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Introduction

Several definitions of fractional derivatives and integrals have been defined in the
literature, including those of Riemann–Liouville, Grünwald–Letnikov, Hadamard, Riesz,
Weyl and Caputo [47, 67, 70]. In 1996, Kolwankar and Gangal proposed a local fractional
derivative operator that applies to highly irregular and nowhere differentiable Weierstrass
functions [13, 49]. In our work we introduce the notion of fractional derivative on an
arbitrary time scale T. In the particular case T = R, one gets the local Kolwankar–
Gangal fractional derivative limh→0

f(t+h)−f(t)
hα

, which has been considered in [49, 50] as
the point of departure for fractional calculus. One of the motivations to consider such
local fractional derivatives is the possibility to deal with irregular signals, so common in
applications of signal processing [50].

A time scale is a model of time. The calculus on time scales was initiated by Aulbach
and Hilger in 1988 [12], in order to unify and generalize continuous and discrete analysis
[42, 43]. It has a tremendous potential for applications and has recently received much
attention [4, 25, 26, 35, 38]. The idea to join the two subjects — the fractional calculus
and the calculus on time scales — and to develop a Fractional Calculus on Time Scales,
was born with the PhD thesis of Bastos [17]. See also [8, 11, 18, 19, 20, 48, 69, 76] and
references therein. In this PhD thesis we introduce a general fractional calculus on time
scales and develop some of its basic properties.

Fractional calculus is of increasing importance in signal processing [66]. This can
be explained by several factors, such as the presence of internal noises in the structural
definition of the signals. Our fractional derivative depends on the graininess function of
the time scale. We trust that this possibility can be very useful in applications of signal
processing, providing a concept of coarse-graining in time that can be used to model white
noise that occurs in signal processing or to obtain generalized entropies and new practical
meanings in signal processing. Indeed, let T be a time scale (continuous time T = R,
discrete time T = hZ, h > 0, or, more generally, any closed subset of the real numbers,
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6 INTRODUCTION

like the Cantor set). Our results provide a mathematical framework to deal with functions
(signals) f in signal processing that are not differentiable in the time scale, that is, signals
f for which the equality ∆f(t) = f∆(t)∆t does not hold. More precisely, we are able to
model signal processes for which ∆f(t) = f (α)(t)(∆t)α, 0 < α ≤ 1.

The fractional calculus is now subject of strong current research: see, e.g., [21, 39,
40, 46, 60, 61], that refer to nonsymmetric fractional calculi. In our work we present a
general symmetric fractional calculus on time scales. For the importance to study such a
symmetric calculus we refer the reader to [29, 30, 31].

Mathematical models of some natural phenomena and physical problems have ap-
peared as initial and boundary value problems including fractional order of ordinary and
partial differential equations. See Lokshin and Suvorova in 1982 on modeling of irrevo-
cability of metals [52] and Nakhashev in 1985 on modeling of liquids moving in under-
ground layers encountered with fractional order differential equations [64]. Later, this
kind of differential equations were used in electrochemistry, control, and electromagnetic
field theories [37, 41]. These important applications caused that this kind of differential
equations were studied by many mathematicians in recent years [34, 64, 65].

We have organized this thesis as follows:

In Chapter 1, we present some definitions and theorems which are used throughout
this thesis.

In Chapter 2, we begin by recalling the main concepts and tools necessary in the
sequel. Our results are then given in Section 2.2, where the notion of fractional derivative
for functions defined on arbitrary time scales is introduced and the respective fractional
differential calculus developed. The notion of fractional integral on time scales, and some
of its basic properties, is investigated in Section 2.3.

In Chapter 3, we begin by presenting some basic notions and necessary results. Then,
in Section 3.2, we define and develop the nonsymmetric fractional calculus. In order to do
that, we define the nabla fractional derivative and the nabla fractional integral of order
α ∈]0, 1]. In Section 3.3, we introduce and develop the symmetric fractional calculus.

In Chapter 4, we shall be concerned with the existence and uniqueness of solution
to the following initial value problem:

T
t0
D
α

t
y(t) = f(t, y(t)), t ∈ [t0, t0 + a] = J ⊆ T, 0 < α < 1,

T
t0
I

1−α
t

y(t0) = 0,
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where T
t0
D
α

t
is the (left) Riemann–Liouville fractional derivative operator or order α defined

on T, T
t0
I

1−α
t

the (left) Riemann–Liouville fractional integral operator or order 1−α defined
on T, and function f : J × T → R is a right-dense continuous function. Our results are
based on the Banach fixed point theorem for uniqueness of solution and Schauder’s fixed
point theorem for existence of solution [36].





Chapter 1

Preliminaries

In this chapter, we introduce the calculus on time scales and we also present the main
results on the differentiability and integration on time scales. The reader interested on
the subject is referred to the books [25, 26]. For a good survey see [4].

1.1 The Time Scale Calculus

A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus R, Z, N,
N0, i.e., the real numbers, the integers, the natural numbers, and the nonnegative integers
are examples of time scales, as are [0, 1]

⋃
[2, 3], [0, 1]

⋃
N , and the Cantor set.

Any time scale T is a complete metric space with the metric (distance) d(t; s) = |t−s|
for t, s ∈ T. Consequently, according to the well-known theory of general metric spaces,
we have for T the fundamental concepts such as open balls (intervals), neighborhoods of
points, open sets, closed sets, compact sets, and so on. In particular, for a given number
N > 0, the N -neighborhood Uδ(t) of a given point t ∈ T is the set of all points s ∈ T
such that d(t, s) < N . By a neighborhood of a point t ∈ T it is meant an arbitrary set
in T containing a N -neighborhood of the point t. Also we have for functions f : T → R
the concepts of limit, continuity, and the properties of continuous functions on general
complete metric spaces (note that, in particular, any function f : Z→ R is continuous at
each point of Z). The main task is to introduce and investigate the concept of derivative
for functions f : Z → R. This proves to be possible due to the special structure of the
metric space T. In the definition of the derivative an important role is played by the
so-called forward and backward jump operators [26].

9



10 Preliminaries

Definition 1.1. [25]. Let T be a time scale. For t ∈ T we define the forward jump
operator σ : T→ T by

σ(t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T→ T by

ρ(t) := sup{s ∈ T : s < t}.

Remark 1.2. In Definition 1.1, we put:
inf ∅ = supT (i.e., σ(t) = t) if T has a maximum t,
sup ∅ = inf T (i.e., ρ(t) = t) if T has a minimum t, where ∅ denotes the empty set.

Definition 1.3. [25]. If σ(t) > t, then we say that t is right-scattered; if ρ(t) < t, then t
is said to be left-scattered. Points that are simultaneously right-scattered and left-scattered
are called isolated. If t < supT and σ(t) = t, then t is called right-dense; if t > inf T and
ρ(t) = t, then t is called left-dense.

Definition 1.4. [25]. The graininess function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t.

Definition 1.5. [25]. The backward graininess function ν : T→ [0,∞) is defined by

ν(t) := t− ρ(t).

Definition 1.6. [25]. Let T be a time scale.

(i) If T has a left-scattered maximum M , then Tk = T− {M}, otherwise Tk = T.

(ii) If T has a right-scattered minimum m, then Tk = T− {m}, otherwise Tk = T.

Definition 1.7. [25]. Let f : T→ R. We define fσ : T→ R and fρ : T→ R respectively
by

fσ(t) := (f ◦ σ) (t) = f(σ(t)), for all t ∈ T

and
fρ(t) := (f ◦ ρ) (t) = f(ρ(t)), for all t ∈ T.

1.2 Differentiation on Time Scales

Several differentiation notions are possible.
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1.2.1 Delta Differentiation

Definition 1.8. [3]. We say that a function f : T → R is delta differentiable at t ∈ Tκ

if there exists a number f∆ (t) such that, for all ε > 0, there exists a neighborhood U of t
such that ∣∣fσ (t)− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s|

for all s ∈ U . We call f∆ (t) the delta derivative of f at t and we say that f is delta
differentiable if f is delta differentiable for all t ∈ Tκ.

Theorem 1.9. [3]. Assume f : T→ R is a function and let t ∈ Tk.

(i) If f is ∆-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is ∆-differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ (t)
.

(iii) If t is right-dense, then f is ∆-differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
exists as a finite. In this case,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is ∆-differentiable at t, then

fσ(t) = f(t) + µ(t)f∆(t).

Example 1.10. . Again we consider the two cases T = R and T = Z

(i) If T = R, then Theorem 1.9 (iii) yields that f : R→ R is delta differentiable at t ∈ R
if and only if

f ′(t) = lim
s→t

f(t)− f(s)

t− s
exists

i.e., if and only if f is differentiable (in the ordinary sense) at t. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t)

by Theorem 1.9 (iii).
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(ii) If T = Z, then Theorem 1.9 (ii) yields that f : Z→ R is delta differentiable at t ∈ Z
if and only if

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(t+ 1)− f(t)

1
= ∆f(t),

where ∆ is the usual forward difference operator defined by the last equality above.

(iii) If T = hZ = {hk : k ∈ Z}, and h > 0, then Theorem 1.9 (ii) yields that f : hZ→ R
is delta differentiable at t ∈ hZ if and only if

f∆(t) =
f(t+ h)− f(t)

h
.

(iv) If T = qZ with qZ := qZ
⋃
{0} and qZ := {qk : k ∈ Z}, then 0 is a right-dense

minimum and every other point in T is isolated. For a function f : qZ → R, we
have

f∆(t) =
f(qt)− f(t)

(q − 1)t
for all t ∈ T\{0}

and
f∆(0) = lim

s→0

f(0)− f(s)

0− s
= lim

s→0

f(s)− f(0)

s
,

provided the limits exist.

Theorem 1.11. [3]. Assume f, g : T→ R are ∆-differentiable at t ∈ Tκ. Then,

(i) The sum f + g is ∆-differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant α ∈ R, αf is ∆-differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg is ∆-differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t)

= f(t)g∆(t) + f∆(t)gσ(t).

(iv) If f(t)fσ(t) 6= 0, then
1

f
is ∆-differentiable at t with

(
1

f

)∆

(t) = − f∆(t)

fσ(t)f(t)
. (1.1)
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(v) If g(t)gσ(t) 6= 0, then
f

g
is ∆-differentiable at t with(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

gσ(t)g(t)
. (1.2)

Remark 1.12. Delta derivatives of higher-order are defined in the usual way. Let r ∈ N,
Tκ0 := T, and Tκi :=

(
Tκi−1

)κ
, i = 1, . . . , r. For convenience we also put f∆0

= f and

f∆1
= f∆. The rth-delta derivative f∆r is given by f∆r

=
(
f∆r−1

)∆

: Tκr → R provided

f∆r−1 is delta differentiable.

Theorem 1.13 (Chain Rule [3]). Assume g : R → R is continuous, g : T → R is delta
differentiable on Tκ, and f : R→ R is continuously differentiable. Then there exists c in
the real interval [t, σ(t)] with

(f ◦ g)∆(t) = f ′(g(c))g∆(t).

1.2.2 Nabla Differentiation

Definition 1.14. [3]. We say that a function f : T→ R is nabla differentiable at t ∈ Tκ
if there exists a real number f∇ (t) such that, for all ε > 0, there exists a neighborhood V
of t such that ∣∣fρ (t)− f (s)− f∇ (t) (ρ (t)− s)

∣∣ ≤ ε |ρ (t)− s|

for all s ∈ V . We call f∇ (t) the nabla derivative of f at t and we say that f is nabla
differentiable if f is nabla differentiable for all t ∈ Tκ.

Theorem 1.15. [3]. Assume f : T→ R is a function and let t ∈ Tκ. Then we have:

(i) If f is nabla differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is left-scattered, then f is nabla differentiable at t with

f∇(t) =
f(t)− f(ρ(t))

ν (t)
.

(iii) If t is left-dense, then f is nabla differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
exists as a finite number. In this case,

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.
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(iv) If f is nabla differentiable at t, then

fρ(t) = f(t)− ν(t)(t)f∇(t).

Example 1.16. If T = R, then

f∇(t) = f ′(t).

If T = Z, then

f∇(t) = f(t)− f(t− 1) =: ∇f(t).

Theorem 1.17. [3]. Assume f, g : T→ R are nabla differentiable at t ∈ Tκ. Then,

(i) The sum f + g is nabla differentiable at t with

(f + g)∇(t) = f∇(t) + g∇(t).

(ii) For any constant α ∈ R, αf is nabla differentiable at t with

(αf)∇(t) = αf∇(t).

(iii) The product fg is nabla differentiable at t with

(fg)∇(t) = f∇(t)g(t) + fρ(t)g∇(t)

= f(t)g∇(t) + f∇(t)gρ(t).

(iv) If f(t)fρ(t) 6= 0, then
1

f
is nabla differentiable at t with

(
1

f

)∇
(t) = −f

∇(t)

fρ
(t)f(t). (1.3)

(v) If g(t)gρ(t) 6= 0, then
f

g
is nabla differentiable at t with

(
f

g

)∇
(t) =

f∇(t)g(t)− f(t)g∇(t)

gρ(t)g(t)
.
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1.2.3 Symmetric Differentiation

A third derivative, the symmetric derivative on time scales, can be seen, under certain
assumptions, as a generalization of both the nabla and delta derivatives. Symmetric
properties of functions are very useful in a large number of problems. Particularly in
the theory of trigonometric series, applications of such properties are well known [9].
Differentiability is one of the most important properties in the theory of functions of real
variables. However, even simple functions such as

f(t) = |t|, g(t) =

t sin 1
t

if t 6= 0,

0 if t = 0,
h(t) =

1

t2
, t 6= 0, (1.4)

do not have (classical) derivative at t = 0. Authors like Riemann, Schwarz, Peano, Dini,
and de la Vallée-Poussin, extended the classical derivative in different ways, depending
on the purpose [9]. One of those notions is the symmetric derivative:

f s(t) = lim
h→0

f(t+ h)− f(t− h)

2h
. (1.5)

While the functions in (1.4) do not have ordinary derivatives at t = 0, they have symmetric
derivatives: f s(0) = gs(0) = hs(0) = 0. For a deeper understanding of the symmetric
derivative and its properties, we refer the reader to the specialized monograph [74] and
[27, 28, 32]. Here we note that the symmetric quotient f(t+h)−f(t−h)

2h
has, in general, better

convergence properties than the ordinary difference quotient [45], leading naturally to
the so-called h-symmetric quantum calculus [45]. In quantum calculus, the h-symmetric
difference and the q-symmetric difference, h > 0 and 0 < q < 1, are defined by

D̃h =
f(t+ h)− f(t− h)

2h
(1.6)

and
D̃q =

f(qt)− f(q−1t

(q − q−1)t
, t 6= 0, (1.7)

respectively [45].

Definition 1.18 (See [28]). We say that a function f : T → R is symmetric continuous
at t ∈ T if, for any ε > 0, there exists a neighborhood Ut ⊂ T of t such that, for all s ∈ Ut
for which 2t− s ∈ Ut, one has |f (s)− f (2t− s)| ≤ ε.

