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Abstract

This thesis is devoted to the existence of random mild solutions for various classes
of first and second order functional differential evolutions equations with random effects,
finite and infinite delay in Banach space. Sufficient conditions are considered to get
the existence of mild random solutions by reducing this research to the search for the
existence of random fixed point of a continuous random operator with stochastic domain
under rather general conditions provided that the corresponding deterministic fixed point
problem is solvable.
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Résumé

Cette thèse présente quelques résultats d’éxistence de la solution faible aléatoire pour
quelques classes d’équations d’évolution avec un effet aléatoire et avec retard infini et
dépendant de l’état dans un espace de Banach. Sous des conditions convenables, nous
avons prouvé l’éxistence des solutions faibles aléatoires pour des différentes classes de
problèmes d’évolution. Ainsi, nos résultats sont basées sur des récents théorèmes du
point fixe aléatoire et la mesure de non compacité.
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Introduction

Probabilistic operator theory is that branch of probabilistic (or stochastic) analysis which
is concerned with the study of operator-valued random variables (or, simply, random
operators) and their properties. The development of a theory of random operators is
of interest in its own right as a probabilistic generalization of (deterministic) operator
theory; and just as operator theory is of fundamental importance in the study of operator
equations, the development of probabilistic operator theory is required for the study
of various classes of random equations. Although several concrete examples of random
operators and random operator equations have been around for a long time, the systematic
study of probabilistic operator theory and its applications was initiated by the Prague
school of probabilists under the direction of the late Antonin Spacek in the 1950’s. They
recognized that in using operator equations to model various systems (which is the heart
of applied mathematics) it is usually not sufficient to consider only random initial data,
it is also necessary to take into consideration the fact that the operators used to describe
the behavior of systems may not be known exactly. For example, in the case of difference
and differential operators the coefficients (constants or functions) might not be known
exactly. One knows only their approximate values together with some measure of the
possible error. In the case of integral operators, the kernel might not be known exactly;
this being the case when either the integral equation is the primary model of a system, or
when it is the equivalent formulation of a differential boundary value problem used as a
model. In many studies workers use what might be termed mean coefficients or kernels,
there by casting their problems in the framework of deterministic operator equations.
The main disadvantage of this approach is that, in general, a considerable amount of
’information’ is lost concerning the behavior of the system. In the theory of random
operator equations the coefficients or kernels are assumed from the outset to be random
variables or random functions; and the solutions obtained (if they exist) are random
functions whose dynamical and statistical properties can be studied.

It is of interest to remark that the distinction between a deterministic and probabilis-
tic approach to the formulation of operator equations lies mainly in the nature of the
questions they try to answer, and in the interpretation of the results. The advantages
of a probabilistic approach are that (1) it permits from the initial formulation a greater
generality (and hence flexibility) than that offered by a deterministic approach, and (2) it
permits the inclusion of probabilistic features in the equations, which may play an essen-
tial role in making the connection between operator equations and the real phenomena
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10 INTRODUCTION

they purport to describe.

Research in probabilistic operator theory generally falls into one or more of the follow-
ing areas: (1) operator-valued random variables and their properties, (2) operator-valued
random functions (including semigroups of random operators) and their properties, (3)
random equations whose solutions are operator-valued, (4) spectral theory of random op-
erators, (5) measure-theoretic problems, (6) fixed point theorems, and (7) limit theorems.
In this thesis I have elected to restrict my attention to just one of the areas-namely, fixed
point theorems for random operators.

The importance of random fixed point theory lies in its vast applicability in probabilis-
tic functional analysis and various probabilistic models. The introduction of randomness
however leads to several new questions of measurability of solutions, probabilistic and sta-
tistical aspects of random solutions. It is well known that random fixed point theorems
are stochastic generalization of classical fixed point theorems what we call as determinstic
results. Random fixed point theorems for random contraction mappings on separable com-
plete metric spaces were first proved by S̃pac̃ek [81] and Hans̃ (see [52, 53]). The survey
article by Bharucha-Reid [20] in 1976 attracted the attention of several mathematicians
and gave wings to this theory. Itoh [40] extended S̃pac̃ekŠs and Hans̃Šs theorems to
multivalued contraction mappings. Random fixed point theorems with an application to
Random differential equations in Banach spaces are obtained by Itoh [40]. Sehgal and
Waters [77] had obtained several random fixed point theorems including random analogue
of the classical results due to Rothe [73]. In recent past, several fixed point theorems in-
cluding Kannan type [46] Chatterjeea [24] and Zamfirescu type [91] have been generalized
in stochastic version (see for detail in Joshi and Bose [42], Saha et al. ([74, 75]).

On the other hand, the stochastic differential equation with delay is a special type
of stochastic functional differential equations. Delay differential equations arise in many
biological and physical applications, and it often forces us to consider variable or state-
dependent delays. The stochastic functional differential equations with state-dependent
delay have many important applications in mathematical models of real phenomena, and
the study of this type of equations has received much attention in recent years. Guendouzi
and Benzatout [38] studied the existence of mild solutions for a class of impulsive stochas-
tic differential inclusions with state-dependent delay. Sakthivel and Ren [76] studied the
approximate controllability of fractional differential equations with state-dependent delay.

This thesis is devoted to the existence of mild random solution for various classes of
first and second order functional differential evolutions equations with random effect, finite
and infinite delay in separable Banach space (E, |.|). Sufficient conditions are considered
to get the existence of mild random solutions by reducing this research to the search
for the existence of random fixed point of a continuous random operator with stochastic
domain under rather general conditions provided that the corresponding deterministic
fixed point problem is solvable. We have arranged this thesis as follows:

In Chapter 1, we introduce notations, definitions, lemmas and fixed point theorems
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which are used throughout this thesis.

In Chapter 2, In section one of chapter 2, we prove the existence of random mild
solutions of the following functional differential equation with constante delay and random
effects (random parameters) of the form:

y′(t, w) = Ay(t, w) + f(t, yt(., w), w), a.e. t ∈ J := [0, T ] (1)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (2)

(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J ×B ×Ω → E, φ ∈ B ×Ω are given random functions which represent
random nonlinear of the system. This problem has been considered in the paper [15].

In Section 2.6 of chapter 2, we prove the existence of mild solutions of the following
functional differential equation with infinite delay and random effects (random parame-
ters) of the form:

y′(t, w) = A(t)y(t, w) + f(t, yt(., w), w), a.e. t ∈ J := [0,∞) (3)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (4)

(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J ×B ×Ω → E, φ ∈ B ×Ω are given random functions which represent
random nonlinear of the system. This problem has been considered in the paper [5].

In Chapter 3, we prove the existence of random mild solutions of the following
functional differential equation with delay and random effects (random parameters) of
the form:

y′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0, T ] (5)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (6)

where (Ω,F, P ) is a complete probability space, w ∈ Ω, f : J×B×Ω → E, φ ∈ B×Ω are
given random functions which represent random nonlinear of the system. This problem
has been considered in the paper [16].

In Chapter 4, we prove the existence of mild random solutions of the following func-
tional evolution differential equation with delay and random effects (random paramaters)
of the form:

y′(t, w) = A(t)y(t, w) + f(t, yρ(t,yt)(., w), w), a.e. t ∈ J := [0,∞) (7)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (8)

(with some notations to be given later), where (Ω,F, P ) is a complete probability
space, w ∈ Ω where f : J × B × Ω → E, φ ∈ B × Ω are given random functions which
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represent random nonlinear of the system. This problem has been considered in the paper
[18].

In Chapter 5, we prove the existence of random mild solutions of the following
functional differential equation with delay and random effects (random paramaters) of
the form:

y′′(t, w) = Ay(t, w) + f(t, yt(·, w), w), a.e. t ∈ J := [0, T ] (9)

y(t, w) = φ(t, w), t ∈ (−∞, 0], y′(0, w) = ϕ(w) ∈ E, (10)

(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J ×B ×Ω → E, φ ∈ B ×Ω are given random functions which represent
random nonlinear of the system. Later, we consider the following problem

y′′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0, T ] (11)

y(t, w) = φ(t, w), t ∈ (−∞, 0], y′(0, w) = ϕ(w) ∈ E, (12)

(with some notations to be given later), where (Ω,F, P ) is a complete probability
space, w ∈ Ω where f : J × B × Ω → E, φ ∈ B × Ω are given random functions which
represent random nonlinear of the system, A : D(A) ⊂ E → E as in problem (9)-(10).
This problem has been considered in the paper [17].



Chapter 1

Preliminaries

In this chapter, we present some notations, definitions and auxiliary results which are
used throughout this thesis.

1.1 Notations and definitions
Let J = [0, T ] be a real interval , C(J,E) be the Banach space of continuous functions

from J into E with the norm

‖y‖∞ = sup { |y(t)| : t ∈ J }.

Let B(E) denote the Banach space of bounded linear operators from E into E.
A measurable function y : J −→ E is Bochner integrable if and only if |y| is Lebesgue

integrable. (For the Bochner integral properties, see the classical monograph of Yosida
[90]).

Let L1(J,E) be the Banach space of measurable functions y : J −→ E which are
Bochner integrable normed by

‖y‖L1 =

∫ T

0

|y(t)| dt.

Definition 1.1 A map f : J × B × Ω → E is said to be Random Carathéodory if

(i) t→ f(t, y, w) is measurable for all y ∈ B,and for all w ∈ Ω.

(ii) y → f(t, y, w) is continuous for almost each t ∈ J, and for all w ∈ Ω.

(iii) w → f(t, y, w) is measurable for all y ∈ B, and almost each t ∈ J .

For a given set V of functions v : (−∞, T ] −→ E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ (−∞, T ]

and
V (J) = {v(t) : v ∈ V, t ∈ (−∞, T ]}.

13



14 Preliminaries

1.2 Some Examples of Phase Spaces
For any continuous function y and any t ≥ 0, we denote by yt the element of B

defined by
yt(θ) = y(t+ θ) for θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from time t− r up to the present time t. We
assume that the histories yt belongs to some abstract phase space B, to be specified later.

Consider the following space

B+∞ = {y : (−∞,+∞) → E : y|J ∈ C(J ;E), y0 ∈ B} ,

where y|J is the restriction of y to J .
In this work, we will employ an axiomatic definition of the phase space B introduced

by Hale and Kato in [50] and follow the terminology used in [59]. Thus, (B, ‖ · ‖B) will
be a seminormed linear space of functions mapping (−∞, 0] into E, and satisfying the
following axioms :

(A1) If y : (−∞, T ) −→ E, T > 0, is continuous on J and y0 ∈ B, then for every t ∈ J
the following conditions hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+ −→ R+ independent of y with K
continuous and M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on J .

(A3) The space B is complete.

Denote KT = sup{K(t) : t ∈ J} and MT = sup{M(t) : t ∈ J}.

Remark 1.2 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ− ψ‖B = 0 without
necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of in the first remark, we can see that for all φ, ψ ∈ B such
that ‖φ− ψ‖B = 0 : We necessarily have that φ(0) = ψ(0).

We now indicate some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al [59].

Example 1.3 Let:

BC the space of bounded continuous functions defined from (−∞, 0] to E;
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BUC the space of bounded uniformly continuous functions defined from (−∞, 0] to E;

C∞ :=

{
φ ∈ BC : lim

θ−→−∞
φ(θ) exist in E

}
;

C0 :=

{
φ ∈ BC : lim

θ−→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BCU, C∞ and C0 satisfy conditions (A1)− (A3). However, BC
satisfies (A1), (A3) but (A2) is not satisfied.

Example 1.4 The spaces Cg, UCg, C
∞
g and C0

g .
Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=

{
φ ∈ C((−∞, 0], E) :

φ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
φ ∈ Cg : lim

θ−→−∞

φ(θ)

g(θ)
= 0

}
, endowed with the uniform norm

‖φ‖ = sup

{
|φ(θ)|
g(θ)

: θ ≤ 0

}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). We consider the following

condition on the function g.

