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Abstract 

The object of this work is to investigate crystal orientation‘s effects on electronic 

properties of wurtzite CdZnO/ZnO quantum wells (QWs) with piezoelectric (PZ) and 

spontaneous (SP) polarization using the multiband effective-mass theory and the non-

Markovian gain model with many-body effects. In this research, we address the 

electronic and the optical properties of wurtzite CdZnO grown on ZnO substrate, the 

valence-band structures for the QW structure are calculated based on the k.p method .The 

results will be confronted with those of WZ GaN/InGaN QW structures and also similar 

studies. The effect of internal field in the c-plane oriented ZnO/CdZnO QW structure is 

relatively small compared to that of GaN/ InGaN QW structure and thus, a larger optical 

gain is shown while it disappears in the a- and m-planes for both QW structures where 

the optical gain as a result is match larger. Energy dispersion, transition strength and the 

average hole effective masses are anisotropic in non-polar structures. The bandgap 

transition wavelength of the QW structure with a-plane orientation is smaller than that of 

m-plane orientation by 2 nm in ZnO/CdZnO QW while it is 10 nm in the case of 

GaN/InGaN QW structure. 
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General Introduction 

1. Problem Statement: 

Theoretically, ZnO and GaN based quantum structures are studied extensively 

by several groups also the same for the use of quantum structures with non-polar 

crystal orientation , but there was a focusing on (Al and In)-GaN and (Mg)-ZnO based 

quantum structures and there were no sufficient investigation on (Cd)-ZnO based 

quantum structures with crystal orientation. Also the methods used in the integration 

considered in calculating the optical gain which is in one dimension rather than two 

dimensions and the same for the value of the momentum matrix elements. we 

consider the theoretical electronic and optical properties of ZnO/CdZnO QW 

structures as object of studying using a Gaussian line shape function in the gain model 

including many-body effects .To obtain the band structures and the wave functions, 

we solve the Schrodinger equation for electrons and the Hamiltonian for holes for c-, 

a- and m-plane considering the electric field due to build in polarization. These results 

are compared with those for GaN/InGaN QW structures. 

2. Device Perspectives: 

Semiconductor lasers are unique when compared to other types of lasers. They 

are very small, they operate with relatively low power input, and they are very 

efficient. The first semiconductor lasers were homostructure devices where each laser 

was fabricated with only one semiconductor material. These lasers had high threshold 

current densities, In addition to not working at room temperature; these lasers also 

could not operate cw. The quantum well laser has much lower threshold current and 

high output power unlike homostructure lasers; they work in at room temperature and 

also could operate CW.  

3. Materials Perspective: 

Quantum wells (QWs) based on zinc oxide (ZnO) and related alloys have 

gained an important amount of interest as an active region in short wavelength light-

emitting diodes and laser diodes competing with GaN-based QW structures in the 

same field with many distinctive properties. Due to the large exciton binding energy 

(60 meV) of ZnO which allows excitonic recombination even above room 



General Introduction                                                                                                          

 

 

 
2 

temperature ZnO system renewed the interest in its usage in blue and ultraviolet 

wavelengths.  

4. Summary:  

In chapter (I), we will introduce the elementary k·p theory in this chapter and 

focus on the derivation of the corresponding Hamiltonian for Wurtzite materials such 

as ZnO and GaN, also because of two other important considerations. One is that the 

strain effects in the k.p framework are very straight forwardly treated, whether on 

band structure or band energy edges, the other is investigating the strain effects on the 

effective masse. 

In chapter II, we will be studying the basic formalism of EFA and applying it directly 

to our ZnO based quantum well structure and present the comparison of the ZnO’s 

results with its counterpart GaN based structure, using numerical means such as finite 

difference method. 

In chapter (III), we will be discussing the basic optical gain formalism starting from 

the definition of optical transition and their transition strength or as called momentum 

matrix elements to broadening effect, where a different type from the conventional 

Lorentzian function is presented and thus the Gaussian or non-Markovian line shape 

function  .Numerous effects on optical gain are will be discussed in this chapter for 

instance built in electric field due to piezoelectric and spontaneous polarization , 

many body effects , strain effect and carrier concentration effect.  

Finally in chapter (IV) and (V), we consider the theoretical electronic and optical 

properties of ZnO/CdZnO QW structures as object of studying .To obtain the band 

structures and the wave functions ,we solve (a finite difference method was used in 

numerical calculations, un example for zincblende is implemented in the open source 

code called Aestimo 0.9 and for wurtzite in version 1.0 ) the Schrodinger equation for 

electrons and the 66 Hamiltonian for holes for arbitrary crystal orientation in 

chapter (IV) and focus on a- and m-planes oriented structures in chapter (V) with 

considering the electric field due to build in polarization . These results are compared 

with those for GaN/InGaN QW structures. 
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Chapter I  

Theory of Electronic Band Structure in Semiconductors 

(The k.p Method) 

 

 

 

 

 

I.1 Introduction: 

The k.p method was first introduced by Bardeen [1] and Seitz [2] and soon after 

that it was used in many semiconductor researches [3] before its development by 

Luttinger [4] and Kane [5, 6], where bands and spin-orbit interaction degenerate are taken 

into account, respectively. It is based on the perturbation theory, and usually referred to 

as the effective mass theory. Many of the k.p parameters are accurately determined by 

magneto-optical experiments such as  the band gap, Eg, split-off energy, Δ, the 

conduction-valence band coupling element, Ep, and the electron and hole effective 

masses, etc. Thus the high precision treatment found in band structure calculations. One 

important feature of the k.p method is the very small basis set, and the possibility of 

diagonalization of its Hamiltonian with an easy way to analyze and apply to 

semiconductor optics, magnetism, and transport. 

We will introduce the elementary k·p theory in this chapter and focus on the 

derivation of the corresponding Hamiltonian for Wurtzite materials such as ZnO and 

GaN, also because of two other important considerations. One is that the strain effects in 

the k.p framework are very straight forwardly treated, whether on band structure or band 

energy edges, the other is investigating the strain effects on the effective masse. 
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I.2 Elementary k.p Theory: 

When only a weak interaction is considered with all remaining states, the simplest 

form of k.p theory is obtained and thus the one-electron Schrodinger equation is written:  

    ,, rErH knkn  
        (I.1) 

with the Hamiltonian
 

     p
42 22

00

2

 V
cm

rV
m

p
H 



      
(I.2) 

The last term in the Hamiltonian H represent spin-orbit interaction, and   is the vector of 

the Pauli spin matrices  T321 ,,   , which are defined as 
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and the Bloch wave-function 

    ,, ruer kn

rki
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         (I.4) 

Which is the product of a plane wave rkie  and the periodic Bloch factors   , ru kn , n is the 

band index and k is a wave vector in the first Brillouin zone which corresponds to the 

periodicity of the potential energy  rV . 

The plan wave part of the wave-function is cancelled after its insertion in Equation (I.1) 

and the Schrodinger equation changes to: 
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reducing equation (I.5) with               

 V
cm

p  
2

04



                                 

           

to become
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Using second order non-degenerate perturbation theory to solve Equation (I.6).Where the 

perturbation is represented by the k dependent part of the Hamiltonian and the solution is: 
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(I.7) 

The energy band has a minimum at k = 0, thus the term linear in k is zero. We use same 

Cartesian indices introduced by Ref. [7], where α,β = x, y, z and Einstein's summation 

convention for these indices.to have 
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where the tensor of the effective mass is

 




 



















mn mnn
EE

nmmn

mmm 0,0,

2

0

,

0,

,0,0,0,021
 

1 
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Equation (I.9) represents the basic form of single band model. 
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Figure 1: Band classification where the conduction is called class A, while the heavy-

hole, light-hole, and spin-split-off bands in double degeneracy are of interest and are 

called class B. All other bands are denoted as class C. 

I.3 Wurtzite Hamiltonian 

Pikus studied the band structure and optical properties of Wurtzite materials in the 

late 1950s and beginning of 1960s using the invariants method introducing a six-band 

model [8]. In 1990s the interest in Wurtzite materials was renewed due to the growth of 

high-quality epitaxial GaN and AlN [9]. Thus Chuang et al used Kane model to construct 

an 8-band  model for Wurtzite materials and starting from Luttinger-kohn  model a 6-

band model  was introduced using the perturbation theory and then was compared with 

the one obtained  by invariant method [10].  

Our work is based on using Wurtzite semiconductors i.e. ZnO material system, 

where they are generally large-band-gap materials (except for InN with a band gap of ∼ 

0.7 eV [11, 12]) with a direct gap at the Γ point. Due to both a crystal-field splitting 

(compared to a cubic structure) and spin-orbit interaction the complex valence-band 

structure consist of three doubly-degenerate bands at the Γ point, they are grouped into 

three classes as A, B, and C as shown in Figure (1) . The Wurtzite structure, Figure (2), 
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consists of two interpenetrating hexagonal closely packed sublattices, offset along the c 

axis (z axis by 5/8 of the cell height c. The sixfold rotation symmetry is used in deriving 

some of the fundamental physical parameters [10] 

 

Figure 2: a) Wurtzite crystal with lattice constants c0 and a0. The structure is formed by 

two intertwined hexagonal sublattices of, e.g., Ga and N atoms or Zn and O, b) Brillouin 

zones and special k points for the hcp lattice.  

I.3.1 Six band model for strained Wurtzite Hamiltonian (Luttinger-

kohn Model): 

Chuang et al used Lӧwdin’s perturbation method [13, 3] (see Appendixes (I.7) and (I.8)), 

which provides the Hamiltonian to the second order in the k.p contributions in the case of 

class A bands[10], see  Figure (1). 

I.3.1.1 Hamiltonian and Basis Functions 

The total Hamiltonian is written as [3] 

     .rukErHu kk 
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2 0

22

0 HH
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k
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(I.11)
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The last term in p is usually neglected for simplicity [14, 3]. The band-edge wave 

function can be written as  

          
BA

j

jjk rukarukaru


 0
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0''

      
(I.12)

 

The six valence-band wave functions,  621 ,.....,, uuu
 
defined in the following are 

assigned as the bases for the states of interest (called class B), and all other states of no 

interest are called class (A and C) see figure (1).  
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(I.13) 

Lӧwdin’s perturbation theory (Appendixes (I.7) and (I.8)) requires finding the solution of 

the following system: 
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(I.14)

 

Using Lӧwdin’s method, [13], the 6x6 Hamiltonian matrix for the valence bands can be 

written as the sum of a band-edge contribution and a k-dependent contribution. 

    ''' 0
6666 jjjjjj

DkHkH 
        (I.15)

 

and the k-dependent matrix is
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where the indices j,j
’
=1,2, . . . , A6 , B , and   , =x,y,z.  

Using Kane’s model [6], the band-edge Hamiltonian matrix is given by 
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I.3.1.2   The D matrix in the X , Y , and Z  bases 

The method used by Chaung et al is similar to that of the Luttinger-Kohn paper [4] in 

defining the fundamental band-structure parameters, L1, L2, M1, M2, M3, N1, and N2. The 

33 matrix with components, Di j, i, j=X, Y, Z, can be written in the following form: 
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(I.18)
  

Similarly to the band-structure parameters of Luttinger-Kohn
1Y ,

2Y , and 3Y for zinc-

blende structures, Chaung’s band-structure parameters are defined as 
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(I.19)
 

where 

yy

X pXp  , etc., and   yip y      is the y component of the momentum 

operator. 

I.3.1.3 The 6x6 Hamiltonian matrix in the bases  621 ,.....,, uuu  

The derivation of 66D   matrix in the bases  621 ,.....,, uuu
 
becomes easy with using the 

previous results of the matrix elements, 
XXD , XYD , XZD , etc. in Equation ( I.18), 
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(I.20)
 

where the whole matrix can be expressed by using only four distinctive matrix elements, 
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and it can be shown from symmetry consideration that  

111 NML   

The full Hamiltonian,   6666 0   DkHH  , can be written as  
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(I.22)
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Chuang et al obtained the relations between the band-structure parameters derived using 

the k.p method and the more commonly used Ai parameters in the Pikus-Bir model [10], 
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(I.24)
 

It was noted that there is a minus sign in front of all the K terms in Equation (I.22) and 

the absence of  a factor of i in the definition of the H terms compared with those used in 

Refs. [8] and [15]. But the latter differences do not affect the band-structure dispersion 

relation. The results derived by Chaung et al are consistent with the results derived by 

Pikus el al in Ref. [8], using the invariant method 

The strain effects can be easily included by the same symmetry consideration and a 

straightforward addition of corresponding terms: 

 kk , 

with the deformation potentials, D1 , D2 , . . . , D6 , at the corresponding positions of  A1 , 

A2 , . . . , A6 . 
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where 

yyxxxx i   2
         (I.26)

 

yzzxz i   

Under the cubic approximation, [14, 15] the following relations hold for the parameters 

Ai‘s and Di‘s: 

4321 2AAAA  ,
653 24 AAA  , 32   

4321 2DDDD  ,
653 24 DDD 
      (I.27)

 

Consequently, only A1, A2, A5, Δ1, and Δ2, and three deformation potentials are needed 

for the calculation of the valence-band structures. The cubic approximation idea is based 

on the resemblance of the Wurtzite structure to the cubic crystal. It has also been found 

[14] that a seventh coefficient A7 for the linear k terms vanishes; therefore, only the 

quadratic terms of k, in addition to the band-edge energy terms must be kept. For a 

strained-layer Wurtzite crystal pseudomorphically grown along the (0001) (z axis) 

direction, the strain tensor   has only the following non-vanishing diagonal elements: 
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(I.28) 

where a0 and a are the lattice constants of the substrate and the layer material, and C13 and 

C33 are the stiffness constants .The general strain-stress relation (Hooke’s Law) for the 

hexagonal crystal can be found in Ref. [17]. 