Note that continuity implies symmetric continuity but the reciprocal is not true [28].
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Definition 1.19 (See [28]). Let f : T → R and t ∈ Tκκ. The symmetric derivative of f
at t, denoted by f♦ (t), is the real number, provided it exists, with the property that, for
any ε > 0, there exists a neighborhood U ⊂ T of t such that∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦ (t) [σ (t) + 2t− 2s− ρ (t)]

∣∣
≤ ε |σ (t) + 2t− 2s− ρ (t)|

for all s ∈ U for which 2t − s ∈ U . A function f is said to be symmetric differentiable
provided f♦ (t) exists for all t ∈ Tκκ.

Some useful properties of the symmetric derivative are given in Theorem 1.20

Theorem 1.20. [28]. Assume f : T → R is a function and let t ∈ Tκκ. The following
holds:

(i) Function f has at most one symmetric derivative at t.

(ii) If f is symmetric differentiable at t, then f is symmetric continuous at t.

(iii) If f is continuous at t and t is not dense, then f is symmetric differentiable at t
with

f♦(t) =
f(σ(t))− f(ρ(t))

σ(t)− ρ(t)
.

(iv) If t is dense, then f is symmetric differentiable at t if and only if the limit

lim
s→t

f(2t− s)− f(s)

2t− 2s

exists (finite). In this case,

f♦(t) = lim
s→t

f(2t− s)− f(s)

2t− 2s

= lim
h→0

f(t+ h)− f(t− h)

2h
.

(v) If f is symmetric differentiable and continuous at t, then

fσ(t) = fρ(t) + f♦(t)[σ(t)− ρ(t)].

Example 1.21. If T = R, then the symmetric derivative coincides with the classic sym-
metric derivative (1.5): f♦ = f s. If T = hZ, h > 0, then the symmetric derivative is the
symmetric difference operator (1.6): f♦ = D̃h. If T = qZ, 0 < q < 1, then the symmetric
derivative coincides with the q-symmetric difference operator (1.6): f♦ = D̃q.
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Remark 1.22. Independently of the time scale T, the symmetric derivative of a constant
is zero and the symmetric derivative of the identity function is one.

Remark 1.23. An alternative way to define the symmetric derivative of f at t ∈ Tκκ
consists in saying that the limit

f♦(t) = lim
s→t

f(σ(t)− f(s) + f(2t− s)− fρ(t)
σ(t) + 2t− 2s− ρ(t)

= lim
h→0

fσ(t)− f(t+ h) + f(t− h)− fρ(t)
σ(t)− 2h− ρ(t)

exists.

Theorem 1.24. [28]. Let f, g : T→ R be two symmetric differentiable functions at t ∈ Tκκ
and λ ∈ R. The following holds:

(i) Function f + g is symmetric differentiable at t with

(f + g)♦(t) = f♦(t) + g♦(t).

(ii) Function λf is symmetric differentiable at t with

(λf)♦(t) = λf♦(t).

(iii) If f and g are continuous at t, then fg is symmetric differentiable at t with

(fg)♦(t) = f♦(t)gσ(t) + fρ(t)g♦(t).

(iv) If f is continuous at t and fσ(t)fρ(t) 6= 0, then
1

f
is symmetric differentiable at t

with (
1

f

)♦
(t) = − f♦(t)

fσ(t)fρ(t)
. (1.8)

(v) If f and g are continuous at t and gσ(t)gρ(t) 6= 0, then
f

g
is symmetric differentiable

at t with (
f

g

)♦
(t) =

f♦(t)gρ(t)− fρ(t)g♦(t)

gσ(t)gρ(t)
. (1.9)

Proposition 1.25. If f is delta and nabla differentiable, then f is symmetric differen-
tiable and, for each t ∈ Tκκ, f♦(t) = γ(t)f∆(t) + (1− γ(t))f5(t), where

γ(t) = lim
s→t

σ(t)− s
σ(t) + 2t− 2s− ρ(t)

. (1.10)

Remark 1.26. If f is delta and nabla differentiable and if function γ(·) in (1.10) is a
constant, γ(t) ≡ α, then the symmetric derivative coincides with the diamond-α derivative:
f♦(t) = αf∆(t) + (1− α)f5(t).
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1.3 Integration on Time Scales

Similarly to differentiation, it is also possible to define different notions of integration on
a time scale T.

1.3.1 Delta Integration

Definition 1.27. [3]. A function f : T → R is called regulated provided its right-sided
limit exist (finite) at all right-dense points in T and its left-sided limits exist (finite) at
all left-dense points in T.

Definition 1.28. [3]. A function f : T→ R is called rd-continuous provided it is contin-
uous at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions f : T→ R is denoted by Crd.

Definition 1.29. [3]. A continuous function f : T → R is called pre-differentiable with
(region of differentiation D), provided D ⊂ Tκ, D is countable and contains no right-
scattered elements of T, and f is differentiable at each t ∈ D.

Theorem 1.30 (Existence of Pre-Antiderivatives [3]). Let f be regulated. Then there
exists a function F which is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Definition 1.31. [3]. Assume f : T → R is a regulated function. Any function F as
in Theorem 1.30 is called a pre-antiderivative of f . We define the indefinite integral of a
regulated function f by ∫

f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy
integral by ∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f(t) holds for all t ∈ Tκ.
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Theorem 1.32 (Existence of Antiderivatives [3]). Every rd-continuous function has an
antiderivative. In particular, if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T

is an antiderivative of f .

Example 1.33. If T = Z and a 6= 1 is a constant, then∫
at∆t =

at

a− 1
+ C,

where C is an arbitrary constant. Note that(
at

a− 1

)∆

= ∆

(
at

a− 1

)
= at.

Let a, b ∈ T, a < b. In what follows we denote [a, b]T := {t ∈ T : a ≤ t ≤ b}.

Theorem 1.34. [3]. Let a, b, c ∈ T, λ ∈ R, and f, g be two rd-continuous functions.
Then,

(i)
∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t+

∫ b

a

g(t)∆t;

(ii)
∫ b

a

(λf)(t)∆t = λ

∫ b

a

f(t)∆t;

(iii)
∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t;

(iv)
∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t;

(v)
∫ a

a

f(t)∆t = 0;

(vi) if there exist g : T→ R such that |f(t)| ≤ g(t) for all t ∈ [a, b], then∣∣∣∣∫ b

a

f(t)∆t

∣∣∣∣ ≤ ∫ b

a

g(t)∆t;

(vii) if f(t) > 0 for all t ∈ [a, b], then
∫ b

a

f(t)∆t ≥ 0.
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Example 1.35. Let a, b ∈ T, a < b, and f ∈ Crd.

(i) If T = R, then
∫ b

a

f(t)∆t =

∫ b

a

f(t)dt, where the last integral is the usual Riemman

integral.

(ii) If T = hZ for some h > 0, then

∫ b

a

f(t)∆t =

b
h
−1∑

k= a
h

hf(kh).

1.3.2 Nabla Integration

Definition 1.36. Let T be a time scale, f : T → R. We say that function f is ld-
continuous if it is continuous at left-dense points in T and its right-sided limits exist
(finite) at all right-dense points in T. The set of ld-continuous functions f : T → R is
denoted by Cld.

Theorem 1.37 (See [25, 26]). Every ld-continuous function f : T → R has a nabla
antiderivative. In particular, if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f (τ)∇τ for t ∈ T

is a nabla antiderivative of f .

Theorem 1.38. Let a, b, c ∈ T, λ ∈ R, and f, g be two ld-continuous functions. Then,

(i)
∫ b

a

[f(t) + g(t)]∇t =

∫ b

a

f(t)∇t+

∫ b

a

g(t)∇t;

(ii)
∫ b

a

(λf)(t)∇t = λ

∫ b

a

f(t)∇t;

(iii)
∫ b

a

f(t)∇t = −
∫ a

b

f(t)∇t;

(iv)
∫ b

a

f(t)∇t =

∫ c

a

f(t)∇t+

∫ b

c

f(t)∇t;

(v)
∫ a

a

f(t)∇t = 0;

(vi) if f(t) > 0 for all t ∈ [a, b], then
∫ b

a

f(t)∇t ≥ 0.
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Example 1.39. Let a, b ∈ T, a < b, and f ∈ Cld.

(i) If T = R, then
∫ b

a

f(t)∇t =

∫ b

a

f(t)dt, where the last integral is the usual Riemman

integral.

(ii) If T = hZ for some h > 0, then

∫ b

a

f(t)∇t =

b
h∑

k= a
h

+1

hf(kh).

For more on nabla and delta integrals and their generalizations, we refer the reader to
[25, 55, 62].





Chapter 2

Fractional Calculus on Arbitrary Time
Scales

The original results of this chapter are published in [21].

2.1 Introduction

In this chapter, we introduce a general notion of fractional (noninteger) derivative for
functions defined on arbitrary time scales. The basic tools for the time-scale fractional
calculus (fractional differentiation and fractional integration) are then developed. As
particular cases, one obtains the usual time-scale Hilger derivative when the order of
differentiation is one, and a local approach to fractional calculus when the time scale is
chosen to be the set of real numbers.

Fractional calculus refers to differentiation and integration of an arbitrary (noninteger)
order. The theory goes back to mathematicians as Leibniz (1646–1716), Liouville (1809–
1882), Riemann (1826–1866), Letnikov (1837–1888), and Grünwald (1838–1920) [47, 70].
During the last two decades, fractional calculus has increasingly attracted the attention
of researchers of many different fields [1, 14, 15, 53, 56, 59, 66, 77].

The time-scale calculus can be used to unify discrete and continuous approaches to
signal processing in one unique setting. Interesting in applications, is the possibility to
deal with more complex time domains. One extreme case, covered by the theory of time
scales and surprisingly relevant also for the process of signals, appears when one fix the
time scale to be the Cantor set [16, 78]. The application of the local fractional derivative

23
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in a time scale different from the classical time scales T = R and T = hZ was proposed
by Kolwankar and Gangal themselves: see [50, 51] where nondifferentiable signals defined
on the Cantor set are considered.
Our objective in this chapter is to develop the basic tools of any fractional calculus:
fractional differentiation (Section 2.2) and fractional integration (Section 2.3).

2.2 Fractional Differentiation

In this section, we begin by introducing a new notion: the fractional derivative of order
α ∈]0, 1] for functions defined on arbitrary time scales. For α = 1 we obtain the usual
delta derivative of the time-scale calculus.

Definition 2.1. Let f : T→ R, t ∈ Tκ, and α ∈]0, 1]. For α ∈]0, 1]∩{1/q : q is a odd number}
(resp. α ∈]0, 1] \ {1/q : q is a odd number}) we define f (α)(t) to be the number (provided
it exists) with the property that, given any ε > 0, there is a δ-neighborhood U ⊂ T of t
(resp. left δ-neighborhood U− ⊂ T of t), δ > 0, such that∣∣[f(σ(t))− f(s)]− f (α)(t) [σ(t)− s]α

∣∣ ≤ ε |σ(t)− s|α

for all s ∈ U (resp. s ∈ U−). We call f (α)(t) the fractional derivative of f of order α at t.

In this section we develop the basic tools of fractional differentiation. Along the text α
is a real number in the interval ]0, 1]. The next theorem provides some useful relationships
concerning the fractional derivative on time scales introduced in Definition 2.1.

Theorem 2.2. Assume f : T→ R and let t ∈ Tκ. The following properties hold:

(i) Let α ∈]0, 1] ∩
{

1
q

: q is a odd number
}
. If t is right-dense and if f is fractional

differentiable of order α at t, then f is continuous at t.

(ii) Let α ∈]0, 1] \
{

1
q

: q is a odd number
}
. If t is right-dense and if f is fractional

differentiable of order α at t, then f is left-continuous at t.

(iii) If f is continuous at t and t is right-scattered, then f is fractional differentiable of
order α at t with

f (α)(t) =
fσ(t)− f(t)

(µ(t))α
.
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(iv) Let α ∈]0, 1] ∩
{

1
q

: q is a odd number
}
. If t is right-dense, then f is fractional

differentiable of order α at t if, and only if, the limit

lim
s→t

f(t)− f(s)

(t− s)α

exists as a finite number. In this case,

f (α)(t) = lim
s→t

f(t)− f(s)

(t− s)α
.

(v) Let α ∈]0, 1] \
{

1
q

: q is a odd number
}
. If t is right-dense, then f is fractional dif-

ferentiable of order α at t if, and only if, the limit

lim
s→t−

f(t)− f(s)

(t− s)α

exists as a finite number. In this case,

f (α)(t) = lim
s→t−

f(t)− f(s)

(t− s)α
.

(vi) If f is fractional differentiable of order α at t, then f(σ(t)) = f(t) + (µ(t))αf (α)(t).

Proof. (i) Assume that f is fractional differentiable at t. Then, there exists a neighbor-
hood U of t such that∣∣[f(σ(t))− f(s)]− f (α)(t) [σ(t)− s]α

∣∣ ≤ ε |σ(t)− s|α

for s ∈ U . Therefore, for all s ∈ U ∩ ]t− ε, t+ ε[,

|f (t)− f (s)| ≤
∣∣[fσ(t)− f(s)]− f (α)(t) [σ(t)− s]α

∣∣
+
∣∣[fσ(t)− f(t)]− f (α)(t) [σ(t)− t]α

∣∣+
∣∣f (α)(t)

∣∣ |[σ(t)− s]α − [σ(t)− t]α|

and, since t is a right-dense point,

|f (t)− f (s)| ≤
∣∣[fσ(t)− f(s)]− f (α)(t) [σ(t)− s]α

∣∣+
∣∣f (α)(t) [t− s]α

∣∣
≤ ε |t− s|α +

∣∣f (α)(t)
∣∣ |t− s|α

≤ εα
[
ε+

∣∣f (α)(t)
∣∣] .

It follows the continuity of f at t.
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(ii) The proof is similar to the proof of (i), where instead of considering the neighbor-
hood U of t we consider a left neighborhood U− of t.

(iii) Assume that f is continuous at t and t is right-scattered. By continuity,

lim
s→t

fσ(t)− f(s)

(σ(t)− s)α
=
fσ(t)− f(t)

(σ(t)− t)α
=
fσ(t)− f(t)

(µ(t))α
.

Hence, given ε > 0 and α ∈]0, 1] ∩ {1/q : q is a odd number}, there is a neighborhood U
of t (or U− if α ∈]0, 1] \ {1/q : q is a odd number}) such that∣∣∣∣fσ(t)− f(s)

(σ(t)− s)α
− fσ(t)− f(t)

(µ(t))α

∣∣∣∣ ≤ ε

for all s ∈ U (resp. U−). It follows that∣∣∣∣[fσ(t)− f(s)]− fσ(t)− f(t)

(µ(t))α
(σ(t)− s)α

∣∣∣∣ ≤ ε|σ(t)− s|α

for all s ∈ U (resp. U−). Hence, we get the desired result:

f (α)(t) =
fσ(t)− f(t)

(µ(t))α
.

(iv) Assume that f is fractional differentiable of order α at t and t is right-dense. Let
ε > 0 be given. Since f is fractional differentiable of order α at t, there is a neighborhood
U of t such that ∣∣[fσ(t)− f(s)]− f (α)(t)(σ(t)− s)α

∣∣ ≤ ε|σ(t)− s|α

for all s ∈ U . Since σ(t) = t,∣∣[f(t)− f(s)]− f (α)(t)(t− s)α
∣∣ ≤ ε|t− s|α

for all s ∈ U . It follows that ∣∣∣∣f(t)− f(s)

(t− s)α
− f (α)(t)

∣∣∣∣ ≤ ε

for all s ∈ U , s 6= t. Therefore, we get the desired result:

f (α)(t) = lim
s→t

f(t)− f(s)

(t− s)α
.

