, or

2. [JAu|| > ||u|| for u e KN OQ and ||Au|| < ||u|| for u € K N OQs.
Then A has a fized point in K N (Qy \ Q)

Theorem 1.0.2. (Leray-Schauder)
Let Q be the convexr subset of Banach space X, 0 € Q and T : Q — € be completely

continuous operator. Then, either

1. T has at least one fized point in 2; or

2. the set {x € Q/x = \Tz,0 < X\ < 1} is unbounded.

Definition 1.0.4. A function f : [a,b] — R is said to be absolutely continuous on [a,b]

if, given € > 0, there exists some 6 > 0 such that
Z |f(yi) — [(xi)] <e.
i=1
whenever {[x;,y;] 11 =1,2,....,n} is a finite collection of mutually disjoint subintervals of
[a, b] with Z ly; — x| < 6.
i=1

Proposition 1.0.1. If f is absolutely continuous, then f' exists almost everywhere and

it 15 integrable.



Chapter 2

Existence of positive solutions for a
third order multi-point boundary

value problem with delay

In this chapter, we consider the existence of positive solutions for the following multi-point

boundary value problem

u” (t) + Na(t) f(t,u(t — 1)) =0, teJ=10,1],

u(t) = au(n), —7<t<0,

(2.0.1)
u(1) = Bu(n)
u (0) =0

where «, 3, and 7 are positive constants such that n € (0,1),0 < 7 < % and \ is a
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positive real parameter. We study the existence of positive solutions for a class of bound-
ary value problems for the third order differential equations with delay by the mean of

Krasnosel’skii fixed point theorem on cone.

Let the following hypotheses be satisfied

1— pn?
1—n2’

1

(H1) 0<f< 5, 0<a<
Ui

(H2) f:]0,1] x [0,00) — [0,00) is continuous,

(H3) a:0,1] — [0,00) is continuous and does not vanish identically on any subinterval.

2.1 Preliminaries

In this section, we give some preliminaries needed for the rest of this chapter.

Definition 2.1.1.
A function u € C([—7,1]) is called a solution of (2.0.1) if it satisfies the following prop-

erties
1. u(t) >0Vt € [-T1,1],
2. u(t) = au(n) vt € [—1,0], u(1) = Bu(n), «'(0) =0,

3. u € C3([0,1)) and u” (t) = —a(t) f(t,u(t — 7)) Vt € [0, 1].

10



Furthermore, wu is a positive solution of (2.0.1) if it is a solution of (2.0.1) with u(t) >

0Vte(0,1).

Lemma 2.1.1.

For y € C([0,1]) the problem

"

w (t)+y(t) =0, te(0,1), (2.1.1)
w(0) =w (0) = w(l) =0 (2.1.2)
has a unique solution
1
wt) = [ glt.o(s)ds, (21.3)
0
where
201 — 6)2 — ({ — §)2
) Sl k) P}
g(t> S) - t2(1 _ S>22 (214)
= 0<t<s<l
2
Proof.

t
From (2.1.1), we have w(t) = —%/ (t — s)*y(s)ds + At* + Bt + C.
0
t t
Then w'(t) = —t / y(s)ds + / sy(s)ds +2At + B.
0 0

1
From (2.1.2), we obtain A = 5/ (1 —5)*y(s)ds,B=0and C = 0.
0

Therefore, the boundary value problem (2.1.1),(2.1.2) has a unique solution given by

w) = 5 [@= s + [

- —%/Ot(t—s)Qy(s)ds +/Ot

= [ atesisris.

(1 —5)%y(s)ds
L2

(1= sfyls)ds + [ 501 sfus)ds

t

SIS
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Lemma 2.1.2.

For any y € C([0, 1]) the problem

"

W)yt =0, telo1], (2.1.5)
w(0) = au(n),  w(0)=0,  u(l)=Puln), (2.1.6)
has a unique solution u(t) = /o G(t,s)y(s)ds, where

Bt? + a (1 —t2)

G(t,s) = g(t,s) + ,S). 2.1.7
(t,s) =g(t.s) (1—6772)—04(1—772)9(77 ) (2.1.7)
Proof.
Suppose that the solution of (2.1.5),(2.1.6) can be expressed by

u(t) = w(t) + Ait* + Bt + O, (2.1.8)

where Ay, By and C} are constants and w is the solution of (2.1.1),(2.1.2) given by (2.1.3).
From (2.1.2) and (2.1.8) we have u(0) = C1,u(1) = A, + By + C1,u(n) = w(n) + Ain? +
Bin+ Cy, and u'(t) = w'(t) + 24, + By.

Then By = u/(0) — w'(0) = 0.

From (2.1.6) we obtain (1 —a)C; —an?A; = aw(n) and (1—8)Cy + (1 —Bn?)A; = Bw(n).

L (Beael) L aw()
From (H1), we have o # 1_772,the Ay (1—5772)—04(1—7]2)721 dCy =37 —a—)
Hence
B B2 + a1 — %)
WO =v O+ Ty e -
Finally, we obtain
B 1 BtQ + a(l _ t2) 1
u(t) —/0 g(t,s)y(s)ds + 1= —all _772)/0 g(n, 8)y(s)ds. (2.1.9)

Thus, the Green’s function G(¢, s) for the boundary value problem (2.1.5),(2.1.6) is given
by (2.1.7).
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To prove the uniqueness of the solution u, assume that v is another solution of the three-

point boundary value problem (2.1.5),(2.1.6).

Let z(t) := v(t) —u(t) Vt € [0,1]. Then, we get 2" (t) = v"(t) —u" (t) = 0 Vt € [0,1],

therefore

2(t) = cot® + 1t + e, 2 (t) = 2ot + ¢

where ¢y, c1, co are constants.

From (2.1.6), we have

From (2.1.10), we obtain

20)=cy, z(1)=co+cr+ec, 2(0)=c1, 2(1n)=con’+an+c.

(2.1.10)

(2.1.11)

(2.1.12)

From (2.1.11),(2.1.12) we have ¢; = 0, (1—a)ca—an?cy = 0 and (1—)ca+(1—n*)co = 0.

1— 2
Since o # 1—&2, we obtain ¢y = ¢; = ¢3 = 0.
-n

Therefore z =0, so v(t) = u(t) Vt e [0,1].
Lemma 2.1.3. The function g has the following properties
(i) 0< g(t,s) < s(l—s)? Vt,s€(0,1],

(i1) g(t,s) = ®(t)s(1 —s)* Vt,s €[0,1], where

(tQ B 1'
— te |0, =
2 _’2_7
D(t) =
t(1—t 1
=t Ly
| 2 2

Proof.

It is obvious that g is positive.
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Moreover, for 0 < s <t <1

[P(1— )2 — (t — )] = %s(l SO =) + (t— 9)

[25(1 — 5)%] = s(1—s).

DN DO

<

1
For0<t<s<1,g(ts) = 5252(1 —5)2 < =s%(1—5)? < s(1— )2

1
2
Thus (7) holds.

If s=0o0r s=1, we easily see that (i) holds.

