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Introduction 

Space systems play an important role in the field of earth observation and knowledge of our 

environment. On these systems, are carried different types of sensors: passive and active (radars). 

Passive sensors can only detect the energy provided by the environment. In contrast, active sensors 

transmit energy, and then collect the reflected energy. In this thesis, our interest will focus on 

passive sensors covering the visible and infrared bands. The images produced by these sensors 

allow the distinction of the geometric structures according to the spatial resolution. When the 

sensor is able to integrate the incident radiation energy over a wide range of wavelength band, it 

offers little information on the spectral level, but at the same time, it offers a high spatial resolution. 

In general, such images are called panchromatic (Pan). In contrast, some sensors capture energy 

over a set of much narrower bands of spectra to produce multispectral images (MS). Then their 

spectral resolution is much higher, but at the cost of a low spatial resolution. Note that the terms of 

resolution 'high' or 'low' are relative terms to describe the different resolutions between images 

acquired by a single observation system for Pan and MS images. 

The advantage of using MS images with a high spatial resolution has already been demonstrated in 

many remote sensing applications. The color information helps in the distinction of different 

regions of the image compared to the grayscale Pan image. Therefore, if we can use these spectral 

contents while taking advantage of a better spatial resolution, the identification of objects in a scene 

will be enriched and more accurate. 

The question is why manufacturers have not directly built sensors able to provide images with high 

spatial and high spectral resolutions? 
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In fact, these notions are contradictory from a technical point of view when a given technology is 

given; when the acquisition spectrum of a sensor is large the incident light flux on a pixel of the 

image is great. The pixel size is then lower and therefore the image has better spatial resolution. At 

the opposite, a narrow acquisition spectrum, including a restricted incident light flux on a pixel, 

produces a low spatial resolution. 

To overcome this problem, it is possible to combine these data, Pan and MS, and produce MS 

imagery with a higher spatial resolution by using suitable algorithms. This concept is known as 

multispectral or multisensor merging, fusion or pansharpening [1]. Pansharpening can be defined as 

a pixel level fusion technique used to synthesise the MS images to a higher resolution using spatial 

information from the Pan image.  

Pansharpening techniques increase the spatial resolution while simultaneously preserving the 

spectral information in the final produced MS image, giving the best of the two worlds: high 

spectral resolution and high spatial resolution. Wald in [2

framework in which are expressed means and tools for the alliance of data originating from 

different sources. It aims at obtaining information of greater quality; the exact 

 

This thesis aims at presenting the work carried out for fusing MS and Pan images and for quality 

assessment of the produced pansharpened images. Our contributions include: 

1). Two pansharpening methods based on the IHS transform. 

2). A Non Sub-sampled Contourlet Transform (NSCT)-based pansharpening method. 

3). A protocol for evaluating and ranking pansharpening method. 

4). A vegetation index derived from Pan images for high resolution satellites. 

5). A method for vegetation extraction from the Ikonos satellite  

To present the context of this work and our contributions, this thesis is organized into the following 

five chapters. 

Chapter 1 introduces remote sensing imagery, satellite characteristics and vegetation indices. 

Remote sensing images are presented based on their spectral and spatial characteristics. Hence, Pan 

and MS images are presented in the optical images section and SAR and Lidar are presented as the 

rest of the spectral classification of optical images. In the spatial classification, discussion is about 

low, medium and high resolution. The chapter also presents satellite characteristics, mainly Ikonos, 

QuickBird and Worldview. The vegetation indices extracted from multispectral remote sensing 

images are also explained. These indices are conventionally in diverse applications in remote 

sensing of the environment. 

Chapter 2 presents a critical state of the art about pansharpening methods and particularly the latest 

ones. The qualitative and quantitative evaluation of their performance has opened up many 
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opportunities for the development of remote sensing applications. Image fusion methods have been 

classified in several ways. Although it is not possible to find a universal classification, we choose 

that of [3] organized into five categories: component substitution, relative spectral contribution, 

high frequency injection, methods based on statistics of the image and finally multiresolution 

family. This Chapter introduces also some pre-processing techniques needed in pansharpening, 

such as image registration, interpolation and histogram matching. 

Chapter 3 presents a critical review of quality assessment indices found in the literature for 

evaluation of pansharpened products. This review consists to understand the limitations of the 

quality assessment indices in order to develop a protocol for quality assessment for fused images. 

For assessing the quality of a pansharpened image, the fused images must be compared to a 

reference, which does not exist in the case of the fusion of the MS image and the high spatial 

resolution Pan image. The assumption of extrapolation is to apply the fusion process at a scale 

where the reference is available and to suggest that the quality at this low resolution is close to or 

even better than could have been drawn to a scale of higher spatial resolutions. More concretely, 

suppose that the spatial resolution of the original Pan and MS images are hi and lo, respectively. 

The Pan and MS images will be downsampled to their lower resolutions lo and vl, respectively. 

Then, Pan at resolution lo and MS at resolution vl are fused to obtain a fused MS at resolution lo 

that can be then compared with the original MS image. The quality assessed at resolution lo is 

assumed to be close to the quality at resolution hi. 

Chapter 4 presents the main contributions of the author. Two developed methods based on the IHS 

transform are discussed. Pansharpening and color enhancement cases are studied. A detailed 

section is dedicated to the presentation of the proposed vegetation index, called High Resolution 

NDVI (HRNDVI). Moreover, the developed NSCT-based pansharpening method is presented. 

Finally, extraction of vegetation from Ikonos images, using the proposed HRNDVI index is 

presented to demonstrate the efficiency of this index. All the algorithms are illustrated with high 

resolution images and quantitative analyses are given. 

Finally, Chapter 5 is dedicated to the proposed protocol for the evaluation of the pansharpening 

techniques. Most of the indices discussed in chapter 3 are used in this protocol. The problem of the 

contradiction of visual and quantitative evaluations of some pansharpened images was observed 

when conducting some experiments on pansharpening algorithms presented in the previous chapter. 

It can be found that the quantitative quality is high but visually not. The proposed protocol allows 

having two separate indications, the first one for spectral quality and the second one for the spatial 

quality. Moreover, these two measures can be combined in one global measure with the possibility 

to promote one measure relatively to the second one. This protocol leads to a better tuning between 

visual and quantitative evaluations. Appendix A presents the interpolation impact on the quality of 

pansharpened images. 
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Remote Sensing 

1.1 Introduction 

Remote sensing is defined as group of techniques for collecting useful information about objects, area or 

phenomenon through the measurements and analysis of data collected by devices that are not in physical 

contact with the objects, area, or phenomenon under investigation. In the context of this thesis, remote 

sensing is defined as the science and technology of collecting information about the earth surfaces, sea 

surfaces, clouds, and the atmosphere of earth, etc., by aircraft and satellites without being in contact with 

the earth. This is relying on sensing and recording reflected signals of some sort, for example optical, 

acoustical, or microwave, then processing and applying information. This concept is illustrated in figure 

1.1. Airplanes and artificial satellites collect large scale, but precise, data regarding the physical 

conditions at the surface as well as the atmosphere of earth. Later, scientists around the world interpret 

these data to extract information useful for specific applications discussed in the succeeding sections. 

While remote-sensing data can consist of discrete, point measurements or a profile along a flight path, we 

are most interested here in measurements over a two-dimensional spatial grid, i.e., images. Remote-

sensing systems, particularly those deployed on satellites, provide a repetitive and consistent view of the 

earth that is invaluable to monitoring short-term and long-term changes and the impact of human 

activities [1]. 

Remote sensing was founded after photography invention in the 18
th
 century. Aerial photography was 

first practiced by the French photographer and balloonist Gaspard-Félix Tournachon, known as "Nadar", 

in 1858 over Paris, France. It was used for military purposes in the First World War. Since the launch of 

Sputnik I in 1957, several satellites have been sent into space on missions to collect data about the earth. 
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The remote sensing satellites further divide into two broad categories of meteorological satellites and the 

earth observation satellites. The launch of the first meteorological satellite (TIROS-1) was in 1960, 

moreover with the 4 spectral bands of the first Earth-observing satellite (Landsat-1) launched in late July 

1972 began the modern era of land remote sensing from space. The multispectral bands led to an 

improved understanding of crops, minerals, soils, urban growth, and many other Earth features and 

processes. A meteorological satellite can be defined as an Earth observation satellite used for the specific 

task of monitoring wind, cloud formations and other variables that permit predicting weather. 

 

Figure 1.1 Data collection by remote sensing
1
 

There are two main modes of operation of remote sensing: passive remote sensing and active remote 

sensing. Passive sensors depend on an external source of energy, usually the sun. They capture energy 

emitted by sun and reflected by the object or surrounding area being observed, in visible, near infrared 

and thermal infrared bands. This energy is relative to physical and chemical properties of the objects 

under observation. On the other hand, active sensors have their own source of energy. Active remote 

sensing satellites emit energy, in order to scan objects and areas, and then recapture it as it bounces back 

ctive 

sensors are more controllable because they do not depend upon varying illumination conditions. 

In this chapter, the remote sensing imagery with a spectral and spatial classification is presented. For the 

spectral classification case details on optical, SAR and Lidar images are given. Remote sensing images 

are categorized in low, medium and high spatial resolution for the spatial classification case. In section 

1.3, the satellites characteristics, namely Ikonos, QuickBird and Worldview are discussed. As the 

vegetation extraction represents a widely used application in remote sensing, some vegetation indices are 

introduced in section 1.4. 

                                                 
1 Source: http://stlab.iis.u-tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp1/1-1-1.gif  
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1.2 The remote sensing imagery 

The recent progresses in electronics field have enabled remote sensing system to reach images with 

ground resolutions finer than ever before. The acquired images from the remote sensing depend on the 

sensor spatial resolution, the imaged area on the surface, the revisit time and the wavelength bands 

employed in image acquisition. In the following sections only spatial and spectral resolutions are detailed, 

in contrast of temporal resolution specified by the revisiting frequency of a satellite sensor for a specific 

location. 

1.2.1 Spectral classification: 

In terms of spectral regions used in data acquisition, three types of images are produced by a remote 

sensing system: optical images, Synthetic Aperture Radar (SAR) images and Light Detection And 

Ranging (LiDAR) images. 

1.2.1.1 Optical images: 

Optical sensors capture optical images of the earth's surface in visible, near infrared and short-wave 

infrared bands. Wavelengths of bands in a optical remote sensing system ranges from 0.30mm to 

15.0.Radiometric, spectral, textural, geometric and contextual information, contained in an optical image, 

usually serve in image interpretation. Depending on the number of spectral bands used, optical images are 

classified into four broad categories, Panchromatic (Pan), Multi-Spectral (MS), Super-Spectral (SS) and 

Hyper-Spectral (HS). 

1.2.1.1.1 Panchromatic image 

A panchromatic sensor consists of a single band detector sensitive to radiation within a wide spectral 

range covering visible as well as IR wavelengths. If the wavelength range coincides with the visible 

range, then the imagery will appear as a black and white photograph taken from space. The physical 

quantity being measured is the apparent brightness of the targets. The color of the targets is not available. 

It is usually displayed as a grey scale image as in figure 1.2 that shows Pan image of Yokohama, Japan 

acquired October 5, 2007 by WorldView-1. Though it is also different in a way that unlike black and 

white photograph, Pan sensors of some satellites also cover the infrared wavelengths and in some 

satellites, these do not cover the blue wavelengths. The Pan images always have greater resolutions than 

the MS images from the same satellite. It is due to the much more energy per unit area gathered by a Pan 

sensor due to its wider bandwidth. Refer to figure 1.3 that shows the frequency response of the Pan sensor 

of WorldView-1. Examples of panchromatic imaging system are Ikonos Pan, QuickBird Pan and 

WorldView Pan. 
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Figure 1.2 A WorldView-1 Panchromatic image of Yokohama, Japan acquired October 5, 2007 
2
 

 

Figure 1.3 WorldView-1 imager relative spectral radiance response [4] 

1.2.1.1.2 Multi-spectral image 

The sensor of a multi-spectral imaging system is obtained from a set of multi-band sensors (less than 10 

bands). Compared to panchromatic imaging system, the recorded radiation of a multispectral imaging 

system is within a narrow range of wavelength for each band. Both brightness and spectral (color) 

information of the targets being observed are available on the resulting image. Whatever, multispectral 

images have a low resolution they can cover the visible as well as infrared range of wavelengths. In figure 

1.4 the responses of the Pan as well as the 8 multispectral sensors of WorldView-2 satellite are shown to 

illustrate the used range of the electromagnetic spectrum from the visible to the infrared part. The three 

                                                 
2 Source : http://www.satimagingcorp.com/galleryimages/worldview-1-satellite-image-yokohama-japan.jpg 
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visual primary color bands (red, green, blue) of MS image may be combined to produce a true color  

image. However, the display color assignment for any band of a MS image can be done in an entirely 

arbitrary manner. In this case, the color of a target in the displayed image differs from its actual color. 

The resulting product is known as a false color image . Figure 1.5 illustrates a scene from the Hajj 

pilgrimage area in Mecca at Saudi Arabia acquired November 2, 2011, with a true color image having 0.5 

m resolution captured by WorldView-2.  

 

Figure 1.4 Spectral Response of the WorldView-2 panchromatic and multispectral imager [4] 

 
Figure 1.5 half-meter satellite photo of the Hajj pilgrimage captured by WorldView-2

3
 

                                                 
3 http://www.satimagingcorp.com/galleryimages/worldview-2-mecca-hajj.jpg (visited May 2012) 
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This is a pansharpening result of the original multispectral bands (2 m resolution) with the corresponding 

panchromatic image having 0.5 m resolution. Pansharpening is a process of fusing Pan and MS images to 

create a single high spectral and spatial resolution image. 

In case of satellite that does not have the three true color bands: Red, Green and Blue, it is recommended 

to use a false color representation. SPOT-5 is an example, where blue band is not acquired. This missing 

band can be replaced by NIR band and then displayed as red channel. The red and green bands are 

displayed as green and blue channels, respectively, generating a false color image representation (see 

figure 1.6 left picture). Moreover, by combining of multispetral bands, it is possible to get a natural colour 

appearance of the image, as it is shown at the right of figure 1.6. 

  

Figure 1.6 SPOT 5: left image: Naples
4
 at 5 m resolution and right image: Paris

5
 at 2.5 m resolution 

1.2.1.1.3 Super-spectral and Hyper-spectral images 

An imaging system is considered super-spectral if it acquires more than ten spectral bands. It will be 

hypersepctral if the number of the captured spectral bands is more than one hundred. Bandwidths are 

narrower when the number of spectral bands increases. Thus, sensors will be able to capture the finer 

spectral characteristics of the features of the targets. These types of systems will improve understanding 

of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. It 

find a potential applications in such fields as precision agriculture (e.g. monitoring the types, health, 

moisture level and maturity of crops), coastal management (e.g. monitoring of phytoplankton, pollution, 

bathymetry changes) etc. Examples of superspectral optical remote sensing system are MODIS (36 

spectral bands) and MERIS (15 programmable spectral bands), and of a hypespectral is Hyperion (242 

spectral bands). 

Example of MODIS image is illustrated in left of figure 1.7. This natural color image acquired on April 

2012 and issued from the combination of bands 1, 4 and 3, shows a dust storm over Egypt. The middle 

and right images of figure 1.7, captured on October 23, 2007 using Hyperion spectrometer, show wildfire 

                                                 
4 http://spot5.cnes.fr/images/naples/naples_no_01.html (visited May 2012) 

5 http://spot5.cnes.fr/images/paris/paris_so_01.htm (visited May 2012) 
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areas in Southern California. The middle data visualization represents the scene, as the human eye would 

see it. Using three of shortwave infrared bands gives a better view of the burning fire, as illustrated in the 

right side of figure 1.7. 

   

Figure 1.7 Left: MODIS image 
6
, middle: Hyperion image 1

7
 and right Hyperion image 2

8
 

1.2.1.2 SAR images: 

Radio Detection and Ranging (Radar) is an object-detection system developed in the 1950s that uses radio 

waves to determine the range, altitude, direction, or speed of objects. Synthetic Aperture Radar (SAR) is a 

technique for obtaining high-resolution images of the earth's surface. In SAR imaging, microwave pulses 

are transmitted by an antenna towards the earth surface. The SAR system detects the reflected microwave 

energy and forms an image using the time delay of the backscattered signals. Over the area of the surface 

being observed, these images represent the backscattered microwave energy, the characteristics of which 

depend on the properties of the surface, such as its slope, roughness, humidity, textural inhomogeneities 

and dielectric constant. Figure 1.8 shows a high-resolution airborne SAR image. High resolutions images 

are required in such applications as environmental monitoring, earth-resource mapping, and military 

systems. 

 

 

                                                 
6 http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2012-04-22 (visited April 2012) 

7 http://www.nasa.gov/images/content/194419main_eo-1_RGB.jpg (visited April 2012) 

8 http://www.nasa.gov/images/content/194420main_eo-1_SWIR.jpg (visited April 2012) 
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Figure 1.8 miniSAR 4-inch resolution Ku Band image, Kirtland Air Force Base Gated Entrance
9
 

SAR is capable of operating under inclement weather conditions, day or night. For this reason and due to 

the unique responses of terrain and cultural targets to radar frequencies, SAR images help to differentiate 

the cover types that are otherwise indistinguishable in the optical images due to their similar spectral 

characteristics. For example, the SAR data may be used in areas of no information on the optical data, as 

areas covered by clouds and their shadows. [5] and [6] use the SAR imagery in combination with very 

high resolution optical images for natural disaster assessment, [7] describes the use of SAR images for 

monitoring and detection ships and oil spills, [8] classifies SAR images for military application like the 

detection of manmade objects (metal objects). However, the SAR images usually suffer from severe 

levels of a non-Gaussian multiplicative speckle noise. Table 1.1 shows the microwave bands and their 

corresponding range of frequencies. 

 

L band 1 to 2 GHz  S band 2 to 4 GHz  C band 4 to 8 GHz 

X band 8 to 12 GHz  Ku band 12 to 18 GHz  K band 18 to 26.5 GHz 

Ka band 26.5 to 40 GHz  Q band 33 to 50 GHz  U band 40 to 60 GHz 

V band 50 to 75 GHz  E band 60 to 90 GHz  W band 75 to 110 GHz 

F band 90 to 140 GHz  D band 110 to 170 GHz    

Table 1.1:  

Some satellites have multiple operating frequencies, providing observations of the same scene at different 

operating bands. This provides better discrimination among different vegetation types or the same 

vegetation type in different states of health or growth. 

 

                                                 
9 http://www.sandia.gov/RADAR/images/SAND2005-3706P-miniSAR-flight-SAR-images.pdf (visited April 2012) 

10 http://en.wikipedia.org/wiki/Microwave 
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SAR applications increase almost daily as new technologies and innovative ideas are developed. SAR has 

become a valuable remote sensing tool for both military and civilian users. Recognition, surveillance, 

targeting information, intelligence gathering, battlefield reconnaissance and weapons guidance are some 

military applications. Climate, environment and land use monitoring, change detection, agricultural 

classification and assessment, topographic mapping, geology and mining, navigation and guidance, sea 

ice monitoring, oil spills detection and oceanography are some civilian applications. The following is a 

list of some of the spaceborne SAR remote sensing platforms and sensors: 

 Tropical rainfall measuring mission (TRMM), 

 European Remote Sensing Satellite 1 and 2 (ERS-1/2), 

 Japanese Earth Resources Satellite-1(JERS-1), 

 Mediterranean basin observation (COSMO-SkyMed), 

 RADARSAT, very similar to ERS, 

 Solid Earth Interferometric Spaceborne (SEISM), 

 advanced land observing satellite (ALOS), 

 Shuttleborne Imaging Radar. SIR-C/X-SAR, 

 Shuttle Radar Topography Mission SRTM. 

ERS-2 and ALOS satellites also provide optical images besides SAR images. 

SAR provides the structural information in 2D. A more recent technology called Lidar provides the same 

in 3D. 

1.2.1.3 Light detection and ranging (Lidar) images: 

Recently, there has been a rapprochement between the optical and radar fields, manifested not only in the 

spectral point of view but especially in design and operation mode of the systems. These systems, referred 

to Lidar, grow due to the progress of lasers, which exploit the spatial, spectral and temporal properties. 

Lidar, which stands for Light detection and ranging (sometimes referred to as Ladar or Laser detection 

and Ranging), has received wide acceptance in airborne surveying as a leading tool for obtaining high-

quality surface data in an unprecedentedly short turnaround time. Lidar is laser scanning technology that 

uses a laser light emitter and sensors to measure the distance between the aircraft and the ground, 

including objects such as buildings and vegetation. Lidar systems nowadays do range measurement with 

an increasing number of points per surface, count multiple returns per single shot, deliver reflectance 

values of the illuminated surface and capture the height of both the terrain and objects such as buildings, 

in amazing resolution details. Airborne Lidar is now the most widely used method of rapid and accurate 

terrain mapping. 
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As SAR, the Lidar emits a laser light onto a target at the ground and receives back a fraction of the 

radiation reflected from the target. The received signal carries the information of time taken in the round 

trip, the intensity, and the phase of the echo. The frequency of the laser light used in Lidar is usually in 

the ultra-violet, visible or near infrared range [9]. Lidar system can also detect more than one echoes of 

the same pulse so that it can view through water, canopies and trees onto the ground to map surface 

terrain and to estimate the depth of the water body or plantation. 

It is an ideal tool when very high accuracy height measurements are required for large areas and it is very 

cost effective. Example of this high accuracy is given by figure 1.9, which shows an image obtained using 

Lidar technology, acquired in October, 2001 over the World Trade Center. 

 

Figure 1.9 Lidar data of the World Trade Center, acquired in October, 2001
11

 

1.2.2 Spatial classification: 

The spatial resolution (also known as ground resolution) is the ground area 

imaged for the instantaneous field of view (IFOV) of the sensing device. Spatial resolution may also be 

described as the ground surface area that forms one pixel in the satellite image . In terms of the spatial 

resolution, the satellite imaging systems can be classified into: low resolution systems (approx. 1 km or 

more), medium resolution systems (approx. 100 m to 1 km), high resolution systems (approx. 5 m to 100 

m) and very high resolution systems (approx. 5 m or less). The spatial resolution of the panchromatic 

Ikonos sensor, for example, is 1 m. The ground area represented by pixels at surface directly below the 

satellite, called the nadir point, has a larger scale than those pixels which are off-nadir, while the IFOV 

for all pixels of a scanner stays constant. 

                                                 
11

 http://www.noaanews.noaa.gov/stories/s798b.htm 
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To show the importance of the details obtained in high resolution, for example let us compare a simulated 

set of images corresponding to different resolutions. The image at left of figure 1.10 is an area extracted 

from GeoEye-

Olympic Stadium, United Kingdom. The rest of the images are simulated images of 1m, 2m and 4m 

spatial resolution. Visually, it is clear that very high spatial resolution is more accurate and pleasant. 

       

Figure 1.10 A scene with different spatial resolution: from left to right 0.5m, 1m, 2m and 4m.
12

 

1.2.2.1 Low resolution 

Low-resolution satellites are characterized by spatial resolution at about 1 km giving regular daily 

coverage. These data are obtained only in multispectral mode including visible and infrared part of the 

optical spectrum. These data are useful for large-area, global and continental mapping, regular coverage 

needs, including sea surface temperature monitoring, 

conditions monitoring, regional vegetation vigour and drought studies, large disasters monitoring, snow 

cover and glaciers monitoring. Low resolution satellite examples are: 

 Meteosat MSG: capturing 7 bands of 40 km resolution using GERB sensor, 

 SPOT 5: capturing 4 bands of 1km resolution using VEGETATION 2sensor, and 

 OrbView-2: capturing 8 bands of 1.13km resolution using SeaWiFS sensor. 

Figure 1.11 shows an example of low spatial resolution image acquired over 

Louisiana/Mississippi/Florida coast (in 2001), using the SeaWiFS sensor. 

                                                 
12 http://www.satimagingcorp.com/galleryimages/geoeye-1-olympic-stadium.jpg 
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Figure 1.11 Gulf Coast Sediments, along the Louisiana, Mississippi, Florida coast

13
 

1.2.2.2 Medium resolution 

Medium-resolution satellites typically give weekly to monthly coverage. These data have spatial 

resolutions from 100m to 1km and spectral bands ranging from light blue through to short-wave infrared 

(SWIR). Relatively large areas are covered by each satellite overpass. These data are suitable for a variety 

of information uses involving mapping, monitoring, and detection of land cover and land use features. 

Remote sensing data with medium spatial resolution can provide useful information about Gross Primary 

Production (GPP), especially on the scale of urban areas. However, the work presented in [10] to compare 

the impact of spatial resolution on the detection of various ecosystems shows that high spatial resolution 

images provided more accurate estimates of maximum Gross Primary Production (GPP) than estimates 

derived from the medium spatial resolution. The main objective, presented in [11], is to examine and 

compare the effectiveness of two advanced algorithms for estimating impervious surfaces from medium 

spatial resolution satellite images, namely, linear spectral mixture analysis (LSMA) and artificial neural 

network (ANN). 

Medium spatial resolution satellite examples are: 

 Envisat: capturing 15 bands of 300 m resolution using MERIS sensor, 

 RESURS-01-1: capturing 2 bands of 240 m resolution using MSU-S sensor, and 

 IRS-1C: capturing 2 bands of 188 m resolution using WiFS sensor. 

Figure 1.12 shows an example of medium spatial resolution image acquired using Envisat - MERIS on 

September 2008, over Iraq. 

 

                                                 
13 http://eoimages.gsfc.nasa.gov/images/imagerecords/55000/55598/S2001072181646.L1A_HNAV.GulfCoastSediments.tif 
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Figure 1.12 Dust over Iraq
14

 

1.2.2.3 High and very high resolution 

High spatial resolution satellites are characterized by pixel resolution higher than 1 m; in contrast of very 

high spatial resolution where the resolution is lower than 1 m. These data are obtained only in 

panchromatic mode, more often in combination of panchromatic and mulitspectral mode. Images can be 

collected over a particular area every 1-3 days but at very variable look angles. Majority of the satellites 

carry the most modern systems with great flexibility and capability to get data according to the very 

concrete requests.  

High spatial resolution images find more and more applications in all domains. In [12], Petri et al. 

proposed a complete extraction method of the urban street network from very high spatial resolution 

images. [13] used data resources, from high spatial resolution satellite sensors, to study identification and 

planning of urban areas (size, infrastructure, location, etc). Additional typical applications include: 3D 

city models, urban studies, mapping of scattered vegetation, precision agriculture, control of agricultural 

activities, forests inventory, monitoring of a glacier lake, monitoring of open mines, soil erosion mapping, 

planning and design of linear infrastructures, mapping of transport infrastructure, insurance industry, the 

mapping of buildings destroyed by an earthquake, and planning and organization of humanitarian aid  

SPOT-5, Ikonos, QuickBird, WorldView-1, WorldView-2 and GeoEye-1 are some of the well-known 

high spatial resolution satellites. Example of Ikonos image with 0.8 m resolution is shown in figure 1.13 

and of GeoEye-1 image with 0.5 m resolution is shown in figure 1.14. 