Now assume that
lim
s→t

f(t)− f(s)

(t− s)α
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exists and is equal to L and t is right-dense. Then, there exists U such that∣∣∣∣f(t)− f(s)

(t− s)α
− L

∣∣∣∣ ≤ ε

for all s ∈ U . Because t is right-dense,∣∣∣∣fσ(t)− f(s)

(σ (t)− s)α
− L

∣∣∣∣ ≤ ε.

Therefore,
|[fσ(t)− f(s)]− L (σ(t)− s)α| ≤ ε|σ (t)− s|α,

which lead us to the conclusion that f is fractional differentiable of order α at t and
f (α)(t) = L.

(v) The proof is similar to the proof of (iv), where instead of considering the neigh-
borhood U of t we consider a left-neighborhood U− of t.

(vi) If σ(t) = t, then µ(t) = 0 and

fσ(t)) = f(t) = f(t) + (µ(t))αf (α)(t).

On the other hand, if σ(t) > t, then by (iii)

fσ(t) = f(t) + (µ(t))α · f
σ(t)− f(t)

(µ(t))α
= f(t) + (µ(t))αf (α)(t).

The proof is complete.

Remark 2.3. In a time scale T, due to the inherited topology of the real numbers, a
function f is always continuous at any isolated point t.

Proposition 2.4. If f : T → R is defined by f(t) = c for all t ∈ T, c ∈ R, then
f (α)(t) ≡ 0.

Proof. If t is right-scattered, then, by Theorem 2.2 (iii), one has

f (α)(t) =
f(σ(t))− f(t)

(µ(t))α
=

c− c
(µ(t))α

= 0.

Assume t is right-dense. Then, by Theorem 2.2 (iv) and (v), it follows that

f (α)(t) = lim
s→t

c− c
(t− s)α

= 0.

This concludes the proof.
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Proposition 2.5. If f : T→ R is defined by f(t) = t for all t ∈ T, then

f (α)(t) =

(µ(t))1−α if α 6= 1,

1 if α = 1.

Proof. From Theorem 2.2 (vi) it follows that σ(t) = t + (µ(t))αf (α)(t), that is, µ(t) =

(µ(t))αf (α)(t). If µ(t) 6= 0, then f (α)(t) = (µ(t))1−α and the desired relation is proved.
Assume now that µ(t) = 0, that is, σ(t) = t. In this case t is right-dense and by
Theorem 2.2 (iv) and (v) it follows that

f (α)(t) = lim
s→t

t− s
(t− s)α

.

Therefore, if α = 1, then f (α)(t) = 1; if 0 < α < 1, then f (α)(t) = 0. The proof is
complete.

Let us consider now the two classical cases T = R and T = hZ, h > 0.

Corollary 2.6. Function f : R→ R is fractional differentiable of order α at point t ∈ R
if, and only if, the limit

lim
s→t

f(t)− f(s)

(t− s)α

exists as a finite number. In this case,

f (α)(t) = lim
s→t

f(t)− f(s)

(t− s)α
. (2.1)

Proof. Here T = R and all points are right-dense. The result follows from Theorem 2.2
(iv) and (v). Note that if α ∈]0, 1] \

{
1
q

: q is a odd number
}
, then the limit only makes

sense as a left-side limit.

Remark 2.7. Definition 2.1 corresponds to the well-known Kolwankar–Gangal approach
to fractional calculus [49, 75].

Corollary 2.8. Let h > 0. If f : hZ → R, then f is fractional differentiable of order α
at t ∈ hZ with

f (α)(t) =
f(t+ h)− f(t)

hα
.

Proof. Here T = hZ and all points are right-scattered. The result follows from Theo-
rem 2.2 (iii).
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We now give an example using a more sophisticated time scale: the Cantor set.

Example 2.9. Let T be the Cantor set. It is known (see Example 1.47 of [25]) that T
does not contain any isolated point, and that

σ(t) =

t+ 1
3m+1 if t ∈ L,

t if t ∈ T \ L,

where

L =

{
m∑
k=1

ak
3k

+
1

3m+1
: m ∈ N and ak ∈ {0, 2} for all 1 ≤ k ≤ m

}
.

Thus,

µ(t) =

 1
3m+1 if t ∈ L,

0 if t ∈ T \ L.

Let f : T→ R be continuous and α ∈]0, 1]. It follows from Theorem 2.2 that the fractional
derivative of order α of a function f defined on the Cantor set is given by

f (α)(t) =


[
f
(
t+ 1

3m+1

)
− f(t)

]
3(m+1)α if t ∈ L,

lim
s t

f(t)− f(s)

(t− s)α
if t ∈ T \ L,

where lims t = lims→t if α = 1
q
with q an odd number, and lims t = lims→t− otherwise.

For the fractional derivative on time scales to be useful, we would like to know formulas
for the derivatives of sums, products and quotients of fractional differentiable functions.
This is done according to the following theorem.

Theorem 2.10. Assume f, g : T → R are fractional differentiable of order α at t ∈ Tκ.
Then,

(i) the sum f + g : T → R is fractional differentiable at t with (f + g)(α)(t) = f (α)(t) +

g(α)(t);

(ii) for any constant λ, λf : T → R is fractional differentiable at t with (λf)(α)(t) =

λf (α)(t);

(iii) if f and g are continuous, then the product fg : T → R is fractional differentiable
at t with

(fg)(α)(t) = f (α)(t)g(t) + f(σ(t))g(α)(t)

= f (α)(t)g(σ(t)) + f(t)g(α)(t);
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(iv) if f is continuous and f(t)f(σ(t)) 6= 0, then 1
f
is fractional differentiable at t with(

1

f

)(α)

(t) = − f (α)(t)

f(t)f(σ(t))
;

(v) if f and g are continuous and g(t)g(σ(t)) 6= 0, then f
g
is fractional differentiable at t

with (
f

g

)(α)

(t) =
f (α)(t)g(t)− f(t)g(α)(t)

g(t)g(σ(t))
.

Proof. Let us consider that α ∈]0, 1] ∩
{

1
q

: q is a odd number
}
. The proofs for the case

α ∈]0, 1] \
{

1
q

: q is a odd number
}

are similar: one just needs to choose the proper left-
sided neighborhoods. Assume that f and g are fractional differentiable at t ∈ Tκ. (i) Let
ε > 0. Then there exist neighborhoods U1 and U2 of t for which∣∣f(σ(t))− f(s)− f (α)(t)[σ(t)− s]α

∣∣ ≤ ε

2
|σ(t)− s|α for all s ∈ U1

and ∣∣g(σ(t))− g(s)− g(α)(t)[σ(t)− s]α
∣∣ ≤ ε

2
|σ(t)− s|α for all s ∈ U2.

Let U = U1 ∩ U2. Then∣∣∣∣(f + g)(σ(t))− (f + g)(s)−
[
f (α)(t) + g(α)(t)

]
(σ(t)− s)α

∣∣∣∣
=
∣∣f(σ(t))− f(s)− f (α)(t)[σ(t)− s]α + g(σ(t))− g(s)− g(α)(t)[σ(t)− s]α

∣∣
≤
∣∣f(σ(t))− f(s)− f (α)(t)[σ(t)− s]α

∣∣+
∣∣g(σ(t))− g(s)− g(α)(t)[σ(t)− s]α

∣∣
≤ ε

2
|σ(t)− s|α +

ε

2
|σ(t)− s|α = ε|σ(t)− s|α

for all s ∈ U . Therefore, f + g is fractional differentiable at t and

(f + g)(α)(t) = fα(t) + g(α)(t).

(ii) Let ε > 0. Then there exists a neighborhood U of t with∣∣f(σ(t))− f(s)− f (α)(t)[σ(t)− s]α
∣∣ ≤ ε|σ(t)− s|α for all s ∈ U .

It follows that∣∣(λf)(σ(t))− (λf)(s)− λf (α)(t)[σ(t)− s]α
∣∣ ≤ ε|λ| |σ(t)− s|α for all s ∈ U .
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Therefore, λf is fractional differentiable at t and (λf)α = λf (α) holds at t.
(iii) If t is right-dense, then

(fg)(α)(t) = lim
s→t

(fg) (t)− (fg) (s)

(t− s)α

= lim
s→t

f(t)− f(s)

(t− s)α
g (t) + lim

s→t

g(t)− g(s)

(t− s)α
f (s)

= f (α)(t)g(t) + g(α)(t)f(t)

= f (α)(t)g(t) + f(σ(t))g(α)(t).

If t is right-scattered, then

(fg)(α) (t) =
(fg)σ (t)− (fg) (t)

(µ(t))α

=
fσ(t)− f(t)

(µ(t))α
g (t) +

gσ(t)− g(t)

(µ(t))α
fσ(t)

= f (α)(t)g(t) + f(σ(t))g(α)(t).

The other product rule formula follows by interchanging in (fg)(α) (t) = f (α)(t)g(t) +

f(σ(t))g(α)(t) the functions f and g. (iv) We use the fractional derivative of a constant
(Proposition 2.4) and Theorem 2.10 (iii) just proved: from Proposition 2.4 we know that(

f · 1

f

)(α)

(t) = (1)(α)(t) = 0

and, therefore, by (iii) (
1

f

)(α)

(t)f(σ(t)) + f (α)(t)
1

f(t)
= 0.

Since we are assuming f(σ(t)) 6= 0,(
1

f

)(α)

(t) = − f (α)(t)

f(t)f(σ(t))
.

For the quotient formula (v), we use (ii) and (iv) to calculate(
f

g

)(α)

(t) =

(
f · 1

g

)(α)

(t)

= f(t)

(
1

g

)(α)

(t) + f (α)(t)
1

g(σ(t))

= −f(t)
g(α)(t)

g(t)g(σ(t))
+ f (α)(t)

1

g(σ(t))

=
f (α)(t)g(t)− f(t)g(α)(t)

g(t)g(σ(t))
.
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This concludes the proof.

The following theorem is proved in [25] for α = 1. Here we show its validity for
α ∈ ]0, 1[.

Theorem 2.11. Let c be a constant, m ∈ N, and α ∈ ]0, 1[.

(i) If f(t) = (t− c)m, then

f (α)(t) = (µ(t))1−α
m−1∑
ν=0

(σ(t)− c)ν (t− c)m−1−ν .

(ii) If g(t) = 1
(t−c)m , then

g(α)(t) = −(µ(t))1−α
m−1∑
ν=0

1

(σ(t)− c)m−ν(t− c)ν+1
,

provided (t− c) (σ(t)− c) 6= 0.

Proof. We prove the first formula by induction. If m = 1, then f(t) = t− c and

f (α)(t) = (µ(t))1−α

holds from Propositions 2.4 and 2.5 and Theorem 2.10 (i). Now assume that

f (α)(t) = (µ(t))1−α
m−1∑
ν=0

(σ(t)− c)ν(t− c)m−1−ν

holds for f(t) = (t− c)m and let F (t) = (t− c)m+1 = (t− c)f(t). We use the product rule
(Theorem 2.10 (iii)) to obtain

F (α)(t) = (t− c)(α)f(σ(t)) + f (α)(t)(t− c) = (µ(t))1−αf(σ(t)) + f (α)(t)(t− c)

= (µ(t))1−α(σ(t)− c)m + (µ(t))1−α(t)(t− c)
m−1∑
ν=0

(σ(t)− c)ν(t− c)m−1−ν

= (µ(t))1−α

[
(σ(t)− c)m +

m−1∑
ν=0

(σ(t)− c)ν(t− c)m−ν
]

= (µ(t))1−α
m∑
ν=0

(σ(t)− c)ν(t− c)m−ν .
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Hence, by mathematical induction, part (i) holds. For g(t) = 1
(t−c)m = 1

f(t)
, we apply

Theorem 2.10 (iv) to obtain

g(α)(t) = − f (α)(t)

f(t)f(σ(t))
= −(µ(t))1−α

∑m−1
ν=0 (σ(t)− c)ν(t− c)m−1−ν

(t− c)m(σ(t)− c)m

= −(µ(t))1−α
m−1∑
ν=0

1

(t− c)ν+1(σ(t)− c)m−ν
,

provided (t− c) (σ(t)− c) 6= 0.

Let us illustrate Theorem 2.11 in special cases.

Example 2.12. Let α ∈ ]0, 1[.

(i) If f(t) = t2, then f (α)(t) = (µ(t))1−α[σ(t) + t].

(ii) If f(t) = t3, then f (α)(t) = (µ(t))1−α[t2 + tσ(t) + (σ(t))2].

(iii) If f(t) = 1
t
, then f (α)(t) = − (µ(t))1−α

tσ(t)
.

From the results already obtained, it is not difficult to see that the fractional derivative
does not satisfy a chain rule like (f ◦ g)(α)(t) = f (α)(g(t))g(α)(t):

Example 2.13. Let α ∈ ]0, 1[. Consider f(t) = t2 and g(t) = 2t. Then,

(f ◦ g)(α)(t) =
(
4t2
)(α)

= 4(µ(t))1−α (σ(t) + t) (2.2)

while
f (α)(g(t))g(α)(t) = (µ(2t))1−α (σ(2t) + 2t) 2(µ(t))1−α (2.3)

and, for example for T = Z, it is easy to see that (f ◦ g)(α)(t) 6= f (α)(g(t))g(α)(t).

Note that when α = 1 and T = R our derivative f (α) reduces to the standard derivative
f ′ and, in this case, both expressions (2.2) and (2.3) give 8t, as expected. In the fractional
case α ∈]0, 1[ we are able to prove the following result, valid for an arbitrary time scale
T.

Theorem 2.14 (Chain rule). Let α ∈ ]0, 1[. Assume g : R → R is continuous, g :

T → R is fractional differentiable of order α at t ∈ Tκ, and f : R → R is continuously
differentiable. Then there exists c in the real interval [t, σ(t)] with

(f ◦ g)(α)(t) = f ′(g(c))g(α)(t). (2.4)



34 Fractional Calculus on Arbitrary Time Scales

Proof. Let t ∈ Tκ. First we consider t to be right-scattered. In this case

(f ◦ g)(α)(t) =
f(g(σ(t)))− f(g(t))

(µ(t))(α)
.

If g(σ(t)) = g(t), then we get (f ◦ g)(α)(t) = 0 and g(α)(t) = 0. Therefore, (2.4) holds for
any c in the real interval [t, σ(t)] and we can assume g(σ(t)) 6= g(t). By the mean value
theorem,

(f ◦ g)(α)(t) =
f(g(σ(t)))− f(g(t))

g(σ(t))− g(t)
· g(σ(t))− g(t)

(µ(t))(α)

= f ′(ξ)g(α)(t),

where ξ is between g(t) and g(σ(t)). Since g : R→ R is continuous, there is a c ∈ [t, σ(t)]

such that g(c) = ξ, which gives us the desired result. Now consider the case when t is
right-dense. In this case

(f ◦ g)(α)(t) = lim
s→t

f(g(t))− f(g(s))

g(t)− g(s)
· g(t)− g(s)

(t− s)(α)

= lim
s→t

{
f ′(ξs).

g(t)− g(s)

(t− s)(α)

}
by the mean value theorem, where ξs is between g(s) and g(t). By the continuity of g we
get that lims→t ξs = g(t), which gives us the desired result.

