
Abstract
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fixed point theorem. Our works will be considered on Banach spaces.
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Introduction

The traditional integral and derivative are, to say the least, a staple for the technology

professional, essential as a means of understanding and working with natural and arti-

ficial systems. Fractional Calculus is a field of mathematic study that grows out of the

traditional definitions of the calculus integral and derivative operators in much the same

way fractional exponents is an outgrowth of exponents with integer value. Consider the

physical meaning of the exponent. According to our primary school teachers exponents

provide a short notation for what is essentially a repeated multiplication of a numerical

value. This concept in itself is easy to grasp and straight forward. However, this physical

definition can clearly become confused when considering exponents of non integer value.

While almost anyone can verify that x3 = x.x.x, how might one describe the physical

meaning of x3.4, or moreover the transcendental exponent xπ. One cannot conceive what

it might be like to multiply a number or quantity by itself 3.4 times, or π times, and yet

these expressions have a definite value for any value x, verifiable by infinite series expan-

sion, or more practically, by calculator. Now, in the same way consider the integral and

derivative. Although they are indeed concepts of a higher complexity by nature, it is still

fairly easy to physically represent their meaning. Once mastered, the idea of completing

numerous of these operations, integrations or differentiations follows naturally. Given the

satisfaction of a very few restrictions (e.g. function continuity), completing n integrations

can become as methodical as multiplication. But the curious mind can not be restrained

from asking the question what if n were not restricted to an integer value? Again, at first

glance, the physical meaning can become convoluted (pun intended), but as this report

will show, fractional calculus fowls quite naturally from our traditional definitions. And
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just as fractional exponents such as the square root may find their way into innumerable

equations and applications, it will become apparent that integrations of order 1/2 and

beyond can find practical use in many modern problems.

Most of the mathematical theory applicable to the study of fractional calculus was

developed prior to the turn of the 20th century. However it is in the past 100 years

that the most intriguing leaps in engineering and scientific application have been found.

The mathematics has in some cases had to change to meet the requirements of physi-

cal reality. Caputo reformulated the more ’classic’ definition of the Riemann-Liouville

fractional derivative in order to use integer order initial conditions to solve his fractional

order differential equations. As recently as 1996, Kolowankar reformulated again, the

Riemann-Liouville fractional derivative in order to differentiate no-where differentiable

fractal functions. Leibniz’s response, based on studies over the intervening 300 years, has

proven at least half right. It is clear that within the 20th century especially numerous

applications and physical manifestations of fractional calculus have been found. However,

these applications and the mathematical background surrounding fractional calculus are

far from paradoxical. While the physical meaning is difficult (arguably impossible) to

grasp, the definitions themselves are no more rigorous than those of their integer order

counterparts.

In the last few decades, the subject of fractional differential equations has become a

hot topic for the researchers due to its intensive development and applications in the field

of physics, mechanics, chemistry, engineering, etc. For a reader interested in the system-

atic development of the topic, we refer the books Kilbas et al. [27, 40], Miller and Ross

[33], Podlubny [37], Oldham et al. [36], Lakshmikantham et al [28] . Differential equa-

tions with fractional order have recently proved to be valuable tools for the description of

hereditary properties of various materials and systems. Many phenomena in engineering,

physics,continuum mechanics, signal processing, electro-magnetics, viscoelasticity, electro-

chemistry, electromagnetism and science describes efficiently by fractional order differential

equations. For more details, see [29]. For some recent developments on the subject, see

for instance [1, 2, 5, 6, 26, 35] and references cited therein.
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It is well known that one important way to introduce the concept of mild solutions for

fractional evolution equations is based on some probability densities and Laplace trans-

form. This method was initialed by El-Borai [20]. For some recent developments see the

paper [42], [19], [4]. Another approach to treat abstract equations with fractional deriva-

tives based on the well developed theory of resolvent operators for integral equations [22].

Motivated by the approach in [22], Ye et al. [41] studied the existence, uniqueness and

continuous dependence of the mild solutions for a class of fractional neutral functional

differential equations with infinite delay, by using the Krasnoselskki fixed point theorem

and the theory of resolvent operators. The fractional derivative in [41] is understood in

the Caputo sense.

Functional differential equations with state-dependent delay appear frequently in ap-

plications as model of equations and for this reason the study of this type of equations

has received great attention in the last years. For the theory of differential equations with

state dependent delay and their applications, we reefer the reader to the papers [9, 17].

Recently in [11, 12], motivated by the approach in [22], we studied fractional order

semilinear functional differential equations defined on a compact real interval with finite

delay and infinite delay. Existence and uniqueness of solutions are proved, based on

the theory of resolvent operators and Banach’s contraction principle and Leray-Schauder

nonlinear alternative. We emphasize that in [11, 12] the fractional derivative is understood

in the Riemann-Liouville sense.

This thesis is devoted to the existence of mild solutions for various types of fractional

differential equations, our main tool is resolvent operators, the Banach contraction princi-

ple, the nonlinear alternative and Schaefer’s fixed point theorem type, Burton and Kirk’s

fixed point theorem, Mönch’s fixed point theorem combined with the technique of measure

of noncompactness. We have organized this thesis as follows

In Chapter 1, we introduce the theory of fractional calculus, In Section 1, we give

the birth of fractional calculus. In Section 2, we give definition and Proprieties of Gamma

function. In Section 3, we give definitions and proprieties of derivations of Riemann-

Liouville.
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In Chapter 2, we introduce notations and some preliminary notions. In Section 1,

we give some notations and definitions from the theory of metric and Banach spaces. In

Section 2, we give the theory of resolvent operator. In Section 3, we give some definitions

and properties of measure of noncompactness. In Section 4, we give some fixed point

theorems

In Chapter 3, we study the existence of mild solutions of semilinear fractional differ-

ential equations with finite delay of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b], 0 < α < 1, (1)

y(t) = φ(t), t ∈ [−r, 0], (2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J×C([−r, 0], E) →

E is a continuous function, A : D(A) ⊂ E → E is a densely defined closed linear operator

on E, φ : [−r, 0] → E a given continuous function with φ(0) = 0 and (E, | · |) a real

Banach space. In Section 2, we give our main existence results with the Banach contraction

principle. In Section 3, we give our main existence results with the nonlinear alternative.

An example will be presented in the last section illustrating the abstract theory.

In Chapter 4, we study the existence of mild solutions of semilinear fractional differ-

ential equations with infinite delay of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b], 0 < α < 1 (3)

y0 = φ ∈ B, (4)

where f : J × B → E is a continuous function, A : D(A) ⊂ E → E is a densely defined

closed linear operator on E, φ : B → E a given continuous function with φ(0) = 0, and B

is called a phase space.

In Section 2, we give definition and Proprieties of phase space. In Section 3, we give our

main existence results with the Banach contraction principle. In Section 4, we give our

main existence results with the nonlinear alternative and Schaefer’s fixed point theorem.

An example will be presented in the last section illustrating the abstract theory.

In Chapter 5, we extend such results to the case of state dependent delay by virtue
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of resolvent operator and to initiate the application of the technique of measures of non-

compactness to investigate the problem of the existence of mild solutions. Especially that

technique combined with an appropriate fixed point theorem has proved to be a very useful

tool in the study of the existence of solutions for several types of integral and differential

equations; see for example [14, 7, 25, 34, 44].

In Section 2, we give our main existence results. An example will be presented in the last

section illustrating the abstract theory.

In Chapter 6, we give existence results for various classes of initial value problems

for fractional semilinear perturbed functional differential equations. Our results is based

upon an application of Burton and Kirk’s fixed point theorem.

In Section 2, we will be concerned with semilinear perturbed fractional differential equation

with finite delay of the form

Dαy(t)− Ay(t) = f(t, yt) + g(t, yt), t ∈ J := [0, b], 0 < α < 1, (5)

y(t) = φ(t), t ∈ [−r, 0], (6)

In Section 3, we consider semilinear perturbed fractional differential equation with infinite

delay of the form

Dαy(t)− Ay(t) = f(t, yt) + g(t, yt), t ∈ J := [0, b], 0 < α < 1, (7)

y(t) = φ ∈ B, (8)

An example will be presented in the last section illustrating the abstract theory.



Chapter 1

The fractional calculus theory

1.1 Birth of fractional calculus

In a letter dated 30th September 1695, L’Hopital wrote to Leibniz asking him a particular

notation that he had used in his publication for the nth-derivative of a function

Dnf(x)

Dxn

L’Hopital’s posed the question to Leibniz, what would the result be if n = 1/2. Leibniz’s

response: "An apparent paradox, from which one day useful consequences will be drawn."

In these words fractional calculus was born. Studies over the intervening 300 years have

proved at least half right. It is clear that within the twentieth century especially numerous

applications have been found. However, these applications and mathematical background

surrounding fractional calculus are far from paradoxical.While the physical meaning is

difficult to grasp, the definitions are no more rigorous than integer order counterpart.

Following L’Hopital’s and Liebniz’s first inquisition, fractional calculus was primarily a

study reserved for the best minds in mathematics. Fourier, Euler, Laplace are among the

many that dabbled with fractional calculus and the mathematical consequences . Many

found, using their own notation and methodology, definitions that fit the concept of a

non-integer order integral or derivative. The most famous of these definitions that have

been popularized in the world of fractional calculus (not yet the world as a whole) are the



1.2 Gamma function 15

Riemann-Liouville and Grunwald-Letnikov definition. While the shear number of actual

definitions are no doubt as numerous as the men and women that study this field.

Fractional calculus is a generalization of integration and differentiation to non-integer

order operator aDα
t , where a and t denote the limits of the operation and α denotes the

fractional order such that

aDα
t =


dα

dtα
, R(α) > 0;

1, R(α) = 0;∫ t

a
(dt)−α, R(α) < 0.

where generally it is assumed that α ∈ R, but it may also be a complex number [18]. One of

the reasons why fractional calculus is not yet found in elementary texts is a certain degree

of controversy found in the theory [33]. This is why there is not a single definition for a

fractional-order differintegral operator. Rather there are multiple definitions which may be

useful in a specific situation. Further several commonly used definitions of fractional-order

operators are presented.

1.2 Gamma function

One of the basic functions of the fractional calculus is Euler’s Gamma function. This

function generalizes the factorial n! and allows n to take non-integer values.

Definition 1.2.1 The definition of the gamma function is given by

Γ(z) =

∫ ∞

0

e−ttz−1dt, z ∈ C.

when the real part of z is positive Re(z) > 0

From this definition it is clear that Γ(z) is analytic for Re(z) > 0. By using integration

by parts we find that

Γ(z + 1) =

∫ ∞

0

e−tt(z+1)−1dt =

∫ ∞

0

e−ttzdt (1.1)

= [−e−ttz]t=∞t=0 + z

∫ ∞

0

e−ttz−1dt (1.2)

= zΓ(z), Re(z) > 0. (1.3)
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Hence we have

Γ(z + 1) = zΓ(z), Re(z) > 0. (1.4)

Further we have

Γ(1) =

∫ ∞

0

e−tdt = −e−t|∞0 = 1. (1.5)

Combining (1.4) and (1.5), this leads to

Γ(n+ 1) = nΓ(n) = n! , (n = 0, 1, 2, . . .).

The above property is valid for positive values of z. Another important property of the

Gamma function is that it has simple poles at z = 0,−1,−2,−3, ...

1.3 Riemann-Liouville fractional derivative

In this section we give the definitions of the Riemann-Liouville fractional integrals, frac-

tional derivatives and present some of their properties. More detailed information may be

found in this books [33, 36, 37, 27].

Definition 1.3.1 The fractional (arbitrary) order integral of the function f ∈ L1([a, b])

of order α ∈ R+ is defined by

(aIαf)(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ

where Γ(.) is the Gamma function.

We first define the fractional differintegral operator according to Riemann-Liouville.

Definition 1.3.2

(aDαf)(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(τ)

(t− τ)α−n+1
dτ n− 1 ≤ α < n

where n is integer, α is real number and Γ(.) is the Gamma function.
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Example 1.3.1 Calculate the fractional order derivative of the puissance function

f : [a, b] −→ R

x 7−→ f(x) = (x− a)β, β > 0.

In effect after the definition of aDα we have

(aDαf)(x) =

(
d

dx

)n

(aIn−αf)(x) =
1

Γ(n− α)

(
d

dx

)n ∫ x

a

f(t)

(x− t)α−n+1
dt

(aIn−αf)(x) =
1

Γ(n− α)

∫ x

a

(t− a)β(x− t)−α+n−1dt

By change of variable t = x− r(x− a), we have dt = −(x− a)dr then

(aIn−αf)(x) = −(x− a)−α+n−1

Γ(n− α)

∫ 0

1

r−α+n−1(1− r)β(x− a)β(x− a)dr

=
(x− a)n+β−α

Γ(n− α)

∫ 0

1

(1− r)βr−α+n−1dr

=
(x− a)n+β−αB(β + 1, n− α)

Γ(n− α)

=
(x− a)n+β−αΓ(β + 1)Γ(n− α)

Γ(β + 1− α+ n)Γ(n− α)

=
(x− a)n+β−αΓ(β + 1)

Γ(β + 1− α+ n)(
d

dx

)n

(aIn−αf)(x) =
Γ(β + 1)(n+ β − α)(n+ β − α− 1)...(β − α+ 1)

Γ(β + 1− α+ n)
(x− a)β−α.