 

 

                                                 
14 http://eoimages.gsfc.nasa.gov/images/imagerecords/35000/35412/Iraq_mer_2008258_lrg.jpg 
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Figure 1.13 Image acquired by Ikonos over Barcelona, Spain, 2003, at 0.8 m spatial resolution
15

 

 

Figure 1.14 GeoEye-1 Taj Mahal, Agra, India, 2009, at 0.5m spatial resolution
16

 

The spatial resolution required for detection, location, identification, and differentiation of objects on 

Earth surface are indicated below. 

1-meter spatial resolution 

 Identify and map: manhole covers, automobiles, bus shelters, highway lanes, sidewalks, utility 

equipment, fence line, and free-standing trees and bushes. 

 Identify: characteristics features of many of above mentioned objects. 

 Detects: small areas of stress in farm fields or tree stands. 

                                                 
15 http://www.satimagingcorp.com/galleryimages/ikonos-barcelona-spain.jpg 

16 http://www.satimagingcorp.com/galleryimages/geoeye-1-taj-mahal.jpg 
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 Locate and map: houses, roads, building, courtyards, and small farm fields. 

 Differentiate: among types of building and houses. 

10-meter spatial resolution 

 Locate and map: building, yards, roads, property boundaries, athletic fields, farm fields, and side 

streets. 

 Differentiate: farm fields, tree stands and relatives vegetation health. 

 Make: small-area land-cover classifications. 

20/30-meter spatial resolution 

 Locate: airports, city centers, suburbs, shopping malls, sport complexes, large factories, forest stands, 

and large farm fields. 

 Make: generalized land-cover classifications. 

80-meter spatial resolution 

 Map: regional geological structure. 

 Assess: vegetation health in a large region. 

1-Kilometer spatial resolution 

 Assess: vegetation indices for states and entire countries. 

 Track: events like-insect infestation, drought and desertification. 

In this thesis, we are interested in the application of high spatial images, three satellites images were used: 

Ikonos, QuickBird and WorldView-2. Hence, in the next section the primary characteristics of theses 

satellite will be considered. 

1.3 Satellites characteristics 

Remote sensing imagery is finding increasingly more acceptability and use. Remote sensing satellites are 

usually placed in sun-synchronous polar orbits, where the satellite passes all latitudes at the same local 

solar time each day. Orbits lie within 20 degrees of a 90 degree inclination from the equator. To introduce 

remote sensing applications, the properties of satellite images should be known in advance. Therefore, 

this section puts some light on some of high spatial resolution remote sensing satellites. A comparison of 

the main characteristics of existent high-resolution satellites are given in Table 1.1. Many others satellites 

are programmed to be launched in future, as: 

 GeoEye-2 expected Early 2013 with a resolution of 0.25 m,  

 WorldView-3 expected Mid 2014 with a resolution of 0.31 m 
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The area of the earth which is imaged during a satellite orbit is referred as swath. It can range in width 

from ten to hundreds of kilometers. As the satellite orbits the earth a different area is covered due to the 

earth's rotation. The elevation of the satellite orbit is designed so that the same location will be retraced in 

a period of several weeks. The remote sensing satellites we consider are Ikonos, Quickbird and 

Worldview-2. 

1.3.1 Ikonos satellite: 

Ikonos comes from  satellite is a high-resolution satellite operated by 

GeoEye Inc.
17

. It was the first satellite to collect publicly available high-resolution imagery at 1 and 4 

meter resolution. It was originated in 1991 under Lockheed Martin Corporation as the Commercial 

Remote Sensing Satellite project (CRSS).  

 

Figure 1.15 Ikonos Relative Spectral Response
18

 

The launch of Ikonos-1 by Space Imaging Incorporation failed in September 24, 1999. On September 24, 

1999, Ikonos -2, renamed Ikonos, was successfully launched. The Ikonos sensors produce four MS bands 

and one Pan band of 4- and 1-m resolutions respectively as shown in Fig 1.15. Detailed characteristics of 

this satellite are given in table 1.2. 

1.3.2 QuickBird satellite: 

QuickBird is a high-resolution commercial satellite, owned by DigitalGlobe
19

 and launched in October 

2001. The satellite collects panchromatic imagery at 0.6-meter resolution and multispectral imagery at 

2.4-meter resolutions. The relative spectral response of QuickBird is shown in Fig 1.16. Table 1.3 details 

the main characteristics of this satellite. At this resolution, detail such as buildings and other infrastructure 

are easily visible. However, this resolution is insufficient for working with smaller objects. 

                                                 
17 GeoEye, formerly Orbital Imaging Corporation or ORBIMAGE, is a commercial satellite imagery company. 

18 http://www.geoeye.com/CorpSite/assets/docs/technical-papers/2008/IKONOS_Relative_Spectral_Response.xls 

19 DigitalGlobe is a commercial vendor of space imagery and geospatial content, and operator of civilian remote sensing spacecraft. 
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Figure 1.16 QuickBird Relative Spectral Response
20

 

Launch Date 24 September 1999 

Launch Vehicle Athena-2 

Launch Location Vandenberg Air Force Base, California, USA 

Orbit Altitude 681 kilometers 

Orbit Inclination 98.1 degree, sun synchronous 

Speed on Orbit 7.5 kilometers per second 

Equator Crossing Time Nominally 10:30 AM solar time 

Orbit Time 98 minutes 

Revisit Time Approximately 3 days at 40° latitude 

Swath width 11.3 kilometers at nadir; 13.8 kilometers at 26° off-nadir 

Geolocation Accuracy 15 m (CE90%) 

Dynamic Range 11-bits per pixel 

Resolution at Nadir 0.82 meters panchromatic; 3.2 meters multispectral 

Resolution 26° Off-Nadir 1.0 meter panchromatic; 4.0 meters multispectral 

Image Bands Panchromatic, blue, green, red, near IR 

Table 1.2:  

Launch Date October 18, 2001 

Launch Vehicle Boeing Delta II 

Launch Location Vandenberg Air Force Base, California, USA 

Orbit Altitude 450 Km 

Orbit Inclination 97.2°, sun-synchronous 

Speed on Orbit 7.1 Km/sec 

Equator Crossing Time 10:30 AM (descending node) 

Orbit Time 93.5 minutes 

Revisit Time 1-3.5 days, depending on latitude (30° off-nadir) 

Swath width 16.5 Km x 16.5 Km at nadir 

Metric Accuracy 23 meter horizontal (CE90%) 

Dynamic Range 11 bits 

Resolution at Nadir 0.61 m panchromatic ; 2.44 m multispectral 

Resolution 26° Off-Nadir 0.72 m panchromatic ; 2.88 m multispectral 

Image Bands Panchromatic, blue, green, red, near IR 

Table 1.3:  

 

                                                 
20 http://www.digitalglobe.com/downloads/DigitalGlobe_Spectral_Response.pdf 
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This satellite is an excellent source of environmental data useful for changes analysis in land usage, 

agricultural and forest climates. QuickBird's imaging capabilities can be applied to a host of industries, 

including oil and gas exploration & production, engineering and construction and environmental studies. 

The data contributes to mapping, agricultural and urban planning, weather research and military 

surveillance. QuickBird launched on a Boeing Delta II rocket from Vandenberg Air Force Base, 

California.  

1.3.3 WorldView-2 satellite: 

DigitalGlobe's WorldView-2 Satellite, launched on October 8, 2009, provides 0.5m Panchromatic mono 

and stereo satellite image data. With its improved agility, WorldView-2 is able to act like a paintbrush, 

sweeping back and forth to collect very large areas of multispectral imagery in a single pass. The 

combination of WorldView-

on earth in 1.1 days. 

The WorldView-2 sensor provides high-resolution panchromatic band and eight (8) multispectral bands; 

four (4) standard colors (red, green, blue, and near-infrared 1) and four (4) new bands (coastal, yellow, 

red edge, and near-infrared 2), full-color images for enhanced spectral analysis, mapping and monitoring 

applications, land-use planning, disaster relief, exploration, defence and intelligence, and visualization 

and simulation environments. The arrangement of these bands is given in figure 1.17. 

Figure 1.17 Worldview-2 Relative Spectral Response
21

 

The four 4 new bands are described as: 

 Coastal Band (400 - 450 nm): this band supports vegetation identification and analysis, and 

bathymetric studies based upon its chlorophyll and water penetration characteristics. Also, this 

                                                 

21 Source http://www.digitalglobe.com/downloads/DigitalGlobe_Spectral_Response.pdf 
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band is subject to atmospheric scattering and will be used to investigate atmospheric correction 

techniques. 

 Yellow Band (585 - 625 nm): used to identify "yellow-ness" characteristics of targets, important 

for vegetation applications. Also, this band assists in the development of "true-color" hue 

correction for human vision representation. 

 Red Edge Band (705 - 745 nm): aids in the analysis of vegetative condition. Directly related to 

plant health revealed through chlorophyll production. 

 Near Infrared 2 Band (860 - 1040 nm): this band overlaps the NIR 1 band but is less affected by 

atmospheric influence than Near Infrared 1 band. It supports vegetation analysis and biomass 

studies. 

Some of the most important characteristics of WorldView-2 are provided in Table 1.4. 

Launch Date October 8, 2009 

Launch Vehicle Delta 7920 (9 strap-ons) 

Launch Location Vandenberg Air Force Base, California, USA 

Orbit Altitude 770 kilometers 

Orbit Inclination sun synchronous 

Speed on Orbit 7.5 kilometers per second 

Equator Crossing Time 10:30 am (LT) descending Node 

Orbit Time 100 minutes 

Revisit Time 1 day 

Swath width 16.4 kilometers at nadir; off-nadir 

Geolocation Accuracy Specification of 12.2m CE90 

Dynamic Range 11-bits per pixel 

Resolution at Nadir 0.46 meters panchromatic; 1.8 meters multispectral 

Resolution 20° Off-Nadir 0.52 meter panchromatic; 1.4 meters multispectral 

Image Bands panchromatic, coastal, blue, green, yellow, red, red edge, NIR1, NIR2 

Table 1.4:  

The WorldView-2 imaging payload is the second such system engineered and manufactured by ITT 

Space Systems Division for DigitalGlobe. Once deployed, it operate at an altitude of 770 kilometers, and 

the advanced on-board imaging system will capture pansharpened, multispectral images (with better than 

0.5-meter resolution) from almost 800 kms above the Earth. These images supply unprecedented detail 

and geospatial accuracy, further expanding the applications for satellite imagery in both commercial and 

government markets. Added spectral diversity provides the ability to perform precise change detection 

and mapping. 

In addition to numerous other technical improvements, WorldView-2 also has the ability to accommodate 

direct tasking, which will allow select customers around the world to load imaging profiles directly up to 

the spacecraft and execute delivery of the data directly down to their own ground stations. 
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Satellite 
Altitude 

(km) 

Revisit 

time (day) 

Orbit 

inclination  

Image 

swath  

Launch 

Date 

Multispectral bands range (µm) 
Pan 

Max 

Resolution B G R NIR 

Ikonos 681 2-3 98.1° 13.8 km 
September 

24, 1999 

0.45  

0.52  

0.52  

0.60 

0.63  

0.69 

0.76  

0.90 

0.45-

0.90 

4.00 m 

0.82 m 

QuickBird 482, 450  2-3 98° 18 km 
October 

18, 2001 

0.45  

0.52  

0.52  

0.60 

0.63  

0.69 

0.76  

0.90 

0.45-

0.90 

2.44 m 

0.61 m 

Orbview-3 470 2-3 98.2° 8 km 
June 26, 

2003 

0.45  

0.52  

0.52  

0.60 

0.625  

0.695 

0.76  

0.90 

0.45  

0.90  

4.00 m 

1.00 m 

Resurs-DK1 330, 500 6 
64.8°  

70.4° 

4.7  

28.3 km 

June 15, 

2006 
- 

0.50  

0.60  

0.60  

0.70  

0.70  

0.8  

0.58  

0.80 

1.50 m 

0.90 m 

KompSat-2 685 3 98° 15km 
July 28, 

2006  

0.45  

0.52  

0.52  

0.60  

0.63  

0.69  

0.76  

0.90  

0.50  

0.90  

4.00 m 

1.00 m 

WorldView-1 496 1.7 98° 17.6 km 
September 

18, 2007  
- - - - 

0.40  

0.90 

- 

0.50 m 

GeoEye-1 684 2 98° 15.2 km 
September 

6, 2008 

0.45  

0.51  

0.51  

0.58 

0.655  

0.69  

0.78  

0.92  

0.45  

0.80 

1.65 m 

0.41 m 

WorldView-2
* 770 1 98° 17.25 km 

October 8, 

2009  

0.45  

0.51  

0.51  

0.58  

0.63  

0.69  

0.77  

0.895 

0.45  

0.80  

1.85 m 

0.46 m 

Pleiades-1 694 1 98° 20 km 
December 

16, 2011 

0.43  

0.55  

0.49  

0.61  

0.60  

0.72  

0.75  

0.95  

0.48  

0.83 

2.00 m 

0.50 m 

Table 1.5: 

*
In addition to the four primary multispectral bands, WorldView2 offers the following multispectral bands: 

Coastal band (0.400 µm 0.450 µm),

Yellow band (0.585 µm 0.625 µm),

Red Edge band (0.705 µm 0.745 µm), and

Near-IR2 band (0.860 µm 0.104 µm).
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Satellite images find use in large number of applications as weather forecasting, disaster 

assessment, agricultural research, natural resources exploration, vegetation cover mapping, rural 

and urban land use, cartography, extraction of road network and urban planning. 

Usually, the natural land-covers are classified into three categories: water, soil and 

vegetation. Each class, distinguished via its spectral signature, is subdivides into several 

other subclasses. Mapping the vegetation-covers is useful in wide number of applications. 

In this thesis, we are interested into extracting vegetation from satellite image without 

considering its subclasses. Generally, a combination of MS bands is used to delineate the 

vegetation. This combination is called a vegetation index. In the next section, some of the 

most used indexes are presented. 

1.4 Vegetation indices 

Need for a resumed characterization of data issued from different bands and able to characterize 

vegetation, the vegetation index (VI) combines the bands that best characterize vegetation into a 

single measure. Many vegetation indices have been developed. Some are the basic indices, which 

are simple combinations of red (R) and infrared (NIR) bands like NDVI, RVI, DVI and TDVI as 

shown in table 1.6.  

Vegetation index (VI) Equation   Reference  

Difference VI DVI=NIR-R [14] 

Ratio VI RVI=NIR/R [15] 

Normalised difference VI NDVI=(NIR-R)/(NIR+R) [16] 

TDVI 
5.0²

5.1
RNIR

RNIR
TDVI  

[17] 

Perpendicular VI  PVI=aNIR-bR+c [18] 

Soil adjusted VI  
LRNIR

RNIRL
SAVI

1
, typically L = 0.5. 

[19] 

Weighted difference VI  WDVI=NIR-aR; a is the slope of the soil line [20] 

Modified SAVI RNIRNIRNIRMSAVI 8125.05.02
2

 
[21] 

Infrared Percentage VI  IPVI=NIR/(NIR+R) [22] 

Transformed SAVI 

TSAVI= s(NIR-s*R-a)/ (a*NIR+R-a*s+X*(1+s*s)), where a is 

the soil line intercept, s is the soil line slope, and X is an 

adjustment factor which is set to minimize soil noise (0.08 in 

original papers). 

[23] 

Atmospherically resistant 

VI 

ARVI = (NIR-rb)/ (NIR+rb),with rb defined as: rb = R - 

gamma*(R - B) and gamma usually equal to 1.0 

[24] 

EVI Enhanced 

Vegetation Index  

EVI=Gain*(NIR-R)/(NIR+C1R-C2B+L), where L is the canopy 

background adjustment and C1, C2 are the coefficients of the 

aerosol resistance term, which uses the blue band to correct for 

aerosol influences in the red band. The coefficients adopted in the 

MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5, and G = 2.5. 

[25] 

Global Environment 

Monitoring Index 

GEMI = eta*(1-0.25*eta)- (R - 0.125)/( 1  R), 

 where eta = (2*(NIR
2
-R

2
)+1.5*NIR+0.5*R)/( NIR + R + 0.5) 

[26] 

Table 1.6:  Vegetation indices 
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There is a strong correlation between linear combinations of R and NIR bands and green leaf area 

and biomass. It can estimate gross primary productivity. The normalised difference vegetation 

index (NDVI) is one of the most successful and well-known indices used to detect live green plant 

canopies in multi-spectral remote sensing data. It varies between -1 and 1, where vegetated areas 

typically have values greater than zero, whereas values near or below zero show non-vegetated 

surfaces such as water, barren land, ice, snow, or clouds. Table 1.7 shows the typical NDVI values 

for various subclasses of land-covers and its capacity to distinguish vegetated areas broadly from 

other surface types. 

Land-cover type 
Reflectance 

NDVI value 
near-infrared Red 

free standing water very low Low negative ~-0.3 

soils or rocks 
somewhat larger 

than the red 

somewhat smaller 

than the infrared 

small positive 

from 0.1 to 0.2 

live green vegetation high low from 0.5 to ~1 

snow and ice low ~0.4 
slightly lower than 

infrared 

very slightly 

negative value 

Table 1.7:  

NDVI can be used to estimate the photosynthetic capacity of plant canopies, the green leaf area 

index, the evapo-transpiration taking place in the vegetation, the biomass, the chlorophyll 

concentration, the plant productivity, the accumulated rainfall. Figure 1.18 shows the non-linear 

response of NDVI to the vegetation cover density. 

 

Figure 1.18 NDVI vs. LAI
22

 

                                                 
22

 Source: http://rangeview.arizona.edu/Tutorials/intro.asp 
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Some indices are able to minimise soil influences as PVI, WDVI, SAVI, MSAVI. In the other 

hand, some ones are developed to minimise atmospheric noise. 

The author in [22] found that, in NDVI formula, the subtraction of the red in the numerator was 

irrelevant, and proposed the IPVI index as a way of improving calculation speed. It also is 

restricted to values between 0 and 1, which eliminates the need for storing a sign for the vegetation 

index values. 

TSAVI is the Transformed SAVI which assumes that the soil line has arbitrary slope and intercept, 

and it makes use of these values to adjust the vegetation index. ARVI is the first of the 

atmospherically resistant indices. The red reflectance in NDVI formula is replaced with the term: 

rb = R - gamma (B - R). 

GEMI is the Global Environmental Monitoring Index which was developed by Pinty and 

Verstraete. It meets the 

Finally, the enhanced vegetation index (EVI) is an optimized index designed to enhance the 

vegetation signal with improved sensitivity in high biomass regions and improved vegetation 

monitoring through a decoupling of the canopy background signal and a reduction in atmosphere 

influences. 

1.5 Conclusion 

The remote sensing satellites such as Ikonos, QuickBird and WorldView-2 provide MS and Pan 

images with very high spatial resolution. These images are increasingly used in several domains, 

such as:  vegetation identification, vegetation analysis, biomass studies, bathymetric, extraction of 

urban street network, identification and planning of urban areas, the mapping of buildings 

destroyed by an  

Moreover, the MS images can be used to derive vegetation indices. However, the remote sensing 

experts often consider that MS data on a pixel is insufficient so they emphasise on using the spatial 

context (Pan image). This leads to use Pan images or fused MS and Pan images. The image fusion 

techniques, called also pansharpening, have been used to bring the resolution of the multispectral 

imagery at par with that of the panchromatic images. This is detailed in the next chapter. 
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Pansharpening categories 

2.1 Introduction  

Earth observation is currently developing more rapidly than ever before. Currently, a large number 

of satellites have been growing progressively, such as SPOT [27], Landsat 7 [28], Ikonos [29], 

OrbView [30], QuickBird and WorldView [31]. The coverage of the Earth in space and in the 

electromagnetic spectrum, as well as the acquisition frequency are also quickly increasing. 

Typically a satellite provides a combination of multi-spectral (MS) images, and a panchromatic 

(Pan) image of a higher spatial resolution than that of MS. It is possible to merge the Pan and MS 

images in order to produce MS images with higher spatial resolutions by using suitable algorithms. 

This concept is known as pansharpening or MS and Pan image fusion [1]. Pansharpening is 

shorthand for panchromatic sharpening, where the Pan . 

n MS image [3]. 

Consequently, an ideal pansharpening method, besides preserving the spectral details of the MS 

image, brings the total spatial information of the Pan image to produce an image with both high 

spectral and high spatial resolutions.  

Wald in [2] defines image fusion as: ramework in which are expressed means and tools 

for the alliance of data originating from different sources. It aims at obtaining information of 

Recently, 

pansharpening algorithms have received increasingly attention which has led to the development of 

a vast number of techniques. Pansharpening is used in many real-world applications such as change 

monitoring, objects detection and classification (e.g., buildings, roads, vegetation, rivers, mountains 

and towns) [32]. The need of images with low or high spatial resolution depends on the considered 
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application. Images with low spatial resolution and repetitive coverage are preferred in some cases 

like meteorology applications. In other applications like mapping, just the propriety of high spatial 

resolution is required. In contrast, military applications may need both high resolution and frequent 

coverage [1]. 

In this chapter, we present the state of the art of pansharpening methods described in the literature 

based on the recent categorization given in [3]. Moreover, some of the most useful algorithms used 

before applying pansharpening will be first presented in the pre-processing section. Examples are 

interpolation and histogram matching. 

2.2 Pre-processing 

Generally, many pre-processing operations are used in remote sensing imagery. Some of them try 

to decrease distortions issued from sensors and platforms. Such radiometric and geometrical 

distortions are due to: variations in scene illumination, viewing geometry, atmospheric conditions, 

sensor response and sensor noise [33]. Corrections for these distortions are needed for comparing 

multimodal and multi-date images, or in mosaicing applications. Although applying methods to 

correct distortions, algorithms for image enhancement are required for visual interpretation and 

understanding of imagery. In this section, we are mostly interested in algorithms including mainly 

registration, interpolation and histogram matching techniques. 

2.2.1 Image registration 

Image registration is one of the most widely used image processing operations in remote sensing. It 

is a process by which the most accurate match is determined between two images which have been 

taken at the same or different viewpoints and/or by different sensors [34]. Typically, this process is 

required in remote sensing, medicine, cartography, computer vision, etc. Many applications of 

remote sensing require two or more scenes of the same geographical region, acquired at different 

dates or from different sensors, in order to be processed together. In this case, the role of image 

registration is to make the pixels in different images coincide precisely [1]. If a map coordinate 

base exists, then each image is separately registered to this map, otherwise one image can be 

chosen as a reference to which the other is registered [3]. The process of registration has to handle 

problems like contrast reversal, multiple intensity and features present in one image that may not 

appear in the other image. 

Several algorithms for image registration have been proposed in the literature [35], [36], [37], [38], 

[39], [40], [34], [41]  Usually, registration techniques are based on one of two approaches. The 

feature matching approach, which aims to extract and match features across the image as two 

independent steps; and the area matching approach, which uses a metric to match regions of the 

image without explicitly extracting features. Area-based methods are not well adapted to the 
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multisensor image registration problem [40] due to the possible dissimilarity of gray-level values of 

the images to be matched. In contrast, feature-based techniques have been shown to be more 

suitable for this task. In next section, the interpolation process is briefly introduced. 

2.2.2 Image upsampling and interpolation 

The acquired MS images have low spatial resolution compared to the Pan images. In order to apply 

pansharpening algorithms, MS images must be upsampled to the same resolution as Pan images. 

The upsampling process may involve interpolation, usually performed via convolution of the image 

with an interpolation kernel [42]. The commonly employed linear interpolation methods, such as 

nearest neighbour, bilinear interpolation, and cubic convolution, have advantages in simplicity and 

fast implementation. In the literature, several interpolation methods for various applications have 

been proposed. Nearest neighbour resampling uses the pixel value in the original image which is 

nearest to the new pixel location in the resampled image. This is the simplest technique which 

preserves the original values; nevertheless it may duplicate some pixels. In addition, distortions as 

blocky image appearance may be observed. Bilinear interpolation resampling considers the closest 

2x2 neighborhood, then takes a weighted average of these four pixels in the original image nearest 

to arrive at its final interpolated value. The averaging process affects the original pixel values. This 

results in much smoother looking images than nearest neighbor. This may be undesirable if further 

processing and analysis, such as classification based on spectral response, is to be done. Cubic 

convolution resampling goes even further by considering the closest 4x4 neighborhood of known 

pixels to calculate a distance weighted average. Generally, cubic convolution generates sharper 

images compared to nearest and bilinear interpolation. On the other hand, this method alters pixel 

values [33]. More than 40 spatial interpolation methods are briefly described in [43]. Among them, 

some have been proposed specifically to remote sensing [44]. Figure 2.1 shows examples of spatial 

interpolation of an image. 

 

Figure 2.1 Interpolation artifacts
1
 

                                                 
1 Source: http://www.cambridgeincolour.com/tutorials/image-interpolation.htm 
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Most of the interpolation methods attempt to reduce the artifacts: edge halos, blurring and aliasing, 

shown in figure 2.1. In [45], the authors apply five interpolation methods to remote sensing images 

in order to find the most suitable method for remote sensing images. At first, the authors used the 

standard methods of interpolation: nearest neighbour, bilinear and cubic. Then, they considered the 

interpolation with: smoothing filter, sharpening filter, and unsharp masking. Unlike the smoothing 

filter, sharpening filter enhances blurred fine details but introduces aliasing in the resulting image. 

Interpolation with unsharp filter may reduce the aliasing artefact by subtracting the blurred version 

of an image from the image itself. The obtained results in [45] show that all the five interpolation 

methods can produce good quality for high resolution image; but only bilinear, smoothing and 

unsharp filters interpolations are suitable for low resolution image. These conclusions were 

conducted based only on the mean square error (MSE) measure. We think that more evaluation 

indices must be considered before concluding, indices measuring spatial and spectral qualities are 

needed in this case see [46]. In the next section, histogram stretching is considered. This pre-

processing technique is very used for displaying images. 

2.2.3 Histogram stretching and matching 

The histogram of an image represents the statistical distribution of the luminance values comprised 

in an image. It is a useful tool for contrast enhancement. For example, a common contrast 

luminance 

resulting in a certain percentage of saturated pixels. Example is shown in figure 2.2; here a Pan 

image and its corresponding histogram are shown before and after histogram stretching in the upper 

and lower parts of the figure, respectively. 

 

Figure 2.2 Histogram stretching example. 



Chapter 2  Pansharpening categories 

45 

Pansharpening algorithms like those based on intensity-hue-saturation (IHS), suppose that the 

spectral characteristics of the Pan image match those of a transformed image based on the MS 

image. However, this is not generally the case [47]. This dissimilarity of the spectral characteristics 

of the Pan and MS images produces spectral distortions. To reduce brightness mismatching during 

pansharpening process and hence minimizing spectral distortion of the results, a histogram 

matching of the Pan and MS bands is conducted before fusion. The authors in [47] and [42] provide 

general purpose histogram matching techniques that could be used in remote sensing. However, the 

author in [48] presents a technique which is more appropriate for pansharpening. This method 

adjusts the value of the Pan image at each pixel (i, j) as 

b

Pan

b

PanPan
jiPanjiMatched )),((),(

 
 

where Pan and b are the mean values of the Pan and MS image band b, respectively, and Pan and 

b are the standard deviation of the Pan and MS image band b, respectively. Equation (2.1) assures 

the range similarity of the mean and standard deviation of the Pan image and MS bands. By doing 

this, the mean value and standard deviation of the matched Pan image is approximated to those of 

the bands 

2.3 Pansharpening categories 

A large collection of pansharpening techniques have been proposed in the literature. Among the 

huge number of these techniques, the widely used methods include intensity-hue-saturation (IHS), 

high-pass filtering (HPF), principal component analysis (PCA), Brovey and wavelet transforms 

[49]. In [50], a review of these classical methods is provided. The launch of the SPOT satellite in 

1986 has allowed civilian community of remote sensing to use high resolution MS images. The 

IHS transform was used in [51] to merge MS and Pan images of the SPOT satellite. Chavez et al. 

