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INTRODUCTION.

The theory of several complex variables, namely the theory of holomor-
phic functions of several variables and the problem of the d—operator have
been a subject of intensive studies during the twentieth century. This story
began in 1906 with H. Poincaré which observes that the bi-disc D x D c C?
and the unit ball B C C? are not analytically isomorph, and F. Hartogs
which observes that the Riemann’s theorem does not work in C2. The the-
ory of several complex variables seams then to be radically different and not
a simple generalization of the theory in C. Till the early fifties this theory
was developed by constructive methods, that is by integral formulas. We
emphasize the work of A. Weil in 1935 [22], and of K. Oka in the period 1936
till 1951 [22].

In the fifties H. Cartan, and H. Grauert [7] discovered by means of the theory
of sheaves introduced in 1945 by J. Leray, that the theory of integral formulas
can be reduced to a minimum and, moreover, that the theory of Oka admits
far-reaching generalizations.

In the sixties L. Hormander [13], J.J. Kohn [7] deduced the results of Oka with
the use of methods of partial differential equations, that is by L2—estimates
for the d—operator.
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However, in the seventies integral representation formulas turned out to be
the natural method for solving several problems related to the O—operator
which are connected with the behavior at the boundary. The basic tool is
an integral formula for holomorphic functions discovered in 1955 by J. Leray
[16], which contains the Weil formula as a special case.

We observe however, that all the theory of several complex variables men-
tioned above, namely the theory of the Cauchy-riemann operator 0 is build
on the commutative group (C",+). We refer to this theory as the commuta-
tive theory of the —operator. The problem turned out to be different, and
far-rich, when the the space C" is endowed with a structure of non commu-
tative group. Let H = (C",*) be a simply connected 2—step nilpotent Lie
group, our aim in this thesis is to solve the following two problems:

1. Problem: How to construct for the group H the analogous d, of
the classical Cauchy-Riemann operator 0 of the commutative group

(C", +)?

2. Problem: Can one solve the equation 5Lu = f, with Holderian esti-
mates?

This thesis is divided into two chapters and an appendix:

In chapter 1, we solve the first problem mentioned above when the group
H = (C", %) is 2-step nilpotent. That is:

Let H = (C", %) be a 2-step nilpotent Lie group, and H its Lie algebra. We
attach to each Lie subalgebra L < H of H containing the center Z(H) of H
a new Lie algebra denoted Hp, in such a way that the family

o )
LaH

forms a category of Lie algebras, and for each open set 2 C H, and each
integers 0 < p; < m, and 0 < po < n—m, | € NU {400}, and each
0 <~ <1, we attach to L < H a module C?(;f o)), (§2) of differential forms

with (I 4+ v)—Hélder coefficients, in such a way that for fixed L, the family
of modules

v+o _ Y+
C((phPQ),O)L (Q) o {C((p17p2)7q)L(Q)}
1

g
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forms a complex of graded modules, and for running L <1 H, the family of
complexes

y+o _ y+o
C((lez)vo)o (Q) - {C((p17p2)7°)L(Q)}L'

forms a category of complexes. Once defined the first and the second forms of
structure ¢ and o of the group H, and the the left invariant vector fields Z;,
Z-, we attach to each L <1 H a differential operator denoted EL generalizing
the classical 9, then we study their properties. The fundamental result of
chapter 1 is described by the following theorem.

Theorem

Let Q2 C H be an open set of the group H, and let 0 <y < 1,1 € NU{+o00}.
Then for each subalgebra L <1 H, and each integers py, p2, q with 0 < p; < m,
0<ps<n—m,0<q<n, there exists one and only one first order linear
differential operator:

5 . ot Y1
aL ) C((Pl’P2)7Q)L(Q) — C((P1>P2)7Q+1)L(Q)

such that:
1. 0, is left H—invariant.

2. If ( , ) denotes the pairing between vector fields and 1-differential forms,
then for every C*> function f,

<§j,5Lf> = Z,(f) forall 1<j<n.

3. The 1-forms of structure ¢ and ¢ satisfy the following ” L— equations

of structure”:
d,¢= o
8,6 = ot

4. Forall f,g € Cz’f)(Q), 0, satisfies Leibnitz'rule, that is
9, (FNg)=0,f Ng+(=1)"fAD,g, v = deg(f)-

When L < H is fixed, we refer to the differential operator with variable
coefficients 0, as the left Cauchy-Riemann operator of the group H attached
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to L < H, and when L runs over all subalgebras of H containing the center
Z(HM), we obtain a functor of categories:

0o : He —>C”+°p2)7o).(§2)

((p1,
called the left functor of Cauchy-Riemann.
In chapter 2, we study for each L < L, the differential equation

0,u=f.

We begin by considering the case f = 0, whose solutions are nothing but
h—holomorphic functions. We characterize on €2 the space of left A—holomorphic
functions, that is the space ker(gL) of solutions of 5Lu = 0, and introduce
the corresponding domains of left h—pseudoconvexity of bounded deviation.
We prove for local solvability, the following result, called Dolbeault-Grothendieck
lemma.

Theorem

Let Q = Dy x...x Dy, be an open polydisc of H and let f € Cf) . (Q) satisfy

the condition 8Lf € Ji(). If Q' CC Q (that is Q' is relatively compact in
Q ), we can find u € CE’;q)H(Q’) such that f — 0, u € J ().
Then, we construct for 5L an integral formula of Leray Koppelman type.
This generalizes to the 0 , —operator, the Leray Koppelman formula for the
classical Cauchy-Riemann operator 0. Then, we prove for the 0 ,—operator,
by means of this formula the following existence theorem with Holderlen es-
timates.
Theorem
Let Q CC H be a h—pseudoconvex open set of deviation Dev(Y) = r, with
C> boundary, and [ a continuous differential form up to the boundary, that
is f € Cop1 )t (Q) satisfying in  the compatibilz’fy condition 0, f = 0.
Then there exists a ;—Hdlder differential form u € C(Ttp17p2)7q)L(Q) such that
J,u=f.
Remark.

1. For the commodity of the reader, all the basic tools (namely: defini-

tions) that we are led to constantly use, are recalled in a background
in the begining of the thesis.

2. We give in appendix II, a list of some interesting differential operators
related to 0, , namely some Laplacians.
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Background

For the commodity of the reader, we recall in what follows, the main defini-
tions and properties which we shall constantly use in this thesis.

0.1 Lie groups and Lie algebras

0.1.1 Lie groups

Definition 0.1.1. A Lie group is a differentiable(') manifold H endowed
with a group law
x HxH— H

(2,6) — 2% ¢

such that the map (z,€) — 2 * ¢! is differentiable. That is if the two
following maps

1. The group law (2,&) — z % &
2. The inverse map & — &1
are both differentiable. The map
T, H—H

Er—T1,(§) =2%&
is called the left translation defined by the element z € H.

'In this thesis, differentiable means always C>°.

1X
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Definition 0.1.2. Let H be a Lie group, and denote by 0 the neutral element
of H, and by —z the symmetric element of z. The differential of the left
translation

T, &— (—2) %

at & = z is a vectorial 1-differential form ¢ called the first form of structure
of the group H.

Properties
The first form of structure ¢ of the group Hi, is characterized by the condi-
tions:

1. ¢ satisfies ¢(0) = Id.

2. ¢ is left invariant. That is, for all z € H
7 (¢) = ¢.
Definition 0.1.3. With the notation above, the 2-differential form
o:=d¢
is called the second form of structure of the group H.

Remark.

1) The second form of structure o of the group H, is left invariant.
2) The group H is commutative if and only if o = 0.

Example. Let H = C" endowed with the usual addition

zxE=2+¢

Then H = (C",+) is a Lie group. The left translation is 7,(£§) = 2z + &,
the first form of structure is ¢(z) = dz, and the second form of structure is
o(z) =0.

0.1.2 Lie algebras

Definition 0.1.4. An abstract Lie algebra H is a complex linear space en-
dowed with a skew bilinear map denoted [ , |:

[V ] HxH—H
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(X,Y) — [X,Y]
such that the following condition (called identity of Jacobi) is satisfied

[X,Y],Z] +[[Z, X], Y]+ [[Y, Z], X] = 0.

The Lie algebra H is said to be 2-step nilpotent if for all XY, Z € H, we
have

[X,Y],Z] =0.

Definition 0.1.5. Let H be a Lie group, and let 0 be its neutral element. A
left invariant vector fields Z(z) over H is completely determined by its value
at 0, that is

Z(z) = (7.)" Z(0).

This means that the linear space of left invariant vector field is isomorphic
to the tangent space ToH. The space of left invariant vector fields endowed
with the usual commutator

[X,Y]=XoY -YoX (0.1.1)

is a Lie algebra, called the Lie algebra of the group H.
We observe then, that the Lie algebra H of the group H endowed with the
commutator (0.1.1) is nothing but ‘H = ToH.

0.2 Several complex variables

For all these notions, see Hormander [13]

0.2.1 The Cauchy-Riemann operator

Let D be an open set of C", z = (z1, ..., z,) € D, and let
f:DCC"—C

be a C* complex valued function. We define for all 1 < j < n, the differential
forms
dz; = dx; + idy;

dEj = dxj - Zdyj
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and the differential operators:

of 1 <af ,8f>

9z 2\0r; Oy
af 1(3f 8f>
= =5 \la- Tty
8zj 2 31’]‘ 8yj

N9

0
6f:2+afd‘J

J
We observe the following B
df =0f + 0f.

Definition 0.2.1.

1. The differential operator 0 is called the Cauchy-Riemann operator. The
differential equation du = f, is called the Cauchy-Riemann equation.
For functions, this is equivalent to the system

ou

5z fi-

2. The C* function f is sa id to be holomorphic if Of = 0, that is if
9,
(9zj

Proposition 0.2.2.

1. The function f is holomporphic if and only if f is analytic.
2. We have for all f the identities:
Bf=0*f =0 f=000f+dodf =0.

3. The differential operators viewed as vector fields , and the

0
0z 0z
differential operator O, and the first form of structure ¢(z) = dz are all
left invariant by the group H = (C", +).
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0.2.2 Pseudoconvex domains in C"

Let D C C" be an open set defined by the real valued function ¢ : V5 — R,
that is
D:={zeVy ¢(z) <0}.

and
0D :={ze V5, (z)=0}.

Definition 0.2.3. 1. The quadratic form

LIP©) = Y 5o (G
Gk=1 "7

is called the Levi form of ¢ at z.

2. The domain D is said to be pseudoconvex if L,[p](&) is positive at all
z € 0D, and for all £ € T,OD.

3. The domain D is said to be strictly pseudoconvex if L,[¢](§) is positive
defined at all z € 9D, and for all £ € T,0D.

0.3 Categories

0.3.1 Definition of a category
Definition 0.3.1. A category is defined by three things:

1. A collection C of objects : X, Y, Z, T, ..., (in general these objects are
sets endowed with structures), that is

A= {X,Y,Z,T,...}.
2. For all pair of objects (X,Y), there exists a set of morphisms
Mor(X,Y)={f: X — Y}
3. For all triplet of objects (X,Y, Z), there exists a composition law o
Mor(X,Y) x Mor(Y,Z) — Mor(X,Z)

(fig) —>gof
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such that the following two conditions are fulfilled:

e For all object X there exits a morphism Idx : X — X called the
morphism identity.

o If f e Mor(X,Y), g € Mor(Y,Z), and h € Mor(Z,T), the law o is
associative, that is:

ho(gof)=(hog)of.

0.3.2 Functors of Categories
Definition 0.3.2. Let A and B be two categories. The correspondence
F:A—B

is called a functor of categories, if F' associates to each object X of A, one
and only one object F/(X) of B, and to each morphism f € Mor(X,Y’) one
and only one morphism F(f) € Mor(F(X), F(Y)) such that the following
conditions are fulfilled:

1. For all X € A we have

2. If f e Mor(X,Y), and g € Mor(Y, Z),
then F(f) € Mor(F(X), F(Y)), and F(g) € MorlF(Y), F(2))

and furthermore, we have
F(go f)=F(g)o F(f).
The second condition means that the following diagram

X 5 F(X)

fL jF(f)

1S commutative.
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The functor O,

1.1 The category of Lie algebras H,

1.1.1 The 2-step nilpotent group H = (C", %)

We organize C" = C™ x C"™ as a Lie group H = (C", %) with a group law
« defined for z = (21, ...,2,) € C", and & = (&, ...,&,) € C" by

1 _
ceE—ztEd §(A<z,s> - A(@z)) (1.1.1)
where A = (Ay,..., A,) : C™ x C™ — C" is a bilinear map
Ap(2,€) =0 for 1<k<m
< 1.1.2
Ai(z,€) = Zaijziﬁj, for m+1<k<n ( )
ij=1
with complex coefficients aﬁ ; satisfying
al; =0 for 1<k<m
) (1.1.3)
aﬁj = —aﬁi, for m+1<k<n.