Where B(p, q) is the Beta function defined by

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt

=
Γ(p)Γ(q)

Γ(p+ q)
, (p, q) ∈ C2, and Re(p) > 0, Re(q) > 0.

Since

Γ(β − α+ n) = (β − α)(β − α+ 1)...(β − α+ n− 1)Γ(β − α).

Obtained (
d

dx

)n

(aIn−αf)(x) =
Γ(β + 1)Γ(β − α+ n)(n+ β − α)

(β − α)Γ(β − α)Γ(n+ β − α+ 1)
(x− a)β−α

=
Γ(β + 1)

Γ(β − α+ 1)
(x− a)β−α.
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Hence

(aDαf)(x) =
Γ(β + 1)

Γ(β − α+ 1)
(x− a)β−α.

Remark 1.3.1 If we take β = 0, we get the following result:

(aDα1)(x) =
1

Γ(1− α)
(x− a)−α,

that is to say that the derivative of Riemann-Liouville of a constant function is no longer

zero.

Lemma 1.3.1 [27] Let α ∈ R+ and n ∈ N such that n − 1 ≤ α < n and f [a, b] −→ R a

given function. Suppose that aDαf = 0. Then

f(x) =
n−1∑
k=0

ck
Γ(k + 1)

Γ(k + 1 + α− n)
(x− a)k+α−n,

or ck are any constants.

The fractional-order differentiation has the following properties:

1. If f(t) is an analytic function, then the fractional-order differentiation (0Dαf)(t) is

also analytic with respect to t.

2. If α = n and n ∈ Z+, then the operator 0Dα can be understood as the usual operator

dn/dtn.

3. Operator of order α = 0 is the identity operator: (0Dαf)(t) = f(t).

4. Fractional-order differentiation is linear; if a, b are constants, then

0Dα[af(t) + bg(t)] = a(0Dαf)(t) + b(0Dαg)(t).

5. For the fractional-order operators with R(α) > 0, R(β) > 0, and under reasonable

constraints on the function f(t) it holds the additive law of exponents:

0Dα[(0Dβf)(t)] =0 Dβ[(0Dαf)(t)] = (0Dα+βf)(t)

6. The fractional-order derivative commutes with integer-order derivative
dn

dtn
(aDαf)(t) =a Dα

(dnf(t)

dtn

)
= (aDα+nf)(t),

under the condition t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).



Chapter 2

Preliminaries

In this Chapter, we introduce notations, definitions, fractional calculus, resolvent operator,

measure of noncompactness, lemmas and fixed point theorems which are used throughout

this thesis.

2.1 Notations and some definitions

Let (E, |.|) be a Banach space and J = [0, b] be an interval of R. Denote by C(J,E) is the

Banach space of all continuous functions from J into E equipped with the norm

‖y‖∞ = sup{|y(t)|, t ∈ [0, b]}.

For φ ∈ C([−r, b], E) the norm of φ is defined by

‖φ‖D = sup{|φ(θ)| : θ ∈ [−r, b]}.

C([−r, 0], E) is endowed with norm defined by

‖ψ‖C = sup{|ψ(θ)| : θ ∈ [−r, 0]}.

B(E) denotes the space of bounded linear operators from E into E, with norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.
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L1(J,E) denotes the Banach space of functions y : J → E which are Bochner integrable

normed by:

‖y‖L1 =

∫ b

0

|y(t)|dt.

For properties of the Bochner integral, see for instance, Yosida [45].

Let L∞(J,E) be the Banach space of measurable functions y : J → E which are

bounded, equipped with the norm

‖y‖L∞ = inf{c > 0 : |y(t)| < c, a.e. t ∈ J}.

L1
loc denotes the space of all measurable scalar-valued functions which are integrable

over each compact interval.

For a given set V of functions v : [−r, b] −→ E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ [−r, b],

and

V (J) = {v(t) : v ∈ V, t ∈ [−r, b]}.

Definition 2.1.1 Let E, F two Banach spaces, f : J×E −→ F is said to be Carathéodory

if

i) t 7−→ f(t, u) is measurable for each u ∈ E;

ii) u 7−→ F (t, u) is continuous for almost each t ∈ J .

Theorem 2.1.1 [30] [Arzelà-Ascoli] Let Ω be a closed and bounded (i.e.,compact) domain

in E. A set M of continuous functions on Ω is precompact in C(Ω) if and only if M

satisfies the following pair of conditions:

(i) M is bounded uniformly . There is a constant c such that for every f ∈M ,

|f(x)| ≤ c, for all x ∈ Ω
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(ii) M is equicontinuous. For any ε > 0 there exists δ > 0 dependent on ε, such that

whenever |x− y| < δ, x, y ∈ Ω, then

|f(x)− f(y)| < ε holds for every f ∈M.

(iii) M(x) = {f(x) : f ∈M} precompact in E.

Definition 2.1.2 Let E, F two banach spaces, f : J × E −→ F is said compact if the

image is relatively compact.

f is said completely continuous if is continuous and the image of every bounded is relatively

compact.

2.2 Resolvent operator

Consider the fractional differential equation

Dαy(t) = Ay(t) + f(t), t ∈ J, 0 < α < 1, y(0) = 0, (2.1)

where Dα is the standard Riemann-Liouville fractional derivative and A is a closed linear

unbounded operator with domain D(A) defined on a Banach space E and f ∈ C(J,E). If

A is closed then D(A) equipped with the graph norm of A

‖x‖[D(A)] = ‖x‖+ ‖Ax‖

Equation (2.1) is equivalent to the following integral equation [27]

y(t) =
1

Γ(α)
A

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ J. (2.2)

This equation can be written in the following form of integral equation

y(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Ay(s)ds, t ≥ 0, (2.3)

where h ∈ C(J,E) and

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds. (2.4)
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Examples where the exact solution of (2.1) and the integral equation (2.2) are the same,

are given in [6]. Let us assume that the integral equation (2.3) has an associated resolvent

operator (S(t))t≥0 on E.

Next we define the resolvent operator of the integral equation (2.3).

Definition 2.2.1 [38, Chapter 1, Definition 1.3] A one parameter family of bounded lin-

ear operators (S(t))t≥0 on E is called a resolvent operator for (2.2) [or solution operator

for (2.2) ] if the following conditions are satisfied :

(A) S(t) is strongly continuous on R+ ( i.e S(·)x ∈ C([0,∞), E) ) and S(0)x = x for all

x ∈ E;

(B) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax

for all x ∈ D(A) and every t ≥ 0;

(C) the resolvent equation holds,

S(t)x = x+
1

Γ(α)

∫ t

0

(t− s)α−1AS(s)xds, for every x ∈ D(A) and t ≥ 0. (2.5)

Definition 2.2.2 [38, Chapter 1, Definition 1.4] A resolvent (S(t))t≥0 for (2.2) is called

differentiable, if S(.)x ∈ W 1,1
loc (R+, E) for each x ∈ D(A) and there is ϕA ∈ L1

loc(R+) such

that

‖S ′(t)x‖ ≤ ϕA(t)‖x‖[D(A)] for all t > 0 and each x ∈ D(A).

Where W 1,1(R+, E) is the space of all functions f : R+ −→ E having distributional

derivatives.

In the following, we denote by Σ(ω, θ) the open sector with vertex ω ∈ R and opening

angle 2θ in the complex plane which is symmetric w.r.t. the real positive axis, i.e.

Σ(ω, θ) = {λ ∈ C : | arg(λ− ω)| < θ}.
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Definition 2.2.3 [38, Chapter 2, Definition 2.1] A resolvent (S(t))t≥0 for (2.2) is called

analytic, if the function S(.) : R+ −→ B(X) admits analytic extension to a sector Σ(0, θ0)

for some 0 < θ0 < π/2.

The next result follows from [38, Proposition I.1.2, Theorem II.2.4, Corollary II.2.6].

Lemma 2.2.1 Under the above conditions the following properties are valid.

(i) If u(·) is a mild solution of (2.3) on J, then the function t →
∫ t

0
S(t − s)h(s)ds is

continuously differentiable on J , and

u(t) =
d

dt

∫ t

0

S(t− s)h(s)ds, ∀t ∈ J.

(ii) If h ∈ Cβ(J,E) for some β ∈ (0, 1), then the function defined by

u(t) = S(t)(h(t)− h(0)) +

∫ t

0

S ′(t− s)[h(s)− h(t)]ds+ S(t)h(0), t ∈ J,

is a mild solution of (2.3) on J , where Cβ(J,E) represents the space of all β-Hölder

E-valued continuous functions from J into E.

(iii) If h ∈ C(J, [D(A)]) then the function u : J → E defined by

u(t) =

∫ t

0

S ′(t− s)h(s)ds+ h(t), t ∈ J,

is a mild solution of (2.3) on J.

2.3 Measure of noncompactness

The theory of measures of noncompactness has many applications in Topology, Functional

analysis and Operator theory (see [7, 32, 39]).

We introduce the following definition:

Definition 2.3.1 [31] Let X be a complete metric space and ΩX denote the class of all

bounded subsets of a metric space X. A map γ : ΩX −→ R+ will be called a measure

of noncompactness in X, MNC for short, if it satisfies the following conditions for all

Q,Q1, Q2 ∈ ΩX
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1. γ(Q) = γ(Q) (Invariance under closure)

2. γ(Q) = 0 if and only if Q is precompact (Regularity)

3. γ(Q1 ∪Q2) = max{γ(Q1), γ(Q2)} (Semi.additivity).

It is easy to see that the following basic results hold for any measure of noncompactness.

Proposition 2.3.1 [31] Any measure of noncompactness γ satisfies following conditions

for all Q,Q1, Q2 ∈ ΩX

Q1 ⊂ Q2 implies γ(Q1) ≤ γ(Q2) (Monotonicity) (2.6)

γ(Q) = 0 for every finite set Q (Non− singularity). (2.7)

γ(Q1 ∩Q2) ≤ min{γ(Q1), γ(Q2)}. (2.8)

If (Qn) is a decreasing sequence of nonempty, closed sets in ΩX and

lim
n→∞

γ(Qn) = 0, then Q =
∞⋂

n=1

Qn 6= ∅ is compact (2.9)

Now we are going to give the definitions of the Kuratowski, Hausdorff and separation

measures of noncompactness. We recall the following notations. If S is a subset of a

metric space (X, d) then diam(S) = sup{d(s, s′) : s, s′ ∈ S} is called the diameter of S,

and Br(x0) = {x ∈ X : d(x, x0) < r} denotes the open ball of radius r > 0 with centre at

x0 ∈ X. A set B in a metric space (X, d) is said to be r-separated if d(x, y) ≥ r for all

distinct x, y ∈ B, and the set B is called an r-separation of X.

Definition 2.3.2 [31] Let (X, d) be a complete metric space.

(a) The function α : ΩX −→ [0,∞) with

α(Q) = inf{ε > 0 : Q ⊂
n⋃

i=1

Si, Si ⊂ X, diam(Si) ≤ ε for (i = 1, ..., n ∈ N)}.

is called the Kuratowski measure of noncompactness.
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(b) The function χ : ΩX −→ [0,∞) with

χ(Q) = inf{ε > 0 : Q ⊂
n⋃

i=1

Brk
(xk), xk ∈ X, rk < ε for (i = 1, ..., n ∈ N)}.

is called the Hausdorff or ball measure of noncompactness.

(c) The function β : ΩX −→ [0,∞) with

β(Q) = sup{r > 0 : Q has an infinite r − separation }

= inf{r > 0 : Q does not have an infinite r − separation }

is called separation measure of noncompactness.

The functions α, χ and β are measures of noncompactness in the sense of Definition

(2.3.1) and so also satisfy (2.6)-(2.9).

If X is a Banach space then the functions α and χ have some additional properties

connected with the linear structure of a normed space.

Proposition 2.3.2 Let X be a Banach space, Q,Q1, Q2 ∈ ΩX and ψ be any of the func-

tions α or χ. Then we have

1. ψ(Q1 +Q2) ≤ ψ(Q1) + ψ(Q2) (algebraic semi.additivity),

2. ψ(Q+ x) = ψ(Q) for each x ∈ X (translation invariance),

3. ψ(λQ) = |λ|ψ(Q) for each scalar λ (semi.homogeneity),

and, if co(Q) denotes the convex hull of Q,

4. ψ(Q) = ψ(co(Q)) (invariance under the passage to the convex hull).