[52] used the high-pass filtering (HPF) method of minimizing the spectral distortion in the resulting 

images. This algorithm was applied to sharpen Landsat Thematic Mapper (TM) images with SPOT 

Pan images. The high-frequency information of the Pan image, related to spatial information, is 

extracted using a high-pass filter, then injected into the MS image. The HPF principally were used 

in several pansharpening methods, using different tools for extracting spatial information and 

injecting it in MS images as: the discrete wavelet transform [53], [54], [55], [56], the generalized 

Laplacian pyramid algorithms [57], [58 ansforms [59], [60]. Recently, 

authors in [61] introduced the Contourlet transform and showed that it is better than the Wavelet 

transform. Hence Contourlet was used in the pansharpening process like in [62] and [63]. 

Image fusion methods have been classified in several ways. The authors in [50] proposed to 

classify pansharpening in three categories corresponding to three different processing levels, i.e., 

pixel level, feature level, and the decision level. Many other authors shared this idea, however 
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author in [64] emphases that the boundaries between the three levels are unclear. So in some 

situations, it becomes controversial to decide the level of the fusion to perform. Moreover, the 

author in [2] declared that this categorization may be misleading and it may falsely imply that 

fusion processes do not deal simultaneously with these different levels. Hence, he proposed another 

categorisation, where three types of methods have been identified: projection and substitution 

methods, relative spectral contribution methods and those relevant to the ARSIS concept (from its 

 

The authors in [65] sort the methods into groups with respect to their main design idea. The 

following groups were defined. 

- Transformation based fusion: like IHS and PCA. 

- Addition and multiplication fusion: like method (P+XS). 

- Filter fusion: like HPF method. 

- Fusion based on inter-band relations. 

- Wavelet decomposition fusion 

- And finally further fusion methods: like fusion methods based on statistical properties. 

The HPF and wavelet methods can be classified in the ARSIS group [66]; however the authors in 

[67] claim that these methods could belong to an IHS-like image fusion method group. 

Another classification given in [1] defines three categories: spectral domain, spatial domain and 

scale-space techniques.  

The authors in [68], [69] proposed two generalized frameworks for methods such as IHS, PCA, 

HPF or AWT and provided detailed relationships between them. 

Recently, the authors in [3] provide a review of many pansharpening methods with a categorization 

of them. We chose to adopt this classification in order to establish a state of the art of existing 

fusion methods. Based on the used technique, five categories are defined and presented in 

respective paragraphs: 

1- Component Substitution (CS) category: after a linear transform, it is based on the 

substitution of some bands. Examples are methods using IHS and PCA. 

2- Relative Spectral Contribution category: the fused results are obtained by a linear 

combination of the spectral bands. Examples are methods using the Brovey Transform and 

P+XS. 

3- High-Frequency Injection category: spatial details extracted from the Pan image, using a 

high pass filter, are injected in the MS images. An example is HPF.  

4- Methods based on the statistics of the image, as Bayesian-based and super-resolution 

methods. 
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5- Multiresolution category: it is based on a multiresolution analysis like generalized 

Laplacian pyramid, wavelet and contourlet methods. Moreover, techniques combining 

multiresolution analysis with methods from other categories, like a combination of wavelet 

and IHS, belong to this group.  

It should be noted that some methods can be classified into more than one category. In this thesis, 

our main contributions are in the CS and multiresolution categories, hence they will be more 

considered than the rest of the categories in the following sections. 

2.3.1 Component substitution category 

The basic idea used in this category is to separate for MS images the spatial information from the 

spectral information, using a linear transform, then to replace the spatial information by that from 

Pan image. The spatial component, generated by the linear transform, and the Pan image, which 

replaces this component, must have the same spectral information in order to minimise the spectral 

distortion in the resulting images. 

The CS category includes various well-known image fusion methods, such as IHS and PCA 

algorithms [70]. In [67], the authors studied fast IHS fusion techniques and proposed a general 

algorithm for CS sharpening. Merging Pan and MS data using CS technique involves five steps [3]: 

1. Upsampling the MS image to the size of the Pan image. 

2. Linear transforming of the MS image to the desired components. 

3. Matching the histogram of the Pan image with the component to be substituted. 

4. Replacing the component with the higher spatial resolution data derived from the 

histogram-matched Pan image. 

5. Transforming back the components to obtain the pansharpened image. 

Based on this algorithm, Wang et al. [68] and Aiazzi et al. [69] proposed a general image fusion 

and extended the GIF (EGIF) protocol, respectively. 

In general, the characteristics of the histogram-matched Pan and intensity (I) component are 

different, leading to a noticeable color distortion, when the obtained fused results are displayed in 

color composition [71]. This is due to the difference in the spectral response of the Pan image and 

the I component resulting from combinations of MS images. 

In the CS group, the IHS-based pansharpening methods are applied to MS images composed by 

three bands, and the PCA-based pansharpening techniques are used when the number of bands is 

larger. However, the fast IHS pansharpening method proposed in [72] can extend traditional three-

order transformations to an arbitrary order. In summary, methods of CS category are fast and easy 

to implement; however, they suffer from spectral distortions due to dissimilarities between 
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characteristics of Pan and MS images [73], [74]. To overcome this weakness, some solutions were 

proposed in [75], [76], [77], [78] and [79].  

The Intensity-Hue-Saturation (IHS) pansharpening method: 

IHS is a color space transform, where hue (H) is defined as the predominant wavelength of a color, 

saturation (S) is defined as the purity or total amount of white light of a color and intensity (I) 

relates to the total amount of light that reaches the eye [80]. The IHS-based fusion technique is one 

of the most commonly used methods for pansharpening [81]. However, through literature, many 

formulas are proposed. A detailed list of formulas can be found in [82], where ten IHS based 

method for pansharpening were tested to verify the most appropriate formulas for fusion 

applications. The IHS transform separates the spatial information as I component from the spectral 

information represented by the H and S components. The main steps of the standard IHS fusion 

scheme are shown in figure 2.3.  

 

 

 

 

 

 

 

Figure 2.3 Standard IHS fusion scheme. 

This scheme can include more steps to improve the pansharpening, as: MS and Pan registration, 

MS upsampling to the same size as the Pan image, and histogram matching of Pan image to MS 

images. Basically, the upsampled MS image is transformed from the RGB color space into IHS 

space to produce three components I, H and S. The Pan image is histogram-matched to the intensity 

component I. The combination of the obtained Pan image, the H and S components, is transformed 

back into the RGB space to produce the pansharpened image. 

In figure 2.4, an example of pansharpening Worldview 2 MS and Pan images, using an IHS method 

is illustrated. The example was chosen with large vegetated areas to show spectral distortions 

introduced by IHS method, especially in the vegetation zones.  

IHS transform was used in fusing Radar and Landsat TM [80], merging information contents of the 

Landsat TM and SPOT [83] and for geological mapping [84]. In addition, IHS was used with 

multiresolution transforms such as wavelet [59] and [60] for fusion purpose. 
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Several IHS-based pansharpening techniques have been proposed. Fast and generalized IHS 

pansharpening methods, which can be used even when the number of MS bands is greater than 

three, were proposed in [67] and [72]. The authors tried to minimise the color distortions too by 

adapting the IHS to the Ikonos spectral response. The same idea was used in [79] for any satellite 

images. Moreover, for vegetation visualization applications, recent methods make use of vegetation 

enhancement to improve color quality [85], [86], [78]. This enhancement is applied in the 

vegetation areas, which are delimited using a vegetation index (VI). 

      
 MS image Pan image 

      
 IHS fused result PCA fused result 

Figure 2.4 IHS and PCA pansharpening Examples using WorldView 2. 

The principal component substitution pansharpening method: 

This is another method in the CS family relying on the principal component analysis (PCA) 

transform. Depending on the field of application, it is also named the discrete Karhunen Loève 

transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD). PCA is 
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widely used in signal processing, statistics, and many other applications. PCA transforms a set of 

observations of possibly correlated variables into a dataset of new uncorrelated linear combinations 

of the original variables called principal components [50]. Theoretically, the largest possible 

variance is mapped to the first principal component (PC1); this means that common information 

such as spatial one is concentrated in PC1 [87]. In contrast, specific information, with decreasing 

variance, such as spectral information, is contained to the following components. In PCA, the 

variance is preserved, i.e. the total variance of input variables is equal to the sum of the variances in 

all the components. This characteristic of separating spatial and spectral information of a set of 

input images is the motivation of using PCA for pansharpening. Moreover, the number of input 

variables is not limited, making PCS adequate to pansharpening MS images with a large number of 

bands. As shown in figure 2.4, the PCA fused image presents less spectral distortion than the IHS 

fused image, since, in theory, PC1 is more similar to the Pan image than the I component [83]. 

Nevertheless, the PCS is sensitive to the choice of the area to be analyzed. The correlation 

coefficient reflects the tightness of a relation for a homogeneous sample, while shifts in the band 

values due to obviously different cover types will influence the correlations and particularly the 

variances [50]. PCS was used to fuse Landsat TM and SPOT data in [83]. In some cases, as shown 

in [77], instead of having PC1 as the most similar to Pan image, other principal components may 

contain better spatial information. Hence, the authors in [77] proposed to replace the Pan image 

with the most similar component based on a correlation measure. PCA was also combined with 

multiresolution transform to improve the pansharpening process, where the wavelet transform was 

used in [88] and [89]; and the Contourlet transform was used in [77]. 

2.3.2 Relative Spectral Contribution category 

This category uses the concept that the Pan image, at low resolution, is supposed to be equivalent 

to a linear combination of MS bands. This combination is related to the similarity between the 

spectral range spanned by the Pan and the MS bands. The spatial details of the Pan image are 

modulated into the MS images by multiplying each resampled MS band by the ratio of the 

corresponding Pan image to the sum of all the MS bands. Brovey [90], intensity modulation (IM) 

[35], and P + XS (CNES) [65] are pansharpening methods included in this category. 

Brovey transform (BT) 

The BT is named after its author. It is a simple image fusion method, based on the chromaticity 

transform that aims to keep the relative spectral contributions of each pixel [90] [91]. The BT can 

be used for only three bands [68]. Figure 2.5 (a) shows the pansharpened result obtained using the 

BT method when applied to the example of figure 2.4. The Brovey transform allows increasing the 

visual contrast in the image domain [92]. Authors in [54] used Landsat TM and SPOT Pan images 

to test some pansharpening methods. It was found that with the Brovey transform, much more 

emphasis is placed on the spatial information from SPOT Pan than on the spectral information from 
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TM. However, the spectral characteristics are seriously distorted. A solution, to better preserving 

spectral information, consists of subtracting the intensity of the MS image from the Pan image 

before applying the BT. 

      

 Brovey fused result P+XS fused result 

Figure 2.5 Brovey and P+XS pansharpening examples using WorldView 2. 

Intensity modulation (IM) 

Wong et al. [35] were the first to propose the intensity modulation model to merge Landsat MSS 

and Seasat SAR images. This concept has been adopted by Cliche et al. [93] for SPOT images to 

enhance each multispectral band separately with the panchromatic band. The analysis was based 

only on visual assessment of the results and is without any real physical context. Carper et al. [94] 

proposed a modified version with IHS combination to pansharpen the near infrared band. A 

combination of IM and IHS transform was also used in [95], where the intensity component of the 

IHS transformation is used instead of the sum of all the MS bands. The intensity component was 

obtained based on only three bands. Thus, a color distortion may occur, due to the difference 

between the spectral ranges of the Pan and MS images [96]. Moreover, in practical situation, there 

is no entire spectral overlap between Pan and MS bands, causing difficulties to approaches based 

on this concept. 

P+XS method (P+XS) 

This special fusion method was proposed by the provider of the SPOT satellite imagery [65], under 

the assumption that the used Pan and MS images are acquired by the same instrument. The two 

identical instruments of SPOT allow simultaneous acquisition of images in both MS and Pan mode, 

which will guaranty the application of the method. The P+XS method is based on the correlation 

between MS and Pan images [97].  
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Authors, as in [68] and [67] studied the relationship between the relative spectral contribution and 

the component substitution categories; and found that they are closely related. 

2.3.3 High-frequency injection category 

In [98], the proposed method allowed transferring the high-frequency content of the higher-

resolution image to the lower resolution image. Landsat MSS images were used, where lower 

resolution bands 1 and 4 (240m) were simulated then resampled to the original 80m spatial 

resolution and fused with the 80m band 2. The reconstructed image in each band was obtained by 

adding a high-pass version of the higher-resolution image (in this case band 2) to the lower-

resolution multispectral image of that band. Even if the author worked on spatially compressed 

Landsat MSS data, he was the first to introduce the high-frequency injection idea in the 

pansharpening process. This idea was used in [99] to merge spectral information extracted from 

Landsat TM with spatial information extracted from panchromatic images having much higher 

spatial resolution. The author used a panchromatic photograph collected by the National High-

Altitude Photography (NHAP) Program [99]. In another application, the author in [52] combined 

Landsat TM images with higher resolution SPOT panchromatic data for analyzing agricultural, 

urban, and geological sites in the Phoenix, Arizona region. In this case, the spatial information 

detail was extracted using a high- -frequency/spatial 

information but, more important, suppress the low frequency/spectral information in the higher-

[52]. 

High-pass spatial details of an image can be obtained by subtracting a low-pass version from the 

original image. As the filter bandwidth increases, the low-pass version hides successively larger 

and larger structures, while the high-pass version picks up the smaller structures [1]. 

In general, this category is based on the fact of applying spatial filtering techniques to transfer the 

high-frequency content of the Pan image to the MS images [100]. The quality of the obtained 

results depends on the filter bandwidth. A good choice of this size, as recommended in [83], is 

approximately twice the size of the ratio of the spatial resolutions of the sensors. However, the 

ripple in the frequency response will have some negative impact [68]. Several variations of the 

spatial domain fusion have been proposed [100]. The pansharpened image can be obtained by 

directly summing each band of the MS images with the high-pass version of the Pan image, or 

applying a low-pass filtering to the MS images before doing the sum. Moreover, the tradeoff 

between the spatial and spectral information can be controlled using a gain factor [1]. Gaussian and 

Laplacian filters are some of the used filters. An example of a fused image using this kind of 

pansharpening technique is given in figure 2.6. 
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Recently, the authors in [101] proposed to utilize filters matching the modulation transfer function 

(MTF) of the different channels of the imaging instruments to extract the spectral and spatial 

information. 

      

 Extracted spatial information from Pan fused result 

Figure 2.6 Pansharpening based on high-pass filtering. 

Fusion methods based on high-pass filtering techniques are the basic principle of the ARSIS 

concept [55]. In such case, the spatial detail information is injected in a multiresolution framework. 

Moreover, this pansharpening family is widely considered as a very efficient solution to the fusion 

task and has demonstrated superior performance compared with many other pansharpening 

methods such as the methods in the Component substitution category, as stated in [102]. 

A global algorithm for the high-pass filtering based fusion methods can be accomplished according 

to the following steps [3]: 

1. Upsample the MS image to the same size as the Pan image. 

2. Calculate the high-frequency image by subtracting the low-pass filtered Pan from the 

original Pan. 

3. Obtain the pansharpened image by adding the high-frequency image to each band of the 

MS image. 

It should be noted that this pansharpening family is closely related to the multiresolution category, 

which will be discussed after introducing in next section the pansharpening methods using image 

statistics. 
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2.3.4 Methods based on the statistics of the image 

The main feature of this category is that the statistical characteristics of the MS and Pan images are 

used in the pansharpening process. In [103], Price has proposed for the first time a pansharpening 

method based on the statistics of the image. This pansharpening technique is developed for 

combining dual resolution digital data, as from SPOT and the planned Thematic Mappers. It is 

essentially equivalent to the method discussed in [93], except that the analysis is based on statistical 

properties in the data, rather than on ad hoc approach which seeks an optimum image display. The 

main statistical properties used are the substantial redundancy of Landsat and SPOT data and the 

local correlation between the Pan and MS images. In this procedure, statistics were developed for 

an entire image, soon after, in [104] an improvement was made by developing the statistics locally, 

that is, for 3×3 arrays centered on each low-resolution pixel 104] 

relies on the statistical relationships between the radiances in the low and high spatial resolution 

bands. The relationship between the pixels of each pansharpened band y, the Pan image and the 

corresponding MS band was linearly modelled as: 

)( ijklijijkl XxaYy  (2.2) 

Yij is the (i,j) pixel value for the low spatial resolution MS band, xkl is the (k,l) pixel value for the 

high spatial resolution Pan image, where k=m(i-1)+1, l=m(j-1)+1 and m is the ratio of the spatial 

resolution of Pan to MS images. Xij is the m by m average of the Pan image corresponding to the 

MS band at location (i,j). 

Each value for aij is obtained from the statistical relationship between low-resolution data values 

for a 3×3 array centered on the low-resolution pixel [104]. The main drawback of this algorithm is 

due to the use of blocks, where blocking artifacts can occur especially if the correlation between 

the Pan and MS images is small. Besides that, low-resolution radiometry is well preserved. 

The work presented in [105] was ins 104]. It is characterized by an 

adaptive insertion of information in accordance with the local correlation between the two images, 

allowing sharpening the MS images and reducing spectral distortion, simultaneously. Moreover, 

the number of the high-resolution images is not limited to one. In addition to those algorithms, the 

most of the developed works in this category are based on the Bayesian approach, such as [106], 

[107] and [108]. In this approach, the original high resolution MS image (z), resulting from 

pansharpening, is linked to the observed low resolution MS image (y) and the Pan image (x) the 

conditional probability distribution as: 
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Bayesian methods determine the posterior probability distribution p(z|y, x) by using Bayes law, 

based on the available prior knowledge p(z) about the expected characteristics of the fused image. 

p(y, x) is the joint probability distribution between x and y. Bayesian-based pansharpening methods 

differ mainly in the suitable assigning of prior and conditional distributions and the selection of an 

inference method.  

In [106], p(z) is obtained from an interpolation operator and its covariance matrix. ]. In contrast, in 

[108] and [109], a non-informative prior distribution (i.e. constant distribution over the domain) is 

assumed, due to the nonexistence of a clear information on the high resolution MS image, no 

solution is preferred. Moreover, in [110], the prior knowledge about the smoothness of the object 

luminosity distribution within each band makes it possible to model the distribution of z using a 

simultaneous autoregressive model. 

Models, as those presented in [111], [112], [113] [114] and [115], attempt to incorporate a 

correlations between the MS bands. 

The conditional probability distribution of the observed low resolution MS image (y) and the Pan 

image (x), given the original high resolution MS image z, called the likelihood and denoted as p((y, 

x)|z), is usually defined as: 

)()()),(( zxpzypzxyp  (2.3) 

by considering that the observed low resolution MS image and the Pan image are independent 

given the high resolution image. This allows an easier formulation of the degradation models.  

Bayesian inference is performed, after defining the prior and conditional distributions, to estimate 

the high resolution MS image. Linear minimum mean square error (LMMSE) [116], maximum 

likelihood (ML) [108], maximum a posteriori (MAP) [109], the variational approach [111], [112] 

and simulated annealing [113] are some of the methods used to carry out the inference. 

While the hypothesis of Gaussian additive noise for mathematical convenience is used, in practice, 

remote sensing imagery noise shows non-gaussian characteristics [117]. It is more convenient to 

use the Poisson noise, or a shaping filter [118] transforming a non-Gaussian noise into Gaussian.  

In next section the multiresolution transform based category for pansharpening is considered. 

2.3.5 Multiresolution category 

Since the pioneering HPF technique [83], pansharpening based on injecting high-frequency 

components into MS data have demonstrated a superior performance [102]. Basically, spatial 

details derived from the Pan image are added to an upsampled version of the MS image. These 

details result from the difference between the Pan image and corresponding lowpass version, i.e. 
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average of the MS bands. Later efforts benefit from an underlying multiresolution analysis. The 

multiresolution decomposition provides an intermediate representation between transforms using 

local image information, such as convolution, and others using frequency content, such as the 

Fourier transform; and can assure good localization properties in both the spatial and Fourier 

domains. It allows to separately accessing to the spectral content of an image and the spatial 

information over a wide range of scales from local to global [1]. 

The multiresolution decomposition presents a simple hierarchical framework to fuse images with 

different spatial resolutions. Techniques such as Laplacian pyramids [119], wavelet transform 

[120], curvelet transform [121], ridgelet transform [122] and contourlet transform [61] are the most 

used multiscale decomposition techniques in multiresolution analysis. Most of these techniques 

have been used in pansharpening. The Pan and MS images are decomposed in different levels. The 

spatial information derived from Pan components is injected in finer scales of the MS images. 

Multiscale decomposition techniques highlight relationships between Pan and MS images in 

coarser scales and enhance spatial details [123]. A short explanation of the multiresolution methods 

and their applications in pansharpening process are given below. 

Laplacian pyramid 

Multiresolution analysis based on the Laplacian Pyramid (LP) decomposition was originally 

developed by Burt and Adelson in [119] and inspired from the Gaussian pyramid (GP). In the GP, 

the original image is convolved with a Gaussian kernel, producing a low-pass filtered version of the 

original image. The difference between the original image and the low-pass filtered version 

represents the Laplacian. This process is continued to obtain a set of band-pass filtered images. The 

LP transform decomposes into disjoint band-pass channels the spatial frequency domain of an 

image [124]. Example of a two-level pyramid decomposition and reconstruction is shown in figure 

2.7. 

  

Decomposition Reconstruction 

Figure 2.7 two-level Laplacian Pyramid
2
 

                                                 
2 Source: http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html 
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In [125], the LP was extended to a more general scheme (GLP) allowing the use of a scale factor 

different from two. The modulation transfer function of the Pan image may be considered in the 

design of the Gaussian low-pass filter used for this image. This will improve the pansharpening 

results. The GLP-based pansharpening method can be accomplished in the following steps: 

1. Upsample each MS band to the size of the Pan image. 

2. Apply GLP on the Pan image 

3. Fix the weighting parameters at each level, depending on the model used for details 

injection. 

4. Sum the details from the GLP to each weighted MS band in order to obtain the 

pansharpened image. 

This algorithm was used in [58] and [126] with different injection models. In [126], the authors 

context-based decision model provided good results, however, a set of parameters must be chosen 

empirically. In addition, the optimal values of the parameters depend on the image content 

(vegetation, buildings). On the other hand, the spectral distortion minimizing the injection 

modelling is less sensitive to parameters tuning and can provide very good spectral and radiometric 

quality. The injection model described in [58], known as Ranchin-Wald-Mangolini model, models 

the MS details as a space and spectral-varying linear combination of the Pan image coefficients [3]. 

Wavelet transform 

A second well-known category of multiresolution pansharpening methods is the one based on 

wavelets. The basic idea of these methods is to inject the MS data on a decomposition level of the 

Pan images. This is achieved by addition, replacement or selection of the corresponding 

coefficients [59], [127]. The final synthesis of the fused coefficients provides an image that 

incorporates the spectral information of the MS bands and the spatial resolution of the Pan band. 

The wavelet transform provides a hierarchical framework to decompose images. Moreover, it 

allows the separation of spatial details of the image between two successive levels [128].  

An overview of image fusion techniques based on wavelet is given in [129]. 

In general, wavelet-based fusion schemes produced encouraging results, even if some artifacts in 

the fused image may occur when decimated algorithms are used [129]. Initially, the improvement 

of wavelet-based schemes was verified compared to standard schemes [127] and [130]. The 

[53], [54], [54], [56 à 66], [59], [60] are the most well-known ones for image 

pansharpening purposes. A detailed comparison of the application of these two algorithms in 
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pansharpening is given in [128 à more suitable for image 

fusion [129]. Later, the wavelet was associated with image transformations, like IHS and PCA, in 

hybrid scheme to improve the pansharpened results [131] and [128]. The wavelet transform was 

used to extract the detail information from Pan image, and the standard transformations were used 

in order to incorporate this information into the MS images. 

Figure 2.8 shows the case of the additive wavelet fusion scheme, where the main steps are [129]: 

1. Generate one Pan image for each MS band, histogram-matched to that band. 

2. Apply the discrete wavelet transform (DWT) to both the MS and the new Pan images. 

3. Add the detail images from the transformed Pan images to those of the transformed MS images. 

If multiple decompositions were applied, add the detail images at each resolution level. 

4. Perform the inverse transform on the MS images with added Pan detail. 

 

Figure 2.8 Fusion using a conventional DWT [129]. 

Curvlet transform (CT) 

Most of the wavelet-based image pansharpening methods preserve highly the MS spectral quality 

in the fused images; but fail in maintaining the Pan details compared with the conventional 

techniques such as: IHS, PCA and Brovey. Recently, a multiresolution analysis method, named the 

curvelet transform, was proposed in [121] for image denoising purposes. This transform is a non-

separable multi-resolution analysis, whose basis functions are directional edges with progressive 

increasing resolution [133]. The curvelet transform represents edges better than wavelets; and since 

edges are crucial in representing an image, preserving edges will enhance details in the fused 

images. Thus, the use of the curvelet transform in fusing MS and Pan images will improve both the 

spatial and spectral qualities compared to the use of the wavelet transform. 



Chapter 2  Pansharpening categories 

59 

In [132], the proposed method is based on embedding the curvelet transform in the wavelet fusion 

scheme. The combination of the two transforms allows enhancing both spatial and spectral 

information. The authors claim that the obtained pansharpened image has the same details as the 

original Pan image, due to the use of curvelet; and the same color as the original MS images, 

because of the wavelet use [132]. 

The experiments conducted in [133], on QuickBird images, show that the curvelet-based method 

outperforms quantitatively the state-of-the-art image pansharpening techniques, in terms of 

geometric, radiometric, and spectral fidelity. The pansharpening is based on the curvelet transform. 

The flowchart of this technique is summarized in figure 2.9. In this scheme, one Pan image and L 

spectral bands of an MS image are used. The enhancement of each band is synthesized from levels 

S1 and S2 of the curvelet transform of the Pan image. The inter band structure model (IBSM) [134], 

[66] establishes how the missing details information, to be injected into the resampled MS bands, 

are extracted from the Pan image. This model deals with the radiometric transformation (gain and 

offset) of spatial structures (edges and textures) when passing from Pan to MS images. 

 

Figure 2.9 Flowchart of curvelet-based fusion of MS and Pan data with 1:4 scale ratio. 