 



Chapter I Theory of Electronic Band Structure in Semiconductors 

 

 

 

 
14 

I.3.2 Block Diagonalization of Wurtzite Hamiltonians: 

We rewrite equation (I.22) to a more convenient notation, to become: 
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  (I.29)
 

The full 66  Hamiltonian matrix can be block diagonalized using the basis 

transformation. The off - diagonal terms such as H 21 and H 23 contain the  dependence, 

and we can write 

2

2121

ieKH   

ieKH 2323            (I.30) 

where i
tyx ekikk  . Here, the K21 and K23 matrix elements for two Hamiltonians are 

given by 
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for the Hamiltonian H
(0001)

. We define the transformation matrix T as 
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where 
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The block-diagonalized Hamiltonian, t

eddiagonalizBlock HTTH 

  , is given by 
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where the upper 33 Hamiltonian is 
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where the lower 33 Hamiltonian is 
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The lower Hamiltonian is the complex conjugate of the upper Hamiltonian. Therefore, 

they have exactly the same eigenvalues, since the eigenenergies are real. The wave 

functions of the lower Hamiltonian are the complex conjugates of the corresponding 

wave functions of the upper Hamiltonian. 

I.4 Analytical Solutions for Valence Band Energies and Wave Functions 

in Bulk Semiconductors 

The eigenequation for the valence band energy E at the band edge is given by 
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The eigenequation is a third - order polynomial equation that can always be solved 

analytically. The complete Bloch wave functions for the valence bands are given by 
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Similar expressions hold for the lower Hamiltonian (Equation (I.34)) with bases 4 , 5  

and 6 .The analytical solutions can be derived for the valence band dispersion [18] 
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and 
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The envelope functions corresponding to the three eigenvalues are determined by 
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The conduction bands can be characterized by a parabolic band model, and the effective 

mass Hamiltonians is given by [19] 
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where the band edge energy is given by 

cgc PEE  21

0

        (I.46)
 

which is  shifted by a hydrostatic energy  

  yyxxctzzczc aaP  
        (I.47)

 

 The factors  cza  and cta  are the conduction band hydrostatic deformation potentials along 

the c-axis and perpendicular to the c-axis and gE  is the band gap energy. We set  cza  = 

cta  for simplicity. The conduction band wave function is of the form 
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(I.48) 

where   or and S is a spherically symmetric wave function. 

The conduction band dispersion for bulk is given by 
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Figures (4) and (5) shows the valence band structure of ZnO and GaN as calculated from 

the above equations for different strain conditions. At the Γ point, the hole effective 

masses can be approximated as [10]  
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The resulting parabolas are plotted as dashed lines in Figure (4) and (5), indicating that 

some of these effective masses are not valid at larger k values, where the following 

approximations are more reasonable [10] 
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I.5 Strain Effects on Bulk Semiconductors: 

A layer of ZnO (GaN) considered under either a compressive or tensile strain as in Figure 

(3), depending on the barrier materials, with the convention that the in-plane strain xx , is 

negative for compression and positive for tension. The conduction band edge energy in 

the ZnO (GaN) bulk layer is  
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   cgc PEkE  21,
       (I.52)

 

 

Figure 3: The unit cell of the Wurtzite crystal structure [20]. The change in bond 

lengths/angles when placed under bi-axial strain is demonstrated in (b). 

The valence band-edge energies can be obtained by finding the eigenvalues of the three-

by-three Hamiltonians, (I.33), evaluated at the zone center (k = 0) 
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Figure 4: ZnO energy bands for different strain conditions as calculated from  Equations 

(I.52) and  (I.53) (C, conduction band; HH, heavy hole band; LH, light hole band; CH, 

Crystal-field split-hole band)[21]. 
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Figure 5 : GaN energy bands for different strain conditions as calculated from  Equations 

(I.52) and  (I.53) (C, conduction band; HH, heavy hole band; LH, light hole band; CH, 

Crystal-field split-hole band) [21].  



Chapter I Theory of Electronic Band Structure in Semiconductors 

 

 

 

 
21 

 

 

Figure 6: ZnO band edge shift vs biaxial strain for conduction band and valence bands 

[21]. 
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Figure 7: GaN band edge shift vs biaxial strain for conduction band and valence bands 

[21]. 
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Figure 8: The ZnO bulk’s effective masses (mz/m0 and mt/m0) near the band edges 

calculated using the analytical expressions in Equations (I.44) as a function of the in-

plane compressive strain are plotted for the HH, LH, and CH bands [21]. 
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Figure 9: The GaN bulk’s effective masses (mz/m0 and mt/m0) near the band edges 

calculated using the analytical expressions in Equations (I.44)  as a function of the in-

plane compressive strain are plotted for the HH, LH, and CH bands [21]. 
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Figure (4) and (5) show ZnO and GaN energy bands for different strain conditions as 

calculated from Equations (I.33) and (I.43) (C, conduction band; HH, heavy hole band; 

LH, light hole band; CH, Crystal-field split-hole band) [21].The materials data used in all 

calculations are listed in Tables (3) and (4) in Appendix (A) for ZnO and GaN 

respectively. In all calculations a compressive strain of -1% is similar to a layer of ZnO 

(GaN) sandwiched between two layers of MgZnO (AlGaN) with Mg (Al) ratio of 63.5% 

(40%), respectively. Parabolic band are plotted for each subband and with its 

corresponding effective mass where it is obvious that the calculated effective masses do 

not agree with the real band structure . 

Figure (6) and (7) show ZnO and GaN band edge shifts versus biaxial strain for 

conduction band and valence bands [21]. The results in the bulk of GaN (Figure (5) and 

(7)) are consistent with those found in Ref. [22]. With increasing tensile strain, both 

conduction and valence bands edges tend to close up, which in turn shrinks the band gap 

compared to the unstrained case. However, we note an increase in the band gap with 

compressive strain with smaller change compared to the tensile strained case. 

Figure (8) and (9) show the ZnO and GaN bulk’s effective masses (mz/m0 and mt/m0) 

near the band edges calculated using the analytical expressions in Equations (I.44) as a 

function of the in-plane compressive strain are plotted for the HH, LH, and CH bands 

[21].Both effective masses exhibit similar behavior toward strain whether it is 

compression or tensile strain but the only difference is in the upper and lower values for 

the magnitude of effective masses, where it is three times the mass of free electron in 

ZnO and only twice that value in GaN. The main raison for these differences is the 

deformation potential for each material see Tables (3) and (4) in Appendix (A). Note that 

the sign of Di is opposite to that of [23] because Di in [23] is defined as a deformation 

potential for the band gap. 
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I.6 Summary  

In this chapter, we presented the elementary k.p theory to be an introduction to Chuang et 

al‘s derivation of the Wurtzite Hamiltonian using Luttinger-Kohn model and showed the 

its similarity with the one obtained by Bir and Pikus using invariant method. Also we 

outlined the method to bloc diagonalize the 6x6 Wurtzite Hamiltonian to become a 3x3 

matrix which is easy to solve analytically. Band structure for both conduction and 

valence were calculated taking into account strain effects whether it is tensile or 

compressive and in the same way conduction band edges, valence band edges and 

effective masses calculated with their parabolic bands that insufficient to predict a correct 

band structure. 
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Chapter II 

Theory of electronic states in semiconductor nanostructures 

 

 

 

 

 

II.1 Introduction: 

In previous chapter we introduced the bulk Hamiltonian of Wurtzite semiconductors 

using k.p theory, and by using this Hamiltonian we were able to calculate the band 

structure of bulk Wurtzite materials such as ZnO and GaN and discuss the 

corresponding strain effects. Due to new technological achievements in hetero-

structures fabrication using advanced epitaxial techniques for example molecular 

beam epitaxy MBE or metal-organic chemical vapor deposition MOCVD where the 

scale range from microstructures to nanostructures, the study of resulted structures 

become very important and while the traditional k.p theory for bulk semiconductor is 

no longer applicable in this situation, there for a new technique was introduced which 

is called Envelope Function Approximation (EFA) or Effective Mass Approximation 

(EMA) in some text books, the basic idea behind this method is the treatment of 

shallow impurities where the Bloch function is slowly varying . The application of the 

theory has been to many different types of nanostructures; in particular, to quantum 

wells (QW’s), superlattices, quantum wires and nanowires, and quantum dots. 

In this chapter we will be studying the basic formalism of EFA and applying it 

directly to our ZnO based quantum well structure and present the comparison of the 

ZnO’s results with its counterpart GaN based structure, using numerical means such 

as finite difference method. 
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Figure 10: Absorption spectra at 2K for GaAs quantum wells [24]. 

II.2 The envelope function Approximation (EFA): 

To fully understand the theory of electronic states in semiconductor nanostructures we 

must first know how  to explain the origin of the discrete energy states, such as is 

evident in an optical  spectrum for GaAs quantum wells obtained by Dingle et al [24] 

see figure (10) and to do so the effective mass approximation was introduced first by 

Wannier and Luttinger–Kohn theory [25,4] and subsequently applied to graded 

semiconductors [26] and to semiconductor inversion layers [27], with new 

technological  growth technique such as molecular beam epitaxy MBE or metal-

organic chemical vapor deposition MOCVD, where nanostructures with sharp band 

edges become possible, Luttinger–Kohn theory was applied also to those structures 

[28]. Another approaches existed after Luttinger–Kohn theory for instance the 

envelope-function theory of Bastard [28-30] and the most recent first principle theory 

by of Burt and Foreman [31- 33]. The latter differs primarily from the previous two in 
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attempting to derive the effective Hamiltonian from first principles. We are using the 

symmetrized Luttinger–Kohn Hamiltonian for the envelope function approximation 

for two raisons: 

1-Because we are treating wide band gap materials such as ZnO and GaN, where the 

coupling between conduction and valence bands is not taken in consideration, thus the 

use of Chaung et al Hamiltonian [10].  

2-The difference between symmetrized Luttinger–Kohn Hamiltonian for band 

structure (which we are using) and the other approaches are insignificant in the 

valence band calculations [7, 9]. 

 

Figure 11 Illustrations of (a) the periodic potential V(r) and (b) the sum of the 

periodic potential V(r) and the impurity potential U(r), and (c) only the impurity 

potential U(r) for the effective mass theory [3]. 

 

We can summarize the important outline of the effective mass theory (EMT) for a 

single band is as follows: The energy dispersion relation for a single band near k=0, is 

given by [3] 
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for the Hamiltonian H0, with a periodic potential V(r), where
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    ,,0 rErH knnkn  
        (II.2)  
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(II.3) 

then the solution for the Schrodinger equation with a perturbation U(r) such as an 

impurity potential or a quantum-well potential
 

       0 rErrUH  
        (II.4) 

is obtainable by solving
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    (II.5) 

for the envelope function F(r) and the energy E. The wave function is approximated 

by
 

     rurFr nk0
          (II.6) 

The most important result is that the periodic potential V(r) determines the  

energy bands and the effective masses,  


m1 , and the effective mass equation 

(II.5) contains only the extra perturbation potential U(r), since the effective masses 

already take into account the periodic potential (Figure 11). The perturbation potential 

can also be a quantum-well potential, as in a semiconductor hetero-structure such as 

ZnO/CdZNO or GaN/InGaN quantum wells. 