(g1) For all a > 0, sup
0≤t≤a

sup

{
g(t+ θ)

g(θ)
: −∞ < θ ≤ −t

}
<∞.

They satisfy conditions (A1) and (A2) if (g1) holds.

Example 1.5 The space Cγ.
For any real positive constant γ, we define the functional space Cγ by

Cγ :=

{
φ ∈ C((−∞, 0], E) : lim

θ−→−∞
eγθφ(θ) exists in E

}
endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely defined linear
unbounded operators on the Banach space E and with domain D(A(t)) independent of t.
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Definition 1.6 A family of bounded linear operators

{U(t, s)}(t,s)∈∆ : U(t, s) : E −→ E (t, s) ∈ ∆ := {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞}

is called en evolution system if the following properties are satisfied:

1. U(t, t) = I where I is the identity operator in E,

2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every (s, t) ∈ ∆
and for each y ∈ E, the mapping (t, s) −→ U(t, s) y is continuous.

More details on evolution systems and their properties could be found on the books
of Ahmed [2], Engel and Nagel [34] and Pazy [71].

Lemma 1.7 (Corduneanu) [26]
Let C ⊂ BC(J,E) be a set satisfying the following conditions:

(i) C is bounded in BC(J,E);

(ii) the functions belonging to C are equicontinuous on any compact interval of J ;

(iii) the set C(t) := {y(t) : y ∈ C} is relatively compact on any compact interval of J ;

(iv) the functions from C are equiconvergent, i.e., given ε > 0, there corresponds T (ε) > 0
such that |y(t)− y(+∞)| < ε for any t ≥ T (ε) and y ∈ C.

Then C is relatively compact in BC(J,E).

1.3 Some fixed point theorems
Our results will be based on the following well known and some recent nonlinear

alternatives of fixed point argument theory.

Theorem 1.8 (Schauder fixed point )[37]
Let B be a closed, convex and nonempty subset of a Banach space E. Let N : B → B be
a continuous mapping such that N(B) is a relatively compact subset of E. Then N has
at least one fixed point in B.

Theorem 1.9 (Mönch)[3, 66] Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ 0 =⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 1.10 [39] Let D be a bounded, closed and convex subset of Banach space X. If
the operator N : D −→ D is a strict set contraction, i.e there is a constant 0 ≤ λ < 1
such that α(N(S)) ≤ λα(S) for any bounded set S ⊂ D then N has a fixed point in D.
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1.4 Random operators

Let Y be a separable Banach space with the Borel σ-algebra BY , (Ω,F, P ) be a complete
probability space. A mapping y : Ω −→ Y is said to be a random variable with values in Y
if for each B ∈ BY , y

−1(B) ∈ F. A mapping T : Ω×Y −→ Y is called a random operator
if T (., y) is measurable for each y ∈ Y and is generally experessed as T (w, y) = T (w)y;
we will use these two expressions alternatively.

Lemma 1.11 Let f : [0, 1] × Rn × Ω −→ Rn be such that for all ω ∈ Ω and x ∈
Cn([0, 1]), f(., x(.), ω) is Riemann-integrable and for all (t, x) ∈ [0, 1] × Rn, f(t, x, .) is
measurable. Let T : Ω× Cn([0, 1]) → Cn([0, 1])

(ω, x) −→
(
t −→

∫ t

0

f(s, x(s), w)ds

)
Then T is random operator.

proof : Let x ∈ Cn([0, 1]) and t ∈ [0, 1] arbitrary, but fixed. Then ω −→
∫ t

0
f(s, x(s), w)ds

is measurable as the limit of a sequence of finite sums of measurable functions. There-
fore T (., x)(t) is measurable. Then T (., x) is measurable which means that T is a random
operator.

Lemma 1.12 Let K : [0, 1]2 × Rn × Ω −→ Rn be such that K(., ., ., ω) is continuous in
[0, 1]2 × Rn for all ω ∈ Ω and K(t, s, x, .) is measurable for all (t, s, x) ∈ [0, 1]2 × Rn. Let
T : Ω× Cn([0, 1]) → Cn([0, 1])

(ω, x) −→
(
t −→

∫ 1

0

k(t, s, x(s), w)ds

)
Then T is random operator.

Proof : Analogous to the proof of last example.

Next, we will give a very useful random fixed point theorem with stochastic domain.

Definition 1.13 [33] Let C be a mapping from Ω into 2Y . A mapping T : {(w, y) :
w ∈ Ω ∧ y ∈ C(w)} −→ Y is called ’random operator with stochastic domain C’ iff C is
measurable (i.e., for all closed A ⊆ Y, {w ∈ Ω : C(w) ∩ A 6= ∅} ∈ F) and for all open
D ⊆ Y and all y ∈ Y, {w ∈ Ω : y ∈ C(w)∧T (w, y) ∈ D} ∈ F. T we be called ’continuous’
if every T (w) is continuous. For a random operator T , a mapping y : Ω −→ Y is
called ’random (stochastic) fixed point of T ’ iff for p-almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w) and for all open D ⊆ Y, {w ∈ Ω : y(w) ∈ D} ∈ F(’y is measurable’).

Remark 1.14 If C(w) ≡ Y , then the definition of random operator with stochastic do-
main coincides with the definition of random operator.
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Lemma 1.15 [33] Let C : Ω −→ 2Y be measurable with C(w) closed, covex and solid
(i.e., int C(w) 6= ∅) for all w ∈ Ω. We assume that there exists measurable y0 : Ω −→ Y
with y0 ∈ int C(w) for all w ∈ Ω. Let T be a continuous random operator with stochastic
domain C such that for every w ∈ Ω, {y ∈ C(w) : T (w)y = y} 6= ∅. Then T has a
stochastic fixed point.

Let y be a mapping of J × Ω into X. y is said to be a stochastic process if for each
t ∈ J, y(t, .) is measurable.

1.5 Measure of noncompactness
Now let us recall some fundamental facts of the notion of Kuratowski measure of non-
compactness.

Definition 1.16 [12] Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : ΩE −→ [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE.

The Kuratowski measure of noncompactness satisfies the following properties(for more
details see [12]).

(a) α(B) = 0 ⇐⇒ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊂ B =⇒ α(A) ≤ α(B).

(d) α(A+B) ≤ α(A) + α(B).

(e) α(cB) = |c|α(B); c ∈ IR

(f) α(convB) = α(B).

Lemma 1.17 ([60, 39]) If H ⊂ C(J,E) is bounded and equicontinuous, then α(H(t))
is continuous on J and

α

({∫
J

x(s)ds : x ∈ H
})

≤
∫

J

α(H(s))ds,

Where H(s) = {x(s) : x ∈ H}, t ∈ J



Chapter 2

Functional Differential Equations with
Delay and Random Effects

2.1 Introduction

The theory of functional differential equations has emerged as an important branch of
nonlinear analysis. Differential delay equations, and functional differential equations,
have been used in modeling scientific phenomena for many years. Often, it has been
assumed that the delay is either a fixed constant or is given as an integral in which case
it is called a distributed delay [50, 51, 59, 78, 86]. An extensive theory is developed
for evolution equations [2, 34]. Uniqueness and existence results have been established
recently for different evolution problems in the papers by Baghli and Benchohra for finite
and infinite delay in [8, 9, 10].

On the other hand, the nature of a dynamic system in engineering or natural sci-
ences depends on the accuracy of the information we have concerning the parameters
that describe that system. If the knowledge about a dynamic system is precise then a
deterministic dynamical system arises. Unfortunately in most cases the available data for
the description and evaluation of parameters of a dynamic system are inaccurate, impre-
cise or confusing. In other words, evaluation of parameters of a dynamical system is not
without uncertainties. When our knowledge about the parameters of a dynamic system
are of statistical nature, that is, the information is probabilistic, the common approach
in mathematical modeling of such systems is the use of random differential equations or
stochastic differential equations. Random differential equations, as natural extensions of
deterministic ones, arise in many applications and have been investigated by many math-
ematicians.We refer the reader to the monographs [13, 83], the papers [27, 28, 32, 79] and
the references therein. We also refer the reader to recent results [47, 49, 48]. There are real
world phenomena with anomalous dynamics such as signals transmissions through strong
magnetic fields, atmospheric diffusion of pollution, network traffic, the effect of specu-
lations on the profitability of stocks in financial markets and so on where the classical
models are not sufficiently good to describe these features.

19
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2.2 Functional differential equations with constant de-
lay and random effects

2.2.1 Introduction

In this work we prove the existence of random mild solutions of the following functional
differential equation with delay and random effects (random parameters) of the form:

y′(t, w) = Ay(t, w) + f(t, yt(., w), w), a.e. t ∈ J := [0, T ] (2.1)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (2.2)

(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J ×B ×Ω → E, φ ∈ B ×Ω are given random functions which represent
random nonlinear of the system, A : D(A) ⊂ E → E is the infinitesimal generator of a
strongly continuous semigroup T (t), t ∈ J, of bounded linear operators in a Banach space
E, B is the phase space to be specified later, and (E, |.|) is a real separable Banach space.
For any function y defined on (−∞, T ]×Ω and any t ∈ J we denote by yt(., w) the element
of B×Ω defined by yt(θ, w) = y(t+θ, w), θ ∈ (−∞, 0]. Here yt(., w) represents the history
of the state from time −∞, up to the present time t. We assume that the histories yt(., w)
belong to some abstract phases B, to be specified later. To our knowledge, the literature
on the local existence of random evolution equations with delay is very limited, so the
present work can be considered as a contribution to this question.

2.2.2 Existence of mild solutions

Now we give our main existence result for problem (2.1)-(2.2). Before starting and proving
this result, we give the definition of the mild random solution.

Definition 2.1 A stochastic process y : J ×Ω → E is said to be a random mild solution
of problem (2.1)-(2.2) if y(t, w) = φ(t, w), t ∈ (−∞, 0] and the restriction of y(., w) to
the interval [0, T ] is continuous and satisfies the following integral equation:

y(t, w) = T (t)φ(0, w) +

∫ t

0

T (t− s)f(s, ys(., w), w)ds, t ∈ J. (2.3)

We will need to introduce the following hypotheses which are be assumed there after:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semi-
group T (t), t ∈ J which is compact for t > 0 in the Banach space E. Let M =
sup{‖T‖B(E) : t ≥ 0}.

(H2) The function f : J × B × Ω → E is random Carathéodory.
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(H3) There exist two functions ψ : J×Ω −→ R+ and p : J×Ω −→ R+ such that for each
w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) There exists a random function R : Ω −→ R+\{0} such that:

M‖φ‖B +Mψ(DT , w)‖p‖L1 ≤ R(w),

where
DT := KTR(w) +MT‖φ‖B.

(H5) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable.

Theorem 2.2 Suppose that hypotheses (H1)−(H4) are valid, then the problem (2.1)-(2.2)
has at least one mild random solution on (−∞, T ].