The Lie group H is clearly 2-step nilpotent with 0 as unit element, and —z
as inverse element of z € H. We denote by Z(H) the center of H, that is

Z(H) := {ZGH, 2x&=E&xz forall §€H}
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1.1.2 The forms of structure ¢ and ¢ of the group H

Let ¢ = (¢4, ..., o) be the differential at & = z of the left translation

T, &E— (—2) % &

The 1-form ¢ which defines the parallelism of the group H is then given by

¢k:dzk for1<k<m
8Ak 8Ak _ (1.1.4)
=dz, + = Z < 823 , 7z, dzj> for m+1<k<n,

and its conjugate ¢ = (¢, ..., ¢,) by

o, = dz;, for 1<k<m

A, A, (1.1.5)
gb—dzk—— ( dz; — _d?) for m+1<k<n.
F ; 0z, oz; 7

By differentiating (1.1.4), ¢ satisfies the following equations of structure

dor, =0 for 1<k<m
doy, = Zaf’jqﬁi/\% for m+1<k<n (1.1.6)
ij=1
where aj ; are the constants (1.1.3).
Let 0 = (04, ...,0,) be the differential form defined by:
o:=d¢
that is
o, =20 for 1<k<m
— - 1.1.
:Zaﬁj@/\% for m+1<k<n. (LL7)

2,j=1

We refer to ¢ and ¢ as the first forms of structure and to o as the second
form of structure of the group H.
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1.1.3 The Lie algebra H of the group H

By duality with (1.1.4) and (1.1.5), we define the following vector fields:

( n —
0 1 0A;, 0 0A, 0 ‘
Z = _ _— for 1 <j <
I~ 95 2k:m+l(azj 0o 0z, azk) ortsr=m
(1.1.8)
Zk:i form+1<k<n
\ Oz
and
(_ 0 1 & (04, 0 094, 0 .
Zo= 4 ok Z o TR 2 for 1<j<
J azj+2k§ﬂ<azjazk+azjazk) orLsrsm
(1.1.9)
_k:g, for m+1<k<n
\ OZk

where Ay, <respectively, Zk) is short for Ag(z,%), <1respectively7 Ai(z, 2)),

and then, the Lie algebra H of the group H is the R—linear space spanned
by the vector fields {Zk, Z k}l <pen: and endowed with the commutators

Ziaz' = af(Zk—zk) for 1 <1,7 <m,
%2 k:zml ! (1.1.10)

the other brackets are zero.
1.1.4 The metric group (H,g,,)

We need in that follows, to endow the Lie algebra H with the Hermitian inner
product ( , ),, which makes the basis B = {Zk, Z k}l <<y, OTthonormal, that
is o

(Z5,Zk) 0 = Ojn-
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Consequently, the group H is endowed with the associated left invariant(!)
metric

G = (0,0),, = > i, (1.1.11)
j=1

1.1.5 Construction of the category H, = {H}

L<H

Let Z(H) denotes the center of the Lie algebra H, that is

Z(H) = {X eH, [X,)Y]=0 foral Y e ’H}
and let L <« H denotes a subalgebra L of H containing the center Z(H).
The Lie algebra H can be decomposed as a direct sum

H=L® L.

With this notation, we define in C" via the following bracket

[X,Y] =[X,Y] i XeL" and Y eL"

(1.1.12)
[X,Y] =0 otherwise

a new structure of Lie algebra denoted H, = (C",[ , ] ). We observe that
‘H, is simply obtained from H by extension of the center, that is

Z(H)C LCZ(H,).

B = {Zk,zk}l cpen, Will always be regarded as constituting simultaneously
a basis of H and a basis of H,, and then the decomposition of the bracket
[Zi, Z j] , as linear combination of the vector fields Z, 2,

2.2), =3 % (2-2), (1113
k=1

gives with respect to the Lie algebra #, , the constants of structure )\fi ;» with

Moo= qgF. if Z,eLt, and Z;, € L*
{ vl ’ (1.1.14)

)\ﬁ = 0 otherwise.

!We shall sketch that the metric g,, is invariant by the group H
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Now, let K < H and L < H, then the linear mapping g, , : H, — H,
evaluated on a vector X € B by

(1.1.15)

: L L
£ ::{X if X ¢ K-UL

0 otherwise

is a morphism of Lie algebras. This leads to consider the following category
of Lie algebras attached to the metric group H.

Definition 1.1.1.
The category H, of Lie algebras attached to the metric group H is defined
as follows:

e The objects of H, are the Lie algebras H, , where L runs over all L < H.

e Forall K < 'H and L < H, the set Mor(H,,H,) of morphisms from
H, to H, is reduced to one element, that is the mapping f_ defined

by (1.1.15),
Mor(H,, H,) = {fK’L} .

e the composition law Mor(H,, H,)xMor(H,,H,) — Mor(H,, H,)

is the usual composition of maps.

1.2 Modules of Holderian differential forms
on M.

1.2.1 Holderian functions

Let © be a measurable subset of the group H, and let [ € N U {+o00} and
0 < v < 1. Then for every C'—complex-valued function f on 2, we define

[ fllo.c == sup [£(E)],
£en

and the y—Holder norm || f|, o by

||fH7,Q = ”f”()@ +ZS’§1€% %
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We note the Holder spaces:

Q) = {f e, e < +oo}
and for [ € N

C(Q) = {f e CY(), for all |a| <1, [[0°f]l,q < +oo}.
1.2.2 Graded modules of differential forms on H.

A) Holderian differential forms of H—type (p1,p2, ¢z, q2)

Let C*°(2) denote the space of C* complex-valued functions on €. Since
the group H is by definition decomposed as C™ x C"~™, then we consider
C*°(Q)—combinations of the differential forms ¢, A ¢, defined as follows:

If I = (i1,...,14) and J = (Ji, ..., jp) are multi-indices of integers of {1,...,m}
and K = (k1,...,ky), and L = (ly, ..., ls) are multi-indices of integers of {m +
1,....,n} we set

Grre =G, Ao A i \ Gk Ao A D,

and

G, =0 AN Ny NGy A Ay,

and if we conside J = (jy, ..., jg) as multi-indice of integers of {1,...,n}, we
set then

b, =05 N Ny,
and

QSIK,J = ¢IK /\Q_bJ

A differential form f is called a ({+v)—Ho6lderian form of H—type (p1, p2, q1, ¢2)
(0<p1,q1 <m)and (0 < ps,q2 < n—m), if f can be written in the form

’

f - Z fIK,JL QSIK A ¢JL
[I|=p1,|J|=q1
|K|=p2,|L|=q2

e € C(Q) and Z, means that the summation is performed
over all multi-indices with strictly increasing components. We denote by

where f
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(p1,p2,91,92
(p1, P2, q1,q2) on €.
A differential form f is called a (I4~)—Hélderian form of H—type ((p1, p2), q)
with (0 < p; <m,0 < ps <n—m)and (0 < g <n)if f can be written in
the form

¢ » (Q) the C*°(2)—module of (I + v)—Hoélderian form of H—type

!

F=" Y fo, b0,

[|=p1,|K|=p2
|J‘:¢I1
where f,, € C"*(2). We denote by Cé&?ym)’q)ﬂ(ﬁ) the C*°(2)—module of

(I 4+ ~)—Holderian form of H—type ((p1,p2),q) on .

We define in the same way the (I4-)—Hdélderian forms of H—type (p, (¢1, ¢2))-
In our spirit, the module C77 = qz)H(Q) is viewed as the main module of
differential forms from which we define by linear combinations, the following

modules:

I+ . I+
C((p17p2),Q)H(Q> T @ C(p1,p2,q1,q2)H(Q>

a1+gq2=q
I+~ ._ I+~
C(P»(QLQQ))H (Q) T @ C(pl,m,fh,tp)ﬂ(@)
p1+p2=p
I+ — I+
C(p,q)y (Q) T @ C(pl,pz,ql,qz)n (Q)
p1+p2=p
q1+492=q
_ Iy
- @ C(P,(qwm))"rt (Q)
q1+q2=q
— I+
o @ C((P17p2)7q)ﬂ (Q)
p1+p2=p

If Cé:)”(ﬂ) denotes the C'™7(Q)—module of s—differential forms on the open
set Q C H with coefficients in C'*7(€2), we set then

I+ _ I+
Co/ (@) = €D i@

p+q=s
2n
Co (@) = P ).
s=0

Characterization of left invariant differential forms
Let v =T, : £ —> 1(z) = z % £ be a left translation of the group H, and let
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¢ ¢ f 9" [f] be the isomorphism of the module CfY(H) defined by

The differential form f € C%(H) is said to be left invariant if

vUfl=f for all 1.

Proposition 1.2.1.

1. A C®—function f is left invariant if and only if f is constant.
2. The 1-differential forms of structure ¢; and g_zﬁj are left invariant.
3. The differential form
F=> f,6Né, € CH)
I+ J]=s
is left invariant if and only if the functions f, , are constant.

Proof.

1) The first assertion is obvious.

2) The fact that the 1-differential forms of structure ¢; and Ej are left invari-
ant follows from the definition of the form ¢ as differential of a left translation.
3) The third assertion is a consequence of the the first and the second asser-
tions. [

Left invariant operators

A linear operator
A CR(H) — CR)(H)

is said to be left invariant if
(qp*)*l cAoy*=A for all left translation
which means in terms of commutators, that

[A, "] = 0. for all left translation .
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Proposition 1.2.2. Let A : CX*(H) — CFJ(H) be a linear operator such
that:

1. A(CRs () < Cx3(H)
2. A satisfies the Leibniz’s rule:
A(f N g) = ()" DA(f) A g+ (=1)"™ D f A Alg).

Then A is left invariant if and only if
1. A:C>®(H) — C>*(H) is left invariant,
2. For all 1 < j < n, the differential forms A(¢;) and A(g_bj) are left
mvartant.

Proof. The necessarily condition is obvious. We prove the sufficient condition
by induction on the integer 0 < s < 2n.

By the hypothesis 1), the assertion is true for s = 0 and s = 1. Assume
that this assertion is true for s > 1, that is A : C3)(H) — C75(H) is left
invariant, and prove it for s+ 1. For this let f = gA gzﬁj € C(S+1)( ). Starting
from the following obvious identity

V(g A gs) =¥ (g) A7)
and using Leibniz’s rule, we obtain:

A@W(f) = AW (g A ;)
Ay "o

= A (" (g) A*(45))
= —AW*(9) A*(8)) + (D)™ DY (f) A A (¥ (¢5))
wWA@»Aw%@»+<1Vm U (g) A U™ (Aley))
—¢" (Alg) A @) + (=1)™9Wp* (g A A(4)))

VAN
- *( Alg) Ay + (=1)" 9 g A A(g)))
=¢" (A(g A ¢;))
which proves that [A,19*] (g A ¢;) = 0. We prove in the same way that

[A,9*] (g A ¢;) = 0. Then A Cloiny(H) — Cf7yy (H) is left invariant, which
completes the proof. ]
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1.2.3 Modules of differential classes on H attached to
L <H

A) The 2-form of structure o attached to L <1 H

By analogy with (1.1.7), we define for any L < H, the vectorial 2-form of
L ..., oLy as follows:

g eeey n

structure o = (o

of = Z )\ﬁj@ Ao, (1.2.1)

ij=1

where )\ﬁj are the constants of structure of the Lie algebra H defined in
(1.1.14). B) The submodule J\(?) of C5 () attached to L <H
For 0 < s < 2n, let j(ls’)(Q) denote the C**(2)—submodule of C) (€2) attached

to the 2-form o¥, and defined as follows:

e For 2 < s < 2n, the submodule jé)(Q) is generated by the scalar

2-forms o} (see the expression of of in (1.2.1) above), that is

k=n
@ = { S sinot. pecs @]
k=1
e For s=0and s =1, we set

J6(Q) = Th(Q) = {0}.

C) The differential ideal JL(Q) attached to L <<H
With the above notations, the submodule

2n
Jo() =P Ik
s=0

is a graded differential(*) ideal of C5)(2).
D) The modules of differential classes attached to L <H
Let 1 < pi,po <mand 1 < ¢, < n — m be integers with p; +ps = p

2In the sense that df € \7(2)(9) for all f € j(f)(Q)
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and q; + g2 = ¢, and {2 an open set of H. We first attach to the subalgebra

L <1, the following submodules(*) of Cf%, ., (€):

C?&LPQLQ)L(Q) = C(o(?m,m),tl)n (Q> + ‘7(IL?+Q)(Q) with (pl +p2 = p)
00 L o) L : _
C(p»(QhQQ))L (€) = C(n(qwz))n (€2) + ‘-7(p+Q)<Q) with (g1 +¢2 = q)
o) . o] L
C(pvq)L (Q) T C(p7Q)H (Q) + ‘7(p+q)(Q)

- @ C(.(c;’hpz)yfI)L (Q)

p1+p2=p

@ C(OOZ;(QMIQ))L(Q)'

q1+g92=q

Now we define on the module CF(€2) the relation ~ as follows:

frge=f-9eTh).
The fact that ~ is obviously an equivalence relation leads to the following:

Definition 1.2.3. The quotient module

C( (p1,02),9) 1L (Q> : C&C;Dl .p2), ( )/ ~

is called the module of ((p1, p2), ¢) —differential classes, or differential classes
of H—type ((p1,p2),q)r, and The quotient module

G an () 1= C oy (D) ~

(p(q1,92))r (p(q1,92))r

is called the module of (p, (¢1, ¢2)) —differential classes or differential classes
of H—type (p, (q1,¢2))z-

We set
pQ)L @ C ((p1.p2) q)L )

P1+p2=p

@ C(O;’((hm))L(Q)'

q1+g2=q

E) A metric interpretation of differential classes attached to
L<H

3The sums are not direct.
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Since the group H is assumed to be metric, we can give a simple interpretation
of the differential classes in terms of the metric g,,.