Details extracted from Pan by means of curvelet transform are added to the MS bands. The two sets 

of curvelet coefficients, one for each level, calculated from Pan are soft-thresholded to reduce the 

noise, weighted by the IBSM, and used to synthesize, by means of the inverse curvelet transform, 

two maps of zero-mean spatial edges and textures that are added to the corresponding detail frames 

of the ATWT of the resampled MS bands [133]. The pansharpened MS image is obtained by 

ATWT synthesis, i.e. by summing approximations and enhanced detail frames of each band. 
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Contourlet transform 

The contourlet transform has been proposed by Do and Vetterli in [135]. It is a new multi-scale, 

multi-direction framework of discrete images. It is so called due to its capacity to capture and to 

represent the contours. The contourlet, being a true 2-D transform, can capture intrinsic geometric 

structure information of images and achieve better expression than the discrete wavelet 2-D 

transform. The 2-D wavelet, which is obtained by a tensor-product of 1-D wavelet, is good for 

detecting the discontinuities at edge points; however it fails in detecting the smoothness along the 

contours [135]. In the contourlet transform, the multi-scale analysis and the multi-direction analysis 

are separated in two stages. The Laplacian pyramid (LP) [119] is first used to obtain the point of 

discontinuities and multiscale transformation, and then followed by directional filter banks (DFB) 

to group these coefficients for obtaining a smooth contour [77]. The overall result is an image 

decomposition using basic elements like contour segments. The framework of the contourlet 

transform is shown in figure 2.10 [136]. 

 

Figure 2.10 Framework of the contourlet transform. 

Compared with traditional image decomposition transforms, contourlet can capture 2-D 

geometrical structure in natural images much more efficiently [136]. The contourlet transform 

satisfies the anisotropy principle and can capture intrinsic geometric structure information of 

images. Nevertheless, it lacks shift-invariance and results in ringing artifacts due to downsamplers 

and upsamplers present in both the LP and the DFB [61]. The shift-invariance is needed in edge 

detection, contour characterization and image fusion applications. In [61] the nonsubsampled 

contourlet transform (NSCT) is proposed. First, the nonsubsampled pyramid (NSP) is used to 

obtain a multi-scale decomposition by using two-channel nonsubsampled 2-D filter bands. Second, 

the nonsubsampled directional filter bank (NSFB) is used to split band-pass sub-bands in each scale 

into different directions. The NSCT have better frequency characteristics than contourlet [137]. The 

Contourlet and the NSCT transforms have been used in the image fusion domain. In [138] and 

[139], they were used to fuse optical and SAR imagery. and more specifically in pansharpening 

process. The algorithm is carried out using the three main steps: 

1. Forward transform the Pan and MS images using the contourlet transform. 
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2. Apply a fusion rule onto the obtained coefficients. 

3. Generate the pansharpened image by performing the inverse transform. 

In [140], the authors demonstrated that the contourlet-based algorithm has better performance 

compared to known fusion algorithms based on wavelets and pyramid decompositions. They used 

the region-energy as a rule for the combination of the Pan and MS Contourlet coefficients. Their 

method was extended in [136] by considering the processing time. To speed up this method the 

authors in [136] proposed to directly replace all the details information of the MS image with that 

of Pan, or combine the IHS with contourlet. In [141], the authors combine IHS and NSCT in order 

to fuse QuickBird Pan and MS images of an urban area. NSCT has been also combined with PCA 

in [77] to improve the spectral quality of the pansharpened images. More studies, using the 

contourlet and NSCT, are currently developed for fusion purposes. They take into account the 

number of decomposition levels, the combination rules for the coefficients, the joint use of IHS, 

 In 

[142], the authors replace the MS detail bands coefficients with those of the Pan band. While in 

[143], the authors integrate statistics of images in multiresolution frame using the wavelet/ 

contourlet domain. 

The authors in [63] extended the wavelet-based fusion method, presented in [144], to a use with 

NSCT instead of the wavelet transform. This method weights the contribution of the Pan image to 

each MS band, but it uses a different method to calculate these weights [63]. Pansharpened images 

using wavelet and contourlet-based methods are shown in figure 2.11. The pansharpened images 

appear similar. The use of IHS or PCA, conjointly with wavelet or contourlet, decreases the 

processing time. However, IHS introduces spectral distortions, while PCA produces spatial 

distortions, as shown in figure 2.11. 

It was shown that the image fusion is a trade-off between the spectral and the spatial information, 

issued from an MS and Pan sensors, respectively [120], [54], [145]. However, as shown in [73], 

perfect pansharpening methods must generate results preserving both original spectral and spatial 

qualities of MS and Pan images, respectively. In general, multiresolution based pansharpening 

methods perform well [146]. 
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 Wavelet fused result NSCT fused result 

   
 Wavelet combined with IHS fused result NSCT combined with IHS fused result 

   
 Wavelet combined with PCA fused result NSCT combined with IHS fused result 

Figure 2.11 Some pansharpening results based on multiresolution analysis. 
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2.4 Conclusion 

This chapter provides an overview of the different methods proposed in the literature until now and 

classify them into different categories according to the main technique they use. Even if the 

classical component substitution and relative spectral contribution methods provide satisfying 

results for some applications; usually they introduce high spectral distortion [147]. Their results 

highly depend on the correlation between each spectral band and the Pan image. To improve the 

CS category, the MS image is transformed to imitate the Pan image. Generally, a linear 

combination of the MS image is utilized with some weighting parameters. These parameters are 

obtained either from the spectral response of the sensor or by minimizing the difference between 

the Pan image and this linear combination. This allows reducing the spectral distortion and 

enhancing color of the pansharpened images. 

The local analysis of the images represents an important research area. It can improve methods 

based on the injection of structures in the pansharpened image. Moreover, in this category, the use 

of the MTF of the sensor as low-pass filter is recommended to reach good results.  

The presented pansharpening methods, based on the statistics of the image, provide good results in 

general. Their major problem is the used models. In contrast, these methods allow incorporating the 

knowledge available about the MS image and the physics of the sensors (MTF, spectral response) 

and modelling the MS and Pan relationship. 

The multiresolution analysis category provides the most successful pansharpening methods. 

Decomposing the images at different resolution levels and different directions allows injecting the 

details information, issued from the Pan image, into the MS image. From the presented methods, 

we conclude that the GLP and redundant shift-invariant contourlet transforms are the most popular 

multiresolution techniques applied to the fusion problem. 

The quality of the resulting images, obtained by the discussed pansharpening method, is assessed 

qualitatively and quantitatively. In the next chapter, some of the most used techniques and quality 

evaluation indices are presented. 
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Quality assessment 

3.1 Introduction 

The various pansharpening algorithms, discussed in chapter 2, aim to increase the spatial resolution 

of the MS images, using Pan image, while preserving their original spectral information. The 

spectral and spatial qualities of the resulting images are the objective of pansharpening. Visual 

analysis may be used to evaluate the pansharpened images. In practice, however, this subjective 

evaluation is time-consuming and expensive [148]. Thus, in addition to the visual analysis, 

quantitative evaluation must be considered [149]. Quantitative assessment is very important in 

remote sensing applications. The goal of this objective quality measure is to predict quickly 

perceived image quality. It tries to quantify the difference oriented toward an improvement in the 

image due to processing. Quantitative metrics exploit the pixel difference between images, 

correlation between images, and changes in histogram [150]. Quality refers to both the spatial and 

spectral quality of images, however, one can focus on the spatial fidelity while another targets the 

spectral fidelity [149]. Image quality metrics are mainly used to quantitatively measure the quality 

of an image that correlates with human perceived quality. They can be also used to compare 

pansharpening algorithms. These metrics should be accurate, and monotonic in predicting the 

quality of an image [150]. Nevertheless, as no reference images are available at high resolution, 

quantitative assessment is not an easy task [3].  

Wald et al. [102] established the following three properties of the pansharpened images: 

 Any pansharpened image once down-sampled to its original spatial resolution should be as 

identical as possible to the original image. 
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 Any pansharpened image should be as identical as possible to the image that a 

corresponding sensor would observe with the same high spatial resolution. 

 The MS set of pansharpened images should be as identical as possible to the MS set of 

images that a corresponding sensor would observe with the same high spatial resolution. 

Based on that, these properties have been reduced to two properties: consistency property, which is 

equivalent to the first property, and synthesis property, which combines the second and third 

properties [151]. Several protocols have been proposed, using these properties, to define an MS 

reference for comparison purposes. 

Recently, a set of quality assessment algorithms have been proposed without the need of using a 

reference image. Those methods aim at providing reliable quality measures at full scale following 

W 3]. 

In this chapter, quality assessment is presented, where visual and quantitative analysis are 

discussed in sections 3.2 and 3.4, respectively. The quantitative indices are classified in spectral 

and spatial categories. In addition, the recent protocol of pansharpening quality assessment, 

established without using a reference image, is considered in section 3.3.  

3.2 Visual analysis 

The most consistent judgment of image quality evaluation is subjective, and conducted by human 

observers, and known as qualitative or visual analysis [152]. In the qualitative evaluation, the 

pansharpened images are compared to the original MS images in term of color, and to the original 

Pan images in term of spatial details [153]. This method depends on the observers experiences, 

which will introduce some uncertainty. Qualitative evaluation cannot be represented by accurate 

mathematical models [152]. However, in the quantitative evaluation, a set of metrics for assessing 

the spectral and the spatial qualities of the pansharpened images are used. Moreover, the display 

conditions of the images play an important role when visual evaluation is conducted. Consequently, 

a comparison of images quality will not provide efficient results, if it is conducted under different 

visualization conditions. The original MS image generally appears dark. Changing visualization 

conditions, by conducting for example a histogram stretching, allows more reliable display of this 

image. These different appearances are not issued from the quality difference, but just by the 

conditions of the image display. Therefore, one cannot conclude that one image is better than 

another if the display condition is not the same [153]. 

Qualitative analysis is a necessity to verify if the objective of pansharpening has been met.  

 In addition to the spatial details and the local contrast, the visual assessment targets the 

global image quality as the geometric shape and size of objects. Moreover, several visual 

quality parameters for testing the properties are [154]: 
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 Spectral preservation of features in each MS band: based on the appearance. The 

appearance of the objects in the pansharpened images is analyzed in each band based on 

the appearance of the same objects in the original MS images. 

 Multispectral synthesis in fused images: pansharpening should preserve the original 

spectral characteristics of objects. The multispectral characteristics of objects of the 

pansharpened images should be similar to those in the original MS images. This propriety 

may be verified by analyzing different color composites of the pansharpened images and 

comparing them with those of original MS images. 

 Synthesis of images close to actual images at high resolution as defined by the synthesis 

property of fused images. This property cannot be directly verified but can be analysed 

from our knowledge of spectra of objects in the lower spatial resolutions. 

Because visual approach may contain a subjective factor and may be influenced by personal 

preference [153], a quantitative evaluation, fusing the individual assessment, is usually required to 

validate the visual assessment. 

3.3 Quality assessment without a reference 

Quantitative evaluation of pansharpening algorithms is an efficient method to assess the quality of 

the resulting images. This evaluation is possible when an image reference is available. In 

pansharpening, image reference is obtained using the assumption of invariance of fusion 

performances to scale changes [102]. Therefore, when an algorithm performs well on spatially 

down-sampled data, it will be efficient when the data are considered at higher spatial resolution. 

Consequently, the image reference is generated by down-sampling the available images to a coarser 

resolution before performing pansharpening. Authors in [155] proclaimed that the assumption is 

invalid for very high resolution images, particularly in urban environment, except if low-pass 

filters, matching the modulation transfer functions (MTF) of the sensor, are used for the spatial 

degradation of images. Thus, they proposed a global index capable to assess pansharpened images 

and to work at the full scale without performing spatial degradation on the images. This approach, 

 It is based on the universal quality index Q proposed in [156], and includes 

two indices, one for spectral distortion (D ) and the other for spatial distortion (DS). 

3.3.1 The universal quality index (Q) 

The Q index measures the local correlation, luminance, and contrast between two images. For two 

images x and y, it is calculated as follows: 
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Where xy is the covariance between x and y, and x² and y² are the variances of x and y, 

respectively. x  and y  are the means of x and y, respectively. Equation (3.1) can be rewritten as the 

combination of three factors as: 
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The three factors measure the correlation, similarity in luminance and similarity in contrast, 

respectively. The Q index dynamic range is [-1 to 1] and the value Q = 1 is achieved if x = y for all 

pixels. The computation of Q is done using a sliding window of size N×N in order to increase the 

differentiation capability and measures the local distortion. Then the Q index is averaged over all 

the local indices to calculate the global value. 

In the QNR approach, it is assumed that the inter bands spectral quality of the pansharpened images 

is unchanged after the fusion process. When Q is closer to 1, the pansharpened images are similar 

to the original ones. 

3.3.2 The spectral distortion D  

Based on the Q index, the spectral distortion D index is derived without a reference image. Two 

sets of inter-band Q values are calculated separately at low and high resolutions. The differences of 

the corresponding Q values at the two scales yield the spectral distortion introduced by the 

pansharpening process. Thus, the spectral distortion can be represented mathematically as 
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Where L is the total number of bands, G  represents the original MS band and G
~

 is the 

pansharpened MS band. The positive integer exponent p is chosen to emphasize large spectral 

differences: for p=1, all differences are equally weighted; as p increases, large components are 

given more relevance [155]. 

3.3.3 The spatial distortion DS 

The second index DS concerns the spatial distortion. It is determined by calculating the Q index 

between each MS band and the Pan image at low and high resolutions. The difference between the 

two values provides the spatial distortion. The spatial distortion index is given by: 
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where P represents the Pan image, and P is a spatially degraded version of the Pan image, 

generated by low-pass filtering followed by decimation.  
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Analogously, Ds is proportional to the q-norm of the difference vector, where q may be chosen so 

as to emphasize higher difference values. 

3.3.4 QNR 

The indices D  and DS reach their minimum (equal to zero), when the two images are identical and 

they are upper bounded by one if clipping below zero of Q values is enabled. Their combination, 

 and DS, produces the QNR index.  

)1()1(
s

DDQNR  (3.5) 

The two exponents jointly determine the non-linearity of response in the interval [0, 1] to achieve a 

better discrimination of the compared pansharpened images [155].  

Another QNR method was proposed in [157]. It is based on the measure of the mutual information 

(MI) between different images instead of the Q index. The mutual information between upsampled 

original and fused MS bands is used to assess the spectral quality, while the mutual information 

between the Pan image and the fused bands measures the spatial quality. 

Recently, in [101] another protocol was proposed for evaluating spectral and spatial quality of 

pansharpened images. A Flowchart of the spectral quality evaluation procedure is given in figure 

3.1. To assess the spectral quality, the MTF of each spectral channel is used to low-pass filter the 

pansharpened image. After the decimation process, a comparison is accomplished with original 

low-resolution MS images using the Q4 index [158]. 

 

Figure 3.1 Flowchart of spectral quality assessment [101] 
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Note that the MTF filters for each sensor are different and the exact filter response is not usually 

provided by the instrument manufacturers. 

On the other hand, the spatial quality assessment procedure is shown in figure 3.2. The high-pass 

complement of the MTF filters is used to extract the high-frequency information from the MS 

images at both high (fused) and low (original) resolutions. Moreover, the Pan image is down-

sampled to the same spatial resolution of the original MS image, and high-frequency information is 

extracted from high- and low-resolution Pan images. The Q index of [156] is calculated between 

the details of each MS band and the details of the Pan image at the two resolutions. The average of 

the absolute differences in the Q index values across scale of each band produces the spatial index. 

 

Figure 3.2 Flowchart of spatial quality assessment [101] 

It is to note that the QNR approach is not widely used in quality assessment since its introduction. 

We think that the quantitative analysis still be the mostly used approach, based on the properties of 

Wald, to assess pansharpened images. 

3.4 Quantitative analysis with a reference 

A set of metrics have been proposed to quantitatively evaluate the spectral and spatial quality of the 

images. The quality assessment of pansharpened MS images is a difficult task. Even when 

reference MS images are available for comparisons with fusion results, the assessment of fidelity to 

the reference usually requires computation of a number of different indexes. Suppose that the 
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spatial resolution of original MS images is l and the Pan one is h. Generally, the original MS 

images are considered as reference. The fusion process is conducted on degraded versions of the 

MS and Pan images. The degraded Pan and MS images are obtained by down-sampling them by a 

factor of (l/h) [131]. For the Ikonos or QuickBird cases, this factor is 4. The fused MS images are 

compared to those original MS images using the quantitative assessment. In this section, we will 

present the more usually used indexes in two categories: spectral and spatial assessment. 

3.4.1 Spectral quality assessment 

To measure the spectral distortion due to the pansharpening process, each fused image is compared 

to the reference MS image, using one or more of the following quantitative indexes: 

3.4.1.1 Band to band measuring indexes 

1) Bias, variance (VAR) and the standard deviation (SD): the bias is the difference between 

the mean of the original image and that of the fused one. In the relative value, the bias is divided by 

the mean of the original image. The relative variance is the difference in variance between the 

original and the fused images, divided by the variance of the original image. The ideal value for 

each of these measures is zero. The standard deviation of the difference image in relation to the 

mean of the original image indicates the level of the error at any pixel. The lower the value of SD, 

the better the spectral quality of the fused image. 

2) Spectral Angle Mapper (SAM): SAM denotes the absolute value of the angle between two 

vectors, whose elements are the values of the pixels of different bands of the pansharpened and the 

MS images. A SAM value equal to zero denotes the absence of spectral distortion, but radiometric 

distortion may be present (the two pixel vectors are parallel but have different lengths). SAM has 

been widely used in multispectral and hyperspectral image analysis to measure spectral similarity 

between substance signatures for material identification. To compute a SAM value between two 

images, each having L bands B, two spectral vectors v and w are constructed, both having L 

components, where v = {v1, v2, . . . , vL} with vk = B(k)(i, j) corresponding to pixel (i,j) in the k
th
 

original band, while w = {w1,w2, . . . , wL} with wk = Fused_B(k)(i, j) corresponding to pixel (i,j) in 

the k
th
 fused band. SAM takes the arccosine of the dot product between two spectral vectors: 
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SAM is measured either in degrees or in radians and is usually averaged over the whole image to 

yield a global measure of spectral distortion [160]. Small angles indicate high similarity and high 

angles indicate low similarity. 

3) Relative-shift mean (RM): The RM [150] of each band of the pansharpened image helps to 

assess the change in the histogram of the pansharpened image and is defined as the percentage of 

variation between the mean of the reference image and the pansharpened image: 

%
meanoriginal

meanoriginalmeanoutput
RM  (3.7) 

A RM value of 0 signifies that the two images are greatly similar. 

4) Correlation coefficient (CC): the CC between each band of the reference and the 

pansharpened image indicates the spectral integrity of the pansharpened image [92]. However, CC 

is insensitive to a constant gain and bias between two images and does not allow for subtle 

discrimination of possible pansharpening artifacts [68]. CC is the most popular quantitative index. 

It shows the similarity in small size structures between the fused and original pixels. It is defined 

as: 
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Where (MxN) is the size of the images and x  and y  stand for the mean values of the two images 

x and y between which the correlation is computed and CC is calculated globally for the entire 

image. A CC value of +1 indicates that the two images are highly correlated [161]. 

5) Root mean square error (RMSE): the RMSE between each band of the reference and the 

pansharpened image measures the changes in radiance of the pixel values [102]. RMSE is a very 

good indicator of the spectral quality when it is considered along homogeneous regions in the 

image [150]. RMSE should be as close to 0 as possible. 

RMSE, between a reference image x and a fused image y with a MxN size, is defined by [162]:  
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6) Structure Similarity Index (SSIM): after the proposition of the Universal Image Quality 

Index Q, given in equation (3.2), Wang proposed in [148] an improved version of Q named 

Structure Similarity Index (SSIM), where the Q index is a particular case for SSIM index for 

C1=C2=0. 
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Where C1=(k1L)
2
 and C2=(k2L)

2
 are two variables to stabilize the division with weak denominator; 

and L represents the dynamic range of the pixel values. The commun values for k1 and k2 are 0.01 

and 0.03, respectively [148]. SSIM is a perceptual measure that combines several factors related to 

the way humans perceive the quality of the images. Beside luminosity and contrast distortions, the 

structure distortion is considered in SSIM index and calculated locally in 8 × 8 square windows. 

The value varies between -1 and 1. Values close to 1 show the highest similarity with the original 

images. 

3.4.1.2 Global measuring indexes 

While previous indexes only evaluate the difference in spectral information between each band of 

the fused and the reference image, in order to estimate the global spectral quality of the 

pansharpened images, the following indices are used: 

1) The index of the relative average spectral error (RASE) : this index, expressed as a 

percentage, characterizes the average performance of the method of image fusion in the spectral 

bands considered  
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Where M is the mean radiance of the L spectral bands (Bi). The lower the value of RASE, the 

higher the similarity of the fused and original image. 

2)  (ERGAS) for which the English 

translation is relative dimensionless global error in fusion [130], is a global quality index sensitive 

to mean shifting and dynamic range change [149]. The lower the ERGAS value, especially a value 

lower than the number of bands, the higher the similarity between original and fused images. 

ERGAS is as follows: 
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100  (3.12) 

Where h is the resolution of the high spatial resolution image, l is the resolution of the low spatial 

resolution image, µi is the mean radiance of each spectral band Bi and L is the number of the bands 

involved in the fusion. The lower the value of ERGAS, the higher the spectral quality of the fused 

image. 



Chapter 3  Quality assessment 

74 

3) Mean SSIM (MSSIM) and Average Quality (Qavg): These indices [148], [144] are used to 

evaluate the overall image SSIM and Q indexes quality, by averaging these measures. The higher, 

closer to one, the value, the higher the spectral and radiometric quality of the merged images. 

4) Another global measure, Q4, proposed in [158] depends on the individual Q index of each 

band, but also on spectral distortion, embodied by the spectral angle SAM. The problem of this 

index is that it cannot be extended to images with a number of bands greater than four. 

Let a, b, c and d denote the radiance values of a given image pixel in the four bands, typically 

acquired in the B, G, R, and NIR bands. Q4 is defined by:  
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Where 
11111

kdjcibaz  and 
22222

kdjcibaz  

Q4 achieves the maximum value of 1 when two images are identical. Thus, the higher the quality 

of the image, the higher the metric Q4. The first term, which is the modulus of the hypercomplex 

CC between z1 and z2, is sensitive to both the loss of correlation and the spectral distortion between 

the two MS datasets. The second term measures simultaneously the mean bias on all bands, and the 

third term measures the changes in the contrast. 

All of the expectations were calculated as averages on NN  blocks. Hence, Q4 also depends on 

N and is denoted as Q4N. Eventually, Q4N is averaged over the entire image to yield the global 

score index. Because all the fusion methods yielded rather steady plots for N>16 in [158], Q4 with 

N=32 was calculated and averaged on the entire image. 

3.4.2 Spatial Quality Assessment 

To assess the spatial quality of a pansharpened image, its spatial detailed information must be 

compared to that of in the reference high resolution MS image. Just a few quantitative metrics have 

been found in the literature to evaluate the spatial quality of fused images. Zhou [54] proposed the 

following procedure to estimate the spatial quality of the fused images: to compare the spatial 

information present in each band of these images with the spatial information present in the Pan 

image. 

To evaluate similarities between spatial details, a high-pass filter is applied to the images and then 

the CC between the resulting images is computed. This quantity is also called spatial correlation 

coefficient sCC. The authors in both [54] and [144] used the high-pass filter given by: 
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181
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F  (3.14) 
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While in [54] the fused bands are compared with the Pan image, in [144] these fused ones are 

compared with the original MS images. However, the use of the Pan image as a reference is 

incorrect as demonstrated in [73], [163], and the high resolution MS image has to be used, as done 

by Otazu et al. in [144]. The high correlation coefficients between the fused filtered image and the 

reference filtered one (sCC) indicate that most of the spatial information of the reference image 

was incorporated during the fusing process. The sCC has the same definition as the CC. The ideal 

value is 1. 

Recently, a new spatial quality metric was proposed in [164], related to the quantitative edge 

analysis. The authors state that a good pansharpening method should preserve all the edges present 

in the Pan image in the sharpened image [164]. Therefore, a Sobel edge operator is applied on the 

image in order to detect its edges which are then compared with the edges of the Pan image.  

Additionally, some spectral quality measures have been adapted to the spatial quality assessment. 

Pradhan et al. [164] suggested the use of structural information in the SSIM measure between Pan 

and pansharpened images as a spatial quality measure. Lillo-Saavedra et al. [165] proposed to use 

the spatial ERGAS index that includes in its definition the spatial RMSE calculated between each 

fused spectral band and the image obtained by adjusting the histogram of the original Pan image to 

the histogram of the corresponding band of the fused MS image. 

3.5 Conclusion  

In this chapter, pansharpening quality assessment is considered. The quantitative approach, with or 

without a reference, in addition to the visual approach may be used to conduct an accurate 

assessment.  

However, the visual evaluation of pansharpened images is time-consuming and expensive. 

Moreover, the quantitative quality assessment without a reference, recently proposed, has not yet 

proved to be efficient. Therefore and in our opinion, a good solution to assess pansharpening 

products is to focus, mainly, on the use of quantitative tools. Nevertheless, care must be taken in 

the choice of the used indices. The spectral as well as the spatial quality must be 

considered. Indices give a way to rank different algorithms and give an idea of their performance. 

Recent advances in full-scale quality measures set the trend for new measures. 



76 

 

 

 

 

 

 



77 

Part B 

Contributions in 

Improving Pansharpening, 

Vegetation extraction 

and 

Quality assessment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

 

 

 

 

 

 

Contributions in improving 

pansharpening and vegetation 

extraction  

4.1 Introduction 

Earth observation satellites provide multispectral and panchromatic data having different spatial, 

spectral, temporal, and radiometric resolutions. The fusion of a panchromatic (Pan) image having 

high spatial but low spectral resolutions with multispectral (MS) images having low spatial but 

high spectral resolutions is a key issue in many remote sensing applications that require both high 

spatial and high spectral resolutions. The fused image may provide feature enhancement, and 

classification accuracy increase. The design of a sensor to provide both resolution requirements is 

limited by the tradeoff between spectral resolution, spatial resolution, and signal-to-noise ratio of 

the sensor. The spectral and spatial resolutions have an inverse relationship. Thus, a high spectral 

resolution results in a low spatial one and vice versa [77]. Hence, there is an increasing use of 

image processing techniques to fuse the available multispectral images and Pan images with the 

objective to obtain the highest resolutions spatially and spectrally. These image processing 

techniques are known as pansharpening or resolution fusion techniques. Pansharpening has been an 

active area of research for more than a decade, and many image fusion techniques and software 

tools have been developed for specific applications [55], [67], [72], [76], [77], [78], [85], [86], [90], 

[129], [131], [144], [145], [166], [167] and [168]. 
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In this chapter, we present our main contributions in the fields of pansharpening and vegetation 

extraction. For a better readability, the chapter is divided into three main parts. In the first part, two 

pansharpening methods based on the IHS transform are presented. The second part is devoted to 

presenting the NSCT-based pansharpening method. In the third part, a vegetation extraction 

technique is considered, and at the end, a chapter conclusion is given. 

It is to note that the pansharpening, conducted in part one, uses the vegetation enhancement to 

improve the resulting images quality. In this context, a new vegetation index for high resolution 

images, where the Pan image was introduced in the vegetation detection process, is defined. The 

method of vegetation from Ikonos imagery, being presented in the third part, is essentially based on 

this index.  

The proposed algorithm based on the NSCT, presented in part 2, is tested in the context of the 

participation to the 2012 IEEE GRSS Data Fusion Contest: Multimodal/multi-temporal fusion. 

