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Abstract

This thesis is a contribution to the study of various classes of functional
and neutral functional differential equations and inclusions of fractional or-
der with state dependent delay.
To get the existence of the mild solutions, sufficient conditions are considered
in the study of different classes.
Uniqueness results are also given for some classes of these problems.
The method used is to reduce the existence of these mild solutions to the
search for the existence of fixed points of appropriate operators by applying
different nonlinear alternatives in Fréchet spaces to entire the existence of
fixed points of the above operators which are mild solutions of our problems.
This method is based on fixed point theorems and is combined with the α-
resolvent families theory.

Key words and phrases:
Functional differential equations and inclusions, fractional order, mild solu-
tion, fixed point theory, α-resolvent families, Fréchet spaces, state depen-
dent delay, Riemann-Liouville’s integral and derivative, Caputo’s integral
and derivative.

AMS Subject Classification: 34G20, 34G25, 34K40, 47G20.
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Résumé

Cette thèse est une contribution à l’étude d’une variété de classes d’équations
et d’inclusions différentielles d’ordre fractionnaire ainsi que celles de type neu-
tre avec retard dépendant de l’état.
Dans l’étude des différentes classes, des conditions suffisantes d’existence de
solutions faibles sont considérées.
Pour certaines classes, on a aussi présenté des résultats d’unicité.
La méthode utilisée consiste à réduire l’éxistence des solutions à l’éxistence
de points fixes pour des opérateurs appropriés en appliquant différentes al-
térnatives non linéaires dans des éspaces de Fréchet, de tels points fixes sont
aussi solutions des problèmes posés.
Cette méthode est basée sur des théorèmes de points fixes et est combinée
avec la théorie des familles α-résolvantes.

Mots et phrases cléfs:

Equations et Inclusions Différentielles Fonctionnelles, order fractionnaire,
solution faible, théorie du point fixe, familles α-résolvantes, espace de Fréchet,
retard dépendant de l’état, intégrale et dérivée au sens de Riemann-Liouville,
intégrale et dérivée au sens de Caputo .

Classification AMS: 34G20, 34G25, 34K40, 47G20.
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Introduction

Functional differential equations and inclusions arise in a variety of areas
of biological, physical, and engineering applications. During the last decades,
existence and uniqueness of mild, strong and classical solutions of semi lin-
ear functional differential equations (respectively inclusions) has been studied
extensively by many authors using the α-resolvent families theory and fixed
point arguments. We mention, for instance, the books by Abbes et al [5],
Oldham and Spanier [81], Kolmanovskii and Myshkis [65], and the references
therein.
One can see also the papers [2], [6], [9] and [26]. Nonlinear evolution equa-
tions arise not only from many fields of mathematics, but also from other
branches of science such as physics, mechanics and material sciences.
Complicated situations in which the delay depends on the unknown functions
have been proposed in modeling in recent years
These equations and inclusions are frequently called equations and inclusions
with state-dependent delay.
Existence results and among other things were derived recently from func-
tional differential equations and inclusions when the solution is depending on
the delay. We refer the reader to the papers by Ahmed [11, 12], Adimy and
Ezzinbi [8], Agarwal et al [10], Ait Dads and Ezzinbi [13], and Hernandez et
al [57].
Over the past several years it has become apparent that equations and inclu-
sions with state-dependent delay arise also in several areas such as in classical
electrodynamics [44], in models of commodity price fluctuations [25], in mod-
els of blood cell productions [75] and in self similar protein dynamics [51].
Recently Li and Peng [73] studied a class of abstract homogeneous fractional
evolution equations.
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Baghli et al [17], have proved global existence and uniqueness results for an
initial value problem for functional differential equations of first order with
state-dependent delay.
Functional differential equations involving the Riemann-Liouville fractional
derivative were considered by Benchohra et al [33], N’Guérékata and Mophou
[80] studied semi-linear neutral fractional functional evolution equations with
infinite delay using the notion of α-resolvent family.
For example, Navier-Stokes and Euler equations from fluid mechanics, non-
linear reaction-diffusion equations from heat transfers and biological sciences,
nonlinear Klein-Gorden equations and nonlinear Schrödinger equations from
quantum mechanics and Cahn-Hilliard equations from material science are
some special examples of nonlinear evolution equations.
Complexity of nonlinear evolution equations and challenges in their theoret-
ical study have attracted a lot of interest from many mathematicians and
scientists in nonlinear sciences.
Neutral differential equations arise in many areas of applied mathematics
and such equations have received much attention in recent years.
A good guide to the literature for neutral functional differential equations
is the books by Hale [53], Hale and Verduyn Lunel [55], Kolmanovskii and
Myshkis [65] and the references therein.
When the delay is infinite, the notion of the phase space plays an important
role in the study of both quantitative and qualitative theory.
A usual choice is a semi-norm space satisfying suitable axioms, which was
introduced by Hale and Kato in [54], see also Corduneanu and Lakshmikan-
tham [39], Kappel and Schappacher [64] and Schumacher [90, 91].
For detailed discussion and applications on this topic, we refer the reader to
the books by Hino et al [61] and Wu [94].
Ezzinbi in [46] studied the existence of mild solutions for partial functional
differential equations with infinite delay, Henriquez in [59] and Hernandez et
al in [56] studied the existence and regularity of solutions to functional and
neutral functional differential equations with unbounded delay, Balachan-
dran and Dauer [24] have considered various classes of first and second order
semi-linear ordinary functional and neutral functional differential equations
on Banach spaces.
By means of fixed point arguments, Benchohra et al [33] have studied many
classes of functional differential equations and inclusions and proposed some
controllability results in [14, 29, 30, 31, 32, 37]. See also the works by Gastori
[50] and Li et al [72].
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Let us now briefly describe the organization of this thesis.
In chapter1 we collect some preliminaries, notations, definitions, theorems
and other auxiliary results which will be needed in this thesis, in the first
section we give some generalities, in section 2 we present some properties
of phase spaces, in the third section we give some properties of fractional
calculus, in section 4 we give some properties of set-valued maps and in the
last section we cite some fixed point theorems.
In chapter 2 we give some results of existence and uniqueness of mild so-
lutions for semi linear fractional functional differential equations with state
dependent delay in a Fréchet space. In particular in Section 2 we studied the
following problem

Dαx(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ [0,+∞), 0 < α < 1, (0.0.1)

x(t) = ϕ(t), t ∈ (−∞, 0], (0.0.2)

The Chapter 3 is devoted to the existence and uniqueness of mild solutions
for a class of neutral fractional functional differential equations with state
dependent delay. In Section 2 we studied the existence and uniqueness of
mild solutions for the following problem

Dα[x(t)− g(t, xρ(t,xt))] = Ax(t) + f(t, xρ(t,xt)), a.e. t ∈ [0,+∞), 0 < α < 1.
(0.0.3)

x0 = ϕ, ϕ ∈ B. (0.0.4)
(0.0.5)

Chapter 4 concerns the existence of mild solutions for a class of fractional
functional differential inclusions with state-dependent delay.
In Section 2 we studied the existence and uniqueness of mild solutions for
the following problem

Dαx(t) ∈ Ax(t) + F (t, xρ(t,xt)), t ∈ J := [0,+∞), (0.0.6)
x(t) = ϕ(t), t ∈ (−∞, 0]. (0.0.7)

(0.0.8)

Chapter 5 is devoted to the existence of mild solutions for a class of neu-
tral fractional functional differential inclusions with state-dependent delay.
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Section 2 concerns the following problem

cDα
0 [x(t)− g(t, xρ(t,xt))] ∈ A[x(t)− g(t, xρ(t,xt))] + F (t, xρ(t,xt)), t ∈ [0,+∞),

(0.0.9)
x(t) = ϕ(t), t ∈ (−∞, 0]. (0.0.10)

(0.0.11)

Each chapter is ended by an example to illustrate our main results.
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Chapter 1

Preliminaries

This chapter concerns some preliminaries, notations, definitions, theorems
and other auxiliary results which will be needed in the sequel.

1.1 Generalities
By C([0, b];E), b > 0 we denote the Banach space of continuous functions
from [0, b] into E, with the norm

‖x‖∞ = sup
t∈[0,b]

‖x(t)‖E.

B(E) is the space of bounded linear operators from E into E, with the usual
supreme norm

‖N‖B(E) = sup{‖N(x)‖E : ‖x‖E = 1}.

Definition 1.1.1 An operator T : E → E is compact if the image of each
bounded set B ⊂ E is relatively compact i.e (T (B) is compact).
T is completely continuous operator if it is continuous and compact.

Let L∞(J) be the Banach space of measurable functions x : J → E which
are essentially bounded, equipped with the norm

‖x‖L∞ = inf{c > 0 : ‖x‖E ≤ c, a.e. t ∈ J}.

A measurable function x : J → E is Bochner integrable if and only if ‖x‖E
is Lebesgue integrable.

17



CHAPTER 1. PRELIMINARIES

Let L1([0, b], E) denote the Banach space of measurable functions
x : [0, b]→ E which are Bochner integrable with the norm

‖x‖L1 =

∫ b

0

‖x(t)‖Edt.

Let (E, d) be a metric space. For any function x defined on (−∞, b] and any
t ∈ J , we denote by xt the element of B defined by

xt(θ) = x(t+ θ), θ ∈ (−∞, 0].

The function xt represents the history of the state from −∞ up to t.

Definition 1.1.2 The Laplace transform of a function f ∈ L1
loc(R+, E) is

defined by

f̂(λ) :=

∫ ∞
0

e−λtf(t)dt,<(λ) > ω,

if the integral is absolutely convergent for Re(λ) > ω.

1.2 Some properties of phase spaces
We define the phase space B axiomatically, using ideas and notations devel-
oped by Hale and Kato [54]. More precisely, B denote the vector space of
functions defined from (−∞, 0] into E endowed with a norm denoted ‖.‖B,
such that the following axioms hold.

(A1) If x : (−∞, b) → E, is continuous on [0, b] and x0 ∈ B, then for
t ∈ [0, b) the following conditions hold

(i) xt ∈ B
(ii) ‖xt‖B ≤ K(t) sup{|x(s)| : 0 ≤ s ≤ t}+M(t)‖x0‖B,
(iii) |x(t)| ≤ H‖xt‖B

where H ≥ 0 is a constant, K : [0, b)→ [0,+∞),
M : [0,+∞)→ [0,+∞) withK continuous andM locally bounded
and H, K and M are independent of x.

(A2) For the function x in (A1), the function t→ xt is a B-valued continuous
function on [0, b].

18



1.2. SOME PROPERTIES OF PHASE SPACES

(A3) The space B is complete.

Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.

Remark 1.2.1 (iii) is equivalent to |φ(0)| ≤ H‖φ‖B

We provide some examples of the phase spaces. For more details we refer to
the book by Hino et al. [61].

Example 1.2.2 Let BC be the space of bounded continuous functions de-
fined from (−∞, 0] to E.
BUC the space of bounded uniformly continuous functions defined from (−∞, 0]
to E,

C∞ :=

{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
.

C0 =

{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
,

endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

Then the spaces BUC, C∞ and C0 satisfy conditions (A1)− (A3). However,
BC satisfies (A1)and(A3) but (A2) is not satisfied.