Proof. Let Y = {u ∈ C(J,E) : u(0, w) = φ(0, w) = 0} endowed with the uniform
convergence topology and N : Ω× Y −→ Y be the random operator defined by

(N(w)y)(t) = T (t) φ(0, w) +

∫ t

0

T (t− s) f(s, ys, w) ds, t ∈ J, (2.4)

where ȳ : (−∞, T ]× Ω −→ E such that ȳ0(., w) = φ(., w) and ȳ(., w) = y(., w) on J . Let
φ̄ : (−∞, T ]×Ω −→ E be the extension of φ to (−∞, T ] such that φ̄(θ, w) = φ(0, w) = 0
on J .
Then we show that the mapping defined by (2.4) is a random operator. To do this, we
need to prove that for any y ∈ Y , N(.)(y) : Ω −→ Y is a random variable. Then we
prove that N(.)(y) : Ω −→ Y is measurable since the mapping f(t, y, .), t ∈ J, y ∈ Y is
measurable by assumption (H2) and (H5).
Let D : Ω −→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

D(w) is bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by Lemma
17 (see [33]).
Let w ∈ Ω be fixed, then for any y ∈ D(w), and by assumption (A1), we get

‖ys‖B ≤ L(s)|y(s)|+M(s)‖y0‖B
≤ KT |y(s)|+MT‖φ‖B.

and by (H4) and (H3), we have:

|(N(w)y)(t)| ≤ ‖T (t)‖|φ(0, w)|+M

∫ t

0

|f(s, ys, w)| ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ (‖ys‖B, w) ds.
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Set
DT := KTR(w) +MT‖φ‖B.

Then, we have

|(N(w)y)(t)| ≤M‖φ‖B +Mψ(DT , w)

∫ T

0

p(s, w) ds.

Thus
‖(N(w)y)‖ ≤M‖φ‖B +Mψ(DT , w)‖p‖L1 ≤ R(w).

This implies that N is a random operator with stochastic domain D and
N(w) : D(w) −→ D(w) for each w ∈ Ω.
Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in Y. Then

|(N(w)yn)(t)− (N(w)y)(t)| =
∣∣∣ T (t)φ(0, w) +

∫ t

0

T (t− s)[f(s, yn
s , w)− f(s, ys, w)] ds

∣∣∣
≤ M

∫ t

0

|f(s, yn
s , w)− f(s, ys, w)| ds.

Since f(s, ., w) is continuous, we have by the Lebesgue dominated convergence theorem

‖f(., yn
. , w)− f(., y., w)‖L1 −→ 0 as n −→ +∞.

Thus N is continuous.
Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. To prove this, we
apply Schauder’s theorem.

(a) N maps bounded sets into equicontinuous sets in D(w).
Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)| ≤ |T (τ2)− T (τ1)|‖φ‖B

+
∣∣∣ ∫ τ1

0

[T (τ2 − s)− T (τ1 − s)]f(s, ys, w) ds
∣∣∣

+
∣∣∣ ∫ τ2

τ1

T (τ2 − s)f(s, ys, w) ds
∣∣∣

≤ |T (τ2)− T (τ1)|‖φ‖B

+

∫ τ1

0

|T (τ2 − s)− T (τ1 − s)||f(s, ys, w)| ds

+

∫ τ2

τ1

|T (τ2 − s)||f(s, ys, w)| ds

≤ |T (τ2)− T (τ1)|‖φ‖B

+ ψ(DT , w)

∫ τ1

0

|T (τ2 − s)− T (τ1 − s)|p(s, w)ds

+ Mψ(DT , w)

∫ τ2

τ1

p(s, w)ds.
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The right-hand of the above inequality tends to zero as τ2 − τ1 −→ 0, since T (t)
is uniformly continuous. As N is bounded and equicontinuous together with the
Arzelá-Ascoli theorem it suffices to show that the operator N maps D(w) into a
precompact set in E.

(b) Let t ∈ [0, T ] be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ D(w)
we define

(Nε(w)y)(t) = T (t)φ(0, w) + T (ε)

∫ t−ε

0

T (t− s− ε)f(s, ys, w) ds.

Since T (t) is a compact operator, the set Zε(t, w) = {(Nε(w)y)(t) : y ∈ D(w)} is
pre-compact in E for every ε, 0 < ε < t. Moreover

|(N(w)y)(t)− (Nε(w)y)(t)| ≤
∫ t

t−ε

‖T (t− s)‖|f(s, ys, w)|ds

≤ Mψ(DT , w)

∫ t

t−ε

p(s, w)ds.

Therefore the set Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E.

A consequence of Steps 1-2 and (a), (b), we can conclude that N(w) : D(w) → D(w)
is continuous and compact. From Schauder’s theorem, we deduce that N(w) has a fixed
point y(w) in D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By Lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
random mild solution of the random problem (2.1)-(2.2).

2.2.3 An example

Consider the following functional partial differential equation:

∂

∂t
z(t, x, w) =

∂2

∂x2
z(t, x, w) + C0(w)K(w)e−t

∫ 0

−∞

exp(z(t+ s, x, w))

1 + s2
ds, (2.5)

x ∈ [0, π], t ∈ [0, T ]

z(t, 0, w) = z(t, π, w) = 0, t ∈ [0, T ], (2.6)

z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], (2.7)

where K and C0 are a real-valued random variable.
Let E = L2[0, π], (Ω,F, P ) be a complete probability space, and define A : E → E by
Av = v′′ with domain

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.
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Then

Av =
∞∑

n=1

n2(v, vn)vn, v ∈ D(A)

where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It is well
know (see [71]) that A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0
in E and is given by

T (t)v =
∞∑

n=1

exp(−n2t)(v, vn)vn, v ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) be the space of bounded uniformly continuous functions endowed
with the following norm:

‖φ‖ = sup
s≤0

|φ(s)| for φ ∈ B

If we put φ ∈ BCU(IR−;E), x ∈ [0, π] and w ∈ Ω

y(t, x, w) = z(t, x, w), t ∈ [0, T ]

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0].

Set

f(t, ϕ(x), w) =

∫ 0

−∞
e−tϕ(s, x, w)ds,

with
ϕ(s, x, w) = exp(z(t+ s, x, w)).

The function f(t, ϕ(x), w) is Carathéodory, and satisfies (H2) with

p(t, w) = K(w)
π

2
e−t and ψ(x,w) = |C0(w)|ex.

Then the problem (2.1)-(2.2) in an abstract formulation of the problem (2.5)-(2.7),
and conditions (H1)− (H5) are satisfied. Theorem 2.2 implies that the random problem
(2.5)-(2.7) has at least one random mild solutions.

2.3 Functional evolution equations with infinite delay
and random effects

2.3.1 Introduction

Functional evolution equations have a very important role to describe meany phenomena
of physics, mechanics, biology etc; For more details on this theory and on its applications
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we refer to the monographs of Hale and Verduyn Lunel [51], Kolmanovskii and Myshkis
[43], and Wu [86] and the reference therein. Recently, many authors have study the
existence of various model of semilinear evolution equations with finite and infinite delay
in the Fréchet space, for instance we refer to Baghli and Benchohra [8, 9, 10]. In the other
hand, different fields of engineering problems which is currently interest in unbounded
domains. As a result it has received the attention of the researches see [4, 69, 70].

In this work we prove the existence of random mild solutions of the following functional
differential equation with delay and random effects (random parameters) of the form:

y′(t, w) = A(t)y(t, w) + f(t, yt(., w), w), a.e. t ∈ J := [0,∞) (2.8)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (2.9)

(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J × B × Ω → E, φ ∈ B × Ω are given random functions which
represent random nonlinear of the system, {A(t)}0≤t<+∞ is a family of linear closed
(not necessarily bounded) operators from E into E that generate an evolution system
of operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞, B is the phase space to be speci-
fied later, and (E, |.|) is a real separable Banach space. For any function y defined on
(−∞, T ] × Ω and any t ∈ J we denote by yt(., w) the element of B × Ω defined by
yt(θ, w) = y(t + θ, w), θ ∈ (−∞, 0]. Here yt(., w) represents the history of the state from
time −∞, up to the present time t. We assume that the histories yt(., w) belong to some
abstract phases B, to be specified later. To our knowledge, the literature on the local
existence of random evolution equations with delay is very limited, so the present work
can be considered as a contribution to this question.

2.3.2 Existence of mild solutions

Now we give our main existence result for problem (2.8)-(2.9). Before starting and proving
this result, we give the definition of the random mild solution.

Definition 2.3 A stochastic process y : J ×Ω → E is said to be a random mild solution
of problem (2.8)-(2.9) if y(t, w) = φ(t, w), t ∈ (−∞, 0] and the restriction of y(., w) to
the interval [0,∞) is continuous and satisfies the following integral equation:

y(t, w) = U(t, 0)φ(0, w) +

∫ t

0

U(t, s)f(s, ys(., w), w)ds, t ∈ J. (2.10)

We will need to introduce the following hypotheses which are be assumed there after:

(H1) There exists a constant M ≥ 1 and α > 0 such that

‖U(t, s)‖B(E) ≤Me−α(t−s) for every (s, t) ∈ ∆.

(H2) The function f : J × B × Ω → E is random Carathéodory.
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(H3) There exist two functions ψ : J×Ω −→ R+ and p : J×Ω −→ R+ such that for each
w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) There exists a random function R : Ω −→ R+\{0} such that:

M‖φ‖B +Mψ(DT , w)‖p‖L1 ≤ R(w),

where
DT := KTR(w) +MT‖φ‖B.

(H5) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable.

(H6) For each (t, s) ∈ ∆ we have: lim
t−→+∞

∫ t

0

e−α(t−s)p(s, w)ds = 0.

Theorem 2.4 Suppose that hypotheses (H1)−(H4) are valid, then the problem (2.1)-(2.2)
has at least one mild random solution on (−∞,∞).

Proof. Let Y be the space defined by

Y = {y : IR −→ E such that y|J ∈ BC(J,E) and y0 ∈ B},

we denote by y|J the restriction of y to J , endowed with the uniform convergence topology
and N : Ω× Y −→ Y be the random operator defined by

(N(w)y)(t) =

 φ(t, w), if t ∈ (−∞, 0]

U(t, 0)φ(0, w) +

∫ t

0

U(t, s)f(s, ys(., w), w)ds, if t ∈ J, (2.11)

Then we show that the mapping defined by (2.11) is a random operator. To do this,
we need to prove that for any y ∈ Y , N(.)(y) : Ω −→ Y is a random variable. Then we
prove that N(.)(y) : Ω −→ Y is measurable since the mapping f(t, y, .), t ∈ J, y ∈ Y is
measurable by assumption (H2) and (H5).

Let D : Ω −→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

D(w) is bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by Lemma
17 (see [33]).
Let w ∈ Ω be fixed, then for any y ∈ D(w), and by assumption (A1), we get

‖ys‖B ≤ L(s)|y(s)|+M(s)‖y0‖B
≤ KT |y(s)|+MT‖φ‖B.
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and by (H4) and (H3), we have:

|(N(w)y)(t)| ≤ ‖U(t, 0)‖B(E)|φ(0, w)|+
∫ t

0

‖U(t, s)‖B(E)|f(s, ys, w)| ds

≤ Me−αt‖φ‖B +M

∫ t

0

e−α(t−s)p(s, w) ψ (‖ys‖B, w) ds.

Set
DT := KTR(w) +MT‖φ‖B.

Then, we have
|(N(w)y)(t)| ≤M‖φ‖B +Mψ(DT , w)‖p‖L1 ds.

Thus
‖(N(w)y)‖ ≤M‖φ‖B +Mψ(DT , w)‖p‖L1 ≤ R(w).

This implies that N is a random operator with stochastic domain D and F (w) : D(w) −→
D(w) for each w ∈ Ω.

Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in Y. Then

|(N(w)yn)(t)− (N(w)y)(t)| ≤
∫ t

0

‖U(t, s)‖B(E) |f(s, yn
s , w)− f(s, ys, w)| ds.

≤ M

∫ t

0

e−α(t−s) |f(s, yn
s , w)− f(s, ys, w)| ds.

Since f(s, ., w) is continuous, we have by the Lebesgue dominated convergence theorem

‖f(., yn
. , w)− f(., y., w)‖L1 −→ 0 as n −→ +∞.

Thus N is continuous.

Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. To prove this, we
apply Schauder’s theorem.
N(D(w)) is relatively compact: To prove the compactness, we will use Corduneanu’s
lemma.