Before, the presentation of the proposed methods, it is essential to mention that we have studied the 

impact of the interpolation on the pansharpened images in [169], where the classical bicubic 

interpolation, usually used in pansharpening, is compared to a more efficient existing interpolation 

given in [170]. It was shown that using an efficient interpolation algorithm can improve the 

pansharpened images [169] (see Appendix A). 
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4.2 Part1: 

 
Proposed IHS-based pansharpening methods 

 
In practical applications, the IHS-based fusion is the most widely used [131]. This technique is 

suitable when exactly three MS bands are concerned. When more than three bands are available, a 

good solution is to use all the MS bands located within the Pan band, especially the Near Infra Red 

(NIR) band. In this context, the authors in [72] defined a fast IHS (FIHS) transform for three bands 

and a generalized IHS (GIHS) transform for four bands by including the NIR band in the 

computation of the intensity component (I). Besides its fast computing capability for fusing images, 

this method can extend traditional three-order transformations to an arbitrary order. It can also 

quickly fuse massive volumes of data, with different resolutions, by requiring only resampled MS 

data. That is, it is well suitable in terms of processing speed for fusing Ikonos images. However, 

GIHS fusion also distorts color in the same way as the traditional IHS fusion technique. Various 

methods, like those presented in [145], [90] and the spectral adjusted IHS developed in [72], were 

proposed in order to improve the fusion based on the IHS transform. These methods make use of 

the spectral characteristics of sensors in the fusion process, i.e. the I component is obtained by 

weighting the MS bands according to their spectral responses. Moreover, for vegetation 

visualization applications, recent methods make use of vegetation enhancement to improve color 

quality [85], [86], [78]. This enhancement is applied in the vegetation areas, which are delimited 

using a vegetation index. 

Our contributions in this context consist in using IHS and boosting the G band in the vegetated 

area. Two methods are proposed. In the first one [85] and [173], the vegetation is detected by the 

NDVI and the boosting is done before the fusion process. In contrast, for the second method [171], 

the boosting is done after the fusion process and the vegetation is delineated using a new index 

proposed for high resolution images [172] and defined in equation (4.25). 

4.2.1 Problem positioning 

To date, various image fusion methods have been proposed in the literature [72], [129], [131], 

[134], [145], [160], and [174]. In the context of Spot sensor, the Pan image is obtained only in the 

visible part of the electromagnetic spectrum. Therefore the I component produced by combining R, 

G and B bands appears like the Pan image. Traditionally, the IHS-based pansharpening consists of: 

- Using R, G and B bands to compute the IHS components. 
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- Replacing the I component by the Pan image, then reversely transforming the Pan, H and S 

components from the IHS space into the RGB space, resulting in a fused color image 

[131]. 

If the I component has high correlation with the Pan image being fused, this will produce a 

satisfactory fusion result. 

However, in the context of Ikonos or QuickBird, the Pan image is produced in a larger spectral 

band: from the visible to NIR. Therefore, the I component obtained from combining R, G and B, 

often differs from the Pan image. Hence, the color distortion becomes a common problem of the 

IHS technique for Ikonos and QuickBird imagery. In [72], Tu et al. presented a simple spectral-

adjusted scheme integrated into a fast IHS method to reduce spectral distortion. In [145] Choi used 

a trade-off parameter in another approach for image fusion based on fast IHS fusion. 

4.2.2 Method 1: 

Based on the fact that the grey values of Pan in the green vegetated regions are far larger than the 

grey values of intensity (I), we propose to adjust spatially the I image, in the vegetated area only, in 

order to get grey values in the same range as those of the Pan image. For this purpose we use the 

Normalized Difference Vegetation Index (NDVI) to identify the vegetation area in which the green 

(G) band by using the red (R) and the NIR bands. This will minimize color distortion arising from 

the spectral mismatch between the Pan and MS bands. In this approach, we propose to enhance the 

vegetation area in the green band using a proportion b of the difference between the NIR and Red 

bands. We then use the conventional IHS method to fuse the MS and Pan bands. The enhancement 

is accomplished only for the region where the NDVI is superior to a preset positive value a. We 

have tested a large number of images to select the value of the proportion b. In our experiments, for 

Ikonos a value of 0.4 for b gave best results in terms of fused image quality. For QuickBird the best 

fused results were achieved with b=0.2. For a, we have used a value of 0.1 for both Ikonos and 

QuickBird images.  

Figure 4.1 shows the proposed method described by the following steps: 

1. Given the NIR and the R bands, calculate the NDVI index by using (4.1) 

RNIR

RNIR
NDVI  (4.1) 

2. For any pixel (i,j) compute the enhanced green band (GBoosted) using (4.2) : 

otherwisejiG

ajiNDVIifjiRjiNIRbjiG
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Boosted
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),(  (4.2) 

3. The IHS transform is then applied on the R, B and GBoosted. 
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4. The enhanced H and S are used with the Pan to get the enhanced multispectral RGB image 

(MS*RGB), by use of the inverse IHS transform. We then subtract the amount added in (4.2), 

only for the enhanced pixels, from the green band. 

 

NDVI 

IHS
-1

 

IHS 

G Boosting 

R NIR B G PAN 

I S H 

S H 

GBoosted 

B G R 

MS*RGB 

 

Figure 4.1 Proposed fusion technique. 

4.2.2.1 Experimental results 

To evaluate the proposed fusion procedure with examples, two data were used for this experiment. 

The first one is an image scene on Mt. Wellington, Tasmania, Australia, taken by the Ikonos 

satellite sensor on January 2005. The image size is approximately 10000×10000 pixels. The second 

one is an image scene on the Kokilai Lagoon, a Marine Protected Area in Sri Lanka, taken by the 

QuickBird satellite sensor on April 2005. The image size is approximately 2600×3200 pixels. 

Before the image fusion, the multispectral images were co-registered to the corresponding 

panchromatic images and resampled to the same pixel sizes of the panchromatic images. Two small 

areas in these images are shown; the first one is mostly vegetation and the second one contains less 

vegetation. Their Pan images are shown in Figure 4.2(a) and Figure 4.3 (a), and the original RGB 

images in Figure 4.2(f) and Figure 4.3(f), respectively. 

For comparison purposes, three other IHS fusion methods have been tested. The first one is the 

classical IHS (Classic). The second method (Tu), described in [72], is given in (4.3). 
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Where 4/)25.075.0( NIRBGRIsa  

The third method (Choi) is given in [145] by the following formula (4.4): 
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where 4/)(
4

NIRBGRI  

Visual analysis 

As shown for the test site in Figure 4.2, most of the area is covered by green vegetation. The fusion 

results are shown in Figure 4.2 (b-e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obviously, the fused image generated by the classical IHS suffers from significant color distortion. 

By including the NIR band, the color distortion of the fused image obtained by the rest of methods 

is mitigated. Furthermore, the fused image achieved by the new method provides the highest 

spectral similarity to the original color image in Figure 4.2(f). The spatial and the spectral 

resolutions of the initial MS images appear to have been enhanced. That is, the results of the fusion 

(a) (b) (c) 

(d) (e) (f) 

Figure 4.2 Ikonos test region: (a) Pan image. (b) Classic IHS fused result. (c) TU fused result. (d) 

CHOI fused result. (e) Proposed fused result. (f) Original MS image. 
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from the MS images. Moreover, compared with the results of the fusion obtained by the other 

tested methods, the results of the proposed method have better visual accuracy. For further 

verification, the test area in Figure 4.3(f), acquired by QuickBird, is used. This latter image 

includes more complicated land covers, such as bare soil, and green vegetated areas. The fusion 

results are displayed in Figure 4.3(b-e). Again, those figures show the same concluding remarks as 

those corresponding to Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative analysis 

In addition to visual analysis and in order to quantitatively assess the quality of the fused images in 

terms of CC, Q, bias, RASE and ERGAS. We created spatially degraded Pan and MS images 

derived from the original ones. They have a resolution of 1 and 4 m, respectively. Then, they are 

synthesized at a 1m resolution and compared to the original MS images. Using these factors, 

Tables 4.1 and 4.2 compare the experimental results of image fusion for the two tested regions with 

the four methods. 

The obtained results show that the proposed approach provides better fusion in terms of bias, 

RASE and ERGAS for the two tested regions comparatively to TU and CHOI methods. In general, 

the larger vegetation area is, the better results are obtained. 

 

(a) (b) (c) 

(d) (e) (f) 

Figure 4.3 QuickBird test region: (a) Pan image. (b) Classic IHS fused result. (c) TU fused result. (d) 

CHOI fused result. (e) Proposed fused result. (f) Original MS image. 
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Metric Band Classic TU CHOI Proposed 

CC R 0.5521 0.6846 0.7321 0.8601 

G 0.5065 0.6794 0.7271 0.7139 

B 0.4822 0.5888 0.6419 0.8546 

Q R 0.2667 0.3666 0.4317 0.6273 

G 0.2352 0.3531 0.4203 0.3932 

B 0.1680 0.2192 0.2668 0.4938 

Bais R 0.2093 0.0981 0.1004 0.0011 

G 0.2166 0.0981 0.1004 0.0001 

B 0.1791 0.0981 0.1004 0.0008 

RASE  271.3365 194.6752 193.7181 99.8919 

ERGAS  30.9925 16.1258 15.9635 4.3290 

 

 

Metric Band Classic TU CHOI Proposed 

CC 

R 0.8176 0.8354 0.8614 0.8941 

G 0.6614 0.7397 0.7767 0.7381 

B 0.3716 0.5311 0.5736 0.6209 

Q 

R 0.7183 0.7194 0.7592 0.8228 

G 0.5643 0.6306 0.7116 0.6143 

B 0.2848 0.4025 0.4859 0.4650 

Bais 

R 0.0435 0.0464 0.0385 0.0218 

G 0.0492 0.0464 0.0385 0.0261 

B 0.0556 0.0464 0.0385 0.0257 

RASE  107.9817 101.1529 92.1941 86.6141 

ERGAS  6.9703 6.1965 5.1628 4.5098 

 

4.2.2.2 Conclusion 

We have presented a new approach for image fusion based on the IHS method. Due to non ideal 

spectral responses of the Ikonos and QuickBird imagery, the original IHS technique often produces 

color distortion problems in fused images, especially on vegetated areas. The proposed method 

boosts the green band, by using NIR and red bands information, in the vegetation area in order to 

magnify the intensity grey values. The fusion of the Pan and enhanced intensity image reduces the 

distortion in MS color images. Visual and quantitative analyses of experimental results show that 

the proposed method gives the best fused images in terms of CC, Q, bias, RASE and ERGAS when 

the area of the manipulated images is mostly vegetation. Moreover, even when the image contains 

less vegetation, the results obtained by the proposed technique are still satisfactory and promising. 
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4.2.3 Method 2 

In this second proposed method, the vegetation enhancing is done after the fusion process, allowing 

the production of images with natural colors. Instead of using NDVI for delineating the vegetation, 

we propose and use a new vegetation index. This index is the high resolution normalized difference 

vegetation index (HRNDVI). The pansharpening procedure is performed in two steps: multispectral 

fusion using the IHS technique and then vegetation enhancement. The vegetation enhancement is a 

correction step and depends on the considered application. The new approach provides excellent 

results in terms of objective quality measures. In addition, visual analysis proves that the concept of 

the proposed approach improves well the fusion quality by enhancing the vegetated zones, thus is 

promising. The contribution of this algorithm is to define a fusion technique that can preserve the 

Pan spatial and the MS spectral qualities, and that produces the best possible images for vegetation 

visualization. Hence, an overview of some recent related research is presented and then a new 

inspired approach is proposed and described. It can be used for fusion and for vegetation 

visualization applications. It is accomplished in two steps. The first one is a fusion scheme, based 

on the GIHS method with spectral adjustment. The second step is a vegetation enhancement 

process, where only the vegetated areas are boosted. The value of the parameter used for boosting 

the vegetation depends on the considered application. This value will be high if vegetation 

visualization is considered. 

Before presenting the proposed method 2, some details about the spectral response of Ikonos and 

the IHS transformation formulas are presented in the next sections. This is necessary for the easy 

explanation of method 2. 

4.2.3.1 Spectral response of Ikonos 

Figure 1.15, given in chapter 1, shows the spectral responses of Ikonos. In this spectral response, 

three major problems are noticeable [175]: 

- The Pan band response extends from the visible to the NIR part of the electromagnetic 

spectrum. 

- Most of the B band response is out of the Pan band range. 

- The G and B bands overlap substantially. 

Obviously, the color distortion in the fusion process results from these mismatches. Generally 

speaking, if the spectral responses of the MS bands do not lay perfectly within the Pan band, as it 

happens with the most advanced very high resolution imagers, namely Ikonos, then the IHS-based 

methods may yield poor results in terms of spectral fidelity. Therefore, in order to improve the 

fused results, the spectral response must be considered in the merging process. 
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Hence, to obtain a better quality in image fusion, the authors in [72] proposed a spectral adjustment 

scheme integrated into an IHS transformation (SAIHS). In this case, the I component is obtained by 

a weighted sum of the four bands: R, G, B and NIR. The choice of these weights is related to the 

spectral responses of the Pan and MS bands by considering the spectral characteristics of the 

sensors. In [72], the authors decreased the contribution of the B and G bands in the computation of 

the I component and introduced the NIR band in it. In [145], Choi used the average of the four 

bands R, G, B and NIR as the I component. The fusion is conducted using a parameter to control 

the tradeoff between the spatial and the spectral resolutions of the image to be fused. To obtain a 

color-enhanced image, the author proposed to use three different tradeoff parameters. The 

parameter used for the G band was greater than the parameter used for the B band. Decreasing the 

contribution of the B band reduces its effect in the vegetated area. 

4.2.3.2 IHS fusion technique 

Before conducting an IHS fusion, the color image should be registered with the high-resolution Pan 

image and resampled to the same pixel size with the Pan image [38]. Next, the three bands R, G 

and B of a color image have to be transformed from the RGB space into the IHS space. The IHS 

fusion consists of the following steps [67]: 

 Upsample MS RGB images to the Pan pixel size, then convert them as: 
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Where R, G, and B represent the corresponding values in the original RGB image, v1 and v2 are 

intermediate components used to calculate the H and S components. 

 Substitute the intensity component I with the co-registered Pan image; 

 Transform the H, S and the substituted Pan image back to the RGB space by the inverse 

IHS transform: 
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the fused images. 
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By rewriting (4.6), the authors in [67], present a computationally efficient method (FIHS) as:  

B

G

R

B

G

R

 (4.7) 

where IPan  and 3BGRI  (4.8) 

Equation (4.7) states that the fused image 
T

BGR ,,  can be obtained easily and directly from the 

original image 
T

BGR ,,  by simple addition operations. The fused image obtained after the FIHS 

fusion provides the full details of Pan but introduces color distortions. In (4.7), a large value of  

appears to cause a large spectral distortion in the fused images. In order to reduce this effect, one 

must generate an intensity component I, which must be as close as possible to the Pan image. 

The authors demonstrated that when the NIR band is available, a possible solution is to define a 

generalized IHS transform by including the response of the NIR band into the intensity component. 

In this case, I is obtained by weighting each band with a set of coefficients. The choice of these 

weights can be related to the spectral responses of the Pan and MS bands by considering the 

spectral characteristics of the sensors. By differently weighting the contributions coming from the 

MS images, one obtains: 

PanNIRwBwGwRwI
NIRBGR

 (4.9) 

Two algorithms, corresponding to two sets of the weighting coefficients (wR, wG, wB, wNIR), are 

presented in [72]. The first scheme consists of the generalized IHS (GIHS) method, where the 

intensity component is simply the average of the four MS images, i.e. 4NIRBGRI . 

The second algorithm uses the spectral-adjustment IHS (SAIHS) method with another weighting 

for I : 3NIRbBaGRI . The values of 0.75 and 0.25 corresponding to a and b, 

respectively, are found to be suitable to fuse the Ikonos images. 

With these considerations, a general expression can clearly be defined for the fusion process as: 

BandBandFused  where IPan  (4.10) 

Where Band represents one of the MS bands and : 

33 BGRII  for FIHS (4.11) 

44 NIRBGRII  for GIHS (4.12) 

3NIRbBaGRII SA   for SAIHS (4.13) 

In [145], while using GIHS, Choi proposed a new IHS approach for image fusion with an 

adjustment parameter reflecting spectral characteristics of the sensors. Instead of using the spectral 
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adjustment in the computation of I component, he used it to calculate each fused band. His 

proposed method is expressed as follows: 

4

4

4

4
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 (4.14) 

Where t is a tradeoff parameter. 

To write (4.13) in a general expression form, let: 

t

t 1
 (4.15) 

Then: 

4BandBandFused , where 44 IPan  (4.16) 

A suitable value of the tradeoff parameter t for Ikonos images was found to be equal to 4, hence

4/3 . 

In Ikonos, the vegetation zones of the MS images are much darker because the vegetation appears 

to have relatively low reflectance in RGB bands. To overcome this problem and to obtain a color-

enhanced image, three different tradeoff parameters: tR = 2.5, tG = 3.5 and tB = 2.0 are used in 

[145]. Each MS band was enhanced with a parameter reflecting its spectral response. 

The technique presented in [78] tries, also, to solve the same problem. Then a new vegetation index 

(VI), given in (4.21), is proposed to boost the G band in vegetated areas. The obtained modified 

FIHS was then derived as: 

3

'

3

3

B

G

R

B

G

R

 (4.17) 

with 33
IPan , (4.18) 

To detect a vegetated area, two ways are proposed 

 If VI is considered, then 
0

0

3

3'

3
VIk

VI
 (4.19) 

 If NDVI is used, then 
NDVIk

NDVI

3

3'

3  (4.20) 
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Where k is a constant fixed to 2 for Ikonos imagery. In practice, the threshold  is selected 

manually. The idea of using the vegetation detection in the fusion procedure, reported in [85], [86] 

and [78], is that the fused images have a true natural color, especially in the vegetated zones. 

4.2.3.3 Ikonos high resolution vegetation index 

The NDVI is the most used vegetation index for a variety of remote sensing applications. It was 

generally developed for coarse resolution imagery, and is rarely used to generate high-resolution 

vegetation maps directly. On the other hand, in some applications, the Ikonos imagery can be used 

to map a vegetation cover or to validate a vegetation cover classified from other remote sensing 

images [176]. In addition, the Ikonos Pan images provide more details of buildings and individual 

trees, while vegetation structural variations can be well detected with 1-meter spatial resolution 

images. However, the vegetation zones of the MS images are much darker because the vegetation 

appears to have relatively low reflectance in RGB bands. Therefore, when vegetation is the object 

of interest, an enhanced-vegetation fused result is the objective. In this case, usually a vegetation 

index is used in order to delineate the vegetated area where the enhancement is to be done. In [86], 

the author proposed a technique for Ikonos image fusion, for when the main purpose of a specific 

image is vegetation visualization. The technique consists of a hue spectral adjustment scheme 

integrated into an IHS transformation. The NDVI was used to correct the hue component. The idea 

reported in [85] is to boost the G band, and hence the I component, in order to minimize the 

difference between the Pan image and the I component. The boosting was applied only in the 

vegetated area detected using the NDVI. The IHS type used was the classical transform. In a recent 

study [78], the FIHS is used and a G band boosting in the vegetated area is performed. A vegetation 

index VI was proposed: it takes advantage of the high spatial resolution information of the Pan 

images. This VI is expressed as: 

3

3

IPan

IPan
VI  (4.21) 

It uses the Pan image and the I component instead of the NIR and R bands and seems to be 

interesting since it contains much spatial details provided by the Pan image. However, applying the 

VI on our images did not yield expected good results. In fact, although several thresholds are used, 

some confusion is always observed in distinguishing vegetation and from shadows. 

In order to take into account the spatial resolution of the Pan images, a new NDVI is proposed 

using the fused bands. A high resolution vegetation map can be generated using the fused low 

resolution R and NIR bands with the high-resolution Pan image. This index will be denoted 

HRNDVI for High Resolution NDVI. As the conventional NDVI is defined by: 

RNIR

RNIR
NDVI

,
 (4.22) 
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The new index is defined by: 

RFusedNIRFused

RFusedNIRFused
HRNDVI  (4.23) 

Generally, the fused bands R and NIR contain a part from the Pan image, which spatially improves 

the proposed HRNDVI. The fused bands are obtained using (4.16): 

4

4

NIR

R

NIRFused

RFused
 (4.24) 

We use 1  so that the fused bands provide the full details of Pan [177], which is a real 

advantage for the HRNDVI. 

Based on this, (4.23) is rewritten, using the MS and Pan images, as: 

GPanBRNIR

RNIR
NDVIHR

4
2  (4.25) 

Equation (4.25) is the definition of the new index HRNDVI that is proposed for Ikonos images. 

This formula is highly similar to the one of the Enhanced Vegetation Index (EVI) [178].  

The importance of using Pan images for computing the vegetation index is illustrated by the 

example of Figure 4.4. Comparing the Pan image (Figure 4.4(a)) with the RGB image (Figure 

4.4

after the IHS fusion, using the GIHS method: the fused image is 

shown in Figure 4.4(c). The NDVI and HRNDVI thresholds are set to 0.2 and 0.15 respectively. If 

the NDVI is based on the R and NIR bands only, then an error in vegetation detection may occur in 

Figure 4.4(e), the vegetation index  column 67 (red column in 

Figure 4.4(d)), namely NDVI, HRNDVI and VI are plotted.  

All the VI values are higher than 0 which means that the VI index considers this column as a 

vegetation area. Moreover, some NDVI values, corresponding to rows (55 to 64), are also 

significant (higher than 0.2). This is due to the large difference between the NIR and R bands. In 

this range of rows, 

two vegetation indexes all the values of HRNDVI are smaller than the threshold leading to no error 

in the vegetation detection. In this example, the impact of the Pan image, in vegetation detection, is 

obvious. In general, if the Pan image is considered in the computation of the vegetation index, 

more errors related to detailed information will disappear. 
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Figure 4.5 shows an example for comparing NDVI, VI and HRNDVI. The scene contains a part of 

a stadium and some surrounding buildings. The upsampled RGB image and the Pan image are 

given in Figure 4.5(a) and Figure 4.5(b) respectively. 

The white line showed in Figure 4.5(a) will be used to compare vegetation indexes. Figure 4.5(c) 

shows the vegetation mapping using NDVI with a 0.25 threshold. The vegetation mapping using VI 

is reported in Figure 4.5(d) and Figure 4.5(e) with 0 and 0.2 thresholds respectively. The white 

color in Figure 4.5(c), Figure 4.5(d), Figure 4.5(e) and Figure 4.5(f) corresponds to vegetation. 

Figure 4.5(f) illustrates the vegetation mapping using HRNDVI with a threshold of 0.2. Figure 

4.5(d) and Figure 4.5(e) state that a threshold of 0 does not give good results, as stated by the 

Figure 4.4 (a) Pan image, (b) RGB image, (c) GIHS fused image, (d) considered column in 

red color, (e) NDVI, VI and HRNDVI corresponding to the red column in (d). 

   
 (a) (b) 

   
 (c) (d) 

 
(e) 
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author in [78], and when increasing the threshold, to improve this result, some vegetation 

information are lost, and some building shadows appear as vegetation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The VI and HRNDVI indices make use of the Pan image to include more details than the 

conventional NDVI index. Consider only one line (white line) from Figure 4.5(a). The 

corresponding NDVI, HRNDVI and VI indices are plotted in the same figure (Figure 4.5(g)). 

HRNDVI and VI have more high frequencies than NDVI. Observing this plot, they have a better 

spatial resolution compared to the NDVI index. However, VI presents some confusion in 

vegetation detection, namely around edges. Normally, from column 27 to 99 and from 228 to 256, 

there is no vegetation in Figure 4.5(a). But some values of VI are significant in these intervals. This 

Figure 4.5 (a) RGB image, (b) Pan image, (c) NDVI with threshold 0.25, (d) VI with 

threshold = 0, and (e) VI with threshold = 0.2 (f) HRNDVI with threshold = 0.2 (g) NDVI, VI 

and HRNDVI corresponding to the white line in RGB image. 

   
 (a) (b) (c) 

   
 (d) (e) (f) 
 

 
(g) 
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is due to the large values of the Pan image compared to I3 in non-vegetated areas. In conclusion, 

HRNDVI appears to be a solution where the spatial information of the Pan image is used without 

any vegetation detection confusion. 

Figure 4.6 shows the difference between NDVI (Figure 4.6(b)) and HRNDVI (Figure 4.6(c)) 

obtained from the MS and Pan images. High frequency is obviously apparent in Figure 4.6(c), 

especially in dense vegetation (top and middle boxes).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The HRNDVI index preserves more detailed vegetation areas than the conventional NDVI one. In 

Figure 4.6(a), in the bottom box, the oblique structure, which is not a vegetation area, appears in 

Figure 4.6(b) in white, corresponding to false vegetation detection, while it can be noticed that this 

false detection does not occur in Figure 4.6(c). 

The contribution of the Pan image, in detecting vegetation, is obviously apparent in the VI and 

HRNDVI maps. By this means, these two vegetation indexes preserve more detailed vegetation 

areas than the conventional NDVI. Although, VI has a better spatial resolution, compared to NDVI, 

all the conducted and observed examples show that VI presents some confusion in vegetation 

detection. The proposed HRNDVI index is a good solution to introduce the spatial resolution in the 

computation of NDVI and guaranties less confusion in the vegetation detection process. It provides 

a new data source for monitoring agricultural production, and for giving information for the 

development of crops during the growing season. For all the experiments conducted, a good value 

 
(a) 

 
 (b) (c) 

 
Figure 4.6 (a) GIHS fused image, (b) NDVI with threshold 0.35, (c:) HR NDVI with threshold 0.3. 
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of the HRNDVI threshold is estimated as being 0.05 less than the threshold value of NDVI. So in 

the case of the traditional threshold of 0.2 for NDVI, the threshold of HRNDVI is 0.15. 

4.2.3.4 Description of method 2  

The spectral response of Ikonos and the works conducted in [85], [145], [86], [72] and [78] state 

that the Ikonos pansharpening process needs boosting the G band, decreasing the contribution of 

the B band and exploiting the NIR band. Moreover, because the problems of color distortion are 

more visible in the vegetated areas, only these areas will be enhanced in our approach. 

In order to improve the fused images, particularly in the vegetated areas, a new fusion algorithm is 

proposed. The most important novelty is to tune the two bands G and B, rather than the G band 

alone, in the vegetated areas. Moreover, the proposed HRNDVI index is used to detect the 

vegetation. In addition, the NIR band, which reflects vegetation, is used in the computation of the I 

component. As in GIHS, equation (4.12) expresses this component. 

Equation (4.17) is reformulated, in a manner to distinguish the two processes: the fusion and the 

vegetation enhancement. Hence, this equation can be expressed as: 
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 (4.26) 

Where k = 2 for the vegetated areas and k = 1 for the non-vegetated areas if Ikonos images are used 

[78]. 3 is given in (4.18). The term 
3

)1(k  in (4.26), applied for the G band, represents the 

vegetation enhancement.  