Example 1.2.3 The spaces Cg, UCg, C∞g and C0
g .

Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=

{
φ ∈ C((−∞, 0], E) :

φ(θ)

g(θ)
is bounded on (−∞, 0]

}
.

C0
g :=

{
φ ∈ Cg : lim

θ→−∞

φ(θ)

g(θ)
= 0

}
,

endowed with the following norm

‖φ‖ = sup

{
|φ(θ)|
g(θ)

: θ ≤ 0

}
.

Then we have that the spaces Cg and C0
g satisfy conditions (A1)− (A3). We

consider the following condition on the function g.

19



CHAPTER 1. PRELIMINARIES

(g1) For all a > 0, sup0≤t≤a sup
{
g(t+θ)
g(θ)

: −∞ < θ ≤ −t
}
<∞.

The above spaces satisfy conditions (A1) and (A2) if (g1) holds.

Example 1.2.4 The space Cγ. For any real constant γ > 0, we define the
functional space Cγ by

Cγ :=

{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ)exists inE

}
endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

Let E = (E, ‖.‖n) be a Fréchet space with a family of semi-norms {‖.‖n}n∈N,
we say that X is bounded if for every n ∈ N, there exists Mn > 0 such that

‖x‖n ≤Mn for all x ∈ X.

To E we associate a sequence of Banach spaces {(En, ‖ · ‖n)} as follows: For
every n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y if
and only if ‖x − y‖n = 0 for x, y ∈ E. We denote En = (E|∼n , ‖ · ‖n) the
quotient space, and we set (En, ‖ · ‖n) the completion of En with respect to
‖ · ‖n. To every X ⊂ E, we associate a sequence {Xn} of subsets Xn ⊂ En

as follows: For every x ∈ E, we denote [x]n the equivalence class of x in En

and we define Xn = {[x]n : x ∈ X}. We denote Xn, intn(Xn) and ∂nX
n,

respectively, the closure, the interior and the boundary of Xn with respect
to ‖ · ‖n in En.
We assume that the family of semi-norms {‖.‖n}n∈N verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.

1.3 Fractional Order Calculus

1.3.1 The History of Fractional Order Calculus

The concept of fractional differential calculus has a long history. One may
wonder what meaning may be ascribed to the derivative of a fractional or-
der, that is dny

dxn
, where n is a fraction. In fact L’Hopital himself considered

20



1.3. FRACTIONAL ORDER CALCULUS

this possibility in a correspondence with Leibniz. In 1695 L’Hopital wrote
to Leibniz to ask, "What if n be 1/2?" From this question, the study of
fractional calculus was born. Leibniz responded to the question, "d

1
2x will

be equal to
√
dx. This is an apparent paradox from which, one day, useful

consequences will be drawn."
Many known mathematicians contributed to this theory over the years. Thus,
30 September 1695 is the exact date of birth of the "fractional calculus"!
Therefore, the fractional calculus has its origin in the works by Leibnitz,
L’Hopital (1695), Bernoulli (1697), Euler (1730), and Lagrange (1772). Some
years later, Laplace (1812), Fourier (1822), Abel (1823), Liouville (1832), Rie-
mann (1847), Grünwald (1867), Letnikov (1868), Nekrasov (1888), Hadamard
(1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz (1922), P. Levy(1923),
Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953), J. L. Lions
(1959), and Liverman (1964)... have developed the basic concept of frac-
tional calculus. In June 1974, Ross has organized the "First Conference on
Fractional Calculus and its Applications" at the University of New Haven,
and edited its proceedings [86]; Thereafter, Oldham and Spanier [81] pub-
lished the first monograph devoted to "Fractional Calculus" in 1974. The
integrals and derivatives of non-integer order, and the fractional integro-
differential equations have found many applications in recent studies in the-
oretical physics, mechanics and applied mathematics.
There exists the remarkably comprehensive encyclopedic-type monograph
by Samko, Kilbas and Marichev [87] which was published in Russian in 1987
and in English in 1993. (For more details see [74] and the book of Or-
tigueira [82]). In recent years, the theory on existence and uniqueness of
solutions of linear and nonlinear fractional functional differential equations
and inclusions has attracted the attention of many authors (see for example
[6, 9, 26, 34, 35, 36] and the references therein), and there has been a signifi-
cant development in the theory of such equations and inclusions. It is caused
by its applications in the modeling of many phenomena in various fields of
science and engineering such as acoustic, control theory, chaos and fractals,
signal processing, porous media, electrochemistry, visco-elasticity, rheology,
polymer, physics, optics, economics, astrophysics, chaotic dynamics, statis-
tical physics, thermodynamics, proteins, biosciences, bioengineering... etc.
Fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes. See
for example [18, 19, 60, 62, 88] and the references therein.
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CHAPTER 1. PRELIMINARIES

1.3.2 Some Properties of Fractional Order Calculus

Definition 1.3.1 [63] Let α > 0 for h ∈ L1([0, b]), b > 0 the expression

(Iα0 h)(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds, (1.3.1)

is called the left-side mixed Riemann-Liouville integral of order α where Γ(.)
is the Gamma function defined by Γ(ξ) =

∫∞
0
tξ−1 exp(−t)dt, ξ > 0. provided

the right hand-side exists on R+.

In particular

(I0
0h)(t) := h(t), (I1

0h)(t) :=

∫ t

0

h(s)ds.

Note that, (Iα0 h exists for all α > 0 when h ∈ L1([0, b]).
Also, when h ∈ C([0, b], E) then (Iα0 h) ∈ C([0, b], E).

Example 1.3.2 Let β ∈ (0,∞). Then

Iα0 t
β =

Γ(1 + β)

Γ(1 + β + α
tβ+α, for almost all t ∈ [0, b].

Definition 1.3.3 [1] The Riemann-Liouville fractional derivative of order
α ∈ (0, 1] of a function h ∈ L1([0, b]) is defined by

Dα
0 h(t) =

d

dt
I1−α

0 h(t)

=
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αh(s)ds, for almost t ∈ [0, b].

Example 1.3.4 Let λ ∈ (0,∞) and α ∈ (0, 1], then

Dα
0 t
λ =

Γ(1 + λ)

Γ(1 + λ− α)
tλ−α, for almost all t ∈ [0, b].

22



1.4. SOME PROPERTIES OF SET-VALUED MAPS

1.4 Some Properties of Set-Valued Maps

We use the following notations:Let (E, d) be a metric space where E is sep-
arable and X be a subset of E. We denote:

P (E) = {X ⊂ E : X 6= ∅}

and

Pb(E) = {X ⊂ E : X bounded }, Pcl(E) = {X ⊂ E : X closed }.

Pcp(E) = {X ⊂ E : X compact }, Pcv(E) = {X ⊂ E : X convexe }.

Pcv,cp(E) = Pcv(E) ∩ Pcp(E).

Let A,B ∈ P (E). Consider Hd : P (E)× P (E)→ IR+ ∪ {∞} the Hausdorff
distance between A and B defined by:

Hd(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(A, b)

}
,

where d(a,B) = inf{d(a, b) : b ∈ B} and d(A, b) = inf{d(a, b) : a ∈ A}.
As usual, d(x, ∅) = +∞.
Then (Pb,cl(E), Hd) is a metric space, (Pcl(E), Hd) is a generalized (complete)
metric space.

Definition 1.4.1 A multi-valued map F : J → Pcl(E) is said to be measur-
able if, for each x ∈ E, the function g : J → E defined by

g(t) = d(x, F (t)) = inf{d(x, z) : z ∈ F (t)},

is measurable.

Definition 1.4.2 Let X and Y be metric spaces. A set-valued map F from
X to Y is characterized by its graph Gr(F ), the subset of the product space
X × Y defined by

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}
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Definition 1.4.3 1. A measurable multi-valued function F : J → Pb,cl(E)
is said to be integrable bounded if there exists a function g ∈ L1(IR+)
such that |f | ≤ g(t) for almost t ∈ J for all f ∈ F (t).

2. F is bounded on bounded sets if F (B) =
⋃
x∈B F (x) is bounded in E

for all B ∈ Pb(E), i.e. supx∈B{sup{|y| : y ∈ F (E)}} <∞.

3. A set-valued map F is called upper semi-continuous (u.s.c. for short)
on E if for each x0 ∈ E the set F (x0) is a nonempty, closed subset of
E and for each open set U of E containing F (x0), there exists an open
neighborhood V of x0 such that F (V ) ⊂ U . A set-valued map F is said
to be upper semi-continuous if it is so at every point x0 ∈ E.

4. A set-valued map F is called lower semi-continuous (l.s.c) at x0 ∈ E
if for any y0 ∈ F (x0) and any neighborhood V of y0 there exists a
neighborhood U of x0 such that F (x0) ∩ V 6= ∅ for all x0 ∈ U .

5. A set-valued map F is said to be lower semi-continuous if it is so at
every point x0 ∈ E.

6. F is said to be completely continuous if F (B) is relatively compact for
every B ∈ Pb(E). If the multi-valued map f is completely continuous
with nonempty compact values, then f is upper semi-continuous if and
only if f has closed graph.

Proposition 1.4.4 Let F : E → G be an u.s.c map with closed values. Then
Gr(F ) is closed.

Definition 1.4.5 A multi-valued map G : E → P (E) has convex (closed)
values if G(x) is convex (closed) for all x ∈ E. We say that G is bounded on
bounded sets if G(B) is bounded in E for each bounded set B of E, i.e.,

sup
x∈B
{sup{‖x‖E : x ∈ G(x)}} <∞.

Finally, we say that G has a fixed point if there exists x ∈ E such that
x ∈ G(x).

For each x : (−∞,+∞) → E let the set SF,x known as the set of selectors
from F defined by

SF,x = {v ∈ L1(J,E) : v(t) ∈ F (t, xt) , a.e. t ∈ J}.
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For more details on multi-valued maps we refer to the books of Deimling
[41] and Górniewicz [52] and the papers of Agarwalet al. [10, 89].

The following definition is the appropriate concept of admissible contrac-
tion map in E.

Definition 1.4.6 [47] A multi-valued map F : E → P(E) is called an ad-
missible contraction if for each n ∈ N there exists a constant kn ∈ (0, 1) such
that

i) Hd(F (x), F (y)) ≤ kn‖x− y‖n for all x, y ∈ E,

ii) for every x ∈ E and every ε ∈ (0,∞)n, there exists y ∈ F (x) such that
‖x− y‖n ≤ ‖x− F (x)‖n + εn for every n ∈ N.

1.5 Some properties of α-resolvent families
In order to define the mild solutions of the considered problems, we recall
the following definitions and theorems

Definition 1.5.1 Let A be a closed and linear operator with domain D(A)
defined on a Banach space E. We call A the generator of an α-resolvent
family or solution operator if there exists ω > 0 and a strongly continuous
function Tα : R+ → L(E) such that

{λ : Re(λ) > ω} ⊂ ρ(A),

where ρ(A), is the resolvant set of A, and

(λα − A)−1x =

∫ ∞
0

exp−λt Tα(t)xdt, Re(λ) > ω, x ∈ E.

In this case, Tα(t) is called the solution operator generated by A.
The following result is a direct consequence of (Proposition 3.1 and Lemma
2.2) in [71].