Indeed, if we write f,g € CF7, ) (€2) as follows

f: Z fLJ ¢I/\$J

[+|J1=p+q

and

’

g=>_, 9,07,

|I|-+|J|=p-+q

then the metric g,, induces on C° (Q) the inner product

(p+49)

(f, ) = Z /f” » (1.2.2)

[|+[J|=p+q

where dV,, = (%’)nal AL A ... N, A ¢y is the 2n-form volume on ) with

. 00 L .
respect to the metric g,,. Let B((p1,p2),q)L be the orthogonal of Tiprq With
respect to the inner product (1.2.2), that is

1 L
B((P17P2) {f € C ((p1,p2),0) 1. <f ’g>7-t =0 for all g e \7(p+q)} .

We check easily the following proposition.
Proposition 1.2.4. The following map

—>C(p1

(oszlypz) QL 02),9) L

fr—f
1S a linear isomorphism.

_ This proposition means that we can identify every differential classes
I € C(prpo),q),. to a differential form fte C°° orthogonal to the ideal

. ((p1,p2),9)L
‘7(p+q)'
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1.3 The differential operator 5L defined by
LaH

Let 1 < py,po <mand 1 < ¢, <n—m be integers with p; + ps = p and
q1 + ¢2 = ¢, and €2 an open set of H.
Our aim now is to prove We the following theorem.

Theorem 1.3.1.
There exists for every L < H, one and only one pair of first order linear
differential operators (0,,0,):

L? L
8L : C(O;»(QMJQ))L (Q) — C(O;‘f‘l»(qu))L (Q)
0, Cloor e () = Cllor o) g, (V)
such that:
1. 0, is left H—invariant.

2. If( , ) denotes the pairing between vector fields and 1-differential forms,
then for every C*> function f,

(Z;,0,f)=Z;(f) forall 1<j<n. (1.3.1)

3. The 1-forms of structure ¢ and ¢ satisfy the following 7 L—equations

of structure”:
5 6= o
0.9 7 (1.3.2)
0,¢0=—0".
4. Forall f,g € CE’.O)(Q), 0, satisfies Leibnitz'rule, that is
B, (fNg) =B,/ Ag+(-1)fAD,g,  v=degl(f). (133)

5. The differential operator 0, is related to 0, by the identity:

o,f=1(9,f) for all f € CQ(Q). (1.3.4)
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Remark 1.3.2. It suffice from identities (1.3.4) above, to prove the existence
and uniqueness of the 5L —operator only.

The proof of theorem 1.3.1, will be done in two steps, first for C*° functions,
then for differential forms.

1.3.1 The differential operator J, for functions.

Proof. (of theorem 1.3.1 for functions.)
Let’s first prove that if the operator 0, exists for C* functions, then it will
be unique. Indeed, since by definition of the modules jé)(Q, we have for
s=0and s=1
J6)(Q) = I (Q) = {0}
then
CE)(%,O),O)L(Q) = COO(Q)

and
CE)(OO’O)J)L (Q) = Cfg,l)q.[ (Q) N

Now let f € C=(R), and write 0, f € Ci51),, () as linear combination of Oy
1 <k <n, with C* coefficients Py(f)

3

=) Pulf)on

=1

ol

Since 9, is a linear differential operator, then supp (5L f) C supp(f), which
implies that supp (Px(f)) € supp(f) for each 1 < k < n. By Peeter’s
theorem, P, is then a linear differential operator, that is

P, = Z aj,k(z)Zj + bjyk(Z)gj, z € Q.
j=1
where a;;, b, € C*(Q) are C* coefficients. Hence

n

9, =Y, (aj,k(z)zj + bj,k(2)§j>5k-

jk=1

Since by condition (1), 0, is left H—invariant, then the coefficients a;, b; €
C>(2) are constant functions, and from condition (2) we obtain

Qjr = 0 and ijg = (Sjyk
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where §;, is the Kronecker symbol. This means that the 0, —operator must
be defined for C* functions by

5,0 = Y E 0, (135)

For the existence, it suffices to observe that the differential operator 5L de-
fined by (1.3.5) satisfies in fact the conditions (1), (2), which proves its
existence for C*° functions.

Since by condition (5), we have for all f € C>*(Q), ,f = (9, f), then the
0, —operator must be defined for C* functions by

0.f =3 _Zi(1)e; (1.3.6)
j=1
and then conditions (1), (2), (5) are all satisfied. O

Remark 1.3.3. From formulas (1.3.5), (1.3.6), we observe that the differential
operators 0, and 5L acting on functions are independent of the choice of the
subalgebra L <1 H. For this raison, we denote them when acting on functions,
indifferently by 9, , 9, or by 9, , 0., , and we write for C*° functions

H ?

Ouf = 0.0 =3 Zi(N)e
9,f=0,F =) Z,()9;

1.3.2 The differential operators 0, for differential forms.

A) Extension of the vector fields Z; and Z; to differential forms
Let L <t H. To define the differential operators d, and 0, for differential
forms, Formulas (1.3.5) and (1.3.6) suggest to extend the action of the left
vector fields ?j € H and Z; € H to linear operators ?f and Z]L acting on
differential forms.

Indeed, the vector fields Z;, and Z; can be viewed simultaneously as vec-
tors of the Lie algebra H, that is, as linear differential operators acting on
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C>—functions, by formulas (1.1.8) , and (1.1.9), and as vectors of the Lie
algebra #,, which means that Z; and Z; act on the vectors X € H,, by the
ad-endomorphisms ad, Z; and ad, Z; as follows

ad,Z;: C" — C"

X —ad, Z;(X) = [zj,X}L, (1.3.7)
ad,Z;: C" — C"

X —ad, Z;(X) = [Z;, X] . (1.3.8)

Then, using the brackets (1.1.13), we deduce by duality with (1.3.7) and
(1.3.8), that Z; and Z; act on the 1-differential forms ¢;, and ¢, by:

o — (ad, Z;)" (01) = D M0 (13.9)
1=1

c_bk — (ad, Z;)" (@) = Z )\f,jé_bi (1.3.10)
i=1

o — (ad, Z;)" (¢x) = D M 0 (1.3.11)
=1

b+ (ad, Z5)" (¢y) = ) A0 (1.3.12)
i=1

This leads to define the linear operators Z;, and Ej.

Definition 1.3.4. Let L < H, and 1 < 7 < n. We consider the following
linear operators Z/, Zf;

1. ?f 1 Cl(Q2) — €3 () is defined by the conditions:

(a) on a C*> function f, zljh(f) = Z;(f).

(b) On the first 1-forms of structure ¢, and ¢y, Zr

; acts as (adng)*

Z; (%) = (ad, Z;)

* —

{Zﬂm = (ad, Z;)" (6)
(61)-
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(¢) On arbitrary C* differential forms, Zf acts by Leibnitz’ rule:

Z/(fAg)=Z;(H Ag+fAZ;(9) v = deg(g).

2. 27 1 C(Q) — CX(Q) is defined for all f € C(Q), by

J

Proposition 1.3.5.

We have for all L <H and 1 < 1,7,k < n, the following properties:
1) ?f is left H—invariant.

2) the following compositions hold

=L —=L
Z oZ =0
{ Zi 0 2; (0n) (1.313)
Zio j (¢k) =0
3) The following commutators hold
[Zf,?ﬂ 3 <>\k FANE ) . (1.3.14)

k=1
Proof.
1) The operator Ef is left invariant by proposition 1.2.2.

2) Since Zf is defined by (aszj)*, then the compositions (1.3.13) follow
from the fact that the group H is 2—step nilpotent.

3) Since ZF and ?f satisfy the Leibniz’s rule, then [ZZL Z"

p } satisfies the

same rule, that is
ZLE| (g = [2EE (D Ag+ f A 2R E] ()

and then, to determine completely [Zf,?ﬂ, it suffices to evaluate it at

C>°—functions and at the forms ¢, and ¢,. For this, we have on functions,

[zfzj] 2.2}, Z)\’“ Zp 4+ 0 Z,
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and on the forms ¢, and ¢, :

[z},zﬂ - [(asz> (ad Z,) ]
= (ad2))" 0 (adrZ;)" — (adp2)* o (adrZ;)"
= (a1 Z; 0 ady Z,)" — (adZioady 2;)
= (adyZj0adZ; — adrZ; 0 ad  Z;)"
= (adL (2., 2;])

= Z N (adp2)" + N (ad Z)

We obtain then
[ ] Z)\k ZF 4N Z

which proves (1.3.14). O

B) Extension of the operators 0, and 5L to differential forms

Proof. (of theorem 1.3.1 for differential forms.) To complete the proof
of theorem 1.3.1, it remains now to extend the linear differential operator 5L
defined in (1.3.5) to differential forms.

For this, let f be a C*°—differential form, and define

d,f = iajAEf(f). (1.3.15)

The first order linear differential operator 0, defined by (1.3.15) satisfies the
conditions (1), (2), (3), (4) of theorem 1.3.1. Indeed,

1) Since ?f and 5]- are left invariant, then 0, is left invariant.
2) The condition (2) is already satisfied in the construction of 9, for functions.
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3) Let us check for each 1 < k < n, that 5L¢ = ¢!, Indeed, we have:

9,(0) = 3 8 N 2 (%)

= 6, A (ad,Z;)" (1)
j=1

=) M0 A <fr0m (1.3.11))
i,j=1

= —oy.

The identity 9, ¢ = —c* can be proved by a similar method.

4) Since by definition, Ef satisfies Leibnitz'rule , then 0, observes this rule.
5) If we define the linear operators 0, for every C*—differential form f, as
follows:

o, f = Xn:@/\zf(f) (1.3.16)

then the pair of linear operators (8L,E_9L) satisfies obviously the conditions
(5) of theorem 1.3.1. The proof is then complete. O

Proposition 1.3.6.
The 0, —operator is left invariant, and satisfies furthermore the following
properties:

5 _ L
{?L (01) = o (1.3.17)
aL ((bk) = — 0y
and then
9, (J(f)(ﬂ)) C T ) (1.3.18)
5L (C(o.(;llapz),Q)L(Q)) c C(’é)1,pg),q+l)L(Q) (1.3.19)
— k=n ’
0,f = ()™ Z(f) ok € Te(9): (1.3.20)

k=1
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Proof.
1) The identities (1.3.17) are obvious. From (1.3.17) we observe that 0, oF €
J%(82), which implies the inclusion (1.3.18) by leibniz formula.

2) Let g=f+ foeCy (Q), with fy € \7(1];+q)(Q), and

((p17p2)7Q)L _
f= Zuuﬁimm Jies @ NO, € CT pyayn (V-
=q

If we compute 0, f by Leibniz formula, we obtain:

/

5Lf = Z 5LfM(,J A ¢IK /\aj + fIK,J EL (¢IK /\EJ)

[|=p1,| K|=p2
|71=q
Since by condition (4) of theorem 1.3.1, we have 9, (¢, A §,) € T5 (),
then 5LfM<,J A ¢1K /\EJ S C(’é?l,pQ),q+1)7_[(Q)’ and fIK,J 5L <¢IK /\EJ) + 5Lfﬂ S
.Y(I;Jrq)(Q), which proves inclusion (1.3.19).
3) Let v = deg(f). We have:
0,f=0,(0.f)
=0, (Z Zj(H)A qzs])
j=1
=3 % (Z?fm A aj) NG
=1 =1
=N"ZZ(NAGAE + (1Y FAZS,) A,
jk=1 k=1
=Y 2L E] (D AdAG + (D)"Y Z () A (Z?k @)) A B
k<j j=1 k=1
= (1" Y Z/ (A ( Zacb) A O
j=1 k=1 i=1
= (1" Y Z/ () A (Z M) Acbk)
j=1 ik=1
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]
Corollary 1.3.7.
For L = H, the 0, —operator satisfies the following particular properties:
5H(¢) = 5}}&(5) = 0. (1.3.21)
=2
a9, =0. (1.3.22)
If f - Z fI,J ¢1 /\5] € CE)I?,Q)H(Q>’ then
[|=p,|J|=q
Ouf= D 0uf NG NG, € CFuiny, (). (1.3.23)
[|=p,|J|=q
Proof.
This follows from the fact that for L = H, we have ¢ = 0, and then
\7(7.{) = {0}. ]

1.3.3 The 0, —operator for differential classes.

To define the 0, —operator for differential classes, we may make use of the
following proposition.