If s € (0,1) and ¢ € [0, 1], we have, for 0 < s <t < 3,

g(t,s) _ t2(1 —s)* — (t — s)? _ s(I—=1t)[t(1—s)+ (t—s)]
s(1 —s)2 2s5(1 — s)? 2s(1 — s)2
- s(1 —)t(1 — s) - t1—t) _ 2

> vVt € 01
2s(1—s)2  ~ 2 72 2]

1 g(t, s) t2(1—s)2 2 2 _t(1-1t) 1
For - <t<s<1 weh - = > T e o).
' TR WO 192 T 2s(1—s)2 257 2 2 2

Thus (i¢) holds.
Lemma 2.1.4. The function G has the following properties

(i) G(t,s) >0 Vt,sel0,1],

max (1 + an? 1+ B(1 —n?))
(1=5n)—al—n*)

(it) G(t,s) < Mys(1 —s)* Vt,s€[0,1] and M, =

1 2
(4ii) min G(t,s) = Mys(1 — s)* Vt,s € [0,1] where o € (0,5) and M, = % +

i3]
(402 +3a) 2to
(1=p87°) —a(l—n?)
Proof.

It is clear that (i) holds.

Two cases will be considered for the proof of (ii).
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Case(1)

For 0 <t < n, by Lemma 2.1.3 (i) we have

Bn? + «

Gy )y sy

s(1 —5)* < Mys(1 — s)2.

Case(2)
B+al -7’ 2
For n < t < 1, we have G(t,s) < s(1 — s)? + s(l —s5)° <
! o) < U= gy —a -y Y
Ms(1 — s)°.
Then we have (7).
From (ii) of Lemma 2.1.3, we have
n i) > min s(1— o) o)+ 2 EAZE g
min s) > min s(1—s
o<t<t o<t<i (1—06n%) —a(l —n?) "
3
, | o? Bo? + 10 )
> 1— — P = Mys(1 — s)*.
8( 8) 2 + (1 . ﬂng) - Oé(l . 772) (77) 25( S)

Thus (44i) holds.

Lemma 2.1.5.
If y € C([0,1]) and y > 0, then the unique solution u of the boundary value problem
(2.1.5),(2.1.6) satisfies min u(t) = Ol[ully where [[ully = sup{|u(?)]; 0 < ¢ < 1} and

o<t<i
M.

[ ——
M,

Proof.

For any ¢ € [0, 1], by Lemma 2.1.4 we have

u(t) = /0 G(t,s)y(s)ds < M1/0 s(1 — s)*y(s)ds,

15



thus ||ul|; < M, fo (1 — 5)%y(s)ds.

1
Moreover, from Lemma 2.1.4 for t € [a, 5} and o € (O, 2) we have

M”:ié Gﬁﬁnﬂﬁms2]%a/zdl—sfy@ﬁw;>szMh

Lemma 2.1.6.

2
1—
Ifu is a positive solution of (2.0.1), then u(n) = v||ul|, wherey = ﬂ, 71 = min {%, l 5 il
V2
71 max(oz,ﬁ)
d vy = 1 :

N =)
Proof.
From (2.1.9), for every positive solution u of (2.0.1) we have

1

ut) = A [ gt )alo)f(suls = 7)ids
0
2 a 2
+)\5t+—;(fn fo (s)f(s,u(s —71))ds.

By Lemma 2.1.3 (i) we have

1

lull < X [ s( = 92alo)f s, uls = 7)ds
0
1
+)\m fo g(n,s)a(s)f(s,u(s —7))ds
where 1 = max (o, ).
Then
7 n(l—n) ' n* n(l—n) 2
min § —; l|lul| < /\/ min § —; s(1 —s)%a(s)f(s,u(s—7))ds
27 2 ; 27 9
n2ml—m}
pmin § o =

By Lemma 2.1.3 (i) we have

win {2 D g < g, $)a(s) (s, u(s — 7))ds

2
By + a(l —1?)
(1=5n?) —a(l —n?)

16
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(ol
PP +a(l —n?)
Then we deduce that ~vq||u|| < max(1, v)u(n) = you(n).

where v =

We deduce from the results above that the boundary value problem (2.0.1) has a positive

solution u if and only if u is positive and it is a fixed point of the operator T" defined by
au(n), —1<t<0,

Tu(t) = 1
)\/0 G(t,s)a(s)f(s,u(s —7))ds, 0<t<1.

(2.1.13)

Let P be given by the following set

{ue C([-7,1)NC*0,1]) : u(t) =0 for t € [-T,1],

u(t) = au(n) for —7 <t <0,u(l) = Bu(n),u (0) =0}

and Ky be a cone in the Banach space C([—7,1]) defined by

Kp := {u € P, min u(t) > 0||u||}

oSt

1
where ||u|| =sup {|u(t)|: =7 <t <1} and o € (0, 5) :
Lemma 2.1.7.

The fized points of T are solutions of (2.0.1), furthermore T : Ky — Ky is completely

continuous.

Proof.
From (2.1.13), we have

(Tw)" (t) + Xa(t) f(t,u(t — 7)) =0, teJ=10,1],
(Tu)(t) = a(Tu)(n),  —7<t<0O,

(Tw)(1) = B(Tu)(n),

(Tu)'(0) =0

17



Therefore, the fixed points of T" are solutions of (2.0.1).

Moreover, from Lemma 2.1.5 we can see that T : Ky — Ky is well defined.

Thus T'(Ky) C K.

Next, we shall show that 7" is completely continuous.

Suppose u, — u (n — oo) and u, € Ky Vn € N, then there exists M > 0 such that
|un|| < M. Since f is continuous on [0, 1] x [0, M], it is uniformly continuous.

Therefore, Ve > 0 there exists § > 0 such that |z — y| < 0 implies |f(s,z) — f(s,y)| <
e Vs € [0,1], z,y € [0, M] and there exists N such that |u, — ul| < 0 for n > N, so

|f(s,un(s — 7)) — f(s,u(s —7))| <e, for n > N and s € [0, 1]. This implies that

Tun(t) = Tu(t)] = IA/O G(t,s)a(s)(f(s,un(s = 7)) = f(s,u(s = 7)))ds|

< )\/0 G(t,s)a(s)|f(s,un(s — 7)) — f(s,u(s — 7)|ds
< e)\/lG(t, s)a(s)ds.

Therefore 7" is continuous.

Let ©Q be any bounded subset of Ky, then there exists v > 0 such that ||u|| < v for all
u € Q.

Since f is continuous on [0, 1] x [0,~] there exists L > 0 such that |f(¢,v)| < L ¥(t,v) €

[0, 1] x [0,~]. Consequently, for all u € Q and t € [0.1] we have

Tu(t)] = ‘)\/0 G(t, s)a(s) f(s, uls — 7))ds g)\MlL/O s(1 — 5)2a(s)ds.

Which implies the boundedness of T€2.
Since G is continuous on [0, 1] x [0, 1] it is uniformly continuous.

Then Ve > 0 there exists 0 > 0 such that |t; — to| < ¢ implies that |G(t1,s) — G(ts, s)| <

18



e Vs € [0,1].
So, if u € Q)

|Tu(ty) — Tu(ts)] < )\fol |G (t1,8) — G(ta, s)|a(s) f(s,u,(s — T))ds
< ALe fol a(s)ds.

From the arbitrariness of €, we get the equicontinuity of T€2.

The operator T is completely continuous by the mean of the Ascoli-Arzela theorem.

The following theorem will be used to prove the existence of solutions of (2.0.1).

Theorem 2.1.1. ([29])
Let X be a Banach space and K(C X) be a cone. Assume that Q01 and Qs are open subsets
of X with 0 € 2, and Q) C Q.