[31] In the following subsections we give a number of examples of measures of noncom-

pactness in concrete spaces.
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2.3.1 Measure of noncompctness in C([a, b];E)

C([a, b];E) is the space of continuous functions on the interval [a, b] with values in Banach

space E with norm ‖.‖

Example 2.3.1 Consider that the Banach space E is separable equipped with the usual

sup-norm. In this space the formula of the modulus of equicontinuity of the set of functions

Ω ⊂ C([a, b];E) has the following form

modC(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|<δ

‖x(t1)− x(t2)‖

modC(Ω) defines an MNC in C([a, b];E).

Example 2.3.2 Let γ be a monotone MNC on E, and ‖x‖ = maxt∈[a,b] ‖x(t)‖. Define a

scalar function γc on the bounded subsets of C([a, b];E) by the formula

γc(Ω) = γ(Ω[a, b])

where Ω[a, b] = {x(t) : x ∈ Ω, t ∈ [a, b]}. γc is a measure of noncompactness.

2.3.2 Measure of noncompctness in C1([a, b];E)

Example 2.3.3 Let C1([a, b];E) denote the Banach space of the continuously differen-

tiable functions x : [a, b] −→ E, equipped with the norm ‖x‖C1 = ‖x‖C + ‖x′‖C. The

M[a, b]-valued function C1 , defined on the bounded subsets of C1([a, b];E) by the formula

[γC1(Ω)](t) = γ[Ω′(t)]

where Ω′(t) = {x′(t); x ∈ Ω}, is an MNC.

2.3.3 Measure of noncompctness in Cn([a, b];E)

Example 2.3.4 Let Cn([a, b];E) denote the Banach space of the n-times continuously dif-

ferentiable functions x : [a, b] −→ E, endowed with the norm ‖x‖Cn =
∑n

i=0 ‖x′‖C(i) Then
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each measure of noncompactness γ on C([a, b];E) generates a measure of noncompactness

γCn on Cn([a, b];E) by the rule

γCn(Ω) = γ(Ω(n))

where Ω(n) = {x(n); x ∈ Ω}.

2.4 Some fixed point theorems

In this section we give some fixed point theorems that will be used in the sequel.

Theorem 2.4.1 (Banach contraction theorem )[24] Let X a Banach space and

f : X → X a contraction. Then, f has a unique fixed point.

Theorem 2.4.2 ( Schaefer’s theorem )[43, p.29][24] Let E a Banach space, and U ⊂ E

convex with 0 ∈ U . Let F : U → U is a completely continuous operator. Then either

(i) F has a fixed point, or

(ii) The set E = {x ∈ U : x = λF (x), 0 < λ < 1} is unbounded.

Theorem 2.4.3 (Nonlinear alternative of Leray-Schauder) [24, p.135]. Let E be a Ba-

nach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose

that F : U → C is a continuous, compact (that is, F (U) is a relatively compact subset of

C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 2.4.4 (Burton and Kirk theorem) [16] Let X be a Banach space, and A,B two

operators satisfying:

(i) A is a contraction,

(ii) B is completely continuous.
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Then either

(a) the operator equation y = A(y) +B(y) has a solution, or

(b) the set E = {u ∈ X : u = λA(u/λ) + λB(u)} is unbounded for λ ∈ (0, 1).

Theorem 2.4.5 (Mönch’s theorem) [3, 34] Let D be a bounded, closed and convex subset

of a Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself.

If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.



Chapter 3

Semilinear fractional differential

equations with finite delay

3.1 Introduction

This chapter is concerned with existence of mild solutions defined on a compact real

interval for fractional order semilinear functional differential equations with finite delay.

In this chapter we consider the following class of semilinear differential equations:

Dαy(t) = Ay(t) + f(t, yt), t ∈ J, 0 < α < 1, (3.1)

y(t) = φ(t), t ∈ [−r, 0], (3.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J×C([−r, 0], E) →

E is a continuous function, A : D(A) ⊂ E → E is a densely defined closed linear operator

on E, φ : [−r, 0] → E a given continuous function with φ(0) = 0 and (E, | · |) a real Banach

space.

For any function y defined on [−r, b] and any t ∈ J we denote by yt the element of

C([−r, 0], E) defined by :

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(θ) represents the history of the state from time t− r, up to the present time t.
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In this chapter, we shall prove existence of mild solutions of the problems (3.1)-(3.2).

Our approach is based on resolvent operators, the Banach contraction principle, and the

nonlinear alternative of Leray-Schauder type. An example will be presented in the last

section illustrating the abstract theory.

3.2 Existence of solutions

In this section we give our main existence result for problem (3.1)-(3.2). Before starting

and proving this result, we give the definition of its mild solution.

Definition 3.2.1 We say that a continuous function y : [−r, b] → E is a mild solution of

problem (3.1)-(3.2) if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ(t), t ∈ [−r, 0], and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the function

f is continuous. Then by Lemma 2.2.1 (iii), if y : [−r, b] → E is a mild solution of

(3.1)-(3.2), then

y(t) =



1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Our first existence result for problem (3.1)-(3.2) is based on the Banach’s contraction

principle.

Theorem 3.2.1 Let f : J × C([−r, 0], E) → E be continuous and there exists a constant

L > 0 such that

|f(t, u)− f(t, v)| ≤ L‖u− v‖C , for t ∈ J and u, v ∈ C([−r, 0], E).



3.2 Existence of solutions 31

If
Lbα

Γ(α+ 1)
(1 + ‖ϕA‖L1) < 1, (3.3)

then the problem (3.1)-(3.2) has a unique mild solution on [−r, b].

Proof. Transform the problem (3.1)-(3.2) into a fixed point problem. Consider the

operator F : C([−r, b], E) → C([−r, b], E) defined by:

F (y)(t) =



φ(t), t ∈ [−r, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ [0, b].

We need to prove that F has a fixed point, which is a unique mild solution of (3.1)-(3.2)

on [−r, b]. We shall show that F is a contraction. Let y, z ∈ C([−r, b], E). For t ∈ [0, b],

we have

|F (y)(t)− F (z)(t)|

=

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1[f(s, ys)− f(s, zs)]ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1[f(τ, yτ )− f(τ, zτ ]dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)− f(s, zs)|ds

+

∫ t

0

ϕA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|f(τ, yτ )− f(τ, zτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1L‖yτ − zτ‖Cds+
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1L‖yτ − zτ‖Cdτds

≤ L

Γ(α)
‖y − z‖∞

∫ t

0

(t− s)α−1ds+
L

Γ(α)
‖y − z‖∞

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1dτds

≤ Lbα

Γ(α+ 1)
‖y − z‖∞ +

‖ϕA‖L1Lbα

Γ(α+ 1)
‖y − z‖∞.

Taking the supremum over t ∈ [−r, b], we get

‖F (y)− F (z)‖D ≤ Lbα

Γ(α+ 1)
(1 + ‖ϕA‖L1) ‖y − z‖D.
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By (3.3) F is a contraction and thus, by the contraction mapping theorem, we deduce

that F has a unique fixed point. This fixed point is the mild solution of (3.1)-(3.2). 2

Next, we give an existence result based on the Schaefer’s Theorem [24].

Theorem 3.2.2 Let f : J × C([−r, 0], E) → E be continuous. Assume that:

(H1) S(t) is compact for all t > 0;

(H2) there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C , t ∈ J and u ∈ C([−r, 0], E).

Then, the problem (3.1)-(3.2) has at least one mild solution on [−r, b], provident that

bα‖q‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1) < 1.

Proof. Transform the problem (3.1)-(3.2) into a fixed point problem. Consider the

operator F : C([−r, b], E) → C([−r, b], E) defined in Theorem 3.2.1, namely,

F (y)(t) =



φ(t), t ∈ [−r, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ [0, b].

In order to prove that F is completely continuous, we divide the operator F into two

operators:

F1(y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

and

F2(y)(t) =

∫ t

0

S ′(t− s)F1(y)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition (H1)

implies that S ′(t) is compact for all t > 0 (see [22, Lemma 2.2]).

Step 1: F1 is completely continuous.
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A) F1 is continuous.

Let {yn} be a sequence such that yn → y as n → ∞ in C([−r, b], E). Then for

t ∈ [0, b] we have

|F1(yn)(t)− F1(y)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, yns)− f(s, ys)

∣∣∣∣ds
≤ 1

Γ(α)
‖f(·, yn.)− f(·, y.)‖∞

∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, yn.)− f(·, y.)‖∞.

Since f is a continuous function, we have

‖F1(yn)− F1(y)‖D → 0 as n→∞.

Thus F1 is continuous.

B) F1 maps bounded sets into bounded sets in C([−r, b], E).

Indeed, it is enough to show that for any ρ > 0, there exists a positive constant δ

such that for each y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖D ≤ ρ} one has F1(y) ∈ Bδ. Let

y ∈ Bρ. Since f is a continuous function, we have for each t ∈ [0, b]

|F1(y)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ys)

∣∣ds
≤ bα

Γ(α+ 1)

(
‖p‖∞ + ρ‖q‖∞

)
= δ∗ <∞.

Then, ‖F1(y)‖D = max{‖φ‖C , δ
∗} = δ, and hence F1(y) ∈ Bδ.

C) F1 maps bounded sets into equicontinuous sets of C([−r, b], E).
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Let τ1, τ2 ∈ J , τ2 > τ1 and let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F1(y)(τ2)− F1(y)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, ys)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, ys)ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, ys)ds

∣∣∣∣
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α)

(∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality

tends to zero. By Arzelá-Ascoli theorem it suffices to show that F1 maps Bρ into a

precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ

we define

F1ε(y)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds.

Note that the set {
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds : y ∈ Bρ

}
is bounded since∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds

∣∣∣∣ ≤ (‖p‖∞ + ρ‖q‖∞)

∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(t− ε)α.

Then for t > 0, the set

Yε(t) = {F1ε(y)(t) : y ∈ Bρ}
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is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(y)(t)− F1ε(y)(t)
∣∣∣ ≤ ‖p‖∞ + ρ‖q‖∞

Γ(α)

(∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds

+

∫ t

t−ε

(t− s)α−1ds

)
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(tα − (t− ε)α).

Therefore, the set Y (t) = {F1(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator

F1 is completely continuous.

Step 2: F2 is completely continuous.

A) F2 is continuous

The operator F2 is continuous, since S ′(·) ∈ C([0, b], B(E)) and F1 is continuous as

proved in Step 1.

B) F2 maps bounded sets into bounded sets in C([−r, b], E).

let Bρ be a bounded set as in Step 1. For y ∈ Bρ we have

|F2(y)(t)| =

∣∣∣∣ ∫ t

0

S ′(t− s)F1(y)(s)ds

∣∣∣∣
≤

∫ t

0

|S ′(t− s)||F1(y)(s)|ds

≤
∫ t

0

ϕA(t− s)‖F1(y)(s)‖[D(A)]ds

≤ ‖ϕ‖L1bα(‖p‖∞ + ρ‖q‖∞)

Γ(α+ 1)
= δ′.

Thus, there exists a positive number δ′ such that ‖F2(y)‖D ≤ δ′. This means that

F2(y) ∈ Bδ′ .

C) F2 maps bounded sets into equicontinuous sets in C([−r, b], E).

Let τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set as in Step 1. Let y ∈ Bρ. Then
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if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F2(y)(τ2)− F2(y)(τ1)|

=

∣∣∣∣ ∫ τ2

0

S ′(τ2 − s)F1(y)(τ2)ds−
∫ τ1

0

S ′(τ1 − s)F1(y)(τ1)ds

∣∣∣∣
≤

bα
(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

(∫ τ1−ε

0

|S ′(τ2 − s)− S ′(τ1 − s)| ds

+

∫ τ1

τ1−ε

|S ′(τ2 − s)− S ′(τ1 − s)| ds+

∫ τ2

τ1

|S ′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality

tends to zero. By Arzelá-Ascoli theorem it suffices to show that F2 maps Bρ into a

precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ

we define

F2ε(y)(t) = S ′(ε)

∫ t−ε

0

S ′(t− s− ε)F1(y)(s)ds.

Since S ′(t) is a compact operator for t > 0, the set

Yε(t) = {F2ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(y)(t)− F2ε(y)(t)
∣∣∣ ≤ ‖ϕA‖L1

(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

(
tα − (t− ε)α

)
.

Then Y (t) = {F2(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F2 is

completely continuous.

Step 3: A priori bound on solutions.

Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF (y), 0 < λ < 1}

is bounded.