Proposition 1.5.2 Let Tα(t) ∈ L(E) be the solution operator with generator
A. Then the following conditions are satisfied:

1. Tα(t) is strongly continuous for t ≥ 0 and Tα(0) = I.
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2. Tα(t)D(A) ⊂ D(A) and ATα(t)x = Tα(t)Ax for all x ∈ D(A), t ≥ 0.

3. For every x ∈ D(A) and t ≥ 0,

Tα(t)x = x+

∫ t

0

(t− s)α−1

Γ(α)
ATα(s)xds.

4. Let x ∈ D(A). Then∫ t

0

(t− s)α−1

Γ(α)
Tα(s)xds ∈ D(A).

and

Tα(t)x = x+ A

∫ t

0

(t− s)α−1

Γ(α)
Tα(s)xds

Remark 1.5.3 The concept of the solution operator, as defined above, is
closely related to the concept of a resolvent family. (see Prüss [85].) Because
of the uniqueness of the Laplace transform, in the border case α = 1, the
family Tα(t) corresponds to the C0- semigroup (see [45]), where as in the
case α = 2 a solution operator corresponds to the concept of cosine family
(see Arendt et al. [15]).

For more details on the α-resolvent families, we refer to [80] and the refer-
ences therein.

1.6 Some Fixed Point Theorems
In the beginning, let us give the definition of a contraction on a space E.

Definition 1.6.1 [49] A function f : E → E is said to be a contraction if
for every n ∈ N there exists kn ∈ [0, 1) such that:

‖f(x)− f(y)‖n ≤ kn‖x− y‖n for all x, y ∈ E.

Hereafter the fixed point theorems used in this thesis:

Theorem 1.6.2 [49]. Let E be a Fréchet space and X a closed subset of E
such that 0 ∈ X and let N : X → E be a contraction map such that N(X)
is bounded. Then one of the following statements holds:
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• N has a unique fixed point in E.

• There exists 0 ≤ λ < 1, n ∈ N and x ∈ ∂nXn: ‖x− λN(x)‖n = 0.

For multi-valued maps, our results are based on the following nonlinear al-
ternative due to Frigon [48] for admissible contractive multi-valued maps in
Fréchet spaces.

Theorem 1.6.3 [48] Let E be a Fréchet space and U an open neighborhood
of the origin in E and let N : U → P(E) be an admissible multi-valued con-
traction. Assume that N is bounded, then one of the following statements
holds:

• (S1) N has a fixed point,

• (S2) There exists λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λN(x).
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Chapter 2

Fractional Functional Differential
Equations with State Dependent
Delay

2.1 Introduction

In this chapter, we establish the existence and uniqueness of the mild solution
defined on the semi-infinite positive real interval [0,+∞) for a class of semi-
linear fractional functional differential equations with state dependent delay.
This problem was studied by Darwish and N’touyas in [40].
Consider the following problem

Dαx(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ [0,+∞), 0 < α < 1, (2.1.1)

x(t) = ϕ(t), t ∈ (−∞, 0], (2.1.2)

where A : D(A) ⊂ E → E is the infinitesimal generator of an α-resolvent
family (Tα(t))t≥0 defined on a real Banach space E, Dα is understood here in
the Riemann-Liouville sense, f : J ×B → E, ρ : J ×B → R are appropriate
given functions. ϕ belongs to the abstractphase space B with ϕ(0) = 0.

2.2 Existence Results

Let f : J × B → E be a continuous function and ϕ(0) = 0.
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Definition 2.2.1 [1] A function x is said to be a mild solution of (2.1.1)-
(2.1.2) if x satisfies

x(t) =


ϕ(t), t ∈ (−∞, 0],
t∫

0

Tα(t− s)f(s, xρ(s,xs)) ds, t ∈ J.
(2.2.3)

Set R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}. We assume that
ρ : J × B → R is continuous. Moreover we assume the following assumption
and hypothesis:

• (Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there
exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞) such
that

‖ϕt‖B ≤ Lϕ(t)‖ϕ‖B for every t ∈ R(ρ−)

• (H1) There exists a constant M > 0 such that

‖Tα(t)‖B(E) ≤ M̂, t ∈ J.

• (H2) There exists a function p ∈ L1
loc(J,R+) and a continuous nonde-

creasing function ψ : [0,+∞)→ (0,∞) such that:

|f(t, u)| ≤ p(t)ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B.

• (H3) For all n > 0, there exists ln ∈ L1
loc(J,R+) such that:

|f(t, u)− f(t, v)| ≤ lR(t)‖u− v‖B for all t ∈ [0, n] and u, v ∈ B.

Remark 2.2.2 The assumption (Hϕ) is frequently verified by continuous and
bounded functions. for more details, see Hino et al [61].

Define the following space

B+∞ = {x : R→ E : x|[0,b] continuous for b > 0 and x0 ∈ B},

where x|[0,b] is the restriction of x to the real compact interval [0, b].
Let us fix r > 1. For every n ∈ N, we define in B+∞ the semi-norms by:

‖x‖n := sup{e−rL∗n(t)|x(t)| : t ∈ [0, n]}

where L∗n(t) =
t∫

0

ln(s)ds, ln(t) = KnM̂ln(t) and ln is the function from (H3).

Then B+∞ is a Fréchet space with these semi-norms family ‖.‖n.
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Lemma 2.2.3 [61], (Lemma 2.4) Let x : (−∞, b] → E is a function such
that x0 = ϕ, then

‖xs‖B ≤ (Mb +Lϕ)‖ϕ‖B+Kb sup{|x(θ)|, θ ∈ [0,max(0, s)]}, s ∈ R(ρ−)∪ J,

where Lϕ = supt∈R(ρ−) L
ϕ(t).

Theorem 2.2.4 Assume that (Hϕ) and (H1)− (H3) hold and moreover for
each n ∈ N ∫ +∞

cn

ds

ψ(s)
> knM̂

∫ n

0

p(s)ds, (2.2.4)

with cn = (Mn + Lϕ +KnM̂H)‖ϕ‖B. Then the problem (2.1.1)-(2.1.2) has a
unique mild solution on (−∞,+∞).

Proof 2.2.5 We transform the problem (2.1.1)-(2.1.2) into a fixed point the-
orem. In fact, we define the operator N : B+∞ → B+∞ defined by

N(x)(t) =


ϕ(t), t ∈ (−∞, 0],
t∫

0

Tα(t− s)f(s, xρ(s,xs)) ds, t ∈ J.
(2.2.5)

It is clear that the fixed points of the operator N are mild solutions of the
problem (2.1.1)-(2.1.2).
For ϕ ∈ B, we define the function y : R→ E by

y(t) =

{
ϕ(t), t ∈ (−∞, 0],
0, t ∈ J. (2.2.6)

Then y0 = ϕ.
For each function z ∈ B+∞ with z(0) = 0 we denote by z the function defined
by

z(t) =

{
0, t ∈ (−∞, 0],
z(t), t ∈ J. (2.2.7)

If x(t) satisfies (2.2.1), we can decompose it as x(t) = y(t) + z(t) for t ≥ 0,
which implies that xt = yt + zt for every t ≥ 0. The function z satisfies

z(t) =

∫ t

0

Tα(t− s)f(s, yρ(s,ys+zs) + zρ(s,ys+zs))ds for t ∈ J.
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Let
B0

+∞ = {z ∈ B+∞ : z0 = 0 ∈ B}.
For any z ∈ B0

+∞ we have

‖z‖∞ = ‖z0‖B + sup{|z(s)| : 0 ≤ s < +∞} = sup{|z(s)| : 0 ≤ s < +∞}.

Thus (B0
+∞, ‖.‖+∞) is a Banach space.

We define the operator G : B0
+∞ → B0

+∞ by:

G(z)(t) =

∫ t

0

Tα(t− s)f(s, yρ(s,ys+zs) + zρ(s,ys+zs))ds, t ∈ J.

The operator N has a fixed point is equivalent to say that G has one, so it
turns to prove that G has a fixed point.
Let z ∈ B0

+∞ be such that z = λG(z) for some λ ∈ [0, 1). By hypotheses
(H1), (H2), (Hϕ) and (2.2.3), we have for each t ∈ [0, n]

|z(t)| ≤
∫ t

0

‖Tα(t− s)‖B(E)|f(s, yρ(s,ys+zs) + zρ(s,ys+zs))|ds

≤ M̂

∫ t

0

p(s)ψ(‖yρ(s,ys+zs) + zρ(s,ys+zs)‖B)ds

≤ M̂

∫ t

0

p(s)ψ(Knu(s) + (Mn + Lϕ +KnM̂H)‖ϕ‖B)ds,

where
u(s) = sup{|z(θ)| : θ ∈ [0, s]}.

Set
cn := (Mn + Lϕ +KnM̂H)‖ϕ‖B.

Then, for t ∈ [0, n], we have

u(t) ≤ M̂

∫ t

0

[p(s)ψ(Knu(s) + cn)]ds.

Thus

Knu(t) + cn ≤ cn +KnM̂

∫ t

0

p(s)ψ(Knu(s) + cn)ds.

Now define the function µ by

µ(t) = sup{Knu(s) + cn : 0 ≤ s ≤ t}, t ∈ [0, n].
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Let t∗ ∈ [0, t] be such that

µ(t) = Knu(t∗) + cn‖ϕ‖B.

Then by the previous inequality, we have

µ(t) ≤ cn +KnM̂

∫ t

0

p(s)ψ(µ(s))ds, t ∈ [0, n].

Set

v(t) = cn +KnM̂

∫ t

0

p(s)ψ(µ(s))ds.

Then we have µ(t) ≤ v(t) for all t ∈ [0, n].
By the definition of v, we have

v(0) = cn and v
′(t) = KnM̂p(t)ψ(µ(t)) a.e. t ∈ [0, n].

Using the fact that ψ is non-decreasing, we get that

v′(t) ≤ KnM̂p(t)ψ(v(t)) a.e. t ∈ [0, n].

This implies that for each t ∈ [0, n] we have∫ v(t)

cn

ds

ψ(s)
≤ KnM̂

∫ t

0

p(s)ds ≤ KnM̂

∫ n

0

p(s)ds <

∫ +∞

cn

ds

ψ(s)
.

Thus for t ∈ [0, n] there exists a constant An such that v(t) ≤ An and hence
µ(t) ≤ An. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ An.
Set

Z = {z ∈ B0
+∞ : sup

0≤t≤n
|z(t)| ≤ An + 1, for all n ∈ N}.

It is clear that Z is closed subset of B0
+∞.

We claim show that G : Z → B0
+∞ is a contraction operator.

In fact, let z, z ∈ Z, thus using (H1) and (H3) for each t ∈ [0, n] and n ∈ N∗

|G(z)(t)−G(z)(t)| ≤
∫ t

0

‖Tα(t− s)‖B(E)|f(s, yρ(s,ys+zs) + zρ(s,ys+zs))

− f(s, yρ(s,ys+zs) + zρ(s,zs+ys))| ds

≤
∫ t

0

M̂ln(s)‖zρ(s,ys+zs) − zρ(s,ys+zs)‖Bds.
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Using (Hϕ) and Lemma (2.2.3), we obtain that

|G(z)(t)−G(z)(t)| ≤
∫ t

0

M̂ln(s)Kn|z(s)− z(s)|ds

≤
∫ t

0

[
ln(s)erl

∗
n(s)
][
e−rl

∗
n(s)|z(s)− z(s)|

]
ds

≤
∫ t

0

[erl∗n(s)

r

]′
ds‖z − z‖n

≤ 1

r
erl
∗
n(t)‖z − z‖n.