IfA:Kn (52\91) — K is a completely continuous operator such that either
(1) |JAul] < ||ul] for u e KNoQy, and ||Au|| = ||u]] for u e KN OQy, or

(13) ||Aul| = |ul| for u e KN 0OQy, and ||Aul| < ||u]| for v € KN 0Q,.

then A has a fized point in KN (ﬁz\Ql) .
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2.2 Main results

First, we define some important constants by the following

f(t,u)

f° = lim sup max ,

u_>0+ tEJ u

f(t,u)

.
fo =l fuf i =
f(t,u)

?

u
t,u
foo = liminf min (¢ )
u—oo  ted u

f°° = lim sup max
u—oco €S

Let A and B be defined by

0<ti<1

A = sup (a’y /OT G(t, s)a(s)ds + H/iH G(t, s)a(s)ds)

and

B =M, (a/OTs(l—s)Qa(s)ds +/Tls(1—s)2a(s)ds>.

Theorem 2.2.1.
Suppose that Afs > Bf°.
Then for each

A€ ((Afee) (BT (2.2.1)
the problem (2.0.1) has at least one positive solution.
Proof.

Let A € ((Afs)™, (Bf%) 1), then there exists € > 0 such that

1 1
0< ;{Z}Z;—:TES <A< 2§Z}irqrzj. (2.2.2)

Let € be fixed. By the definition of f°, there exists r > 0 such that

f(s,u) < (fP+e)u for 0 <u<r (2.2.3)

20



Let Q) = {u € C([—7,1]) : ||u|]| <}, then for u € Ky NN we have by (2.2.3)

Tu(t) = A /0 Gt $)a(s) (s, uls — 7))ds
< AML(f° + ) /018(1—8)2a(3)u(s—7')ds
=+ [ Ts = satantnds + [ o= s aloputs s )
< (0 +0) (o [Ts =5 ato)ts + [ s(1—fatsyds )
= ABUO+ )l

Then Tu(t) < ||u||. Therefore ||Tu|| < ||ull.
Moreover, there exists R > r such that f(s,u) > (foo — €)u for u > R.

Let Qo = {u € C[—7,1] : ||u|]| < R}, then for u € Ky N 0Qs we have

ITull > Alfu—e) sup / G(t, s)a(s)uls — 7)ds

0<t<1

1
= —€) sup (/ G(t u(n)ds +/ G(t, s)a(s)u(s—T)ds)
o<t<1 \Jo .
1-71
=  — €) sup </ G(t u(n)ds + G(t,s+7)a(s+7‘)u(s)ds>
0<t<1 0 0
> o — € sup(/Gts s)au(n ds+/Gt5+T)(s+7')()ds>
o<t<1 \ Jo
> ) sup (/ G(t, s)a(s)ar]ul|ds +/ G(t, s +7)a (5—1—7’)6’“u||d5)
o<t<1 \ Jo
+T
> o —€) sup | ay G a(s)ds +46 G(t,s)a(s)ds | ||ull
0<t<1 0 o+T

= M(foo = )l[ull]

Then |Tul| 2 [ul|.
Therefore, by (i) of Theorem 2.1.1, T has a fixed point v € Ky N (Q \ Q1) and ||u|| > r

21



From Lemma 2.1.7, u is a positive solution of (2.0.1).

Theorem 2.2.2.
Suppose that Afy > Bf*°, then for each

A€ ((Afo) (BT (2.24)
the problem (2.0.1) has at least one positive solution.

Proof.

From (2.2.4) there exists € > 0 such that

0< ! <2< L (2.2.5)
A(fo—€) = 7 B(f*+e) o
Then there exists r* > 0 such that
f(s,u) = (fo—€)u for 0 <u<r". (2.2.6)

Let Q) = {u € C[—7,1] : ||u|]| < r*}, then for u € Ky N 0Q; we have by (2.2.6)

ITull > A swp / G(t, s)a(s)(fo — Juls — 7)ds

0<t<1

/OT G(t, s)a(s)au(n)ds + /Tl G(t,s)a(s)u(s — 7)ds )

/OT G(t, s)a(s)au(n)ds + G(t, s+ 7)a(s + T)u(s)ds )

0

/OT G(t, s)a(s)au(n)ds + /2 G(t,s+ 7)a(s + 7)u(s)ds )

WV

A(fo —€) sup

0<i<1

/OT G(t, s)a(s)ay||ul|ds + /2 G(t,s+ 7)a(s + 7)0||u||ds )

WV

A(fo —€) sup

0<i<1

WV
=
Sh
|
Ny
w
[wry
o]
N N N NN

ory/OT G(t,s)a(s)ds + 6 ’ TG(t, s)a(s)ds) ||wll.

o+T1

= AA(fo = )l[ull.
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Then ||Tu|| > ||ul]-
By definition of f*° we can choose R, > r* such that for u > R., f(s,u) < (f* + €)u.
Then

Tu(t)

N

/ Mys(1 — s)%a(s) f(s,u(s — 7))ds

N

M/O s(1 — 5)2a(s) f(s, R)ds

= ok (o [Csu-spas + [ s-satsis )
_ ABU™ 4 OR. < R = |l

Then ||Tu|| < ||ul].

Therefore, by (i) of Theorem 2.1.1, T has a fixed point u € Ko N (Q2\ 1) and ||u|| = r*

From Lemma 2.1.7, u is a positive solution of (2.0.1).
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Chapter 3

Positive solutions for a second order
three-point boundary value problem

with delay

In this chapter, we investigate the existence and multiplicity of positive solutions to the

following nonlinear second order boundary value problem with delay

u' (t) +a(t)f(t,ult — 1)) =0, t€10,1],
u(t) = Bu(n), —7 <t <0, (3.0.1)

u(1) = au(n),

where 0 <n<1,0<a< % and 0 < 8 < 11_—_0‘7;[ are given constants.
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3.1 Preliminaries

Lemma 3.1.1.

Let 3 # 11__—0‘77’7 Then fory € C([0,T], R), the problem

W) +yt) =0, tel0,T], (3.1.1)

u(0) = Bu(n), u(l) = au(n) (3.1.2)

has a unique solution

= 1 S s)as ﬂ+(&_ﬁ>t 1 S s)as
ut) = [ Glae)s + L [ G (313
where
{ s(1—t), 0<s<t<1,
G(t,s) =
t1—s), 0<t<s<lL
Proof.

From (3.1.1), we have

u(t) = u(0) +'(0)t — /0 (t—s)y(s)ds := A+ Bt — /0 (t — s)y(s)ds.

With
u(0) =
u(n) = A+ Bn— [)'(n— s)y(s)ds,
uw(l)=A+ B — fo (1 —s)y(s)ds.

By (3.1.2) and from u(0) = Su(n), we have

(1 B)A— Bfn=—0 /0 "0 — s)y(s)ds.

From u(1) = au(n), we have
(1-—a)A+ B(l—an) = /0 (1 —s)y(s)ds — oz/on(r] — s)y(s)ds.

25



Therefore,

= b 1 — 8)y(s)ds
A= ey J, (o
p1 !
A, 0w
and
= 1_/8 1 — S S)as
B = e gy Jy (1~

a—f K
T, 0 s

from which it follows that

= ﬁn 1 — S S)as
) = R,
6 n
" —am) B0 / (1= s)y(s)ds
(1- Bt 1
0 —an) — B0~ 1) [ = swisyas

(11— a(:)__%)(tl ) /On(n — s)y(s)ds — /0 (t —s)y(s)ds
B-a)t=p

= —/0 (t — s)y(s)ds + (L= an) - A7) /0 (n— s)y(s)ds

A—B)t+pn [
(0 —an) - B—1) [ = swtsyas
B+ (a— Bt

:/0 G(t, s)y(s)ds + A= an) =B —n) /0 G(n, s)y(s)ds.