(a) Firstly, it is clear that the assumption (i) is holds. Then we will demonstrate that
N(D(w)) is equicontinuous set for each closed bounded interval [0, T ] in J . Let
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τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)| ≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+
∣∣∣ ∫ τ1

0

[U(τ2, s)− U(τ1, s)]f(s, ys, w) ds
∣∣∣

+
∣∣∣ ∫ τ2

τ1

U(τ2, s)f(s, ys, w) ds
∣∣∣

≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+

∫ τ1

0

|U(τ2, s)− U(τ1, s)||f(s, ys, w)| ds

+

∫ τ2

τ1

|U(τ2, s)||f(s, ys, w)| ds

≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+ ψ(DT , w)

∫ τ1

0

‖U(τ2, s)− U(τ1, s)‖B(E)p(s, w)ds

+ Mψ(DT , w)e−α(τ2−s)

∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 −→ 0. As N is
bounded and equicontinuous.

(b) Now we will prove that Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E. Let
t ∈ [0, T ] be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ D(w) we
define

(Nε(w)y)(t) = U(t, 0)φ(0, w) + U(t, t− ε)

∫ t−ε

0

U(t− ε, s)f(s, ys, w) ds.

Since U(t, s) is a compact operator and the set Zε(t, w) = {(Nε(w)y)(t) : y ∈ D(w)}
is the imageof bounded set of E then Zε(t, w) is pre-compact in E for every ε,
0 < ε < t. Moreover

|(N(w)y)(t)− (Nε(w)y)(t)| ≤
∫ t

t−ε

‖U(t, s)‖B(E)|f(s, ys, w)|ds

≤Mψ(DT , w)e−α(t−s)

∫ t

t−ε

p(s, w)ds.

Therefore the set Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E.

(c) Finally, it remains to show that N is equiconvergent.

Let y ∈ D(w), then from (H1), (H3) we have
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|(N(w)y)(t)| ≤Me−αt‖φ‖B +M

∫ t

0

e−α(t−s)p(s, w) ψ (DT , w) ds.

It follows immediately by (H6) that |(N(w)y)(t)| −→ 0 as t −→ +∞.
Then

lim
t−→+∞

|(N(w)y)(t)− (N(w)y)(+∞)| = 0,

which implies that N is equiconvergent.

A consequence of Steps 1-2 and (a), (b), (c), we can conclude that
N(w) : D(w) → D(w) is continuous and compact. From Schauder’s theorem, we deduce
that N(w) has a fixed point y(w) in D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By Lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
random mild solution of the random problem (2.8)-(2.9).

2.3.3 An example

Consider the following functional partial differential equation:

∂

∂t
z(t, x, w) = a(t, x)

∂2

∂x2
z(t, x, w) + C0(w)K(w)e−t

∫ 0

−∞

exp(z(t+ s, x, w))

1 + s2
ds, (2.12)

x ∈ [0, π], t ∈ [0,+∞)

z(t, 0, w) = z(t, π, w) = 0, t ∈ [0,+∞), (2.13)

z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], (2.14)

where a(t, ξ) is a continuous function which is uniformly Hölder continuous in t, K and
C0 are a real-valued random variable.
Let E = L2[0, π], (Ω,F, P ) be a complete probability space, and define A(t) by

A(t)v = a(t, ξ)v′′

with domain

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see [36, 45]).
Let B = BCU(IR−;E) be the space of bounded uniformly continuous functions endowed
with the following norm:

‖φ‖ = sup
s≤0

|φ(s)| for φ ∈ B
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If we put φ ∈ BCU(IR−;E), x ∈ [0, π] and w ∈ Ω

y(t, x, w) = z(t, x, w), t ∈ [0, T ]

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0].

Set

f(t, ϕ(x), w) =

∫ 0

−∞
e−tϕ(s, x, w)ds,

with
ϕ(s, x, w) = exp(z(t+ s, x, w)).

The function f(t, ϕ(x), w) is Carathéodory, and satisfies (H2) with

p(t, w) = K(w)
π

2
e−t and ψ(x,w) = |C0(w)|ex.

Then the problem (2.8)-(2.9) in an abstract formulation of the problem (2.12)-(2.14),
and conditions (H1)− (H5) are satisfied. Theorem 2.4 implies that the random problem
(2.12)-(2.14) has at least one random mild solutions.



Chapter 3

Functional Differential Equations with
State-Dependent Delay and Random
Effects

3.1 Introduction

Functional evolution equations with state-dependent delay appear frequently in mathe-
matical modeling of several real world problems and for this reason the study of this type of
equations has received great attention in the last few years, see for instance [30, 55, 56, 1].
An extensive theory is developed for evolution equations [2, 34]. Uniqueness and existence
results have been established recently for different evolution problems in the papers by
Baghli and Benchohra for finite and infinite delay in [8, 9, 10].

On the other hand, the nature of a dynamic system in engineering or natural sci-
ences depends on the accuracy of the information we have concerning the parameters
that describe that system. If the knowledge about a dynamic system is precise then a
deterministic dynamical system arises. Unfortunately in most cases the available data for
the description and evaluation of parameters of a dynamic system are inaccurate, impre-
cise or confusing. In other words, evaluation of parameters of a dynamical system is not
without uncertainties. When our knowledge about the parameters of a dynamic system
are of statistical nature, that is, the information is probabilistic, the common approach
in mathematical modeling of such systems is the use of random differential equations
or stochastic differential equations. Random differential equations, as natural extensions
of deterministic ones, arise in many applications and have been investigated by many
mathematicians; see [61, 62, 63, 82, 89] and references therein. Between them differential
equations with random coefficients (see, [82, 25]) offer a natural and rational approach
(see [79], Chapter 1), since sometimes we can get the random distributions of some main
disturbances by historical experiences and data rather than take all random disturbances
into account and assume the noise to be white noises.

31
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3.2 Functional differential equations with state-dependent
delay and random effects

3.2.1 Introduction

In this work we prove the existence of random mild solutions of the following functional
differential equation with delay and random effects (random parameters) of the form:

y′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0, T ] (3.1)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (3.2)

where (Ω,F, P ) is a complete probability space, w ∈ Ω, f : J × B × Ω → E, φ ∈ B × Ω
are given random functions which represent random nonlinear of the system, A : D(A) ⊂
E → E is the infinitesimal generator of a strongly continuous semigroup T (t), t ∈ J, of
bounded linear operators in a Banach space E, B is the phase space to be specified later,
ρ : J ×B → (−∞,+∞), and (E, |.|) is a real separable Banach space. For any function y
defined on (−∞, T ]×Ω and any t ∈ J we denote by yt(·, w) the element of B×Ω defined
by yt(θ, w) = y(t + θ, w), θ ∈ (−∞, 0]. Here yt(·, w) represents the history of the state
from time −∞, up to the present time t. We assume that the histories yt(·, w) to some
abstract phases B, to be specified later. To our knowledge, the literature on the local
existence of random evolution equations with delay is very limited, so the present work
can be considered as a contribution to this question.

3.2.2 Existence of mild solutions

Now we give our main existence result for problem (3.1)-(3.2). Before starting and
proving this result, we give the definition of the random mild solution.

Definition 3.1 A stochastic process y : J × Ω → E is said to be random mild solution
of problem (3.1)-(3.2) if y(t, w) = φ(t), t ∈ (−∞, 0] and the restriction of y(., w) to the
interval [0, T ] is continuous and satisfies the following integral equation:

y(t, w) = T (t)φ(0, w) +

∫ t

0

T (t− s)f(s, yρ(s,ys)(·, w), w)ds, t ∈ J. (3.3)

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J × B −→ (−∞, T ] is continuous. Additionally, we introduce
following hypothesis:

(Hφ) The function t −→ φt is continuous from R(ρ−) into B and there exists a continuous
and bounded function Lφ : R(ρ−) −→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).
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Remark 3.2 The condition (Hφ), is frequently verified by functions continuous and
bounded. For more details, see for instance [59].

Lemma 3.3 ([54], Lemma 2.4) If y : (−∞, T ] −→ E is a function such that y0 = φ,
then

‖ys‖B ≤ (MT + Lφ)‖φ‖B +KT sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

We will need to introduce the following hypotheses which are assumed there after:

(H1) The operator solution T (t)t∈J is uniformly continuous for t > 0. LetM = sup{‖T‖B(E) :
t ≥ 0}.

(H2) The function f : J × B × Ω → E is random Carathéodory.

(H3) There exists two functions ψ : J × Ω −→ R+ and p : J × Ω −→ R+ such that for
each w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable
with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) There exists a functions L : J × Ω −→ R+ with L(., w) ∈ L1(J,R+) for each w ∈ Ω
such that for any bounded B ⊆ E.

α(f(t, B, w)) ≤ l(t, w)α(B),

(H5) There exist a random function R : Ω −→ R+\{0} such that:

M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds ≤ R(w),

(H6) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable.

Theorem 3.4 Suppose that hypotheses (Hφ) and (H1)− (H6) are valid, then the random
of delay problem (3.1)-(3.2) has at least one mild random solution on (−∞, T ].

Proof 3.5 Let Y = {u ∈ C(J,E) : u(0, w) = φ(0, w) = 0} endowed with the uniform
convergence topology and N : Ω× Y −→ Y be the random operator defined by

(N(w)y)(t) = T (t) φ(0, w) +

∫ t

0

T (t− s) f(s, yρ(s,ys)
, w) ds, t ∈ J, (3.4)

where ȳ : (−∞, T ]×Ω −→ E is such that ȳ0(·, w) = φ(·, w) and ȳ(·, w) = y(·, w) on J . Let
φ̄ : (−∞, T ]× Ω −→ E be the extension of φ to (−∞, T ] such that φ̄(θ, w) = φ(0, w) = 0
on J .
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Then we show that the mapping defined by (3.4) is a random operator. To do this, we
need to prove that for any y ∈ Y , N(.)(y) : Ω −→ Y is a random variable. Then we prove
that N(.)(y) : Ω −→ Y is measurable. as a mapping f(t, y, ·), t ∈ J, y ∈ Y is measurable
by assumptions (H2) and (H6).

Let D : Ω −→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

The set D(w) bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by
Lemma 17 in [33].
Let w ∈ Ω be fixed. If y ∈ D(w), from Lemma 3.3 it follows that

‖ȳρ(t,ȳt)‖B ≤ (MT + Lφ)‖φ‖B +KTR(w)

and for each y ∈ D(w), by (H3) and (H5), we have for each t ∈ J

|(N(w)y)(t)| ≤ M‖φ‖B +M

∫ t

0

|f(s, yρ(s,ys)
, w)|ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ
(
‖yρ(s,ys)

‖B, w
)
ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
ds

≤ M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds

≤ R(w).

This implies that N is a random operator with stochastic domain D and N(w) : D(w) →
D(w) for each w ∈ Ω.

Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in Y . Then

|(N(w)yn)(t)− (N(w)y)(t)| =
∣∣∣T (t)φ(0, w)

+

∫ t

0

T (t− s)
[
f(s, yn

ρ(s,yn
s)
, w)− f(s, yρ(s,ys)

, w)
]
ds

∣∣∣
≤ M

∫ t

0

|f(s, yn
ρ(s,yn

s)
, w)− f(s, yρ(s,ys)

, w)|ds.

Since f(s, ·, w) is continuous, we have by the Lebesgue dominated convergence theorem

|(N(w)yn)(t)− (N(w)y)(t)| −→ 0 as n −→ +∞.

Thus N is continuous.
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Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For this we apply
the Mönch fixed point theorem.