Therefore,

‖G(z)−G(z)‖n ≤
1

r
‖z − z‖n.

Then the operator G is a contraction for all n ∈ N. By the choice of Z there
is no z ∈ ∂Z such that z = λG(z), λ ∈ (0, 1). Then the second statement in
theorem (1.6.2) dose not hold. The nonlinear alternative of Frigon-Granas
shows that the first statement holds. Thus, we deduce that the operator G
has a unique fixed-point z∗. Then x∗ = y∗ + z∗, t ∈ (−∞,+∞) is a fixed
point of the operator N , which is the unique mild solution of the problem
(2.1.1)-(2.1.2).

2.3 Example

To illustrate our results,we propose the following system
∂α

∂tα
(u, ξ) = ∂2

∂ξ2
u(t, ξ)

+
∫ 0

−∞ a1(s− t)u
[
s− ρ1(t)ρ2

( ∫ π
0
a2(θ)|u(t, θ)|2dθ

)
, ξ
]
ds, t ≥ 0, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,
u(θ, ξ) = u0(θ, ξ),−∞ < θ ≤ 0, ξ ∈ [0, π].

(2.3.8)
Where a1 : [0,+∞) → R, ρ1 : [0,+∞) → R and ρ2 : [0,+∞) → R
are integrable functions, a2 is a real function defined on (−∞, 0] and u0 :
(−∞, 0]× [0, π]→ R.
To represent this system in the abstract form (2.1.1)-(2.1.2), we choose the
space
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E = L2([0, π],R) and the operator A : D(A) ⊂ E → E given by Aω = ω′′
with domain

D(A) := H2(0, t) ∩H1
0 (0, t).

It is well known that A is an infinitesimal generator of an α-resolvent family
(Tα(t))t≥0 on E. Furthermore, A has discrete spectrum with eigenvalues −n2,
with n ∈ N∗ and corresponding normalized eigenfunctions given by

zn(ξ) =

√
2

π
sin(nξ).

In addition, {zn : n ∈ N∗} is an ortho-normal basis of E. and

Tα(t)x =
∞∑
n=1

e−n
2t(x, zn)zn,

for x ∈ E and t ≥ 0. It follows from this representation that (Tα(t))t≥0 is
compact for every t > 0 and that

‖Tα(t)‖ ≤ e−t for every t ≥ 0.

Theorem 2.3.1 Let B = BUC(R−;E) and φ ∈ B. assume that condition
(Hφ) holds, ρi : [0,+∞) → [0,∞), i = 1, 2 are continuous and the functions
ai : R → R are continuous, for i = 1, 2. Then there exists a unique mild
solution of (2.3.8).

Proof 2.3.2 From the above assumptions, we have that

f(t, ψ)(ξ) =

∫ 0

−∞
a1(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

(∫ π

0

a2(θ)|ψ(0, ξ)|2dθ
)
,

are well defined functions, which permit to transform system (2.3.8) into
the abstract system (2.1.1)-(2.1.2). Moreover, the function f is linear and
bounded. Now, the existence of a mild solution can be deduced by a direct
application of Theorem (2.2.4). By Remark (2.2.2), we obtain the following
result: There exists a unique mild solution of (2.3.8) on (−∞,+∞).
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Chapter 3

Fractional Neutral Functional
Differential Equations with State
Dependent Delay

3.1 Introduction

In this chapter, we discuss the existence of the unique mild solution defined
on the semi-infinite positive real interval [0,+∞) for a class of neutral frac-
tional functional differential equations with state dependent delay . Baghliet
al [17] studied the existence and uniqueness of mild solutions for neutral par-
tial functional equations of entire order with state-dependent delay in a real
Banach space (E, |.|) when the delay is infinite. Our contribution is to intro-
duce a new approach based on the notion of semi norms in Fréchet spaces.
In particular, we consider the following initial value problem

Dα[x(t)−g(t, xρ(t,xt))] = Ax(t)+f(t, xρ(t,xt)), t ∈ [0,+∞), 0 < α < 1, (3.1.1)

x0 = ϕ, ϕ ∈ B, (3.1.2)

where A : D(A) ⊂ E → E is the infinitesimal generator of an α-resolvent
family (Tα(t))t≥0 defined on a real Banach space E, Dα is understood here in
the Riemann-Liouville sense, f : J ×B → E, ρ : J ×B → R and g : J ×B →
E are appropriate given functions and satisfy some conditions that will be
specified later, ϕ belongs to an abstract space denoted B and called phase
space with ϕ(0)−g(0, ϕ) = 0. This chapter is arranged as follows: In Section
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2, existence results are presented , and in Section 3, an example is given to
illustrate the abstract theory.

3.2 Existence Results
Before starting and proving the existence results, let us give the defini-
tion of mild solution to the neutral partial evolution problem (3.1.1)-(3.1.2).
Throughout this work, the function f : J × B → E will be continuous.

Definition 3.2.1 A function x is said to be a mild solution of (3.1.1)-(3.1.2)
if x satisfies

x(t) =


ϕ(t), t ∈ (−∞, 0],

g(t, xρ(t,xt)) +
t∫

0

Tα(t− s)A(s)g(s, xρ(s,xs))ds

+
t∫

0

Tα(t− s)f(s, xρ(s,xs))ds, t ∈ J.

(3.2.3)

Set R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}. We always assume that
ρ : J × B → R is continuous.
Let M̂ be such that M̂ = supt∈J |Tα(t)| then

‖Tα(t)‖B(E) ≤ M̂, t ∈ J.

Additionally, we introduce the following assumption and hypothesis:

• (Hϕ)The function t → ϕt is continuous from R(ρ−) into B and there
exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞) such
that

‖ϕt‖B ≤ Lϕ(t)‖ϕ‖B for every t ∈ R(ρ−)

Remark 3.2.2 The condition (Hϕ), is frequently verified by contin-
uous and bounded functions. For more details, see Hino et all [?],
Proposition 7.1.1).

• (H1) There exist a function p ∈ L1
loc(J,R+) and a continuous nonde-

creasing function ψ : [0,+∞)→ (0,∞) such that

|f(t, u)| ≤ p(t)ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B.
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• (H2) For all n > 0, there exists ln ∈ L1
loc(J,R+) such that:

|f(t, u)− f(t, v)| ≤ ln(t)‖u− v‖B for all t ∈ [0, n] and u, v ∈ B.

• (H3) There exists a constant M̄0 > 0 such that

‖A−1‖B(E) ≤ M̄0 for all t ∈ J.

• (H4) There exists a constant L∗ > 0 such that

|Ag(s, ϕ)− Ag(s̄, ϕ̄)| ≤ L∗ (|s− s̄|+ ‖ϕ− ϕ̄‖B)

for all s, s̄ ∈ J and ϕ, ϕ̄ ∈ B.

Define the following space

B+∞ = {x : R→ E : x|[0,b] continuous for b > 0 and x0 ∈ B},

where x|[0,b] is the restriction of x to the real compact interval [0, b].
Let us fix r > 1. For every n ∈ N, we define in B+∞ the semi norms by:

‖x‖n := sup{e−rL∗n(t)|x(t)| : t ∈ [0, n]}

where L∗n(t) =
t∫

0

ln(s)ds, ln(t) = KnM̂ln(t) and ln is the function given in

(H2).
Then B+∞ is a Fréchet space with those semi norms family ‖.‖n.

Lemma 3.2.3 [56], (Lemma 2.4) If x : (−∞, b]→ E is a function such that
x0 = ϕ, then

‖xs‖B ≤ (Mb +Lϕ)‖ϕ‖B+Kb sup{|x(θ)|, θ ∈ [0,max(0, s)]}, s ∈ R(ρ−)∪ J,

where Lϕ = supt∈R(ρ−) L
ϕ(t).

Theorem 3.2.4 Suppose the hypothesis (Hϕ) and (H1)− (H4) are satisfied
and moreover for each n ∈ N∫ +∞

δn

ds

s+ ψ(s)
>

M̂Kn

1− M̄0LKn

∫ n

0

max(L, p(s))ds (3.2.4)
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with

δn = cn +KnL
M̄0(1 + M̂) + M̂n+ M̄0[cn + M̂‖ϕ‖B]

1− M̄0LKn

,

and cn = (Mn + Lϕ + KnM̂H)‖ϕ‖B, then the problem (3.1.1)-(3.1.2) has a
unique mild solution.

Proof 3.2.5 Define the operator N : B+∞ → B+∞ by:

N(x)(t) =


ϕ(t), t ≤ 0

g(t, xρ(t,xt))

+
∫ t

0
Tα(t− s)A(s)g(s, xρ(s,xs))ds

+
∫ t

0
Tα(t− s)f(s, xρ(s,xs))ds, t ∈ J.

(3.2.5)

Then, fixed points of the operator N are mild solutions of the problem (3.1.1)-
(3.1.2).

For ϕ ∈ B, we consider the function x : R→ E defined as follows by

y(t) =

{
ϕ(t), t ≤ 0,

0, t ∈ J.

Then y0 = ϕ. For each function z ∈ B+∞ with z(0) = 0, we consider the
function z̄ by

z̄(t) =

{
0, if t ≤ 0;

z(t), if t ∈ J.