The function u presented above is a solution to the problem (3.1.1)-(3.1.2), and the

_|_

uniqueness of u is obvious.

Lemma 3.1.2.
Let 0 < a < %, 0<pB< 11_—_0‘77” If y € C([0,1], [0,00)), then the unique solution u of the

problem (3.1.1)-(3.1.2) satisfies



Proof.

It is known that the graph of u is concave down on [0, 1] from u”(t) = —y(t) < 0, so
u(m) —u(0) _ u(1) ~ u(0)
n - 1
Combining this with (3.1.2), we have
1 p Pt > :
If u(0) < 0, then u(n) < 0. This implies that 5 > 11_—_0‘17”, which is a contradiction with

B < 111—“77’7
If u(1) <0, then u(n) < 0, and the same contradiction emerges.

Thus, it is true that u(0) > 0, u(1) > 0, together with the concavity of u, we have
u(t) >0, tel0,]1]
as required.

Lemma 3.1.3.

Let an # 1 and § > max{ll_—_o‘n’l,O}. If y € C([0,1],]0,00)), then problem (3.1.1)-(3.1.2)
has no nonnegative solutions.

Proof.

Suppose that problem (3.1.1)-(3.1.2) has a nonnegative solution u satisfying u(t) > 0,t €
[0,1] and there is a ty € (0,1) such that u(ty) > 0.

If w(1) > 0, then u(n) > 0.

This implies

that is




which is a contradiction with the concavity of w.

If u(1) =0, then u(n) = 0.

When ty € (0,7), we get u(ty) > u(n) = u(1), a violation of the concavity of u.

When ¢, € (n,1), we get u(0) = fu(n) = 0 = u(n) < u(ty), another violation of the
concavity of u.

Therefore, no nonnegative solutions exist.

Lemma 3.1.4.

Let 0 < a < 717 and 0 < < ll—Tann If y € C([0,1],[0,00)), then the unique solution to the

problem (3.1.1)-(3.1.2) satisfies

min u(t) = 3Ju], (3.1.4)
where

~ := min {—al(l—_ozz)’ ?, —/8(11_ 77), ?} (3.1.5)
Proof.

It is known that the graph of w is concave down on [0, 1] from v”(t) = —y(t) < 0.
We divide the proof into two cases. Case 1.

0<oz<1,then111—“n”>oz.

For w(0) = Bu(n) = gu(l), it may develop in the following two possible directions.
(i) If 0 < a < B, then u(0) > u(1), so

in u(t) = u(1).
tgfggﬂ() u(1)

Assume ||u|| = u(t;) for ¢; € [0,1), then either 0 <t; <n < p(1),or 0 <n <ty < 1.
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If0 <t <n<p(l), then

from which it follows that min u(t) > ——=
te[0,1] 1—an

fo<n<t; <1, from

u(n)
Ui ty 17

together with u(1) = au(n), we have

So n%(i)n]u(t) > ?Hu” (ii) If 0 < B < a, then u(0) < u(1), so
te[0,1

in u(t) = u(0).
gﬁﬂﬁ u(0)

Assume ||u]| = u(ty) for ty € (0, 1], then either 0 <ty <n < p(1), or 0 <n <ty < 1.

If 0 <ty <n<p(l), from
un) o ults) _ ults)
-~ 1-t,= 1

together with w(0) = Su(n), we have

u(0) > ] u(t2)
1 —
Hence, min u(t) > 20—
te0,1] 1
If0o<n<ty, <1, from
ulta) _ ults) _ U(n)7
1 B t2 o n



together with w(0) = Su(n), we have

w(0) > Zu(t,).

l>0z21,then1_ﬂ§a.
n 1-n

In this case, § < « is true. This implies that u(0) < u(1). So,

in u(t) = u(0).
tgféﬂ]“() u(0)

Assume ||u|| = u(tg) for ty € (0,1]. Since a > 1, it is known that u(n) < u(1), together

with the concavity of u, we have 0 < n <ty < 1. Similar to the above discussion,

min u(t) >

t€[0,1] THUH

Summing up, we have

where
0<y= min{—a(1 —77)7 il —B(l —77)7 @} < L.
This completes the proof.
By Lemma (3.1.1), it is easy to see that the BVP (3.1.1)-(3.1.2) has a solution u = ()

if and only if u is a solution of the operator equation u = Tu, where
(

Bu(n),  —-17<t<0,
- / (t —s)a(s)f(s,u(s —7))ds
Tu(t) = ’ (—B+a)t+p n
(A —an)— B —7) /0 (n = s)a(s)f (s, u(s —7))ds
(1—B)t+ Bn

| T —an) =301 /0 (1= s)a(s)f(s,u(s — 7))ds, 0<t<s<l

We assume the following hypotheses:
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(Al) fe C([O7 00)7 [07 OO))a
(A2) a € C(]0,1],]0,00)) and there exists tg € (0,1), such that a(ty) > 0.

Define

fo= lim M, foo = lim —=

u—0t U u—o0 1

And

M, = /01(1 —s)a(s)ds, My = B/OT(l — s)a(s)ds + /Tl(l — s)a(s)ds.

Theorem 3.1.1.
Let Q be the convex subset of Banach space X, 0 € Q and ® : Q — Q be a completely

continuous operator.

Then either
1. ® has at least one fixed point in €); or

2. the set {x € Q/z = APz, 0 <\ < 1}, is unbounded.

3.2 Main results

Theorem 3.2.1.
Assume (A1) and (A2) hold. If fo = 0, then the boundary value problem (3.0.1) has at

least one positive solution.

Proof.
(1—an)— B —n)

Choose € > 0 such that e < .
T (1481 +n) M,
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By fo = 0, we know that there exists constant B > 0, such that f(u) < eu for 0 < u < B.
Let
= — > < 1 >
0= {uue (=r 1wz 0. Jull < B guin ) 2l |

Then (2 is the convex subset of X.

For u € Q, by Lemmas 3.1.2 and 3.1.4, we know that T'u(t) > 0 and Orgtigl Tu(t) > || Tulll.

Moreover,
Tu(t) < - . Oi)tﬁ?lﬁ_ - /0 "1 - 5)a(s) £ (5, u(s — 7))ds
b I [ gl uls = s
< T | 0 Sl uls = s
= a;)t%@ — /01<1 — $)a(s)f(s, u(s — 7))ds
S e [ 0 9 s ats = s
b = a1 uts s
< P o) ats = )i
<eq _1;7)5(_1;(;7)_ - /01(1 _ $)a(s)u(s — 7)ds
— e _1;75(_1;(17)_ - (/OT<1 — s)a(s)Bu(n)ds + /71(1 — S)a(s)uls — T)ds)
<l P (5 [T sgatoyis + [ (1= spatonts ) <l < 2

Thus, || Tu|| < B. Hence, T2 C Q.

We shall show that 7" is completely continuous.
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Suppose u, — u (n — o0) and u, € Q Vn € N, then there exists M > 0 such that
[unl| < M.

Since f is continuous on [0, 1] x [0, M], it is uniformly continuous.