Example 2.15. Let T = Z, for which σ(t) = t + 1 and µ(t) ≡ 1, and consider the same
functions of Example 2.13: f(t) = t2 and g(t) = 2t. We can find directly the value c,
guaranteed by Theorem 2.14 in the interval [4, σ(4)] = [4, 5], so that

(f ◦ g)(α)(4) = f ′(g(c))g(α)(4). (2.5)

From (2.2) it follows that (f ◦ g)(α)(4) = 36. Because g(α)(4) = 2 and f ′(g(c)) = 4c,
equality (2.5) simplifies to 36 = 8c, and so c = 9

2
.

We end Section 2.2 explaining how to compute fractional derivatives of higher-order.
As usual, we define the derivative of order zero as the identity operator: f (0) = f .

Definition 2.16. Let β be a nonnegative real number. We define the fractional derivative
of f of order β by

f (β) :=
(
f∆N

)(α)

,

where N := bβc (that is, N is the integer part of β) and α := β −N .
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Note that the α of Definition 2.16 is in the interval [0, 1]. We illustrate Definition 2.16
with some examples.

Example 2.17. If f(t) = c for all t ∈ T, c a constant, then f (β) ≡ 0 for any β ∈ R+
0 .

Example 2.18. Let f(t) = t2, T = hZ, h > 0, and β = 1.3. Then, by Definition 2.16,
we have f (1.3) =

(
f∆
)(0.3). It follows from σ(t) = t + h that f (1.3)(t) = (2t + h)(0.3).

Proposition 2.4 and Theorem 2.10 (i) and (ii) allow us to write that f (1.3)(t) = 2(t)(0.3).
We conclude from Proposition 2.5 with µ(t) ≡ h that f (1.3)(t) = 2h0.7.

2.3 Fractional Integration

The two major ingredients of any calculus are differentiation and integration. Now we
introduce the fractional integral on time scales.

Definition 2.19. Assume that f : T→ R is a regulated function. We define the indefinite
fractional integral of f of order β, 0 ≤ β ≤ 1, by∫

f(t)∆βt :=

(∫
f(t)∆t

)(1−β)

,

where
∫
f(t)∆t is the usual indefinite integral of time scales [25].

Remark 2.20. It follows from Definition 2.19 that
∫
f(t)∆1t =

∫
f(t)∆t and

∫
f(t)∆0t =

f(t).

Definition 2.21. Assume f : T→ R is a regulated function. Let

F β(t) =

∫
f(t)∆βt

denote the indefinite fractional integral of f of order β with 0 ≤ β ≤ 1. We define the
Cauchy fractional integral by∫ b

a

f(t)∆βt := F β(t)
∣∣b
a

= F β(b)− F β(a), a, b ∈ T.

The next theorem gives some properties of the fractional integral of order β.

Theorem 2.22. If a, b, c ∈ T, ξ ∈ R, and f, g ∈ Crd with 0 ≤ β ≤ 1, then

(i)
∫ b
a
[f(t) + g(t)]∆βt =

∫ b
a
f(t)∆βt+

∫ b
a
g(t)∆βt;
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(ii)
∫ b
a
(ξf)(t)∆βt = ξ

∫ b
a
f(t)∆βt;

(iii)
∫ b
a
f(t)∆βt = −

∫ a
b
f(t)∆βt;

(iv)
∫ b
a
f(t)∆βt =

∫ c
a
f(t)∆βt+

∫ b
c
f(t)∆βt;

(v)
∫ a
a
f(t)∆βt = 0.

Proof. The equalities follow from Definition 2.19 and Definition 2.21, analogous properties
of the delta integral of time scales, and the properties of Section 2.2 for the fractional
derivative on time scales. (i) From Definition 2.21∫ b

a

(f + g)(t)∆βt =

∫
(f(t) + g(t)) ∆βt

∣∣∣∣b
a

and, from Definition 2.19,∫ b

a

(f + g)(t)∆βt =

(∫
(f(t) + g(t)) ∆t

)(1−β)
∣∣∣∣∣
b

a

.

It follows from the properties of the delta integral and Theorem 2.10 (i) that∫ b

a

(f + g)(t)∆βt =

(∫
f(t)∆t

)(1−β)

+

(∫
g(t)∆t

)(1−β)
∣∣∣∣∣
b

a

.

Using again Definition 2.19 and Definition 2.21, we arrive to the intended relation:∫ b

a

(f + g)(t)∆βt =

∫
f(t)∆βt+

∫
g(t)∆βt

∣∣∣∣b
a

= F β(t) +Gβ(t)
∣∣b
a

= F β(b) +Gβ(b)− F β(a)−Gβ(a)

=

∫ b

a

f(t)∆βt+

∫ b

a

g(t)∆βt.

(ii) From Definition 2.21 and Definition 2.19 one has∫ b

a

(ξf)(t)∆βt =

∫
(ξf)(t)∆βt

∣∣∣∣b
a

=

(∫
(ξf)(t)∆t

)(1−β)
∣∣∣∣∣
b

a

.

It follows from the properties of the delta integral and Theorem 2.10 (ii) that∫ b

a

(ξf)(t)∆βt = ξ

(∫
f(t)∆t

)(1−β)
∣∣∣∣∣
b

a

.
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We conclude the proof of (ii) by using again Definition 2.19 and Definition 2.21:∫ b

a

(ξf)(t)∆βt = ξ

∫
f(t)∆βt

∣∣∣∣b
a

= ξF β(t)
∣∣b
a

= ξ
(
F β(b)− F β(a)

)
= ξ

∫ b

a

f(t)∆βt.

The last three properties are direct consequences of Definition 2.21:
(iii) ∫ b

a

f(t)∆βt = F β(b)− F β(a) = −
(
F β(a)− F β(b)

)
= −

∫ a

b

f(t)∆βt.

(iv) ∫ b

a

f(t)∆βt = F β(b)− F β(a) = F β(c)− F β(a) + F β(b)− F β(c)

=

∫ c

a

f(t)∆βt+

∫ b

c

f(t)∆βt.

(v) ∫ a

a

f(t)∆βt = F β(a)− F β(a) = 0.

The proof is complete.

We end with a simple example of a discrete fractional integral.

Example 2.23. Let T = Z, 0 ≤ β ≤ 1, and f(t) = t. Using the fact that in this case∫
t∆t =

t2

2
+ C

with C a constant, we have∫ 10

1

t∆βt =

∫
t∆βt

∣∣∣∣10

1

=

(∫
t∆t

)(1−β)
∣∣∣∣∣
10

1

=

(
t2

2
+ C

)(1−β)
∣∣∣∣∣
10

1

.

It follows from Example 2.12 (i) with µ(t) ≡ 1, Theorem 2.10 (i) and (ii) and Proposi-
tion 2.4 that ∫ 10

1

t∆βt =
1

2
(2t+ 1)

∣∣∣∣10

1

=
21

2
− 3

2
= 9.





Chapter 3

Nonsymmetric and Symmetric
Fractional Calculi on Time Scales

The results of this chapter are original and are published in [22].

3.1 Introduction

In this chapter, we introduce a nabla, a delta, and a symmetric fractional calculus on
arbitrary nonempty closed subsets of the real numbers. These fractional calculi provide
a study of differentiation and integration of noninteger order on discrete, continuous,
and hybrid settings. Main properties of the new fractional operators are investigated,
and some fundamental results presented, illustrating the interplay between discrete and
continuous behaviors.

The notion of derivative is at the core of any calculus. One can interpret the derivative
in a geometrical way, as the slope of a curve, or, physically, as a rate of change. But what
if we generalize the notion of derivative and we study the limit

lim
s→t

f(s)− f(t)

(s− t)α

for α ∈]0, 1] (derivative of order α)? In this chapter we discuss this question in the
general framework of the calculus on time scales, which might best be understood as
the continuum bridge between discrete time and continuous time theories, offering a rich
formalism for studying hybrid discrete-continuous dynamical systems [25, 26, 58].

A time scale is a model of time, where the continuous and the discrete are consid-
ered and merged into a single theory. Time scales were first introduced by Aulbach and

39
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Hilger in 1988 [12]. They have found applications in many different fields that require
simultaneous modeling of discrete and continuous data [35, 38, 73].

In order to define an inverse operator of our new derivative, the antiderivative, we
apply some ideas from fractional calculus, which is a branch of mathematical analysis
that studies the possibility of taking real number powers of the differentiation operator
[1, 47, 70]. The fractional calculus goes back to Leibniz (1646–1716) himself. However, it
was only in the last 20 years that fractional calculus has gained an increasingly attention
of researchers. In October 2009, Science Watch of Thomson Reuters identified it as an
Emerging Research Front and gave an award to Metzler and Klafter for their paper [59].
Here we consider fractional calculus in the more general setting of time scales.
We develop two types of fractional calculi on arbitrary time scales: nonsymmetric (Sec-
tion 3.2) and symmetric (Section 3.3). The new calculi provide, as particular cases,
discrete, quantum, continuous and hybrid fractional derivatives and integrals.

3.2 Nonsymmetric Fractional Calculus

In this section, we begin by introducing a new notion: the nabla fractional derivative of
order α ∈]0, 1] for functions defined on arbitrary time scales. For α = 1 we obtain the
usual nabla derivative of the time-scale calculus. Let T be a time scale, t ∈ T, and δ > 0.
We define the right δ-neighborhood of t as U+ := [t, t+ δ[∩T and the left δ-neighborhood
of t as U− := ]t− δ, t] ∩ T.

Definition 3.1 (The nabla fractional derivative). Let f : T → R, t ∈ Tk. For α ∈
]0, 1] ∩ {1/q : q is a odd number} (resp. α ∈]0, 1] \ {1/q : q is a odd number}) we define
f∇

α
(t) to be the number (provided it exists) with the property that, given any ε > 0, there

is a δ-neighborhood U ⊂ T of t (resp. right δ-neighborhood U+ ⊂ T of t), δ > 0, such that∣∣[f(s)− fρ(t))]− f∇α(t) [s− ρ(t)]α
∣∣ ≤ ε |s− ρ(t)|α

for all s ∈ U (resp. s ∈ U+). We call f∇α(t) the nabla fractional derivative of f of order
α at t.

Recall the notion of delta fractional derivative considered in Chapter 2.

Definition 3.2 (The delta fractional derivative). Let f : T → R, t ∈ Tκ. For α ∈
]0, 1] ∩ {1/q : q is a odd number} (resp. α ∈]0, 1] \ {1/q : q is a odd number}) we define
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f∆α
(t) to be the number (provided it exists) with the property that, given any ε > 0, there

is a δ-neighborhood U ⊂ T of t (resp. left δ-neighborhood U− ⊂ T of t), δ > 0, such that∣∣[fσ(t)− f(s)]− f∆α

(t) [σ(t)− s]α
∣∣ ≤ ε |σ(t)− s|α

for all s ∈ U (resp. s ∈ U−). We call f∆α
(t) the delta fractional derivative of f of order

α at t.

Throughout this section we only consider the nonsymmetric fractional calculus as
the calculus derived from the nabla fractional derivative. The delta fractional calculus
associated with the delta fractional derivative was considered in Chapter 2.

Along the text α is a real number in the interval ]0, 1]. The next theorem provides
some useful properties of the nabla fractional derivative on time scales.

Theorem 3.3. Assume f : T→ R and let t ∈ Tk. The following properties hold:

(i) Let α ∈]0, 1]∩
{

1
q

: q is a odd number
}
. If t is left-dense and if f is nabla fractional

differentiable of order α at t, then f is continuous at t.

(ii) Let α ∈]0, 1] \
{

1
q

: q is a odd number
}
. If t is left-dense and if f is nabla fractional

differentiable of order α at t, then f is right-continuous at t.

(iii) If f is continuous at t and t is left-scattered, then f is nabla fractional differentiable
of order α at t with

f∇
α

(t) =
f(t)− fρ(t)
[t− ρ(t)]α

.

(iv) Let α ∈]0, 1]∩
{

1
q

: q is a odd number
}
. If t is left-dense, then f is nabla fractional

differentiable of order α at t if, and only if, the limit

lim
s→t

f(s)− f(t)

(s− t)α

exists as a finite number. In this case,

f∇
α

(t) = lim
s→t

f(s)− f(t)

(s− t)α
.

(v) Let α ∈]0, 1] \
{

1
q

: q is a odd number
}
. If t is left-dense, then f is nabla fractional

differentiable of order α at t if, and only if, the limit

lim
s→t+

f(s)− f(t)

(s− t)α
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exists as a finite number. In this case,

f∇
α

(t) = lim
s→t+

f(s)− f(t)

(s− t)α
.

(vi) If f is nabla fractional differentiable of order α at t, then

f(t) = fρ(t) + [t− ρ(t)]α f∇
α

(t).

Proof. (i) Assume that f is fractional differentiable at t. Then, there exists a neighbor-
hood U of t such that∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣ ≤ ε |s− ρ(t)|α

for s ∈ U . Therefore, for all s ∈ U ∩ ]t− ε, t+ ε[,

|f (t)− f (s)| ≤
∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣
+
∣∣[f(t)− fρ(t)]− f∇α(t) [t− ρ(t)]α

∣∣
+
∣∣f∇α(t)

∣∣ |[s− ρ(t)]α − [t− ρ(t)]α|

and, since t is a left-dense point,

|f (t)− f (s)| ≤
∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣+
∣∣f∇α(t) [s− t]α

∣∣
≤ ε |s− t|α +

∣∣f∇α (t) [s− t]α
∣∣

≤ εα
[
ε+

∣∣f∇α(t)
∣∣] .

We conclude that f is continuous at t. (ii) The proof is similar to the proof of (i), where
instead of considering the neighborhood U of t we consider a right neighborhood U+ of t.
(iii) Assume that f is continuous at t and t is left-scattered. By continuity,

lim
s→t

f(s)− fρ(t)
[s− ρ(t)]α

=
f(t)− fρ(t)
[t− ρ(t)]α

.

Hence, given ε > 0 and α ∈]0, 1] ∩ {1/q : q is a odd number}, there is a neighborhood U
of t (or U+ if α ∈]0, 1] \ {1/q : q is a odd number}) such that∣∣∣∣f(s)− fρ(t)

[s− ρ(t)]α
− f(t)− fρ(t)

[t− ρ(t)]α

∣∣∣∣ ≤ ε

for all s ∈ U (resp. U+). It follows that∣∣∣∣[f(s)− fρ(t)]− f(t)− fρ(t)
[t− ρ(t)]α

[s− ρ(t)]α
∣∣∣∣ ≤ ε |s− ρ(t)|α
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for all s ∈ U (resp. U+). Hence, we get the desired result:

f∇
α

(t) =
f(t)− fρ(t)
[t− ρ(t)]α

.