If x(·) satisfies (3.2.1), we decompose it as x(t) = z(t) + y(t), t ≥ 0, which
implies xt = zt + yt, for every t ∈ J and the function z(·) satisfies z0 = 0
and for t ∈ J , we get

z(t) = g(t, zρ(t,zt+yt) + yρ(t,zt+yt))

+

∫ t

0

Tα(t− s)A(s)g(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds

+

∫ t

0

Tα(t− s)f(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds.
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Define the operator F : B0
+∞ → B0

+∞ by :

F (z)(t) = g(t, zρ(t,zs+ys) + yρ(t,zs+ys))

+
∫ t

0
Tα(t− s)A(s)g(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds

+
∫ t

0
Tα(t− s)f(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds.

(3.2.6)

Obviously the operator N has a fixed point is equivalent to F has one, so it
turns to prove that F has a fixed point. Let z ∈ B0

+∞ be such that z = λF (z)
for some λ ∈ [0, 1). Then, using (H1)− (H4), we have for each t ∈ [0, n]

|z(t)| ≤ |g(t, zρ(t,zt+yt) + yρ(t,zt+yt))|

+ |
∫ t

0

Tα(t− s)Ag(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds|

+ |
∫ t

0

Tα(t− s)f(s, zρ(s,zs+ys) + yρ(s,zs+ys))ds|

≤ ‖A−1‖B(E)‖Ag(t, zρ(t,zt+yt) + yρ(t,zt+yt))‖

+

∫ t

0

‖Tα(t− s)‖B(E)‖Ag(s, zρ(s,zs+ys) + yρ(s,zs+ys))‖ds

+

∫ t

0

‖Tα(t− s)‖B(E)|f(s, zρ(s,zs+ys) + yρ(s,zs+ys))|ds

≤ M̄0L(‖zρ(t,zs+ys) + yρ(t,zs+ys)‖B + 1) + M̂M̄0L(‖ϕ‖B + 1)

+ M̂

∫ t

0

L(‖zρ(s,zs+ys) + yρ(s,zs+ys)‖B + 1)ds

+ M̂

∫ t

0

p(s)ψ(‖zρ(s,zs+ys) + yρ(s,zs+ys)‖B)ds

≤ M̄0L‖zρ(t,zt+yt) + yρ(t,zt+yt)‖B + M̄0L(1 + M̂) + M̂Ln+ M̂M̄0L‖ϕ‖B

+ M̂L

∫ t

0

‖zρ(s,zs+ys) + yρ(s,zs+ys)‖Bds

+ M̂

∫ t

0

p(s)ψ(‖zρ(s,zs+ys) + yρ(s,zs+ys)‖B)ds.
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Using the assumption (A1), we get

‖zρ(t,zs+ys) + yρ(t,zs+ys)‖B ≤ ‖zρ(t,zs+ys)‖B + ‖yρ(t,zs+ys)‖B
≤ K(s)|z(s)|+M(s)‖Z0‖B +K(s)|y(s)|+M(s)‖y0‖B
≤ Kn|z(s)|+MnM |ϕ(0)|+Mn‖ϕ‖B
≤ Kn|z(s)|+MnMH‖ϕ‖B +Mn‖ϕ‖B
≤ Kn|z(s)|+ (KnMH +Mn)‖ϕ‖B.

Set cn = (KnMH +Mn)‖ϕ‖B we obtain

|z(t)| ≤ M̄0L(Kn|z(t)|+ cn) + M̄0L(1 + M̂) + M̂Ln+ M̂M̄0L‖ϕ‖B

+ M̂L

∫ t

0

(Kn|z(s)|+ cn)ds+ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds

≤ M̄0LKn|z(t)|+ M̄0L(1 + M̂) + M̂Ln+ M̄0Lcn + M̂M̄0L‖ϕ‖B

+ M̂L

∫ t

0

(Kn|z(s)|+ cn)ds+ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds.

Then

(1− M̄0LKn)|z(t)| ≤ L(M̄0(1 + M̂) + M̂n+ M̄0cn + M̂M̄0‖ϕ‖B)

+ M̂L

∫ t

0

(Kn|z(s)|+ cn)ds+ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds.

Set

δn := cn +
LKn

1− M̄0LKn

[M̄0(1 + M̂) + M̂n+ M̄0cn + M̂M̄0‖ϕ‖B].

Thus

Kn|z(t)|+ cn ≤ δn +
M̂LKn

1− M̄0LKn

∫ t

0

(Kn|z(s)|+ cn)ds

+
M̂Kn

1− M̄0LKn

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds.

We consider the function µ defined by

µ(t) := sup{ Kn|z(s)|+ cn : 0 ≤ s ≤ t }, 0 ≤ t < +∞.
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Let t? ∈ [0, t] be such that µ(t?) = Kn|z(t?)|+ cn. By the previous inequality,
we have

µ(t) ≤ δn +
M̂Kn

1− M̄0LKn

[∫ t

0

Lµ(s)ds+

∫ t

0

p(s)ψ(µ(s))ds

]
for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then, we have

µ(t) ≤ v(t) for all t ∈ [0, n].

By the definition of v, we have v(0) = δn and

v′(t) =
M̂Kn

1− M̄0LKn

[Lµ(t) + p(t)ψ(µ(t))] a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ M̂Kn

1− M̄0LKn

[Lv(t) + p(t)ψ(v(t)] a.e. t ∈ [0, n].

Using the condition (2.2.4), this implies that for each t ∈ [0, n], we have

∫ v(t)

δn

ds

s+ ψ(s)
≤ M̂Kn

1− M̄0LKn

∫ t

0

max(L, p(s))ds

≤ M̂Kn

1− M̄0LKn

∫ n

0

max(L, p(s))ds

<

∫ +∞

δn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn and
hence µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn.

Now, we show that F : Z → B0
+∞ is a contraction operator.
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Set z, z̄ ∈ Z, thus for each t ∈ [0, n] and n ∈ N

|F (z)(t)− F (z̄)(t)| ≤ |g(t, zρ(t,zt+yt) + yρ(t,zt+yt))− g(t, z̄ρ(t,zt+yt) + yρ(t,zt+yt))|

+

∫ t

0

‖Tα(t− s)‖B(E)|A(s)[g(s, zρ(s,zs+ys) + yρ(s,zs+ys))− g(s, z̄ρ(s,zs+ys) + yρ(s,zs+ys))]|ds

+

∫ t

0

‖Tα(t− s)‖B(E)|f(s, zρ(s,zs+ys) + yρ(s,zs+ys))− f(s, z̄ρ(s,zs+ys) + yρ(s,zs+ys))|ds

≤ ‖A−1‖B(E) |Ag(t, zρ(t,zt+yt) + yρ(t,zt+yt))− Ag(t, z̄ρ(t,zt+yt) + yρ(t,zt+yt))|

+

∫ t

0

M̂ |Ag(s, zρ(s,zs+ys) + yρ(s,zs+ys))− Ag(s, z̄ρ(s,zs+ys) + yρ(s,zs+ys))|ds

+

∫ t

0

M̂ |f(s, zρ(s,zs+ys) + yρ(s,zs+ys))− f(s, z̄ρ(s,zs+ys) + yρ(s,zs+ys))|ds

≤ M̄0L?‖zρ(t,zt+yt) − z̄ρ(t,zt+yt)‖B +

∫ t

0

M̂L?‖zρ(s,zs+ys) − z̄ρ(s,zs+ys)‖Bds

+

∫ t

0

M̂ln(s)‖zρ(s,zs+ys) − z̄ρ(s,zs+ys)‖Bds

≤ M̄0L?‖zρ(t,zt+yt) − z̄ρ(t,zt+yt)‖B +

∫ t

0

M̂ [L? + ln(s)]‖zρ(s,zs+ys) − z̄ρ(s,zs+ys)‖Bds.

Since ‖zρ(t,zt+yt)‖B ≤ Kn|z(t)|+ cn we obtain

|F (z)(t)− F (z̄)(t)| ≤ M̄0L∗Kn|z(t)− z̄(t)|+
∫ t

0

M̂ [L∗ + ln(s)]Kn|z(s)− z(s)|ds.

Let us take here l̄n(t) = M̂Kn[L∗+ln(t)] for the family semi norms {‖·‖n}n∈N,
then

|F (z)(t)− F (z̄)(t)| ≤ M̄0L∗Kn|z(t)− z̄(t)|+
∫ t

0

l̄n(s) |z(s)− z̄(s)|ds

≤ [M̄0L∗Kne
τL∗n(t)][e−τL

∗
n(t)|z(t)− z̄(t)|]

+

∫ t

0

[l̄n(s)eτL
∗
n(s)][e−τL

∗
n(s)|z(s)− z̄(s)|]ds

≤ M̄0L∗Kne
τ L∗n(t)‖z − z̄‖n +

∫ t

0

[
eτL

∗
n(s)

τ
]′ ds‖z − z̄‖n

≤ [M̄0L∗Kn +
1

τ
]eτL

∗
n(t)‖z − z̄‖n.
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Therefore,

‖F (z)− F (z̄)‖n ≤ [M̄0L∗Kn +
1

τ
]‖z − z̄‖n.

So, for an appropriate choice of L∗ and τ such that

M̄0L∗Kn +
1

τ
< 1,

the operator F is a contraction for all n ∈ N. By the choice of Z there is no
z ∈ ∂Zn such that z = λ F (z) for some λ ∈ (0, 1). Then the statement S2
in Theorem 1.6.2 does not hold. A consequence of the nonlinear alternative
of Frigon and Granas shows that the statement S1 holds. We deduce that
the operator F has a unique fixed-point z?. Then x?(t) = z?(t) + y?(t),
t ∈ (−∞,+∞) is a fixed point of the operator N , which is the unique mild
solution of the problem (3.1.1)-(3.1.2).

3.3 An Example

To illustrate our results, we give an example

Example 3.3.1 Consider the neutral evolution equation

∂α

∂tα
[u(t, ξ)−

∫ 0

−∞ a3(s− t)u(s− ρ1(t)ρ2(
∫ π

0
a2(θ)|u(t, θ)|2dθ), ξ)ds]

= ∂2u(t,ξ)
∂ξ2

+ a0(t, ξ)u(t, ξ)

+
∫ 0

−∞ a1(s− t)u(s− ρ1(t)ρ2(
∫ π

0
a2(θ)|u(t, θ)|2dθ), ξ)ds, t ≥ 0, ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ≥ 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],
(3.3.7)

To represent this system in the abstract form (3.1.1)-(3.1.2), we choose the
space
E = L2([0, π],R) and the operator A : D(A) ⊂ E → E is given by Aω = ω′′

with domain
D(A) := H2(0, t) ∩H1

0 (0, t).

It is well known that A is an infinitesimal generator of an α-resolvent family
(Tα(t))t≥0 on E. Furthermore, A has discrete spectrum with eigenvalues −n2,
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with n ∈ N and corresponding normalized eigenfunctions given by

zn(ξ) =

√
2

π
sin(nξ).

In addition, {zn : n ∈ N} is an orthonormal basis of E. and

Tα(t)x =
∞∑
n=1

exp−n
2t(x, zn)zn for x ∈ E and t ≥ 0.

Theorem 3.3.2 Let B = BUC(R;E) and ϕ ∈ B. Assume that condition
(Hϕ) holds, ρi : [0,∞) → [0,∞), i = 1, 2, are continuous and the functions
ai : R → R are continuous for i = 1, 2, 3. Then there exists a unique mild
solution of (3.3.7).

Proof 3.3.3 By the assumptions of the above theorem, we have that

f(t, ψ)(ξ) =

∫ 0

−∞
a1(s)ψ(s, ξ)ds,

g(t, ψ)(ξ) =

∫ 0

−∞
a3(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

(∫ π

0

a2(θ)|ψ(0, ξ)|2dθ
)
,

are well defined functions, which permit to transform system (3.3.7) into the
abstract system (3.1.1)-(3.1.2). Moreover, the function f is bounded linear
operator. Now, the existence of a mild solution can be deduced from a direct
application of theorem (3.3.2). We have the following result.
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Chapter 4

Fractional Functional Differential
Inclusions with State Dependent
Delay

4.1 Introduction

Our interest in this chapter is to get existence and uniqueness of mild so-
lutions for fractional functional differential inclusions with state-dependent
delay in the infinite case. The problem studied here is the following fractional
functional differential inclusion of the forme

Dαx(t) ∈ Ax(t) + F (t, xρ(t,xt)), t ∈ [0,+∞), (4.1.1)

x(t) = ϕ(t), t ∈ (−∞, 0], (4.1.2)

where α ∈ (0, 1), A : D(A) ⊂ E → E is the infinitesimal generator of
an α-resolvent family (Tα(t))t≥0 defined on a separable real Banach space
(E, ‖.‖E), Dα is the fractional Riemann-Liouville derivative of order α, F :
J×B → P(E) is a multi-valued map with nonempty compact values, P(E) is
the family of all nonempty subsets of E, ρ : J×B → R and ϕ : (−∞, 0]→ E
are appropriate given continuous functions, ϕ belongs to an abstract space
denoted B.
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4.2 Existence results
Definition 4.2.1 A function x is said to be a mild solution of (4.1.1)−(4.1.2)
if x satisfies

x(t) =


ϕ(t), t ∈ (−∞, 0],

Tα(t)ϕ(0) +
t∫

0

Tα(t− s)F (s, xρ(s,xs))ds, t ∈ J.
(4.2.3)

Set R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}. We always assume that
ρ : J×B → R is continuous. Additionally, we introduce following hypothesis:

• (Hϕ) The function t → ϕt is continuous from R(ρ−) into B and there
exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞) such
that

‖ϕt‖B ≤ Lϕ(t)‖ϕ‖B forevery t ∈ R(ρ−).