Therefore, Ve > 0 there exists 0 > 0 such that |z — y| < ¢ implies |f(s,x) — f(s,9)| <
e Vs € [0,1], z,y € [0,M] and there exists N such that ||u, — u|| < § for n > N, so
|f(s,un(s — 7)) = f(s,u(s—7))| <e, forn> N and s € [0, 1].

This implies

Tun(t) = Tu(t)| = | /0 G(t, s)a(s)(f (s, un(s = 7)) = f(s,uls = 7)))

Btla—p) — 7)) — f(s,u(s —7)))ds
+(1—a77)—5(1—77)/0 G(n,s)(f(s,un(s ) — f(s,u( )))ds|

B+ (a—5) ' — — f(s,u(s — 7)|ds

=i (1—an) —ﬁ(l—n)]/o G(s,s)al(s)]f (s, un(s — 7)) = f(s,uls —7)|d

B+ (a—p) 1
(I—an) —B(1- n)]e/o G(s,s)a(s)ds.

Therefore T is continuous.

Let D be any bounded subset of 2, then there exists v > 0 such that ||u|| < ~ for all
ueD.

Since f is continuous on [0, 1] x [0,~] there exists L > 0 such that |f(¢,v)| < L ¥(t,v) €
[0, 1] %[0, 7].

Consequently, for all w € D and t € [0.1] we have

ﬁ+(a_ﬁ) 1 — T S
u—am—ﬁu—nﬂﬁ‘”&@“@ﬂﬁws ))d

B+ (a—p) !  Ovals\ds
u—am—ﬁu—nﬂ948“ Ja(s)ds.

Which implies the boundedness of T'D.

[Tu(t)] < |[1+

<[1+

Since G is continuous on [0, 1] x [0, 1] it is uniformly continuous.

33



Then Ve > 0 there exists 0 > 0 such that |t; — to| < ¢ implies that |G(t1,s) — G(ts, s)| <
1

eVs €[0,1]. So, if u € D |Tu(ty)—Tu(tz)] < / |G(t1,5)—G(t2, s)|a(s) f(s,un(s—7))ds <
0

Le /0 1 a(s)ds.

From the arbitrariness of €, we get the equicontinuity of 7'D.

The operator T' is completely continuous by the mean of the Ascoli-Arzela theorem.

For uw € Q and u = A\T'u, 0 < A < 1, we have u(t) = ANTu(t) < Tu(t) < B, which implies
|lul| < B. So {x € Q/x = Adx, 0 < A < 1}, is unbounded.

By theorem 3.1.1, we know the operator T has at least one fixed point in €2.

Thus the boundary value problem (3.0.1) has at least one positive solution. The proof is

complete.

Theorem 3.2.2.
Assume (H1) — (H4) hold. If fo = 0, then the boundary value problem (3.0.1) has at

least one positive solution.

(1 —an) — (1 —n)
2(1 =B+ Bn) M,
constant N > 0, such that f(¢,u) < eu for u > N.

Proof. Choose € > 0 and € < . By foo = 0 we know that there exists

Select
B>N+1+ 21— 5+ bn) M, max f(u).
(I —an) = B(1—n) = o<l
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Let Q = {u/u € C[—1,1],||ul < B,Omtinlu(t) < v|lu||}. Then for u € €2, we have
<t<

Tu(t) < 5 _(1@77)5115;(152 - /01(1 — $)a(s) f(s, u(s — 7))ds
< I [ ) St - s
e = A0 ot~ Mt = s
T B ey~ sl =7
: (1 —1@;)5—2’?1”— 1) /01(1 ~ s)als)euls = )ds
i _;;)5_251’7_ - /0 (1= s)a(s) o f(s, u(s — 7))ds
< e (5 [ atis + [ 0= sgats)as ) ul
+5 —104;)5—2?1”— - /0 (1~ s)a(s) o Fs,uls — 7))ds
S a0 T ) S
_ %B i _Zg)ﬁ_*;ff_ i P F(s,uls — 7))
< %B + %B ~ B.
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Thus, | Tu|| < B. Hence, T2 C Q.

It is easy that T": Q — Q is completely continuous.

For u € Q and u = A\T'u, 0 < A < 1, we have u(t) = ANTu(t) < Tu(t) < B, which implies
|lul| < B. So {x € Q/x = Adx, 0 < A < 1}, is unbounded.

By theorem 3.1.1, we know the operator T has at least one fixed point in 2. Thus the

boundary value problem (3.0.1) has at least one positive solution. The proof is complete.

36



Chapter 4

Multiple positive solutions of the

p-Laplacian

In this chapter, we consider the following boundary value problem involving the p-

laplacian

—([u/ (z) P72 () = Af(u(x)), ae 0<z<l1 (4.0.1)
u(0) =u(l)=0 (4.0.2)

where A > 0, p € (1,2] and f: Ry — R% smooth enough.
We investigate the existence of positive solutions of the p-Laplacian using the quadrature

method. We prove the existence of multiple positive solutions of (4.0.1), (4.0.2), in both

case lim & = Awith0< A< +4+o00 and lim f(s)
s—+oo0 gp~1 s—+oo gp~1

=0.

4.1 Preliminaries

In this section, we give some definitions and preliminaries.
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Definition 4.1.1.

A pair (u,\) € CH[0,1];Ry) x [0, +00] is called a solution of (4.0.1), (4.0.2), if
1. ([/|P~2u) is absolutely continuous, and
2. —([W|P~2u') = Af(u) a.e. in (0,1), and u(0) = u(1) = 0.

Remarque 4.1.1.
The pair (0,0) is a solution of (4.0.1), (4.0.2).

Definition 4.1.2.

The function f be called p-sublinear if liT fp(_Sz = 0, and it is called p-superlinear if
S—+00 S

lim E:A, (0 <A< o0).

s—+oo gP—1

p
Let F': Ry — R, be defined by F(u) = / f(s)ds, and g : R, — R be defined by
0

s =2(15) [ = T

for p > 0, and g(0) = 0.

Then we have

Lemma 4.1.1.

The function g is continuous.

Proof.

Let r > 0 fixed and p € [0, 7], we have

(A(p))7 =2 (%) ; /Op (F(p) fsp(s))i =2 (p ; 1)p /o1 (F(p) fd;(/w))

Sl
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Let m(r) = 1{(1)f]{f( )}. onam(r) >0, ¥r>0.

by using mean value theorem, for all v € [0, 1]

Jeo €]pv, p[C]0, 7], tel que F(p) — F(pv) = p(1 —v)f(co) > p(1 —v)m(r). (4.1.2)

from where

F(p) — F(pv) > p(1 —v)m(r). (4.1.3)
SO
1—1
0< P < rF___ -7 - (4.1.4)
(F'(p) = F(pv))r (m(r)p(l —v))r  (m(r)(1—wv))
Therefore
1 1\7 (' dv 1\7 (1 dv
1 — P 1 — P
o< <2 (LY <ot (2o) [ <)
p m(r) 0o (1—u)» p m(r) 0o (1—wv)r
Voo
The convergence of the improper integral / ( )1 implies that the improper integral
0 (1—w)r
P ds . .
+ converges uniformly in [0, ].
0 (F(p) = F(s))»

So A(p) is contained in [0, 7],  being arbitrary Ry so A(p) is contained in R,.

Lemma 4.1.2.
If f is class Ct, then g is differentiable and

s =2 (1) [

where H(s) = F(s) — 2f(s).

p

]1)+ dv, (4.1.6)

3=

SR
4

Proof.