Let y ∈ E be any element. Then, for each t ∈ [0, b] ,

y(t) = λF (y)(t) = λ
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+λ

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds.
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Then

|y(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

∣∣∣∣+ ∣∣∣∣ ∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)|ds+

∫ t

0

ϕA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, yτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]ds

+

∫ t

0

ϕA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]dτds

≤ bα‖p‖∞
Γ(α+ 1)

+
bα‖q‖∞
Γ(α+ 1)

‖ys‖C +
‖ϕA‖L1bα‖p‖∞

Γ(α+ 1)
+
‖ϕA‖L1bα‖q‖∞

Γ(α+ 1)
‖ys‖C

≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1) +
bα‖q‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1) ‖y‖D,

and consequently

‖y‖D ≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1)

{
1− bα‖q‖∞

Γ(α+ 1)
(1 + ‖ϕA‖L1)

}−1

.

Hence the set E is bounded. As a consequence of Theorem 2.4.2 we deduce that F has

at least a fixed point which gives rise to a mild solution of problem (3.1)-(3.2) on [−r, b].

2

3.3 An example

As an application of our results we consider the following fractional time partial functional

differential equation of the form

∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +Q(t, u(t− r, x)), x ∈ [0, π], t ∈ [0, b], α ∈ (0, 1), (3.4)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (3.5)

u(t, x) = φ(t, x), x ∈ [0, π], t ∈ [−r, 0], (3.6)

where r > 0, φ : [−r, 0] × [0, π] → R is continuous and Q : [0, b] × R → R is a given

function.
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To study this system, we take E = L2[0, π] and let A be the operator given by Aw = w′′

with domain D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =

(
2

π

) 1
2

sin(nx), n = 1, 2, . . . is the

orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal generator

of an analytic semigroup (T (t))t≥0 on E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup,

so that R(λ,A) = (λ− A)−1 is compact operator for all λ ∈ ρ(A).

From [38, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα − A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for

some θ ∈ (π, π
2
). S(t) is differentiable (Proposition 2.15 in [5], Theorem 2.2 in [38]) and

there exists a constant M > 0 such that ‖S ′(t)x‖ ≤M‖x‖, for x ∈ D(A), t > 0.

To represent the differential system (3.4)− (3.6) in the abstract form (3.1)-(3.2), let

y(t)(x) = u(t, x), t ∈ [0, b], x ∈ [0, π]

φ(θ)(x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, π]

f(t, φ)(x) = Q(t, φ(θ, x)), θ ∈ [−r, 0], x ∈ [0, π]

Choose b such that
Lbα

Γ(α+ 1)
(1 +M) < 1.
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Since the conditions of Theorem 3.2.1 are satisfied, there is a function u ∈ C([−r, b],

L2[0, π]) which is a mild solution of (3.4)-(3.6).



Chapter 4

Semilinear fractional differential

equations with infinite delay

4.1 Introduction

In this chapter, we are going to study the existence of mild solution of fractional order

differential equations with infinite delay of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J, 0 < α < 1 (4.1)

y0 = φ ∈ B, (4.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × B → E is a

continuous function, A : D(A) ⊂ E → E is a densely defined closed linear operator on E,

φ : B → E a given continuous function with φ(0) = 0 and (E, | · |) a real Banach space.

For any function y defined on (−∞, b] and any t ∈ J, we denote by yt the element of B

defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from time −∞ up to the present time t and

B is called a phase space.
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4.2 Phase space

In the literature devoted to equations with finite delay, the phase space is much of time

the space of all continuous functions on [−r, 0], r > 0, endowed with the uniform norm

topology. When the delay is infinite, the notion of the phase space B plays an important

role in the study of both qualitative and quantitative theory, a usual choice is a seminormed

space satisfying suitable axioms, which was introduced by Hale and Kato [21]. For detailed

discussion on this topic, we refer the reader to the books by Hino et al. [23]. For some

recent developments on the subject, see for instance [2, 8, 10, 15, 35] and references cited

therein.

In all this chapter, we assume that the phase space (B, |·|) is a seminormed linear space

of functions mapping (−∞, 0] into E, and satisfying the following axioms introduced at

first by Hale and Kato in [21]:

(A1) If y : (−∞, b] → E, b > 0, is continuous on J and y0 ∈ B, then for every t ∈ J the

following conditions hold:

(i) yt ∈ B,

(ii) |y(t)| ≤ H‖yt‖B,

(iii) ‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B,

where H > 0 is a constant, K,M : R+ → R+ with K is continuous and M is locally

bounded and H, K, M are independent of y(·).

(A2) For the function y(·) in (A1), yt is a B-valued continuous function on [0, b].

(A3) The space B is complete.

Hereafter are some examples of phase spaces. For other details we refer, for instance to

the book by Hino et al. [23].

Example 4.2.1 The spaces BC, BUC, C∞ and C0. Let

• BC the space of bounded continuous functions defined from (−∞, 0] to E,
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• BUC the space of bounded uniformly continuous functions defined from (−∞, 0] to

E,

• C∞ = {φ ∈ BC : limθ→−∞ φ(θ) exists in E},

• C0 = {φ ∈ BC : limθ→−∞ φ(θ) = 0}, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1) − (A3). BC satisfies

(A2), (A3) but (A1) is not satisfied.

Example 4.2.2 The spaces Cg, UCg, C0
g and C∞g . Let g be a positive continuous function

on (−∞, 0]. We define:

• Cg = {φ ∈ C((−∞, 0], E) : (φ(θ)/g(θ)) is bounded on (−∞, 0]},

• C0
g = {φ ∈ Cg : limθ→−∞(φ(θ)/g(θ)) = 0} endowed with the uniform norm

‖φ‖ = sup
{ |φ(θ)|
g(θ)

: −∞ < θ ≤ 0
}
.

We consider the following condition on the function g.

(G) : sup
0≤t≤a

sup
{g(θ + t)

g(θ)
: −∞ < θ ≤ −t

}
<∞ for all a > 0.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). They satisfy conditions

(A1) and (A2) if (G) holds.

4.3 Existence of solutions

Consider the following space

Ω = {y : (−∞, b] → E : y|J ∈ C(J,E) and y0 ∈ B}

where y|J is the restriction of y to J . Let ‖ · ‖b be the seminorm in Ω defined by:

‖y‖b = ‖y0‖B + sup{|y(s)| : 0 ≤ s ≤ b}, y ∈ Ω.
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In this section we give our main existence results for problem (4.1)-(4.2). This problem is

equivalent to the following integral equation

y(t) =


φ(t), t ∈ (−∞, 0],

A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.

Motivated by Lemma 2.2.1 and the above representation, we introduce the concept of

mild solution.

Definition 4.3.1 One says that a function y ∈ Ω is a mild solution of problem (4.1)-(4.2)

if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y0 = φ ∈ B and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the function f

is continuous. Then by Lemma 2.2.1 (iii), if y : Ω → Ω is a mild solution of (4.1)-(4.2),

then

y(t) =



φ(t), t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ J.

Our first existence result for problem (4.1)-(4.2) is based on the Banach’s contraction

principle.

Theorem 4.3.1 Let f : J ×B → E be continuous and there exists a constant L > 0 such

that

|f(t, u)− f(t, v)| ≤ L‖u− v‖B, for t ∈ J and u, v ∈ B.
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If
LKbb

α

Γ(α+ 1)
(1 + ‖ϕA‖L1) < 1, (4.3)

where Kb = sup{|K(t)| : t ∈ [0, b]}, then the problem (4.1)-(4.2) has a unique mild solution

on (−∞, b].

Proof. Transform the problem (4.1)-(4.2) into a fixed point problem. Consider the

operator A : Ω → Ω defined by:

A(y)(t) =



φ(t), t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ J.

Let x(·) : (−∞, b] → E be the function defined by:

x(t) =

 φ(t), if t ∈ (−∞, 0];

0, if t ∈ J .

Then x0 = φ. We denote by z the function defined by

z̄(t) =

 0, if t ∈ (−∞, 0];

z(t), if t ∈ J .

If y(·) satisfies

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds

we can decompose it as y(t) = z̄(t) + x(t), t ∈ J which implies yt = z̄t + xt, t ∈ J and the

function z(·) satisfies z0 = 0 and

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds.

Let

Ω0 = {z ∈ Ω such that z0 = 0},
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and let ‖ · ‖b be the seminorm in Ω0 defined by

‖z‖b = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}, z ∈ Ω0.

Then (Ω0, ‖ · ‖b) is a Banach space. Let the operator F : Ω0 → Ω0 be defined by

F (z)(t) =



0, t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds, t ∈ J.

We need to prove that F has a fixed point, which is a unique mild solution of (4.1)-(4.2)

on (−∞, b]. We shall show that F is a contraction. Let z, z∗ ∈ Ω0. Then we have for each

t ∈ J ,

|F (z)(t)− F (z∗)(t)|

=

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1[f(s, z̄s + xs)− f(s, z̄∗s + xs)]ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ τ

0

(s− τ)α−1
[
f(τ, z̄τ + xτ )− f(τ, z̄∗τ + xτ )

]
dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, z̄s + xs)− f(s, z̄∗s + xs)|ds

+

∫ t

0

ϕA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|f(τ, z̄τ + xτ )− f(τ, z̄∗τ + xτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1L‖zs − z∗s‖Bds

+
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ τ

0

(s− τ)α−1L‖zτ − z∗τ‖Bdτds

≤ L

Γ(α)

∫ t

0

(t− s)α−1Kb sup
s∈[0,t]

|z(s)− z∗(s)|ds

+
L

Γ(α)

∫ t

0

ϕA(t− s)

∫ τ

0

(s− τ)α−1dτKb sup
s∈[0,t]

|z(s)− z∗(s)|ds

≤ LKbt
α

Γ(α+ 1)
‖z − z∗‖b +

‖ϕA‖L1LKbt
α

Γ(α+ 1)
‖z − z∗‖b.

Taking the supremum over t we get

‖F (z)− F (z∗)‖b ≤ LKbb
α

Γ(α+ 1)
(1 + ‖ϕA‖L1)‖z − z∗‖b.
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By (4.3) F is a contraction and thus, by the contraction mapping theorem, we deduce

that F has a unique fixed point z. Then y(t) = z̄(t) + x(t), t ∈ (−∞, b] is a fixed point of

the operator A, which gives rise to a unique mild solution of (4.1)-(4.2).

Our second existence result is based on Leray-Schauder nonlinear alternative [24,

p.135].

Theorem 4.3.2 Let f : J × B → E be continuous. Assume that:

(A1) S(t) is compact for all t > 0;

(A2) there exist a function p ∈ C(J,R+), and a nondecreasing function ψ : R+ → R+

such that

|f(t, x)| ≤ p(t)ψ(‖x‖B), ∀(t, x) ∈ J × B;

(A3) there exists a constant M > 0 such that

M

Kb‖p‖∞ψ(M)
bα

Γ(α+ 1)
(1 + ‖ϕA‖L1) +Mb‖φ‖B

> 1.

Then, the problem (4.1)-(4.2) has at least one mild solution on (−∞, b].

Proof. Transform the problem (4.1)-(4.2) into a fixed point problem. Consider the

operator F : Ω0 → Ω0 defined in Theorem 4.3.1, namely,

F (z)(t) =



0, t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds, t ∈ [0, b].

In order to prove that F is completely continuous, we divide the operator F into two

operators:

F1(z)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds,

and

F2(z)(t) =

∫ t

0

S ′(t− s)F1(z)(s)ds.



4.3 Existence of solutions 47

We prove that F1 and F2 are completely continuous. We note that the condition (A1)

implies that S ′(t) is compact for all t > 0 (see [22, Lemma 2.2]).

Step 1: F1 is completely continuous.

A) F1 is continuous.

Let {zn} be a sequence such that zn → z in Ω0 as n → ∞. Then for t ∈ [0, b] we

have

|F1(zn)(t)− F1(z)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, z̄ns + xs)− f(s, z̄s + xs)

∣∣∣∣ds
≤ 1

Γ(α)
‖f(·, z̄n. + x.)− f(·, z̄. + x.)‖∞

∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, z̄n. + x.)− f(·, z̄. + x.)‖∞.

Since f is a continuous function, we have

‖F1(zn)− F1(z)‖b → 0 as n→∞.

Thus F1 is continuous.

B) F1 maps bounded sets into bounded sets in Ω0.

Indeed, it is enough to show that for any ρ > 0, there exists a positive constant δ

such that for each z ∈ Bρ = {z ∈ Ω0 : ‖z‖b ≤ ρ} one has F1(z) ∈ Bδ. Let z ∈ Bρ.

Since f is a continuous function, we have for each t ∈ [0, b]

|F1(z)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, z̄s + xs)

∣∣ds
≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(‖z̄s + xs‖B)ds

≤ bαψ(ρ∗)‖p‖∞
Γ(α+ 1)

= δ <∞,
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where

‖z̄s + xs‖B ≤ ‖z̄s‖B + ‖xs‖B

≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)‖z0‖B

+K(t) sup{|x(t)| : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ Kbρ+Mb‖φ‖B = ρ∗,

and Mb = sup{|M(t)| : t ∈ [0, b]}.