Proposition 1.3.8. Let f,g € CJ; Q). If f~g, thend, f ~0,g.

(P1,p2).9)L
Proof. Since f ~ g, then there exists h € jéJrq)(Q) such that f—¢g = h. But

from (1.3.18) we have 0, (jéﬂ)(ﬁ)) C .7(§+q+1)(ﬂ), then 9, f ~0,9. O
Definition 1.3.9. The 9, —operator for differential classes is defined as fol-
lows:

8L : C(.(CIJ’MPQ)#J)L(Q) — CF(%LPQ)#]"‘I)L(Q)
with

9,7:=0,f. (1.3.24)

Remark 1.3.10. Form proposition 1.3.8, The 0, —operator for differential
classes is well defined.
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Proposition 1.3.11. For every differential class ]7, we have 5?]7: 0.
Proof. This follows from identity (1.3.20). O

Definition 1.3.12. The first order linear differential operator

a,:C? Q) — C Q)

((p1,p2),9)L (p1,p2),9+1)L

defined by
J— _L J—
0.f=) Z;(HN;
j=1
is called the left Cauchy-Riemann operator of the group H attached to L <t H.

1.3.4 The linear connexion d,

Definition 1.3.13. Let L < H, and define the following linear connexions:

L Th: C5(Q) — O

G +1)(Q) is defined by the conditions:

(a) On a C* function f, L(f) :=0.
(b) On the first 1-forms of structure ¢, and ¢,, I' acts as follows:

I (¢pp) :=TL(d,) =0 for 1<k<m
M (¢p) = —TE(¢,) = 2(cF — o) for m+1<k<n.

(c) On arbitrary C* differential forms, T'V acts by Leibnitz’ rule:
TE(fng) =T (f) Ng+ (=1)".f AT*(g), v = deg(f).
2..d, : C3() — €51y () is defined by:
d, :==d+T" (1.3.25)

Lemma 1.3.14. For every C*—function f

n

2Ed) (1) = 30 (el = N5) ) + (= 25) Zulh) B (13.26)

i,k=1
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Proof. Let f be a C*°—function. Then

=Z; (sz )br + Zk f>¢>
f)%-irzzk(f)z (or)

k=1
3 z ¢k+sz (NZ; (3)

Il
M :
W

S

_szoZ qbk—i-zzkogj(f)ak
LS EGZ) (P

=d(Z;)(f)
+ 3 (auZilh) + a2

i,k=1

- Z >‘g ka Z /\jykzk(f)ai

i,k=1 i,k=1

which implies that

n

254} (1= 3 (e = X) 200+ (T - T,200) )

ik=1

and completes the proof of (1.3.26). O

Corollary 1.3.15. ?f is a Lie derivative if and only if L = Z(H), that is:

[dzf] — 0= L=2Z(H). (1.3.27)
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Proof. This follows from identity (1.3.26). O

Proposition 1.3.16. For every [ € C(C:O)(Q), we have the decomposition

df=0,f+0,f (1.3.28)

Proof. By observing that d, satisfies Leibniz’s rule, it suffices then to prove
formula (1.3.28) only for functions and for the 1-differential forms of structure
¢r and ¢y

1) Using formulas (1.1.4), (1.1.5), and (1.1.8), (1.1.9), we deduce immediately
for every C* function f

df =0,f+0,f.
2) we have from (1.1.6)
doy, = oy,

and from (1.3.17)
9, (gbk) = -0, (ak) = O-II;J

9, (dx) = =0,() = 0y,
Then d, = 9, f + 0, f, which competes the proof. H

y+o

1.4 The category of complexes C((m P2),0)e

1.4.1 The 9, —complex defined by L < H.

To construct a good J, —cohomology of differential classes (ie, differential
forms modulo the ideal ‘7(5)(9)), we are led to define the following notions.

Definition 1.4.1.

1. A differential form f € C, (Q) is said to be 9, —closed, if

(p1,02),9) L

a,fedt (€2).

p1+p2+q)
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PQ),O).

2. A differential form f € C7,, ) o, (€2) is said to be 0, —exact, if there

exists a differential form g € CT,,, ), 1), (©2) such that

f - 5Lg = ‘7(§1+p2+Q)<Q)'

Now fix L < H, and 2 . According to the above definition, we can
consider the complex

Y+o o Y+l 3
C((plyPQ)yo)L () = {C((pl,PQ)P)L (2),9, }l,q

defined as follows:

y+I+1 9, Y+l 9, =1
0 _> C (pl p2) q— 1) (Q) —> C((pl,pz)ﬂ)L(Q) _> C((pl,p2),(]+1)L(Q) .« e _> O

Hence we obtain a space of cohomology

{f € Co?m p2) Q)L<Q)’ gLf € ‘7(§1+p2+Q+1)(Q)}
"7(];1+I72+Q)(Q> +Im {a C(X;?l p2),a—1)r () — C ((p1.p2),9)1L (Q>}

H((p1.2).0)1 Q) =

We call H(p, ps).q)., (€2) the ((p1,p2), q), —group of cohomology of the 0, —operator
over the open set (2.

Remark 1.4.2. In the case where L = H, the ideal \7(3:‘)(9) is reduced to {0},

and the 0, —cohomology is in fact a cohomology of differential forms. The
corresponding complex in this case, is

0 cee Q) 2, oo Q) 2, oo QO 0
— = Clop) =13 () = Clorpm).an () — Cllon pa) g1y () — - —

and the ((p1,p2),q)x—group of cohomology is the space

ker {By : € e (@) — Cop i (D)}

H((phm)ﬂ)u (Q> = o0 0 ‘
Im { : C( p1.p2)sa—1)n (Q> — C ((p1,p2), )1 (Q)}

Ql

H
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1.4.2 Construction of the functor 0,

To construct the functor d,, we are led to consider a category of complexes.
Indeed, Let K << H, and L <1 H, and let the modules of differential forms

+1 41
C,Y:m P2),9) K (Q> C’Y:zn p2), q)H( ) + ‘7p+q( )

and

Clomwnas ) = Cliprpay () + Ty ().

Since the group H is assumed to be metric, then we can decompose the
following modules as direct sums

Cvﬁm)«z) ( ) ijrq( ) (jp+f1( ))L
Clt (@ = Tl ) © (T5,()

Consider the orthogonal projections
pKLjK ( ) — ijL(Q)

ijrq( ) — ijL( )
since J04(Q) € Tk (), we can define the map

+1 +1
Ik.L C’y(pl 02),9) K (Q) - C’ypl p2), Q)L( )
. +1 1
gK,L(u> — { u Tf ue C’Y(pl 02),4)H ( ) (jp—irq( >) (1'4'1)
pKL(u) lf u € p—i—q(Q)

Definition 1.4.3.
The category Cw(zop 1.9 (Q) of complexes attached to the metric group H is

defined as follows:

e The objects of Cvp L p2)0)e (Q) are the complexes of modules CVZOPQ) o)L (Q),
where L runs over all L < H.

e Forall K < H and L <1 H, the set Mor (cv;fpz) o (), C?(Zf,m),o)L(Q))
of morphisms from C%Lo (Q) to C7+° o), (€2) is reduced to one el-

((p1,p2),0) K ((p1,p2
ement, that is the mapping g defined by (1.4.1),

+o0 +o J—
MOT’ (C/ypl p2) O)K(Q)’ C&p17p2)7o)L (Q)) T {gK,L} :
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e the composition law is the usual composition of maps.

Proposition 1.4.4. The correspondence

0o He —> CZ(+° (Q),

P1,D2),0)e

Hy s C° (Q)

P1,02),0) K
is a functor of category.

Proof. This follows from the fact that for all L <1 H, we have 8_L(.7 LJrq) . O

p

1.5 The C* independence of EL and 0

Let L < H, and let ?L be the left Cauchy-Riemann defined by L < H. After
the construction of 9, it is legitimate to ask the following:
Question. Is the differential operator 0, really C* independent of the clas-

sical Cauchy-Riemann operator 0 ?

To precise the sense of this question, let 1 : C* — C", be a diffeomorphism,
and define for an open set {2 C C", the corresponding pullback isomorphism,
that is:

P CH(Q) — CH(()
fr=0r(f) = foy™".

Definition 1.5.1. The differential operators d, and 0 are said to be C*
dependent, if there exists a diffeomorphism 1) : C* — C", such that

9, =v"0do ()"
that is, such that for all s, the diagram

00 (2 00
C(s)<Q) - C(s—l—l) (€2)

w*l lw

CE);)(Q) T 5 CE);H) (€2)

1S commutative.
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The following theorem precise the answer to the above question.

Theorem 1.5.2.
Let H = (C", %) be a the 2-step nilpotent Lie group, and let L < H.
Then 0, and O are C* dependent if and only if H is isomorphic to (C",+).

Proof. The sufficient condition is trivial. Let us prove the necessarily condi-
tion only. First, observe the following fact: If 9, and 0 are C*° dependent,
then for some diffeomorphism v, we have:

9, =1 0do(y) .

Hence
7 =070 o () =0,

But this is impossible when L # H. It sufficient then to prove the theorem
only in the case L = H, and only for s = 0, that is to prove that d, is C*
independent of 0.

Assume that the group H is not commutative, and that there exists a diffeo-
morphism 9 : C" — C™ such that

dy =9 0do(y)".

Consider the group H = (C", %) = ¢ (H), and define its law * by the map
F = (F,.. ,F,):C"xC"— C", and consider for p € H, the inverse left
translations:

T,z — &= F(p,z2)

and
T—p: 5 —z= G(puf) = F(_p7§)

Write the classical 0 in the coordinates z, that is:

— ) "9
d = <£,d§> _;8—%@.
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Then by the change of the coordinates z into £, we obtain:

L OF, 0 OF; 0 " 0G,  OC,
=2 <Z (fm % +F¥>) (Z (et 5 dgl))

k=1 \j=1
OF; 0Gy, OF; 0Gy, =
‘],Zl (Z a—y) o, * Z (Z T%) o5,
OF; 0G|, OF; 0G}, =
EERE) e R ERR) e

Since @, is left invariant by H, then 0 is left invariant by ]ﬁl, and then we
must have by identification:

Z OF; 0Gk
07, 06

Z OF; aGk B
0zy ¢,
(1.5.1)
Z OF; 0G),

255, 06
599G _
Oz agz -

[ jl=1
It follows from the system (1.5.1) that for all p € Iﬁl, the partial map
z— Flp,.)

is holomorphic with respect to the variable z. Since furthermore, the group

= (C", %) is 2-step nilpotent, then H = (C", %) is 2-step nilpotent, and
hence the Taylor expansion of the map F' near the origin 0 can be written
by Campbell-Hausdorff formula as a second order polynomial map, that is:

1
Fp,z) = p+2+5[p ]

where [p, z] denotes the Lie-bracket of p and z.
Now decompose [p, z] as follows

[p.2] = A(p,2) + B(p,Z) + C(5,2) + D(p. %)
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where A, B, C, D are bilinear maps C" x C* — C".
Since the partial map
z— F(p, z)

is holomorphic with respect to the variable z, then B = D = 0, and since the
Lie-bracket [ , } is a skew bilinear map then C' = 0. It follows then, that

1
F(p.z)=p+2+ 54, 2)

where A = (A, ..., A,) : C" x C* — C" is bilinear and then holomorphic.
Now let

b =dzj— =y —dz, 1<j<n (1.5.2)

with A; short for A;(z,z), be the holomorphic 1-forms of structure of the

group H, and let by duality with (1.5.2),

s 0 104 0 ,
Zi=—+— — 1<j< 1.5.
! 82j+2kz:;82j8zk =J =0 (1.5.3)

be the dual left invariant vector fields. If we write for a C* function f, the

1-differential form Of as linear combination of 5]- and 5]-, we obtain:
of =) _PBi(Néi+)_ Qi
J=1 j=1

where P; and @); are first order linear differential operators. Since 0 is left

9,
H—invariant and does not contain the terms E and dz;, then P; = 0 and
%

Q; is left H—invariant. We have then with suitable constants bjrcC
Q= b2
k=1

and then

=" b1 20, (1.5.4)

7,k=1
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Let the matrix B = (b, ;). The identity (1.5.4) can be expressed using (1.5.2)
and (1.5.3) as follows:

9= <(1-6(z)) B%, (1— @)’ (z)) dz>. (1.5.5)

If we denote by ( , ) the pairing between vector fields and 1-differential

forms, we can rewrite 0 using (1.5.4) and (1.5.3) as follows

= a — 0 —x 0\
b= <£, dz> - <(I - C(2) B, (1 - () (z)) dz>
—. N2, 0
= <(] —-C(2)) Bg,dz> :
By identification, we obtain for all z € C",

[=(I-C()’B (1.5.6)
Since C(%) is either 1-order polynomial or 0, then (1.5.6) implies C(%) = 0.
The group H is then commutative, which contradicts the hypothesis. The
theorem is then proved. ]



32

CHAPTER 1. THE FUNCTOR 0,



Chapter 2

The left Cauchy-Riemann
equation J,u = f

2.1 Local solvability of the equation 5Lu = f

Let L < H, and let 0, be the left Cauchy-riemann operator defined by
L < H. We prove in this section the local solvability of the equation
5Lu = f. More precisely, the following theorem (called in the commuta-
tive case, the Dolbeault-grothendieck lemma), means that every 5L—closed
differential form in the sense of definition 1.4.1 is locally 0, —exact in the
sense of definition 1.4.1.