(iv) Assume that f is nabla fractional differentiable of order α at t and t is left-dense.
Let ε > 0 be given. Since f is nabla fractional differentiable of order α at t, there is a
neighborhood U of t such that∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣ ≤ ε |s− ρ(t)|α

for all s ∈ U . Since ρ(t) = t,∣∣[f(s)− f(t)]− f∇α(t) [s− t]α
∣∣ ≤ ε|s− t|α

for all s ∈ U . It follows that ∣∣∣∣f(s)− f(t)

[s− t]α
− f∇α(t)

∣∣∣∣ ≤ ε

for all s ∈ U , s 6= t. Therefore, we get the desired result:

f∇
α

(t) = lim
s→t

f(t)− f(s)

(t− s)α
.

Now assume that
lim
s→t

f(s)− f(t)

(s− t)α

exists and is equal to L and t is left-dense. Then, there exists a neighborhood U of t such
that ∣∣∣∣f(s)− f(t)

(s− t)α
− L

∣∣∣∣ ≤ ε

for all s ∈ U\{t}. Because t is left-dense,∣∣∣∣f(s)− fρ(t)
[s− ρ(t)]α

− L
∣∣∣∣ ≤ ε.

Therefore,
|[f(s)− fρ(t)]− L [s− ρ(t)]α| ≤ ε|s− ρ(t)|α

for all s ∈ U (note that the inequality is trivially verified for s = t). Hence, f is nabla
fractional differentiable of order α at t and

f∇
α

(t) = lim
s→t

f(s)− f(t)

(s− t)α
.
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(v) The proof is similar to the proof of (iv), where instead of considering the neighborhood
U of t we consider a right-neighborhood U+ of t. (vi) If ρ(t) = t, then

fρ(t) = f(t) = f(t) + [t− ρ(t)]α f∇
α

(t) .

On the other hand, if t > ρ (t), then, by (iii),

f(t) = fρ(t) + [t− ρ(t)]α
f(t)− fρ(t)
[t− ρ(t)]α

= fρ(t) + [t− ρ(t)]α f∇
α

(t).

The proof is complete.

Next result relates different orders of the nabla fractional derivative of a function.

Theorem 3.4. Let α, β ∈ ]0, 1] with β ≥ α and let f : T→ R be a continuous function.
If f is nabla fractional differentiable of order β at t ∈ T, then f is nabla fractional
differentiable of order α at t.

Proof. If t is left-scattered, then, by Theorem 3.3 (iii) , f is nabla fractional differentiable
of any order α ∈ ]0, 1]. If t is left-dense, then, by Theorem 3.3 (iv, v),

f∇
β

(t) = lim
s→t

f(s)− f(t)

(s− t)β
.

Since

f∇
β

(t) = lim
s→t

f(s)−f(t)
(s−t)α

(s− t)β−α
,

we have
f∇

α

(t) = lim
s→t

(s− t)β−αf∇β(t),

which proves existence of the nabla fractional derivative of f of order α at t ∈ T.

Proposition 3.5. If f : T→ R is defined by f(t) = c for all t ∈ T, c ∈ R, then f∇α ≡ 0.

Proof. If t is left-scattered, then, by Theorem 3.3 (iii), one has

f∇
α

(t) =
f(t)− fρ(t)
[t− ρ(t)]α

=
c− c

[t− ρ(t)]α
= 0.

Assume t is left-dense. Then, by Theorem 3.3 (iv) and (v), it follows that

f∇
α

(t) = lim
s→t

c− c
[t− ρ(t)]α

= 0.

This concludes the proof.
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Proposition 3.6. If f : T→ R is defined by f(t) = t for all t ∈ T, then

f∇
α

(t) =

[t− ρ(t)]1−α if α 6= 1,

1 if α = 1.

Proof. Clearly, the function is nabla differentiable, which is the same as saying that func-
tion f is nabla fractional differentiable of order 1. Then, by Theorem 3.4, the function
is nabla fractional differentiable of order α, with α ∈ ]0, 1]. From Theorem 3.3 (vi) it
follows that

t− ρ(t) = [t− ρ(t)]α f∇
α

(t).

If t− ρ(t) 6= 0, then

f∇
α

(t) = [t− ρ(t)]1−α

and the desired relation is proved. Assume now that t − ρ(t) = 0, that is, ρ(t) = t. In
this case t is left-dense and by Theorem 3.3 (iv) and (v) it follows that

f∇
α

(t) = lim
s→t

s− t
(s− t)α

.

Therefore, if α = 1, then f∇α(t) = 1; if 0 < α < 1, then f∇α(t) = 0.

Let us now consider the particular case T = R.

Corollary 3.7. Function f : R→ R is nabla fractional differentiable of order α at point
t ∈ R if, and only if, the limit

lim
s→t

f(s)− f(t)

(s− t)α

exists as a finite number. In this case,

f∇
α

(t) = lim
s→t

f(s)− f(t)

(s− t)α
.

Proof. Here T = R and all points are left-dense. The result follows from Theorem 3.3
(iv) and (v). Note that if α ∈]0, 1] \

{
1
q

: q is a odd number
}
, then the limit only makes

sense as a right-side limit.

The next result shows that there are functions which are nabla fractional differentiable
but are not nabla differentiable.
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Proposition 3.8. If f : R+
0 → R is defined by f(t) =

√
t for all t ∈ R+

0 , then

f∇
1/2

(t) =

0 if t 6= 0,

1 if t = 0.

Proof. Here T = R+
0 . In this time scale every point t is left-dense and by Theorem 3.3

(v) with α = 1/2 it follows that

f∇
1/2

(t) = lim
s→t+

√
s−
√
t√

s− t
= lim

s→t+

√
s− t

√
s+
√
t

= 0

for t 6= 0. If t = 0, then

f∇
1/2

(t) = lim
s→0+

√
s√
s

= 1.

This concludes the proof.

For the fractional derivative on time scales to be useful, we would like to know formulas
for the derivatives of sums, products and quotients of fractional differentiable functions.
This is done according to the following theorem.

Theorem 3.9. Assume f, g : T → R are nabla fractional differentiable of order α at
t ∈ Tk. Then,

(i) the sum f + g : T→ R is nabla fractional differentiable at t with

(f + g)∇
α

(t) = f∇
α

(t) + g∇
α

(t);

(ii) for any constant λ ∈ R, λf : T→ R is nabla fractional differentiable at t with

(λf)∇
α

(t) = λf∇
α

(t);

(iii) if f and g are continuous, then the product fg : T→ R is nabla fractional differen-
tiable at t with

(fg)∇
α

(t) = f∇
α

(t) g (t) + fρ (t) g∇
α

(t)

= f∇
α

(t)gρ(t) + f(t)g∇
α

(t);

(iv) if f is continuous and fρ(t)f(t) 6= 0, then 1
f
is nabla fractional differentiable at t

with (
1

f

)∇α
(t) = − f∇

α
(t)

fρ(t)f(t)
;
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(v) if f and g are continuous and gρ(t)g(t) 6= 0, then f
g
is fractional differentiable at t

with (
f

g

)∇α
(t) =

f∇
α
(t)g(t)− f(t)g∇

α
(t)

gρ(t)g(t)
.

Proof. Let us consider that α ∈]0, 1] ∩
{

1
q

: q is a odd number
}
. The proofs for the case

α ∈]0, 1] \
{

1
q

: q is a odd number
}
are similar: one just needs to choose the proper right-

sided neighborhoods. Assume that f and g are nabla fractional differentiable of order α
at t ∈ Tk. (i) Let ε > 0. Then there exist neighborhoods U1 and U2 of t for which∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣ ≤ ε

2
|s− ρ(t)|α for all s ∈ U1

and ∣∣[g(s)− gρ(t)]− g∇α(t) [s− ρ(t)]α
∣∣ ≤ ε

2
|s− ρ(t)|α for all s ∈ U2.

Let U = U1 ∩ U2. Then∣∣∣∣(f + g)(s)− (f + g)ρ(t)−
[
f∇

α

(t) + g∇
α

(t)
]

[s− ρ(t)]α
∣∣∣∣

=
∣∣f(s)− fρ (t)− f∇α(t) [s− ρ (t)]α + g(s)− gρ(t)− g∇α(t)[s− ρ (t)]α

∣∣
≤
∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α

∣∣+
∣∣[g(s)− gρ(t)]− g∇α(t) [s− ρ(t)]α

∣∣
≤ ε|s− ρ (t) |α

for all s ∈ U . Therefore, f + g is fractional differentiable of order α at t and

(f + g)∇
α

(t) = f∇
α

(t) + g∇
α

(t).

(ii) Let ε > 0. Then there exists a neighborhood U of t with∣∣[f(s)− fρ(t)]− f∇α(t) [s− ρ(t)]α
∣∣ ≤ ε |s− ρ(t)|α for all s ∈ U .

It follows that∣∣[(λf) (s)− (λf)ρ (t)]− λf∇α(t) [s− ρ(t)]α
∣∣ ≤ ε|λ| |s− ρ(t)| |α for all s ∈ U .

Therefore, λf is fractional differentiable of order α at t and (λf)∇
α
(t) = λf∇

α
(t) holds at

t. (iii) If t is left-dense, then

(fg)∇
α

(t) = lim
s→t

(fg) (s)− (fg) (t)

(s− t)α

= lim
s→t

f(s)− f(t)

(s− t)α
g (s) + lim

s→t

g(s)− g(t)

(s− t)α
f (t)

= f∇
α

(t)g(t) + g∇
α

(t)f(t)

= f∇
α(t)g (t) + fρ (t) g∇

α

(t) .
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If t is left-scattered, then

(fg)∇
α

(t) =
(fg) (t)− (fg)ρ (t)

[t− ρ(t)]α

=
f(t)− fρ(t)
[t− ρ (t)]α

g (t) +
g(t)− gρ(t)
[t− ρ(t)]α

fρ(t)

= f∇
α

(t)g(t) + fρ(t)g∇
α

(t).

The other product rule formula follows by interchanging the role of functions f and g.
(iv) Using the fractional derivative of a constant (Proposition 3.5) and Theorem 3.9 (iii),
we know that (

f · 1

f

)∇α
(t) = (1)(α)(t) = 0.

Therefore, (
1

f

)∇α
(t)fρ(t) + f∇

α

(t)
1

f(t)
= 0.

Since we are assuming fρ(t) 6= 0,(
1

f

)∇α
(t) = − f∇

α
(t)

fρ(t)f(t)
,

as intended. (v) Follows trivially from the previous properties:(
f

g

)∇α
(t) =

(
f · 1

g

)∇α
(t)

= f(t)

(
1

g

)∇α
(t) + f∇

α

(t)
1

gρ(t)

= −f(t)
g∇

α
(t)

gρ(t)g (t)
+ f∇

α

(t)
1

gρ(t)

=
f∇

α
(t)g(t)− f(t)g∇

α
(t)

g(t)g(σ(t))
.

The proof is complete.

The next result provides examples of how to use the algebraic properties of the nabla
fractional derivatives of order α.

Theorem 3.10. Let c be a constant, m ∈ N, and α ∈ ]0, 1[.
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(i) If f(t) = (t− c)m, then

f∇
α

(t) =


[t− ρ(t)]1−α

m−1∑
ν=0

[ρ(t)− c]ν (t− c)m−1−ν if α 6= 1,

m−1∑
ν=0

[ρ(t)− c]ν (t− c)m−1−ν if α = 1.

(ii) If g(t) =
1

(t− c)m
, then

g∇
α

(t) =


− [t− ρ(t)]1−α

m−1∑
ν=0

1

[ρ(t)− c]m−ν (t− c)ν+1
if α 6= 1,

−
m−1∑
ν=0

1

[ρ(t)− c]m−ν (t− c)ν+1
if α = 1,

provided [ρ(t)− c] (t− c) 6= 0.

Proof. We use mathematical induction. First, let us consider the case α 6= 0. If m = 1,
then f(t) = t − c and f∇

α
(t) = [t− ρ(t)]1−α holds from Propositions 3.5 and 3.6 and

Theorem 3.9 (i). Now, assume that

f∇
α

(t) = [t− ρ(t)]1−α
m−1∑
ν=0

[ρ(t)− c]ν (t− c)m−1−ν

holds for f(t) = (t − c)m and let F (t) = (t − c)m+1 = (t − c)f(t). By Theorem 3.9 (iii),
we have

F∇
α

(t) = (t− c)∇αfρ(t) + f∇
α

(t)(t− c)

= [t− ρ(t)]1−α fρ(t) + f∇
α

(t)(t− c)

= [t− ρ(t)]1−α
[

[ρ(t)− c]m +
m−1∑
ν=0

[ρ(t)− c]ν (t− c)m−ν
]

= [t− ρ(t)]1−α
m∑
ν=0

[ρ(t)− c]ν (t− c)m−ν .

Hence, by mathematical induction, part (i) holds. For g(t) =
1

(t− c)m
=

1

f(t)
, we apply

Theorem 3.9 (iv) to obtain

g∇
α

(t) = − f∇
α
(t)

fρ(t)f(t)
= − [t− ρ(t)]1−α

∑m−1
ν=0 [ρ(t)− c]ν (t− c)m−1−ν

[ρ(t)− c]m (t− c)m

= − [t− ρ(t)]1−α
m−1∑
ν=0

1

[ρ(t)− c]m−ν (t− c)ν+1
,
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provided [ρ(t)− c] (t − c) 6= 0. For α = 1 the proofs are similar bearing in mind that
(t)∇

1

= (t)∇ = 1.

Now we introduce the nabla fractional integral on time scales.

Definition 3.11 (The indefinite nabla fractional integral). Assume that f : T → R is
a regulated function. We define the indefinite nabla fractional integral of f of order β,
0 ≤ β ≤ 1, by ∫

f(t)∇βt :=

(∫
f(t)∇t

)∇(1−β)

with
∫
f(t)∇t the usual indefinite nabla integral of time scales [25].

Remark 3.12. It follows from Definition 3.11 that∫
f(t)∇1t =

∫
f(t)∇t,

∫
f(t)∇0t = f(t).

Definition 3.13 (The definite nabla fractional integral). Assume f : T → R is a ld-
continuous function. Let

F∇
β

(t) =

∫
f(t)∇βt

denote the indefinite nabla fractional integral of f of order β with 0 ≤ β ≤ 1, and let
a, b ∈ T. We define the Cauchy nabla fractional integral from a to b by∫ b

a

f(t)∇βt := F∇
β

(t)
∣∣∣b
a

= F∇
β

(b)− F∇β(a).

The next theorem gives some algebraic properties of the nabla fractional integral.

Theorem 3.14. If a, b, c ∈ T, λ ∈ R, and f, g ∈ Cld with 0 ≤ β ≤ 1, then

(i)
∫ b

a

[f(t) + g(t)]∇βt =

∫ b

a

f(t)∇βt+

∫ b

a

g(t)∇βt;

(ii)
∫ b

a

(λf)(t)∇βt = λ

∫ b

a

f(t)∇βt;

(iii)
∫ b

a

f(t)∇βt = −
∫ a

b

f(t)∇βt;

(iv)
∫ b

a

f(t)∇βt =

∫ c

a

f(t)∇βt+

∫ b

c

f(t)∇βt;
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(v)
∫ a

a

f(t)∇βt = 0.