And with a similar way for degenerate bands to obtain: 
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for the envelope function F(r) and the energy E. The wave function is approximated 

by
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To prove the effective mass theory for single band or degenerate bands, we refer you 

to these references [3, 34, and 35]. 
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II.3 Numerical calculation of conduction and valence bands 

dispersions in quantum wells 

The energy bands  kcE ,  kvE   and wave functions η

nφ   and mΨ  of  conduction and 

valence states respectively, are obtained from a numerical solution of the Schrödinger 

equations for electrons with the electron wave function is given by 

   Sze n

yikxik

n
yx 


'

               (II.9)
 

where   or and S is a spherically symmetric wave function and   zn  is the 

envelope function that satisfies   

           zkkkkEzkkzeFzvzikkH yxnyxcyxnvuzcyxc ,,,,,,,
~

 
            (II.10) 

and for holes with the hole wave function is given by 
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1                            (II.11) 

where   zg u

m  is the envelope function of the m
th

 sub-band that satisfies 
 

           zkkgkkEzkkgzeFzvzikkH yxmyxmyxmvzhyxv ,,,,,,,
~ )(

6

0

)( 




  



                    

(II.12)
 

where the potential   zvh    zvc  is the potential for the valence-band (conduction-

band) offset of the QW zF  is the internal electric fields and e is the electron charge.  

II.3.1 Built in Electric fields in the well and barrier 

If a stress τjk is applied to ZnO or GaN crystals, there is an induced piezoelectric 

polarization with a magnitude proportional to the applied stress τjk [19]: 

,jkijki TdP                      (II.13) 

where dijk are the piezoelectric moduli or piezoelectric tensor elements. The stress τij 

is related to the strain by 

,klijkij CT                       (II.14) 

where Cijkl are the stiffness constants of the Wurtzite GaN crystal. Here, it is 

convenient to replace the tensor notation with the engineering notation for dijk and Cijkl 
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using their symmetry properties. That is, the second and third subscripts in dijk, and 

the first two and the last two subscripts in Cijkl, are replaced by a single subscript 

running from 1 to 6 as follows: 








 12,21   31,13   23,32   33   22  11notation  tensor 
6           5          4      3     2    1notation  matrix 

 

 Then, the piezoelectric polarization in the (x, y, z) coordinates for a general crystal 

orientation is given by 
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The polarization components along x, y and z axes for the (0001)-WZ structure is 

written as [36, 37] 
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Using the periodic boundary condition for a superlattice structure, the build in electric 

fields in the well and barrier can be written as [37, 38]: 
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(II.17)

 

where wL  ( bL ) and w  ( b ) are the length of well (barrier) and the static dielectric 

constant, respectively. 
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II.3.2 Finite Difference Method 

In the case of quantum well QW, there are several techniques used to solve the 

effective mass equations for instance the finite difference method (FDM) [19], the 

propagation matrix method [3, 39]  , and the basis expansion method [40].FDM is 

used here because of its simplicity and the easy implementation especially for non-

complex geometries .Firstly we will apply the FDM to find numerical solutions for 

the simple form Hamiltonian for conduction band in equation (II.10) which can be 

written as: 
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(II.18)

 

We rewrite the Hamiltonian so it takes the form: 
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(II.20)
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Figure 12 Discretization of z axis that coincide with growth direction.   

Then we change the change wave vector kz to its derivative form zi-  as it is 

illustrated in equation (II.10) .The first order total derivative dΨ/dz at a point z = zi 

can be approximated as 
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where z is the difference between adjacent grid points i and i+1 corresponding to 

mesh point zi and zi+1 as illustrated in Figure (12). 

Using a three - point central difference representation for the second -order 

derivatives, the central difference is 
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(II.22) 

To ensure that Hamiltonian is Hermitian and the continuity of the probability current 

density in the heterostructure [39], if transformations are done as below: i.e. 
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The term containig H1 vanish because H1 =0 which left the remaining two term and  

only the term H2  is associated with derivation ,we Then obtain 
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Now we rearrange the terms to have this sequence i-1 , i and i+1 i.e. 
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Then equation (II.24) become of this form 
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We move the left side of equation (II.25) to be grouped with the i
th

 term in the right 

side and the same for the terms in H0. 

   
    

 

         

   
    

 

0

4

2
41

1
1212

12

2

0

2

2

1
1212

12

2










































i
ii

ii

iiiii

i
ii

ii

z
zHzH

zzH

zEzzzHzzzH

z
zHzH

zzH

z






               
(II.26)

 

     
 

     

     
 

0

4

2
0

2
2

2

4

4

1
12122

1
12122






























 










i
iii

i

i
iii

z
zHzHzH

zEz
i

zHz
i

zH

z
zHzHzH







                             
(II.27)

 

         
 

     

         
 

0

4

4

2
0

2
2

2

4

4

1
2122122

1
2122122






























 










i
iiiii

i

i
iiiii

z
zHzHzHzHzH

zEz
i

zHz
i

zH

z
zHzHzHzHzH







              
(II.28)

 

We define the two average values of  212 izH  and   212 izH  as 
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We replace the values in equations (II.29) and (II.30) in equation (II.28). 
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We define  412 izH  as 
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We insert (II.33) into (II.32) to obtain: 
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              (II.34) 

We substitute each part multiplied by  1iz ,  iz  and  1iz with a(i-1) (i-1), aii  and 

a(i+1) (i+1) to reduce equation (II.34) to:  

       01111   iiiiii zazaza                  (II.35) 

Substituting node numbers from i = 1 to i = N into Equation (II.35), we get a 

homogeneous system of equations written as follow: 
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                    (II.36) 

Here, we apply the Dirichlet condition that the wave functions at the boundaries are 

set to zero although there other boundary condition that could be used for instance 

Neumann boundary conditions: 

0i                     (II.37) 

 
Now the system is reduced to an eigenvalue problem where the eigenvalues obtained 

from solving the determinant of the matrix in equation (II.36) then the founded 

eigenvalues are inserted into Equation (II.35) to find the Eigen functions. 

A Fortran language code of conduction band calculation using finite difference 

method is given in Appendix (E) and similar program with multi-quantum well ability 

and self-consistent calculations is implemented in an open source code called Aestimo 

(in versions 0.8 , 0.9 and 1.0 FDM ,0.7 Shouting method which is out of the scope of 

this work) written in Python language [41].  

In a multiband case such as in Hamiltonian of equation (II.12) every Hamiltonian 

element spans on the grid to become an N × N block. If the element does not contain 

kz, then the N × N block is just a constant matrix. If the element contains kz or k
2

z , 

then the N ×N block follows the same form as in equation (II.18). Thus the 6×6 

Chaung Hamiltonian on a 1D grid with N points see figure (12), becomes a 6N × 6N 

matrix. Diagonalizing this Hamiltonian gives 6N eigenenergies and corresponding 
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wave functions, each of which is composed of six components (the Chaung basis), 

which are spanned on the N grid points. 

The Hamiltonian has the following form (here is the 3x3 block diagonalized 

Hamiltonian mentioned in chapter I): 
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(II.38) 

where ijH and  i take the same form in equation (II.36). 

Table 1 Classification of the 3x3 Hamiltonian elements according to kz power. 
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Note that the 3x3 Hamiltonian is numerically implemented in Aestimo 0.9 and 1.0 

with self-consistent solution for zinc blende and Wurtzite materials [41]. 
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Figure 13 conduction band edges and wave functions at the zone center with 

piezoelectric and spontaneous polarizations for   ZnO/Cd15Zn85O (a) and 

GaN/In15Ga85N (b) QW structures [21]. 
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Figure 14 Conductions-band structures of Wurtzite   ZnO/Cd15Zn85O (a) and 

GaN/In15Ga85N (b) QW. 

Figure (13) show conduction band edges and wave functions at the zone center with 

piezoelectric and spontaneous polarizations for   ZnO/Cd15Zn85O (a) and 

GaN/In15Ga85N (b) QW structures.Note that the length of the well is 3nm with 

barriers of 5 nm and Cadmium and Indium composition of 15%  for CdZnO and 

InGaN respectively. Stark effect is present in the well region and causing the wave 

function shift from the center of the well .The first subband is total confined unlike 

the second subband which is confined in one side of the well barriers. 

Figure (14) show Conductions-band structures of Wurtzite   ZnO/Cd15Zn85O (a) and 

GaN/In15Ga85N (b) QW.Both band structures are parabolic because we used the 

parabolic model and we are only interested in the strain shifts and transition strength. 
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Figure15 Valence band edges and wave functions at the zone center with 

piezoelectric and spontaneous polarizations for    ZnO/Cd15Zn85O (a) and 

GaN/In15Ga85N (b) QW structures [21]. 
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Figure (15) shows Valence-band structures of Wurtzite   ZnO/Cd15Zn85O  (continuous 

line) and  GaN/In15Ga85N  (dashed line) QW structures Stark effect is present in the 

well region and causing the wave function shift from the center of the well . 

 

 

Figure 16 Valence-band structures of Wurtzite   GaN/InxGa1-xN  (continuous line) and  

ZnO/CdxZn1-xO (dashed line) QW structures as function of the in-plane wave vector kt in 

different x values[21]. 

 



Chapter II Theory of electronic states in semiconductor nanostructures 

 

 

 
 

 
41 

In Figure (16), the valence band structure of Wurtzite ZnO/CdxZn1-xO in dashed line 

and  GaN/InxGa1-xN  in continuous line  QW structures as function of the in-plane 

wave vector kt for both band structures are calculated for different values of the ratio 

x of Cd (Cadmium) and  In (Indium).The first two subbands are heavy hole and light 

hole for both structures and they almost have the same subband distance which is very 

important in density of state estimation. Band wrapping occurs in greater values in 

GaN based structure than in ZnO based structure, which is consistent with the 

distance of the second two subbands in both band structures. Increasing the ratio of 

Cd (In) is consistent with an increase in compressive strain applied to the well region 

in both structures starting from −0.61% (−1.05%) to −1.8% (−3.1%) for ZnO (GaN) 

based structures with Cd (In) ratio of 10% to 30%, respectively. For ZnO based 

structure, strain values are consistent with experimental results. We can see that the 

value of compressive strain in GaN base structure is larger than in ZnO based 

structure due to greater mismatch between barrier and well in  GaN base structure. 

Thus, a larger band shifting is expected, the first two subbands in each structure 

receive a similar energy shift ensuing from D1, D2, D3 and D4 deformation potentials, 

where the two first ones tend to decrease energy levels and the last two do the 

opposite but the dominant shift is the one that decrease energy levels with larger 

amount in GaN case compared to ZnO [21]. 

 
Figure 17 Isoenergy plot of the GaN/InGaN  heavy- and light-hole bands in the kx−ky  plane 

near the Γ point color scale in (eV) [21]. 
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Figure18 Isoenergy plot of the ZnO/CdZnO  heavy- and light-hole bands in the kx−ky  plane 

near the Γ point colour scale in (eV) [21]. 

Figure (17) and (18) show constant energy contour of GaN/InGaN and ZnO/CdZnO 

heavy- and light-hole bands in the kx−ky plane near the Γ point, respectively. Both 

plots illustrate the isotropic nature of heavy hole and light hole bands. Thus, the 

averaged effective masses are also isotropic with heavy hole mass of 0.76m0 (1.01m0) 

and light hole mass of 0.50m0 (0.49m0) for ZnO (GaN) based structure, respectively. 

The method used to obtain these masses is by shiefting their energy level to coincide 

with a null energy level then considering a parabolic form of energy band and 

calculating the effective mass for every k point to have an averaged value at the end. 

To determine the strain effect on effective masses, we calculated the latter without 

strain influence and found an increase in all effective masses with heavy hole mass of 

0.85m0 (1.08m0) and light hole mass of 0.56m0 (0.81m0) for ZnO (GaN) based 

structure, respectively. The main raison for this increase is the change in energy levels 

spacing which in turn is responsible for energy band coupling that affects the 

curvatures of energy levels [21]. 
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Figure 19 Energy dispersion in the (kx-ky) plane at the valence band edge of ZnO.  

Figure (19) is the same as figure (18) but in three dimensions to illustrate clearly the 

isotropic nature of the valence band structure which means also isotropic effective 

masses which effect the electronic and the optical properties of the structure.   
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II.4 Summary: 

In this chapter, we introduced the basic formalism of EFA and its direct application to 

our ZnO based quantum well structure and presented the comparison of the ZnO’s 

results with its counterpart GaN based structure, such as band edges profiles, band 

structures and isoenergy counters, using numerical means such as finite difference 

method. 
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Chapter III 

Theory of Optical Gain in Semiconductors 

 

 

 

 

 

III.1 Introduction: 

Optical gain is one of the most important basic properties of semiconductor 

lasers. Optical gain is simply defined as the growth ratio of light intensity (photon 

density) per unit length of light propagation. In a semiconducting material, the 

electrons and holes do not move as free particles, so the relation between energy, 

momentum and mass is different from that of a free particle. However, in many cases, 

the relation between energy and momentum is still nearly parabolic; hence an effective 

mass can be defined. In most of the materials of interest for semiconductor lasers, we 

find that the effective mass for the electrons in the conduction band, mC, is smaller 

than the effective mass for the holes in the valence band, mv. 