(a) N maps bounded sets into equicontinuous sets in D(w).
Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)| ≤ |T (τ2)− T (τ1)|‖φ‖B

+
∣∣∣ ∫ τ1

0

[T (τ2 − s)− T (τ1 − s)]f(s, yρ(s,ys)
, w)ds

∣∣∣
+

∣∣∣ ∫ τ2

τ1

T (τ2 − s)f(s, yρ(s,ys)
, w)

∣∣∣ds
≤ |T (τ2)− T (τ1)|‖φ‖B

+

∫ τ1

0

|T (τ2 − s)− T (τ1 − s)||f(s, yρ(s,ys)
, w)| ds

+

∫ τ2

τ1

|T (τ2 − s)f(s, yρ(s,ys)
, w)| ds

≤ |T (τ2)− T (τ1)|‖φ‖B + ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)∫ τ1

0

|T (τ2 − s)− T (τ1 − s)|p(s, w)ds

+ Mψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 −→ 0, since T (t) is
uniformly continuous.
Next, let w ∈ Ω be fixed (therefore we do not write ’w’ in the sequel) but arbitrary.

(b) Now let V be a subset of D(w) such that V ⊂ conv (N(V ) ∪ {0}) . V is bounded
and equicontinuous and therefore the function v −→ v(t) = α(V (t)) is continuous
on (−∞, T ]. By (H4), Lemma 1.17 and the properties of the measure α we have for
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each t ∈ (−∞, T ]

v(t) ≤ α (N(V )) (t) ∪ {0})
≤ α (N(V (t))

≤ α
(
T (t) φ(0) +

∫ t

0

T (t− s) f(s, yρ(s,ys)
) ds

)
≤ α

(
T (t) φ(0)

)
+ α

( ∫ t

0

T (t− s) f(s, yρ(s,ys)
) ds

)
≤ M

∫ t

0

l(s)α(
{
yρ(s,ys) : y ∈ V

}
)ds

≤ M

∫ t

0

l(s)K(s) sup
0≤τ≤s

α(V (τ))ds

≤
∫ t

0

l(s)K(s)α(V (s))ds

≤ M

∫ t

0

v(s) l(s)K(s)ds

= M

∫ t

0

l(s)K(s)v(s)ds.

Gronwall’s lemma implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively
compact in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in D(w).
Applying now Theorem 1.9 we conclude that N has a fixed point y(w) ∈ D(w).

Since
⋂

w∈ΩD(w) 6= ∅, then the hypothesis that a measurable selector of intD exists
holds. By Lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which
is a mild solution of the random problem (3.1)-(3.2).

Proposition 3.6 Assume that (Hφ), (H1), (H2), (H5), (H6) are satisfied, then a slight
modification of the proof (i.e. use the Darbo’s fixed point theorem) guarantees that (H4)
could be replaced by

(H4)
∗ There exists a nonnegative function l(., w) ∈ L1(J, IR+) for each w ∈ Ω, such that

α(f(t, B, w)) ≤ l(t, w)α(B), t ∈ J.

Proof 3.7 Consider the Kuratowski measure of noncompactness αC defined on the family
of bounded subsets of the space C(J,E) by

αC(H) = sup
t∈J

e−τL(t)α(H(t)),

where L(t) =

∫ t

0

l̃(s)ds, l̃(t) = Ml(t)K(t), τ > 1.
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We show that the operator N : D(w) −→ D(w) is a strict set contraction for each
w ∈ Ω. We know that N : D(w) −→ D(w) is bounded and continuous, we need to prove
that there exists a constant 0 ≤ λ < 1 such that αC(NH) ≤ λαC(H) for H ⊂ D(w). For
each t ∈ J we have

α((NH)(t)) ≤M

∫ t

0

α(f(s, yρ(s,ys)
, w)) : y ∈ H)ds.

This implies by (H4)
∗ and Theorem 2.1 in [41]

α((NH)(t)) ≤
∫ t

0

M l(s)α(yρ(s,ys)
: y ∈ H)ds

≤
∫ t

0

Ml(s)K(s) sup
0≤τ≤s

α(H(τ))ds

≤
∫ t

0

Ml(s)K(s)α(H(s))ds

=

∫ t

0

l̃(s)α(H(s))ds

=

∫ t

0

eτL(s)e−τL(s)l̃(s)α(H(s))ds

≤
∫ t

0

l̃(s) eτL(s) sup
s∈[0,t]

e−τL(s)α(H(s))ds

≤ sup
t∈[0,T ]

e−τL(t)α(H(t))

∫ t

0

l̃(s)eτL(s)ds

= αC(H)

∫ t

0

(eτL(s)

τ

)′

ds

≤ αC(H)
1

τ
eτL(t).

Therefore,

αC(NH) ≤ 1

τ
αC(H).

So, the operator N is a set contraction. As a consequence of Theorem 1.10, we deduce
that N has a fixed point y(w) ∈ D(w). Since

⋂
w∈ΩD(w) 6= ∅, the hypothesis that a

measurable selector of intD exists holds. By Lemma 1.15, the random operator N has a
stochastic fixed point y∗(w), which is a mild solution of the random problem (3.1)-(3.2).

3.2.3 An example

Consider the following functional partial differential equation:

∂

∂t
z(t, x, w) =

∂2

∂x2
z(t, x, w) + C0(w)b(t)

∫ t

−∞
F (z(t+ σ(t, z(t+ s, x, w)), x, w))ds, (3.5)



38 Functional Differential Equations with State-Dependent Delay and Random Effects

x ∈ [0, π], t ∈ [0, T ], w ∈ Ω

z(t, 0, w) = z(t, π, w) = 0, t ∈ [0, T ], w ∈ Ω (3.6)

z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω, (3.7)
where C0 are a real-valued random variable, b ∈ L1(J ; R+), F : R → R is continuous,
z0 :)−∞, 0]× [0, π]× Ω → R and σ : J × R → R are given functions.

Suppose that E = L2[0, π], (Ω,F, P ) is a complete probability space. Let A be A :
E → E by Av = v′′ with domain

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.
Then

Av =
∞∑

n=1

n2(v, vn)vn, v ∈ D(A)

where ωn(s) =
√

2
π

sinns, n = 1, 2, . . . is the orthogonal set of eigenvectors in A. It is well
know (see [71]) that A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0
in E and is given by

T (t)v =
∞∑

n=1

exp(−n2t)(v, vn)vn, v ∈ E.

Since the analytic semigroup T (t) is compact, there exists a positive constant M such
that

‖T (t)‖B(E) ≤M.

Let B = BCU(IR−;E) be the space of uniformly bounded continuous functions endowed
with the following norm:

‖φ‖ = sup
s≤0

|φ(s)|, for φ ∈ B.

If we put φ ∈ BUC(IR−;E), x ∈ [0, π] and w ∈ Ω

y(t, x, w) = z(t, x, w), t ∈ [0, T ]

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0].

Set

f(t, φ(x), w) = C0(w)b(t)

∫ t

−∞
F (z(t+ σ(t, z(t+ s, x, w)), x, w))ds,

and
ρ(t, φ)(x) = σ(t, z(t, x, w)).

Let φ ∈ B be such that (Hφ) holds, and let t → φt be continuous on R(ρ−), and let f
satisfies the conditions (H3), (H4), (H5)

Then the problem (3.1)-(3.2) is as in an abstract formulation of the problem (3.5)-
(3.7), and conditions (H1) − (H6) are satisfied. Theorem 3.4 implies that the random
problem (3.5)-(3.7) has at least one random mild solution.



Chapter 4

Functional Evolution Equations with
infinite State-Dependent Delay and
Random Effect

4.1 Introduction

In this work we prove the existence of random mild solutions of the following functional
evolution differential equation with delay and random effects (random paramaters) of the
form:

y′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(., w), w), a.e. t ∈ J := [0,∞) (4.1)

y(t, w) = φ(t, w), t ∈ (−∞, 0], (4.2)

(with some notations to be given later), where (Ω,F, P ) is a complete probability
space, w ∈ Ω where f : J × B × Ω → E, φ ∈ B × Ω are given random functions
which represent random nonlinear of the system, {A(t)}0≤t<+∞ is a family of linear closed
(not necessarily bounded) operators from E into E that generate an evolution system of
operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞, B is the phase space to be specified
later, ρ : J × B → (−∞,+∞), and (E, |.|) is a real separable Banach space. For any
function y defined on (−∞, T ] × Ω and any t ∈ J we denote by yt(., w) the element of
B×Ω defined by yt(θ, w) = y(t+θ, w), θ ∈ (−∞, 0]. Here yt(., w) represents the history of
the state from time −∞, up to the present time t. We assume that the histories yt(., w)
to some abstract phases B, to be specified later. To our knowledge, the literature on the
local existence of random evolution equations with delay is very limited, so the present
section can be considered as a contribution to this question.
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4.2 Functional evolution equations with infinite state-
dependent delay and random effect

4.2.1 Existence of mild solutions

Now we give our main existence result for problem (4.1)-(4.2). Before starting and
proving this result, we give the definition of the random mild solution.

Definition 4.1 A stochastic process y : J ×Ω → E is said to be random mild solution of
problem (4.1)-(4.2) if y(t, w) = φ(t, w), t ∈ (−∞, 0] and the restriction of y(., w) to the
interval [0, T ] is continuous and satisfies the following integral equation:

y(t, w) = U(t, 0)φ(0, w) +

∫ t

0

U(t, s)f(s, yρ(s,ys)(., w), w)ds, t ∈ J. (4.3)

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J ×B −→ (−∞,∞) is continuous. Additionally, we introduce
following hypothesis:

(Hφ) The function t −→ φt is continuous from R(ρ−) into B and there exists a continuous
and bounded function Lφ : R(ρ−) −→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 4.2 The condition (Hφ), is frequently verified by functions continuous and bounded.
For more details, see for instance [59].

Lemma 4.3 ([54], Lemma 2.4) If y : (−∞, T ] −→ E is a function such that y0 = φ,
then

‖ys‖B ≤ (MT + Lφ)‖φ‖B +KT sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

We will need to introduce the following hypothesis which are be assumed there after:

(H1) There exists a constant M ≥ 1 and α > 0 such that

‖U(t, s)‖B(E) ≤Me−α(t−s) for every (s, t) ∈ ∆.

(H2) The function f : J × B × Ω → E is Carathéodory.
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(H3) There exists a functions ψ : J ×Ω −→ R+ and p : J ×Ω −→ R+ such that for each
w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) For each (t, s) ∈ ∆ we have: lim
t−→+∞

∫ t

0

e−α(t−s)p(s, w)ds = 0.

(H5) There existe a random function R : Ω −→ R+/{0} such that:

M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
‖p‖L1 ≤ R(w),

(H6) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable.

Theorem 4.4 Suppose that hypotheses (Hφ) and (H1)− (H6) are valid, then the random
of delay problem (4.1)-(4.2) has at least one mild random solution on )−∞,∞).

Proof. Let Y is the space defined by

Y = {y : IR −→ E such that y|J ∈ BC(J,E) and y0 ∈ B},

we denote by y|J the restriction of y to J , endowed with the uniform convergence topology
and N : Ω× Y −→ Y be the random operator defined by:

(N(w)y)(t) =


φ(t, w), if t ∈ (−∞, 0]

U(t, 0)φ(0, w) +

∫ t

0

U(t, s)

f(s, yρ(s,ys)(., w), w)ds, if t ∈ J,

(4.4)

Then we show that the mapping defined by (4.4) is a random operator. To do this, we
need to prove that for any y ∈ Y , N(.)(y) : Ω −→ Y is a random variable. Then we prove
that N(.)(y) : Ω −→ Y is measurable. as a mapping f(t, y, .), t ∈ J, y ∈ Y is measurable
by assumption (H2) and (H6).

Let D : Ω −→ 2Y be defined by:

D(w) = {y ∈ Y : ‖y‖ ≤ R(w)}.

With D(w) bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by
lemma 17 in [33].