Then, ‖F1(z)‖b ≤ δ, and hence F1(z) ∈ Bδ.

C) F1 maps bounded sets into equicontinuous sets of Ω0.

Let τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set. Let z ∈ Bρ. Then if ε > 0 and

ε ≤ τ1 ≤ τ2 we have

|F1(z)(τ2)− F1(z)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, z̄s + xs)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ ‖p‖∞ψ(ρ∗)

Γ(α)

(∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality

tends to zero. By Arzelá-Ascoli theorem it suffices to show that F1 maps Bρ into a

precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bρ
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we define

F1ε(z)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds.

Note that the set{
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds : z ∈ Bρ

}
is bounded since ∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ ‖p‖∞ψ(ρ∗)

∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ ‖p‖∞ψ(ρ∗)

Γ(α+ 1)
(t− ε)α.

Then for t > 0, the set

Zε(t) = {F1ε(z)(t) : z ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(z)(t)− F1ε(z)(t)
∣∣∣

≤ ‖p‖∞ψ(ρ∗)

Γ(α)

(∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds+

∫ t

t−ε

(t− s)α−1ds

)
≤ ‖p‖∞ψ(ρ∗)

Γ(α+ 1)

(
tα − (t− ε)α

)
.

Therefore, the set Z(t) = {F1(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator

F1 is completely continuous.

Step 2: F2 is completely continuous.

A) F2 is continuous

The operator F2 is continuous, since S ′(·) ∈ C(J,B(E)) and F1 is continuous as

proved in Step 1.
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B) F2 maps bounded sets into bounded sets in Ω0.

let Bρ be a bounded set as in Step 1. For z ∈ Bρ we have

|F2(z)(t)| ≤
∫ t

0

|S ′(t− s)||F1(z)(s)|ds

≤
∫ t

0

ϕA(t− s)‖F1(z)(s)‖[D(A)]ds

≤ ‖ϕA‖L1bα‖p‖∞ψ(ρ∗)

Γ(α+ 1)
= δ′.

Thus, there exists a positive number δ′ such that ‖F2(z)‖b ≤ δ′. This means that

F2(z) ∈ Bδ′ .

C) F2 maps bounded sets into equicontinuous sets in Ω0.

Let τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set as in Step 1. Let z ∈ Bρ. Then

if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F2(z)(τ2)− F2(z)(τ1)|

=

∣∣∣∣ ∫ τ2

0

S ′(τ2 − s)F1(z)(τ2)ds−
∫ τ1

0

S ′(τ1 − s)F1(z)(τ1)ds

∣∣∣∣
≤ bα‖p‖∞ψ(ρ∗)

Γ(α+ 1)

(∫ τ1−ε

0

|S ′(τ2 − s)− S ′(τ1 − s)| ds

+

∫ τ1

τ1−ε

|S ′(τ2 − s)− S ′(τ1 − s)| ds+

∫ τ2

τ1

|S ′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality

tends to zero. By Arzelá-Ascoli theorem it suffices to show that F2 maps Bρ into a

precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bρ

we define

F2ε(z)(t) = S ′(ε)

∫ t−ε

0

S ′(t− s− ε)F1(z)(s)ds.

Since S ′(t) is a compact operator for t > 0, the set

Zε(t) = {F2ε(z)(t) : z ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(z)(t)− F2ε(z)(t)
∣∣∣ ≤ ‖ϕA‖L1‖p‖∞ψ(ρ∗)

Γ(α+ 1)

(
tα − (t− ε)α

)
.
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Then Z(t) = {F2(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator F2 is

completely continuous.

Step 3: We show there exists an open set U ⊂ C(J,E) with z 6∈ λF (z) for λ ∈ (0, 1) and

z ∈ ∂U.

Let λ ∈ (0, 1) and

z(t) = λF (z)(t) = λ
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+λ

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds.

Then

|z(t)| ≤
∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds

∣∣∣∣
≤
∫ t

0

1

Γ(α)
(t− s)α−1|f(s, z̄s + xs)|ds

+

∫ t

0

ϕA(t− s)

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, z̄τ + xτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(‖z̄s + xs‖B)ds

+
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(‖z̄s + xs‖B)dτds.

(4.4)

But

‖z̄s + xs‖B ≤ Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B

as proved in Step 1. If we let w(t) be the right-hand side of the above inequality then we

have that

‖z̄s + xs‖B ≤ w(t), t ∈ J,

and therefore (4.4) becomes

|z(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(w(s))ds

+
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(w(s))dτds.

(4.5)
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Using (4.5) in the definition of w, we have

w(t) = Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B

≤ Kb
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(w(s))ds

+Kb
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(w(s))dτds+Mb‖φ‖B.

Then

‖w‖ ≤ Kb‖p‖∞ψ(‖w‖) bα

Γ(α+ 1)
+Kb‖p‖∞ψ(‖w‖) bα

Γ(α+ 1)
‖ϕA‖L1 +Mb‖φ‖B

and consequently

‖w‖

Kb‖p‖∞ψ(‖w‖) bα

Γ(α+ 1)
(1 + ‖ϕA‖L1) +Mb‖φ‖B

≤ 1.

Thus, by (A3), there exists M such that ‖w‖ 6= M . Let us set

U = {z ∈ C(J,E) : ‖z‖ < M}.

From the choice of U , there is no z ∈ ∂U such that z = λF (y) for some λ ∈ (0, 1).

Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 2.4.3), we

deduce that F has a fixed point z ∈ U . Then y = z + x is a solution of (4.1)-(4.2) on

(−∞, b]. This completes the proof.

Finally, we give an existence result based upon Schaefer’s fixed point theorem.

Theorem 4.3.3 Let f : J × B → E be continuous. Assume that:

(B1) S(t) is compact for all t > 0;

(B2) there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B, t ∈ J and u ∈ B.

Then, the problem (4.1)-(4.2) has at least one mild solution on (−∞, b], provident that

bαKb‖q‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1) < 1.
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Proof. Define F as in the proof of Theorem 4.3.1. As in Theorem 4.3.2 we can prove

that F is completely continuous. Here we prove that the set

E = {z ∈ Ω0 : z = λF (z), 0 < λ < 1}

is bounded.

Let z ∈ E be any element. Then, for each t ∈ [0, b] ,

|z(t)| ≤ 1

Γ(α)

(∫ t

0

p(s)(t− s)α−1ds+

∫ t

0

(t− s)α−1q(s)
[
Kb‖z‖b +Mb‖φ‖B

]
ds

)
+

1

Γ(α)

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1

(
p(s) + q(s)

[
Kb‖z‖b +Mb‖φ‖B

])
dτds

≤ bα‖p‖∞
Γ(α+ 1)

+
bα‖q‖∞
Γ(α+ 1)

[
Kb‖z‖b +Mb‖φ‖B

]
+
bα‖ϕA‖L1‖p‖∞

Γ(α+ 1)

+
bα‖ϕA‖L1‖q‖∞

Γ(α+ 1)

[
Kb‖z‖b +Mb‖φ‖B

]
=

bα

Γ(α+ 1)

[
‖p‖∞(1 + ‖ϕA‖L1) + ‖q‖∞‖φ‖BMb(1 + ‖ϕA‖L1)

]

+
bαKb‖q‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1)‖z‖b

=
bα

Γ(α+ 1)
(1 + ‖ϕA‖L1)(‖p‖∞ + ‖q‖∞‖φ‖BMb)

+
bαKb‖q‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1)‖z‖b

and consequently

‖z‖b ≤
bα

Γ(α+ 1)
(1 + ‖ϕA‖L1)(‖p‖∞ + ‖q‖∞‖φ‖BMb)

{
1− bαKb‖q‖∞

Γ(α+ 1)
(1 + ‖ϕA‖L1)

}−1

.

Hence the set E is bounded. As a consequence of Theorem 2.4.3 we deduce that F has

at least a fixed point, then the operator A has one, which gives rise to a mild solution of

(4.1)-(4.2) on (−∞, b].

4.4 An example

As an application of our results we consider the following fractional time partial func-

tional differential equation of the form
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∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +

∫ 0

−∞
P (θ)g

(
t, u(t+ θ, x)

)
dθ,

x ∈ [0, π], t ∈ [0, b], 0 < α < 1, (4.6)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (4.7)

u(t, x) = u0(t, x), x ∈ [0, π], t ∈ (−∞, 0], (4.8)

where P : (−∞, 0] → R, g : R → R and u0 : (−∞, 0]×[0, π] → R are continuous functions.

To study this system, we take E = L2[0, π] and let A be the operator given by Aw = w′′

with domain D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =

(
2

π

) 1
2

sin(nx), n = 1, 2, . . . is the

orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal generator

of an analytic semigroup (T (t))t≥0 on E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup,

so that R(λ,A) = (λ− A)−1 is compact operator for all λ ∈ ρ(A).

From [38, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα − A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for

some θ ∈ (π, π
2
). S(t) is differentiable (Proposition 2.15 in [5]) and there exists a constant

M > 0 such that ‖S ′(t)x‖ ≤M‖x‖, for x ∈ D(A) t > 0.
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For the phase space B, we choose the well-known space BUC(R−, E) of uniformly

bounded continuous functions equipped with the following norm:

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B.

To represent the system (4.6)-(4.8) in the abstract form (4.1)-(4.2) we consider ϕ ∈

BUC(R−, E), x ∈ [0, π] and introduce the functions

y(t)(x) = u(t, x), t ∈ [0, b], x ∈ [0, π],

φ(θ)(x) = u0(θ, x), −∞ < θ ≤ 0, x ∈ [0, π],

f(t, ϕ)(x) =

∫ 0

−∞
P (θ)g

(
t, ϕ(θ)(x)

)
dθ, −∞ < θ ≤ 0, x ∈ [0, π].

Then the problem (4.6)-(4.8) takes the following abstract form: Dαy(t) = Ay(t) + f(t, yt), t ∈ J = [0, b], 0 < α < 1;

y0 = φ ∈ B.
(4.9)

We assume the following assumptions:

(i) P is integrable on (−∞, 0].

(ii) There exist a continuous increasing function ψ : [0,∞) → [0,∞) such that

|g(t, v)| ≤ ψ(|v|), for v ∈ R.

By the dominated convergence theorem of Lebesgue, we can show that f is a continuous

function of B in E. On the other hand, we have for ϕ ∈ B and x ∈ [0, π]

|f(t, ϕ)(x)| ≤
∫ 0

−∞
|P (θ)|g

(
t, |ϕ(θ)(x)|

)
dθ.

Since the function ψ is increasing, we have

|f(t, ϕ)| ≤
∫ 0

−∞
|P (θ)|dθψ

(
‖ϕ‖B

)
for ϕ ∈ B.

Choose b such that
Lbα

Γ(α+ 1)
(1 +M) < 1.

Since the conditions of Theorem 4.3.1 are satisfied, there is a function u ∈ C((−∞, b],

L2[0, π]) which is a mild solution of (4.6)-(4.8).



Chapter 5

Semilinear fractional differential

equations with State-Dependent Delay

5.1 Introduction

This chapter is concerned with existence of mild solutions defined on a compact real inter-

val for fractional order semilinear functional differential equations with state-dependent

delay of the form

Dαy(t) = Ay(t) + f(t, y(t− ρ(y(t)))) , t ∈ J = [0, b], 0 < α < 1 (5.1)

y(t) = φ(t) , t ∈ [−r, 0] (5.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J ×C([−r, 0], E) →

E is a continuous function, A : D(A) ⊂ E → E is a densely defined closed linear operator

on E. φ : [−r, 0] → E a given continuous function with φ(0) = 0 and (E, |.|) a real Banach

space. ρ is a positive bounded continuous function on C([−r, 0], E). r is the maximal delay

defined by

r = sup
y∈C

ρ(y).
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5.2 Existence of solutions

In this section we give our main existence results for problem (5.1)-(5.2). This problem is

equivalent to the following integral equation

y(t) =


A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Motivated by Lemma 2.2.1 and the above representation, we introduce the concept of mild

solution.

Definition 5.2.1 We say that a continuous function y : [−r, b] → E is a mild solution of

problem (5.1)-(5.2) if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ(t), t ∈ [−r, 0], and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the function f is

continuous. Then by Lemma 2.2.1 (iii), if y : [−r, b] → E is a mild solution of (5.1)-(5.2),

then

y(t) =



1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, y(τ − ρ(y(τ)))dτ

)
ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Lemma 5.2.1 [44] Let D be a bounded, closed and convex subset of the Banach space

C(J,E), G a continuous function on J×J and f a function from J×C([−r, 0], E) −→ E

which satisfies the Carathéodory conditions and there exists p ∈ L1(J,R+) such that for

each t ∈ J and each bounded set B ⊂ C([−r, 0], E) we have

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B); here Jt,k = [t− k, t] ∩ J.
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If V is an equicontinuous subset of D, then

α

({∫
J

G(s, t)f(s, ys)ds : y ∈ V
})

≤
∫

J

‖G(t, s)‖p(s)α(V (s))ds.