Theorem 2.1.1. (Dolbeault- Grothendieck lemma)

1. First statement(for differential forms). Let Q = D; x ... X D, be

an open polydisc of H and let f € Cf‘;qH)L(Q) satisfy the condition

0,f € Js(Q). If Q' CC Q (that is Q' is relatively compact in Q ), we
can find u € C3; (V) such that f — 0, u € J5(Q).

P01

2. Second statement(for differential classes). Let Q = Dy X ... X D,, be

an open polydisc of H and let f € CE’;qH)(Q) be a differential class

satisfying the condition gLf: 0. If Q' cC Q (that is Q' is relatively
compact in ) ) we can find a differential class u € CE’;q)(Q/) such that

d,u=f.

33
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Proof. We follow Hormander [4].
Let f be the differential class of f .We prove the theorem by induction in

such that fdo not involve ¢, 41, ..., Oy.

If fvdoes not involve the differential classes ngﬁvl, ,&5; , then the theorem is
true because in this case f = 0 since every term in f is of degree ¢ +1 >0

with respect to 5
Assume the theorem true for —1 (that is for differential classes not involving

55:, ,&S\;) and prove it for pu.

Let fbe a differential class not involving qbfl;l, ey &5\; We can write
f=o.Ng+h

where g € C () and h € CF7,(€2). Observe that g and I are independent

of %, o &; Write

/

g = Z 9rx,L QSIK A ¢JL )

[IK|=p,|JL|=q

where g, ,, € C*(Q2) and Z/ means that the summation is performed over
all multi-indices with strictly increasing components. From the hypothesis
0, f =0, we obtain

Z(Gix.,.) =0 for v>p, (2.1.1)

where Z,, is the left invariant vector fields defined by (1.1.9).

Thus :

1) if 4 > m , then g, ,, is left H—holomorphic in the variables (1, ..., (y—m
2) if 4 <m , then g, is left H—holomorphic in the variables z,;1, ..., Zm,

€1y ---Cnm-

We now choose a solution G~ of the equation

zM(GlK,JL) =Y9rk.JL- (2.1.2)
For this, set for s € C
TH(S) = 8<51,;u ) 511,//,)
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where ¢;, is the symbol of Kronecker = 1 if j = [ and 0 if j # [. We have two
cases to discuss :

1) If u > m, (that is p = m+k , with 1 <k <n—m ) we begin by choosing
@ € C(Dysy) such that ¢(Cnex) = 1 in a neighborhood Q" of Q| and we
set

G (Z C) = L / (‘O(S)QIK,JL (Z, ¢+ Tm—l—k(s - Cm—&-k))dg A ds
o 27 8€Dm 1k $ — Cmtk
= __1 @(Cm—&—k - S)gIK,JL(Z,C — Tm+k(5))d§ A ds
271 sem s :
where D/mz = {Cnsk — 5 :5 € Dppyr}. This expression shows first that

Gip, € C(Q) , and by the Cauchy-Green formula, the equation (2.1.2)
holds in Q”. in view of (2.1.1) a differentiation under the sign of integration
gives for v = m+ k' with k' > k

Z,(G =0 for v=m+k >p

IK,JL)
2) If 4 < m, , we begin by choosing ¢ € C;°(D,,) such that ¢(z,) =1 in a
neighborhood Q" of ' , and we set

G (Z C) _ L/ SO(S)gIK,JL (Z + Tu(s - ZH),C - iB(Z,?))dE Ads
OIS 2m Jsep, S — 2z,

_ __1 SO(ZM - S)gIK,JL (Z - TM(S),C - ﬁB(Z,z))dg A ds

- 2mi seD, S )

where l/?\# = {s—z,:s€D,}. As above , the last expression shows that
Gk € C*(Q). By the Cauchy-Green formula, once again, the equation
(2.1.2) holds in Q". in view of (2.1.1) a differentiation under the sign of
integration gives

Z,(G ) =0 for v>p
If we set
G = Z GIKJL ¢IK A ¢JL )
| K|=p,|JL|=¢

it follows then that in Q'

ELG: Z ZgV(GlK,JL)a_M/\&;:(AE:E/\§+%1

|[IK|=p,|JL|=q
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where hy is the sum of the terms of 0,G when j runs from 1 to p — 1 and is

mdependent of (15 : ,<;§ Hence h— h1 f 8 G does not involve <;§ qb
Since 0, f 0,G)=0 f = 0, then by the induction hypothesis we can find
v € C () so that 5L5 =f —ELG. The differential class u = v+ G satisfies

the equation 5Lﬂ = f, which completes the proof. O

2.2 The left H—holomorphic functions

Definition 2.2.1. The C* complex valued function f is said to be left
H—holomorphic if the 1-differential form 0, f is of H—type (0,1)s, that
is if f € ker(d,), which means that d,f = 0 , or in other words f is a
solution of the system of partial differential equations

Zi(f)=0 forall 1<j<n.
We denote the module of left 7 —holomorphic functions on 2 by O ().

Example 2.2.2. Let z = (¢/,2") € H=C™ x C"™". From the definition of
the vector fields Z; (see (1.1.9)), we check easily that the functions hy, ..., hy,
defined on the group H as follows

hi(z) = z; for 1<j<m,
1 _ (2.2.1)
hk(z):zk—iAk(z’,z’) for m+1<k<n

where A;, are the bilinear maps defining the group H, are all left —holomorphic.

The left H—holomorphic coordinates.

Definition 2.2.3. Let 2 C H be a bounded open set with, and
h:H—C"
z+— 3 ="h(2)
be the diffeomorphism defined by equations (2.2.1) above. (€2, h) is called the
H—chart of the group H over the open set €2, and the system (31, ..., 3,) € C"

defined by
31 = hl(Z)
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is called the system of left H—holomorphic coordinates of the point z € 2 C
H.

Remark 2.2.4. The H—chart h = (hy,..., h,) defined by (2.2.1) will be of
great interest in the construction of integral formulas for solving the equation
o,u=f.

As application, let us characterize the left H—holomorphic functions on
the group H in terms of the H—coordinates.

Proposition 2.2.5. Let Q be an open subset of H, and let h = (hy, ..., hy,) be
the H—chart over Q. Then f : Q0 — C is left H—holomorphic if and only
if foh™':h(Q) — C is holomorphic(*).

Proof. Let g := f o h™'. We have then

o(z) = f (z + %A@',?)) | (2.2.2)

By differentiation (2.2.2) , we find for all 1 < j <n

dg =
=z _Z.
. . = Jdg .
f is then left H—holomorphic if and only if Z,(f) =0 <= i 0, which
z,
completes the proof. ! ]

Remark 2.2.6. The proposition 2.2.5 means that f : @ — C is left H—holomorphic
if and only if its expression g = foh™!: h(Q2) — C in the h-chart (2.2.1)
15 holomorphic in the classical sense.

Q
f
h(LQ) —~C

Corollary 2.2.7. The C* complex valued function
fQCH—C

is left H—holomorphic if and only f is analytic with respect to the H—
holomorphic coordinates hq, ..., h,.

n the classical sense.
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2.2.1 Left h—pseudoconvexity with bounded deviation.

Notations

Let €2 C H be a bounded open set with C*°*—boundary 02 and
h:H—C"

z+— 3 =h(2)
be the system of left h-holomorphic coordinates defined for z = (2, 2") €
C™ x C*™™ by

3 =7 for 1<j<m

1 _
3k:zk—ZAk(z',z’) for m+1<k<n.

In all that follows we note D := h(2) C C".
Now Let V5 be a neighborhood of D, and

QOSVBD—>R.

be a C* function defined in a neighborhood Vjp of 0D C C", then with the
standard notations
a=(ag,...,ap)

la] = a1 + ... +
ol = aq!...ap,!
(3=0"=(B1— )" (3n — G)™

g0 oy
¥ = 9o acan

we assign to ¢ at each point ¢ € Vyp the following polynomials of order 2r,
r € N*:
e The Levi polynomial [PgT(go)] of type (1,0), defined by

82‘@
al

30— [PT(9)] (3) = >

0<]al<2r

(3 -9
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e The Levi polynomial [£Z (¢)] of type (1,1), defined by

9205 o

3 [ = Y i 3-0G-0"
o<l
|| +]B]<2r

The particular case E%(gp) will be called as usual the Levi form of ¢ at (.
Recall that ¢ is said to be plurisubharmonic in Vyp, if at every ¢ € Vyp, the
Levi form L(y) is positive.

Definition 2.2.8.
The open set €2 C H is said to be left h—pseudoconvex if D = h(2) C C" is
pseudoconvex in the usual sense.

We introduce in that follows for every C* pseudoconvex open set D, a
function

Dev, : 0D — NU {+o0}

evaluating at each ( € 0D, the ”"degree” of non strict pseudoconvexity of
D. This function will play a capital role for proving existence theorems for
0,u = f with Holderian estimates.

Definition 2.2.9. Let D be a pseudoconvex open set of C" with C>**—boundary,
and let ¢ : Vyp — R be a defining C*> plurisubharmonic function for D,
that is:

DﬂVaDZ{SGVaD ; 90(3)<0}-

We note the set of C*° plurisubharmonic functions on Vyp defining D by
Psh(Vyp).

e The plurisubharmonic function ¢ is said to be of bounded deviation at
the point ( € 9D, if there exist a positive integer r € N*, a real number
¢ >0, and a ball B(0, R) C C" such that:

[£27(0)] (3) > |3 —¢||"  forall 3e B(0,R). (2.2.3)
e Let the set

D,(C) := {r € N*, 1 satisfies (2.2.3)}.
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The deviation plurisubharmonic of the function ¢ at the point ( € 9D
is then defined by:

inf D -1 if D
DGUQ(C) - [ln SD(C)] 1 SD(C> 7é ¢7 (224)
+oo if  D,(¢) = ¢.
e We define the deviation pseudoconvex of the open set D at the point
¢ € 0D, by:
Deo(() = int { Der,(Q), ¢ € PohVin) |, (225)

and we say that D is pseudoconvex with bounded deviation, if

Dev(D) = sup Dev(() < +oo.
ceaD

Remark 2.2.10.
Dev(D) =0 < D is stritly pseudoconvex.

Proposition 2.2.11. Let D C C" be a C* pseudoconvex open set. Then the
deviation pseudoconvex of D

Dev : 0D — [0, +00]
¢ — Dev(()

is a lowersemicontinuous function.

Proposition 2.2.12. Let D C C" be a C* pseudoconvexr open set with
bounded deviation. Then D is of finite type in the sense of D’Angelo.
The converse is in general false.

2.3 Integral representation formulas for the
0, —operator

2.3.1 The basic differential form (u,v)

Notations.

Let M be a C'—differentiable manifold, and

= (U, Upy1) : M — C"H
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v= (v, Vpq1) : M — C"!

be C!'—mappings. Define the differential forms

n+1
W1 (u) == /\ du, (2.3.1)
j=1
n+1 g
w, (v) = Z(—l)j+1vjdvl A.oodvp A dogs (2.3.2)
j=1

where civ\j means that dv; is omitted, and the scalar function

n+1
(u,v) := Zujvj. (2.3.3)
j=1
Proposition 2.3.1. The singular differential form

Wi (V) A Wiy (1)
<u7 U>"+1

Koni1(u,v) := (2.3.4)

is closed (in the sense of distributions) in the open set {x € M; (u(z),v(z)) #
o
Proof. This results from a direct computation, for details, see [],[],[]. O
Proposition 2.3.2. For every C'—function g : M — C, we have

w,(gv) = g w, (v) (23.5)

and hence
Kony1(u, g.v) = Kony1(u,v).

Proof. For the proof, it suffices to write w,,_;(v) as determinant

/ 1
w, (v) = —det (v,dv, ...,dv)
n! ——

n
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that is
1 U1 d’l)l s d’l]l
w,(v) = mdet
Upt1 dUpgpr o dupg
We have
/ 1
w,(g.v) = gdet (g.v,d(g.v), ...,d(g.vz)
1 d d
= —det (g.v, g.dv + v—g, ey gdv + v—g)
n! N g g
1
= —det (g.v, g.dv, ..., g.dv)
=g w, (v)
as desired. O

2.3.2 An integral representation formula of Koppel-
man type.

The kernel K(z,¢).