Let w ∈ Ω be fixed, If y ∈ D(w), from Lemma 4.3 follows that

‖yρ(t,yt)‖B ≤ (MT + Lφ)‖φ‖B +KTR(w)
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and For each y ∈ D(w), by (H3) and (H5), we have for each t ∈ J

|(N(w)y)(t)| ≤ M‖U(t, 0)‖B(E)‖φ‖B +M

∫ t

0

‖U(t, s)‖B(E)|f(s, yρ(s,ys), w)| ds

≤ Me−αt‖φ‖B +M

∫ t

0

e−α(t−s)p(s, w) ψ
(
‖yρ(s,ys)‖B, w

)
ds

≤ M‖φ‖B +M

∫ t

0

p(s, w) ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
ds

≤ M‖φ‖B +M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
‖p‖L1

≤ R(w).

This implies that N is a random operator with stochastic domain D and
N(w) : D(w) −→ D(w) for each w ∈ Ω.

Step 1: F is continuous.
Let yn be a sequence such that yn −→ y in Y . Then

|(N(w)yn)(t)− (N(w)y)(t)| ≤
∫ t

0

‖U(t, s)‖B(E)

∣∣∣f(s, yn
ρ(s,yn

s ), w)− f(s, yρ(s,ys), w)
∣∣∣ ds

≤ M

∫ t

0

e−α(t−s)
∣∣∣f(s, yn

ρ(s,yn
s ), w)− f(s, yρ(s,ys), w)

∣∣∣ ds.
Since f(s, ., w) is continuous, we have by the Lebesgue dominated convergence theorem

‖|(N(w)yn)(t)− (N(w)y)(t)|‖ −→ 0 as n −→ +∞.

Thus N is continuous.

Step 2:we prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For prove this we
apply Schauder’s theorem.
N(D(w)) is relatively compact: To prove the compactness, we will use Corduneanu’s
lemma.

(a) Firstly, it is clear that the assumption (i) is holds. Then we will demonstrate that
N(D(w)) is equicontinuous set for each closed bounded interval [0, T ] in J . Let
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τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)| ≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+
∣∣∣ ∫ τ1

0

[U(τ2, s)− U(τ1, s)]f(s, yρ(s,ys), w)ds
∣∣∣

+
∣∣∣ ∫ τ2

τ1

U(τ2, s)f(s, yρ(s,ys), w)
∣∣∣ds

≤ ‖U(τ2, 0)− U(τ1, 0)‖B(E)‖φ‖B

+

∫ τ1

0

|U(τ2, s)− U(τ1, s)||f(s, yρ(s,ys), w)| ds

+

∫ τ2

τ1

|U(τ2, s)f(s, yρ(s,ys), w)| ds

≤ |U(τ2, 0)− U(τ1, 0)|‖φ‖B + ψ
(
(Mb + Lφ)‖φ‖B +KbR(w), w

)∫ τ1

0

|U(τ2, s)− U(τ1, s)|p(s, w)ds

+ Mψ
(
(Mb + Lφ)‖φ‖B +KbR(w), w

) ∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 −→ 0, As N is
bounded and equicontinuous.

Next, let w ∈ Ω be fixed (therefore we do not write ’w’ in the sequel) but arbitrary.

(b) Now we will prove that Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E. Let
t ∈ [0, T ] be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ D(w) we
define

(Nε(w)y)(t) = U(t, 0)φ(0, w) + U(t, t− ε)

∫ t−ε

0

U(t− ε, s)f(s, yρ(s,ys), w) ds.

Since U(t, s) is a compact operator and the set Zε(t, w) = {(Nε(w)y)(t) : y ∈ D(w)}
is the imageof bounded set of E then Zε(t, w) is pre-compact in E for every ε,
0 < ε < t. Moreover

|(N(w)y)(t)− (Nε(w)y)(t)| ≤
∫ t

t−ε

‖U(t, s)‖B(E)|f(s, yρ(s,ys), w)|ds

≤ Mψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
e−α(t−s)

∫ t

t−ε

p(s, w)ds.

The right-hand side tends to zero as ε −→ 0, then N(w)y converge uniformly to
Nε(w)y which implies that Z(t, w) = {(N(w)y)(t) : y ∈ D(w)} is precompact in E.
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(c) Finally, it remains to show that N is equiconvergent.

Let y ∈ D(w), then from (H1), (H3) we have

|(N(w)y)(t)| ≤Me−αt‖φ‖B+M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ t

0

e−α(t−s)p(s, w) ds,

it follows immediately by (H4) that |(N(w)y)(t)| −→ 0 as t −→ +∞.
Then

lim
t−→+∞

|(N(w)y)(t)− (N(w)y)(+∞)| = 0,

which implies that N is equiconvergent.

A consequence of Steps 1-2 and (a), (b), (c), we can conclude that N(w) : D(w) →
D(w) is continuous and compact. From Schauder’s theorem, we deduce that N(w) has a
fixed point y(w) in D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
mild solution of the random problem (4.1)-(4.2).

4.2.2 An example

Consider the following functional partial differential equation:

∂

∂t
z(t, x, w) = a(t, x)

∂2

∂x2
z(t, x, w) + C0(w)b(t)F (z(t+ σ(t, z(t+ s, x, w)), x, w)), (4.5)

x ∈ [0, π], t ≥ 0, w ∈ Ω

z(t, 0, w) = z(t, π, w) = 0, t ≥ 0, w ∈ Ω (4.6)

z(s, x, w) = z0(s, x, w), s ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω (4.7)

where a(t, ξ) is a continuous function which is uniformly Hölder continuous in t,
Where C0 are a real-valued random variable, b ∈ L1(J ; R+), F : R → R is continu-
ous, z0 :)−∞, 0]× [0, π]× Ω → R and σ : J × R → R are given functions.

Suppose that E = L2[0, π], (Ω,F, P ) is a complete probability space. Take and define
A : E → E by Av = v′′ with domain:

D(A) = {v ∈ E, v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see
[36, 45]).
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Let B = BCU(IR−;E): the space of uniformly bounded continuous functions endowed
with the following norm:

‖φ‖ = sup
s≤0

|φ(s)|, for φ ∈ B

If we put φ ∈ BCU(IR−;E), x ∈ [0, π] and w ∈ Ω

y(t, x, w) = z(t, x, w), t ≥ 0

φ(s, x, w) = z0(s, x, w), s ∈ (−∞, 0],

Set
f(t, φ(x), w) = C0(w)b(t)F (z(t+ σ(t, z(t+ s, x, w)), x, w)),

and
ρ(t, φ)(x) = σ(t, z(t, x, w)).

Let φ ∈ B be such that (Hφ) holds, and let t→ φt be continuous on R(ρ−).

Then the problem (4.1)-(4.2) in an abstract formulation of the problem (4.5)-(4.7),
and conditions (H1)− (H6) are satisfied. Theorem 4.4 implies that the random problem
(4.5)-(4.7) has at least one random mild solutions.
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Chapter 5

Second Order Functional Differential
Equations with Delay and Random
Effect

5.1 Functional differential equations with constant de-
lay and random effect

5.1.1 Introduction

The importance of random fixed point theory lies in its vast applicability in probabilis-
tic functional analysis and various probabilistic models. The introduction of randomness
however leads to several new questions of measurability of solutions, probabilistic and sta-
tistical aspects of random solutions. It is well known that random fixed point theorems
are stochastic generalization of classical fixed point theorems what we call as determinstic
results. Random fixed point theorems for random contraction mappings on separable com-
plete metric spaces were first proved by S̃pac̃ek [81] and Hans̃ (see [52, 53]). The survey
article by Bharucha-Reid [20] in 1976 attracted the attention of several mathematicians
and gave wings to this theory. Itoh [40] extended S̃pac̃ekŠs and Hans̃Šs theorems to
multivalued contraction mappings. Random fixed point theorems with an application to
Random differential equations in Banach spaces are obtained by Itoh [40]. Sehgal and
Waters [77] had obtained several random fixed point theorems including random analogue
of the classical results due to Rothe [73]. In recent past, several fixed point theorems in-
cluding Kannan type [46] Chatterjeea [24] and Zamfirescu type [91] have been generalized
in stochastic version (see for detail in Joshi and Bose [42], Saha et al. ([74, 75]).

In this work we prove the existence of random mild solutions of the following functional
differential equation with delay and random effects (random paramaters) of the form:

y′′(t, w) = Ay(t, w) + f(t, yt(·, w), w), a.e. t ∈ J := [0, T ] (5.1)
y(t, w) = φ(t, w), t ∈ (−∞, 0], y′(0, w) = ϕ(w) ∈ E, (5.2)

47
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(with some notations to be given later), where (Ω,F, P ) is a complete probability space,
w ∈ Ω where f : J ×B ×Ω → E, φ ∈ B ×Ω are given random functions which represent
random nonlinear of the system, A : D(A) ⊂ E → E is the infinitesimal generator of a
strongly continuous cosine family of bounded linear operators (C(t))

t∈IR on E, we denote
by (S(t))

t∈IR the sine function associated with (C(t))
t∈IR, which is defined by S(t)x =∫ t

0
C(s)xds for x ∈ E and t ∈ R, B is the phase space to be specified later, and (E, |.|) is

a real separable Banach space. For any function y defined on (−∞, T ]×Ω and any t ∈ J
we denote by yt(., w) the element of B ×Ω defined by yt(θ, w) = y(t+ θ, w), θ ∈ (−∞, 0].
Here yt(., w) represents the history of the state from time −∞, up to the present time
t. We assume that the histories yt(., w) to some abstract phases B, to be specified later.
Later, we consider the following problem

y′′(t, w) = Ay(t, w) + f(t, yρ(t,yt)(·, w), w), a.e. t ∈ J := [0, T ] (5.3)

y(t, w) = φ(t, w), t ∈ (−∞, 0], y′(0, w) = ϕ(w) ∈ E, (5.4)

(with some notations to be given later), where (Ω,F, P ) is a complete probability
space, w ∈ Ω where f : J × B × Ω → E, φ ∈ B × Ω are given random functions which
represent random nonlinear of the system, A : D(A) ⊂ E → E as in problem (5.1)-(5.2),
B is the phase space to be specified later, ρ : J × B → (−∞,+∞), and (E, |.|) is a real
separable Banach space. For any function y defined on (−∞, T ] × Ω and any t ∈ J we
denote by yt(., w) the element of B×Ω defined by yt(θ, w) = y(t+θ, w), θ ∈ (−∞, 0]. Here
yt(., w) represents the history of the state from time −∞, up to the present time t. We
assume that the histories yt(., w) to some abstract phases B, to be specified later. The
main results are based upon Schauder’s fixed theorem and random fixed point theorem
combined with the family of cosine operators.

The cosine function theory is related to abstract linear second order differential equa-
tions in the same manner that the semigroup theory of bounded linear operators is related
to first order partial differential equations and itŠs equally appealing devoted their gen-
erality and simplicity. For basic concepts and applications of this theory, we refer to the
reader to Fattorini [35], Travis and Weeb [85].

Our purpose in this work is to consider a simultaneous generalization of the classical
second order abstract Cauchy problem studied by Travis and Weeb in [84, 85]. Addition-
ally, we observe that the ideas and techniques in this paper permit the reformulation of
the problems studied in [11, 19, 44, 67, 68] to the context of Ş partial Ť second order
differential equations, see ([84], pp. 557) and the referred papers for details.

Complicated situations in which the delay depends on the unknown functions have
been studied in the recent years (see for instance [6, 72, 87, 88] and the references therein).
Over the past several years it has become apparent that equations with state-dependent
delay arise also in several areas such as classical electrodynamics [31], in population models
[21], models of commodity price fluctuations [22, 64], and models of blood cell produc-
tions [65]. These equations are frequently called equations with state-dependent delay.
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The literature devoted differential equations with state-dependent delay is concerned fun-
damentally with first order functional differential equations for which the state belong
to some finite dimensional space, see among another works [14, 23, 29]. The problem
of the existence of solutions for first and second order partial functional differential with
state-dependent delay have treated recently in [55, 58, 56, 72]. The literature relative
second order differential system with state-dependent delay is very restrict, and related
this matter we only cite [80] for ordinary differential system and [57] for abstract partial
differential systems.