In [145], for color enhancement applications, each fused band used a different value of t; tR, tG and 

tB. Using equation 4.15, for three bands, equation (4.14) is rewritten as: 
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 (4.27) 

Where 4 is given in equation (4.16), and R, G, and B are computed using (4.15) from tR=2.5, 

tG=3.5 and tB=2.0, respectively. Rewriting (4.27) in the same format as (4.26), where the fusion 

and vegetation enhancement are distinguished, gives  
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 (4.28) 

where 6.0  (4.29) 
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and where 0
R

, 11.0
G

 and 13.0
B

 (4.30) 

Equation (4.28) compared to (4.26) states that the enhancement is applied to the G and B bands for 

the whole fused image. 

By using the idea of [85], [86] and [78], we propose to enhance only the vegetated areas. 

Moreover, to simplify the fusion problem, the number of parameters in (4.28) is decreased by 

assuming that:
BG

. Hence, in the proposed method, the same amount 
4
 is used to 

increase the values of the G band and decrease those of the B band, but only in the vegetation 

zones.  

for images where most of the areas are vegetation. Additionally, for images with less vegetation, 

value of  controls the spatial information injected in the fused images and is related to the 

vegetation quantity in the image. 

The new proposed algorithm, generalized for four bands, can be summarized by the following 

procedure: 

 Calculate the HRNDVI index using (4.25). 

 Compute the intensity component 
4

I  and the corresponding difference 4  using (4.12) and 

(4.16). 

 Compute the fused bands as : 

4

4

4

4

NIR
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RNI
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, where 6.0 , (4.31) 

 Enhance the vegetated zones by applying a correction in the two bands G and B : 

4

4

B

G

B

G
,  for NDVIHR            (4.32) 

The resulting fused-enhanced bands are RNIBGR ,,, .  is the enhancing term and depends on 

the considered application. From the performed experiments, a value of 12.0  produces better 

results, for fusion purposes. In addition, if this algorithm is used for vegetation visualization, a 

value of 0.25 for  gives a natural look to the vegetated areas making the fused image more 

appreciable. Experimental results for fusion and vegetation visualization will be discussed in the 

next section. 
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4.2.3.5 Experimental results 

The same Ikonos images, used for evaluating the first method, were used for assessment of this 

second method. In order to illustrate the efficiency of our algorithm, two subsets of images are 

used. The first one is mostly vegetation and the second one contains less vegetation. Small size 

images of 256x256 pixels will be considered. For comparison purposes, the FIHS, GIHS, SAIHS 

given in equations 4.10  4.13 equation 4.14 

method expressed in 4.17  4.19, are implemented and tested. Finally, the proposed method is 

presented with two values for the enhancing term: 12.0
1

 for fusion and 25.0
2

 for both 

fusion and vegetation visualization. 

Quantitative analysis 

For each spectral band, we compute: the bias in relative value, the difference in variance in relative 

value, the standard-deviation of the differences on a pixel basis in relative value, the correlation 

coefficient and the correlation between high frequencies. For the whole data set, the average 

spectral angle mapper (SAM), the relative dimensionless global error in synthesis (ERGAS) and 

the quality index (Q4) are used. 

To evaluate the spectral and spatial quality of the fused images, degraded Pan and MS images are 

used. The MS images have a 4m resolution, which is four times less than the Pan 

resolution. By down-sampling the MS and Pan images by a factor of four, the degraded MS and 

Pan images with 16m and 4m resolutions, respectively, are obtained [131]. The fusion process is 

applied on the degraded MS and Pan images to produce MS fused images with a 4m resolution. 

The MS images, before down-sampling, are considered as original images. The fused MS images 

are compared to those original MS images using the quality indexes presented previously. Tables 

4.3 and 4.4 compare the experimental results of image fusion of the proposed method with the five 

presented methods. As previously seen, the results corresponding to the new proposed method are 

given with the two selected values: 1 for fusion and 2 for both fusion and vegetation 

visualization. Table 4.3 corresponds to the first image set, which is mostly vegetation, given in 

Figure 4.7. Table 4.4 characterizes the second image set, containing less vegetation, given in Figure 

4.8. Both tables show that the method, for the two values of , gives good results in terms of bias 

thod produces better 

values of variance in dense vegetation images for the R and G bands unlike the proposed method 

which is more suitable for non-dense vegetation images in terms of variance. 

The results presented in Tables 4.3 and 4.4 show that our technique gives very good values in terms 

of spectral and spatial correlations in dense vegetation image. 

The developed method gives appreciable results in terms of the global quality measure. Regardless 

of the image type and for the three metrics: SAM, ERGAS and Q4, our method performs better. 
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Band FIHS GIHS SAIHS Choi Tu et al. 

Proposed method 

1 2 

BIAS R 1.0178 0.6921 0.6459  0.5187  1.0178  0.4149  0.4149  

 G 0.6892 0.4687 0.4374  0.3513  1.3802  0.3248  0.3686  

 B 0.6568 0.4467 0.4169 0.3348 0.6568 0.2260 0.1842 

VAR R 0.8338 0.7119 0.5485  0.0157  0.8338  0.2978  0.2978  

 G 0.6464 0.5274 0.3929  0.1435  10.9205  0.4409  0.4662  

 B 2.8384 2.4379 2.1388 0.6094 2.8384 0.0657 0.1908 

SD R 0.4101 0.3489 0.3287  0.2620  0.4101  0.2227  0.2227  

 G 0.2800 0.2389 0.2252  0.1792  0.5994  0.1713  0.1947  

 B 0.2917 0.2562 0.2444 0.1889 0.2917 0.1346 0.1234 

CC R 0.7909 0.8416 0.8489  0.8683  0.7909  0.8822  0.8822  

 G 0.7796 0.8303 0.8380  0.8573  0.6898  0.8423  0.8060  

 B 0.6336 0.7001 0.7091 0.7403 0.6336 0.8142 0.8447 

sCC R 0.7054 0.7051 0.7050  0.7092  0.7054  0.7116  0.7116  

 G 0.7199 0.7171 0.7169  0.7259  0.6998  0.7008  0.6687  

 B 0.6239 0.6140 0.6129 0.6362 0.6239 0.6866 0.7079 

SAM - 9.4650° 8.4745° 8.3353° 7.7114° 13.9798° 7.4296° 7.9132° 

ERGAS - 19.5491 13.8652 12.9800 10.4849 25.4848 8.6554 8.8244 

Q4 - 0.2166 0.2826 0.2964 0.3631 0.1656 0.4475 0.4605 

 

 

 Band FIHS GIHS SAIHS Choi Tu et al. 
Proposed method 

1 2 

BIAS R 0.3593 0.3289  0.3207  0.2465  0.3593  0.1972  0.1972  

 G 0.2983 0.2731  0.2663  0.2047  0.6171  0.1734  0.1830  

 B 0.3397 0.3110 0.3032 0.2331 0.3397 0.1755 0.1645 

VAR R 0.8793 1.2177  1.1182  0.5252  0.8793  0.2238  0.2238  

 G 0.7256 1.0542  0.9943  0.4249  5.3392  0.1217  0.0952  

 B 1.8889 2.5675 2.5237 1.1099 1.8889 0.5724 0.6156 

SD R 0.2643 0.2111  0.1944  0.1763  0.2643  0.1744  0.1744  

 G 0.2267 0.1837  0.1699  0.1512  0.4746  0.1531  0.1618  

 B 0.2802 0.2365 0.2220 0.1710 0.2802 0.1343 0.1313 

CC R 0.8780 0.9277  0.9371  0.9338  0.8780  0.9313  0.9313  

 G 0.8667 0.9188  0.9299  0.9286  0.7684  0.9217  0.9122  

 B 0.7747 0.8597 0.8785 0.8915 0.7747 0.9182 0.9242 

sCC R 0.8128 0.8137  0.8138  0.8130  0.8128  0.8086  0.8086  

 G 0.7951 0.7962  0.7964  0.7970  0.7777  0.7872  0.7779  

 B 0.7466 0.7478 0.7480 0.7565 0.7466 0.7662 0.7671 

SAM - 6.0904° 5.9155° 5.8674° 5.7153° 8.3383° 5.6044° 5.7179° 

ERGAS - 10.2626 9.0587 8.7092 6.9788 13.3448 5.9777 5.9993 

Q4 - 0.6694 0.7041 0.7158 0.7768 0.5871 0.8098 0.8107 

 

The examination of Tables 4.3 and 4.4 indicates that: 

 When the vegetation is not dense, the proposed method produces very satisfactory 

results. Even if the SAIHS method appears to have better CC and sCC for the R and G 

bands, the proposed method improves well the B band, and the global measures show this 

improvement. 
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 For an image, which is mostly vegetation, the proposed method, again, gives the 

best res

By doing this, the bias and the standard deviation will increase. In addition, the rest of 

indexes are affected. Hence, a value 

improvement for all the quality metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
 (a) (b) (c) 

     
 (d) (e) (f) 

     
 (g) (h) (i) 

Figure 4.7 First image set (a) RGB image. (b) Pan image. (c) FIHS results. (d) GIHS results. (e) SAIHS 

1. (i) Proposed method results 

with 2. 
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 (a) (b) (c) 

       
 (d) (e) (f) 

       
 (g) (h) (i) 

Figure 4.8 Second image set (a) RGB image. (b) Pan image. (c) FIHS results. (d) GIHS results. (e) 

1. (i) Proposed 

method results with 2. 
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Visual analysis 

Figure 4.7 and Figure 4.8 show the fusion results obtained using different methods. In the two 

figures, (a) represents the original RGB image upsampled to the Pan image size shown in (b). The 

fused results obtained using the FIHS, GIHS, SAIHS, Choi and Tu methods are illustrated in (c), 

(d), (e) (f) and (g), respectively. To show the efficiency of our method according to objectives in 

fusion or vegetation visualization, two fused results are presented. The first one (h) for fusion 

purposes, and the second one (i) for both fusion and vegetation enhancement. 

The color distortion is apparent in the FIHS and GIHS results. However, the SAIHS and Choi 

results are better, but the vegetation appears unnatural. The Tu et al. results show an excessive 

greenness in the vegetated area. This is due to the use of VI with a 0 threshold. Normally, 

increasing the threshold value improves the results, if the used images are natural. In fact, the VI 

index is designed for the vegetation layer of GIS and military applications as Camouflage. 

In any case, the proposed method provides good results. This method tries to solve the problems 

evoked in [175] and presented in section 2.1. Hence, the NIR band is used in computing the 

intensity component, and the contribution of the three bands are weighted according to the spectral 

response of the sensors. The use of a correction term, in vegetated areas, for the G and B bands has 

strongly improved the visual quality, and a natural color is obtained. 

Color enhancement 

In order to show the capabilities of the proposed method, two examples (A and B) are illustrated in 

Figure 4.9(a). The first case is presented in Figure 4.9(b), Figure 4.9(d) and Figure 4.9(f). This area 

is chosen in order to demonstrate the improvement for the G and B bands. The proposed method 

produces the best results, as can be seen: the green and blue colors appear natural. In Figure 4.9(c), 

Figure 4.9(e) and Figure 4.9(g) corresponding to the second case, the importance of using the new 

vegetation index HRNDVI is highlighted. The fused results presented in Figure 4.9(e) and Figure 

4.9(g), are obtained using the conventional NDVI and HRNDVI indices, respectively. In the 

proposed method, enhancement is applied in vegetation areas only. So if some errors are made in 

the vegetation detection process, the final result is affected. As shown in Figure 4.4, NDVI 

introduces color distortions, where a white color pixel appears as yellow due to increasing the G 

and decreasing the B bands. One can notice that using HRNDVI has eliminated the color 

distortions (bright regions characterized by a fluorescent color) that are observed (white circles) in 

Figure 4.9(e) when using the conventional NDVI index. Our method is based on the vegetation 

detection in order to enhance the vegetated area. Hence, if the detection of vegetation presents 

some error, color distortion may be introduced in the resulting image. Using HRNDVI minimizes 

this error, especially in regions with sharp edges. 



Chapter4 Contributions in improving pansharpening and vegetation extraction 

 
103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

   
 (b) (c) 

   
 (d) (e) 

   
 (f) (g) 

Figure 4.9 (a) RGB image with two zoomed areas, A and B. (b) Pan image for area A. (c) Pan 

image for area B. (d) Proposed method results with 2, using NDVI. (e) Proposed method results 

with 1, using HR NDVI. (f) and (g) Proposed method results with 2, using HR NDVI. 
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4.2.3.6 Conclusion 

The proposed algorithm 2 can be used for both image fusion and vegetation visualization. It is 

based on GIHS with some G and B bands enhancement in the vegetated zones. In this context, a 

modified vegetation index (HRNDVI) is proposed for better vegetation detection. This technique 

has been evaluated both subjectively and objectively, and has been proven efficient in the process 

of pansharpening Ikonos images. For that, most classical evaluation indexes were used to assess the 

quality of the resulting images. Experimental results show that the method performs well on the 

images containing mixed or mostly vegetated areas. The results were then compared with those 

obtained from other existing approaches. This comparison clearly shows that Method 2 gives very 

good visual results and produces non-distorted and perfectly natural image colors. Moreover, in 

terms of quantitative indexes, this approach provides a global appreciable fusion quality and 

improves the spectral and spatial correlations in dense vegetation images. In addition of its 

performance, algorithm 2 still remains as simple as the other IHS based techniques. 
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4.3 Part2: 

 
Proposed NSCT-based pansharpening method 

 
Up to now, a large collection of pansharpening methods have been proposed to improve the MS 

images to higher resolutions using spatial information of the Pan images. Several pansharpening 

methods are based on multiresolution approaches of the Laplacian pyramid, wavelet and contourlet 

transforms. The wavelet transform was a popular choice for pansharpening, but it is shown that the 

contourlet transform is a better transformation approach for pansharpening [77]. Moreover, the 

NSCT transform is very efficient in representing the directional information and capturing intrinsic 

geometrical structures of the objects. It has characteristics of high multiresolution, shift-invariance 

and high directionality. In the multiresolution-based pansharpening the number of decomposition 

levels for MS images is usually identical to that of the Pan images. However, when using 

Multiresolution analysis in pansharpening, a low number of decomposition levels preserves better 

the spectral quality while a high number of decomposition levels is recommended to maintain the 

spatial quality.  

In this section, an NSCT based pansharpening method is considered and optimized using an 

adequate number of decomposition levels. A low number of levels is used for MS images while a 

high number is used for Pan images relatively to the ratio of the Pan pixel size to the MS pixel size. 

This keeps both spectral and spatial qualities. In addition, both the classical scheme and the hybrid 

scheme using the PCA transform are evaluated. Experiments conducted on QuickBird and 

WorldView-2 datasets show that the proposed method improves spectral quality and while keeping 

spatial information unchanged. 

4.3.1 Standard PCA-Based pansharpening 

The PCA transform is commonly used in signal processing, statistics and for spectral 

transformation to produce uncorrelated components. It is assumed that the first principal 

component, PC1, collects the information that is common to all input data to PCA, i.e., the spatial 

information, while the spectral information is captured in the other principal components [3]. The 

Pan image is histogram-matched with PC1 before substitution. The remaining PCs, considered to 

have band-specific information, are unaltered. Inverse PCA is performed on the modified Pan 

image and the PCs to obtain a high-resolution pan-sharpened image [77]. Hybrid algorithms based 

on PCA attempt to improve the PCA aspects by including a multiresolution transform in the 

pansharpening process. In this case, PC1 and the Pan image are decomposed using the 
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multiresolution transform. The obtained coefficients are merged and the inverse multiresolution 

transform is applied [77]. The results are obtained after an inverse PCA. 

4.3.2 Contourlet-based pansharpening 

Fusion techniques based on multiresolution analysis use multi-scale decomposition methods to 

decompose MS and Pan images, and then inject the spatial details contained in Pan but missing in 

MS into MS images. The wavelet transform fusion methods are used to control the trade-off 

between the spectral and the spatial information delivered from an MS sensor and the Pan one, 

respectively. A large number of methods had been proposed for wavelets [129]. However it was 

proven that the contourlet transform is a better approach than the wavelet one for pansharpening 

[77]. The nonsubsampled contourlet Transform (NSCT) provides a complete shift invariant and 

multiscale representation. NSCT is obtained via a two-stage non shift-invariant process [61]. The 

first stage achieves the multiscale property, while the second one provides directionality 

information. Both stages of NSCT are constructed to be invertible to have an overall invertible 

system. Figure 4.10 shows an overview of the NSCT transform [61]. 

 

Figure 4.10 Nonsubsampled contourlet transform. (a) Implementation of NSCT. (b) Frequency 

partitioning in idealized form. 

In general, all the multiresolution-based pansharpening methods adopt the following process [3]: 

1. Forward transform the Pan and MS images using a sub-band and directional decomposition 

such as the subsampled or non-subsampled wavelet or contourlet transform. 

2. Apply a fusion rule onto the transform coefficients. 

3. Generate the pan-sharpened image by performing the inverse transform. 
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A number of pansharpening methods using the contourlet transform have been proposed [77]. 

Usually, MS and Pan images are decomposed using the same number of decomposition levels, then 

appropriate rules are applied to fuse the obtained coefficients. However, a lower number of 

decomposition levels preserves better the spectral quality while a higher number of decomposition 

levels is recommended to maintain the spatial quality [164]. For QuickBird or WorldView-2 the 

ratio of the Pan pixel size to the MS pixel size is equal to 4. This means that MS images need 

upsampling before doing pansharpening. Moreover, the multiresolution decomposition down-

samples the image at each level. From these observations, we propose to use the NSCT-based 

pansharpening with a dynamic number of decomposition levels. A resolution ratio of 4 corresponds 

to two levels of multiresolution decomposition. When n decomposition levels are used for MS 

images n+2 decomposition levels are used for Pan images. 

The conducted experiments show that a fixed value of 1 for the MS decomposition levels (n=1) is 

practical and provides good results. Figure 4.11 shows the process of pansharpening.  

 

 

 

 

 

 

 

 

Figure 4.11 Bloc diagram of the NSCT pansharpening scheme using different numbers of 

decomposition levels for MS and Pan images. 

Three levels of the NSCT decomposition are applied to the histogram-matched Pan image in 

contrast to the MS images where only one level is used. The approximation coefficients of the MS 

and the Pan detailed coefficients are merged to obtain the pan-sharpened image by taking the three 

level inverse NSCT transform. 

4.3.3 Experimental results 

The quality assessment of the pansharpened MS images presents a problem since no reference 

image exists at the pan-sharpened resolution. Invariably one must downsample the pan-sharpened 

image to the original multispectral resolution, which allows direct computation of the quality index 

[188]. In this work, we have selected the following metrics for assessing the quality of the obtained 

results, the correlation coefficient (CC) and the correlation between high frequencies (CCs) [171], 
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the average spectral angle mapper (SAM) which computes the change in angle of spectral vectors 

[159], the Spectral Information Divergence (SID) which considers each pixel spectrum as a random 

variable and then measures the discrepancy of probabilistic behaviour between spectra [79], the 

relative dimensionless global error in synthesis (ERGAS) that provides a single quantity 

synthesizing the quality of the fused data set [130], and finally the universal image quality index 

(Q4) which models any distortion as a combination of three different factors: loss of correlation, 

luminance distortion, and contrast distortion [158]. 

The proposed method is evaluated on a dataset acquired by QuickBird, and WorldView-2 provided 

for the 2012 IEEE GRSS Data Fusion Contest: Multimodal/multi-temporal fusion. For the MS 

images of WorldView-2, only four bands are used: B5, B3, B2 and B7. Pan and MS images of 

2048x2048 and 512x512 pixels, respectively, are selected for the demonstration purposes. NSCT 

using the same number of decomposition levels for both MS and Pan images is noted NSCT1, 

while NSCT2 refers to the NSCT with a different number of decomposition levels. NSCT-based 

pansharpening is evaluated in the classical scheme and the hybrid scheme using PCA. The 

conducted experiments show that: applying three levels of decomposition to the Pan image 

provides good visual quality. Visually, in Figure 4.12 and Figure 4.13, the images obtained using 

NSCT1 and NSCT2 appear similar, there are no major differences. However, the quality metrics, 

given in Tables 4.5 and 4.6, show an improvement of the obtained results using NSCT2 compared 

with those obtained using NSCT1 for all metrics.  

 / NSCT1 NSCT1 NSCT2 NSCT2 

 PCA / PCA / PCA 

CC 0,910 0,948 0,955 0,956 0,961 

sCC 0,595 0,613 0,674 0,654 0,706 

SAM 4,199 4,700 3,334 4,400 3,250 

SID 0,057 0,101 0,081 0,103 0,087 

ERGAS 7,613 5,681 5,292 5,233 4,886 

Q4 0,837 0,907 0,922 0,922 0,934 

 

 / NSCT1 NSCT1 NSCT2 NSCT2 

 PCA / PCA / PCA 

CC 0,951 0,960 0,969 0,966 0,972 

sCC 0,909 0,845 0,913 0,855 0,914 

SAM 4,052 4,374 3,128 4,116 3,035 

SID 0,079 0,035 0,031 0,032 0,025 

ERGAS 4,698 4,130 3,744 3,761 3,440 

Q4 0,886 0,914 0,934 0,928 0,944 
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Figure 4.12 Pan-sharpened QuickBird: 256×256. (a) upsampled MS, (b) PCA,(c) NSCT, (d) 

PCA-NSCT, (e) New NSCT, (f) New NSCT PCA 

The use of a low number of decomposition levels (one) for MS images and a high one (three) for 

the Pan image has a significant positive impact on the pan-sharpened images. Moreover, in case of 

images with a lot of vegetation, the carried research shows that the use of PCA produces some 

color distortion in the vegetated areas mainly for WorldView-2 images. In this case the classical 

scheme is more attractive than the PCA hybrid scheme. The idea of the dynamic number of 

decomposition levels seems to outperform the fixed number of decomposition levels approach. 

The 2012 IEEE GRSS Data Fusion Contest was organized by the Data Fusion Technical 

Committee (DFTC) of the Geoscience and Remote Sensing Society (GRSS) of the International 

Institute of Electrical and Electronic Engineers (IEEE). More than 1150 researchers across the 

globe registered for the contest and the data set was downloaded from 78 different countries. The 

presented work was selected to be among the 10 best submitted papers. The final results are 

published on the page web: http://www.grss-ieee.org/community/technical-committees/data-

fusion/data-fusion-contest/ 
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Figure 4.13 Pan-sharpened WorldView-2: 256×256. (a) upsampled MS, (b) PCA,(c) NSCT, (d) 

PCA-NSCT, (e) New NSCT, (f) New NSCT PCA 

 

4.3.4 Conclusion 

In this section, the NSCT-based pansharpening methods in their classical forms as well as in their 

hybrid forms using PCA are considered. The improvement of the NSCT-based image 

pansharpening is assured by using a low number of decomposition levels for MS images and a high 

number of decomposition levels for the Pan image. This strategy allows getting satisfying visual 

and quantitative results. The spectral quality of MS images is better preserved when a lower 

number of decomposition levels is used, in contrast, this number must be higher to preserve the 

spatial quality of the Pan image in the pansharpened images. 

The performance of the proposed strategy is tested on QuickBird and WroldView-2 data. The 

obtained results confirm the added-value of using an adequate number of decomposition levels. 
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4.4 Part3: 

 
Proposed vegetation extraction method 

 
Nowadays, the technologies and methods for spaceborne remote sensing have evolved dramatically 

to include a suite of sensors operating at a wide range of imaging scales with potential interest and 

importance to planners and land managers [178]. Very high resolution satellite remote sensing 

systems are now capable of providing imagery with similar spatial detail to aerial photography. 

However, a comparison between the two image types suggests that the use of satellite images is 

much more cost effective than aerial photographs for urban vegetation monitoring over large areas 

[180]. Satellite data provide valuable information for mapping vegetation and monitoring 

vegetation change [181]. Vegetation can be distinguished from most other materials by virtue of its 

notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance 

and, especially, its very strong reflectance in the near infrared. The near infrared is the most 

sensitive spectral domain used to map vegetation canopy properties and may improve the 

discrimination of vegetation surfaces [176]. Many vegetation indices have been developed 

primarily based on the feature of low red and high near-infrared reflectance: the most widely used 

index being NDVI [182]. 

In case of urban environment, vegetation maps derived from moderate resolution imagery (e.g., 

MODIS) fail to detect the scattered trees and fragmented grass that are indiscernible at this 

resolution. Since the resolution of the vegetation index is dependent upon that of the retrieved 

image, high-resolution imagery from the Ikonos satellite and similar high spatial resolution sensors 

(e.g., Quickbird, Worldview) may be useful for informing many resource management 

applications. The Ikonos sensors produce four MS bands and one Pan band of 4-m and 1-m 

resolutions, respectively as shown in Figure 1.15. Ikonos data has an extremely wide range of 

applications extending from archaeological and geological research to urban planning, 

environmental monitoring and fishing conservation, to agriculture and vegetation, and military to 

zoology. It is a valuable resource for achieving map accuracies comparable to those of manual 

aerial photo interpretation and can aid in the development of a wide range of mapping and spatial 

modeling applications [183]. 

In an urban environment, the presence, abundance and life form of vegetation have long been 

considered as an important factor influencing the environment quality, conferring diverse benefits 

[182]. Vegetation is generally considered a key component of the urban environment. However, the 
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urban environment is complex and very different from rural and natural environment [183]. 

Increasing demands on the accuracy and thematic resolution of vegetation area species maps from 

satellite imagery has created a need for novel image analysis techniques [184]. These studies have 

investigated the possibility of using Ikonos MS images to quantify urban vegetation, in some cases 

obtaining accuracy similar to that achieved from aerial photographs [180]. 

The NDVI index is generally used for vegetation extraction applications consisting of 

differentiating between vegetation and other surface types. However, in some cases, NDVI fails in 

the detection process. In recent studies [185] and [78], alternative vegetation indices and extraction 

applications are proposed. In [185], the authors presented a fixed-threshold vegetation index 

(VTCmap) based on the extended Tasseled Cap Transformation (TCT). A resulting low resolution 

vegetation map is obtained from MS images, and resized to the same pixel size as that of the Pan 

image by using the cubic convolution. It is then combined with the Pan image using the IHS fusion 

method, in order to produce high resolution vegetation maps. Unlike this index, which is based on 

the MS images only, the authors in [78] used Pan images to determine their proposed vegetation 

index (VITU) for Ikonos and QuickBird satellites. These two methods are globally adequate, but in 

some cases, like urban environment, they fail in the vegetation extraction. 

In this section, we propose a method to differentiate between vegetation and the other surface types 

when using Ikonos imagery. Moreover, the interpolation method used to up-sample the MS images 

was chosen in order to preserve the edges, making the vegetation extraction more accurate in the 

urban areas. 

4.4.1 Existing methods for vegetation extraction for Ikonos imagery 

Vegetation extraction is an important application that is used to monitor crops in terms of identity, 

health and stage of growth. In [185], a fixed threshold approach generating high-resolution 

vegetation maps for Ikonos imagery was proposed. In this technique an extended TCT is used to 

produce the vegetation map, and then a high-resolution version of this map is obtained after a FIHS 

fusion method [72]. The Tasseled Cap Transformation vegetation index (VITC) was derived as:  

312
4

1

4

1

2

1
TCTCTCVITC

, (4.33) 

where the Ikonos TCT coefficients [186] are given by: 

NIRRGBTC

NIRRGBTC

NIRRGBTC

081.0722.0312.0612.0

819.0325.0356.0311.0

567.0560.0509.0326.0

3

2

1

 (4.34) 

with R, G, B and NIR are the digital numbers representing the retrieved reflectance for an 

individual pixel of the red, green, blue and near infrared bands, respectively. The vegetation index, 
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VITC, given in equation (4.33) is derived from emphasizing the second component (TC2) and 

depressing the other two components [185]. 