In a semiconductor hetero structure, which is small in one or more dimensions, the 

carriers (electrons and holes) do not behave like particles. Instead, they start to display 

wave nature, and their behavior must be treated according to the rules of quantum 

mechanics. 

In this chapter we will be discussing the basic optical gain formalism starting from the 

definition of optical transition and their transition strength or as called momentum 

matrix elements to broadening effect, where a different type from the conventional 

Lorentzian function is presented and thus the Gaussian or non-Markovian line shape 

function  .Numerous effects on optical gain are will be discussed in this chapter for 

instance built in electric field due to piezoelectric and spontaneous polarization , 

many body effects , strain effect and carrier concentration effect.  
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III.2 Optical transitions: 

Transitions of electrons from the conduction band to the valence band induced by 

photons are the main cause of optical gain in semiconductors. Therefor to understand 

the latter one we have to examine its transitions.  

The interaction between the photons and the electrons in semiconductor using Fermi 

Golden Rule are described by the Hamiltonian [42]: 

    
0

22

00

2

222 m

Ae
pAAp

m

e
rV

m

p
H                (III.1) 

where A (r, t)is the vector potential accounting for the presence of the electromagnetic 

field.After using the coulomb gauge where    0,  trA and neglecting the last term 

against linear terms in A(r, t), the final form of the Hamiltonian is  
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where   rH ' is               
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The plus sign in the second  rH ' means Hermitian adjoint and kop is the wave vector, 

w is the optical angular frequency and ê is a unit vector in the direction of optical 

electric field. 

The optical matrix element discussed in section (III.3) is the projection of resulted 

interaction Hamiltonian of electromagnetic field and mater in their bases and it is the 

basic element in the description of optical transition properties such as spontaneous 

emission spectrum, optical gain and refractive index and the first two will be 

discussed in this work.  



Chapter III Theory of Optical Gain in Semiconductors 

 

 

 

 
47 

-0,2 0,0 0,2

-0,21

-0,14

-0,07

3,00

A
ll

ow
ed

F
or

bi
dd

en

hh1

lh1

C2

 

E
ne

rg
y 

(e
V

)

k
x
/k

y
  (1/A)

C1

 

Figure 20 Allowed and forbidden transitions in a quantum well (C#, conduction 

band; HH#, heavy-hole band; LH#, light-hole band; #, subband number) [43].  

The allowed transitions in figure (20) have very strong transition probabilities, 

whereas the forbidden transitions have zero transition probability in an infinite barrier 

quantum well and weak probability at best in a finite barrier quantum well. 

III.3 Interband Optical Momentum Matrix Elements  

In order to calculate the optical transition rates in quantum wells we will need 

momentum matrix element between the valence and conduction band states. We 

assume that the valence band and the conduction band states are, 
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The optical momentum matrix elements are given by 

 ˆˆ
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m

c

l peMe  
                 (III.7) 

where c
l  ( v

m ) is the wave function for the conduction (valence) band, and  

 andη  for both electron spins. The indexes and stand for the electron states in the 

conduction band and the heavy-hole (light hole) subband states in the valence band, 

respectively. The interband momentum matrix elements for each spin orientation can 

be written as follows. For TE- polarization )ˆsinˆcosˆ( yxe   [44]: 

   
2

)2()1()2()1(
2

2
sin

2
cosˆ

lmlm

y

lmlm
x gg

p
igg

p
Me   

 

   
2

)5()4()5()4(
2

2
sin

2
cosˆ

lmlm

y

lmlm
x gg

p
igg

p
Me   

    (III.8)

 

where )(v
mg  (v =1, 2,3,4,5 and 6) is the wave function for the m

th
 subband in (x,y,z) 

coordinates, note that we use only the TE polarized momentum matrix elements 

because it was found that optical gain is by far larger in TE polarization than TM 

[44].Also 
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Figure 21 y-polarized optical matrix elements as a function of   and    wave vectors 

and of wurtzite  ZnO/Cd15Zn85O  QW structures with transition A (continuousline) 

and transition B (dashed line) [43]. 

Figure (21) shows the  y-polarized optical matrix elements as a function of   and    

wave vectors and of wurtzite  ZnO/Cd15Zn85O  QW structures with transition A 

(continuousline) and transition B (dashed line). We only plotted the y-polarized 

optical matrix elements without the x -polarized optical matrix elements because we 

the latter is very small compared to y-polarized one. Polarization switching is very 

obvious and happens several times between transition A and B (the crossing of the 

two optical matrix elements) [45].  

III.4 Quantum Well Density of States: 

One of the most important objectives in describing a semiconductor in relation to its 

electrical and optical properties is to determine both the carrier concentrations and the 

energy distributions. These require knowledge of (i) the probability of carrier 

occupancy of a state at energy E which we will see later and (ii) the density of 
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available states, or density of states (DOS), we will be dealing with only the 2D 

density of states in quantum well. The 2D density of states is defined as the number of 

states per energy per unit surface of real space [46]. 

In order to evaluate the number of electronic states (dN) over the range between k and 

k + dk, in figure (23) the spherical surface between k and dk, i.e. dkk 2 , is divided by 

  S
2

2 .( the result should also be multiplied by a factor of two in order to account 

for the fact that each state with a specific value of k can be occupied by two electrons 

with  opposite spins.) Thus, the expression for dN can be written as [46] 

2

2dkk
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For the parabolic bands, we can write    2122 EEmk ve  
 , and 

22 dEmkdk e



and thus, the DOS can be written as 
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with units of number per unit energy per unit area. Notice that it is a constant. 

Actually, The dispersion relation of a band given by E = E (k) is not always parabolic. 

Thus, if several non-parabolic bands overlap, the densities of state of all bands need to 

be summed up. The density of states at the energy E for the given band is [47] 
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The surface integral can be converted to a length  integral over the isoenergy surface  

(see figure (17) and (18) in chapter (II))  'ES  the surface element d
2
k is written as d

2
ld


k The vector 


k is perpendicular to l(E’) and proportional to 

k
 E(k), i.e. dE = |

k


E(k)|d


k  

 
    

 


'

2

2 1

2
2'

El k
kEL

ld
ED


 

 
  

 


El k kE

ldL
ED

2

3

3

4
               (III.13) 



Chapter III Theory of Optical Gain in Semiconductors 

 

 

 

 
51 

There are several methods in calculating 2D density of states and the simplest one is 

so called Gilat-Raubenheimer method [48] developed by Gilat et al for cubic crystals 

[49] and Wurtzite hcp [50].For the gradient of energy appearing in the above 

equations  we use Hellmann-Feynman theorem [51] to find it. 

 

Figure 22 First Brillouin zone of Wurtzite crystals with symmetry points Γ, M and K, 

Illustration of discretization choice in DOS calculations [52]. 

We avoid the use of fluctuating weighting factor proposed by Gilat et al by choosing 

the number of discretization along ky double the one along kx and fixing the weighting 

factor to 0.5 for i=j and 1 otherwise, this choice allow us to limit our calculation in 

energy dispersion and energy gradient to half the total number see figure (22), where 

a simple discretization scheme is plotted. 
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Figure 23 A two-dimensional k-space in which the states are equally spaced on the 

kx-and ky-axes. 
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Figure 24 2D density of states of for  ZnO/Cd15Zn85O structure for parabolic bands 

[52]. 
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Figure 25 2D density of states of for  ZnO/Cd15Zn85O (a) and GaN/In15Ga85N (b) QW 

structures [52]. 

As result of numerical calculation the 2D density of states of for  ZnO/Cd15Zn85O (a) 

and GaN/In15Ga85N (b) QW structures are plotted in figure (25) and to verify the 

correctness of  programming also 2D density of states for parabolic bands are plotted 

too, the latter are the same as predicted by equation (III.), the three first subbands 

density of states are plotted separately along with the total density of states and 

showed more parabolic behavior in  GaN/In15Ga85N (b) QW structure than that of 
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ZnO/Cd15Zn85O due to step shape of density of states . The relatively high density of 

states in both structures near the band edge is attributed to the small subband 

difference between the first two subbands and this is a key factor in enhanced laser 

performance [52].   

III.5 Fermi levels: 

Electrons and holes are fermions, and the probability that a certain energy state 

is occupied is therefore given by a Fermi–Dirac distribution. The number of occupied 

states with a given energy in the conduction band (unoccupied states, i.e. holes, in the 

valence band) is given by the product of the density of states in the conduction 

(valence) band, multiplied by the probability of occupation fc (the probability of 

finding an empty state is 1 - f v). These probabilities are given by [3] 
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where the Fermi level εc (εv) (cf figure 18) is found by requiring that the integral (over 

all energies) of the product of the density of states and the occupation probability is 

equal to the total number of electrons (holes). In the case of charge neutrality and no 

doping, the number of electrons must be equal to the number of holes. 

For a given injection level, the electron and hole concentrations are related by the 

charge neutrality condition [3]  

DA NpNn                   (III.15) 

where NA and ND are the ionized acceptor and donor concentrations, respectively, in 

the active region and are assumed to be zero for an undoped active layer. The electron 

concentration n and the hole concentration p are related to the quasi-Fermi levels, fc 

and fv in (III.14), by [44] 
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Figure 26 Electron (a) and Hole (b) concentration in the CdZnO conduction band as a 

function of Fermi level position at room temperature which represent the result of the 

exact Fermi integral (equations (III.16) and (III.17)). 

for electrons and for holes 
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As indicated in figure (26), we use the geometric method [3] to find the Fermi level of 

electrons and holes found in optical gain and spontaneous emission formula.for 

exemple electron and hole concentration equal to 4x1018 correspond to Efc=2.75 eV 

and Efv=0 eV Fermi energy level for electrons and holes, respectively. 

III.6 Spontaneous Emission: 

The spontaneous emission spectrum can be given as [44] 
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where   represents the angular frequency,  0  is the vacuum permeability,    is the 

dielectric constant, e is the charge of an electron, 0m  is the free electron mass, ||k  is 

the magnitude of the in-plane wave vector in the QW plane, nmM  is the momentum 

matrix element in the strained QW,  )(kf ||
c
n  and  )(kf ||

v
m  are the Fermi  functions for 

occupation probability by the electrons in the conduction subband states and the 

valence subband states, respectively. The indexes l and m stand for the electron (hole) 

states in conduction (valence), respectively.  
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Figure 27 Spontaneous emission spectrum of ZnO/CdZnO quantum well structure. 
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Figure (27) shows the spontaneous emission spectrum of ZnO/CdZnO quantum well 

structure. The first two subbands peaks are clearly shown in spontaneous emission 

spectrum in figure (27), where the rate is greater in the peak of heavy hole subband 

than light hole subband and it is consistent with their density of states.  

III.7 Optical gain: 

The optical gain is proportional to the probability that a given photon triggers an 

electron transition from a higher energy level j to a lower energy level i. The photon 

energy hν must be equal to the transition energy Eij = Ej − Ei. The quantum-

mechanical calculation of this probability for semiconductors has been described in 

many publications (see, e.g., [3, 22, 44 and 53]). To provide a more intuitive 

understanding, we skip most of the quantum mechanics here and evaluate the simple 

gain function [44] 
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Same definition of symbols provided earlier in the spontaneous spectrum formula in 

equation (20). D. Ahn provides a detailed description of the theory of non-Markovian 

gain model in Ref. [19].  

III.7.1 Line shape function: 

Park et al introduced the phenomenological non-Markovian gain model with many-

body effects [19, 54], which is used here with including the effects of anisotropy on 

both the valence band dispersion and the momentum matrix element, and it is based 

on considering a Gaussian broadening in rather than the conventional Lorentizian 

broadening line-shape function which  is given by [54, 55] 

 
 

),(
),(

22

||

||











kE
kL

lm               (III.20)

 

And the non-Markovian line-shape function [54, 55] 



Chapter III Theory of Optical Gain in Semiconductors 

 

 

 

 
58 









 ),(

2

),(
exp

2

),(
),( ||

2

2

||

2

||

|| 


 







 kE

kk
kL lm

cincin

         

(III.21) 

the intraband relaxation time in  and the correlation time c are taken to be constant. 

fs 10in  and fs 25c  are used in the calculation.
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is the renormalized transition energy between electrons and holes, where gE  is the 

bandgap of the material, SXE  and CHE are the screened exchange and the coulomb-

hole contributions to the bandgap renormalization, respectively [53].  