Let €2 C H be a bounded open set with C>**—boundary 052 , V7 a neighbor-
hood of Q, and let
h:H—C"
z—— 3 =h(2)

be the system of left h-holomorphic coordinates defined for z = (2/,2") €
C™ x C"™ by

3=z for 1<j<m

1 _
3k:zk—ZAk(z’,z’) for m+1<k<n.

Consider the manifold M := 2 x V7 x C, and define the maps u,v : M —

Cn+1 by

—h(z) , 1)

- 2.3.6
—h(z) , te*|t|2) . (2:3.6)
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Then the usual euclidian inner product of u(z,&,t) and v(z,&,t) is

<u<z’€’t) ’ ”(zvf»t)> = [A(&) = h()|* + [t 7"

By substituting the maps (u,v) in Ko, 11, we obtain the singular differential
form

(v(2,&,1)) A wpar(u(z,€,t)
(u(z,§,t),v(2, & 1)

Definition 2.3.3. Let the complex measure in C

Kot (u(z,{,t) , v(z,ﬁ,t)) _ n

n!

_1#12 47

and define

Wy (A€ = B2)) Awa((E) = R(2))
K(z,&) = ——— Au(). 2.3.7
o / (IR(€) = h()I2 + [t =) U

The singular differential (2n-1)-form is called the kernel of Koppelman type
of the generalized Heisenberg group H.

Lemma 2.3.4. For every bounded differential forms f € Cf;’(ql’qQ))H(Q) and
U € CF (1,400 (1), we have:
[ KEONONE = [ Kanla ) A O A0E)
o0 QX C

Since the map: (z,&) — h(&) — h(z) is left H—holomorphic with respect
to both z and &, then

and

(@ - 7)) =3, (1) - 2, ().

The differential forms w, (h(¢) — h(z)) and w, (Wﬁ) - Wz)) may then be

n—1

written as follows
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and

iy (W8 ) = S0 (1@~ 1)) A\ (0,0@) - 2, ()
=

which means that K(z,¢) is of H—bi degree (n,n — 1)3 on Q x V5.

The integral operators K and Kyq.

Since the kernel of Koppelman type K(z,€) is smooth outside the diagonal
A ={(z,€) € 0?} and has integrable singularities in A of order 2n — 1, we
can then define the following integral operators:

1. If f is a bounded differential form on €2, we define

(Kaf)(z) = / K(z,8) N f(&), z €. (2.3.8)
¢eQ
2. If f a bounded differential form on 02, we define
Knf))i= [ KEOAFO. 20 (239)
£€oQ

Now decompose the kernel K(z,&) as

K= > Koz (2.3.10)

0<p1+p2<n
0<g<n-1

where K((p, p,),q)(2,€) is a differential form of type ((p1,p2),¢)x in z and of
type ((m — p1,m —m —py),n —q — 1)y in £, then the operator Kq can be
defined for a bounded differential form f on €2 by

(Kl = [ Kol 71O
¢en
and Ky can be defined for founded differential form f on 02 by
Kond)) = [ Kiuama:6) A 1(©)

£€o0
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Proposition 2.3.5. (y—Hdlder estimates of Kq.)
Let Q) be a bounded open set in H. Then For every bounded differential form
fonQ, Ka(f) is a C?—form in Q for all 0 <~ < 1.

Proof.
It follows from the definition of ICqo(f) that , for some constant C' > 0, and
for all z,& € Q

hi(§) = hi(2) — hy(€) — hi(Q)
(&) = h(z)]  [h(§) — h(Q)]

IKa(H)E) ~ Kol DO < ClSloa Y |

where dV is the Haar measure in H. In view of proposition .0.7, Appendix
1, it follows that for some C; > 0

1Ka(f)(z) = Ka(HOI < Cllfllgqlh(z) = ()]

inlhe) - ol
Since, for some A > 0, and B > 0

2 HAZHOL

and for all 0 < v < 1, we have

sup |h(z) — h(Q)["”
z,(EQ

Inlh(z) — h(Q)] ‘ < +00

we obtain then the assertion of proposition 2.3.5 as required. O]

Theorem 2.3.6. (Integral formula of Koppelman type). Let Q) C
H be a bounded open set with piecewise C* boundary 0. Then for every
((p1, p2), @) n— differential form f on Q, we have for every L <I H, the integral
formula

f=Koaf +0, (Kaf) +Ka (9,f). (2.3.11)

Proof. Let ¥(2) € D(m—p; n—m—ps)n—q) (§2) be a differential form with com-
pact support of type ((m —p1,n—m—ps),n—q)y, and consider the following
integral:

1(f,0) == /Q KO A O A,
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Taking into account the definition of the kernel K(z, &) (see (2.3.7)), we have:
1) = [ KOS A
Qx90
[ Ka (W 0,060) A SO A
Qx0T

:Awmw#@H(M%@ﬂw@aw)Aﬂ@Aw@»

Since Ko,q1 (u(z,f,t),v(z,f,t)) has no singularities on Suppy x 0(€ x
C) cc 2 x9(2x C), and 7 vanishes on 02, then

fuwozémmwfaw(m@aww@aw)Aﬂ@A¢u»

Now let L <1 H, and write in the product H x H, the exterior differential
operator d, ¢ in terms of the connexion d, , (see(1.3.25))

dz,ﬁ = dL><L — T

LxL

From the identity (1.3.28), we obtain in H x H x C the following decompo-
sition:
dz,&,t = dz,§ +d;
— dLXL o FLXL T dt
=0, + 5L><L — 2 40, + 0y

In view of the decomposition (2.3.10), the differential form
K2n+1 (U(Z, 5) t)? ’U(Z, ga t)) N f(g) N w(z)

is of total H—bidegree (2n + 2,2n + 1),,. Then from the decomposition of
d, ¢4, and the definition of I'** we obtain:

(

(Oper +00) Koo (16,601,005, €.0) A5 n62)| =0
9 K (a6 80002, €.0)) 15 n 02| =0
ey |:K2n+1(z, E) A F(E) A w(z)} = (9,,, + ) [K%H(z, N FEA @/)(2)} :

\
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Stokes’ formula gives on 2 x Q x C :

10 = [ g K (060000260 ) £ 500 n 02

[ @30 [Kna (w6 000,60 ) £ 0 100

Then
I(f,¢) =

L @ 40K (a6 00600 | A O A 00
[ Ka (W60 0,60 ) A B A0
= [ R (0,005 60) A FO A D00
(2.3.12)

Since (9,,, + 1) {Kgnﬂ (u(z,g,t),v(z,f,t))] = [A] ® 6(=0) where [A] is

the current of integration on the diagonal A C H x H, and d;—¢) is the Dirac
measure at ¢ = 0, then

L @808 (a6 010060) | £ 10 A vt
- /QXM (1A]® du=0) A F(E) A 0(2)
SECIEC!

If (, ) denotes ‘the pairing between currents and test forms on €2, then
after integrating 0,1 by parts, equality (2.3.12) is equivalent to the integral
representation formula (2.3.11). The proof is then complete. ]

2.3.3 An integral representation formula of Leray-Koppelman
type.
The Leray section (w(z,¢),g(z,§)) € C*.

Notations.
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Let © C H be a bounded open set with C!—boundary, Vaq a neighborhood
of 09, and u v the maps defined in (2.3.6), that is

u(z,€1) = (h(e)
vz 61 = (A

Now consider a map w : 2 X Vyg — C

hz) , t) eCm!

(2) , fe"tP) e Ct.

n .

w9 = (1.9, cen() €€,

and a complex valued function g :  x Vyoq — C, and set:

w(z,&,t) = (w(z,f) , Ze'tz.g(z,f)> e Ccrtl (2.3.13)

Naler ) = (ul 6.0)0(e,6.1))

n ] (2.3.14)
- Z [15(€) = hy(2)* + [t[*e™"
N(z,&,t) = <u(2,§,t),{6(3’§’t)>
(2.3.15)

=D wi(2:8).(h(€) = hy(2)) + [tPe g (2, )

and denote by F? ;) the following subset of 2 :

Fl, = {5 €90, N(z&1) = o}

and by p,, the Lebeagues measure of the boundary 0€2. We are lead to the
following definition.

Definition 2.3.7. With the above notations, we say that the map
(w,g) Q) x Vag — (Cn+1

(2,6) — (w(2,6), 9(2,¢) )

is a Leray section for €2, if the following two conditions are fulfilled:
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(z:t)

/tVE(C /SGBQ é’ t n+1 /‘Lasz(é-) 0% ,u(t) < +00.

Now let (w, g) be a Leray section for € and consider on the manifold

1. Forall (2,t) € QxC,  p,, (Fw ) — 0.

2. for all z € Q,

M = Q x VBQ x C
the homotopy p = (p1, ..., pns1) defined for s € [0, 1], by
(1 _ S).U(Z, g) S'ﬂj(’Z? 57 t)

p(z,€,t,8) = No(z £,1) - NGED (2.3.16)
It is clear by (2.3.16) that for all (z,&,t,s) € M x [0, 1],
(60 pen6t9)) =1 (2317)

By substituting v by the maps w and p respectively in the forms w;_l(v) and
w, (v) (see (2.3.2)), we obtain :

n

W (w(2,€)) = D (=1 wi(2,6) \ By (wi(2,€))
k=1
k#j

j=1
and
n ' n+1 _
w;(p(za 57 ta 3)) = Z(_l)]Jrlpj(Za 57 ta 5) /\ (8H><H + dt + ds)(pk<z7 55 t: S))
)

Definition 2.3.8. Let the complex measure in C

n!

(1= |tP)e T A dt
gy (= e i A

pult) =

and define

n!

Lon+1(2, &, 1) := (im)enit

Koni1 (u(z,&,t),w(z,&,1))
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n!
R2n+1 (Za £7t7 8) = WK%H—I (u(Z7§7 t)?ﬂ(za £7t7 8))
and
Wy (w(z, 5))/\%( (&) — h(2))
L Z, = Z,S)- n+1 ¢
0= [ o0 e e v Al

R(2.6.5) = /tecg@,o.w; (0(2.€.1,5)) A wn(h(€) — h(2)) A p().

The differential forms £(z,£) and R(z, &, s) are called the Leray kernels of
the generalized Heisenberg group H.

Lemma 2.3.9. For every bounded differential forms f € C (). (Q) and
U € CF (41,4005 (), we have:
[ EEONFOA VD = [ Laa 0 A SO AUE)
o0N oNxC
R 69 A SO NG = [ Bana(esbetis) A O AULG)
oN o0xC

The integral operators Ly, and Ryn

Let f be a bounded differential form on 0f), and (w, g) a Leray section for
2. Since by (2.3.17) and the conditions (1) and (2) of definition 2.3.7, the
differential forms L(z,&) A f(§) and R(z,£,s) A f(§) are integrable on Vjq
and on Vyq X [0, 1] respectively, we can then define

(tonf))i= [ L(:€) A1 (23.18)
£€6Q
and
(Roaf)(z) = ccon R(z,&8) A f(E). (2.3.19)

If we consider the unique decompositions

L(z8) = Y. L8

0<p1+p2<n
0<g<n-—1
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R(%&8) = > Riguoma(65)

0<p1+p2<n
0<g¢<n-—1

where L((p, ps).q) (2, §) is of type ((p1,p2), ) in z and ((m—p1,n—m—p2), ¢)n
in £ and R((p, p,).q)(2,&, 5) is of type ((p1,p2), ¢)n in z and ((m —pi,n —m —
p2),q— 1)z in (€, s), then the integral operators Lyq and Rsq may be defined
for f e C? (Q) as follows:

((p1,p2),9)n
(Loaf)(2) = / L(prp2).0)(2,E) A f(E)
£eoN

and

R((PLPQ%Q)(Zv 57 S) N f(g)

£€oQ
0<t<1

(Ragf) (Z’) = /
Theorem 2.3.10. (Integral formula of Leray-Koppelman type). Let
Q) C H be a bounded open set with piecewise Ct boundary O , Vaq a bounded
neighborhood of 02 and (w, g) a Leray section for Q such that the derivatives
of (w, g) of order <2 in z and the deriatives of (w, g) of order <1 in & are
continuous on 2 X Vaq. Then for every ((p1, p2), q)u—differential form f of
class C* on Q we have

f="Loaf +0, (Roa+Ka) f+ (Roa +Ka)d, f. (2.3.20)

Proof. To prove (2.3.20), we have only by Koppelman formula to prove in
the sense of distributions the following identity:

ELRan = ’Can - Eagf + RaQELf in €. (2.3.21)
Indeed, let ¥ € Dyp, m—m—psn—q)y (£2). With the notation:

n!