Let r > 0 fixed and p € [0, 7], we have

s =2(2=1) [ s A
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v,

:2<p—1)é / [F(p) = £ (0] = [F(pv) = 5F (p0)]

[F(p) — F(pv)]"*r
_2(p-1 o[ (p—1)dv 1 p? 1t/ ]
T T~ _ [ tf (tp)dtdv
p < p ) A [F(p) — F(,OU)]; A [F(p) _ F(IOU)]H—; \/v ( p>

by using mean value theorem, for all v € [0, 1]

e €lpv, p[ClO, 7], tel que F(p) — F(pv) = p(1 —v)f(co) = p(1 — v)m(r).

D’ou . ]
<) F(p) —diwpv)]i < () [ (11); -

On the other hand we have

[} e p)at] < masx | £(p0)|(1 = v) = mawx |£/(5)|(1 = v) = M(p)(1 — v), where M(p) =

0<s<p
!
Jnax |f'(s)]

therefore

! 1 ! / M(p) ! —(1+1)
e apydtdy < —22 [ ) D — p)de
J [F(p) — Flpo)]*F | e (om(r) 5 /
= Mfp) /1 1 dv < 00.

(pm(r) e Jo (1 —wv) . ,
It follows that f is continuously differentiable.
Lemma 4.1.3. 1. If lim JGs) =0, then lim g(p) = +o0.
’ s—+oo gP—1 ’ p——+oo

2. If lim @ = +o00, then lim g(p) =0.

s—+0o0 § -1 p—+00

Proof.

1 1
— 1\ 7 »
1. Let lim f}fs) = 0. We have g(p) > 2 (%) (F—) :

s—+00 S -1

. o Pt
Then Bt P = AP ) =

Hence lim G(p) = +o0.

p—r+o0
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2. Without loss of generality, assume that 0 < A < 400 and M = %. Then, there
exists a positive number R such that f(s) > MsP~! for s > R.

Thus, for R < s < p, we have

(pP — sP). (4.1.7)

This implies

R p 2
That is
/RP(F(p) — F(s)) rds < (%) - %pl (1 - %) s (4.1.9)
Then
im [ (F(p)— F(s)) ds = 0. (4.1.10)

p—r—+00 R

Moreover, for 0 < s < R < p we have F(p) — F(s) > F(p) — F(R), using (4.1.7) we

obtain
F(p)— F(s) > %(pp — RP). (4.1.11)
Which gives
R 1 R M 1 1
/ (F(p) — F(s)) Pds < / (—) P (p" — RP)" Pds. (4.1.12)
0 o P
That is
R 1 M 1 1
/0 (F(p) — F(s)) Pds < (?)_F(pp — RP)"PR. (4.1.13)
Then
R 1
lim (F(p) — F(s)) rds =0. (4.1.14)
p—=+o0 Jq
From (4.1.10) and (4.1.14), we deduce that pli)rfoog(p) = 0.
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The case A = +o00 can be handled by similar arguments.

For w € C1([0, 1]; R, ), we define ||u|| := sup{u(s);s € (0,1)}.

Lemma 4.1.4.
1
If (u, \) is a solution of (4.0.1), (4.0.2) with A > 0, then \» = g(||ul|).

Proof.
Let (u, \) be a positive solution of (1), (2) with A > 0, and « > 0 in (0, 1).
By the maximum principle and symmetry. We have /(3) = 0, u(3) = |[u]|-

Moreover, u/'(z) > 0 for z € (0, 3) and «/(z) < 0 for z € (3, 1).

Let p = ||ul|. Multiplying (4.0.1) by «/(z), and integrate it for z € [0, 1], we obtain
_ / * () P2 (8) ) (1)t = / * () (1) . (4.1.15)
We have in one hand
3 u(3)
/ Af (u(t))u' (t)dt = /\/( ) fy)dy = A(F(p) = F(u(x))), (4.1.16)
and in the other hand
— /2(|u/(t)|p_2u’(t))’u'(t)dt = (p; 1)(u’(x))p. (4.1.17)
From (4.1.15),(4.1.16) and (4.1.17), we have
2= )y = AF(p) — Flula) (41.15)
Then for all z € (0, 3), we have
W@ = (S27) MF) -~ Flato), (4.1.19)



which implies

o (2) = (ﬁ)p AN(F(p) — F(u(z))]F for z € [0, %], (4.1.20)
and by symmetry
u(x) = — (1%) "INF(p) — Flu(@))]F for z € [%, 1]. (4.1.21)
From (4.1.16), we obtain
Ly (poty [f_ds
% ( - ) /O o PO (4.1.22)
Then Az = g(p) = g(||ul]).
Moreover, we have
o (p=1\F [' H(p)— H(pv) .
g(p)—2< > ) /0 [F(p)—F(pv)]H%d' (4.1.23)

Where H(s) = F(s) — 2f(s).

p

4.2 Main results

In the section we give our main results.

Theorem 4.2.1.
If tim )

s—+oo sP—1 o

A, with 0 < A < 400, then there exists \* > 0 such that the problem
(4.0.1), (4.0.2) has at least two positive solutions for A € (0, \*), and at least one positive

solution for A = \*, and zero positive solution for A > \*.
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Proof.
From lemma 4.1.3, liI_El g(s) = g(0) = 0. Then g is bounded and reaches its maximum
S—+00

at some point pg > 0. Further \* = (g(po))*.

Theorem 4.2.2.

If 1i£rn % = 0, then the problem (4.0.1), (4.0.2) has at least one positive solutions for
s—+00 S
all A > 0.
Proof.
Let lim J6s) = 0. Then from lemma 5.1.10, we have lim g¢(s) = +oo and ¢(0) = 0,
s—+oo0 gP—1 s—+o00

then (5.0.1), (5.0.2) has at least one positive solution for all A > 0.

Theorem 4.2.3.
I lim 1% ()

s—+o00 Spfl
solution for each A > 0.

= 0 and H is nondecreasing, then (4.0.1), (4.0.2) has a unique positive

Proof.
If H is nondecreasing H(p) — H(pv) > 0 for all v € (0,1)and p > 0. From (4.1.23) we
have ¢'(p) > 0 for all p > 0. That is g increasing from 0 to +oo. hence (4.0.1), (4.0.2)

has one and only one positive solution for each A > 0.

Corollaire 4.2.1.

If lim ) 0, and either (p — 2)f'(s) > sf"(s) for all s > 0, or (p —1)f(s) > sf'(s)

s—+oo gP~1 -
for all s > 0, then (4.0.1), (4.0.2) has a unique positive solution for each A > 0.

Proof.
If (p—2)f'(s) > sf"(s) for all s > 0, then H"(s) = i[(p— 2)f'(s) —sf"(s)] >0 for s > 0.
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That is H' is increasing. Further, we have H'(0) > 0, then H'(s) > 0 for s > 0, which
implies that H is nondecreasing.

If (p—1)f(s) > sf'(s) for s > 0, then H'(s) > 0 for s > 0, which implies that H is
nondecreasing.

Then, in both cases we have H nondecreasing, from theorem 4.2.3 we deduce the result.

Theorem 4.2.4.

Assume that lim J(s) =0 and lim H(s) = +oo. If there exist M and o > 0 such
s—+o00 spfl s—+00

that M > o > 0, H is nondecreasing for s > M and pF(c) < of(o), then there exist

A1, Ao with 0 < Ay < Mg, such that the problem (4.0.1), (4.0.2) has at least three positives

solutions for A € (A1, A2), at least two positives solutions for A = A\ and A = Ao, a unique

positive solution for XA € (0, A1) U (g, +00).