Remark 4.2.2 The hypothesis (Hϕ), is frequently verified by contin-
uous and bounded functions. For more details, see for instance([61],
Proposition 7.1.1).

• (H1) There exists a constant M ≥ 1 such that ‖Tα(t)‖B(E) ≤ M , for
all t ∈ J.

• (H2) The multi-function F : J × B → Pcp,cv(E) is Carathéodory.

• (H3) For every n ∈ N, there exists a positive function ln ∈ L∞(J,R+)
such that:

Hd(F (t, u), F (t, v)) ≤ ln(t)‖u− v‖B for t ∈ [0, n], and u, v ∈ B,

with d(0, F (t, 0)) ≤ ln(t) , for t ∈ [0, n].

Remark 4.2.3 By (H2) we can see that

‖F (t, x)‖P ≤ ln(1 + ‖x‖B∞), for allt ∈ Jandx ∈ B∞

For every n ∈ N∗, we define in B∞ = C(R, E) the semi-norms by:‖x‖n :=
supt∈[0,n] ‖x(t)‖E. Then (B∞, ‖x‖n) is a Fréchet space.
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Lemma 4.2.4 [59]. Let v : J → [0,∞) be a function and ω be a non-
negative locally integrable function on J . If there are constants c > 0 and
0 < α < 1 such that

v(t) ≤ ω(t) + c

∫ t

0

v(s)

(t− s)α
ds.

then there exists a constant K = K(α) such that, for every t ∈ J, we have

v(t) ≤ ω(t) +Kc

∫ t

0

ω(s)

(t− s)α
ds.

Theorem 4.2.5 Suppose that the hypothesis (Hϕ) and (H1)− (H3) are sat-
isfied. Moreover assume that the following condition holds:

l :=
Mnαl∗n

Γ(1 + α)
< 1, for eachn ∈ N∗ (4.2.4)

where l∗n = ‖ln‖L∞ . Then the problem (4.1.1)-(4.1.2) has a mild solution.

Proof 4.2.6 We transform the problem (4.1.1)-(4.1.2) into a fixed point the-
orem. Define the multi-valued operator N : B+∞ → P(B∞) by

N(x)(t) =


ϕ(t), t ∈ (−∞, 0],

Tα(t)ϕ(0) +
t∫

0

(t−s)α−1

Γ(α)
Tα(t− s)f(s)ds, t ∈ J. (4.2.5)

Where f ∈ SF,x.
Clearly, the fixed points of the operator N are mild solutions of the problem
(4.1.1)-(4.1.2).
We remark also that, for each x ∈ B∞, the set B∞ is nonempty, since by
(H2), F has a measurable selection [38].
Let x be a possible fixed point of the operator N . Given n ∈ N∗ and t ≤ n,
then x should be a solution of the inclusion x ∈ N(x) for some λ ∈ (0, 1).
So, by (H1), (H2) and (Hϕ) and Lemma (4.2.4) there exists f ∈ SF,x such
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that, for each t ∈ J we have

‖x(t)‖E ≤ ‖Tα(t)‖‖ϕ(0)‖E +

∫ t

0

(t− s)α−1

Γ(α)
‖Tα(t− s)‖B(E)‖f(s)‖Eds

≤ M‖ϕ‖+

∫ t

0

(t− s)α−1

Γ(α)
‖Tα(t− s)‖B(E)‖f(s, xρ(s,xs))‖Eds

≤ M‖ϕ‖+M

∫ t

0

(t− s)α−1

Γ(α)
ln(s)(1 + ‖xρ(s,xs)‖)ds

≤ M‖ϕ‖+M

∫ t

0

(t− s)α−1

Γ(α)
ln(s)ds+M

∫ t

0

(t− s)α−1

Γ(α)
ln(s)||xρ(s,xs)||ds

≤ M‖ϕ‖+Ml∗n
nα

Γ(1 + α)
+Ml∗n

∫ t

0

(t− s)α−1

Γ(α)
‖xρ(s,xs)‖ds

We define the function v by

v(t) = sup
s∈[0,t]

‖x(s)‖Efort ∈ J.

Let t∗ ∈ [0, t] be such that v(t) = ‖x(t∗)‖. If t∗ ∈ [0, t], then v(t) = ‖ϕ‖ and
if t∗ ∈ [0, n], then by the previous inequality, we have

v(t) ≤M‖ϕ‖+Ml∗n
nα

Γ(1 + α)
+Ml∗n

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds.

Set ωn := M‖ϕ‖+Ml∗n
nα

Γ(1+α)
and cn := Ml∗n

Γ(α)
. Then

v(t) ≤ ωn + cn

∫ t

0

(t− s)α−1v(s)ds.

By Lemma (4.2.4), there exists a constant K = Kα such that

v(t) ≤ ωn(1 +
Kcnn

α

Γ(α + 1)
) := Dn.

Thus, for every t ∈ [0, n] v(t) ≤ Dn. Since ‖xt‖ ≤ v(t),then

‖x‖n ≤ max{‖ϕ‖, Dn} := ∆n.

Set
U = {x ∈ B∞ : ‖x‖n < 1 + ∆n, n ∈ N∗}isopen.

50



4.2. EXISTENCE RESULTS

Clearly, U is an open subset of B∞.

We show that
N : U → P(B∞),

is a contraction and admissible operator.
First, we prove that N is a contraction. Let x, x ∈ B and h ∈ N(x). Then
there exists f ∈ SF,x such that for each t ∈ [0, n], we have

h(t) =

∫ t

0

(t− s)α−1

Γ(α)
Tα(t− s)f(s)ds.

By (H3)it follows that

Hd(F (t, xρ(t,xt)), F (t, xρ(t,xt))) ≤ ln(t)‖xρ(t,xt) − xρ(t,xt)‖.

Hence there is ξ ∈ SF,xρ(t,xt) such that

‖f(t)− ξ‖ ≤ ln(t)‖xρ(t,xt) − xρ(t,xt), t ∈ [0, n].

Define
U∗ → P(B∞)

by

U∗ = {ξ ∈ E : ‖f(t)− ξ‖ ≤ ln(t)‖xρ(t,xt) − xρ(t,xt)‖}.
Since the multi-valued operator V = U∗(t) ∩ xρ(t,xt) is measurable [38],

there exists a function f(t), which is a measurable selection for V.
So f(t) ∈ SF,xρ(t,xt) and for each t ∈ [0, n], we obtain

‖f(t)− f(t)‖ ≤ ln(t)‖xρ(t,xt) − xρ(t,xt)‖.

Let us define for each t ∈ [0, n],

h(t) =

∫ t

0

(t− s)α−1

Γ(α)
Tα(t− s)f(s)ds.

Then for each t ∈ [0, n] we have

‖h(t)− h(t)‖E ≤
∫ t

0

(t− s)α−1

Γ(α)
‖Tα(t− s)‖B(E)‖f(s)− f(s)‖.ds

≤ Mnαl∗n
Γ(1 + α)

‖x− x‖n.
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Hence
‖h− h‖n ≤ l‖x− x‖n.

By an analogous relation, we obtain by interchanging the roles of x and x, it
follows that

Hd(N(x), N(x)) ≤ l‖x− x‖n.
By the condition (4.2.4), N is a contraction for all n ∈ N∗.
It remains to show that N is an admissible operator.
Let x ∈ C((−∞,+∞), E). Define N : C((−∞, n], E) → P(C((−∞, n], E)),
by

N(x)(t) =

{
ϕ(t), t ∈ (−∞, 0],∫ t

0
(t−s)α−1

Γ(α)
Tα(t− s)f(s)ds, t ∈ [0, n].

(4.2.6)

By (H1)−(H3)and the fact that F is a multi-valued map with compact values,
we can prove that for every x ∈ C((−∞, n], E), N(x) ∈ Pcp(C((−∞, n], E))
and there exists x∗ ∈ C((−∞, n], E) such that x∗ ∈ N(x∗).
Let h ∈ C((−∞, n], E)),x ∈ U and ε > 0.
Assume that x∗ ∈ N(x), then

‖x(t)− x∗(t)‖ ≤ ‖x(t)− h(t)‖+ ‖x∗(t)− h(t)‖
≤ ‖x−N(x)‖n + ‖x∗(t)− h(t)‖.

Since h is arbitrary, we may suppose that

h ∈ B(x∗, ε) = {h ∈ C((−∞, n], E) : ‖h− x?‖n ≤ ε}.

Therefore,
‖x− x∗‖ ≤ ‖x−N(x)‖n + ε.

If s is not in N(x), then ‖x∗ − N(x)‖ 6= 0. Since N(x‖ is compact, there
exists y ∈ N(x such that ‖x∗ −N(x)‖ = ‖x∗ − y‖.
Then we have

‖x(t)− y(t)‖ ≤ ‖x(t)− h(t)‖+ ‖y(t)− h(t)‖
≤ ‖x−N(x)‖n + ‖y(t)− h(t)‖.

Thus,
‖x− y‖n ≤ ‖x−N(x)‖n + ε.

So, N is an admissible operator contraction. By the choice of U , there is no
x ∈ ∂U such that x ∈ λN(x) for some λ ∈ (0, 1). Then by applying of (1.6.3)
we deduce that the operator N has a fixed point x∗ which is a mild solution
of the problem (4.1.1)-(4.1.2).
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4.3 Example
To illustrate our results, consider the following system

Dα
0,tu(t, ξ) ∈ a(t, ξ)∂

2u
∂ξ2

(t, ξ)

+
∫ 0

−∞ P (θ)R(t, u(t+ ρ(θ), ξ)dθ, t ≥ 0, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,
u(θ, ξ) = u0(θ, ξ),−∞ < θ ≤ 0, ξ ∈ [0, π].

(4.3.7)

Where a(t, ξ) is a continuous function and is uniformly Hölder continuous
in t, ρ : [0,+∞) × C → (−∞,+∞) is continuous, P : (−∞, 0] → R, u :
(−∞, 0] × R → R and u0 : (−∞, 0] × [0, π] → R are continuous functions,
R : (−∞, 0]×R→ P(R) is a multi-valued map with compact convex values
and Dα

0,tu(t, ξ) denotes the Riemann-Liouville fractional derivative of order
α ∈ (0, 1] of u with respect to t. It is defined by the expression

Dα
0,t =

1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αu(s, ξ)ds.