WK%H—I (U(Z, ga t)7 p(Z, 5’ t’ 8))’

RZn—l—l(Za ga ta 8) - (2%71'

consider the integral
HE)= [ dlRanna(n€5) A SO A V).
Qx00x[0,1]

Since (w(z,€), g(z,€)) is a Leray section for €2, then Ro,.1(2,&,t,8) A f(€) A
1(z) has integrable singularities on 2 x Suppy x C x [0, 1], and since ¥(z)
vanishes on 0f), then the integral J(f, 1) can be written as follows

J(f, 77[)) = / d [R2n+1(2a 57 ta S) N f(g) A w(z)] :
O(OQxNQxC)x[0,1]
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Let L <« 'H, and write in the product H x H, the exterior differential operator
d.¢ in terms of the connexion d, , (see(1.3.25))

dog=d, , — T

From the identity (1.3.28), we obtain in H x H x C the following decompo-
sition:

d=d,¢+d;+d,
=d, , — I d +d,
- 8LxL +5L><L _PLXL+at+5t+ds.

Since in view of the decomposition (2.3.19), the differential form

R2n+1<27 57 t? S) A f(é-) A w(2>
is of total H—bidegree (2n + 2,2n + 1),,, then:

(aLxL + at) [RQTH—I(Zv ga t S) N f(f) 7vZ)( )]
Lk [R2n+1(z7§7t7 S) N f( ) (Z)]

- d[_R2n+1(Za§>ta S)Af( ) (Z)] =

(aLxL + at + ds) [RQR-H(Zu 57 L, 3) (5) ( )]

Hence

J(f ) = — / Ronsr(2,6,8,5) A, [F(€)] A(2)
Qxo0xCx[0,1]
_ (—1)prteta / Ronii (2, 6,1.8) A F(€) A D, [(2)]
Qx90xCx[0,1]
and by Stokes’ formula:
I(f,0) = / Ronn (2, 6,4, 1) A F(E) A ()
QAxINxC
_ / Roni1 (2, €,4,0) A F(€) A ti(2).
QAxo0xC

From identity (2.3.5), we deduce:

R2n+1(za€>ta 1) A f(f) A w(z) :L2n+1(z757t) A f(f) A ’QD(Z)
R2n+1(Zaf7taO> A f(f) A 77Z)(Z> =K2n+1<27£,t) A f(g) A ¢(z)7
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According to lemma 2.3.9, we obtain in one hand

() = - / R(2.6.5) A D, [F(©)] Av(2)
Qx00x[0,1]
(et / R(z,6,5) A F(E) AD, [b(2)
Qx00x[0,1]
and in the other hand
() = / L) A O A
- / K(z€) A F€) A(2).
Qxo0N

Finally, by integrating by parts 9,1 , we deduce (2.3.21). This completes
the proof. ]

Theorem 2.3.11.
Let (w,g) be a Leray section for Q. If w s left H—holomorphic in z, then
for every differential form f € Cip, po.q)p (82) of with ¢ > 1, we have:

=09, (Roa+Ka) f+ (Roa +Ka) 9, f. (2.3.22)

Proof. Let (w, g) be a Leray section for Q2. From Leray-koppelman formula
(2.3.20), we have in the sense of distributions:

f=Loaf +9, (Roa + Ka) [ + (Roa + Ka) 9, [,
that is for all f € Cipy s, () and all ¥ € Dimpy nem—pan—q)s, (2):

/S)><8Q><)

)
/Q L(2,6) A F(€) A (2)

x0QxC

/ SINCACIR
Qx90xC) ><[01]

-/ S €S AT AT ()
QOxo00xC ><[01]

+

recall that

o S (0l £>>Awn< () - h(2))
£(.6) = /te@g(’@‘ e e v A
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where

wy oy (w(z,€) = > (=17 wi(2,6) N D,
o

Since w(z, §) is left H—holomorphic in z, then w,,_;(w(z,£)) does not involve
¢,.(2), which implies for reason degrees, that the differential form L£(z,&) A
f(&) N(2) contains at least the term

and since dimr0d§2 = 2n — 1, then we must have:

[Cnn@nvie)= [ L9 1€ nue) -
Q Qx990
that is in the sense of distributions

Loof =0 forall [ € Cupppan()

This implies formula (2.3.22), as required and completes the proof. ]

2.4 The solvability of gLu = f with uniform
estimates

Let L < H. Our aim now is to prove existence theorems with Holderian
estimates for the 9, — complex on a left h—pseudoconvex open set €2 C H
with ”"bounded deviation”.

Proposition 2.4.1. Let

= {3 eVp, (3 < 0}

be a C* pseudoconvexr open set with bounded deviation, and let the normal
vector field over D

9p dp . 9 9y
N(¢) = (Reagl Regl ImsE Im%)
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and the function
n: Vs x oD — [0,1]

(3,0) — 1(3,0) == |eos (N (0), 30) |. (2.4.1)
We denote for all 3 € V5, by E5 the subset E5 of 0D defined by:

E; = {c €aD, (3,0 > 0}-
Then the exist a positive integer r € N* and real numbers b >0, ¢ >0, and
1> ¢ >0 such that:
e [f(3,() € D x E5 satisfies HB - CH <min{e , b.n(3,¢)}, then
- ) > —<)”" |- 4.
Re 2% “s)zelazontlz-dr]. e
e If(3,¢) € D x Ej satisfies |3 — CH > min{e , bn(3,¢)}, then

RZ ~3)|>¢||3- g||< )QH. (2.4.3)

To prove the proposition, we need the following lemmas

Lemma 2.4.2. Let

= {3 eVp, ¢3) < O}

be an open set defined by the C*°— function ¢ : Vi — R, with de # 0 on 0D,
and let m = (i%fD Hﬁ(() ) Then there exists a positive number 0 < € < 1,
€

such that for all 3 € D satisfying d(3,0D) < e, we have

—»(3) > m.d(3,0D). (2.4.4)

Proof. Let ( € 0D, and 3 € D such that

d(3,0D) = [|3 =]
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that is ﬁ(()//a, or in other words 7(3,¢) = 1.
Write in the ball B((,e1) = {3 € C",||13 (|| < e}, with 0 < &1 < 1, the
Taylor expansion of order 2 of —:

(2.4.5)
CB3-0"G-0+o(I3-¢I?).

ja+B1=2

Since 0 < g1 < 1, we have for |3 — (|| <&

2

la+p|=2

a 9B
g @Ego

(3-¢)B@ =07 b3 ¢

where

by == = Z sup
¢edD
la+8|=2

020e(C)|

and then, if we choose 0 < g9 < &1 so small that for ||3 — (|| < &2, we obtain

et _
Y G- G0 o (I3 < 213 -d (246)
|a4-B|=2
By the fact that n(3,() = 1, the following hold
ReZ 536 = IN©[-13-¢ e
>m. |13 =l

Now let € := min {52, b@} Then (2.4.6) and (2.4.7) imply for |3 — (|| < e
2

9282 o o

(3= B -0 +o(I3-¢I)

Rezagj

ja+B1=2
(2.4.8)
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Taking into account (2.4.8), we deduce first from Taylor formula (2.4.5), that

for all ||13 — (]| <e¢,
—Re >0
Z 3,3

and then
) > —Re
Z A
=m. H3 — ¢l
=m.d(3,0D).
This completes the proof of the lemma. ]

Lemma 2.4.3. Let D C C" be a pseudoconvez open set, and let A(3,() be
the line through the points 3 € D and ¢ € 0D. Then for all € > 0 small
enough, there exists a point 3. € D N A(3,(), such that |3 — (|| < e.

Proof.
Let g € 0D, that is ¢(¢) = 0. Since by hypothesis, the open set D is of
bounded deviation, then there exist » € N* ¢; > 0 and 0 < g9 < 1 such that
for |3 = ¢l < <o,

[£2(0)] (3) = a1||3 —¢|*"- (24.9)

Let the Taylor expansion of ¢ of order 2r in a neighborhood of ( € dD:

p(3) = ¢(C) + 2Re [P ()] (3) + [LE(9)] (3) +ollI3 = ¢II*).
We can choose €1, with 0 < €1 < gg such that for |3 — (|| < e,

—~2Re [P ()] (3) = —¢(3) + S 13— ¢I". (2:4.10)

Decompose the Levi polynomial [Pg”(go)} (3) as follows:

n aa
)3 =2 G-+ X oot @

2<|al<2r

Since 0 < &1 < 1, we have for ||3 — (|| < ey,

80{
> EG-00 <nll3 - (2.412)

2< || <27
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where

1
by = Z 7 Sup ’3&0 |

2l @ CEOD

and for all (3,() € D x 9D, we have

R@Za‘o@ 3 =m|3—<lln(3,0) (2.4.13)

where

= g [ o

¢eoD

Now let (3,() € D x Ej3, that is:

—(3) >0
n(3,¢) >0,
and to simplify notations, set

51(3,C):mz’n{51 : 2%77(3,{)}- (2.4.14)

We are led to discuss the following two cases:
First case.
Let the point (3,() € D x Ej5 satisfying the condition

13 =<l < 61(3, Q) (2.4.15)

Under this condition, (2.4.12) and (2.4.13) imply:

aa
> SrG-or

2< || <27

(2.4.16)

Let us substitute the decomposition (2.4.11) in (2.4.10). Then by making
use of (2.4.16), we deduce first from inequality (2.4.10) that

—Re 2—2’?@ —3;)>0 (2.4.17)
j=1 >
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and then that

“~

—Re
— 0¢;

220G - 30 2 —50(3) + 23 - ¢ (24.15)

It remains now to estimate —(3) in terms of d(3,0D). For this, we know
by lemma 2.4.2 that there exists a positive number 0 < 5 < &1 so small that
|13 — C|| < &2, we have

—p(3) > m.d(3,0D).

With the following choice of constants:

. m b m {m cl}
E:=1mMin-< € = C .= Hlln
> by 2, 376

we deduce then from (2.4.18), the first part of the proposition, that is :
If the point (3,() € D x Ej5 satisfies the condition

13- ¢l < mn{ (3, o}, (2.4.19)

then
i

—Re
8@

5206 - 3) 2 c|at3.00) + 13 - ¢l |

Second case.
Let the point (3,() € D x Ej5 satisfying the condition

13 = ¢l > d(3,¢)- (2.4.20)

where

5(3.6) = min . ba(3.0)}.

By lemma 2.4.3, there exists 3° € D N A(3,¢) such that [|3° — ¢|| = §(3,¢).
The point 3% is defined by

3= <1 — h) ¢+ 3 i <||'3 with  [t[ = 6(3, C).

Observe that

3 (= (30

N ||3 4
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and
13° = ¢|| = 1t = 6(3,¢)

which implies that the point (3°,¢) € D x Ej satisfies condition (2.4.19). By
applying (2.4.18), we obtain

- 8_90 =26 T NN S ST R
e ) GG =3) = el + G~
1 4 2r
> %130 — |
If we write ( — 3° = Haicn (3 — (), then
t )
j=1

The above choice of the constant ¢ := min {%, %1}, and the fact that |t| =
6(3,¢), give

n 8g0 2r—1
ReY 52 -39 2 el3 - 11 (365.0)
= 9
which proves the second part of the proposition. O

Proposition 2.4.4. Let

Q:{zeH, ¢(z)<0}

be a C* bounded left h—pseudoconvex open set in H with bounded deviation.
With the following notations:

p=voh
¢ =h(&)
3 = h(2),

; D = h(Q) = {3 eC",  ¢@3)< 0}



2.4. THE SOLVABILITY OF 0,U = F WITH UNIFORM ESTIMATES61

and let r = Dev(D), and ﬁ(() be the normal vector field over 0D, and for

all 3 € Vﬁ
F5 = {C € 0D, cos (ﬁ(()j—%) = O}.

If p,,, (F5) =0, then the C*—map (z,£) — (w(z,§),g(z,§)) € C"™ defined

by
Op Op
we§) == (50 520)

9(2,8) =Re w(z€). (N (¢), 3¢)

is a Leray section for €.

Proof. Since the condition p,,, (F5) = 0 is fulfilled, then to prove that (w, g)
is a Leray section for €2, we have only to prove that for all z € €

/tE(C /geag Z f t n+1 Mag(f) ®M<t)‘ < 4o00.

For this, let by (2.3.15),

= 3wy (2, ). (hy(€) — hy(2)) + [tPe T g(=,€).

where

u(3,¢t)=(¢-3,t) ec*!

0 0
w9 = (G0 5E0)
r(n+1)
9(z,§) = Re w(z,¢§). ‘<N>(C)73—%> 2r(n+1
We have the following estimates:
|N<Z>€at)| > ‘RGN(Z7€7t)‘
> |Re w(3, ()] {1 + |t|2 — |t <ﬁ(c)’3—%> 2r(n+1):|

> |Re w(3,¢)].
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observe that

(R3O =R @) I~ 30eos (F(0). 30)]

Since D is pseudoconvex of finite deviation Dev(D) = r, then by the use of
(2.4.2) or (2.4.3) of proposition 2.4.1, we obtain:

/tec /5@99 N(z 5 1] n+1 Lo (§) ®,u(t)‘

’Rewzé ) |(N0),30)
/te(c /ggag [ Rew(z, )] Ioq (§) ® p(t)| < +o0.