To prove the main results, we assume the following conditions:

(H1) The operator S ′(t) is compact for all t > 0; and

‖S ′(t)x‖ ≤ ϕA(t)‖x‖[D(A)] for all t > 0 and each x ∈ D(A).

(H2) f : J × C([−r, 0], E) −→ E is of Carathéodory.

(H3) There exist functions p ∈ L∞(J,R+) such that

|f(t, u)| ≤ p(t)(‖u‖C + 1), for a.e. t ∈ J and u ∈ C([−r, 0], E).

(H4) For almost each t ∈ J and each bounded set B ⊂ C([−r, 0], E) we have

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B); here Jt,k = [t− k, t] ∩ J.

Our main result reads as follows:

Theorem 5.2.1 Assume that the conditions (H1)− (H4) are satisfied. Then the problem

(5.1)-(5.2) has at least one mild solution on [−r, b], provident that

bα‖p‖L∞(1 + ‖ϕA‖L1)

Γ(α+ 1)
< 1. (5.3)

Proof. Transform the problem (5.1)-(5.2) into a fixed point problem. Consider the

operator

N : C([−r, b], E) → C([−r, b], E) defined by,

N(y)(t) =



φ(t), t ∈ [−r, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, y(τ − ρ(y(τ)))dτ

)
ds, t ∈ [0, b].
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Let γ > 0 be such that

γ ≥ bα‖p‖L∞

Γ(α+ 1)− bα‖p‖L∞
, (5.4)

and consider the set

Dγ = {y ∈ C([−r, b], E) : ‖y‖∞ ≤ γ}.

Clearly, the subset Dγ is closed, bounded and convex. We shall show that N satisfies the

assumptions of Theorem 2.4.5.

In order to prove that N is completely continuous, we divide the operator N into two

operators:

N1(y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds,

and

N2(y)(t) =

∫ t

0

S ′(t− s)N1(y)(s)ds.

We prove that N1 and N2 are completely continuous.

Step 1: N1 is completely continuous.

A) N1 is continuous.

Let {yn} be a sequence such that yn → y as n → ∞ in C([−r, b], E), then for

t ∈ [0, b]. Note that −r ≤ s− ρ(y(s)) ≤ s for each s ∈ J we have,

|N1(yn)(t)−N1(y)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, yn(s− ρ(yn(s)))− f(s, y(s− ρ(y(s)))|ds

Since f is a Carathéodory function for t ∈ J , and from the continuity of ρ, we have

by the dominated convergence theorem of Lebesgue, the right member of the above

inequality tends to zero as n→∞.

‖N1(yn)−N1(y)‖∞ → 0 as n→∞.

Thus N1 is continuous.
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B) N1(Dγ) ⊂ Dγ is bounded.

For each y ∈ Dγ by (H3) and (4.1) we have for each t ∈ [0, b]

|N1(y)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s− ρ(y(s)))ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, y(s− ρ(y(s)))

∣∣ds
≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)(‖y(s)‖+ 1)ds

≤ (γ + 1)

Γ(α)

∫ t

0

(t− s)α−1p(s)ds

≤ bα(γ + 1)‖p‖L∞

Γ(α+ 1)

≤ γ.

Then N1(Dγ) ⊂ Dγ.

C) N1(Dγ) is equicontinuous.

Let τ1, τ2 ∈ J , τ2 > τ1. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have for any y ∈ Dγ.

|N1(y)(τ2)−N1(y)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, y(s− ρ(y(s)))ds− 1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, y(s− ρ(y(s)))ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, y(s− ρ(y(s)))ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, y(s− ρ(y(s)))ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, y(s− ρ(y(s)))ds

∣∣∣∣
≤ (γ + 1)‖p‖L∞

Γ(α)

(∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends

to zero.

Then N1(Dγ) is continuous and completely continuous

Step 2: N2 is completely continuous.
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A) N2 is continuous

The operator N2 is continuous, since S ′(·) ∈ C([0, b], B(E)) and N1 is continuous as

proved in Step 1.

B) N2(Dγ) ⊂ Dγ is bounded.

For y ∈ Dγ we have

|N2(y)(t)| ≤
∫ t

0

|S ′(t− s)||N1(y)(s)|ds

≤
∫ t

0

ϕA(t− s)‖N1(y)(s)‖[D(A)]ds

≤ ‖ϕA‖L1bα(γ + 1)‖p‖L∞

Γ(α+ 1)

≤ γ.

Then N2(Dγ) ⊂ Dγ.

C) N2(Dγ) is equicontinuous.

Let τ1, τ2 ∈ J , τ2 > τ1. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have for any y ∈ Dγ;

|N2(y)(τ2)−N2(y)(τ1)| =

∣∣∣∣ ∫ τ2

0

S ′(τ2 − s)N1(y)(τ2)ds−
∫ τ1

0

S ′(τ1 − s)N1(y)(τ1)ds

∣∣∣∣
≤ bα(γ + 1)‖p‖L∞

Γ(α+ 1)

(∫ τ1−ε

0

|S ′(τ2 − s)− S ′(τ1 − s)| ds

+

∫ τ1

τ1−ε

|S ′(τ2 − s)− S ′(τ1 − s)| ds+

∫ τ2

τ1

|S ′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends

to zero. Then N2(Dγ) is continuous and completely continuous

Now let V be a subset of Dγ such that V ⊂ conv(N(V ) ∪ {0}).

V is bounded and equicontinuous and therefore the function v −→ v(t) = α(V (t)) is

continuous on [−r, b]. By (H4), Lemma 5.2.1 and the properties of the measure α we have
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for each t ∈ [−r, b],

v(t) ≤ α(N(V )(t) ∪ {0})

≤ α(N(V )(t))

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)α(V (s))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1p(s)α(V (τ))dτ

)
ds

≤ ‖p‖L∞

Γ(α)

∫ t

0

(t− s)α−1v(s)ds+
‖p‖L∞‖ϕA‖L1

Γ(α)

∫ t

0

(t− s)α−1v(s)ds

≤ ‖v‖∞
bα‖p‖L∞

Γ(α+ 1)
+ ‖v‖∞

bα‖p‖L∞‖ϕA‖L1

Γ(α+ 1)

≤ ‖v‖∞
bα‖p‖L∞(1 + ‖ϕA‖L1)

Γ(α+ 1)

This means that

‖v‖∞
(

1− bα‖p‖L∞(1 + ‖ϕA‖L1)

Γ(α+ 1)

)
≤ 0

By (5.3) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ [−r, b], and then V (t) is

relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in

Dγ. Applying now Theorem 5.2.1 we conclude that N has a fixed point which is a mild

solution for the problem (5.1)-(5.2).

5.3 An example

To apply our pervious result, we consider the following partial functional differential equa-

tion with fractional order for some p > 1
∂α

∂tα
u(t, y) = ∆u(t, y) + θ(t)|u(t− τ(u(t, y)), y)|p, for y ∈ Ω, t ∈ [0, T ] and 0 < α < 1;

u(t, y) = 0, for y ∈ ∂Ω and t ∈ [0, T ];

u(t, y) = u0(t, y), for y ∈ Ω and − τmax ≤ t ≤ 0.

(5.5)

where Ω is a bounded open set of Rn with regular boundary ∂Ω. u0 ∈ C2([−τmax, 0] ×

Ω,Rn), θ is a continuous function from [0, T ] to R and ∆ =
∑n

k=1
∂2

∂x2
k
. The delay function
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τ is bounded positive continuous function in Rn, let τmax be the maximal delay which is

defined by

τmax = sup
y∈R

τ(y).

Let E = L2[0, π] and let A be the operator given by Aw = w′′ with domain D(A) = {w ∈

E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =

(
2

π

) 1
2

sin(nx), n = 1, 2, . . . is the

orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal generator

of an analytic semigroup (T (t))t≥0 on E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup,

so that R(λ,A) = (λ− A)−1 is compact operator for all λ ∈ ρ(A).

From [38, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα − A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for

some θ ∈ (π, π
2
). S(t) is differentiable (Proposition 2.15 in [5]) and there exists a constant

M > 0 such that ‖S ′(t)x‖ ≤M‖x‖, for x ∈ D(A), t > 0.

Let f be the function defined from [0, T ]× E to E by

f(t, ϕ)(y) = θ(t)|ϕ(y)|p for ϕ ∈ E and y ∈ Ω.
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Let u be a solution of Equation (5.5). Then y(t) = u(t, .) is a solution of the following

equation Dαy(t) = Ay(t) + f(t, y(t− τ(y(t)))) for t ∈ [0, T ], 0 < α < 1;

y(t) = φ(t) , t ∈ [−τmax, 0],
(5.6)

where the initial value function φ is given by

φ(t)(y) = u0(t, y) for t ∈ [−τmax, 0] and y ∈ Ω.

We can show that problem (5.5) is an abstract formulation of problem (5.6). Under

suitable conditions, Theorem 5.2.1 implies that problem (5.6) has a unique solution y on

[−τmax, T ]× Ω.



Chapter 6

Semilinear perturbed fractional

differential equations

6.1 Introduction

The purpose of this chapter is to extend such results to perturbed functional differential

equations with fractional order. Our results is based upon an application of Burton and

Kirk’s fixed point theorem for the sum of a contraction operator and a completely con-

tinuous operator (see [13, 16] for an application of this fixed point theorem to a class of

perturbed semilinear functional differential equations of neutral type with infinite delay).

In this chapter, we give existence results for various classes of initial value problems

for fractional semilinear perturbed functional differential equations , both cases of finite

and infinite delay are considered. More precisely this chapter is organized as follows. In

the second section we will be concerned with semilinear perturbed fractional differential

equation with finite delay. In the third section, we consider semilinear perturbed fractional

differential equation with infinite delay. An example will be presented in the last section

illustrating the abstract theory.
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6.2 Existence results for finite delay problems

In the following we will extend the previous results to the case when the delay is finite.

More precisely we consider the following problem

Dαy(t)− Ay(t) = f(t, yt) + g(t, yt), t ∈ J := [0, b], 0 < α < 1, (6.1)

y(t) = φ(t), t ∈ [−r, 0], (6.2)

where Dα is the standard Riemann-Liouville fractional derivative, f, g : J × C([−r, 0],

E) → E is a continuous function, A : D(A) ⊂ E → E is a densely defined closed linear

operator on E, φ : [−r, 0] → E a given continuous function with φ(0) = 0 and (E, | · |) a

real Banach space. For any function y defined on [−r, b] and any t ∈ J, we denote by yt

the element of C([−r, 0], E) defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t− r up to the present time t

Before stating our main results in this section for problem (6.1) and (6.2) we give the

definition of the mild solution.

Definition 6.2.1 We say that a continuous function y : [−r, b] → E is a mild solution of

problem (6.1)-(6.2) if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ(t), t ∈ [−r, 0], and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1(f(s, ys) + g(s, ys))ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the functions

f, g is continuous. Then by Lemma 2.2.1 (iii), if y : [−r, b] → E is a mild solution of

(6.1)-(6.2), then

y(t) =



1

Γ(α)

∫ t

0

(t− s)α−1(f(s, ys) + g(s, ys))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1(f(τ, yτ ) + g(τ, yτ )dτ

)
ds, t ∈ J,

φ(t), t ∈ [−r, 0].
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Our main result reads.

Theorem 6.2.1 Assume that

(H1) S(t) is compact for all t > 0;

(H2) there exists a constant L > 0 such that

|g(t, u)− g(t, v)| ≤ L‖u− v‖C , for t ∈ J and u, v ∈ C([−r, 0], E)

with
(1 + ‖ϕA‖L1)Lbα

Γ(α+ 1)
< 1; (6.3)

(H3) there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C , t ∈ J and u ∈ C([−r, 0], E).

Then, the problem (6.1)-(6.2) has at least one mild solution on [−r, b], provident that

bα(‖q‖∞ + L)

Γ(α+ 1)
(1 + ‖ϕA‖L1) < 1. (6.4)

Proof. Transform the problem (6.1)-(6.2) into a fixed point problem. Consider the two

operators

F,G : C([−r, b], E) → C([−r, b], E)

defined by:

F (y)(t) =


φ(t), t ∈ [−r, 0],

1

Γ(α)

(∫ t

0

(t− s)α−1f(s, ys)ds+

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ [0, b].