According to figure (28), where the line-shape functions for a full line width of both 

Gaussian (solid line) and Lorentzian (dashed line) are presented, Ahn et al assertions 

[19] of the  limitation of Lorentizian line shape function choice to the non-Markovian 

broadening function are verified though the absorption tail in the long wave side of 

the gain spectrum and also the optical gain  enhancement received with that type of 

broadening shown in figure (28) and in the broadening function plotting versus the 

wave vector or energy  which made it more suitable to be compared with 

experimental results [56]. 
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Figure 28 Optical gain (a) and Line shape functions  (b) for a full line width of both 

Gaussian (solid line) and Lorentzian (dashed line) type [43].  
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III.7.2 Many body effects: 

The bandgap renormalization include the sum between the Coulomb-hole self-energy 

and the screened-exchange shift [53]. The Coulomb-hole contribution to the bandgap 

renormalization is written as  
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Where N is the carrier density and C is the constant usually taken between 1 and 4. 

The Rydberg constant RE  and the exciton Bohr radius 0a  are given by  
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Where rm  is the reduced electron–hole mass defined by her mmm 111  . The 

exchange contribution to the bandgap renormalization is given by 
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Figure 29 optical gain spectrum of ZnO/CdZnO quantum well structure with (solid 

line) and without many body effects -exchange correlation and coulomb interactions - 

(dashed line) [43]. 

In figure (29) we see the optical gain spectrum of ZnO/CdZnO quantum well structure 

with (solid line) and without many body effects -exchange correlation and coulomb 

interactions - (dashed line).Including many body effect cause a red shift of the optical 

gain in the spectrum with a slighter increase in gain maximum this type of shifting 

also known as band gap renormalization is increased with the increase of carrier 

concentrations [43]. 

In numerical implementation, we use at first pure Python code for the calculation of 

many body effect but we encounter a problem of the huge time spent for calculation 

(nearly 2 days), finally we changed the code to more quick procedure by using an 
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integrated C language in Python interpreter which is called Cython and the time for 

calculation is reduced dramatically to reach 30 minutes in long time cases [57, 58].   

III.7.3 Piezoelectric effect: 
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Figure 30 Optical gain spectrum in the presence (continuous line) and absence 

(dashed line) of piezoelectric and spontaneous polarization built in field [43]. 

Figure (30) shows the optical gain spectrum in the presence (continuous line) and 

absence (dashed line) of piezoelectric and spontaneous polarization built in field. note 

that in the absence of this field the optical gain is similar to the one found in non-polar 

crystal orientation as we are going to see in chapter V. Obviously the negative effect 

of the   piezoelectric and spontaneous polarization built in field is shown clearly, 

where the optical gain in absence of the latter is greater by more than double the value 
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in normal case and this is a direct consequence of the decrease seeing in transition 

strength due to weak overlap integral caused by special separation of both conduction 

and valence bands wave functions. 

III.7.4 Strain effect: 

The use of strained layers has been a very important milestone in the development of 

quantum well lasers. We turn off the strain effect either by considering a perfect 

lattice match of simply by attributing a null value to the basic strain components.    
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Figure 31 Optical gain spectrum of ZnO/CdZnO quantum well structure with (solid 

line) and without strain effects (dashed line) [43]. 

Figure (31) illustrates the optical gain spectrum of ZnO/CdZnO quantum well 

structure with (solid line) and without strain effects (dashed line).Strain and built in 

electric field due to piezoelectric and spontaneous polarization are linked to each 



Chapter III Theory of Optical Gain in Semiconductors 

 

 

 

 
64 

other by the same components i.e. strain elements and both have the same undesirable 

effect on optical properties such as weak transition strength and also optical gain, the 

only difference is the amount of energy shifting observed in optical gain spectrum 

which is greater with strain effect because it adds up with the one from built in 

electric field. 

III.7.5 carrier concentration effect: 

Carrier concentration increase is a straight consequence of increase injected carriers 

and confinement due to quantum well structure. Figure (32) displays Optical gain 

spectrum in different carrier concentration (a)  and the optical gain maximum versus 

carrier concentration  (b).Carrier concentrations are divided equally from 1x10
26

 to 

7x10
26

 cm
-3

, optical gain maximum is increasing with the increase of carrier 

concentrations because of its direct effect on Fermi levels for both electrons and holes 

that favor recombination weight through high density of states especially near band 

edges.  
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Figure 32 Optical gain maximum versus carrier concentration (a) and Optical gain 

spectrum in different carrier concentration (b). 
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III.8 Summary: 

The main objectives of this chapter have been firstly to provide an introduction to the 

basic concepts of optical transitions and their transition strength combined with 

Fermi-Dirac probability and broadening function to form the basic formalism of 

optical gain. Lorentzian line shape function is presented and also the Gaussian or non-

Markovian lineshape function. Numerous effects on optical gain are studied in this 

chapter for like built in electric field due to piezoelectric and spontaneous 

polarization, many body effects, strain effect and carrier concentration effect. 
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Chapter IV 

Crystal Orientation Effects on Wurtzite Hamiltonian 

 

 

 

 

 

 

IV.1 Introduction: 

Quantum wells (QWs) based on zinc oxide (ZnO) and related alloys have gained an 

important amount of interest as an active region in short wavelength light-emitting 

diodes and laser diodes competing with GaN-based QW structures in the same field 

with many distinctive properties [59–61]. Due to the large exciton binding energy (60 

meV) of ZnO which allows excitonic recombination even above room temperature 

ZnO system renewed the interest in its usage in blue and ultraviolet wavelengths [59]. 

Experimentally, numerous groups succeeded in depositing CdxZn1-xO alloy thin films, 

mostly on sapphire substrates like Makino et al. using PLD with 7% Cd content [62], 

Ma et al. by dc reactive magnetron sputtering method [63], and Vigil et al. with the 

spray pyrolysis method [64].  

Theoretically, ZnO and GaN based quantum structures are studied extensively, 

specially by Park el al [65, 66, 44 and 36], also the use of quantum structures with 

non-polar crystal orientation is covered by the same group, but there was a focusing 

on (Al and In)-GaN and (Mg) -ZnO based quantum structures [66–69], where there is 

no sufficient investigation on (Cd)-ZnO based quantum structures with crystal 

orientation. 

In this chapter, we consider the theoretical electronic and optical properties of 

ZnO/CdZnO QW structures as object of studying [19] .To obtain the band structures 

and the wave functions ,we solve (a finite difference method was used in numerical 
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calculations, un example for zincblende is implemented in the open source code 

called Aestimo 0.9 and for wurtzite in coming version 1.0 [41]) the Schrodinger 

equation for electrons and the 66 Hamiltonian for holes for arbitrary crystal 

orientation considering the electric field due to build in polarization [67]. These 

results are compared with those for GaN/InGaN QW structures. 

IV.2 Hamiltonian for Arbitrary Crystal Orientation 

 

Figure 33 c-, a- and m-planes with the growth direction parallel to the c-axis. With 

= π/2 and  = 0 (a-plane) corresponds to the z =  (11 2 0) growth direction and   = 

π/2 and  = π/6 (m-plane) corresponds to the z =(10 1 0)  growth direction [hamza et 

al 43]. 

  We use the same approach done by D. Ahn et al [69] where a rotation matrix of the 

Euler angles    and    is use to give the physical quantities representation in 

coordinates (x′, y′,z′) The z-axis corresponds to the c-axis (0001) and the growth axis 

(defined as the 'z -axis) is normal to the QW plane [h k i l], as shown in Figure (33). 

The relation between the coordinate systems for vectors and tensors are given by [70, 

71]: 
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cossinsinsincos

0cossin

sinsincoscoscos





























U                (IV.1) 

which is the inverse of the rotation R = Ry(ϕ)Rz(θ), where Ri(α) is a counter-clockwise  

rotation of angle α with respect to the axis i = x, y, z. 

  Rotations of the Euler angles θ and φ transform the physical quantities from (x, y, z) 

coordinates to (x′, y′,z′) coordinates (figure 1). The z-axis corresponds to the c-axis [0 

0 0 1], and the growth axis (defined as the z’-axis) is normal to the QW plane (hk i l). 

The polar angle θ is defined as the angle between z’ and c-axes. Here we assume that 

z′ and k′z are perpendicular to the (h k i l) plane with i = −h − k. For simplicity, we 

assume that k = 0 and we further have (h0il) =  lih0 . Then the polar angle θ is given 

by [66] 

calh

lca

22 34
cos


                                                                                           

(IV.2) with a and c being the usual hexagonal lattice parameters. Equation (IV.2) is 

obtained for the case of ϕ = 0 and k = 0. Once the crystal orientation angle θ is 

determined from equation (IV.2), the following coordinate transformation can be 

calculated from equation (IV.1). 

kUk ii '                    (IV.3) 

ii kUk '                     (IV.4) 

  jiij UU'
                  (IV.5) 

ijji UU '                     (IV.6)
 

The strain coefficients in the (x,y,z) coordinates for a general crystal orientation are 

determined under pseudomorphic growth condition, and these strain coefficients 

correspond to  the lowest strain energy of the layer simultaneously  [36].  

 

where the summation over repeated indices is assumed. The strain coefficients in the 

(x, y, z) coordinates for a general crystal orientation are determined from the 

condition that the layer is grown pseudomorphically and these strain coefficients 

should minimize the strain energy of the layer simultaneously. To obtain the new 

Hamiltonian for an arbitrary crystal orientation, one should rotate the crystal 

momentum and the angular momentum (or spin) of that Hamiltonian to the desired 
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position. This should be equivalent to rotating the basis functions at the same time 

when the crystal momentum ks are rotated to the new direction. We denote the 

rotation of the crystal momentum, strain tensors and basis functions in the following 

compact notation: 

kUk


' , 

UU ' ,                   (IV.7) 

 U
~

'  ,                    

where ij   for i, j = x, y, z is a strain tensor,  is the basis function for α = 1, 

2,… 6 and 






U
UU
0

0~
is a block diagonalized extended rotation operator for the 

basis functions. Then the original Hamiltonian  '' ,kH


 for the (0 0 0 1) crystal 

orientation and the Hamiltonian  ,kH


 should satisfy 

   

  ''''1'

'''''

~
,

~
                        

,,





UkHU

kHkH









.               (IV.8) 

From this we obtain 

   

  1111

1'''

~
,

~
                 

~
,

~
,









UUUkUHU

UkHUkH









               (IV.9) 

The Hamiltonian for the valence-band structure with general crystal orientation is 

very complicated. Instead, we use the matrix representation  ''' ,kH


 in the old basis 

denoted as  ''' ,
~

kH


 

     1111''' ,
~

,
~

,
~   UUkUHUkHUkH 


            (IV.10) 

 

We consider the θ  and ϕ  dependence of physical quantities in the following [72] . 

Figure (32) shows (a) a configuration of the coordinate systems (x′, y′, z′) in ( hkil)-

oriented crystals, and (b) a coordinate system in a wurtzite primitive cell and nonpolar 

a - and m - planes with the growth direction parallel to the c - axis. The z-axis 

corresponds to the c-axis (0001), and the growth axis (defined as the z ′-axis) is 

normal to the quantum well plane ( hkil). The coordinate system (x, y, z) denotes the 

primary crystallographic axes. The relation between the coordinate systems for 

vectors and tensors is given by Equations (IV.3) to (IV.6). The strain coefficients in 
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the ( x, y, z) coordinates for a general crystal orientation are determined from the 

condition that the layer is grown pseudomorphically, and these strain coefficients 

should minimize the strain energy of the layer simultaneously. We define the unit 

vectors xˆ′, yˆ′, and zˆ′ along the x′-, y′-, and z′-axes, and they are related to unit 

vectors xˆ, yˆ, and zˆ along the x-, y-, and z-axes through the rotation matrix Equation 

(IV.1). The hexagonal primitive translational vectors are  



 ,xaii  

,
2

3

2



 y
a

x
a ii

i
                (IV.11) 

,


 zcii  

where a is the lattice constant, and i labels the epilayer (e) and the substrate (s). When 

the crystal is translated, the primitive translational vectors become 

,""


 xaii  

,ˆ
2

3
ˆ,

2

""" y
a

x
a ii

i                  (IV.12)                                    

,""


 zcy ii                     

where  

  ,ˆˆˆ1ˆ" zyxx xzxyxx  
 

  ,ˆˆ1ˆˆ " zyxy yzyyyx  
                                           (IV.13)

  .ˆ1ˆˆˆ" zyxz zzzyzx  
 

When the first atomic layers are deposited on the substrate, these layers will be 

strained to match the substrate, and a pseudomorphic (or coherent) interface will be 

formed. Thus, the condition for a pseudomorphic interface means that the projections 

of the strain - distorted primitive translational vectors of the epilayer and the substrate 

on the growth plane should be equal:  