2r(n+1)

]

Theorem 2.4.5. Let () be a left H—pseudoconver open set of finite deviation
r = Dev(Q) of the group H with C*°—boundary. let (w,g) be a Leray section
for Q0 as defined in proposition 2.4.4. Then there exists a positive number
C' > 0, such that, for any bounded ((p1,p2),q)n differential form f on OS2

||Ranf||2flwg < C. ||f||r,Q (2.4.21)
Proof. Write to simplify

Ng = [|u(z, €, 1)
= |B(E) = h(z)|" + |t 7

and

N = <u(z,§,t),ﬂ7(z,§,t)>
= (0.9 = ) + It g(2,6),

By definition R, can be expressed as a determinant, and then

(Roof) (2)
n—1 w v
= /aQX(CX[OJ]g(Z,f)f(f) A ;pj(S)detu,n—j—za (N’ N

2) Ads A\ w(u) A u(t)
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where p;(s) is a polynomial in s.
Further, by multi-linearity of the determinant,

(Roaf) (2)

n—1 — —

det 1 n—j—2; (w,v,0,w,0,0)
- 9(2,6)f(§) A p;(s - - ‘ ANds ANw(u) A plt).
/69x(C><[01} ( ) ( ) 2:; J( ) Nn—]—lNgj+2 ( ) ()

Integrating with respect to s, we obtain

(R f) (2)
n—1 — —
(2, ) f(&) Ndety 1 p—j—2j (w,v,0,w,0,v
=24 NiljleZQ;Jr(Q 2, 0x) Ads Aw(u) A p(t).
j=0 o0xC 0

where A; = fol p;(s)ds. Hence the coefficients of the differential form (R, f) (2)
are linear combinations of integrals of the type

R = [ SEEDOEED AG G nube)  az2)

2 +2
Nn— j— INJ
J#k

where 0 < j <n—2,1<k <n, f;is a combination of coefficients of
the form f, and A(z,€) is a product the functions w;(z,§) , h;(&) — hi(z) ,
and Z;(w;), 1 < 4,5 < n. Since A(2,£) contains at least one of the factors
hj(z) — h;(§), then for some constant C; > 0, we have

A(z )] < Ci[hy(2) — hel.

To estimate the integral (2.4.22), we apply proposition .0.8 in appendix. In
view of this proposition, it is sufficient to prove for some C' > 0, and for each
1 <i <n, that

1/1lo,0
-5
{d(z,(f)ﬂ}

2 (F) (%)), (2.4.23)

z,(m) )| <c
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Recalling that Ng = [h(€) — h(z)|* + [t 71", we have
z. g(Z,f))\(Z,f) o Z](g(zvg>> : >‘(Z7£> + g(z7£) ’ Z]()‘<Z7£))
J anjf1Ngj+2 - Nn7j71N02j+2 Nn7j71N02J+2
G+ (A@ = 1(2) 9(.6) - M=.©)
Nn7j71N§j+4

(n=j=1g(z,8 - Az8) - Zi(N)
anjNgj-i-Q

_|_

Since Z;(g), Z;()), are bounded for (2, £) € Qx99 and |\(z,£)| < Ci|hj(2)—
h5|, this implies that for some Cy > 0

o)

‘ Nn—j—lNOQJ'-F?

Cy Cy
SN N NN

(2.4.24)

J

An estimates similar to (2.4.24) hold for the differential operator Z;. Hence
we can find C3 > 0 such that

Z; (Fy) (2)

2 (F) () <Clfln | [ S2ES

0 |N|n_j_1 0
+/ 19(2, )| tn }
90 |N|n—J Ngj-‘rl

where 1, is Lebeasgue’s measure on d€). Now set:

Y

¢ = h(§)
3="h(2)
D = h(Q)

Therefore, to show (2.4.22), it is sufficient using a partition of unity to show
that for every ¢ € 9D, there exists a neighborhood U, of ( and a real number
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C¢ > 0 such that:

/ 93, Oltan Ce (2.4.25)

1— L

NI = 31512 — T
snue [N I¢ — 3| {d@,apl
" 19(3, )] C
9\, Hap
/E aoe [N ¢ =317 < : — (2.4.26)
o a3.00]

Let us prove (2.4.26). For this fix 3 € F5 C dD. We know from proposition
2.4.1, that the exist real numbers b > 0, ¢ >0, and 1 > ¢ > 0 such that:

e If (3,() € D x E5 satisfies H3 — CH < min{g , b.n(B,g)}, then
“Re Z =3)) 2 c[d(3.0D) + 3 - "]
8@
e If (3,() € D x E5 satisfies H3 — CH > min{s , b.n(S,()}, then

he Z = 3)) ZCHS—CH(n@,o)M.

1) If ¢ € B3N U C dD is such that |3 — ¢|| < min{e , bn(3,()}, we have
then for some positive number C3 > 0

19(3: O )5 o
n—j 2j+1 < Cs. o |n—J 2j+1
m3nve [N ¢ = 3 E3NU¢ ‘d(S,@D)—I—|C—3| | ¢ =37
de’l FANAN dxgn_l

< (. -
x€R?n—1 n=J 241
lZI<k 1 d(3,0D) + 23| xy’
< Cs (by proposition (.0.9)).
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2) If ¢ € E3NU; C 9D is such that ||3 — ¢|| > min{e , b.n(3,¢)}, the

integral
/ 19(3; O Ko
E3nU¢ ‘N‘n_j ¢ — 3‘%“
is finite, and then there exists (g, such that

/ |g(3>C)|MaD < 06
oINPT 3 =
E3nU¢ ’ ’ |C 3’ {d(S,@D}

—.
=5

The estimate (2.4.26) is then proved. O

The Holderian exponent % is the best one possible

We construct an example similar to E.M.Stein’s example which shows that
the exponent % is the best one in theorem 2.4.5.

Example. Following E.M.Stein (see [11]), let H = C? endowed with the
group Law

(21, 22) * (§1,62) = (2’1 +&1, 22+ &+ %(2’151 - 5151)>

The conjugate complex form of structure is
- .
¢(21, 22) = (le, dZQ — §(Zld2’1 — 21d§1)>

and the left H—holomorphic coordinates of (z1, z2) are then

1
h(21,z2) = <Zl, Z9 — §|Zl|2) .

Let
Q = {(21,2’2) EH, |21|2T—|—

2r
<1}.

Since h(1) is define in C2 by (1> + |G| < 1, we check easily that € is left
h—pseudovonvex of bounded deviation, in H, with deviation Dev(2) = r.
Let In(z; — 1) where z; & [1,+00[, be the branch of the logarithm with

1
22—§|21|2
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0< A?"g(ln(zl—l)) < 27, and consider in Q the following (0, 1) —differential
form

dzg — %(Eldzl — Zldgl)
f(Zl, Zz) = l?’L(Zl — 1)

if (21, 22) € Q\(1,0),
0 it (21,22) = (1,0).

[ is trivially C* in © and continuous in Q, and we check easily by the
definition of the d,—operator that d,f = 0 in (.

Proposition 2.4.6. If o > %, then there does nmot exit a function u in €2

such that O,u = f and ||ull, < co.

Proof. Let u be a solution of EHu = f in . An elementary calculus gives

H\ In(z1—1) In(z1

in 2. Let € > 0 be so small that

0 (Z—2> = f, and then the function u(z;, 22)—2—2_1) is left H—holomorphic

{(21,22) ceH, 2z, =1—c¢,

1
Z9 — §|21|2‘ = 821T} cQ

and
{(Zl,Zg) S H,Zl =1- 25,

Since u(z1, 29) — 22 Ty is left H—holomorphic in €2, this implies

In(z1—

then the classical Cauchy’s formula gives

u(l — ¢, 29)dzy = / =
42_;(1_5)2_8% |z2—%(1—5)2\:e% ln(—g) ln(—e)

and

y o
/ ) u(l — 2¢, 22)d2;2 = / 1 2oz _ (UK ‘
23— 1 (1-2¢)2| =7 oo t2ep2|=e3r In(=2¢)  In(—2e)

Since ||u||, < oo this implies that for some constant C' > 0,

1 1

In(—e)  In(—2¢)

1

< (e ar
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which means that
l?’LQ 1

< O o,
In(—a)in(—29)] = ©°

But the last inequality is impossible for a > 2—1r, and ¢ — 0. O]
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Appendix 1. Estimation of some
Integrals

We recall in this Appendix without proof ( see [|) some estimates of some
integrals.

Proposition .0.7. Let B(0, R) be the ball of R™ of center 0 and radius R
with 0 < R < oo. Then For every a = (ay,...,a,) , b = (by,...,b,) € R",
there exists a constant C' > 0 such that

/B(O,R)

Proposition .0.8. Let D be a bounded domain of R™ with C*—boundary.
Then there exists a positive constant C' > 0 depending only on D with the
following property: If f € CY(D) is such that for some k >0 and 0 < a < 1
we have

Ty —a x1 — b
|z —al[™ [z —b[|"

dxy A ... Ndz, < Clla — b||in||a — b]].

\|df (z)]| < k[d(z,dD)]"™  for all z € D,

then
|f(x) = f(y)] < Cklz —y|*  forall z,y € D.

Proposition .0.9. Let B(0, R) be the ball of R™ of center 0 and radius R
with 0 < R < co. Then there exists a positive constant C' > 0 such that for

alle >0
/ dxy A ... Ndx, <£
Bo.R) €+ [lZ[Dz]["~t = e

71
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Appendix II some Differential
operators on the group H

Left invariant metrics

Let g be a Riemannian metric on the group H. We say that g is H—hermitian,
if g can be written in terms of the 1-structure forms ¢ and ¢ as follows

93) =Y 9u(3) 6,®9, (.0.27)

p,v=1

where (g,,,,) is a positive hermitian matrix with C* coefficients.
The fundamental (1, 1)y —form associated to g is the positive (1, 1)y —form

w=—Img= % Z g#,y(B)% /\%

=1

Definition .0.10. The metric g is said to be H—Kéhler on 2 C H, if d,w = 0
or in other words if dw € J5° ().

Proposition .0.11. Every left invariant Riemannian metric on the group H
1s H—Kdhler.

Proof. Let w be a Riemannian metric on H. Write

w = Z guﬂ/(3> Cbu /\51/-

Hv=1

Since w is left invariant, then the functions g, ,(3) = g, € C are constants.
That is

w = Z Guw ¢u/\$y

p,r=1
which implies that d,w = 0. This competes the proof . ]
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The space L? | ()

P9

Let us consider the open set group 2 C H endowed with the particular
‘H—Kahler metric

i < —
w=—Img= §Z¢V/\gb,,.
v=1

and the Haar measure d\ = w". For the forms
F= Y Jridrné; €Cly, ()
[I|=p,|J|=¢

and

g= Z gr.g o1 N\ C_ﬁJ S Céﬁq)H(Q)

[I|=p,|J|=¢

with coefficients f s, gr.; € L*(), we set

(f: 9 pyn, = Z /QfI,J'gI,Jd/\

[T|=p,|J|=q

and

g = | S / oo Pdr,

[T|=p,|J|=q
The Laplace-Beltrami operators [y and [y

The 5H—operator defines a linear, closed, densely defined operator T
T:DrcL? , (Q) — L? Q)

P, H (Pg+1)n

with a domain

Dy = {f € L%p,q)n (€2); ng = L%qu+1)H<Q)} .

If f € Dy, weset T(f) := Ouf.
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Lemma .0.12. (The adjoint operator of 0, )
Iff= > frsdind;, € D(T), then

|I|=p,|J|=q+1

T = (1 Y S 2 (frr) ér A

[1|=p,|K|=q p=1

Proof. Let

/

9= Y 91k 61N bx € Dy, (Q).

[I|=p,|K|=q

where Dy, 4, (€2) is the space of (p, ¢)»—differential forms with compact sup-
ports. The expression

Oulg) = Z Ougrx N ér A oy
|T|=p,|K|=q

’

H=n
= 3 S Zgrk)bu A1 A b

|I|=p,| K|=q n=1

shows that the identity (1", 9)(, ), = ([:T9) (g, » can be written in
the form

[ > @ nwama-cy [ Y (fo,ux-mgz,m)dx
2| 11=p,|K|=q | [|=p,|K|=q " p=1

Then an integration by parts in the right hand side of the abve equality, gives
the expression of 7™ in the lemma. ]

The operator T is the Hilbertian adjoint of the non bounded differential
operator dy acting on the Hilbert space of square integrable (p, ¢)3 —differential
forms L7 - (Q, ). We set

T* = dy
Definition .0.13. The self-adjoint differential operator
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is the Laplace-Beltrami operator or the Neumann operator associated to the

5]}]1 —operator.

We construct by the same way the Laplace beltrami or Neumann operator
associated to the dy—operator.

Ol = O O+ 0% O

List of the main differential operators

Here is a list of differential operators of the hermitian geometry of the group
H and their complex counterparts. * denotes the Hodge star operator:

.

Oy

9y
d=D,+ D,
d, =0, +0,
A =dd+dod

A =D,D*+ DD,

H
A =D,D. +D.D,

U, =d

H H

H H™H H H
0 =38,0 +0.0

)

(.0.28)