To the best of our knowledge, the study of the existence of solutions for abstract
second order functional differential equations with state-dependent delay on unbounded
interval is an untreated topic in the literature and this fact, is the main motivation of the
present work.

5.1.2 Existing result for the constante delay case

In this section we give our main existence result for problem (5.1)-(5.2). Before starting
and proving this result, we give the definition of a random mild solution.

Definition 5.1 A stochastic process y : J×Ω → E is said to be a random mild solution of
problem (5.1)-(5.2) if y(t, w) = φ(t, w), t ∈ (−∞, 0], y′(0, w) = ϕ(w) and the restriction
of y(., w) to the interval [0, T ] is continuous and satisfies the following integral equation:

y(t, w) = C(t)φ(0, w) + S(t)ϕ(w) +

∫ t

0

C(t− s)f(s, ys, w)ds, t ∈ J.

Let
M = sup{‖C(t)‖B(E) : t ≥ 0}, M ′ = sup{‖S(t)‖B(E) : t ≥ 0}.

Let us introduce the following hypotheses.

(H1) C(t) is compact for t > 0 in the Banach space E.

(H2) The function f : J × B × Ω → E is Carathéodory.

(H3) There exist a functions ψ : J × Ω −→ R+ and p : J × Ω −→ R+ such that for each
w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) There existe a random function R : Ω −→ R+/{0} such that:

M‖φ‖B +M ′‖ϕ‖+Mψ(DT , w)‖p‖L1 ≤ R(w)

where
DT := KTR(w) +MT‖φ‖B.
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(H5) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable, and for
each w ∈ Ω, ϕ(w) is measurable.

Theorem 5.2 Suppose that hypotheses (H1)−(H5) are valid, then the problem (5.1)-(5.2)
has at least one mild random solution on (−∞, T ].

Proof. Consider the random operator: N : Ω×BC −→ BC defined by:

(N(w)y)(t) =


φ(t, w), if t ∈ (−∞, 0],

C(t) φ(0, w) + S(t)ϕ(w)

+

∫ t

0

C(t− s) f(s, ys(·, w), w) ds, if t ∈ J.
(5.5)

Then we show that the mapping defined by (5.5) is a random operator. To do this,
we need to prove that for any y ∈ BC, N(.)(y) : Ω −→ BC is a random variable. Then
we prove that N(.)(y) : Ω −→ BC is measurable. as a mapping f(t, y, .), t ∈ J, y ∈ BC is
measurable by assumption (H2) and (H5).

Let D : Ω −→ 2BC be defined by:

D(w) = {y ∈ BC : ‖y‖BC ≤ R(w)}.

D(w) is bounded, closed, convex and solid for all w ∈ Ω. Then D is measurable by Lemma
17 (see [33]).
Let w ∈ Ω be fixed, then for any y ∈ D(w),and by assumption (A1), we get

‖ys‖B ≤ L(s)|y(s)|+M(s)‖y0‖B
≤ KT |y(s)|+MT‖φ‖B.

and by (H4) and (H3), we have:

|(N(w)y)(t)| ≤ M‖φ‖B +M ′|ϕ|+M

∫ t

0

|f(s, ys, w)| ds

≤ M‖φ‖B +M ′|ϕ|+M

∫ t

0

p(s, w) ψ (‖ys‖B, w) ds.

Set
DT := KTR(w) +MT‖φ‖B.

Then, we have

|(N(w)y)(t)| ≤M‖φ‖B +M ′|ϕ|+Mψ(DT , w)

∫ T

0

p(s, w) ds.
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Thus
‖(N(w)y)‖BC ≤M‖φ‖B +M ′|ϕ|+Mψ(DT , w)‖p‖L1 ≤ R(w).

This implies that N is a random operator with stochastic domain D and F (w) : D(w) −→
D(w) for each w ∈ Ω.

Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in BC. Then

|(N(w)yn)(t)− (N(w)y)(t)| =
∣∣∣ ∫ t

0

C(t− s)[f(s, yn
s , w)− f(s, ys, w)] ds

∣∣∣
≤ M

∫ t

0

|f(s, yn
s , w)− f(s, ys, w)| ds.

Since f(s, ., w) is continuous, we have by the Lebesgue dominated convergence theorem

‖f(., yn
. , w)− f(., y., w)‖L1 −→ 0 as n −→ +∞.

Thus N is continuous.

Step 2: we prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. For prove this we
apply Schauder’s theorem.

(a) N maps bounded sets into equicontinuous sets in D(w).
Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)|
≤ ‖C(τ2)− C(τ1)‖B(E)‖φ‖B + ‖S(τ2)− S(τ1)‖B(E)|ϕ|

+

∫ τ1

0

‖C(τ2 − s)− C(τ1 − s)‖B(E)|f(s, ys, w)|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)|f(s, ys, w)|ds

≤ ‖C(τ2)− C(τ1)‖B(E)‖φ‖B + ‖S(τ2)− S(τ1)‖B(E)|ϕ|

+

∫ τ1

0

‖C(τ2 − s)− C(τ1 − s)‖B(E)|f(s, ys, w)| ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)|f(s, ys, w)| ds

≤ ‖C(τ2)− C(τ1)‖B(E)‖φ‖B + ‖S(τ2)− S(τ1)‖B(E)|ϕ|

+ ψ(DT , w)

∫ τ1

0

‖C(τ2 − s)− C(τ1 − s)‖B(E)p(s, w)ds

+ Mψ(DT , w)

∫ τ2

τ1

p(s, w)ds.
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The right-hand of the above inequality tends to zero as τ2−τ1 −→ 0, the right-hand
side of the above inequality tends to zero, since C(t), S(t) are a strongly continuous
operator and the compactness of C(t), S(t) for t > 0, implies the continuity in the
uniform operator topology (see [84, 85]).

(b) Let t ∈ [0, T ] be fixed and let y ∈ D(w): by assumption (H3) the function f(t, yt, w)
is bounded and since C(t) is compact, the set{∫ t

0

C(t− s) f(s, ys, w)ds

}
is precompact in E, then the set{

C(t) φ(0, w) + S(t)ϕ(w) +

∫ t

0

C(t− s) f(s, ys, w)ds

}
is precompact in E.

A consequence of Steps 1-2 and (a), (b), we can conclude that N(w) : D(w) → D(w)
is continuous and compact. From Schauder’s theorem, we deduce that N(w) has a fixed
point y(w) in D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By Lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
random mild solution of the random problem (5.1)-(5.2).

5.1.3 The state-dependent delay case

In this section we give our main existence result for problem (5.3)-(5.4). Before starting
and proving this result, we give the definition of the random mild solution.

Definition 5.3 A stochastic process y : J × Ω → E is said to be random mild solution
of problem (5.3)-(5.4) if y(t, w) = φ(t), t ∈ (−∞, 0] and the restriction of y(., w) to the
interval [0, T ] is continuous and satisfies the following integral equation:

y(t, w) = C(t)φ(0, w) + S(t)ϕ(w) +

∫ t

0

C(t− s)f(s, yρ(s,ys)(s, w), w)ds, t ∈ J. (5.6)

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J × B −→ (−∞, T ] is continuous. Additionally, we introduce
following hypothesis:

(Hφ) The function t −→ φt is continuous from R(ρ−) into B and there exists a continuous
and bounded function Lφ : R(ρ−) −→ (0,∞) such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).
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Remark 5.4 The condition (Hφ), is frequently verified by functions continuous and bounded.
For more details, see for instance [59].

Lemma 5.5 ([54], Lemma 2.4) If y : (−∞, T ] −→ E is a function such that y0 = φ,
then

‖ys‖B ≤ (MT + Lφ)‖φ‖B +KT sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

We will need to introduce the following hypothesis which are be assumed there after:

(H1) C(t) is compact for t > 0 in the Banach space E.

(H2) The function f : J × B × Ω → E is Carathéodory.

(H3) There exists two functions ψ : J × Ω −→ R+ and p : J × Ω −→ R+ such that for
each w ∈ Ω, ψ(., w) is a continuous nondecreasing function and p(., w) integrable
with:

|f(t, u, w)| ≤ p(t, w) ψ(‖u‖B, w) for a.e. t ∈ J and each u ∈ B,

(H4) There exist function L : J × Ω −→ R+ with L(., w) ∈ L1(J,R+) for each w ∈ Ω
such that for any bounded B ⊆ E.

α(f(t, B, w)) ≤ l(t, w)α(B),

(H5) There exist a random function R : Ω −→ R+/{0} such that:

M‖φ‖B +M ′‖ϕ‖+M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds ≤ R(w),

(H6) For each w ∈ Ω, φ(., w) is continuous and for each t, φ(t, .) is measurable and for
each w ∈ Ω, ϕ(w) is measurable.

Theorem 5.6 Suppose that hypotheses (Hφ) and (H1)− (H6) are valid, then the random
of delay problem (5.3)-(5.4) has at least one mild random solution on (−∞, T ].

Proof. Consider the random operator: N : Ω×BC −→ BC defined by:

(N(w)y)(t) =


φ(t, w), if t ∈ (−∞, 0],

C(t) φ(0, w) + S(t)ϕ(w)

+

∫ t

0

C(t− s)f(s, yρ(s,ys)(·, w), w) ds, if t ∈ J.
(5.7)
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Then we show that the mapping defined by (5.7) is a random operator. To do this,
we need to prove that for any y ∈ BC, N(.)(y) : Ω −→ BC is a random variable. Then
we prove that N(.)(y) : Ω −→ BC is measurable. as a mapping f(t, y, .), t ∈ J, y ∈ BC is
measurable by assumption (H2) and (H6).

Let D : Ω −→ 2BC be defined by:

D(w) = {y ∈ BC : ‖y‖BC ≤ R(w)}.

With D(w) bounded, closed, covex and solid for all w ∈ Ω. Then D is measurable by
lemma 17 in [33].
Let w ∈ Ω be fixed, If y ∈ D(w), from Lemma 5.5 follows that

‖yρ(t,yt)‖B ≤ (MT + Lφ)‖φ‖B +KTR(w)

and For each y ∈ D(w), by (H3) and (H5), we have for each t ∈ J

|(N(w)y)(t)| ≤ M‖φ‖B +M ′|ϕ|+M

∫ t

0

|f(s, yρ(s,ys), w)| ds

≤ M‖φ‖B +M ′|ϕ|+M

∫ t

0

p(s, w) ψ
(
‖yρ(s,ys)‖B, w

)
ds

≤ M‖φ‖B +M ′|ϕ|+M

∫ t

0

p(s, w) ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

)
ds

≤ M‖φ‖B +M ′|ϕ|+M ψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ T

0

p(s, w)ds

≤ R(w).

This implies that N is a random operator with stochastic domain D and
N(w) : D(w) → D(w) for each w ∈ Ω.

Step 1: N is continuous.
Let yn be a sequence such that yn −→ y in BC. Then

|(N(w)yn)(t)− (N(w)y)(t)| =
∣∣∣ ∫ t

0

C(t− s)
[
f(s, yn

ρ(s,yn
s ), w)− f(s, yρ(s,ys), w)

]
ds

∣∣∣
≤ M

∫ t

0

|f(s, yn
ρ(s,yn

s ), w)− f(s, yρ(s,ys), w)| ds.

Since f(s, ., w) is continuous, we have by the Lebesgue dominated convergence theorem

‖(N(w)yn)(t)− (N(w)y)(t)‖BC −→ 0 as n −→ +∞.