Proof. The equalities follow from Definitions 3.11 and 3.13, analogous properties of the
nabla integral on time scales, and the properties of Section 3.2 for the fractional nabla
derivative on time scales. (i) From Definition 3.13, we have∫ b

a

(f + g)(t)∇βt =

∫
[f(t) + g(t)]∇βt

∣∣∣∣b
a

=

(∫
[f(t) + g(t)]∇t

)∇(1−β)∣∣∣∣∣
b

a

=

[(∫
f(t)∆t

)∇(1−β)

+

(∫
g(t)∆t

)∇(1−β)]∣∣∣∣∣
b

a

=

∫ b

a

f(t)∇βt+

∫ b

a

g(t)∇βt.

(ii) From Definitions 3.13 and 3.11, one has∫ b

a

(λf)(t)∇βt =

∫
(λf)(t)∇βt

∣∣∣∣b
a

=

(∫
(λf)(t)∇t

)∇(1−β)∣∣∣∣∣
b

a

= λ

(∫
f(t)∇t

)∇(1−β)∣∣∣∣∣
b

a

= λ

∫ b

a

f(t)∇βt.

The last properties (iii), (iv) and (v) are direct consequences of Definition 3.13: (iii)∫ b

a

f(t)∇βt = F β(b)− F β(a) = −
(
F β(a)− F β(b)

)
= −

∫ a

b

f(t)∇βt;

(iv) ∫ b

a

f(t)∇βt = F∇
β

(b)− F∇β(a) = F∇
β

(c)− F∇β(a) + F∇
β

(b)− F∇β(c)

=

∫ c

a

f(t)∇βt+

∫ b

c

f(t)∇βt;

(v) ∫ a

a

f(t)∇βt = F∇
β

(a)− F∇β(a) = 0.

This concludes the proof.

We end this section with a simple example of a discrete fractional integral of order α.
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Example 3.15. Let T = Z, 0 ≤ β < 1, and f(t) = t. Using the fact that∫
t∇t =

t2

2
+ C,

where C is a constant, we have

∫ 10

1

t∇βt =

∫
t∇βt

∣∣∣∣10

1

=

(∫
t∇t

)∇(1−β)∣∣∣∣∣
10

1

=

(
t2

2
+ C

)(1−β)
∣∣∣∣∣
10

1

.

It follows that∫ 10

1

t∇βt = [t− ρ(t)](1−α)[ρ(t) + t]
∣∣10

1
=

1

2
(2t− 1)

∣∣∣∣10

1

=
19

2
− 1

2
= 9.

The fundamental concepts of the nabla fractional calculus of order α, which are the dif-
ferentiation and integration of noninteger order using the nabla operator, were presented
in this section. The properties of the delta fractional calculus of order α are similar to
the properties of the nabla case and were discussed in Chapter 2. In the next section we
will use both nabla and delta approaches, the delta and nabla fractional calculi of order
α, to obtain useful results of the symmetric fractional calculus of order α and extend the
results of [28].

3.3 Symmetric Fractional Calculus

In this section, we introduce the notion of symmetric fractional derivative of order α ∈]0, 1]

on time scales.

Definition 3.16 (The symmetric fractional derivative). Let f : T → R, t ∈ Tκκ, and
α ∈ ]0, 1]. The symmetric fractional derivative of f at t, denoted by f♦

α
(t), is the

real number (provided it exists) with the property that, for any ε > 0, there exists a
neighborhood U ⊂ T of t such that

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

≤ ε |σ (t) + 2t− 2s− ρ (t)|α

for all s ∈ U for which 2t − s ∈ U . A function f is said to be symmetric fractional
differentiable of order α provided f♦α (t) exists for all t ∈ Tκκ.
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Remark 3.17. If α = 1, then the symmetric fractional derivative is the symmetric deriva-
tive on time scales [28].

Some useful properties of the symmetric derivative are given in Theorem 3.18.

Theorem 3.18. Let f : T→ R, t ∈ Tκκ and α ∈ ]0, 1]. The following holds:

(i) Function f has at most one symmetric fractional derivative of order α.

(ii) If f is symmetric fractional differentiable of order α at t and t is dense or isolated,
then f is symmetric continuous at t (Definition 1.18).

(iii) If f is continuous at t and t is not dense, then f is symmetric differentiable of order
α at t with

f♦
α

(t) =
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
.

(iv) If t is dense, then f is symmetric fractional differentiable of order α at t if and only
if the limit

lim
s→t

f (2t− s)− f (s)

2α (t− s)α

exists as a finite number. In this case,

f♦
α

(t) = lim
s→t

f (2t− s)− f (s)

2α (t− s)α
= lim

h→0

f (t+ h)− f (t− h)

2αhα
.

(v) If f is symmetric differentiable of order α and continuous at t, then

fσ (t) = fρ (t) + f♦
α

(t) [σ (t)− ρ (t)]α .

Proof. (i) Suppose that f has two symmetric derivatives of order α at t, f♦
α

1 (t) and
f♦

α

2 (t). Then, there exists a neighborhood U1 of t such that

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α1 (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

≤ ε

2
|σ (t) + 2t− 2s− ρ (t)|α

for all s ∈ U1 for which 2t− s ∈ U1, and a neighborhood U2 of t such that

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α2 (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

≤ ε

2
|σ (t) + 2t− 2s− ρ (t)|α
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for all s ∈ U2 for which 2t−s ∈ U2. Therefore, for all s ∈ U1∩U2 for which 2t−s ∈ U1∩U2,∣∣∣∣f♦α1 (t)− f♦α2 (t)

∣∣∣∣ =

∣∣∣∣[f♦α1 (t)− f♦α2 (t)
] [σ (t) + 2t− 2s− ρ (t)]α

[σ (t) + 2t− 2s− ρ (t)]α

∣∣∣∣
≤
∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α2 (t) [σ (t) + 2t− 2s− ρ (t)]α

∣∣
|σ (t) + 2t− 2s− ρ (t)|α

+

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α1 (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

|σ (t) + 2t− 2s− ρ (t)|α

≤ ε.

(ii) From hypothesis, for any ε > 0, there exists a neighborhood U of t such that

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

≤ ε |σ (t) + 2t− 2s− ρ (t)|α

for all s ∈ U for which 2t− s ∈ U . Note that

|f (s)− f (2t− s) |

≤
∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α

∣∣
+
∣∣[fσ (t)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α

∣∣
≤
∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α

∣∣
+
∣∣[fσ (t)− f (t) + f (t)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2t− ρ (t)]α

∣∣
+
∣∣f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α − f♦α (t) [σ (t)− ρ (t)]α

∣∣
≤ ε |σ (t) + 2t− 2s− ρ (t)|α + ε |σ (t) + 2t− 2t− ρ (t)|α

+
∣∣f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α − f♦α (t) [σ (t)− ρ (t)]α

∣∣ .
If t is dense, then

|f (s)− f (2t− s)| ≤ ε2α |t− s|α +
∣∣f♦α (t)

∣∣ 2α |t− s|α
≤ εα2α

(
ε+

∣∣f♦α (t)
∣∣)

for all s ∈ U ∩ ]t− ε, t+ ε[, which proves the result for a point t which is dense. If t
is isolated, then the function is continuous at t (because of the inherited topology) and
therefore the function is symmetric continuous at t. (iii) Suppose that t ∈ Tκκ is not dense
and f is continuous at t. Then,

lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α
=
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
.
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Hence, for any ε > 0, there exists a neighborhood U of t such that∣∣∣∣fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α
− fσ (t)− fρ (t)

[σ (t)− ρ (t)]α

∣∣∣∣ ≤ ε

for all s ∈ U for which 2t− s ∈ U . It follows that∣∣∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
[σ (t) + 2t− 2s− ρ (t)]α

∣∣∣∣
≤ ε |σ (t) + 2t− 2s− ρ (t)|α ,

which proves that

f♦
α

(t) =
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
.

(iv) Assume that f is symmetric fractional differentiable of order α at t and t is dense.
Let ε > 0 be given. Then, there exists a neighborhood U of t such that

∣∣[fσ (t)− f (s) + f (2t− s)− fρ (t)]− f♦α (t) [σ (t) + 2t− 2s− ρ (t)]α
∣∣

≤ ε |σ (t) + 2t− 2s− ρ (t)|α

for all s ∈ U for which 2t− s ∈ U . Since t is dense,∣∣[−f (s) + f (2t− s)]− f♦α (t) [2t− 2s]α
∣∣ ≤ ε |2t− 2s|α

for all s ∈ U for which 2t− s ∈ U . It follows that∣∣∣∣f (2t− s)− f (s)

(2t− 2s)α
− f♦α (t)

∣∣∣∣ ≤ ε

for all s ∈ U with s 6= t. Therefore, we get the desired result:

f♦
α

(t) = lim
s→t

f (2t− s)− f (s)

2α (t− s)α
.

Conversely, let us suppose that t is dense and the limit

lim
s→t

f (2t− s)− f (s)

2α (t− s)α
=: L

exists. Then, there exists a neighborhood U of t such that
∣∣∣f(2t−s)−f(s)

2α(t−s)α − L
∣∣∣ ≤ ε for all

s ∈ U for which 2t− s ∈ U . Because t is dense, we have∣∣∣∣fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α
− L

∣∣∣∣ ≤ ε.
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Therefore,

|[fσ (t)− f (s) + f (2t− s)− fρ (t)]− L [σ (t) + 2t− 2s− ρ (t)]α|

≤ ε |σ (t) + 2t− 2s− ρ (t)|α ,

which leads us to the conclusion that f is symmetric differentiable of order α and f♦α (t) =

L. Note that if we use the substitution s = t+ h, then

f♦
α

(t) = lim
h→0

f (t+ h)− f (t− h)

2αhα
.

(v) If t is a dense point, then σ (t) = ρ (t) and

fσ (t) = fρ (t) + f♦
α

(t) [σ (t)− ρ (t)]α .

If t is not dense, and since f is continuous, then

f♦
α

(t) =
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
⇔ fσ (t) = fρ (t) + f♦ (t) [σ (t)− ρ (t)]α .

This concludes the proof.

Remark 3.19. An alternative way to define the symmetric fractional derivative of f of
order α ∈ ]0, 1] at t ∈ Tκκ consists in saying that the limit

f♦
α

(t) = lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= lim
h→0

fσ (t)− f (t+ h) + f (t− h)− fρ (t)

[σ (t)− 2h− ρ (t)]α

exists. Similarly, we can say that the nabla fractional derivative of f of order α is defined
by

f∇
α

(t) = lim
s→t

f(s)− fρ(t)
[s− ρ(t)]α

and the delta fractional derivative of f of order α is defined by

f∆α

(t) = lim
s→t

fσ (t)− f (s)

[σ (t)− s]α
.

Remark 3.20. A function f : R→ R is symmetric fractional differentiable of order α at
point t ∈ R if, and only if, the limit

lim
h→0

f (t+ h)− f (t− h)

2αhα
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exists as finite number. In this case,

f♦
α

(t) = lim
h→0

f (t+ h)− f (t− h)

2αhα
.

If α = 1, then we obtain the classical symmetric derivative in the real numbers [74],
defined by

f♦ (t) = lim
h→0

f (t+ h)− f (t− h)

h
.

Remark 3.21. Let h > 0. If a function f : hZ→ R is symmetric differentiable of order
α for t ∈ hZ, then

f♦
α

(t) =
f (t+ h)− f (t− h)

2αhα
.

If α = 1, then we obtain the symmetric h-derivative in the quantum set hZ [45], defined
by

f♦ (t) =
f (t+ h)− f (t− h)

h
.

Let us now see some examples.

Proposition 3.22. If f : T → R is defined by f (t) = c for all t ∈ T, c ∈ R, then
f♦

α
(t) = 0 for any t ∈ Tκκ.

Proof. Trivially, we have

f♦
α

(t) = lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α
= 0.

The proof is complete.

Proposition 3.23. If f : T→ R is defined by f (t) = t for all t ∈ T, then

f♦
α

(t) =

[σ (t)− ρ (t)]1−α if α 6= 1

1 if α = 1

for all t ∈ Tκκ.

Proof. If t is not dense, then by Theorem 3.18 (iii)

f♦
α

(t) =
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
= [σ (t)− ρ (t)]1−α .

If t is dense, then by Theorem 3.18 (iv)

f♦
α

(t) = lim
s→t

f (2t− s)− f (s)

2α (t− s)α
= lim

s→t

2 (t− s)
2α (t− s)α

.

Thus, if α = 1, then f♦α (t) = 1; if 0 < α < 1, then f♦α (t) = 0.
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Next proposition shows a function that is not differentiable at point t = 0 in the sense
of classical (integer-order) calculus and standard (nonsymmetric) calculus on time scales
[25, 26], but is symmetric fractional differentiable of order α ∈ ]0, 1].

Proposition 3.24. Let T be a time scale with 0 ∈ Tκκ and f : T → R be defined by
f (t) = |t|. Then,

f♦
α

(0) =


0 if 0 is dense
σ(0) + ρ(0)

[σ(0)− ρ(0)]α
otherwise

for any α ∈ ]0, 1].

Proof. We know (see Remark 3.19) that

f♦ (0) = lim
h→0

fσ (0)− f (0 + h) + f (0− h)− fρ (0)

[σ (0)− 2h− ρ (0)]α
= lim

h→0

σ (0) + ρ (0)

[σ (0)− 2h− ρ (0)]α
.

The result follows immediately from this equality.

We now give some algebric properties of the symmetric fractional derivative.

Theorem 3.25. Let f, g : T→ R be two symmetric fractional differentiable functions of
order α at t ∈ Tκκ and let λ ∈ R. The following holds:

(i) Function f + g is symmetric fractional differentiable of order α at t with

(f + g)♦
α

(t) = f♦
α

(t) + g♦
α

(t) .

(ii) Function λf is symmetric fractional differentiable of order α at t with

(λf)♦
α

(t) = λf♦
α

(t) .

(iii) If f and g are continuous at t, then fg is symmetric fractional differentiable of order
α at t with

(fg)♦
α

(t) = f♦
α

(t) gσ (t) + fρ (t) g♦
α

(t) .

(iv) If f is continuous at t and fσ (t) fρ (t) 6= 0, then 1/f is symmetric fractional differ-
entiable of order α at t with(

1

f

)♦α
(t) = − f♦

α
(t)

fσ (t) fρ (t)
.
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(v) If f and g are continuous at t and gσ (t) gρ (t) 6= 0, then f/g is symmetric fractional
differentiable of order α at t with(

f

g

)♦α
(t) =

f♦
α

(t) gρ (t)− fρ (t) g♦
α

(t)

gσ (t) gρ (t)
.

Proof. (i) For t ∈ Tκκ we have

(f + g)♦
α

(t) = lim
s→t

(f + g)σ (t)− (f + g) (s) + (f + g) (2t− s)− (f + g)ρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

+ lim
s→t

gσ (t)− g (s) + g (2t− s)− gρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= f♦
α

(t) + g♦
α

(t) .

(ii) Let t ∈ Tκκ and λ ∈ R. Then,

(λf)♦
α

(t) = lim
s→t

(λf)σ (t)− (λf) (s) + (λf) (2t− s)− (λf)ρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= λ lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= λf♦
α

(t) .