Proof 4.3.1 Let E = L2([0, π],R) and define the operator A : D(A) ⊂ E →
E by Aω = a(t, ξ)ω′′ with domain

D(A) := H2(0, π) ∩H1
0 (0, π).

For ξ ∈ [0, π], we have

x(t)(ξ) = u(t, ξ), t ∈ [0,+∞),

ϕ(θ)(ξ) = u0(t, ξ),−∞ < θ ≤ 0,

and

F (t, η)(ξ) =

∫ 0

−∞
P (θ)R(t, u(t, η(θ)(ξ)dθ,−∞ < θ ≤ 0.

Then the problem (4.3.7) takes the fractional differential inclusion form
(4.1.1)-(4.1.2).
In order to show the existence of mild solutions of problem (4.3.7), we suppose
the following assumptions:
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• u is Lipschitz with respect to its second argument. Let lip(u) denotes
the Lipschitz constant of u

• There exists p ∈ L∞(J,R+) such that

|R(t, η)| ≤ p(t) + |η|), for t ∈ J, η ∈ R.

• P is integrable on (−∞, 0].

By the dominated convergence theorem, we can show that f ∈ SF,x is a
continuous function from C(−∞, 0], E) to E. In fact, for η ∈ R and ξ ∈
[0, π], we have

|F (t, η)(ξ)| ≤
∫ 0

−∞
|p(t)P (θ)| (1 + |(η(θ))(ξ)|)dθ.

Thus

‖F (t, η)‖P(E) ≤ p(t)

∫ 0

−∞
|P (θ)| dθ(1 + |η|).

Under the above assumptions, if we assume that condition (4.2.4) in Theorem
(4.2.5) is true, then the problem (4.3.7) has a mild solution which is defined
in (−∞,+∞).
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Chapter 5

Fractional Neutral Functional
Differential Inclusions with State
Dependent Delay

5.1 Introduction
In this chapter we provide sufficient conditions for the existence and unique-
ness of mild solutions for a class of neutral abstract fractional functional
differential inclusions with state-dependent delay by using the nonlinear al-
ternative of Frigon for admissible contractions maps in Fréchet spaces. Also
an example is given to illustrate our results. Recently Baghli et al. [17], have
proved global existence and uniqueness results for functional differential evo-
lution inclusions with state dependent delay in the integer case. Motivated
by the above paper, our interest is to get existence and uniqueness of mild so-
lutions for the following fractional functional differential inclusion with state
dependent delay of the forme

cDα
0 [x(t)− g(t, xρ(t,xt))] ∈ A[x(t)− g(t, xρ(t,xt))] + F (t, xρ(t,xt))t ∈ [0,+∞),

(5.1.1)
x(t) = ϕ(t), t ∈ (−∞, 0], (5.1.2)

where r > 0, α ∈ (0, 1], cDα
0 is the fractional Caputo derivative of order

α ∈ (0, 1], F : J×B → P(E) is a multi-valued map with nonempty compact
values, (E, ‖ · ‖E) is a Banach space, P(E) is the family of all nonempty
subsets of E, g : J ×B → E, ρ : J ×B → R and ϕ : (−∞, 0]→ E are given
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continuous functions, A is the infinitesimal generator of a compact analytic
semigroup of uniformly bounded linear operators {T (t)}t>0 in E and B is
called the phase space. Our results are based into the following nonlinear
alternative of Frigon for contractive multi-valued maps in Fréchet spaces.
(see (4.2.5))

In the sequel we make use of the following Gronwall’s lemma.

Lemma 5.1.1 [56] Let υ : J → [0,∞) be a real function and ω be a non-
negative, locally integrable function on J. If there are constants c > 0 and
0 < α < 1 such that

υ(t) ≤ ω(t) + c

∫ t

0

υ(s)

(t− s)α
ds,

then there exists a constant δ = δ(α) such that, for every t ∈ J, then

υ(t) ≤ ω(t) + δc

∫ t

0

ω(s)

(t− s)α
ds

5.2 Existence of mild solutions
Set

Ω := {x : (−∞, a]→ E : x0 ∈ B andu|J ∈ C}.

we now introduce the definition of mild solution to (5.1.1)-(5.1.2).

Definition 5.2.1 [96] A function x ∈ Ω is said to be a mild solution of
(5.1.1)-(5.1.2) if there exists a function f ∈ SF,x such that

x(t) =


ϕ(t), t ∈ (−∞, 0],
Sα(t)(ϕ(0)− g(0, xρ(0,x0))) + g(t, xρ(t,xt))

+
∫ t

0
(t− s)α−1Tα(t− s)f(s)ds, t ∈ J

(5.2.3)

Remark 5.2.2 It is not difficult to verify that for y ∈ [0, 1],∫ ∞
0

θyξα(θ)dθ =

∫ ∞
0

θ−αywα(θ)dθ (5.2.4)

=
Γ(1 + y)

Γ(1 + αy)
. (5.2.5)
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Lemma 5.2.3 [96] For any t ≥ 0, the operators Sα(t) and Tα(t) have the
following properties:

• (a) For any fixed t ≥ 0, Sα and Tα are linear and bounded operators,
ie. for any x ∈ E,

‖Sα(t)x‖E ≤M‖x‖E, ‖Tα(t)x‖E ≤
M

Γ(α)
‖x‖E.

• (b) {Sα(t) : t ≥ 0} and {Tα(t); t ≥ 0} are strongly continuous.

• (c) For every t ≥ 0, Sα(t) and Tα(t) are also compact operators.

Set R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}. We always assume
that x : t 7→ xt is continuous from R(ρ−) into B.
Let us introduce the following hypotheses:

• (H1) The multifunction F : J × B → Pc√,cv(E) is Carathéodory,

• (H2) For every n ∈ N, there exists a positive function ln ∈ L∞(J,R)
such that

Hd(F (t, x), F (t, y)) ≤ ln(t)‖x− y‖B, for t ∈ [0, n], x, y ∈ B

and d(0, F (t, 0)) ≤ ln(t) for t ∈ [0, n].

• (H3) For every n ∈ N, there exists a constant lg > 0, such that

‖g(t, x)− g(t, y)‖E ≤ lg‖x− y‖B, and ‖g(t, 0)‖E ≤ lg,

for each t ∈ [0, n], and x, y ∈ B.

Remark 5.2.4 By (H2), we can see that

‖F (t, x)‖P ≤ ln(t)(1 + ‖x‖B); for all t ∈ J and x ∈ B.

Also, by (H3), we can see that

‖g(t, x)‖E ≤ lg(1 + ‖x‖B), for all t ∈ J and x ∈ B.
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Theorem 5.2.5 Suppose that the hypotheses (H1)−(H3) are satisfied. More-
over, assume that the following condition holds:

` := 2MKnlg +
MKnl

∗
nn

α

Γ(1 + α)
< 1; for each n ∈ N∗, (5.2.6)

where l∗n := ‖ln‖L∞ . Then the problem (5.1.1)-(5.1.2) has a mild solution.

Proof 5.2.6 Transform the problem (5.1.1)-(5.1.2) into a fixed point prob-
lem. Consider the multi-valued operator N : Ω→ P(Ω) defined by:

(Nx)(t) =

h ∈ Ω : h(t) =


ϕ(t), t ∈ (−∞, 0],
Sα(t)(ϕ(0)− g(0, xρ(0,x0))) + g(t, xρ(t,xt))

+
t∫

0

(t− s)α−1Tα(t− s)f(s)ds, t ∈ J.


where f ∈ SF,x. Clearly, the fixed points of the operator N are mild solutions
of the problem (5.1.1)-(5.1.2) We remark also that, for each x ∈ B∞, the set
SF,x is nonempty since, by (H1), F has a measurable selection [38], (Theorem
III.6).

For ϕ ∈ B, we define the function y : R→ E as follows:

y(t) =

{
ϕ(t), t ≤ 0,
0, t ∈ J.

Then x0 = ϕ. For each function z ∈ Ω with z(0) = 0, we define the function
z̄ by

z̄(t) =

{
0, t ≤ 0,
z(t), t ∈ J.

Let x(·) satisfies
x(t) = ϕ(t), t ∈ (−infty, 0]

x(t) = Sα(t)(ϕ(0)− g(0, xρ(0,x0))) + g(t, xρ(t,xt))

+
∫ t

0
(t− s)α−1Tα(t− s)f(s)ds, t ∈ J,
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where f ∈ SF,x, and decompose x(·) as x(t) = z̄(t)+y(t), t ≥ 0, which implies
xt = z̄t + yt, for every t ∈ J and the function z(·) satisfies z0 = 0 and for
t ∈ J , we get that

z(t) = Sα(t)(ϕ(0)− g(0, z̄ρ(0,x0) + yρ(0,x0))) + g(t, z̄ρ(t,xt) + yρ(t,xt))

+

t∫
0

(t− s)α−1Tα(t− s)f(s)ds.

For each n ∈ N, set

C0 = {w ∈ C([0, n], E) : w(0) = 0},

and let ‖.‖n be the semi-norm in C0 defined by

‖w‖n = ‖w0‖B + sup
t∈[0,n]

‖w(t)‖ = sup
t∈[0,n]

‖w(t)‖, w ∈ C0.

Then C0 is a Fréchet space with these semi-norms family ‖.‖n.

Define the operator P : C0 → C0 by:

(Pz)(t) = Sα(t)(ϕ(0)− g(0, z̄ρ(0,x0) + yρ(0,x0))) + g(t, z̄ρ(t,xt) + yρ(t,xt))

+
t∫

0

(t− s)α−1Tα(t− s)f(s)ds.

(5.2.7)
Obviously the operator N has a fixed point is equivalent to say that P has
one, so it turns to prove that P has a fixed point. Let z ∈ C0 be such that
z = λP (z) for some λ ∈ (0, 1). Then for each t ∈ [0, n], there exists f ∈ SF,x
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such that, for each t ∈ J, we have

‖z(t)‖E ≤ ‖Sα(t)(ϕ(0)− g(0, z̄ρ(0,x0) + yρ(0,x0))) + g(t, z̄ρ(t,xt) + yρ(t,xt))‖

+

∫ t

0

(t− s)α−1‖Tα(t− s)f(s)‖Eds

≤ M‖ϕ(0)− g(0, z̄ρ(0,x0) + yρ(0,x0))‖E + ‖g(t, z̄ρ(t,xt) + yρ(t,xt))‖E

+
M

Γ(α)

∫ t

0

(t− s)α−1‖f(s)‖Eds

≤ M‖ϕ‖B +Mlg(1 + ‖z̄ρ(0,x0) + yρ(0,x0)‖B)

+ Mlg(1 + ‖z̄ρ(t,xt) + yρ(t,xt)‖B)

+
M

Γ(α)

∫ t

0

(t− s)α−1l∗n(1 + ‖z̄ρ(s,xs) + yρ(s,xs)‖B)ds

≤ M‖ϕ‖B + 2Mlg +
Ml∗nn

α

Γ(1 + α)
+ 2Mlg‖z̄ρ(t,xt) + yρ(t,xt)‖B

+
Ml∗n
Γ(α)

∫ t

0

(t− s)α−1‖z̄ρ(s,xs) + yρ(s,xs)‖Bds.