,ˆˆ '"'" xx se     
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,ˆˆ '"'" yy se  
                (IV.14)

 

with similar conditions are applied on β′′ and γ′′. Then, the constraints (Equation 

(IV.14)) yield the following relations for the strain tensors: 
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               (IV.15)
 

 0

xx = (as − ae )/ae and  0

zz = (cs − ce )/ce. Under the engineering notation, the strain 

energy density is given by 

  .422
2

1 2

441312

2

33

2

11

2

11 xzzzyyzzxxyyxxzzyyxx ccccccW  
           (IV.16) 

Using the above relations, the strain energy can be expressed through only one strain 

component, εxz, which can be found by minimizing the strain energy with respect to 

the variable εxz. This procedure gives the following expression for εxz 

           20
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                 (IV.17) 

Hence, we obtain a 6 × 6 Hamiltonian in the (x′, y′, z′) coordinates by substituting the 

transformation relation for the vector k in Equation (IV.4), and the strain coefficients 

for a general crystal orientation into the Hamiltonian for the (0001) orientation. 
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(IV.18)

 

''' 21  F  

''' 21  G  

 

  '

'

2222

2

0

2

2222

1

0

2

sin'cossin''2cos'
2

cos'cossin''2sin'
2


















zzxx

zzxx

kkkkA
m

kkkkA
m





 

 

  '

'

2222

4

0

2

2222

3

0

2

sin'cossin''2cos'
2

cos'cossin''2sin'
2


















zzxx

zzxx

kkkkA
m

kkkkA
m





 

'

222

2

5

2

0

2

'sin'sin''2

sin''2sincos''2cos'

2
' 






K

kkkik

kikkkk
Ae

m
yzzy

zxzxx
i

K 




















 

'
'

sincos'''cos''

sin''sin''sincos'

2 22

22

6

2

0

2







HH

zzyzx

zxyxx
i

kkikkk

kkkikk
Ae

m























         (IV.19)

 

Where 
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20

zz

0

yy

0

xx

' sinxzcc aP 
              (IV.20)

 

The i
A ’s represents the valence band effective mass parameters or Luttinger like 

parameters, the  i
D ’s stand for the deformation potentials for Wurtzite crystals, ik is 

the wave vector,  ij  is the strain tensor,  1  is the crystal-field split energy, 2Δ  and  

3  are the  spin-orbit interactions.  
e

a
e

a
s

axx )()0(   and   
e

c
e

c
s

czz )()0(  are 

caused by mismatches in the lattice constants of the well ( e
a and e

c  ) and the 

substrate  ( s
a and s

c ). 

IV.3 Momentum Matrix elements (MME): 

 

The general crystal orientation of optical matrix elements is given by 

22

'''ˆ'''ˆ v

m

c

l peMe                             (IV.21) 

where cη
lΨ'  ( v

mΨ' ) is the wave function for the conduction (valence) band , and  

 andη  for both electron spins. The indexes and stand for the electron states in the 

conduction band and the heavy-hole (light hole) subband states in the valence band, 

respectively. The interband momentum matrix elements for each spin orientation can 

be written as follows. For TE- polarization )'ˆsin'ˆcos'ˆ( yxe   : 
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  TM-polarization )'ˆ'ˆ( ze  : 
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where (v)
mg'  (v =1, 2,3,4,5 and 6) is the wave function for the m

th
 subband in ( ',',' zyx )  

coordinates. The use of old bases in equation (III.9) results in the same known 

quantities  xp  and zp . 

IV.4 Piezoelectric and Spontaneous polarization   

The polarization components along x, y and z axes for the (0001)-WZ structure is 

written as [36] 
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             (IV.26)
 

The strain induced piezoelectric polarization normal with respect to the growth plane 

(along the growth direction) in an arbitrary crystal orientation can be expressed as 

[36] 
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                                                                   (IV.27) 

The spontaneous polarization SPP  along the growth direction in the arbitrary crystal 

orientation is estimated by the relation [73] 

  cos' 0001

SPSP PP 
                (IV.29) 

Using the periodic boundary condition for a superlattice structure, the build in electric 

fields in the well and barrier can be written as [37, 38]: 
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z F
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where wL  ( bL ) and w  ( b ) are the length of well (barrier) and the static dielectric 

constant, respectively. 

 

IV.5 Results and discussions:  

Figures (34) and (35) show the strain components as functions of the crystal angle θ  

with  ϕ= 0 (a) and  ϕ= π/6 (b) for wurtzite  ZnO/Cd15Zn85O (34) and GaN/In15Ga85N 

(35) QW structures )30Aw(L  . Both plotted strain components seem to be similar 

for each component with the two values of ϕ, but there is a difference in the starting 

angle which represents the c-plane orientation, where it is -0.9% for ZnO/Cd15Zn85O 

QW structure while it is -1.6% for GaN/In15Ga85N QW structure in xx . The latter has 

a great effects on all properties of both structures and this explains the difference seen 

between both c-plane oriented structures. The same thing occurs at the ending angle 

represented by a- and m-planes oriented structures but with different values. 

The variation of all strain components of the same structure with crystal orientation 

angles is not the same i.e. the xx  tends to increase from negative value which stand 

for compressive strain to positive value in a tensile strain state unlike zz  strain 

component which decreases to a compressive strain state due to the negative sign 

between the two strain components.   

In the case of xz  strain component, it has a null value in both beginning and ending 

angles and also this has a large effect on all properties of QW structures especially 

band structure and optical gain. 

Figures (36) and (37) show the total polarization components as functions of the 

crystal angle θ  with  ϕ= 0 (a) and  ϕ= π/6 (b) for well (continuous line), barrier 

(dashed line) of Wurtzite ZnO/Cd15Zn85O (36) and   GaN/In15Ga85N (37) QW 

structures )30Aw(L  . The polarization components are strongly affected by the 

strain components and in general follow xx
 
strain component in its increase, but into 

a null value which gives us a structure without piezoelectric and spontaneous effect. 
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Figure 34 Strain components as functions of the crystal angle θ  with  ϕ= 0 (a) and  

ϕ= π/6 (b) for wurtzite  ZnO/Cd15Zn85O QW structures )30Aw(L  . 
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Figure 35 Strain components as functions of the crystal angle θ  with  ϕ= 0 (a) and  

ϕ= π/6 (b) for Wurtzite   GaN/In15Ga85N  QW structures )30Aw(L  .  
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Figure 36 total polarization components as functions of the crystal angle θ  with  ϕ= 0 

(a) and  ϕ= π/6 (b) for well (continuousline), barrier (dashed line b) of wurtzite  

ZnO/Cd15Zn85O QW structures )30Aw(L  . 
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Figure 37 total polarization components as functions of the crystal angle θ  with  ϕ= 0 

(a) and  ϕ= π/6 (b) for well (continuousline), barrier (dashed line) of Wurtzite  

GaN/In15Ga85N   QW structures )30Aw(L  . 
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       Figure 38 the y-polarized optical matrix element at  the band edges as functions 

of the crystal angle θ  (a) for wurtzite   ZnO/Cd15Zn85O  and (b)   GaN/In15Ga85N  QW 

structures )30( ALw  [43]. 

Figure 38 shows the y-polarized optical matrix element at the band edges as functions 

of the crystal angle θ  (a) for wurtzite   ZnO/Cd15Zn85O  and (b)   GaN/In15Ga85N  QW 
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structures )30( ALw  . The OME of a- and m-planes are exhibiting  similar behavior 

in  GaN/In15Ga85N  structure unlike the case of   ZnO/Cd15Zn85O   structure, we see a 

decrease between the angles θ = π/6 and θ = π/2   in the case of   ϕ= π/6.The increase 

in the OME become larger when we increase the crystal angle θ  until it saturates after 

an angle of  θ = π/4 for  ZnO/Cd15Zn85O   structure and  θ = π/6 for  GaN/In15Ga85N  

structure, the  main benefit  from this increase is seen in a larger optical gain peak in 

a- and m-planes[43]. 

Figure (39) shows Interband transition wavelength as functions of the crystal angle θ  

(a) for wurtzite   ZnO/Cd15Zn85O  and (b)   GaN/In15Ga85N  QW structures. The 

transition wavelength of the c-planes is much larger than that of the a- or m-plane in 

both structures because the red shifting of the transition energy due to the internal 

field in well region. The difference between the transition energy of the m-plan 

oriented structure and the a-plan is bigger in   GaN/In15Ga85N  structure than  

GaN/In15Ga85N  structure, but in both cases the transition of m-plan structure is 

greater than the a-plan by 10 nm for  GaN/In15Ga85N  structure and 2 nm for  

ZnO/Cd15Zn85O   structure. Thus, the transition energy defines the spectral window 

for the optical gain [43]. 
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Figure 39 interband transition wavelengths as functions of the crystal angle θ  (a) for 

wurtzite   ZnO/Cd15Zn85O  and (b)   GaN/In15Ga85N  QW structures )30( ALw  [43]. 
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IV.6 Summary: 

In this chapter, we studied the crystal orientation dependence of electronic and optical 

properties of  ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. The K.P method 

based on effective mass theory was used to calculate electronic and optical properties 

with including the many body effects. These results are used to establish comparisons 

primarily between polar and non-polar structures and secondly between  

ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. We used the c-plane 

Hamiltonian to extract the arbitrary crystal orientation Hamiltonian by applying a 

rotational matrix and thus their momentum matrix elements. Both the angle θ and ϕ 

have a tremendous influence on electronic and optical properties of  ZnO/Cd15Zn85O   

and  GaN/In15Ga85N QW structures whether on transition energy or transition 

strength. 
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Chapter V 

Electronic and Optical Properties of ZnO/CdZnO QW Structures with 

m- and a-planes Orientations 

 

 

 

 

 

 

 

 

V.1 Introduction  

After studying the general case in the preVous chapter ,where an arbitrary crystal 

orientation Hamiltonian was drived for wurtzite materials such as Cd-ZnO and In-GaN 

along with their optical transition stranght elements .We will be focusing on non-polar 

oriented structures for the raison of their fanishing piezoelectric and spontaneous 

polarization and also their larger optical gain compaired to conventional structrure in 

this case c-plane oriented structrues.  

Although the internal field created by piezoelectric (PZ) and spontaneous (SP) 

polarizations of strain origin for ZnO [0001] wurtzite (WZ) QW  structures is found to 

be smaller than that of GaN [74], it still has the same influence of increasing carrier 

density needed to generate an optical gain compared to  zincblende (ZB) materials [75 

and 76]. Studies showed that the major effect of the built-in electric fields due to 

quantum confined Stark effects is the spatial separation of the wave functions of both 

electrons and holes, which has an effect on carrier recombination efficiency and thus 

optical properties in general [77–79]. Therefore, to reduce the quantum confined Stark 

effects of the field, structures that are non-polar are suggested by many groups [77 and 

78]. 

In this chapter, we consider the theoretical electronic and optical properties of 

ZnO/CdZnO QW structures  as object of studying using a Gaussian line shape function 
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in the gain model including many-body effects [19].To obtain the band structures and 

the wave functions ,we solve (a finite difference method was used in numerical 

calculations, un example for zincblende is implemented in the open source code called 

Aestimo 0.9 and for wurtzite in coming version 1.0 [41]) the Schrodinger equation for 

electrons and the 66 Hamiltonian for holes for c-, a- and m-plane considering the 

electric field  due to build in polarization [67]. These results are compared with those 

for GaN/InGaN QW structures. 

V.2 Electronic band structures and momentum matrix elements  

The valence band structure of strained wurtzite semiconductors with piezoelectric field 

is determined by the 66 Hamiltonian given by Park and Chuang [67] for c-plane, the 

latter Hamiltonian is used to obtain those for the m- and a-planes. We use the same 

approach done by D. Ahn et al [69] where a rotation matrix of the Euler angles  and  

is use to give  the physical quantities representation in  coordinates )z',y',(x' see 

Appendix A. The energy bands cE' , vE'   and wave functions η
nφ'   and mΨ'  of  

conduction and valence states respectively, are obtained from a numerical solution of 

the Schrödinger equations for electrons with the electron wave function is given by 

    Sze n

yikxik

n
yx '''

''' '
                     (V.1) 

Where   or and S is a spherically symmetric wave function and   '' zn  is the 

envelope function that satisfies   

         ',',''','''''',',''
~

zkkkkEzeFzvzikkH yxnyxcvuzcyxc                 (V.2) 

and for holes with the hole wave function is given by 

   vzge u

m

yikxik

u
m

yx '' '''''
6

1





                     (V.3) 

where   '' zg u
m  is the envelope function of the m

th
 sub-band that satisfies   
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where the potential   'zvh    'zvc  is the potential for the valence-band (conduction-

band) offset of the QW, zF '  is the internal electric fields and e is the electron charge.  