(iii) Let us assume that t ∈ Tκκ and f and g are continuous at t. If t is dense, then

(fg)♦
α

(t) = lim
h→0

(fg) (t+ h)− (fg) (t− h)

2αhα

= lim
h→0

f (t+ h)− f (t− h)

2αhα
g (t+ h) + lim

h→0

g (t+ h)− g (t− h)

2αhα
f (t− h)

= f♦
α

(t) gσ (t) + fρ (t) g♦
α

(t) .

If t is not dense, then

(fg)♦
α

(t) =
(fg)σ (t)− (fg)ρ (t)

[σ (t)− ρ (t)]α
=
fσ (t)− fρ (t)

[σ (t)− ρ (t)]α
gσ (t) +

gσ (t)− gρ (t)

[σ (t)− ρ (t)]α
fρ (t)

= f♦
α

(t) gσ (t) + fρ (t) g♦
α

(t) .

We just proved the intended equality. (iv) Using the relation
(

1
f
× f

)
(t) = 1 we can

write that

0 =

(
1

f
× f

)♦α
(t) = f♦

α

(t)

(
1

f

)σ
(t) + fρ (t)

(
1

f

)♦α
(t) .
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Therefore, (
1

f

)♦α
(t) = − f♦

α
(t)

fσ (t) fρ (t)
.

(v) Let t ∈ Tκκ. Then,(
f

g

)♦α
(t) =

(
f × 1

g

)♦α
(t) = f♦

α

(t)

(
1

g

)σ
(t) + fρ (t)

(
1

g

)♦α
(t)

=
f♦

α
(t)

gσ (t)
+ fρ (t)

(
− g♦

α
(t)

gσ (t) gρ (t)

)
=
f♦

α
(t) gρ (t)− fρ (t) g♦

α
(t)

gσ (t) gρ (t)
.

The proof is complete.

Example 3.26. The symmetric fractional derivative of f (t) = t2 of order α is

f♦
α

(t) =

{
[σ (t)− ρ (t)]1−α [σ (t) + ρ (t)] if α 6= 1

σ (t) + ρ (t) if α = 1.

Example 3.27. The symmetric derivative of f (t) = 1/t of order α is

f♦
α

(t) =


− [σ (t)− ρ (t)]1−α

σ (t) ρ (t)
if α 6= 1

− 1

σ (t) ρ (t)
if α = 1.

The next result gives a relation between the nonsymmetric and symmetric fractional
derivatives.

Proposition 3.28. If f is both delta and nabla fractional differentiable of order α, then
f is symmetric fractional differentiable of order α with

f♦
α

(t) = γ1 (t) f∆α

(t) + γ2 (t) f∇
α

(t)

for each t ∈ Tκκ, where

γ1 (t) := lim
s→t

[
σ (t)− s

σ (t) + 2t− 2s− ρ (t)

]α
and

γ2 (t) := lim
s→t

[
(2t− s)− ρ (t)

σ (t) + 2t− 2s− ρ (t)

]α
.
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Proof. Note that

f♦
α

(t) = lim
s→t

fσ (t)− f (s) + f (2t− s)− fρ (t)

[σ (t) + 2t− 2s− ρ (t)]α

= lim
s→t

(
[σ (t)− s]α

[σ (t) + 2t− 2s− ρ (t)]α
fσ (t)− f (s)

[σ (t)− s]α

+
[(2t− s)− ρ (t)]α

[σ (t) + 2t− 2s− ρ (t)]α
f (2t− s)− fρ (t)

[(2t− s)− ρ (t)]α

)

= lim
s→t

([
σ (t)− s

σ (t) + 2t− 2s− ρ (t)

]α
f∆ (t)

+

[
(2t− s)− ρ (t)

σ (t) + 2t− 2s− ρ (t)

]α
f∇ (t)

)
.

If t ∈ T is dense, then

γ1 (t) = lim
s→t

[
σ (t)− s

σ (t) + 2t− 2s− ρ (t)

]α
= lim

s→t

[
t− s

2t− 2s

]α
=

1

2α

and

γ2 (t) = lim
s→t

[
(2t− s)− ρ (t)

σ (t) + 2t− 2s− ρ (t)

]α
= lim

s→t

[
t− s

2t− 2s

]α
=

1

2α
.

On the other hand, if t ∈ T is not dense, then

γ1 (t) = lim
s→t

[
σ (t)− s

σ (t) + 2t− 2s− ρ (t)

]α
=

[
σ (t)− t

σ (t)− ρ (t)

]α
and

γ2 (t) = lim
s→t

[
(2t− s)− ρ (t)

σ (t) + 2t− 2s− ρ (t)

]α
= lim

s→t

[
t− ρ (t)

σ (t)− ρ (t)

]α
.

Hence, functions γ1, γ2 : T→ R are well defined and, if f is delta and nabla differentiable,
then f♦α (t) = γ1 (t) f∆ (t) + γ2 (t) f∇ (t).

Remark 3.29. Suppose that f is delta and nabla fractional differentiable of order α. If
point t ∈ Tκκ is right-scattered and left-dense, then its fractional symmetric derivative of
order α is equal to its delta fractional derivative of order α. If t is left-scattered and right-
dense, then its symmetric fractional derivative of order α is equal to its nabla fractional
derivative of order α.

Due to Proposition 3.28, we can now define a symmetric integral of noninteger order.
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Definition 3.30 (The symmetric fractional integral). Assume function f : T → R
is simultaneously rd- and ld-continuous. Let a, b ∈ T and F∆β

(t) =
∫
f(t)∆βt and

F∇
β
(t) =

∫
f(t)∇βt denote the indefinite delta and nabla fractional integrals of f of

order β, respectively. Then we define the Cauchy symmetric fractional integral of f of
order β ∈]0, 1] by∫ b

a

f(t)♦βt = γ1 (t)F∆β

(t)
∣∣∣b
a

+ γ2 (t)F∇
β

(t)
∣∣∣b
a

= γ1 (b)F∆β

(b)− γ1 (a)F∆β

(a) + γ2 (b)F∇
β

(b)− γ2 (a)F∇
β

(a).

Finally, we present some algebraic properties of the symmetric fractional integral.

Theorem 3.31. Let a, b, c ∈ T and λ ∈ R. If f, g ∈ Cld and f, g ∈ Crd with 0 ≤ β ≤ 1,
then

(i)
∫ b

a

[f(t) + g(t)]♦βt =

∫ b

a

f(t)♦βt+

∫ b

a

g(t)♦βt;

(ii)
∫ b

a

(λf)(t)♦βt = λ

∫ b

a

f(t)♦βt;

(iii)
∫ b

a

f(t)♦βt = −
∫ a

b

f(t)♦βt;

(iv)
∫ b

a

f(t)♦βt =

∫ c

a

f(t)♦βt+

∫ b

c

f(t)♦βt;

(v)
∫ a

a

f(t)♦βt = 0.

Proof. Equalities (i)–(v) follow from Definition 3.30 and analogous properties of the nabla
and delta fractional integrals (cf. Theorem 3.14).



Chapter 4

Fractional Riemann–Liouville Calculus
on Time Scales

In this chapter, we introduce the concept of fractional derivative of Riemann–Liouville on a
time scale T. The notion is nonlocal, which contrasts with Chapters 2 and 3. Fundamental
properties of the new operator are proved, as well as an existence and uniqueness result
for a fractional initial value problem on an arbitrary time scale. The results of this chapter
are original and are published in [23].

4.1 Introduction

Fractional calculus is nowadays one of the most intensively developing areas of mathemat-
ical analysis (see, e.g., [1, 6, 44, 53, 54, 55] and references therein), including several defi-
nitions of fractional operators like Riemann–Liouville, Caputo, and Grünwald–Letnikov.
Operators for fractional differentiation and integration have been used in various fields,
such as signal processing, hydraulics of dams, temperature field problem in oil strata,
diffusion problems, and waves in liquids and gases [21, 71, 72].

We consider the following initial value problem:

T
t0
D
α

t
y(t) = f(t, y(t)), t ∈ [t0, t0 + a] = J ⊆ T, 0 < α < 1, (4.1)

T
t0
I

1−α
t

y(t0) = 0, (4.2)

where T
t0
D
α

t
is the (left) Riemann–Liouville fractional derivative operator or order α defined

on T, Tt0I
1−α
t

the (left) Riemann–Liouville fractional integral operator or order 1−α defined

63
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on T, and function f : J ×T→ R is a right-dense continuous function. Our main results
give necessary and sufficient conditions for the existence and uniqueness of solution to
problem (4.1)–(4.2). Before that, we need to fix some notations and recall some results.

We use C(J ,R) to denote the Banach space of continuous functions y with the norm
‖y‖∞ = sup {|y(t)| : t ∈ J }, where J is an interval.

Proposition 4.1 (See [5]). Suppose T is a time scale and f is an increasing continuous
function on the time-scale interval [a, b]. If F is the extension of f to the real interval
[a, b] given by

F (s) :=

f(s) if s ∈ T,

f(t) if s ∈ (t, σ(t)) /∈ T,

then ∫ b

a

f(t)∆t ≤
∫ b

a

F (t)dt.

We also make use of the classical gamma and beta functions.

Definition 4.2 (Gamma function). For complex numbers with a positive real part, the
gamma function Γ(t) is defined by the following convergent improper integral:

Γ(t) :=

∫ ∞
0

xt−1e−xdx.

Definition 4.3 (Beta function). The beta function, also called the Euler integral of first
kind, is the special function B(x, y) defined by

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt, x > 0, y > 0.

Remark 4.4. The gamma function satisfies the following useful property: Γ(t+1) = tΓ(t).
The beta function can be expressed through the gamma function by B(x, y) = Γ(x)Γ(y)

Γ(x+y)
.

The main results of this chapter are based on Banach’s and Schauder’s fixed point
theorems.

Definition 4.5. Let (X, d) be a metric space. Then a map T : X −→ X is called a
contraction mapping on X if there exists γ ∈ [0, 1] such that

d(T (x), T (y)) ≤ γd(x, y) for all x, y in X.
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Theorem 4.6. [36]. Let (X, d) be a non-empty complete metric space with a contraction
mapping T : X −→ X. Then T admits a unique fixed point x∗ in X (i.e., T (x∗) = x∗).

Theorem 4.7 (Nonlinear Alternative of Leray–Schauder Type [36]). Let X be a Banach
space, C a closed, convex and nonempty subset of X, U an open subset of C and 0 ∈ X.
Suppose that N : U → C is a continuous, compact map.
Then either,

1. N has a fixed point in U, or

2. There exists λ ∈ (0, 1) and x ∈ ∂U (the boundary of U in C) with x = λN(x).

4.2 Fractional Riemann–Liouville Integral and Deriva-

tive

In this section, we introduce a new notion of fractional derivative on time scales. Before
that, we define the fractional integral on a time scale T. This is in contrast with [21, 22, 24]
and in contrast with previous chapters, where first a notion of fractional differentiation on
time scales is introduced and only after that, with the help of such concept, the fraction
integral is defined.

Definition 4.8 (Fractional integral on time scales). Suppose T is a time scale, [a, b] is
an interval of T, and h is an integrable function on [a, b]. Let 0 < α < 1. Then the (left)
fractional integral of order α of h is defined by

T
aI

α

t h(t) :=

∫ t

a

(t− s)α−1

Γ(α)
h(s)∆s,

where Γ is the gamma function.

Definition 4.9 (Riemann–Liouville fractional derivative on time scales). Let T be a time
scale, t ∈ T, 0 < α < 1, and h : T → R. The (left) Riemann–Liouville fractional
derivative of order α of h is defined by

T
aD

α

t h(t) :=
1

Γ(1− α)

(∫ t

a

(t− s)−αh(s)∆s

)∆

. (4.3)
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Remark 4.10. If T = R, then Definition 4.9 gives the classical (left) Riemann–Liouville
fractional derivative [68]. For different extensions of the fractional derivative to time
scales, using the Caputo approach instead of the Riemann–Liouville, see [5, 20]. For local
approaches to fractional calculus on time scales we refer the reader to [21, 22, 24]. Here we
are only considering left operators. The corresponding right operators are easily obtained
by changing the limits of integration in Definitions 4.8 and 4.9 from a to t (left of t) into t
to b (right of t), as done in the classical fractional calculus [68]. Here we restrict ourselves
to the delta approach to time scales. Analogous definitions are, however, trivially obtained
for the nabla approach to time scales by using the duality theory of [33].

Along the work, we consider the order α of the fractional derivatives in the real interval
(0, 1). We can, however, easily generalize our definition of fractional derivative to any
positive real α. Indeed, let α ∈ R+\N. Then there exists β ∈ (0, 1) such that α = bαc+β,
where bαc is the integer part of α, and we can set

T
aD

α

t h := T
aD

β

t h
∆bαc .

Fractional operators of negative order are defined as follows.

Definition 4.11. If −1 < α < 0, then the (Riemann–Liouville) fractional derivative of
order α is the fractional integral of order −α, that is,

T
aD

α

t := T
aI
−α
t .

Definition 4.12. If −1 < α < 0, then the fractional integral of order α is the fractional
derivative of order −α, that is,

T
aI

α

t := T
aD
−α
t .

4.2.1 Properties of the Time-Scale Fractional Operators

In this subsection we prove some fundamental properties of the fractional operators on
time scales.

Proposition 4.13. Let T be a time scale with derivative ∆, and 0 < α < 1. Then,

T
aD

α

t = ∆ ◦ T
aI

1−α
t .
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Proof. Let h : T→ R. From 4.3 we have

T
aD

α

t h(t) =
1

Γ(1− α)

(∫ t

a

(t− s)−αh(s)∆s

)∆

=
(T
aI

1−α
t h(t)

)∆
=
(
∆ ◦ T

aI
1−α
t

)
h(t).

The proof is complete.

Proposition 4.14. For any function h integrable on [a, b], the Riemann–Liouville ∆-
fractional integral satisfies

T
aI

α

t ◦
T
aI

β
t = T

aI
α+β
t

for α > 0 and β > 0.

Proof. By definition,(
T
aI

α

t ◦
T
aI

β
t

)
(h(t)) = T

aI
α

t

(
T
aI

β

t (h(t))
)

=
1

Γ(α)

∫ t

a

(t− s)α−1
(
T
aI

β

t (h(s))
)

∆s

=
1

Γ(α)

∫ t

a

(
(t− s)α−1 1

Γ(β)

∫ s

a

(s− u)β−1h(u)∆u

)
∆s

=
1

Γ(α)Γ(β)

∫ t

a

∫ s

a

(t− s)α−1(s− u)β−1h(u)∆u∆s

=
1

Γ(α)Γ(β)

∫ t

a

[∫ s

a

(t− s)α−1(s− u)β−1h(u)∆u+

∫ t

s

(t− s)α−1(s− u)β−1h(u)∆u

]
∆s

=
1

Γ(α)Γ(β)

∫ t

a

[∫ t

a

(t− s)α−1(s− u)β−1h(u)∆u

]
∆s.

From Fubini’s theorem, we interchange the order of integration to obtain

(
T
aI

α

t ◦
T
aI

β

t

)
(h(t)) =

1

Γ(α)Γ(β)

∫ t

a

[∫ t

a

(t− s)α−1(s− u)β−1h(u)∆s

]
∆u

=
1

Γ(α)Γ(β)

∫ t

a

[∫ t

a

(t− s)α−1(s− u)β−1∆s

]
h(u)∆u

=
1

Γ(α)Γ(β)

∫ t

a

[∫ t

u

(t− s)α−1(s− u)β−1∆s

]
h(u)∆u.