Rewriting equation (4.33) using equation (4.34), gives  

GBRNIRVI
TC

23.008.048.029.0  (4.35) 

The vegetation map VTCmap is then produced by thresholding VITC: 

otherwise

VIifVI
VTC

TCTC

map
,0

0,
 (4.36) 

As reported by the authors in [185], the threshold is experimentally set at the fixed value of zero. 

All VITC values, above this threshold, correspond to the vegetation information; on the other hand 

the values below this threshold represent all non-vegetation information. 

When using the FIHS fusion method [72], the fused image is obtained by adding to each MS band, 

resized up to the same pixel size as the Pan image, the same amount representing the difference 

between the Pan image and the Intensity (I) component, where I represents the mean of the MS 

band. By adopting the FIHS technique, a high spatial resolution vegetation map is generated in 

[185]. The low resolution VTCmap is resized up to an image VTC'map with the same spatial 

resolution as the Pan image by using the cubic interpolation. Hence, an RGB pseudo color image T 

can be formed as T=[0, VTC'map,0], where VTC'map represents the green band of T, and the 0 

represents a full black image in the red or blue band. Then, T is fused with the Pan image using the 

FIHS method. Each band of T is increased by the same amount , representing the difference 

between the Pan image and the mean of the pseudo color image T. The obtained three band 

vegetation map HR_VTCmap is given by: 

mapmap
CVTVTCHR _ , where 

map
CVTPan

3

1
 (4.37) 

Generally, vegetation indices take advantage of the fact that the red edge falls between the red and 

NIR bands. However, in a recent study [78], the authors claim that the digital number (DN) values 

of vegetation in the Pan are much greater than those of the intensity (I) component. Hence, the 

difference (Pan- new vegetation index. This was proposed in 

[78] for the vegetation layer of GIS and military applications as camouflage and is expressed as 

(VITU): 

3

3

IPan

IPan
VI

TU  (4.38) 
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where I3 -sampling the original [R,G,B] image up to 

the same spatial resolution as that of the Pan image, using the cubic interpolation. 

The VITU index is used to produce a high spatial resolution vegetation map. This vegetation map is 

considered to be an RGB image, where each channel takes the same values as those of the Pan 

band. Then the G channel is boosted in vegetated areas delineated using VITU. The obtained high 

spatial resolution vegetation map is expressed as [78]: 

Pan

G

Pan

VIHR
IHSmap

_ , with 
otherwiseIPank

VIifGPan TU

IHS

3

0
 (4.39) 

A flowchart is shown in Figure 4.14 to give more details.  

 

 

 

 

 

 

 

 

 

 

 

For the vegetation extraction, only the G band is enhanced in the vegetated areas. The fused R and 

B bands are taken as the Pan image. As stated by the authors in [78], the best value for parameter k 

was found to be equal to 2 for Ikonos images.  

4.4.2 Vegetation extraction using the HRNDVI index 

For the vegetation extraction application, HRNDVI can be used, in the same manner as VI, to 

produce a high spatial resolution vegetation map as: 

Pan

G

Pan

HRNDVIHR IHSmap_ , with 
otherwiseIPank

HRNDVIifGPan
IHS

41

 (4.40) 

Input images : Pan of size 4T, 

                         MS : [R,G,B] of size T 

Resize MS: [R,G,B], using cubic interpolation, to 

size 4T 

I3  

VITU = ( Pan - I3 ) / ( Pan + I3 ) 

HR_VImap=[Pan,   Pan ,   Pan ] 

HR_VImap= HR_VImap -1) Pan  k I3 ,   0] 

VITU>0 

end 

No 

Yes 

Figure 4.14 A flowchart for the algorithm presented in [78]. 
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where I4  is a threshold selected manually after various 

experimentations. From the conducted experiments, typical values of  range in [0.1 0.25]. The 

value of  depends on the image content. When there is less vegetation in an image, a typical value 

is 0.15, while a typical value for dense vegetation is 0.25. 

Numerous experiments were conducted to select the best parameters in order to get high-resolution 

vegetation mapping. Several values of k1 3 and 

I4. The visual analysis shows that the produced images looked blurred in the vegetated areas when 

I3 is used and that good results are obtained when using I4 with a value of 4 for k1. In addition, for 

all of these experiments, a good value of the HRNDVI threshold is estimated to be 0.05 less than 

the threshold value of NDVI. Therefore, while in the case of NDVI the traditional threshold is 0.2, 

this one is rather found to be 0.15 in the case of HRNDVI. 

The importance of using Pan images for computing the vegetation index was illustrated by the 

example of Figure 4.4. In Figure 4.15 the same example is used.  

 

Figure 4.15 (a) Pan image, (b) RGB image, (c) GIHS fused image, (d) considered column in 

 column in (d). 

The only difference is that in figure (e) we have added the case of VTC'map. All the values of the 

map are less than 0, producing a correct vegetation map for this case. 

In order to evaluate the quality of the presented vegetation indices, a process of vegetation 

enhancement was conducted on pansharpened images. Various methods, like those presented in 

[78], [85], [86] and [173] make use of a modified IHS index to enhance green vegetation. The 

modified HIS index, enhancing vegetation, is derived as [78]: 
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IHS

IHS

IHS  (4.41) 

where I is the intensity component of the IHS transform and  is a constant experimentally set to 

define the degree of vegetation enhancement. When  is 1, there is no vegetation enhancement, this 

is the case of a simple fusion. Thus, to enhance the vegetated areas,  must be greater than 1.0. 

VIdx is the vegetation index delineating the vegetation, and  is a threshold to be determined with 

respect to the used vegetation index. Equation 4.41 is a general form: three different equations can 

map, VITU or HRNDVI in place of VIdx. As reported by the authors in 

[78] and [185 map [185] or VITU [78], threshold  is always set at the fixed value 

of 0. However, for the HRNDVI case, threshold  is experimentally chosen, according to the image 

content as it is generally done for NDVI. 

map, VITU and HRNDVI, four 

quantitative evaluation indices are used [187]: ERGAS, Q4, SAM and CC.  

4.4.3 Experimental results 

The same Ikonos images, used for evaluating the first algorithm, were also used to test the 

proposed procedure of vegetation extraction based on HRNDVI. Two subsets of images were used: 

the first one (I1) is mostly vegetation (around 85%) and the second one (I2) contains less 

vegetation (around 20%). Based on equation 4.41, we applied some vegetation enhancement using 

map, VITU and HRNDVI. The value of parameter  is set to 2, experimentally. When using 

map or VITU, threshold  is set to 0, but it is 0.15 when HRNDVI is used. For images I1 and I2, 

the ideal and the measured values of the four quality indices are reported in Table 4.7. 

The values of the resulting indices depend on the amount of vegetation contained in an image. In 

images with less vegetation (e.g. I1), there is less enhancement leading to less vegetation color 

changes than in images with more vegetation (e.g. I2), when compared to the original images. To 

demonstrate this, we select an image region, with nearly no vegetation information, and another 

region with dominant vegetation. The obtained results are shown in Table 4.8. 

 VIdx ERGAS SAM CC Q4 

Ideal / 0 0° 1 1 

Image I1 

 15.474 12.472 0.830 0.108 

VITU 12.33 13.980 0.751 0.166 

HRNDVI 10.346 11.854 0.759 0.225 

Image I2 

 14.726 7.551 0.893 0.295 

VITU 9.110 8.338 0.836 0.587 

HRNDVI 7.339 6.424 0.885 0.688 
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 VIdx ERGAS SAM CC Q4 

Ideal / 0 0° 1 1 

Vegetation 

 15.380 12.673 0.804 0.054 

VITU 12.275 14.034 0.697 0.089 

HRNDVI 10.207 11.511 0.723 0.124 

no vegetation 

 14.782 6.211 0.948 0.374 

VITU 7.093 5.294 0.946 0.806 

HRNDVI 6.221 4.150 0.960 0.843 

 

Tables 4.7 and 4.8 show that the enhancing method based on HRNDVI is characterized by less 

spectral distortion, in most of the cases, this method provides indeed the best quality index. Figure 

4.16 shows a part from the obtained results of enhancement of pansharpened images using 

TU and HRNDVI. Moreover, the original RGB image, the Pan image and the IHS 

fused image are given for comparison purposes. 

 

Figure 4.16 enhancement of pan-sharpened images : (a) up-sampled original RGB image, (b) 

Pan image, (c) IHS fused image

image enhanced using VITU, (f) IHS fused image enhanced using HRNDVI. 

 

For visual comparison purposes, we consider the vegetation map, given by equations 4.36, 4.38 

and 4.25, and their application to vegetation extraction, expressed in equations 4.37, 4.39 and 4.40, 

respectively. The obtained results are shown in Figure 4.17 and Figure 4.18 for the mostly 

vegetation and the less vegetation cases, respectively. Figure 4.17(a) and Figure 4.18(a) show that 

map produces low-resolution maps. Moreover, as can be observed visually on Figure 4.19 

(white ellipses), some vegetation areas are missing in the vegetation detection process.  
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Figure 4.17 The vegetation map and extraction of I1: (a) 

HRNDVI. 

 

Figure 4.18 

using VITU, (e) HRNDVI map, (f) extraction using 

HRNDVI. 

For the VITU index, the obtained maps of Figure 4.17(c) and Figure 4.18(c) illustrate an 

overestimation of vegetation (see red ellipses on Figure 4.19 and Figure 4.20), due to the large 

difference between the Pan image and the I3 component in non vegetated areas. 

Results presented in Figure 4.17(e) and Figure 4.18(e), indicate that those based on the modified 

NDVI index are more accurate in comparison with those derived from the two other methods 

presented in Figure 4.17(a), Figure 4.17 (c) and Figure 4.18(a), Figure 4.18(c). Hence, HRNDVI is 
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a good solution to introduce high-resolution information in the vegetated areas. The rest of the 

images Figure 4.17(b), Figure 4.17(d), Figure 4.17(f) and Figure 4.18(b), Figure 4.18(d), Figure 

4.18 map, VITU and HRNDVI, 

respectively. 

For a better illustration, zoomed areas are considered in Figure 4.19 and Figure 4.20. In Figure 

4.19(a), compared to Figure 4.19(c), the white ellipse shows a non-detected vegetation area, 

whereas the red ellipse in Figure 4.19(b) shows a false alarm vegetation area. 

 

Figure 4.19 

using VITU, (c) extraction using HRNDVI. 

Equation (4.35) shows that the TCT vegetation index (VITC) is based on the low-resolution MS 

map will be of the same resolution, producing a low-resolution vegetation 

map. The amount of the high spatial resolution added to the G band in equation (4.37) is not 

significant enough to enhance the spatial resolution of the vegetation zones. The extracted 

vegetation shown in Figure 4.20 map produces blurred vegetation 

areas, while using the VITU index introduces errors by considering some non-vegetation areas as 

vegetation.  

HRNDVI, presented in Figure 4.20(c) is more accurate and can be considered as a trade-off 

between  

 

Figure 4.20 

using VITU, (c) extraction using HRNDVI. 
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4.4.4 Conclusion 

In this section, several methods used to extract and map vegetation in Ikonos imagery are 

presented. Then a new method is proposed to reduce some problems associated with the under and 

over estimation of vegetation and with the resolution characteristics of the extracted areas. It is 

shown that HRNDVI can provide a high resolution vegetation mapping. Hence, the extracted 

images are more accurate especially in the urban area. The proposed technique has been evaluated 

objectively, and has been proven efficient. The obtained results, compared to those reported for 

some existing methods; show that the proposed method yields accurate vegetation extraction and 

high resolution characteristics of the corresponding mapping.  
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4.5 Conclusion 

In this chapter, we have presented our main contributions in pansharpening and vegetation 

extraction domains. For pansharpening, two proposed methods are based on the IHS transform, 

while another method is based on the NSCT transform. The two proposed IHS based methods 

boost the Green band in the vegetation areas in order to amplify the Intensity grey values. The 

fusion of the Pan and enhanced Intensity image produces a reduced distortion in MS color images. 

The proposed NSCT based pansharpening method uses a low number of decomposition levels for 

the MS images and a high number of decomposition levels for the Pan image. This strategy allows 

getting satisfying visual and quantitative results. The spectral quality of MS is better preserved 

when a lower number of decomposition levels is used, in contrast, this number must be higher to 

preserve the spatial quality of the Pan image in the pansharpened images. 

Furthermore, a new vegetation index, HRNDVI, for high resolution images was developed. Thus 

allowed the proposition of a technique for vegetation extraction from Ikonos images, in urban area. 

It is shown that HRNDVI can provide a high resolution vegetation mapping. Hence, the extracted 

images are more accurate especially in the urban area.  

All the proposed methods were tested on high resolution images as those issued from Ikonos, 

QuickBird or WorldView-2. They were, also, compared to existing methods to show their 

effectiveness. Evaluation was driven quantitatively and qualitatively and this showed higher 

performance for proposed methods. 

It is to note that when we examined the assessment tools currently used we found that more 

attention is given to the spectral quality than the spatial one. So for that, we proposed a new 

protocol to equilibrate both qualities. This is presented in the next chapter. 
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Contribution to objective 

quality assessment 

5.1 Introduction 

In the previous chapter, three algorithms for pansharpening were proposed. We have used visual 

analysis conjointly with quantitative assessment. During experiments, in some cases, the obtained 

pansharpened images look blurry; however, the corresponding quantitative analysis state that they 

were good: disagreement! We believe that it is due to the nature of the realized measure of the 

indices. Nearly all the used metrics consider the spectral characteristics of the images more than the 

spatial ones. In addition, just a few quantitative metrics have been found in the literature to evaluate 

the spatial quality. The objective of this chapter is to present a solution to this disagreement, 

through a protocol for pansharpening evaluation; where both the spectral and spatial aspects will be 

considered. Many assessment indices can be introduced in this protocol, under some assumptions. 

Various quality indexes, as those presented in chapter 3, are available to evaluate pansharpening 

methods. Assessment, between each fused and reference MS band, is possible by using the 

correlation coefficient (CC), the bias, the difference in variance (VAR), the standard deviation of 

the differences on a pixel basis (SD), and the correlation between high frequencies (sCC). 

Moreover, a global evaluation can be done using the average root mean square error, the universal 

quality index (Q4), the spectral angle mapper (SAM) and the relative dimensionless global error in 

synthesis (ERGAS) [187]. These indexes can be classified into two groups: spectral and spatial. 

Often, the pansharpened results are assessed using indexes based mainly on the spectral similarity. 

Hence, the presented metrics results tend to favor those methods improving the spectral quality. 

However, the spatial quality is important too. The authors in [187] recommended the use of nine 
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indexes in pansharpening evaluation, where only one index is considered to assess the spatial 

quality. 

Here, to illustrate and introduce the importance of the choice of the quality indexes: two fusion 

methods are considered the standard PCA based pansharpening [77] and wavelet (WAV) [129] 

fusion method.  

Results obtained from the PCA and wavelet fusion methods are shown in Figure 5.1. The original 

MS and Pan images are given in upper left and upper right corners of Figure 5.1, respectively. The 

fused images, obtained using PCA and wavelet are shown in the lower left and lower right corners 

of Figure 5.1, respectively. Moreover, the most important indexes, as recommended in [187], are 

given in table 5.1. 

 

Figure 5.1 Top left: MS, top right: Pan, bottom left: PCA pansharpened, bottom right: wavelet 

pansharpened. 

 CC VAR SD sCC Q4 ERGAS SAM 

PCA 0.95 0.48 0.05 0.86 0.88 1.71 2.51 

WAV 0.90 0.34 0.07 0.82 0.81 2.01 3.11 

 

When comparing the PCA and wavelet fusion methods based only on the metrics of Table 5.1, it 

appears that PCA is more valuable than wavelet, however, visual results, given in Figure 5.1, are 

not coherent with this conclusion.  

Visually it appears that, in addition to preserving the original colors, wavelet results are more 

accurate for spatial information representation. Hence for assessing fusion techniques, the choice of 
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indexes usually consistent with the visual results is crucial. In this chapter, we propose an 

evaluation protocol to assess pansharpening methods. Both spectral and spatial qualities are 

considered. This protocol will be helpful when a ranking of several techniques is to be 

accomplished. 

5.2 Protocol Description 

In general, most authors present their quantitative evaluation of the various methods in tables. Then 

they must add text to classify these methods. Our objective is to find a way to give, in the same 

understanding. This method can also be used during experimentations of fusion techniques for 

assessment of their results and comparison with other approaches. Thus it can reduce the visual 

evaluation or help to reduce it. 

To assess M fusion methods, let K1 and K2 be, respectively, the numbers of the spectral and the 

spatial metrics to be used for the assessment. The experiments are achieved on N images. For each 

image, two tables of size (K1xM) and (K2xM), corresponding to spectral and spatial metrics 

respectively, are used for presenting the results. As shown in Figure 5.2, each table component is 

represented as )(kCn

m
, where Mm ,,2,1 , Nn ,,2,1 , 

1,,2,1 Kk  for spectral metrics 

and 
2

,,2,1 Kk  for spatial metrics. 

 

Figure 5.2 Spectral and spatial tables structure. 
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For the i
th
 image and k

th
 metric, a column )(kvi

 is constructed as )(,),(),()(
21

kCkCkCkv i

M

iii
, 

where the M components correspond to the M values obtained for the M methods to be evaluated, 

respectively. 

At first, for each metric, the methods are sorted into two classes: satisfying and non-satisfying 

methods, based on a fixed metric threshold. As a simple case, the metric threshold can be chosen as 

being the mean value of column )(kvi
 i.e. ( ik). However, for more reliability, we consider also the 

standard deviation of column )(kvi
 i.e. ( ik). Each metric has an ideal value which is considered in 

the classification of the methods. Generally, the ideal values are zero (0) or one (1), depending on 

the type of the metric. Hence, the way of combining ik with ik depends on the ideal value of the 

corresponding metric. For each metric, a threshold ( ik) is defined as: 

ikikik  
 

where  is a value to be chosen experimentally. In this equation, ik is added to ik if the optimal 

value of the corresponding metric is 1, and is subtracted from ik if the optimal value is 0. Then we 

use a simple statistical concept, based on logical values (0,1), to decide if a method is satisfactory or 

not. Using the i
th
 image, a method (m) is considered satisfactory in terms of the k

th
 metric if its value 

otherwise 

assigned to it. For metrics with an optimal value of 1, the obtained results are expressed as: 

otherwise

kCif
kB ik

i

mi

m
0

)(1
)(  

 

In contrast, for the metrics with an optimal value of 0, the expression should be as: 

otherwise

kCif
kB ik

i

mi

m
0

)(1
)(

 
 

Hence, for N images, one obtains N spectral tables and N spatial tables of values 1 and 0. Then both 

N tables are summed. This will produce two tables corresponding to the spectral and spatial metrics. 

Each component (A(m,k)) of these resulting tables is expressed as: 

N

i

i

m
kBkmA

1

)(),(  (5.4) 

After that, the columns of the spectral table and the spatial table are summed too. This will produce 

two columns characterizing the spectral and spatial indices: QIspec and QIspat. Each component of 

these two columns can be expressed as:  

K

k

N

i

i

m

K

k

kBkmA
1 11

)(),(  
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Hence:  

111

1 11 1

2

1 1

1
)(,,)(,)(

K

k

N

i

i

M

K

k

N

i

i

K

k

N

i

i

spec
kBkBkBQI  

and 

222

1 11 1

2

1 1

1
)(,,)(,)(

K

k

N

i

i

M

K

k

N

i

i

K

k

N

i

i

spat
kBkBkBQI  

The maximum value of each column is reached when a method is satisfactory for all the metrics. 

This maximum value is NxK1 and NxK2 for the spectral and spatial cases, respectively. Thus, the 

various methods can be evaluated using, independently, the two columns after they are normalized. 

Nevertheless, the combination of the spectral and spatial results needs a normalization step, where 

each value of the spectral (or spatial) column is normalized by dividing it by the corresponding 

maximum value. Hence, to simplify the assessment, a global measure of quality index (QIglob), 

resulting from the combination of the spectral (QIspec) and the spatial (QIspat) columns, can be 

expressed by a linear relation as: 

21 NK

QI
b

NK

QI
aQI

atspspec

glob  

where a and b are values to be adjusted experimentally, so that a+b=1 and 0<QIglob<1. Clearly, the 

higher the QIglob, the better is the quality, and the lower the QIglob, the worse is the quality. 

5.3 Experimental Results 

Experiments were conducted to evaluate the performance of the proposed protocol using Quickbird 

images downloaded from the landcover.org site. Ten images, shown in Figure 5.3, containing 

forests, buildings, and roads, are used for the evaluation purpose. The protocol is based on the 

spectral indexes: CC, VAR, SD, Q4, ERGAS and SAM, and on the spatial indexes: sCC, Zhou 

spatial CC (ZCC) [187] and true edge (TE) [164].  

For the evaluation, we apply some of the popular pansharpening methods which are the Fast 

Intensity Hue Saturation (FIHS), the Generalized IHS (GIHS), the Spectral Adjust IHS (SAIHS) 

[171], wavelet [129], PCA and the NonSubsampled Contourlet Transform (NSCT) [77]. These 

techniques are implemented to test the proposed protocol. Hence, in reference to the protocol N=10, 

M=6, K1=6, and K2=3. The spectral and spatial tables are shown in Table 5.2 for the ten images. 
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Figure 5.3 Set of the ten images used for testing the proposed protocol. 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,696 0,633 0,108 0,625 2,821 3,397 0,801 0,973 0,829 

GIHS 0,832 0,659 0,077 0,725 2,153 3,234 0,785 0,981 0,708 

SAIHS 0,821 0,568 0,082 0,693 2,203 3,284 0,762 0,986 0,680 

PCA 0,948 0,477 0,051 0,877 1,706 2,511 0,855 0,863 0,455 

Wavelet 0,903 0,344 0,072 0,811 2,014 3,112 0,819 0,951 0,692 

NSCT 0,909 0,352 0,070 0,821 1,955 3,033 0,821 0,951 0,765 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,702 0,881 0,101 0,689 2,964 3,387 0,843 0,970 0,803 

GIHS 0,846 0,810 0,076 0,775 2,502 3,309 0,843 0,975 0,708 

SAIHS 0,833 0,731 0,078 0,755 2,484 3,324 0,834 0,982 0,674 

PCA 0,903 0,582 0,065 0,840 2,367 2,990 0,846 0,866 0,452 

Wavelet 0,887 0,505 0,068 0,829 2,247 3,189 0,860 0,953 0,719 

NSCT 0,889 0,530 0,068 0,833 2,224 3,129 0,861 0,953 0,782 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,746 0,810 0,078 0,731 2,653 3,125 0,878 0,952 0,785 

GIHS 0,834 0,773 0,067 0,772 2,447 3,102 0,878 0,967 0,694 

SAIHS 0,815 0,634 0,069 0,763 2,411 3,099 0,873 0,978 0,679 

PCA 0,881 0,741 0,062 0,809 2,277 2,609 0,868 0,868 0,538 

Wavelet 0,883 0,636 0,058 0,843 2,033 2,662 0,896 0,927 0,726 

NSCT 0,888 0,673 0,057 0,845 2,021 2,624 0,897 0,927 0,780 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,610 0,765 0,081 0,649 2,786 3,398 0,850 0,936 0,768 

GIHS 0,770 0,769 0,065 0,720 2,485 3,356 0,843 0,962 0,653 

SAIHS 0,749 0,568 0,069 0,703 2,468 3,366 0,828 0,976 0,630 

PCA 0,807 0,792 0,064 0,779 2,525 3,246 0,781 0,737 0,334 

Wavelet 0,817 0,797 0,061 0,796 2,157 3,014 0,865 0,910 0,683 

NSCT 0,825 0,812 0,060 0,799 2,129 2,946 0,866 0,910 0,747 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM  sCC ZCC TE 

FIHS 0,341 0,799 0,094 0,480 2,917 2,282  0,889 0,924 0,774 

GIHS 0,833 0,521 0,045 0,641 1,823 1,728  0,885 0,945 0,689 

SAIHS 0,833 1,093 0,047 0,631 1,743 1,726  0,863 0,970 0,708 

PCA 0,752 0,756 0,059 0,626 3,231 4,274  0,712 0,393 0,149 

Wavelet 0,888 0,302 0,041 0,679 1,998 2,124  0,901 0,907 0,718 

NSCT 0,896 0,334 0,040 0,721 1,961 2,046  0,904 0,904 0,768 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,636 0,853 0,129 0,587 3,460 4,232 0,800 0,974 0,828 

GIHS 0,823 0,813 0,089 0,705 2,641 4,013 0,790 0,980 0,697 

SAIHS 0,814 0,748 0,092 0,666 2,650 4,060 0,773 0,985 0,660 

PCA 0,930 0,200 0,063 0,825 2,305 3,360 0,837 0,813 0,338 

Wavelet 0,884 0,211 0,081 0,746 2,338 3,620 0,817 0,961 0,691 

NSCT 0,888 0,226 0,079 0,755 2,301 3,548 0,818 0,961 0,764 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,516 0,937 0,097 0,613 3,067 4,502 0,822 0,942 0,785 

GIHS 0,725 0,867 0,077 0,670 2,679 4,450 0,807 0,967 0,618 

SAIHS 0,705 0,735 0,084 0,640 2,710 4,514 0,784 0,978 0,594 

PCA 0,771 0,706 0,074 0,739 2,646 3,925 0,713 0,599 0,217 

Wavelet 0,770 0,760 0,074 0,755 2,321 3,724 0,839 0,912 0,643 

NSCT 0,777 0,793 0,073 0,759 2,293 3,682 0,839 0,913 0,716 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,349 0,892 0,106 0,505 3,024 3,866 0,849 0,937 0,812 

GIHS 0,762 0,673 0,063 0,598 2,217 3,589 0,837 0,961 0,602 

SAIHS 0,754 0,503 0,071 0,550 2,258 3,659 0,802 0,976 0,596 

PCA 0,790 0,775 0,065 0,738 2,494 3,826 0,709 0,459 0,146 

Wavelet 0,838 0,572 0,059 0,744 1,818 2,720 0,868 0,905 0,664 

NSCT 0,848 0,579 0,057 0,770 1,766 2,617 0,870 0,904 0,755 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM sCC ZCC TE 

FIHS 0,659 0,812 0,081 0,608 2,143 2,559 0,851 0,955 0,767 

GIHS 0,819 0,527 0,057 0,694 1,608 2,427 0,814 0,980 0,675 

SAIHS 0,801 0,537 0,063 0,652 1,675 2,469 0,783 0,983 0,657 

PCA 0,941 0,278 0,039 0,863 1,361 2,014 0,878 0,857 0,391 

Wavelet 0,901 0,437 0,051 0,794 1,488 2,170 0,859 0,932 0,654 

NSCT 0,903 0,452 0,050 0,800 1,467 2,130 0,860 0,932 0,725 
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Method 
spectral  spatial 

CC Var SD Q4 ERGAS SAM  sCC ZCC TE 

FIHS 0,613 0,919 0,101 0,655 3,032 3,597  0,850 0,960 0,815 

GIHS 0,818 0,877 0,071 0,757 2,482 3,494  0,848 0,972 0,704 

SAIHS 0,805 0,805 0,074 0,731 2,461 3,518  0,833 0,982 0,674 

PCA 0,871 0,512 0,066 0,833 2,583 3,476  0,781 0,749 0,358 

Wavelet 0,866 0,541 0,066 0,832 2,137 3,156  0,869 0,940 0,721 

NSCT 0,873 0,606 0,064 0,841 2,085 3,050  0,870 0,940 0,787 

Table 5.2 (continued): spectral and spatial comparison of pansharpening methods. 
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In Table 5.3, the different thresholds corresponding to the ten images are shown. The parameter  

is chosen to be 0.5. It is noted that for CC, Q4, sCC_O, sCC_Z and TE we use 
ikikik

 and 

for Var, SD, ERGAS and SAM, the formula 
ikikik

 is used. 