G(y)(t) =


0, t ∈ [−r, 0],

1

Γ(α)

(∫ t

0

(t− s)α−1g(s, ys)ds+

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)α−1g(τ, yτ )dτ

)
ds, t ∈ [0, b].

Then the problem of finding the solution of problem (6.1)-(6.2) is reduced to finding the

solution of the operator equation F (y)(t) +G(y)(t) = y(t), t ∈ [−r, b]. We will show that
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the operators F and G satisfy all conditions of Theorem2.4.4 . The proof will be given in

several steps.

Step 1: F is completely continuous.

In order to prove that F is completely continuous, we divide the operator F into two

operators:

F1(y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

and

F2(y)(t) =

∫ t

0

S ′(t− s)F1(y)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition (H1)

implies that S ′(t) is compact for all t > 0 (see [22, Lemma 2.2]).

• F1 is completely continuous

At first, we prove that F1 is continuous. Let {yn} be a sequence such that yn → y as

n→∞ in C([−r, b], E). Then for t ∈ [0, b] we have

|F1(yn)(t)− F1(y)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, yns)− f(s, ys)

∣∣∣∣ds
≤ 1

Γ(α)
‖f(·, yn.)− f(·, y.)‖∞

∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, yn.)− f(·, y.)‖∞.

Since f is a continuous function, we have

‖F1(yn)− F1(y)‖D → 0 as n→∞.

Thus F1 is continuous.

Next, we prove that F1 maps bounded sets into bounded sets in C([−r, b], E). Indeed, it

is enough to show that for any ρ > 0, there exists a positive constant δ such that for each

y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖D ≤ ρ} one has F1(y) ∈ Bδ. Let y ∈ Bρ. Since f is a
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continuous function, we have for each t ∈ [0, b]

|F1(y)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ys)

∣∣ds
≤ (‖p‖∞ + ρ‖q‖∞)bα

Γ(α+ 1)
= δ∗ <∞.

Then, ‖F1(y)‖D = max{‖φ‖C , δ
∗} = δ, and hence F1(y) ∈ Bδ.

Now, we prove that F1 maps bounded sets into equicontinuous sets of C([−r, b], E). Let

τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set. Let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2

we have

|F1(y)(τ2)− F1(y)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, ys)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, ys)ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds

∣∣∣∣+ ∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, ys)ds

∣∣∣∣
≤ (‖p‖∞ + ρ‖q‖∞)

Γ(α)

(∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to

zero. By Arzelá-Ascoli theorem it suffices to show that F1 maps Bρ into a precompact set

in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we

define

F1ε(y)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds.

Note that the set {
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds : y ∈ Bρ

}
.
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is bounded since∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds

∣∣∣∣ ≤ (‖p‖∞ + ρ‖q‖∞)

∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ (‖p‖∞ + ρ‖q‖∞)(t− ε)α

Γ(α+ 1)
.

Then for t > 0, the set

Yε(t) = {F1ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(y)(t)− F1ε(y)(t)
∣∣∣ ≤ (‖p‖∞ + ρ‖q‖∞)

Γ(α)

(∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds+

∫ t

t−ε

(t− s)α−1ds

)
≤ (‖p‖∞ + ρ‖q‖∞)(tα − (t− ε)α)

Γ(α+ 1)
.

Therefore, the set Y (t) = {F1(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F1

is completely continuous.

•F2 is completely continuous

The operator F2 is continuous, since S ′(·) ∈ C([0, b], B(E)) and F1 is continuous as proved

in Step 1.

Now, let Bρ be a bounded set as in Step 1. For y ∈ Bρ we have

|F2(y)(t)| ≤
∫ t

0

|S ′(t− s)||F1(y)(s)|ds

≤
∫ t

0

ϕA(t− s)‖F1(y)(s)‖[D(A)]ds

≤ ‖ϕA‖L1(‖p‖∞ + ρ‖q‖∞)bα

Γ(α+ 1)
= δ′.

Thus, there exists a positive number δ′ such that ‖F2(y)‖D ≤ δ′. This means that F2(y) ∈

Bδ′ .

Next, we shall show that F2 maps bounded sets into equicontinuous sets in C([−r, b],

E). Let τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set as in Step 1. Let y ∈ Bρ.

Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have,
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|F2(y)(τ2)− F2(y)(τ1)|

=

∣∣∣∣ ∫ τ2

0

S ′(τ2 − s)F1(y)(τ2)ds−
∫ τ1

0

S ′(τ1 − s)F1(y)(τ1)ds

∣∣∣∣
≤ (‖p‖∞ + ρ‖q‖∞)bα

Γ(α+ 1)

(∫ τ1−ε

0

|S ′(τ2 − s)− S ′(τ1 − s)| ds

+

∫ τ1

τ1−ε

|S ′(τ2 − s)− S ′(τ1 − s)| ds+

∫ τ2

τ1

|S ′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to

zero. By Arzelá-Ascoli theorem it suffices to show that F2 maps Bρ into a precompact set

in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we

define

F2ε(y)(t) = S ′(ε)

∫ t−ε

0

S ′(t− s− ε)F1(y)(s)ds.

Since S ′(t) is a compact operator for t > 0, the set

Yε(t) = {F2ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(y)(t)− F2ε(y)(t)
∣∣∣ ≤ ‖ϕA‖L1(‖p‖∞ + ρ‖q‖∞)

(
tα − (t− ε)α

)
Γ(α+ 1)

.

Then Y (t) = {F2(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F2 is completely

continuous.

Step 2: G is a contraction.

Let y, z ∈ C([−r, b], E). For t ∈ [0, b], we have

|G(y)(t)−G(z)(t)|

=
1

Γ(α)

∣∣∣∣ ∫ t

0

(t− s)α−1[g(s, ys)− g(s, zs)]ds+

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)α−1[g(τ, yτ )− g(τ, zτ ]dτds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|g(s, ys)− g(s, zs)|ds+

∫ t

0

ϕA(t− s)

∫ τ

0

(s− τ)α−1|g(τ, yτ )− g(τ, zτ )|dτds

≤ 1

Γ(α)

(∫ t

0

(t− s)α−1L‖yτ − zτ‖Cds+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1L‖yτ − zτ‖Cdτds

)
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≤ L

Γ(α)
‖y − z‖D

∫ t

0

(t− s)α−1ds+
L

Γ(α)
‖y − z‖D

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1dτds

≤ Ltα

Γ(α+ 1)
‖y − z‖D +

‖ϕA‖L1Ltα

Γ(α+ 1)
‖y − z‖D.

Taking the supremum over t ∈ [−r, b], we get

‖G(y)−G(z)‖D ≤ Lbα

Γ(α+ 1)
(1 + ‖ϕA‖L1) ‖y − z‖D.

Which is a contraction, since (1+‖ϕA‖L1 )Lbα

Γ(α+1)
< 1, by the condition (6.3).

Step 3: A priori bound on solutions.

Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF (y) + λG(
y

λ
), 0 < λ < 1}

is bounded.

Let y ∈ E be any element. Then, for each t ∈ [0, b] ,

y(t) = λF (y)(t) + λG(
y

λ
)(t)

= λ

[
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds

]
+λ

[
1

Γ(α)

∫ t

0

(t− s)α−1g(s,
ys

λ
)ds+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1g(τ,
yτ

λ
)dτ

)
ds

]
Then

|y(t)| ≤ 1

Γ(α)

[ ∫ t

0

(t− s)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]ds

+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]dτds

]
+

1

Γ(α)

[ ∫ t

0

(t− s)α−1
∣∣g(s, ys

λ
)− g(s, 0)

∣∣ds+

∫ t

0

(t− s)α−1|g(s, 0)|ds

+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1
∣∣g(τ, yτ

λ
)− g(τ, 0)

∣∣dτds
+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1|g(τ, 0)|dτds
]
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≤ bα‖p‖∞
Γ(α+ 1)

+
bα‖q‖∞
Γ(α+ 1)

‖ys‖C +
‖ϕA‖L1bα‖p‖∞

Γ(α+ 1)
+
‖ϕA‖L1bα‖q‖∞

Γ(α+ 1)
‖ys‖C

+
bαL

Γ(α+ 1)
‖ys‖C +

bαL‖ϕA‖L1

Γ(α+ 1)
‖ys‖C +

(1 + ‖ϕA‖L1)

Γ(α+ 1)

∫ t

0

(t− s)α−1|g(s, 0)|ds

≤
(
bα‖p‖∞
Γ(α+ 1)

+
1

Γ(α)

∫ t

0

(t− s)α−1|g(s, 0)|ds
)

(1 + ‖ϕA‖L1) +
bα(‖q‖∞ + L)

Γ(α+ 1)
(1 + ‖ϕA‖L1)‖y‖D

and consequently

‖y‖D ≤
(
bα‖p‖∞
Γ(α+ 1)

+
1

Γ(α)

∫ t

0

(t−s)α−1|g(s, 0)|ds
)

(1+‖ϕA‖L1)

{
1−b

α(‖q‖∞ + L)

Γ(α+ 1)
(1+‖ϕA‖L1)

}−1

.

This shows that the set E is bounded. As a result the conclusion (b) of Theorem 2.4.4

does not hold. Hence the conclusion (a) holds and consequently F (y) +G(y) has a fixed

point which is a mild solution of problem (6.1)-(6.2) on [−r, b].

6.3 Existence results for infinite delay problems

In the following we will extend the previous results to the case when the delay is infinite.

More precisely we consider the following problem

Dαy(t)− Ay(t) = f(t, yt) + g(t, yt), t ∈ J := [0, b], 0 < α < 1, (6.5)

y(t) = φ ∈ B, (6.6)

where Dα is the standard Riemann-Liouville fractional derivative, f, g : J × B → E is a

continuous function, A : D(A) ⊂ E → E is a densely defined closed linear operator on E,

φ : B → E a given continuous function with φ(0) = 0.

Before stating our main results in this section for problem (6.5) and (6.6) we give the

definition of the mild solution.

Definition 6.3.1 We say that a function y ∈ Ω is a mild solution of problem (6.5)-(6.6)

if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ ∈ B, and
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3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1(f(s, ys) + g(s, ys))ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the functions

f, g is continuous. Then by Lemma 2.2.1 (iii), if y : Ω → Ω is a mild solution of (6.5)-(6.6),

then

y(t) =



1

Γ(α)

∫ t

0

(t− s)α−1(f(s, ys) + g(s, ys))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1(f(τ, yτ ) + g(τ, yτ )dτ

)
ds, t ∈ J,

φ ∈ B.

Let x(·) : (−∞, b] → E be the function defined by:

x(t) =

 φ(t), if t ∈ (−∞, 0];

0, if t ∈ J .

Then x0 = φ. We denote by z the function defined by

z̄(t) =

 0, if t ∈ (−∞, 0];

z(t), if t ∈ J .

If y(·) satisfies

y(t) =
1

Γ(α)

∫ t

0

(t−s)α−1(f(s, ys)+g(s, ys))ds+

∫ t

0

S ′(t−s)
(

1

Γ(α)

∫ s

0

(s−τ)α−1(f(τ, yτ )+g(τ, yτ ))dτ

)
ds

we can decompose it as y(t) = z̄(t) + x(t), t ∈ J which implies yt = z̄t + xt, t ∈ J and the

function z(·) satisfies z0 = 0 and

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1(f(s, z̄s + xs) + g(s, z̄s + xs))ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1(f(τ, z̄τ + xτ ) + g(τ, z̄τ + xτ ))dτ

)
ds.

Let

Ω0 = {z ∈ Ω such that z0 = 0},

and let ‖ · ‖b be the seminorm in Ω0 defined by

‖z‖b = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}, z ∈ Ω0.
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Then (Ω0, ‖ · ‖b) is a Banach space. Let the operator F,G : Ω0 → Ω0 be defined by

F (z)(t) =


φ ∈ B,

1

Γ(α)

(∫ t

0

(t− s)α−1f(s, z̄s + xs)ds+

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds,

t ∈ [0, b].

G(z)(t) =


0, t ∈ B,

1

Γ(α)

(∫ t

0

(t− s)α−1g(s, z̄s + xs)ds+

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)α−1g(τ, z̄τ + xτ )dτ

)
ds,

t ∈ [0, b].

Our main result reads.

Theorem 6.3.1 Assume that

(H1) S(t) is compact for all t > 0;

(H2) there exists a constant L > 0 such that

|g(t, u)− g(t, v)| ≤ L‖u− v‖B, for t ∈ J and u, v ∈ B

with
LKbb

α

Γ(α+ 1)
(1 + ‖ϕA‖L1) < 1; (6.7)

(H3) there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B, t ∈ J and u ∈ B.

Then, the problem (6.5)-(6.6) has at least one mild solution on (−∞, b], provident that

bαKb(‖q‖∞ + L)

Γ(α+ 1)
(1 + ‖ϕA‖L1) < 1.