68 Fractional Riemann–Liouville Calculus on Time Scales

By setting s = u+ r(t− u), r ∈ R, we obtain that(
T
aI

α

t ◦
T
aI

β
t

)
(h(t))

=
1

Γ(α)Γ(β)

∫ t

a

[∫ 1

0

(1− r)α−1(t− u)α−1rβ−1(t− u)β−1(t− u)dr

]
h(u)∆u

=
1

Γ(α)Γ(β)

∫ 1

0

(1− r)α−1rβ−1dr

∫ t

a

(t− u)α+β−1h(u)∆u

=
B(α, β)

Γ(α)Γ(β)

∫ t

a

(t− u)α+β−1h(u)∆u =
1

Γ(α + β)

∫ t

a

(t− u)α+β−1h(u)∆u

=T
a I

α+β
t h(t).

The proof is complete.

Proposition 4.15. For any function h integrable on [a, b] one has T
aD

α

t ◦ T
aI

α
t h = h.

Proof. By Propositions 4.13 and 4.14, we have

T
aD

α

t ◦
T
aI

α
t h(t) =

[
T
aI

1−α
t

(T
aI

α

t (h(t))
)]∆

=
[T
aI th(t)

]∆
= h(t).

The proof is complete.

Corollary 4.16. For 0 < α < 1, we have T
aD

α

t ◦ T
aD
−α
t = Id and T

aI
−α
t ◦ T

aI
α
t = Id, where

Id denotes the identity operator.

Proof. From Definition 4.12 and Proposition 4.15, we have that

T
aD

α

t ◦
T
aD
−α
t = T

aD
α

t ◦
T
aI

α

t = Id;

from Definition 4.11 and Proposition 4.15, we have that T
aI
−α
t ◦ TaI

α

t = T
aD

α

t ◦ TaI
α

t = Id.

Definition 4.17. For α > 0, let T
aI

α

t ([a, b]) denote the space of functions that can be
represented by the Riemann–Liouville ∆ integral of order α of some C([a, b])-function.

Theorem 4.18. Let f ∈ C([a, b]) and α > 0. In order that f ∈ T
aI

α
t ([a, b]), it is necessary

and sufficient that
T
aI

1−α
t f ∈ C1([a, b]) (4.4)

and (T
aI

1−α
t f(t)

)∣∣
t=a

= 0. (4.5)
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Proof. Assume f ∈ T
aI

α

t ([a, b]), f(t) = T
aI

α

t g(t) for some g ∈ C([a, b]), and

T
aI

1−α
t (f(t)) = T

aI
1−α
t

(T
aI

α

t g(t)
)
.

From Proposition 4.14, we have

T
aI

1−α
t (f(t)) = T

aI tg(t) =

∫ t

a

g(s)∆s.

Therefore, T
aI

1−α
t f ∈ C1([a, b]) and(

T
aI

1−α
t f(t)

)∣∣∣
t=a

=

∫ a

a

g(s)∆s = 0.

Conversely, assume that f ∈ C([a, b]) satisfies (4.4) and (4.5). Then, by Taylor’s formula
applied to function T

aI
1−α
t f , one has

T
aI

1−α
t f(t) =

∫ t

a

∆

∆s
T
aI

1−α
t f(s)∆s, ∀t ∈ [a, b].

Let ϕ(t) := ∆
∆s

T
aI

1−α
t f(t). Note that ϕ ∈ C([a, b]) by (4.4). Now, by Proposition 4.14, we

have
T
aI

1−α
t (f(t)) = T

aI
1

tϕ(t) = T
aI

1−α
t

[T
aI

α

t (ϕ(t))
]

and thus
T
aI

1−α
t (f(t))− T

aI
1−α
t

[T
aI

α

t (ϕ(t))
]
≡ 0.

Then,
T
aI

1−α
t

[
f − T

aI
α

t (ϕ(t))
]
≡ 0.

From the uniqueness of solution to Abel’s integral equation [44], this implies that

f − T
aI

α

t ϕ ≡ 0.

Thus, f = T
aI

α

t ϕ and f ∈ T
aI

α

t [a, b].

Theorem 4.19. Let α > 0 and f ∈ C([a, b]) satisfy the condition in Theorem 4.18. Then,(T
aI

α

t ◦
T
aD

α

t

)
(f) = f.

Proof. By Theorem 4.18 and Proposition 4.14, we have:

T
aI

α

t ◦
T
aD

α
t f(t) = T

aI
α

t ◦
T
aD

α

t

(T
aI

α

t ϕ(t)
)

= T
aI

α

t ϕ(t) = f(t).

The proof is complete.
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4.2.2 Application to a Fractional Riemann–Liouville IVP on Time

Scales

In this subsection we prove existence of solution to the fractional order initial value prob-
lem (4.1)–(4.2) defined on a time scale. For this, let T be a time scale and J = [t0, t0+a] ⊂
T. Then the function y ∈ C(J ,R) is a solution of problem (4.1)–(4.2) if

T
t0
D
α

t
y(t) = f(t, y) on J ,

T
t0
I
α

t
y(t0) = 0.

To establish this solution, we need to prove the following lemma and theorem.

Lemma 4.20. Let 0 < α < 1, J ⊆ T, and f : J × R → R. Function y is a solution
of problem (4.1)–(4.2) if and only if this function is a solution of the following integral
equation:

y(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s))∆s.

Proof. By Theorem 4.19, T
t0
I
α

t
◦
(
T
t0
D
α

t
(y(t))

)
= y(t). From 4.3 we have

y(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s))∆s.

The proof is complete.

Our first result is based on the Banach fixed point theorem [36].

Theorem 4.21. Assume J = [t0, t0 +a] ⊆ T. The initial value problem (4.1)–(4.2) has a
unique solution on J if the function f(t, y) is a right-dense continuous bounded function
such that there exists M > 0 for which |f(t, y(t))| < M on J and the Lipshitz condition

∃L > 0 : ∀ t ∈ J and x, y ∈ R, ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

holds.

Proof. Let S be the set of rd-continuous functions on J ⊆ T. For y ∈ S, define

‖y‖ = sup
t∈J
‖y(t)‖.

It is easy to see that S is a Banach space with this norm. The subset of S(ρ) and the
operator T are defined by

S(ρ) = {X ∈ S : ‖Xs‖ ≤ ρ}
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and

T(y) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s))∆s.

Then,

|T(y(t))| ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1M∆s ≤ M

Γ(α)

∫ t

t0

(t− s)α−1∆s.

Since (t−s)α−1 is an increasing monotone function, by using Proposition 4.1 we can write
that ∫ t

t0

(t− s)α−1∆s ≤
∫ t

t0

(t− s)α−1ds.

Consequently,

|T(y(t))| ≤ M

Γ(α)

∫ t

t0

(t− s)α−1ds ≤ M

Γ(α)

aα

α
= ρ.

By considering ρ = Maα

Γ(α+1)
, we conclude that T is an operator from S(ρ) to S(ρ). Moreover,

‖T(x)− T(y)‖ ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1|f(s, x(s))− f(s, y(s))|∆s

≤ L‖‖x− y‖∞
Γ(α)

∫ t

t0

(t− s)α−1∆s

≤ L‖‖x− y‖∞
Γ(α)

∫ t

t0

(t− s)α−1ds

≤ L‖x− y‖∞
Γ(α)

aα

α
=

Laα

Γ(α + 1)
‖x− y‖∞

for x, y ∈ S(ρ). If Laα

Γ(α+1)
≤ 1, then it is a contraction map. This implies the existence

and uniqueness of solution to problem (4.1)–(4.2).

Theorem 4.22. Suppose f : J × R → R is a rd-continuous bounded function such that
there exists M > 0 with |f(t, y)| ≤M for all t ∈ J , y ∈ R. Then problem (4.1)–(4.2) has
a solution on J .

Proof. We use Schauder’s fixed point theorem [36] to prove that T has a fixed point. The
proof is given in several steps.
Step 1: T is continuous. Let yn be a sequence such that yn → y in C(J ,R). Then, for
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each t ∈ J ,

|T (yn)(t)− T (y)(t)|

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1 |f(s, yn(s))− f(s, y(s))|∆s

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1 sup
s∈J
|f(s, yn(s))− f(s, y(s))|∆s

≤ ‖f(·, yn(·))− f(·, y(·))‖∞
Γ(α)

∫ t

t0

(t− s)α−1∆s

≤ ‖f(·, yn(·))− f(·, y(·))‖∞
Γ(α)

∫ t

t0

(t− s)α−1ds

≤ ‖f(·, yn(·))− f(·, y(·))‖∞
Γ(α)

aα

α

≤ aα ‖f(·, yn(·))− f(·, y(·))‖∞
Γ(α + 1)

.

Since f is a continuous function, we have

|T (yn)(t)− T (y)(t)|∞ ≤
aα

Γ(α + 1)
‖f(·, yn(·))− f(·, y(·))‖∞ → 0 as n→∞.

Step 2: the map T sends bounded sets into bounded set in C(J ,R). Indeed, it is enough
to show that for any ρ there exists a positive constant l such that, for each

y ∈ Bρ = {y ∈ C(J ,R) : ‖y‖∞ ≤ ρ},

we have ‖T(y)‖∞ ≤ l. By hypothesis, for each t ∈ J we have

|T(y)(t)| ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1|f(s, y(s))|∆s

≤ M

Γ(α)

∫ t

t0

(t− s)α−1∆s

≤ M

Γ(α)

∫ t

t0

(t− s)α−1ds

≤ Maα

αΓ(α)

=
Maα

Γ(α + 1)
= l.

Step 3: the map T sends bounded sets into equicontinuous sets of C(J ,R). Let t1, t2 ∈
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J , t1 < t2, Bρ be a bounded set of C(J ,R) as in Step 2, and y ∈ Bρ. Then,

|T (y)(t2)− T (y)(t1)|

≤ 1

Γ(α)

∣∣∣∣∫ t1

t0

(t1 − s)α−1f(s, y(s))∆s−
∫ t2

t0

(t2 − s)α−1f(s, y(s))∆s

∣∣∣∣
≤ 1

Γ(α)

∣∣∣ ∫ t1

t0

((t1 − s)α−1 − (t2 − s)α−1 + (t2 − s)α−1)f(s, y(s))∆s

−
∫ t2

t0

(t2 − s)α−1f(s, y(s))∆s
∣∣∣

≤ M

Γ(α)

∣∣∣∣∫ t1

t0

((t1 − s)α−1 − (t2 − s)α−1)∆s+

∫ t2

t1

(t2 − s)α−1∆s

∣∣∣∣
≤ M

Γ(α)

∣∣∣∣∫ t1

t0

((t1 − s)α−1 − (t2 − s)α−1)ds+

∫ t2

t1

(t2 − s)α−1ds

∣∣∣∣
≤ M

Γ(α + 1)
[(t2 − t1)α + (t1 − t0)α − (t2 − t0)α] +

M

Γ(α + 1)
(t2 − t1)α

=
2M

Γ(α + 1)
(t2 − t1)α +

M

Γ(α + 1)
[(t1 − t0)α − (t2 − t0)α].

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence of
Steps 1 to 3, together with the Arzela–Ascoli theorem, we conclude that T : C(J ,R) →
C(J ,R) is completely continuous.
Step 4: a priori bounds. Now it remains to show that the set

Ω = {y ∈ C(J ,R) : y = λT(y), 0 < λ < 1}

is bounded. Let y ∈ Ω. Then y = λT(y) for some 0 < λ < 1. Thus, for each t ∈ J , we
have

y(t) = λ

[
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s))∆s

]
.

We complete this step by considering the estimation in Step 2. As a consequence of
Schauder’s fixed point theorem, we conclude that T has a fixed point, which is solution
of problem (4.1)–(4.2).





Conclusion and Further Work

In this PhD thesis the study of differentiation and integration of non-integer order is ex-
tended, via the recent and powerful calculus on time scales, to include, in a single theory,
the discrete fractional difference calculus and the local continuous fractional differential
calculus. We introduced some fundamental concepts and proved some basic properties,
and much remains to be done in order to develop the theory here initiated: to prove
concatenation properties of derivatives and integrals, to consider partial fractional opera-
tors on time scales, to introduce a suitable fractional exponential on time scales, to study
boundary value problems for fractional differential equations on time scales, to investigate
the usefulness of the new fractional calculus in applications to real world problems where
the time scale is partially continuous and partially discrete with a time-varying graininess
function, etc. Both non-symmetric and symmetric fractional derivatives and integrals on
an arbitrary nonempty closed subset of the real numbers are introduced and their funda-
mental properties derived. It is shown that a function may be fractional differentiable but
not differentiable; and that a function may be symmetric fractional differentiable but not
fractional differentiable. A relation between the non-symmetric and symmetric fractional
derivatives is also derived.

For further work, let us note that much remains to be carried out in order to develop
the theory here initiated. In particular, it would be interesting to investigate the usefulness
of the new fractional calculi in applications to real world problems, where the time scale is
partially continuous and partially discrete with a time-varying graininess function. This
and other questions will be subject to future research. There are several possibilities,
since it is possible to develop fractional calculi on time scales in different directions, e.g.,
instead of following the more common delta approach to time scales, one can develop a
nabla [7, 57], a diamond [55, 63], or a symmetric [31, 28] time scale fractional calculus.
The richness of time scales together with the richness of fractional calculus will continue
to motivate further research [24].
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Abstract
In this PhD thesis, we introduce new general notions of fractional derivative and in-

tegration for functions defined on arbitrary time scales, like nonsymetric and symmetric
fractional calculus on arbitrary time scales. Main properties of the new fractional oper-
ators are investigated and some fundamental results presented, illustrating the interplay
between discrete and continuous behaviors. Finally, we introduce the concept of frac-
tional derivative of Riemann–Liouville on time scales. Fundamental properties of the new
operator are proved, as well as an existence and uniqueness result for a fractional initial
value problem on an arbitrary time scale.
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continuous fractional calculi, nonsymmetric and symmetric fractional calculi, fractional
order derivatives, dynamic equations, initial value problems, time scales.
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.............................................................................................................................................

Résumé
Dans cette thèse, nous introduisons des nouvelles notions générales de la dérivée et

intégration fractionnaire des fonctions définies sur des échelles de temps arbitraires, ainsi
que les calculs fractionnaires symétriques et non-symétriques sur des échelles de temps
arbitraires. Plusieurs propriétés de nouveaux opérateurs fractionnaires sont établies, et
quelques résultats fondamentaux sont présentés, illustrant la relation entre le comporte-
ment continu et discret. Et enfin, nous introduisons le concept de dérivée fractionnaire
de Riemann–Liouville sur des échelles de temps. Nous prouvons les propriétés fondamen-
tales du nouvel opérateur, ainsi que l’existence et l’unicité du problème à valeur initial
fractionnaire sur une échelle de temps arbitraire.
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Différentiation fractionnaire, intégration fractionnaire, calculs sur les échelles de temps,
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de temps.

Classification AMS: 26A33, 26E70, 34N05.