Using the assumption (A1) we get

‖z̄ρ(t,z̄s+ys) + yρ(t,z̄s+ys)‖B ≤ ‖z̄ρ(t,z̄t+yt)‖B + ‖yρ(t,z̄t+yt)‖B
≤ K(t)‖z̄(t)‖E +M(t)‖z̄0‖B +K(t)‖y(t)‖E +M(t)‖y0‖B
≤ Kn‖z̄(t)‖E +MnM‖ϕ(0)‖+Mn‖ϕ‖B
≤ Kn‖z̄(t)‖E +MnMH‖ϕ‖B +Mn‖ϕ‖B
≤ Kn‖z̄(t)‖E + (KnMH +Mn)‖ϕ‖B
≤ cn +Kn‖z̄(t)‖E,

where cn = (KnMH +Mn)‖ϕ‖B. Then,we obtain

‖z(t)‖E ≤ M‖ϕ‖B + 2Mlg +
Ml∗nn

α

Γ(1 + α)
+ 2Mlg(cn +Kn‖z(t)‖E)

+
Ml∗n
Γ(α)

∫ t

0

(t− s)α−1(cn +Kn‖z(s)‖E)ds

≤ M‖ϕ‖B + 2Mlg +
Ml∗nn

α

Γ(1 + α)
+ 2Mlgcn + 2MlgKn‖z(t)‖E

+
Ml∗ncnn

α

Γ(1 + α)
+
Ml∗nKn

Γ(α)

∫ t

0

(t− s)α−1‖z(s)‖Eds.
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Then

(1− 2MlgKn)‖z(t)‖E ≤ M‖ϕ‖B + (1 + cn)

(
2Mlg +

Ml∗nn
α

Γ(1 + α)

)
+

Ml∗nKn

Γ(α)

∫ t

0

(t− s)α−1‖z(s)‖Eds.

Set
wn :=

1

1− 2MlgKn

M‖ϕ‖B + (1 + cn)

(
2Mlg +

Ml∗nn
α

Γ(1 + α)

)
,

and
cn =

Ml∗nKn

(1− 2MlgKn)Γ(α)
.

Thus

‖z(t)‖E ≤ wn + cn

∫ t

0

(t− s)α−1‖z(s)‖Eds.

By Lemma (5.1.1), there exists a constant δ := δ(α) such that

z(t) ≤ wn

(
1 + δcn

∫ t

0

(t− s)α−1ds

)
≤ wn

(
1 +

δcnn
α

α

)
:= Dn.

Set
U = {x ∈ C0 : ‖x‖n < 1 +Dn, n ∈ N∗}.

Clearly, U is an open subset of C0.

We show that P : U → C0 is a contraction and an admissible operator.
Let z, z∗ ∈ C0, such that for each t ∈ [0, n], n ∈ N∗,

z(t) = Sα(t)(ϕ(0)− g(0, z̄ρ(0,z0))) + g(t, z̄ρ(t,zt))

+
t∫

0

(t− s)α−1Tα(t− s)f(s)ds,

where f ∈ SF,z and zρ(t,zt) = z̄ρ(t,z̄t+yt) + yρ(t,z̄t+yt) and

z∗(t) = Sα(t)(ϕ(0)− g(0, z̄∗ρ(0,z0))) + g(t, z̄∗ρ(t,zt)
)

+
t∫

0

(t− s)α−1Tα(t− s)f ∗(s)ds,
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where f ∗ ∈ SF,z∗ and z∗ρ(t,zt) = z̄ ∗ρ(t,z̄t+yt) +yρ(t,z̄t+yt) ∈ C0. Then,

‖(Pz)(t)− (Pz∗)(t)‖E ≤ ‖Sα(t)(g(0, z̄ρ(0,z0))− g(0, z∗ρ(0,z0)))‖E
+ ‖g(t, zρ(t,zt))− g(t, z∗ρ(t,zt))‖E

+

∫ t

0

(t− s)α−1‖Tα(t− s)(f(s)− f ∗(s)‖Eds

≤ Mlg‖zρ(0,z0) − z∗ρ(0,z0)‖B +Mlg‖zρ(t,zt) − z∗ρ(t,zt)‖B

+
Ml∗n
Γ(α)

∫ t

0

(t− s)α−1‖zρ(s,zs) − z∗ρ(s,xs)‖Bds

≤ Mlg‖z̄ρ(0,z̄0+y0) − z̄∗ρ(0,z̄0+y0)‖B
+ Mlg‖z̄ρ(t,z̄t+yt) − z̄∗ρ(t,z̄t+yt)‖B

+
Ml∗n
Γ(α)

∫ t

0

(t− s)α−1‖z̄ρ(s,z̄s+ys) − z̄∗ρ(s,z̄s+ys)‖Bds

≤ 2MKnlg‖z − z∗‖n +
MKnl

∗
nn

α

Γ(1 + α)
‖z − z∗‖n

≤
(

2MKnlg +
MKnl

∗
nn

α

Γ(1 + α)

)
‖z − z∗‖n.

Hence
‖P (z)− P (z)‖n ≤ `‖z − z‖n.

By the condition (5.2.6), P is a contraction for all n ∈ N∗.

It remains to show that N is an admissible operator.
By hypothesis (H1) − (H3) and in fact that F is a multi-valued map with
compact values, we can prove that for every x ∈ C0, N(x) ∈ Pc√(C0) and

there exists x? ∈ C0 such that x? ∈ N(x?). Let h ∈ C0, x ∈ U and ε > 0.
Assume that x? ∈ P (x). Then we have

‖x(t)− x?(t)‖ ≤ ‖x(t)− h(t)‖E + ‖x?(t)− h(t)‖E
≤ ‖x−N(x)‖n + ‖x?(t)− h(t)‖E.

In fact that h is arbitrary, we may suppose that

h ∈ B(x?, ε) = {h ∈ C0 : ‖h− x?‖n ≤ ε}.

Therefore,
‖x− x?‖n ≤ ‖x−N(x)‖n + ε.
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If x is not in P (x), then ‖x? −N(x)‖ 6= 0. In fact that N(x) is compact,
there exists y ∈ N(x) such that ‖x? − N(x)‖E = ‖x? − y‖E. Then we have
that

‖x(t)− y(t)‖E ≤ ‖x(t)− h(t)‖+ ‖y(t)− h(t)‖E
≤ ‖x−N(x)‖n + ‖y(t)− h(t)‖E.

Thus,
‖x− y‖n ≤ ‖x−N(x)‖n + ε.

So, N is an admissible operator contraction.

BY the choice of U there is no x ∈ ∂U such that x = λP (x) for some
λ ∈ (0, 1). A consequence of Theorem (1.6.3), the operator P has a fixed
point z?. Then x?(t) = z̄?(t) + y?(t); t ∈ (−∞,+∞) is a fixed point of the
operator N, which is a mild solution of the problem (5.1.1)-(5.1.2).

5.3 Example
As an application of our results, we present the following model

Dα
0,t

[
v(t, ξ)−

∫ 0

−∞ T (θ)u(t, v(t+ ρ(θ), ξ))dθ
]

∈ ∂2

∂ξ2

[
v(t, ξ)−

∫ 0

−∞ T (θ)u(t, v(t+ ρ(θ), ξ))dθ
]

+
∫ 0

−∞ P (θ)R(t, v(t+ ρ(θ), ξ))dθ, t ∈ [0,+∞) and ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0; t ∈ [0,+∞),

v(θ, ξ) = v0(θ, ξ) θ ≤ 0, ξ ∈ [0, π],
(5.3.8)

T, P : R− → R, u : (−∞, 0] × R → R and v0 : (−∞, 0] × [0, π] → R
are continuous functions, R : [0,+∞) × R → P(R) is a multi-valued map
with compact convex values, and cDα

0,tv(t, ξ) denotes the Caputo fractional
derivative of order α ∈ (0, 1] of v with respect to t. It is defined by the
expression

Dα
0,tv(t, ξ) =

1

Γ(1− α)

∫ t

0

(t− s)−α ∂
∂s
v(s, ξ)ds.
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Set E = L2([0, π],R) and define A by Aw = w′′ with domain

D(A) = H2(0, π) ∩H1
0 (0, π).

For ξ ∈ [0, π], we have

x(t)(ξ) = v(t, ξ), t ∈ [0,+∞),

ϕ(θ)(ξ) = v0(θ, ξ), θ ≤ 0,

g(t, η)(ξ) =

∫ 0

−∞
T (θ)u(t, η(θ)(ξ))dθ, θ ≤ 0,

and

F (t, η)(ξ) =

∫ 0

−∞
P (θ)R(t, η(θ)(ξ))dθ, θ ≤ 0.

Then, the problem (5.3.8) takes the neutral fractional differential inclu-
sion form (5.1.1)-(5.1.2). In order to show the existence of mild solutions of
problem (5.3.8), we suppose the following assumptions:

• u is Lipschitz with respect to its second argument. Let lip(u) denotes
the Lipschitz constant of u.

• There exist p ∈ L∞(J,R+) such that

|R(t, η)| ≤ p(t)(1 + |η|), for ∈ J, andη ∈ R.

• T, P are integrable on (−∞, 0].

By the dominated convergence theorem, we show that f ∈ SF,x is a continu-
ous function from Bγ to E, where Bγ is the phase space defined by

Bγ :=
{
φ ∈ C((−∞, 0];E) : lim

θ to−∞
eγθφ(θ)exists in E

}
endowed with the norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Moreover the map g is Lipschitz continuous in its second argument, in fact,
we have that

|g(t, η1)− g(t, η2)| ≤M0L?lip(u)

∫ 0

−∞
|T (θ)| dθ |η1 − η2| , for η1, η2 ∈ R.
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On the other hand, we have for η ∈ R and ξ ∈ [0, π],

|F (t, η)(ξ)| ≤
∫ 0

−∞
[|p(t)P (θ)|](1 + |(η(θ))(ξ)|)dθ.

Thus

‖F (t, η)‖P(E) ≤ p(t)

∫ 0

−∞
|P (θ)| dθ(1 + |η|).

Under the above assumptions, if we assume that the condition (5.2.6) in
Theorem (5.2.5) is true, then the problem (5.3.8) has a mild solution which
is defined in (−∞,+∞).
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Chapter 6

Conclusion

In this thesis, some interesting results are obtained concerning the ex-
istence and uniqueness of mild solutions for some classes of semi-linear frac-
tional functional and neutral fractional functional differential equations and
inclusions on infinite intervals with state dependent delay in Fréchet spaces.
The results are based on the α− resolvent families theory and the argument
of fixed points. Some appropriate fixed point theorems have been used: In
particular we have used Frigon-Granas theorem and Frigon theorem.
For the perspective, it would be interesting to look for qualitative proper-
ties instead of quantitative ones considered in the present thesis. Another
goal in the future is to look for automorphic and almost automorphic solu-
tions of fractional functional differential equations and inclusions with state
dependent delay. We can also think to apply our results in control theory.
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