Proof.

We have in one hand H(0) = 0, H'(0) > 0 and H (o) < 0, then there exists s; € (0,0)
such that H'(s1) =0, H(s;) > 0 and H(sy) > H(s) for s € (0,s1). That is ¢'(s) > 0.
And in the other hand, H(s) is increasing in (M, +o0) , then there exists My, > M
such that H(M,) > H(s) for s € (0, M), we have H(s) > H(M,) > H(s;) > 0 for
s € [My, +00). for s € [My,+00). That is ¢'(s) > 0 for s € [My, +00).

Moreover, there exists sy € (s1,0) such that H(sy) = 0, then ¢'(s2) < 0,

From the precedent arguments, we deduce the existence of nonnegative numbers \; and Ao,
such that (4.0.1), (4.0.2) has exactly one positive solution for each A € (0, A1) U (Aa, +00),
at least two positive solutions for A = A\; and A = Ay, and at least three positive solutions
for A € (A1, A2).

Corollaire 4.2.2.

Assume that lim Js) =0 and lim ((p—1)f(s)—sf'(s)) > 0.

s—+oo gP—1 s—400
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If there exists o > 0 such that pF(c) > o f(0), then there exist A, Ay with 0 < A\ < Ag,
such that the problem (4.0.1), (4.0.2) has at least three positives solutions for X € (A1, A2),
at least two positives solutions for X = Ay and X = Ao, a unique positive solution for

A€ (0,M) U (Do, +00).

Proof.
From liELn ((p—1)f(s) —sf'(s)) > 0, we have liELn H'(s) > 0, then there exists M > o
s—+o0 §—+00
such that H(s) is increasing in (M, +o0) and liin H'(s) = +o0o. From the precedent
S—+00

theorem we deduce the result.

Concluding remarks

As application, we can cite the example in Anuradha et al. 7?7 f.(u) = e=+u. Conditions of
theorem 4.2.2 and 4.2.3 are satisfied for 0 < ¢ < 4(p—1) for all p € (1,2], and conditions
of theorem 4.2.4 are satisfied for ¢ > 4(p — 1) and p = 2, by continuation we can say that
there exists a subinterval I, := (g, 2] whit 1 < ¢ < 2, for which conditions of theorem 4.2.4
are satisfied, but we could not prove that ¢ = 1. So, we construct an example satisfying

conditions of theorem 4.2.4 for p € (1,2), it is given by the following equations:

u+a, for 0<u<hb,
fa,b<u) =
b+a, for u>"b

With ¢ = b such that o > 2(1]2) and a,b > 0.

-p
We have disussed the number of solutions only in the case where f is p-sublinear, because
of the approach adopted in this work we could not discuss the p-superlinear case, the

approach in Lakmeche and Hammoudi is more adapted to the last case.
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Chapter 5

Double solutions of three-point
boundary value problems for

p-Laplacian

In this chapter, we consider the following nonlocal boundary value problem
—(|u/ (2)|P 2/ (2)) = Af(u(z)), ae 0<x<1 (5.0.1)

w(0) =0, u(€) —u(l) =0 (5.0.2)

where A >0, p € (1,2], 0 < { <1, and f: Ry — R¥ smooth enough.
When p = 2 the problem (5.0.1), (5.0.2) becomes similar to the problem studied by J.

Henderson [18]. He proved the following theorem

Theorem 5.0.1. ([18], th. 3.1)

Letr >0 and 0 <a <b<c, such that 0 < a < T[T(lggfgl*g)}b < T[r(lf(?jg)(r%)}c.

And suppose that f satisfies the following conditions :
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(A) f(u) > si%g, fe<u< g,
(B) flu) <, if0<u<yg,
2(1—&)a .
(C) 1) > pazmrea—en
Then (5.0.1), (5.0.2) (for p=2,\ = 1) has at least two positive solutions, uy and uy such

0<u<a.

<

that
a < max us(t), with max uy(t) < b,
0<t<r 0<t<é

and

b < max us(t), with min us(t) < c.
0<t<é g<t<r

The main aim of this work is to prove the existence of multiple positive solutions for
(5.0.1), (5.0.2). To reach our aim we use the quadrature method which is constructive

and simple.

5.1 Preliminaries

In this section we give some definitions and preliminaries.

Definition 5.1.1.
A pair (u,\) € CH[0,1];R) x [0, +00) is called a solution of (5.0.1), (5.0.2), if

1. (JW'|P72u) is absolutely continuous, and
2. —([WP2u') = Af(u) a.e. in (0,1), with u(0) = u(§) —u(1) = 0.

Remarque 5.1.1.
The pair (0,\) is a solution of (5.0.1), (5.0.2) if and only if A = 0.

Lemma 5.1.1.

If (u, \) is a solution of the problem (5.0.1), (5.0.2) with A # 0, then u(z) > 0 Vx € [0, 1].
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Proof.

Assume that there exists ' €]0, 1] such that u(z’) < 0, where u(2’) = xren[érhu(x) Since
w is continuous there exists an interval [, 8] C [0, 1], such that 2’ € (a, 5) and u(x) < 0
for € (a, 8). Moreover, we have u(a) =0 = u(f) and v/'(a) < 0 < u/(B).

Then

[/ ()P~ (a) < 0 < [u'(B)[""*u'(8B).

Integrating (5.0.1) on [a, 5], we obtain
B
WP () - W (@) (@) = <A [ f(s)ds <o,

since f(u(x)) > 0 for x € |o, 5], hence v/(f) < 0 < u/(«), which is impossible.

Then u > 0 Vz € [0,1].

Lemma 5.1.2.
Let (u, \) be a solution of (5.0.1), (5.0.2) with X\ # 0, then v # 0 and admits a unique
mazimum at <52, Moreover w/(0) > 0 > «/(1) = —u/ (£), ' is increasing on [0,*2}) and

decreasing on (5%1, 1], and w(€) = u(1) > 0.

Proof.

For A # 0 we have u # 0 since f is positive.

The function w is continuous on the compact set [0, 1], then it reaches its maximum at some
point of [0, 1]. Since u(§) = u(1), then there exists xy € (£, 1) such that u'(zg) = 0. We
have [v/(z)[P~*u/(z) = =X [ f(s)ds < 0, for & > xg and [u'(x) P~/ (x) = X [ f(s)ds >
0, for x < xy. Thus v'(z) > 0,Vz € [0, z0) and v'(z) < 0,Vz € (z0, 1].

By symmetry of the solution in the interval [¢,1] with respect to &2 (see [11]), we find

2

zo = £ and 0 = u(0) < u(§) = u(1).
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Let F': R, — R, be defined by

Pl = [ ts)ds,

and g : Ry — R, be defined by

pryte [* ds or
(5 [ e e 0

0 for p = 0.

9(p) =

Let > 0, and define h,, : [, +00) — R%, by

()

=

/p ds +/P ds
o [F(p)=F(s)l» Jn [F(p) = F(s)]r

Remarque 5.1.2.

For m > 0, the functions g and h, are continuous. Moreover g(p) < 2h,(p) < 2g(p),

ho(p) = g(p),Vp > n and h,(n) = 29(n).

For u € C'([0,1]; R, ), we define ||u|| := Orgaiclu(x) =p.