Proof. The problem of finding the solution of problem (6.5)-(6.6) is reduced to finding

the solution of the operator equation F (z)(t) +G(z)(t) = y(t), t ∈ Ω0. We will show that

the operators F and G satisfy all conditions of Theorem2.4.4 . The proof will be given in

several steps.



6.3 Existence results for infinite delay problems 76

Step 1: F is completely continuous.

In order to prove that F is completely continuous, we divide the operator F into two

operators:

F1(z)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds,

and

F2(z)(t) =

∫ t

0

S ′(t− s)F1(z)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition (H1)

implies that S ′(t) is compact for all t > 0 (see [22, Lemma 2.2]).

• F1 is completely continuous

At first, we prove that F1 is continuous. Let {zn} be a sequence such that zn → z in Ω0

as n→∞. Then for t ∈ [0, b] we have

|F1(zn)(t)− F1(z)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, z̄ns + xs)− f(s, z̄s + xs)

∣∣∣∣ds
≤ 1

Γ(α)
‖f(·, z̄n. + x.)− f(·, z̄. + x.)‖∞

∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, z̄n. + x.)− f(·, z̄. + x.)‖∞.

Since f is a continuous function, we have

‖F1(zn)− F1(z)‖b → 0 as n→∞.

Thus F1 is continuous.

Next, we prove that F1 maps bounded sets into bounded sets in Ω0. Indeed, it is enough

to show that for any ρ > 0, there exists a positive constant δ such that for each z ∈ Bρ =

{z ∈ Ω0 : ‖z‖b ≤ ρ} one has F1(z) ∈ Bδ. Let z ∈ Bρ. Since f is a continuous function, we

have for each t ∈ [0, b]

|F1(z)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, z̄s + xs)

∣∣ds
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≤ 1

Γ(α)

∫ t

0

(t− s)α−1(‖p‖∞ + ‖q‖∞‖z̄s + xs‖B)ds

≤ bα(‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)
= δ <∞,

where

‖z̄s + xs‖B ≤ ‖z̄s‖B + ‖xs‖B

≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)‖z0‖B

+K(t) sup{|x(t)| : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ Kbρ+Mb‖φ‖B = ρ∗,

and Mb = sup{|M(t)| : t ∈ [0, b]}.

Then, ‖F1(z)‖b ≤ δ, and hence F1(z) ∈ Bδ.

Now, we prove that F1 maps bounded sets into equicontinuous sets of Ω0. Let τ1, τ2 ∈ J ,

τ2 > τ1 and let Bρ be a bounded set. Let z ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F1(z)(τ2)− F1(z)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, z̄s + xs)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ (‖p‖∞ + ρ∗‖q‖∞)

Γ(α)

(∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to

zero. By Arzelá-Ascoli theorem it suffices to show that F1 maps Bρ into a precompact set

in E.
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Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bρ we

define

F1ε(z)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds.

Note that the set {
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds : z ∈ Bρ

}
is bounded since ∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ (‖p‖∞ + ρ∗‖q‖∞)

∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ (‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)
(t− ε)α.

Then for t > 0, the set

Zε(t) = {F1ε(z)(t) : z ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(z)(t)− F1ε(z)(t)
∣∣∣

≤ (‖p‖∞ + ρ∗‖q‖∞)

Γ(α)

(∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds+

∫ t

t−ε

(t− s)α−1ds

)
≤ (‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)

(
tα − (t− ε)α

)
.

Therefore, the set Z(t) = {F1(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator F1

is completely continuous.

• F2 is completely continuous

The operator F2 is continuous, since S ′(·) ∈ C(J,B(E)) and F1 is continuous as proved in

Step 1.
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Now, let Bρ be a bounded set as in Step 1. For z ∈ Bρ we have

|F2(z)(t)| ≤
∫ t

0

|S ′(t− s)||F1(z)(s)|ds

≤
∫ t

0

ϕA(t− s)‖F1(z)(s)‖[D(A)]ds

≤ ‖ϕA‖L1bα(‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)
= δ′.

Thus, there exists a positive number δ′ such that ‖F2(z)‖b ≤ δ′. This means that F2(z) ∈

Bδ′ .

Next, we shall show that F2 maps bounded sets into equicontinuous sets in Ω0. Let

τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set as in Step 1. Let z ∈ Bρ. Then if ε > 0

and ε ≤ τ1 ≤ τ2 we have

|F2(z)(τ2)− F2(z)(τ1)|

=

∣∣∣∣ ∫ τ2

0

S ′(τ2 − s)F1(z)(τ2)ds−
∫ τ1

0

S ′(τ1 − s)F1(z)(τ1)ds

∣∣∣∣
≤ bα(‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)

(∫ τ1−ε

0

|S ′(τ2 − s)− S ′(τ1 − s)| ds

+

∫ τ1

τ1−ε

|S ′(τ2 − s)− S ′(τ1 − s)| ds+

∫ τ2

τ1

|S ′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to

zero. By Arzelá-Ascoli theorem it suffices to show that F2 maps Bρ into a precompact set

in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bρ we

define

F2ε(z)(t) = S ′(ε)

∫ t−ε

0

S ′(t− s− ε)F1(z)(s)ds.

Since S ′(t) is a compact operator for t > 0, the set

Zε(t) = {F2ε(z)(t) : z ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(z)(t)− F2ε(z)(t)
∣∣∣ ≤ ‖ϕA‖L1(‖p‖∞ + ρ∗‖q‖∞)

Γ(α+ 1)

(
tα − (t− ε)α

)
.
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Then Z(t) = {F2(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator F2 is completely

continuous.

Step 2: G is a contraction.

Let z, z∗ ∈ Ω0. Then we have for each t ∈ J

|G(z)(t)−G(z∗)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1[g(s, z̄s + xs)− g(s, z̄∗s + xs)]ds

+

∫ t

0

S ′(t− s)

(
1

Γ(α)

∫ τ

0

(s− τ)α−1
[
g(τ, z̄τ + xτ )− g(τ, z̄∗τ + xτ )

]
dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|g(s, z̄s + xs)− g(s, z̄∗s + xs)|ds

+

∫ t

0

ϕA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|g(τ, z̄τ + xτ )− g(τ, z̄∗τ + xτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1L‖zs − z∗s‖Bds

+
1

Γ(α)

∫ t

0

ϕA(t− s)

∫ τ

0

(s− τ)α−1L‖zτ − z∗τ‖Bdτds

≤ L

Γ(α)

∫ t

0

(t− s)α−1Kb sup
s∈[0,t]

|z(s)− z∗(s)|ds

+
L

Γ(α)

∫ t

0

ϕA(t− s)

∫ τ

0

(s− τ)α−1dτKb sup
s∈[0,t]

|z(s)− z∗(s)|ds

≤ LKbt
α

Γ(α+ 1)
‖z − z∗‖b +

‖ϕA‖L1LKbt
α

Γ(α+ 1)
‖z − z∗‖b.

Taking the supremum over t we get

‖G(z)−G(z∗)‖b ≤
LKbb

α

Γ(α+ 1)
(1 + ‖ϕA‖L1)‖z − z∗‖b.

Which is a contraction, since LKbb
α

Γ(α+1)
(1 + ‖ϕA‖L1) < 1, by the condition (6.7).

Step 3: A priori bound on solutions.

Now, it remains to show that the set

E = {z ∈ Ω0 : z = λF (z) + λG(
z

λ
), 0 < λ < 1}

is bounded.
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Let z ∈ E be any element. Then, for each t ∈ [0, b] ,

z(t) = λF (z)(t) + λG(
z

λ
)(t)

≤ 1

Γ(α)

[ ∫ t

0

(t− s)α−1(p(s) + q(s)‖z̄s + xs‖B)ds

+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1(p(s) + q(s)‖z̄s + xs‖B)dτds
]

+
1

Γ(α)

[ ∫ t

0

(t− s)α−1
∣∣g(s, zs + xs

λ
)− g(s, 0)

∣∣ds+

∫ t

0

(t− s)α−1|g(s, 0)|ds

+

∫ t

0

ϕA(t− s)

∫ s

0

(s− τ)α−1
∣∣g(τ, zτ + xτ

λ
)− g(τ, 0)

∣∣dτds
+

∫ t

0

φA(t− s)

∫ s

0

(s− τ)α−1|g(τ, 0)|dτds
]

≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖ϕA‖L1) +
bα‖q‖∞
Γ(α+ 1)

(Kb‖z‖b +Mb‖φ‖B)(1 + ‖ϕA‖L1)

+
bαL

Γ(α+ 1)
(Kb‖z‖b +Mb‖φ‖B)(1 + ‖ϕA‖L1) +

(1 + ‖ϕA‖L1)

Γ(α)

∫ t

0

(t− s)α−1|g(s, 0)|ds

=
bα(‖p‖∞ +Mb‖q‖∞‖φ‖B)

Γ(α+ 1)
(1 + ‖ϕA‖L1) +

(1 + ‖ϕA‖L1)

Γ(α)

∫ t

0

(t− s)α−1|g(s, 0)|ds

+
bαKb(‖q‖∞ + L)

Γ(α+ 1)
(1 + ‖ϕA‖L1)‖z‖b

and consequently

‖z‖b ≤
(
bα(‖p‖∞ + ‖q‖∞‖φ‖BMb)

Γ(α+ 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1|g(s, 0)|ds
)

(1 + ‖ϕA‖L1){
1− bαKb(‖q‖∞ + L)

Γ(α+ 1)
(1 + ‖ϕA‖L1)

}−1

.

This shows that the set E is bounded. As a result the conclusion (b) of Theorem 2.4.4

does not hold. Hence the conclusion (a) holds and consequently F (z) + G(z) has a fixed

point which is a mild solution of problem (6.5)-(6.6) on (−∞, b].



6.4 An example 82

6.4 An example

As an application of our results we consider the following partial perturbed functional

differential equations of the form

∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +

tu(t)

7 + t2
+Q(t, u(t− r, x)), (6.8)

x ∈ [0, π], t ∈ [0, 1], α ∈ (0, 1), (6.9)

u(t, 0) = u(t, π) = 0, t ∈ [0, 1], (6.10)

u(t, x) = ϕ(t, x), x ∈ [0, π], t ∈ [−r, 0], (6.11)

where r > 0, ϕ : [−r, 0] × [0, π] → R is continuous and Q : [0, 1] × R → R is a given

function.

To study this system, we take E = L2[0, π] and let A be the operator given by Aw = w′′

with domain D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =

(
2

π

) 1
2

sin(nx), n = 1, 2, . . . is the

orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal generator

of an analytic semigroup (T (t))t≥0 on E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup,

so that R(λ,A) = (λ− A)−1 is compact operator for all λ ∈ ρ(A).

From [38, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα − A)−1dλ, t > 0,

I, t = 0,
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where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for

some θ ∈ (π, π
2
). S(t) is differentiable (Proposition 2.15 in [5]) and there exists a constant

M > 0 such that ‖S ′(t)x‖ ≤M‖x‖, for x ∈ D(A), t > 0.

To represent the differential system (6.8)− (6.11) in the abstract form (6.1)-(6.2), let

y(t)(x) = u(t, x), t ∈ J, x ∈ [0, π]

φ(θ)(x) = ϕ(θ, x), θ ∈ [−r, 0], x ∈ [0, π]

g(t, u) =
tu(t)

7 + t2
, t ∈ J

f(t, φ)(x) = Q(t, ϕ(θ, x)), θ ∈ [−r, 0], x ∈ [0, π]

Assume that the function Q satisfies the following condition

(i) |Q(t, u)| ≤ 1
et+2 + 1

t+8
‖u‖C for each (t, u) ∈ J × R.

and for each u, u ∈ R and t ∈ J we have

|g(t, u)− g(t, u)| ≤ 1

8
‖u− u‖C

Hence condition (H2) is satisfied with L = 1
8

It is clear that conditions (H1)-(H3) are satisfied. We shall show that (6.4) holds with

q(t) =
1

t+ 8
, t ∈ [0, 1]

M = 1, b = 1, ‖q‖∞ =
1

8

Indeed, we have

bα(‖q‖∞ + L)

Γ(α+ 1)
(1 +M) ≤ 1

2Γ(α+ 1)
< 1, for each α ∈ (0, 1].

Hence, Theorem 6.2.1 implies that problem (6.8)-(6.11) has a mild solution u on [−r, 1]× ∈

[0, π].





Conclusion

In this thesis we consider some functional semi-linear differential equations of fractional

order. By using resolvent operator theory combined with suitable fixed points theorems,

we establish some existence and uniqueness results for problems with various delays, more

precisely for finite delay, infinite delay and state-dependent delay.

Our main direction in the future is to consider and extend our results to the multivalued

case by considering differential inclusions for both cases, convex and non-convex right-hand

side.

We will also be interested by considering differential equations and inclusions with

impulses.
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