Thus N is continuous.

Step 2: We prove that for every w ∈ Ω, {y ∈ D(w) : N(w)y = y} 6= ∅. To prove this, we
apply the Mönch fixed point theorem.
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(a) N maps bounded sets into equicontinuous sets in D(w).
Let τ1, τ2 ∈ [0, T ] with τ2 > τ1, D(w) be a bounded set, and y ∈ D(w). Then

|(N(w)y)(τ2)− (N(w)y)(τ1)| ≤ ‖C(τ2)− C(τ1)‖B(E)‖φ‖B + ‖S(τ2)− S(τ1)‖B(E)|ϕ|

+

∫ τ1

0

‖C(τ2 − s)− C(τ1 − s)‖B(E)|f(s, yρ(s,ys), w)|ds

+

∫ τ2

τ1

‖C(τ2 − s)‖B(E)|f(s, yρ(s,ys), w)|ds

≤ ‖C(τ2)− C(τ1)‖B(E)‖φ‖B + ‖S(τ2)− S(τ1)‖B(E)|ϕ|

+ ψ
(
(MT + Lφ)‖φ‖B +KTR(w)

)
∫ τ1

0

‖C(τ2 − s)− C(τ1 − s)‖B(E)p(s, w)ds

+ Mψ
(
(MT + Lφ)‖φ‖B +KTR(w), w

) ∫ τ2

τ1

p(s, w)ds.

The right-hand of the above inequality tends to zero as τ2−τ1 −→ 0, since C(t), S(t)
are a strongly continuous operator and the compactness of C(t), S(t) for t > 0,
implies the continuity in the uniform operator topology (see [84, 85]).

Next, let w ∈ Ω be fixed (therefore we do not write ’w’ in the sequel) but arbitrary.

(b) Now let V be a subset of D(w) such that V ⊂ conv (N(V ) ∪ {0}) . V is bounded
and equicontinuous and therefore the function v −→ v(t) = α(V (t)) is continuous
on (−∞, T ]. By (H4), Lemma 1.17 and the properties of the measure α we have for
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each t ∈ (−∞, T ]

v(t) ≤ α (N(V )) (t) ∪ {0})
≤ α (N(V (t))

≤ α
(
C(t) φ(0) + S(t)ϕ(w) +

∫ t

0

C(t− s) f(s, yρ(s,ys)) ds
)

≤ α
(
C(t) φ(0)

)
+ α

(
S(t)ϕ(w)

)
+ α

( ∫ t

0

C(t− s) f(s, yρ(s,ys)) ds
)

≤ M

∫ t

0

l(s)α(
{
yρ(s,ys) : y ∈ V

}
)ds

≤ M

∫ t

0

l(s)K(s) sup
0≤τ≤s

α(V (τ))ds

≤
∫ t

0

l(s)K(s)α(V (s))ds

≤ M

∫ t

0

v(s) l(s)K(s)ds

= M

∫ t

0

l(s)K(s)v(s)ds.

Gronwall’s Lemma implies that v(t) = 0 for each t ∈ J , and then V (t) is relatively
compact in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in D(w).
Applying now Theorem 1.9 we conclude that N has a fixed point y(w) ∈ D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
mild solution of the random problem (5.3)-(5.4).

Proposition 5.7 Assume that (Hφ), (H1), (H2), (H5), (H6) are satisfied, then a slight
modification of the proof (i.e. use the Darbo’s fixed point theorem) guarantees that (H4)
could be replaced by

(H4)
∗ There exists a nonnegative function l(., w) ∈ L1(J, IR+) for each w ∈ Ω, such that

α(f(t, B, w)) ≤ l(t, w)α(B), t ∈ J,

and consider the Kuratowski measure of noncompactness αC defined on the family of
bounded subsets of the space C(J,E) by

αC(H) = sup
t∈J

e−τL(t)α(H(t)),

where L(t) =

∫ t

0

l̃(s)ds, l̃(t) = Ml(t)K(t), τ > 1.
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Proof. We show that the operator N : D(w) −→ D(w) is a strict set contraction for each
w ∈ Ω. We know that N : D(w) −→ D(w) is bounded and continuous, we need to prove
that there exists a constant 0 ≤ λ < 1 such that αC(NH) ≤ λαC(H) for H ⊂ D(w). For
each t ∈ J we have

α((NH)(t)) ≤M

∫ t

0

α(f(s, yρ(s,ys), w) : y ∈ H)ds.

This implies by (H4)
∗ and Theorem 2.1 in [41]

α((NH)(t)) ≤
∫ t

0

M l(s)α
({
yρ(s,ys) : y ∈ H

})
ds

≤
∫ t

0

Ml(s)K(s) sup
0≤τ≤s

α(H(τ))ds

≤
∫ t

0

Ml(s)K(s)α(H(s))ds

=

∫ t

0

l̃(s)α(H(s))ds

=

∫ t

0

eτL(s)e−τL(s)l̃(s)α(H(s))ds

≤
∫ t

0

l̃(s) eτL(s) sup
s∈[0,t]

e−τL(s)α(H(s))ds

≤ sup
t∈[0,T ]

e−τL(t)α(H(t))

∫ t

0

l̃(s)eτL(s)ds

= αC(H)

∫ t

0

(eτL(s)

τ

)′

ds

≤ αC(H)
1

τ
eτL(t).

Therefore,

αC(NH) ≤ 1

τ
αC(H).

So, the operator N is a set contraction. As a consequence of Theorem 1.10, we deduce
that N has a fixed point y(w) ∈ D(w).

Since
⋂

w∈ΩD(w) 6= ∅, the hypothesis that a measurable selector of intD exists holds.
By lemma 1.15, the random operator N has a stochastic fixed point y∗(w), which is a
mild solution of the random problem (5.3)-(5.4).

5.1.4 Examples

Example 1. Consider the functional partial differential equation of second order
∂2

∂t2
z(t, x, w) =

∂2

∂x2
z(t, x, w) + f(t, z(t, x, w), w), x ∈ [0, π], t ∈ J, w ∈ Ω, (5.8)
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z(t, 0, w) = z(t, π, w) = 0, t ∈ [0,+∞), w ∈ Ω, (5.9)

z(t, x, w) = φ(t, w),
∂z(0, x, w)

∂t
= v(x,w), t ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω, (5.10)

where J := [0,+∞) and f : J × IR × Ω −→ IR is a given map. Take E = L2[0, π],
(Ω,F, P ) is a complete probability space and define A : E → E by Av = v′′ with domain

D(A) = {v ∈ E; v, v′are absolutely continuous, v′′ ∈ E, v(0) = v(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))

t∈IRon E, respectively. Moreover, A has discrete spectrum, the eigenvalues
are −n2, n ∈ IN with corresponding normalized eigenvectors zn(τ) := ( 2

π
)

1
2 sinnτ, and the

following properties hold:

(a) {zn : n ∈ IN} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑∞

n=1 n
2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =
∞∑

n=1

sin(nt)

n
< y, zn > zn

which implies that the operator S(t) is compact for all t > 0 and that

‖C(t)‖ = ‖S(t)‖ ≤ 1, for all t ≥ 0.

(d) If Φ denotes the group of translations on E defined by

Φ(t)y(ξ, w) = ỹ(ξ + t, w),

where ỹ is the extension of y with period 2π, then

C(t) =
1

2
(Φ(t) + Φ(−t));A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y(., w) ∈ H1(0, π) : y(0, w) = y(π,w) = 0}.

For more details, see [35].

Then the problem (5.1)-(5.2) in an abstract formulation of the problem (5.8)-(5.10). If
conditions (H1)−(H5) are satisfied, theorem 5.2 implies that the problem (5.8)-(5.10) has
at least one random mild solutions in BC.
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Example 2. Take E = L2[0, π];B = C0×L2(g, E) and define A : E → E by Aω = ω′′

with domain

D(A) = {ω ∈ E;ω, ω′are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))

t∈IRon E, respectively. Moreover, A has discrete spectrum, the eigenvalues
are −n2, n ∈ IN with corresponding normalized eigenvectors

zn(τ) := (
2

π
)

1
2 sinnτ,

and the following properties hold.

(a) {zn : n ∈ IN} is an orthonormal basis of E.

(b) If y ∈ E, then Ay = −
∑∞

n=1 n
2 < y, zn > zn.

(c) For y ∈ E,C(t)y =
∑∞

n=1 cos(nt) < y, zn > zn, and the associated sine family is

S(t)y =
∞∑

n=1

sin(nt)

n
< y, zn > zn

which implies that the operator S(t) is compact, for all t ∈ J and that

‖C(t)‖ = ‖S(t)‖ ≤ 1, for all t ∈ IR.

(d) If Φ denotes the group of translations on E defined by

Φ(t)y(ξ, w) = ỹ(ξ + t, w),

where ỹ is the extension of y with period 2π. Then

C(t) =
1

2
(Φ(t) + Φ(−t));A = B2,

where B is the infinitesimal generator of the group Φ on

X = {y(., w) ∈ H1(0, π) : y(0, w) = x(π,w) = 0}.

For more details, see [35].

Consider the functional partial differential equation of second order

∂2

∂t2
z(t, x, w) =

∂2

∂x2
z(t, x, w)+C0(w)

∫ 0

−∞
a(s−t)z(s−ρ1(t)ρ2(|z(t)|), x, w)ds, x ∈ [0, π], t ∈ J, w ∈ Ω,

(5.11)
z(t, 0, w) = z(t, π, w) = 0, t ∈ J, w ∈ Ω (5.12)
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z(t, x, w) = φ(t, w),
∂z(0, x, w)

∂t
= v(x,w), t ∈ (−∞, 0], x ∈ [0, π], w ∈ Ω, (5.13)

where C0 are a real-valued random variable, J := [0,+∞), ρi : [0,∞) → [0,∞), a : IR →
IR be continuous, and

Lf =

(∫ 0

−∞

a2(s)

g(s)
ds

) 1
2

<∞.

We define the functions f : J × B × Ω → E, ρ : J × B → IR by

f(t, ψ(x), w) = C0(w)

∫ 0

−∞
a(s)ψ(s, x)ds,

ρ(s, ψ) = s− ρ1(s)ρ2(‖ψ(0)‖).

We have ‖f(t, ., .)‖B ≤ Lf .

Let φ ∈ B be sush that (Hφ) holds, and let t→ φt be continuous on R(ρ−).

Then the problem (5.3)-(5.4) in an abstract formulation of the problem (5.11)-(5.13).
If conditions (H1)− (H6) are satisfied, theorem 5.6 implies that the problem (5.11)-(5.13)
has at least one random mild solution in BC.



Conclusion and Perspective

In this thesis, we have presented some results to the theory of existence of random
mild solutions of some classes of semilinear functional differential equations on finite and
infinite intervals with random effect and infinite delay in a Banach space. The results
are based on the semigroup theory, measure of noncompactness, the random fixed point
and deterministic fixed point theorems; in particular we have used Schauder’s theorem,
Mönch theorem, Darbo theorem.

It would be interesting, for a future research, to consider the existence of random mild
solution for the neutral functional differential equations:


d

dt
[y(t, w)− g(t, yt, w)]− Ay(t, w) = f(t, yt, w), t ∈ J := [0, T ], w ∈ Ω

y(t, w) = φ(t, w) t ∈ (−∞, 0],

(5.14)

where g, f are given functions from J×B×Ω into E, A : D(A) ⊂ E → E is the infinitesi-
mal generator of a strongly continuous semigroup T (t), t ∈ J, of bounded linear operators
in a Banach space E.

And we plan to consider the problems considered in this thesis in the case when the
operator A is not densly defined and generates an integrated semigroup, in this case we
look for the existence of random integral solution.

61
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