Lemma 5.1.3.
If (u, A) is a solution of (5.0.1), (5.0.2) with A > 0, then ||u|| > u(1) > 0 and Ap = hoy([|w]])

where n = u(1).

Proof.
Let (u, A) be a positive solution of (5.0.1), (5.0.2) with A > 0, then u # 0. From lemmas
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5.1.1 and 5.1.2, we have |[ul| = u (53) > u(l) = u(§) =9 > 0, v (£) =

for x € (0,%), and u/(z) < 0 for z € (%1,1).

Multiplying (5.0.1) by u/(x), and integrating it for x € [0, &Tl} We obtain

£+1 £+1

- / T ()P () (£t = / © () (bt

T xT

We have in one hand

/

and in the other hand

&+1
2

§+1
2

- [T Gy o - (p; D ().

From (5.1.1), (5.1.2) and (5.1.3), we have

Then for all x € (0, éJ“Tl), we have

W@ = (2 ) MEG) - Futa))

which implies

and by symmetry

i) == (25) WEG) - PP foree [S521]

Integrate (5.1.6) between 0 and £, we obtain

v (5_2“) - (]%1); /op [F(p) fSF(S)]JJ

o1

M (u(t))ed (t)dt = A / F(w)dy = N(F(p) — Flu(x))).

0, u'(x) >0

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)



Similarly, by integration of (5.1.7) between 5%1 and 1, we obtain

Ar (1 - 5%1) - (’%)i/j = fSF(S)];. (5.1.9)

From (5.1.8) and (5.1.9) we deduce that

Av = (E)
p

From equation (5.1.10) , we deduce the results of lemma (5.1.3) .

=

(5.1.10)

Consider the Dirichlet boundary value problem constituted by (5.0.1) and the Dirichlet
boundary conditions

w(0) =u(l) =0 (5.1.11)

The problem (5.0.1), (5.1.11) has been studied in [22],[23] where the authors proved the

following results.

Lemma 5.1.4. ([22])

f(s)

1. If Skinoo e 0, then Sg?mg(s) = 400
L fls) : _
2. If SEIPOO e +o00, then Skinoog(s) =0

Theorem 5.1.1. ([23))

If lim fls) _ 0, then the problem (5.0.1), (5.1.11) has at least one positive solution for

s—+00 spfl B

all A > 0.

Proof.
From lemma (5.1.4), g(0) = 0 and hfl g(s) = +oo, then for all A > 0 there exist at least
S——+00

one positive solution.
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Theorem 5.1.2. ([23))

f(sz = +o00, then there exist \* > 0 such that the problem (5.0.1), (5.1.11) has

]f sggloo sP—

at least two positive solutions for X € (0, \*), and no positive solution for A > \*.

Proof.
From lemma (5.1.4), ¢g(0) = hlzl g(s) =0, then ¢ is bounded and admits a maximum at
S—r+00

some point p* > 0, we have then \* = g(p*)? > 0.

5.2 Main results

Let (u,A) be a solution of (5.0.1), (5.1.11), u(l) = n with 0 < < p and (%) =

max |u(z)| = p.

xz€(0,1]
From equation (5.1.7) we obtain
s —1\* [" d
A€ = (p—) / R (5.2.1)
p ) Jo [F(p)— Fs)P
Hence

1 1 /p—1 ’
>\P:— —_— Lo
6( p ) (5:22)

From (5.1.10) and (5.2.2), we have

S
o\
3
!
S
)
N—
s
!
—~
Vo)
=
3 =

P ds P ds 1 [ ds
Tt T - (5.2.3)
/0 [F(p) — F(s)] /n [F(p) — F(s)] 5/0 [F(p) — F(s)]

Theorem 5.2.1. Let p > 0, then

1. there exist a unique n*(p) € (0, p), such that (5.2.3) is satisfied for n = n*(p), further

n* is continuously differentiable,

2. for each n* satisfying (5.2.3), there is a unique A = X(n*(p)) given by (5.1.10)
or (5.2.2) such that (5.0.1), (5.0.2) has exactly one solution (u,X), with ||lu|| =

u () = p, u(l) = u(€) =n*(p) and ' (1) =0,
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Proof.
Let G : [0, p] = R, be defined by

P ds P ds
G(n) = 1+ . (5.2.4)
-], F(p) - Fs)JF / F(p) - F(s))F
We have G(0) = 2G(p) = /Op 0 ilSF(S)]; and G is differentiable on (0, p), with
-1
G'(n) = _ <0, Ve (o, 5.2.5
TS e

Hence G(n) is a decreasing function of 7.

Let H : [0, p] — R be defined by

[ ds
'mm_gé[ﬂm—F@ﬁ' (5.2.6)
Then H(0) = 0, H(p) = %/OP ) st(S)]; > ¢g(p) and H is differentiable on (0, p),
with
H'(n) = E ! >0, Vne(0,p). (5.2.7)

E[F(p) — F(n))7

Hence, H(n) is an increasing function of 7.

Thus there exist a unique n = n*(p) € (0, p) such that G(n*) = H(n*). From the implicit
function theorem n*(p) is continuously differentiable.

There exist unique A = A(n*(p)) given by (5.2.2) for n = n*, hence the problem (5.0.1),

(5.0.2) has unique positive solution.

Corollaire 5.2.1.
Let p > 0, then the bifurcation diagram (X, p) of the positive solutions of (5.0.1), (5.0.2)
15 given by

- (=)

tion of (5.2.3).

, where n* s the solu-

/p ds +/p ds
0 [F(p) = F(s)]>  Jwrw) [F(p) - F(s)]¥
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Theorem 5.2.2.

1) If liin @ =0, then (5.0.1), (5.0.2) has at least one positive solution for all A > 0.
s—+o00 S¥
2) If SEIJPOO fp(ff = +o00, then there exist Ny = (sup {hys) (s);s € (0,400)})” such that

(5.0.1), (5.0.2) has at least two positive solutions for A € (0, \)), and zero positive solution
for A > X§.

Proof.
We have g(p) < 2h,-(n)(p) < 29(p), for all p > 0. From theorems 5.1.1 and 5.1.2, we

deduce the results above.

5.3 Concluding remarks

In this work we have studied a nonlocal boundary value problem involving the p-Laplacian,
this problem has been studied by J. Henderson [[18].], who proved the existence of two
positive solutions, for specific function f using the Avery-Henderson double fixed points

theorem [4]. In our work we proved that the generalized problem, considered in this

S
paper, has at least one positive solution for all A > 0 when liljrn & = 0, and at least
s—+oo §
s
two positive solutions when lig1 fp(_z = 400, for A € (0, A*). These results extend those
S—+00 S

obtained in [[18].], for p # 0. We have used the quadrature method which gives more
information than the method used in [[18].], in fact, in lemma 2 we have information
on the maximum of the solutions and on the signs of its derivative on [0, 1], and the
description of the bifurcation diagram of the solutions in corollary 1.

It will be very interesting to study the exact number of solutions of (5.0.1), (5.0.2) when

lim _f(s)
s—+oo gP—1
for A = 0, if we combine the conditions assumed by J. Henderson (theorem 1) and the

= A where 0 < A < 0o, we might obtain three or more positive solutions
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conditions in 1) of theorem 5. Some recent works related to our problem (see [17]) consider
a multi-point boundary value problem with w( Z au(&),& € (0,1), 5 > 0, in our
knowledge there is no works on this problem using the quadrature method, it will be very

interesting to see if this method is useful in this case.
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