Threshold 

spectral spatial 

CC Var SD Q4 ERGAS SAM sCC_O sCC_Z TE 

1 0,896 0,437 0,067 0,805 1,954 2,939 0,823 0,973 0,752 

2 0,843 0,595 0,069 0,787 2,465 3,221 0,848 0,950 0,690 

3 0,841 0,674 0,061 0,794 2,307 2,870 0,882 0,936 0,700 

4 0,763 0,705 0,063 0,741 2,425 3,221 0,839 0,905 0,636 

5 0,757 0,482 0,044 0,630 2,279 2,363 0,859 0,840 0,634 

6 0,763 0,705 0,063 0,741 2,425 3,221 0,839 0,905 0,636 

7 0,711 0,843 0,085 0,696 2,619 4,133 0,801 0,885 0,595 

8 0,723 0,738 0,079 0,651 2,263 3,379 0,822 0,857 0,596 

9 0,837 0,595 0,064 0,735 1,624 2,295 0,841 0,940 0,645 

10 0,808 0,799 0,081 0,775 2,463 3,382 0,842 0,924 0,676 

 

Tables 5.2 and 5.3 allow deciding if a method is satisfactory or not. Ten tables, given in Table 5.4, 

will be generated corresponding to the ten images. In these tables, a method is considered 

assigned to this method, otherwise  

 
Method 

spectral spatial 

 CC Var SD Q4 ERGAS SAM sCC_O sCC_Z TE 

Im
ag

e 
1

 

FIHS 0 0 0 0 0 0 0 0 1 

GIHS 0 0 0 0 0 0 0 1 0 

SAIHS 0 0 0 0 0 0 0 1 0 

PCA 1 0 1 1 1 1 1 0 0 

Wavelet 1 1 0 1 0 0 0 0 0 

NSCT 1 1 0 1 0 0 0 0 1 

Im
ag

e 
2
 

FIHS 0 0 0 0 0 0 0 1 1 

GIHS 1 0 0 0 0 0 0 1 1 

SAIHS 0 0 0 0 0 0 0 1 0 

PCA 1 1 1 1 1 1 0 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Im
ag

e 
3
 

FIHS 0 0 0 0 0 0 0 1 1 

GIHS 0 0 0 0 0 0 0 1 0 

SAIHS 0 1 0 0 0 0 0 1 0 

PCA 1 0 0 1 1 1 0 0 0 

Wavelet 1 1 1 1 1 1 1 0 1 

NSCT 1 1 1 1 1 1 1 0 1 

Im
ag

e 
4
 

FIHS 0 0 0 0 0 0 1 1 1 

GIHS 1 0 0 0 0 0 1 1 1 

SAIHS 0 1 0 0 0 0 0 1 0 

PCA 1 0 0 1 0 0 0 0 0 

Wavelet 1 0 1 1 1 1 1 1 1 

NSCT 1 0 1 1 1 1 1 1 1 
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Method 
spectral spatial 

 CC Var SD Q4 ERGAS SAM sCC_O sCC_Z TE 
Im

ag
e 

5
 

FIHS 0 0 0 0 0 1 1 1 1 

GIHS 1 0 0 1 1 1 1 1 1 

SAIHS 1 0 0 1 1 1 1 1 1 

PCA 0 0 0 0 0 0 0 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Im
ag

e 
6

 

FIHS 0 0 0 0 0 0 0 1 1 

GIHS 0 0 1 0 0 0 0 1 1 

SAIHS 0 0 1 0 0 0 0 1 0 

PCA 1 1 1 1 1 1 1 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Im
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FIHS 0 0 0 0 0 0 1 1 1 

GIHS 1 0 1 0 0 0 1 1 1 

SAIHS 0 1 1 0 0 0 0 1 0 

PCA 1 1 1 1 0 1 0 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Im
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e 
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FIHS 0 0 0 0 0 0 1 1 1 

GIHS 1 1 1 0 1 0 1 1 1 

SAIHS 1 1 1 0 1 0 0 1 1 

PCA 1 0 1 1 0 0 0 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Im
ag

e 
9
 

FIHS 0 0 0 0 0 0 1 1 1 

GIHS 0 1 1 0 1 0 0 1 1 

SAIHS 0 1 1 0 0 0 0 1 1 

PCA 1 1 1 1 1 1 1 0 0 

Wavelet 1 1 1 1 1 1 1 0 1 

NSCT 1 1 1 1 1 1 1 0 1 

Im
ag

e 
1
0
 

FIHS 0 0 0 0 0 0 1 1 1 

GIHS 1 0 1 0 0 0 1 1 1 

SAIHS 0 0 1 0 1 0 0 1 0 

PCA 1 1 1 1 0 0 0 0 0 

Wavelet 1 1 1 1 1 1 1 1 1 

NSCT 1 1 1 1 1 1 1 1 1 

Table 5.4 (continued): methods thresholding. 
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The summation of the ten spectral and ten spatial tables is shown in Table 5.5. 

A
ll

 i
m

ag
es

 

spectral spatial 

CC Var SD Q4 ERGAS SAM sCC_O sCC_Z TE 

FIHS 0 0 0 0 0 1 6 9 10 

GIHS 6 2 5 1 3 1 5 10 8 

SAIHS 2 5 5 1 3 1 1 10 3 

PCA 9 5 7 9 5 6 3 0 0 

Wavelet 10 9 9 10 9 9 9 7 9 

NSCT 10 9 9 10 9 9 9 7 10 

 

A summation is now conducted separately for the spectral and spatial indexes to compute QIspec and 

QIspat, resulting in Table 5.6. In addition, the normalization of these indexes can give measures for 

spectral and spatial qualities separately. 

Normalisation 

QIspec QIspat QIspec QIspat 

FIHS 1 25 0,017 0,833 

GIHS 18 23 0,300 0,767 

SAIHS 17 14 0,283 0,467 

PCA 41 3 0,683 0,100 

Wavelet 56 25 0,933 0,833 

NSCT 56 26 0,933 0,867 

 

At this stage, the global measure of the quality index (QIglob), resulting from the combination of the 

spectral (QIspec) and the spatial (QIspat) columns, can be done. For the studied case, the formula used 

is as: 

310
5.0

610
5.0

atspspec

glob

QIQI
QI  

The parameters a and b are each fixed to 0.5 allowing an equal contribution of the spectral and the 

spatial quality. The obtained results as well as the ranking of the evaluated methods are given in 

Table 5.7. 

QIglob Rank 

FIHS 0,425 4 

GIHS 0,533 3 

SAIHS 0,375 6 

PCA 0,392 5 

Wavelet 0,883 2 

NSCT 0,900 1 

 

From Table 5.2 and for the first image, it is clear that considering only spectral indexes, will lead to 

conclude that the PCA based method is the best. However, the authors in [77] have demonstrated 

that NSCT is more efficient than PCA. The use of spatial indexes seems to be mandatory, however, 
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when looking at Table 5.2, it appears that, in term of sCC, PCA is good; in term of ZCC, SAIHS is 

good; and finally, in term of TE, FIHS is the best. In most of the literature, there is a consensus that 

the IHS-based fusion method is the best in preserving spatial information [189]. This is consistent 

with the TE and ZCC metrics. However and up to now, as can be seen in Table 5.2, no ranking of 

different methods can be envisaged yet when considering all metrics. 

The visual analysis of an obtained result, corresponding to the first image and shown in Figure 5.4, 

states that the wavelet and NSCT are the best methods. 

 

Figure 5.4 Pansharpened images: top left: FIHS, top right: GIHS, middle left: SAIHS, middle 

right: PCA, bottom left: wavelet, bottom right: NSCT. 

In this case, where visual results do not correspond to metrics, it is necessary to have a protocol 

making the classification of methods more reliable and a lot easier. Applying the proposed protocol 

produces spectral QIspec and spatial QIspat measures in table 5.6, and the global measure QIglob is then 

computed assuming that the spatial indexes are as important as the spectral ones. Then, it is obvious 

that the NSCT based fusion method is the best. In accordance with visual analysis, wavelet is ranked 

in the second position, better than PCA which is in the fourth place. Thus, this proposed 

classification is reliable, in accordance with the visual evaluation, automatic and easy-to-use. 
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According to the obtained results, the spatial correlation coefficient (ZCC) is more reliable in 

assessing spatial quality compared to the sCC metric. This remark agrees with the comment of [73] 

and [163], where the authors recommend the use of ZCC instead of sCC.  

Moreover, it is to note that there is a necessity of developing a more reliable and efficient metric 

for assessing the spatial quality. 

5.4 Conclusion 

The comparison of various pansharpening methods is not an easy task if the aspect of spatial 

characteristics is not considered. Moreover, the use of multiple indexes in the evaluation process 

enforces the final results. The proposed protocol can make the comparison of quality metrics a lot 

easier. Hence, more indexes can be integrated into this protocol to assess different methods making 

comparison a lot more accurate. The experiments conducted in this study show that using the 

proposed protocol can facilitate the visual evaluation of the results, by making assessing methods 

automatic and more reliable. 
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Conclusion 

Pansharpening is currently considered as being a very important research area in the remote sensing 

domain. The wide use of the pansharpened images for several applications, has led to a 

phenomenal development of the related algorithms. Moreover, the availability of newer satellites 

and images require new techniques for pansharpening or adoption of the existing ones. All 

necessary steps including pre-processing and interpolation must be re-considered. On the other 

hand, the quality assessment of the obtained results still needs more and more effort for developing 

efficient tools for a correct and accurate evaluation. 

The objectives of this research work try to cover these considerations about pansharpening 

techniques and quality assessment of pansharpened images. The conducted works are focused on 

the high resolution images, as those obtained from Ikonos, QuickBird and Worldview satellites and 

they focus on vegetation extraction. 

In this thesis, after a general introduction to remote sensing, a detailed categorisation of the existing 

pansharpening methods is presented. Moreover, some of the pre-processing algorithms, as 

interpolation, are also given. Then, several indexes used to measure the quality of the pansharpened 

images are presented. These tools are necessary for the validation of the proposed algorithms. 

The impact of the interpolation in the pansharpened resulting images is considered. It is found that 

the pansharpened images will be improved if the used interpolation method can preserve the edges. 

The ICBI interpolation approach was studied and the obtained results clearly show that the ICBI-

based fused images give very good results, both visually and quantitatively. Moreover, the edges of 

the Pan image are totally preserved in the ICBI-based fused images and this is an interesting aspect 

since it may be important, especially when the user does not have the Pan image. It is to note that 
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ICBI is not the only interpolation method which can improve the pansharpened images. In the 

future, experiments may be conducted, using other interpolation methods, to study their efficiency 

and impact on pansharpened images. 

When we have presented our main contributions in pansharpening techniques: three algorithms 

were proposed. The first two ones are both based on the IHS transform. Pansharpening is done in 

two steps: fusion and vegetation enhancement. In the first algorithm, vegetation is detected by the 

NDVI index and the enhancement is done before the fusion process. In contrast, for the second 

algorithm, the enhancement is done after the fusion process. When developing this second 

algorithm, a new vegetation index was proposed, defined and used to delineate vegetation. We call 

this index high resolution NDVI (HRNDVI). It can be used for high resolution satellites, where MS 

and Pan images are available. The new proposed pansharpening algorithms were tested on high 

spatial resolution images issued from Ikonos or QuickBird. These algorithms were compared to 

existing methods to show their effectiveness. Evaluation was driven quantitatively and 

qualitatively. 

Moreover, HRNDVI was used to extract vegetation from high resolution satellite images. The 

provided results are excellent, this index allows extraction of vegetation even in the urban case 

where the vegetation is scattered. Hence, the extracted images are more accurate especially in the 

urban area. It can provide a high resolution vegetation mapping. The resulting proposed vegetation 

extraction method, based on HRNDVI, yields accurate vegetation extraction and high resolution 

characteristics of the corresponding mapping. 

The third pansharpening algorithm is based on the nonsubsampled contourlet transform 

multiresolution frames. The NSCT transform was used in a classical form as well as in its hybrid 

form, using PCA. The improvement of the NSCT-based image pansharpening is assured by using a 

low number of decomposition levels for MS images and a high number of decomposition levels for 

the Pan image. This strategy gives satisfying visual and quantitative results. The spectral quality of 

MS images is better preserved when a lower number of decomposition levels is used, in contrast, 

this number must be higher to preserve the spatial quality of the Pan image. The performance of the 

proposed strategy is tested on QuickBird and WorldView-2 data and the obtained results confirm 

the added-value of using an adequate number of decomposition levels. This algorithm based on 

NSCT, was submitted to the 2012 IEEE GRSS Data Fusion Contest: Multimodal/multi-temporal 

fusion. It was selected by the committee to be among the 10 best submitted papers, where more 

than 1150 researchers from 78 different countries were registered for the contest.  

All the pansharpening proposed algorithms were quantitatively evaluated. The main problem of the 

quality assessment is the non availability of the reference image. Some authors tried to define a 

new concept based on quality with no reference, concept which was not, until now, very used in the 
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pansharpening community. The most used concept is still based on the proprieties defined by Wald. 

Even if the reference image is available, the quality assessment is not an easy task. The existing 

metrics need to be completed with other metrics for estimating the spatial quality. In fact, the work 

conducted in the last Chapter shows that: the majority of the recommended and used metrics for 

pansharpening promotes the spectral quality more than the spatial one. Consequently, we propose a 

new protocol to correctly evaluate both spatial and spectral qualities. This protocol can integrate 

many metrics. The aspect of spatial and spectral qualities can be adjusted, according to the 

considered application. Moreover, a global measure of pansharpening quality is provided. This 

protocol allows comparing and ranking several methods. Experimental results demonstrate the 

efficiency of this protocol. 

This protocol must not be substituted to any subjective evaluation, we must considerate it as a tool 

to help for the numerous comparative tests inherent to the evaluation of an algorithm. 

This research work contributes to reach various different enhancements at different levels of the 

pansharpening process, but the pansharpening domain may still need more new algorithms and 

tools for its quality assessment.  

Our experiments covered different steps and different approaches of pansharpening, and from our 

experiences in this domain we may try to extract and summarize some more precise 

est pansharpening . One first point is to take into consideration some 

pre-processing algorithms, as interpolation. Moreover, the research must focus on the use of 

multiresolution analysis for the core of the pansharpening algorithms. The processing will be 

heavier but the time complexity should be reduced, using parallel architectures or GPUs, or simply 

integrating new future processors. 
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Appendix A: Interpolation impacts 

on pansharpened images 

A.1 Introduction 

In high resolution imagery as Ikonos, QuickBird or WorldView-2, both MS and Pan images are 

provided with different spatial and spectral resolutions. In a pansharpening process, before fusing, 

the MS images are resampled to the same pixel size as the Pan image and this upsampling impacts 

subsequent processing. In this appendix, we demonstrate that the interpolation method, used to 

resample the MS images, is very important in preserving the edges in the pansharpened images. 

Most of the proposed methods make use of edge information which is provided by the 

pansharpened images or directly by Pan images if available. This information may be used for 

cartography, traffic management, map updating in Geographical Information Systems (GIS), 

environmental inspection, transportation and urban planning, etc [190], [191]. 

In this work, we analyze the impact of interpolation on the quality of the fused images. In 

pansharpening, the commonly used linear interpolation methods, such as bilinear and bicubic, have 

advantages in simplicity and fast implementation. However, they suffer from some inherent 

defects, including block effects, blurred details and ringing artifacts around edges.  

In order to better preserve edges we use the fast artifacts-free image interpolation technique 

proposed in [170] and called ICBI (Iterative Curvature Based Interpolation). This interpolation 

method is based on the combination of two different procedures. First, an adaptive algorithm is 

applied interpolating locally pixel values along the direction where the image second order 

derivative is lower. Then the interpolated values are modified using an iterative refinement 
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minimizing differences in the image second order derivatives, maximizing second order derivative 

values and smoothing isolevel curves. The first algorithm itself provides edge-preserved images 

that are measurably better than those obtained with similarly fast methods presented in the 

present the artifacts affecting linear and nonlinear methods. The results of ICBI method obtained 

on a wide series of natural images are attractive. Hence, we have decided to use this method in the 

fusion process to preserve edges in the pan-sharpened images. It is to note that other interpolation 

methods were tested on satellite images, but they are not as efficient as the ICBI method. 

The ICBI method is compared to Bicubic method in pansharpening context, using conventional 

IHS fusion method. The quality of the obtained results is assessed visually and quantitatively. 

Moreover, we propose to compare edge information obtained from 192] 

applied to the Pan image and the fused results. This new index, which we call Edge Error, enables 

to measure edge preservation in two pansharpened images. 

A.2 Evaluation of interpolation effects 

For the evaluation of the interpolation effects, we have selected the following list of indexes from 

those presented in chapter 3. For each spectral band, we compute: the bias in relative value, the 

difference in variance in relative value (VAR), the standard-deviation of the differences on a pixel 

basis in relative value (SD), the correlation coefficient (CC) and the correlation between high 

frequencies (sCC). For the whole image, we compute the average spectral angle mapper (SAM) 

and the relative dimensionless global error in synthesis (ERGAS). 

In addition, we use the proposed dge Error here we compare the edge information 

192] to the Pan image and the fused results 

corresponding to the bicubic and ICBI interpolations. For the edge map from each fused image, we 

compute the number of pixels not belonging to the edge map of the Pan image. Then we divide this 

number by the total number of the edge pixels in the Pan image to obtain what we call the edge 

error. It is clear that the edge error measures the missed and the added (fantom edges) edges 

compared to the reference Pan edge image. If the fused edge image preserves exactly the same Pan 

edge then the edge error equals zero. 

A.3 Experimental results 

An image of Mt. Wellington, Tasmania, Australia, taken by the Ikonos satellite sensor on January 

2005 is used for this experiment. The size of the original Pan image is approximately 12000×13000 

pixels from which we extract portions for our experiments. Before image fusion, the MS images 

are resampled to the same pixel size as the Pan image using the two interpolation methods.  
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In Table A.1, we present the comparison results for two test images with size 1024x1024 for the 

fused images, corresponding to Figure A.1 and Figure A.2.  

  Set 1 Set 2 

  Bicubic ICBI Bicubic ICBI 

BIAS 

R 0.0330 0.0133 0.2034 0.2287 

G 0.0007 0.0550 0.2458 0.2787 

B 0.0102 0.0409 0.2768 0.3081 

VAR 

R 0.3882 0.3272 0.1155 0.0471 

G 0.3591 0.2946 0.1975 0.1258 

B 0.4376 0.3561 0.0273 0.0216 

SD 

R 0.2609 0.2651 0.2810 0.2848 

G 0.2762 0.2804 0.2996 0.3044 

B 0.3167 0.3148 0.3465 0.3535 

CC 

R 0.7274 0.7375 0.7793 0.7841 

G 0.6994 0.7106 0.7631 0.7711 

B 0.6639 0.6834 0.6885 0.6923 

sCC 

R 0.9938 0.9962 0.9953 0.9963 

G 0.9938 0.9950 0.9966 0.9975 

B 0.9939 0.9957 0.9960 0.9963 

SAM  7.6420 6.2503 6.0748 5.5250 

ERGAS  10.8373 10.6809 12.5027 12.8319 

Edge error  0.0615 0.0000 0.0746 0.0000 

 

In each figure, the original low spatial resolution RGB image and the high spatial resolution Pan 

image are shown in (a) and (b) respectively. While the fused images obtained using bicubic and 

ICBI interpolation methods are given in (d) and (e), respectively. 

In this work, the idea used to visually compare the efficiency of the interpolation methods consist 

in: 

- Using Canny operator to detect the edge maps of the Pan image and the fused images, 

obtained using the two interpolation methods. 

- Generating an RGB edges image, using the resulting edge maps, where  

The black color represents the edges detected in the three images. 

The purple color is used for the edges detected in Pan and ICBI-based fused images. 

The green color represents the edges detected in Bicubic-based fused image only. 

In both figures (A.1) and (A.2), the constructed image is illustrated in (e) and a zoomed part of it in 

(f). 

Clearly for the Bicubic-based fused image, compared to the Pan image, the purple color 

corresponds to non detected edges, while the green color corresponds to added or fantom edges. 

As can be seen on these figures (Figure A.1(f) and Figure A.2(f)), the ICBI-based results preserve 

the original Pan edge by producing a zero edge error. In addition this method provides better values 

in terms of most of the pansharpening evaluation indexes. 



Appendix A  Interpolation impacts on pansharpened images 

 
144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Set 1, (a) low-resolution RGB image. (b) Corresponding Pan image. (c) Fused result using 

Bicubic interpolation. (d) Fused result using ICBI interpolation. (e) Edge information visualized as 

RGB image, where channels R, G and B correspond to edges extracted from images shown in (b), 

(c) and (d) respectively. (f) An area of (e). 
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Figure A.2 Set 2, (a) low-resolution RGB image. (b) Corresponding Pan image. (c) Fused result using 

Bicubic interpolation. (d) Fused result using ICBI interpolation. (e) Edge information visualized as 

RGB image, where channels R, G and B correspond to edges extracted from images shown in (b), 

(c) and (d) respectively. (f) An area of (e). 
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The results presented in Figure A.1 and Figure A.2 show vegetation color degradation in the fused 

images; this is due to the use of the IHS fusion scheme on Ikonos images [171]. These degradations 

are harmful in applications of vegetation extraction [172], visualization or enhancement [171]. In 

this work, we are more interested to preserve edge information in the pansharpened images 

provided from the Pan images. Hence we compare the same method with two different 

interpolation techniques. The fused results using the bicubic and the ICBI interpolation methods are 

shown in (c) and (d), respectively, for the two images of Figure A.1 and Figure A.2. Figure A.1(e) 

and Figure A.2(e) illustrate the edges of the Pan image (in R), of the fused image using the bicubic 

interpolation (in G) and of the fused image using the ICBI interpolation in (B). 

When a pixel belongs to Pan edges and to edges from both fused images, it is displayed in black 

color. The purple color (circles) shows edge pixels detected in the Pan and ICBI-based fused 

images. The green color (rectangles) illustrates edge pixels detected in the bicubic-based fused 

image only.  

Figure A.1(f) and Figure A.2(f) are 256x256 pixels parts from the whole 1024x1024 pixel images 

in Figure A.1(e) and Figure A.2(e), respectively. We can see that the bicubic-based fused results 

miss some edges which may be important in many applications like road extraction. Moreover 

added edges (or fantom edges) are observed. These false edges can easily distort the results, 

especially when the edges are the only tool to make a decision. 

A.4 Conclusion 

In this section, we have used the IHS fusion method to produce the pansharpened Ikonos images. 

We have considered two interpolation methods, the bicubic method as a standard technique and a 

more sophisticated one that is the ICBI approach. The obtained results clearly show that the ICBI-

based fused images give very good results, both visually and quantitatively. Moreover, the edges 

are totally preserved in the ICBI-based fused images and this is an interesting aspect since it may 

be important, especially when the user does not have the Pan image.  

In future works, one can integrate more interpolation methods in more advanced fusion techniques 

in order to choose the best interpolation method which deals with pansharpening. 
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Résumé : 

Les satellites d'observation de la Terre fournissent des 

données multispectrales et panchromatiques ayant 

différentes résolutions spatiales, spectrales, 

temporelles, et radiométriques. La fusion d'une image 

panchromatique (PAN) ayant une résolution spatiale 

élevée, mais une faible résolution spectrale avec une 

image multispectrales (MS) ayant une faible résolution 

spatiale, mais une haute résolution spectrale est utile 

dans de nombreuses applications de la télédétection qui 

nécessitent à la fois de hautes résolutions spatiale et 

spectrale. L'image fusionnée peut fournir un 

rehaussement, et augmenter la précision de 

classification. Ces techniques de traitement d image 

sont connus sous le nom fusion ou pansharpening. 

Dans cette thèse trois algorithmes sont proposés pour le 

pansharpening. Dans la catégorie de substitution de 

composants, nos principales contributions, consiste à 

utiliser la transformée IHS et l la 

bande verte dans la zone de végétation. Deux 

algorithmes sont proposés. Dans le premier algorithme, 

la végétation est détectée par l NDVI et 

l'amplification est effectuée avant le processus de 

fusion. En revanche, pour le second algorithme 

l mplification se fait après le processus de fusion et la 

végétation est délimitée à l'aide d'un nouvel indice 

(HRNDVI) proposé pour les images haute résolution. 

HRNDVI est utilisé dans l'extraction de la 

végétation, même dans le cas complexe urbain où la 

végétation est dispersée. Le troisième algorithme de 

pansharpening est inclus dans la catégorie 

multirésolution basée sur la transformée NSCT. 

L'amélioration est assurée par 'un nombre 

de niveaux de décomposition pour les images MS 

inférieur à celui de l'image Pan. Cette stratégie permet 

d'obtenir des résultats visuels et quantitatifs 

satisfaisants. 

Mots clés : 
Télédétection satellitaire, fusion, NDVI, NSCT. 

Abstract 

Earth observation satellites provide multispectral and 

panchromatic data having different spatial, spectral, 

temporal, and radiometric resolutions. The fusion of a 

panchromatic (PAN) image having high spatial but 

low spectral resolutions with multispectral (MS) 

images having low spatial but high spectral 

resolutions is a key issue in many remote sensing 

applications that require both high spatial and high 

spectral resolutions. The fused image may provide 

feature enhancement, and classification accuracy 

increase. These image processing techniques are 

known as pan-sharpening or resolution fusion 

techniques.  

In this thesis three algorithms are proposed for 

pansharpening. In component substitution category, 

our main contributions, consists in using IHS and 

boosting the Green band in the vegetated area. Two 

algorithms were proposed. In the first algorithm the 

vegetation is detected by the NDVI and the boosting 

is done before the fusion process. In contrast, for the 

second algorithm the boosting is done after the fusion 

process and the vegetation is delineated using a new 

index (HRNDVI) proposed for high resolution 

images. HRNDVI is used in vegetation extraction 

even in the complex urban case where the vegetation 

is scattered. The third pansharpening algorithm is 

included in the multiresolution category based on 

NSCT transform. The improvement is assured by 

using a low number of decomposition levels for MS 

images and a high number of decomposition levels for 

the Pan image. This strategy allows getting satisfying 

visual and quantitative results. 
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