V.2.1  [10 1 0] Orientation (m-Plane) 

The m-plane Hamiltonian can be obtained by inserting ϕ= π/6 and θ = π/2 into equation 

(V.18) defined in the chapter (IV) to return: 
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                 (V.5) 

In equation (IV.18), we maintain the same approach [69], where the same old bases 

defined in equations (I.13) are used here. The optical momentum matrix elements for 

the m-plane are given by [72] 

22

'''ˆ'''ˆ v

m

c

l peMe                       (V.6) 

where cη
lΨ'  ( v

mΨ' ) is the wave function for the conduction (valence) band , and  

 andη  for both electron spins. The indexes and stand for the electron states in the 

conduction band and the heavy-hole (light hole) subband states in the valence band, 

respectively. The interband momentum matrix elements for each spin orientation can be 

written as follows. For TE- polarization )'ˆsin'ˆcos'ˆ( yxe   : 

    
2

)2()1()3(
2

''31''31
22
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(V.7)
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2

)5()4()6(
2

''31''31
22

'sin''''cos''ˆ lmlm
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lmz gigi
p

gPMe   

 

                        (V.8) 

where (v)
mg'  (v =1, 2,3,4,5 and 6) is the wave function for the m

th
 subband in ( ',',' zyx )  

coordinates. The use of old bases in equation (I.13) results in the same known quantities  xp  

and zp . 

V.2.1  [11 2 0] Orientation (a-Plane) 

The a-plane Hamiltonian can be obtained by inserting ϕ= 0 and θ = π/2 into equation 

(IV.1) defined in the Chapter (IV) .The matrix elements in the equation (IV.18) are 

given by 
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The interband momentum-matrix elements for a-plane for each spin orientation are 

given as follows. TE–polarization )'ˆsin'ˆcos'ˆ( yxe   :  
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2

)5()4()6(
2

''''
22

'sin''''cos''ˆ lmlm
x

lmz gigi
p

gPMe                (V.11) 

V.3 Electric fields in a- and m-planes oriented structures  

The polarization components along x, y and z axes for the arbitrary oriented WZ 

structure are given in chapter (IV) .The strain induced piezoelectric polarization normal 
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with respect to the growth plane (along the growth direction) with 2   crystal 

orientation angle can be expressed as  
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The spontaneous polarization SPP  along the growth direction in the same crystal 

orientation angle is  

0' SPP
                    

(V.13)
 

Note that only spontaneous polarization is independent of the angle
 
ϕ although we don’t 

find the angle
 

ϕ in the final form of
 
the strain induced piezoelectric polarization 

explicitly but their polarization components which are in function of strain components. 

By inserting polarization components found in equation (V.12) into the build in electric 

fields in the well and barrier  to get
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where wL  ( bL ) and w  ( b ) are the length of well (barrier) and the static dielectric 

constant, respectively. 

V.4 Optical gain model 

Park et al introduced the phenomenological non-MarkoVan gain model with many-

body effects [19, 54], which is used here with including the effects of anisotropy on 

both the valence band dispersion and the momentum matrix element, and it is given by 

[54] 
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(V.15) 

where   represents the angular frequency,  0  is the vacuum permeability,    is the 
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dielectric constant, e is the charge of an electron, 0m  is the free electron mass, ||k  is the 

magnitude of the in-plane wave vector in the QW plane, nmM  is the momentum matrix 

element in the strained QW,  )(kf ||
c
n  and  )(kf ||

v
m  are the Fermi  functions for occupation 

probability by the electrons in the conduction subband states and the valence subband 

states, respectively. The indexes l and m stand for the electron (hole) states in 

conduction (valence), respectively. The line-shape function is Gaussian and is given by 

[54, 55] 
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The intraband relaxation time in  and the correlation time c are taken to be constant. 

fs 10in  and fs 25c  are used in the calculation. 

   CHSXg

v

m

c

llm EEEkEkEkE )()(),( ||||||                (V.17) 

is the renormalized transition energy between electrons and holes, where gE  is the 

bandgap of the material, SXE  and CHE are the screened exchange and the Coulomb-

hole contributions to the bandgap renormalization, respectively [53] ,see chapter (III).  

The material parameters for ZnO (GaN) and CdO (InN) are given in Table 3(4) in 

Appendix (A),respectively. We used an averaged bandgap bowing value of –3.8 eV for 

CdZnO  [79]. 

V.5  Results and discussion  

Figure (40) shows the band edges and the corresponding wave functions at the zone 

center under the effect of  piezoelectric and spontaneous polarizations for  ZnO/CdZnO 

(continuous line) and GaN/InGaN (dashed line) QW structures. For all structures, the 

well width is set to ALw 30  and barrier width ALb 50  , the first two wave functions 

C1 and HH are acronyms for the first subband for lowest conduction band and the first 

heavy-hole subband for  the topmost of the valence band in the case of c-plane (a) ,and 

for a-plane  (b) which is almost the same as  m-plane ,with vertical shift in the energy 

scale, we plot the average between the two dominant components of the wave function 

;for example, if the dominant components are heavy hole and light hole ,we use the 

notation HL and the same goes for the other combinations [80]. The ZnO (GaN) well in 

c-plane is under a 0.91 % (1.58 %) compressive strain ,and these layers are assumed to   
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Figur 40 Band edges and wave functions at the zone center with piezoelectric and 

spontaneous polarizations for )30( ALw    ZnO/Cd15Zn85O  (continuous line) and 

GaN/In15Ga85N  (dashed line) QW structures a) for c-plane and  b) for a-plane ,the case 

of m-plane is similar to a-plane with vertical shifts [43]. 
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have a Zn (Ga) face where the SP polarization is pointing towards the substrate because 

the SP polarization for and ZnO (GaN) is found to be negative [81] , while in a- and m-

planes are under less compressive strain 0.64% (1.01 %) in  the flat-band (FB) model as 

the  SP and PZ polarization effects cease to exist in the a- and m-planes. Potential 

profiles show that the slightly larger internal field in the well region of GaN/InGaN than 

that of ZnO/CdZnO QW structures is owed to the difference in the strain induced PZ 

polarization ,the latter is the reason for the asymmetric electron and hole wave functions 

with respect to the well center and thus a large spatial separation between these wave 

functions in the c-plane ,on the other hand the a- and m-planes structures show 

symmetric electron and hole wave functions due to the FB model.Since the wave 

functions are affected by the crystal orientation this implies that the effective mass and 

the optical moment matrix elements are also affected [43]. 
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Figure 41 Valence-band structures of Wurtzite   ZnO/Cd15Zn85O  QW structures  

)30A(Lw
  with c-plane [43]. 
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Figure 42 Valence-band structures of Wurtzite   ZnO/Cd15Zn85O  QW structures  

)30A(Lw
  with  a-plane [43]. 
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Figure 43 Valence-band structures of Wurtzite   ZnO/Cd15Zn85O  QW structures  

)30A(Lw
  with m-plane [43]. 
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Figure 44 Valence-band structures of Wurtzite   GaN/In15Ga85N  (dashed line) QW 

structures  )30A(Lw
  with  c-plane [43]. 
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Figure 45 Valence-band structures of Wurtzite   GaN/In15Ga85N  (dashed line) QW 

structures  )30A(Lw
  with a-plane [43]. 
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Figure 46 Valence-band structures of Wurtzite  (dashed line) QW structures  

)30A(Lw
  with m-plane [43]. 

 

Figure (41-43) and (43-46) show the valence band structures of  )30A(Lw
     

ZnO/Cd15Zn85O  (continuous line) and  GaN/In15Ga85N  (dashed line) QW structures for 

the (41, 43) c-, (42, 44) a- and (43, 46) m-planes. Here, the naming of the sub-bands for 

the m- and a-planes is described before. The plotted valence-band structures for    

GaN/In15Ga85N  are consistent with similar works [67] and the material parameters used 

in the calculation are the same ones used by S-H Park el al in Ref [67] except, for the 

band gap energy of InN was set to 0.78 eV [82].The valence-band structure of the a- 

and m-planes for   ZnO/Cd15Zn85O  shows the same strong anisotropy of  



Chapter V Electronic and Optical Properties of ZnO/CdZnO QW Structures with m- and a-planes Orientations 

 

 

 

 
99 

GaN/In15Ga85N  QW structures in the QW plane unlike the (0001)-oriented c-plane 

structure. The energies of the  ZnO/Cd15Zn85O  QWs are rescaled to give the same Γ 

point energy as that of the  GaN/In15Ga85N  QWs for the first subband, the added 

energies are -0.062,-0.036 and 0.011 eV for the (0001), (11 2 0) and (10 1 0)  

orientations, respectively [43]. 

 

Energy deference between the two first subbands (heavy hole and light hole) in the 

valence band structure of c-plane’s oriented structure usually referred as Energy spacing   

is increased in the cases of a- and m-planes but it is less increased in  ZnO/Cd15Zn85O  

than  GaN/In15Ga85N  QW structures. The increase of the energy difference is due to the 

fact that the shift caused by the strain is much larger in a- and m-planes than c-plane, 

whereas between  ZnO  and GaN based structures, the deformation potentials of each 

material are the main reason for this difference [43]. In general, the increase in the 

subband energy spacing reduces the carrier population in the higher subbands 

[83,84].The hole effective mass along xk direction was found in general 

(GaN/In15Ga85N  a- and m-planes) larger than the one along  yk  direction [67,83] 

,which confirms our calculations for   GaN/In15Ga85N  as indicated in Table (2).Also, 

we found that the hole effective mass for  ZnO/Cd15Zn85O  structure have the same 

characteristics those of   GaN/In15Ga85N  structure [43].Between the two strucures, the 

hole effective mass is found in  ZnO/Cd15Zn85O  structure larger than in   

GaN/In15Ga85N  structure and this will have a significant effect on the density of state 

and thus the optical gain. S. Seki et al presented a method of estimating the magnitude 

of the hole effective mass by considering a parabolic band fitted to the topmost valence 

subband of the exact band structure, where the resulting effective mass (from the 

parabolic fit)  reflects an average density of states  [83, 85]. 
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Figure 47  y-polarized (a, b and c) optical matrix elements as a function of xk  and yk   

wave vectors and (d) TE optical gain spectra at a carrier density of  112cm1020N  of 

wurtzite  ZnO/Cd15Zn85O  (continuous line) and  GaN/In15Ga85N  (dashed line) QW 

structures )30A(Lw
  with c-, a-, and m-planes [43]. 
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Figure 48  y-polarized (a, b and c) optical matrix elements as a function of xk  and yk   

wave vectors and (d) TE optical gain spectra at a carrier density of  112cm1020N  of 

wurtzite  ZnO/Cd15Zn85O  (continuous line) and  GaN/In15Ga85N  (dashed line) QW 

structures )30A(Lw
  with c-, a-, and m-planes [43]. 

 

Figure (48) (a, b and c) shows the y-polarized optical matrix elements as a function of 

xk  and yk  wave vectors and figure (49) (a, b) the TE optical gain spectra at a carrier 

density of 1121020  cmN  of wurtzite  ZnO/Cd15Zn85O  (continuous line) and  

GaN/In15Ga85N  (dashed line) QW structures )30( ALw   with c-, a- and m-planes. The 

notations A and B stand for the transition from the lowest conduction band to the two 

first valence subbands, for example the notation A in the c-plane case means the 
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transition C1-HH1. The optical matrix elements (OME) show a strong anisotropy and 

especially in a- and m-planes, where we find that the OME for the transition A is 

constant in along xk  with larger value in  ZnO/Cd15Zn85O  structure while along  yk  is 

decreasing till it vanishes at 0.1 )(
1A for both planes. Unlike in transition A, the OME 

in transitions B has a larger value only along  yk  with the case of a- and m-planes, in 

the c-plane oriented structure the OME without the piezoelectric and spontaneous  

 

 

effects is similar to that obtained in non-polar cases but when we consider those effects 

as shown in figure 3 (a) we found a total reduction and a stronger anisotropy. 

The optical gain for the  ZnO/Cd15Zn85O   structure is slightly larger than that of   

GaN/In15Ga85N  structure in the a and m-plans and this is due to the deference in the 

OME but in the c-plane we find that the optical gain of   ZnO/Cd15Zn85O   structure is 

nearly double of the value of that  in  GaN/In15Ga85N  structure and this is due to the 

negative effect of the piezoelectric and spontaneous polarization on the alignment of the 

electron and hole’ wave functions which is higher in  GaN/In15Ga85N  structure as it is 

shown in figure (40), the latter effect does not exist in a- and m-planes for both 

structures which is the raison for higher optical gain compared with c-plane. The results 

of  GaN/In15Ga85N  structure agree with those obtained by Park et al in ref [67]. 

Table 2 The hole effective mass along  xk  and yk  for both structures in c-,a- and m-

planes . 

Structure  GaN/In15Ga85N ZnO/Cd15Zn85O 

Crystal orientation c-plane a-plane m-plane c-plane a-plane m-plane 

Effective mass 

along xk  ( 0m ) 

1.03 

 

1.89 

 

1.89 

 

1.15 2.94 2.96 

Effective mass 

along yk  ( 0m ) 

1.03 0.89 

 

0.90 1.15 1.12 1.04 
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Figure 49  y-polarized (a, b and c) optical matrix elements as a function of xk  and yk   

wave vectors and (d) TE optical gain spectra at a carrier density of  112cm1020N  of 

wurtzite  ZnO/Cd15Zn85O  (continuous line) and  GaN/In15Ga85N  (dashed line) QW 

structures )30A(Lw
  with c-, a-, and m-planes [43]. 
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V.6 Summary 

In this chapter, we studied the crystal orientation dependence of electronic and optical 

properties of  ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. We focused on 

main planes c-, a- and m-planes. The K.P method based on effective mass theory was 

used to calculate the band structure and optical properties with including the many body 

effects. These results are used to establish comparisons primarily between polar and 

non-polar structures and secondly between  ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW 

structures.In general, the hole effective masses of  ZnO/Cd15Zn85O  structure for all 

crystal orientations are relatively larger than the ones in  GaN/In15Ga85N   structure and 

for both structures the case of non-polar orientation shows smaller effective masses 

spatially in ky direction. Optical gain in non-polar oriented structure is larger than the 

polar structure due to the retreating effect of built-in field and this is demonstrated in the 

bigger difference in optical matrix elements. 
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General Conclusion 

 

 

In this thesis, we studied the crystal orientation dependence of electronic and optical 

properties of  ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. we presented 

the elementary k.p theory to be an introduction to Chuang‘s derivation of the Wurtzite 

Hamiltonian using Luttinger-Kohn model and showed the its similarity with the one 

obtained by Bir and Pikus using invariant method. Also we outlined the method to 

bloc diagonalize the 6x6 Wurtzite Hamiltonian to become a 3x3 matrix which is easy 

to solve analytically. Band structure for both conduction and valence band were 

calculated taking into account strain effects, whether it is tensile or compressive and 

in the same way conduction band edges, valence band edges and effective masses 

calculated with their parabolic bands that is insufficient to predict a correct band 

structure. Also we introduced the basic formalism of EFA and its direct application to 

our ZnO based quantum well structure and presented the comparison of the ZnO’s 

results with its counterpart GaN based structure, such as band edges profiles, band 

structures and isoenergy counters, using numerical means such as finite difference 

method. 

The main objectives of this thesis in studying optical properties have been firstly to 

provide an introduction to the basic concepts of optical transitions and their transition 

strength combined with Fermi-Dirac probability and broadening function, all to form 

the basic formalism of optical gain. Lorentzian line shape function is presented and 

also the Gaussian or non-Markovian lineshape function. Numerous effects on optical 

gain are studied in this work like built in electric field due to piezoelectric and 

spontaneous polarization, many body effects, strain effect and carrier concentration 

effect and all carry a relatively negative effect except for carrier concentration which 

gave an optical gain enhancement. 

We studied the crystal orientation dependence of electronic and optical properties of  

ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. The K.P method based on 

effective mass theory was used to calculate electronic and optical properties with 
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including the many body effects. These results are used to establish comparisons 

primarily between polar and non-polar structures and secondly between  

ZnO/Cd15Zn85O   and  GaN/In15Ga85N   QW structures. We used the c-plane 

Hamiltonian to extract the arbitrary crystal orientation Hamiltonian by applying a 

rotational matrix and thus their momentum matrix elements. In c-plane oriented 

structures, optical gain is relatively larger in the case ZnO/CdxZn1-xO compared to 

GaN/InxGa1-x N QW structure because of a greater built-in field seen in the well 

layer that causes a spatial separation between the envelope wave functions of 

electrons and holes decreasing transition probability and thus reducing optical gain in 

average by 78% to the case where no built-in field is included. Unlike c-plane case, 

the built-in field ceases to exist in non-polar cases (i.e. a- and m-planes) due to the 

change in spontaneous and piezoelectric polarization direction and causes an increase 

in momentum matrix elements and optical gain with lager value in m-plane compared 

to a-plane where it is attributed to strain components. A blue shift is observed in both 

structures between polar and non-polar types with maximum value of 15 nm for 

ZnO/CdxZn1-xO structure and 25 nm for GaN/InxGa1-x N structure. Energy 

dispersion, transition strength and the average hole effective masses are anisotropic in 

non-polar structures. The average hole effective masses are larger along kx direction 

than ky direction in non-polar structures and larger in general compared to polar 

structures. 
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Appendixes  

Appendix A: Material parameters 

Table 3 Physical parameters of ZnO and CdO [43]. 

Parameter  ZnO CdO 

Lattice constant  )( A    

0a  3.2505  3.199  

Energy parameters   

)(eVEg  3.35  1.89 

)(1 meV  30.5  – 

)(23 meV  4.2  – 

Conduction band effective masses   

0mme  0.24  – 

Valence band effective-mass parameters   

1A  –3.78  – 

2A  –0.44  – 

5A  –3.13  – 

Deformation potentials )(eV     

ca  –6.05  – 

1D  3.90  – 

2D  4.13  – 

3D  1.15  – 

4D  –1.22  – 

5D  –1.53  – 

6D  –2.83   – 

Elastic stiffness constant )10( 211 cmdyn     

11C  20.97  – 

12C  12.11  – 

13C  10.51  – 

33C  21.09  – 

Dielectric constant    

  8.1  - 

Piezoelectric constant )(10 12 Vm    

31d  –5 –1.1 

Spontaneous polarization  constant   

)( 2mCP  –0.05 –0.099 
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Table 4 Physical parameters of GaN and InN [67] . 

Parameter  GaN InN 

Lattice constant  )( A    

0a  3.189  3.53  

Energy parameters   

)(eVEg  3.44  1.89 

)(1 meV  22  41 

)(23 meV  5  0.11 

Conduction band effective masses   

0mme  0.20  0.32 

Valence band effective-mass parameters   

1A  –6.4  –9.09 

2A  –0.5  –0.63 

5A  –2.56  –4.36 

Deformation potentials )(eV     

ca  –4.6  –1.4 

1D  –1.7  –1.76 

2D  6.3  3.43 

5D  –4  –2.33 

Elastic stiffness constant )10( 211 cmdyn     

11C  39  27 

12C  14.5  12.4 

13C  10.6  9.4 

33C  39.8  20 

Dielectric constant    

  10  15.3 

Piezoelectric constant )(10 12 Vm    

31d  –1.7 –1.1 

Spontaneous polarization  constant   

)( 2mCP  –0.029 –0.032 
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Appendix B: Pertubation theory 

1. Degenerate perturbation theory 

Consider an unperturbed system with degenerate eigen states. Sometimes the 

perturbation Hamiltonian consists of two parts: one which contributes in first order, 

H
(1)

, and one   which contributes in second order, H
(2)

. If these two contributions have 

the same order of magnitude, then it is better to write the perturbation expansion as [3]  

     2120 HHHH            (B.1) 

  In this way the first order contribution of H
(1)

 will automatically be paired to the 

second order contribution of H
(2)

.We write the wave-function as 

      ...2210           (B.2) 

We equate terms with same power in   in Schrodinger's equation 

         
           ......

...
22102210

22102120









HEE

HHH
      (B.3) 

It follows that 

        ,0000  EH            (B.4) 

                ,01100210  EEHH         (B.5) 

                         021120011220  EEEHHH     (B.6) 

Consider the non-perturbed eigenvalue problem for the degenerate level n, m,… and for 

the other levels  , , … 

  ,0 nEnnH              (B.7) 

   aEaaH 0
           (B.8) 

The wave-function components will be written as 

    ,00 nc
n n              (B.9) 
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        ncnc
n n 

 
111

                  (B.10) 

In writing (B.10) we have used (B.4) and (B.5). In the limit 0  we recover the non-

perturbed states. Also 

 
nEE 0
 .                     (B.10) 

We multiply (B.4) with  0 . Using (B.51) and the fact that     000  H  we 

obtain 

  01 E .                     (B.11)  

We multiply (B.4) with     and using (B.5) we obtain 

       .1021

  cEHcE n                   (B.12)   

Therefore the coefficient  0

c   is 

 
   










EE

H
c

n _

02

1                    (B.13) 

We multiply (B.5) with 
m  , and using (B.6) we obtain 

           020112

mmm cEHH                    (B.14) 

Using (B.9) and the fact that 0nm H   , the first term of (B.14) reduces to 

          a

a

amm cHH  1212                  (B.15) 

Equation (B.14), with the help of (B.15) and (B.13), reduces to 

   

          


 0012

02
2

mmam

a an

a
cEHH

EE

H



               (B.16) 

By substitution of (B.18) we finally obtain 

   
        













 001

22
2

mnnm

a an

naam

n

cEcH
EE

HH



              (B.17) 
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Therefore the coefficients 
 0

nc  and the energy E
(2)

 are obtained by solving the 

eigenvalue problem (B.17). In the particular case when H
(1)

 = 0 we recover the simpler 

case of degenerate perturbation theory with second order contributions [3]. 

2. Lӧwdin perturbation theory [13, 3] 

Consider a Hamiltonian H and a finite set of orthonormalized functions  
 0

n   which 

are approximate eigenfunctions of H. Suppose the set of functions 
 0

n  n s split into 

two parts, A and B. We will expand the eigenfunctions of H as 

   0

nn

n

cc                     (B.18) 

We substitute (B.18) into the eigenvalue equation 

  EH                      (B.19)  

We take the scalar product of (B.19) with 
 0

m  and we obtain 

,mnn mn EccH                      (B.20) 

  ,mmmnmn mn cHEcH  
                   (B.21) 

Where 

     00

nmmm HH                     (B.22) 

From (B.21) we formally extract cm as 


 





mB mm

m

mA mm

m
m c

HE

H
c

HE

H
c











,,

                (B.23) 

From (B.23) we obtain cβ as 


 





mBA

c
HE

H
c

HE

H
c
















,

                 (B.24) 

We substitute (B.24) back into (B.23), and we iterate the process, with the ultimate goal 

of eliminating all the 
c  's with B   
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...
,,







  
  mB Amm

m

mA mm

m
m c

HE

H

HE

H
c

HE

H
c

 









               (B.25) 

We choose Am  and we write (B.25) as 

 Am       , 


m

A

m EccU



                  (B.26) 

with 

 A
HE

HH
HU

mB

m

mm 


 



 



       ...
,

                (B.27) 

We have therefore reduced the eigenvalue problem (B.20) on the full A + B space to the 

restricted eigenvalue problem (B.26) on the A space. The effect of the B space is taken 

into account through the 'renormalized' matrix elements (B.27). Equations (B.26) and 

(B.27) are solved iteratively, until convergence is achieved. 

We choose Bm   and we write (B.25) as 

 Bmc
HE

H
c

A mm

m
m 






      ...


                   (B.28) 

In this way we have completely determined the coefficients of the eigenfunction 

expansion (B.18). 
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Appendix C: Arbitrary Orientated Hamiltonian’s direvation 

The inverse rotational transformation given in equation (V.3-6) is obtained by finding 

the inverse of the rotational transformation given in equation (V.1).The A matrix has an 

inverse only if it is square and its determinant is nonzero, it is derived from this relation 

[86]: 

U

B
U

U

U
U

T

nm
nm

 oft determinan
 or                   

 oft determinan

 ofcofactor 11  
    (C.1) 

where B is the matrix of cofactors (also called the minor); the cofactor of element Umn is 

equal to (-1)
m+n

  times the determinant of the sub-matrix obtained from U  by removing 

the mth row and the nth column. Note that when the matrix, representing an operator, 

has a determinant equal to zero, this operator does not possess an inverse. Note that U
-

1
U = UU

-1
 = I where I is the unit matrix. 
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     (C.4)

 

To find the elements of the Hamiltonian in the new coordination we start with repeated 

factors such as kz
2
 , kx+iky and kx-iky as follow: 
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''' sincossincoscos zyxx kkkk    

''' sinsincoscossin zyxy kkkk    

'' cossin zxz kkk    
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Appendix D: Fortran program code for CB and VB 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

!%%% InxGa1-xN/InxGa1-xN/InxGa1-xN  %%% 

!%%% VALENCE BAND STRUCTURE         %%% 

!%%% BARRIER WIDTH TLB= DIVISI * NB %%% 

!%%% WELL WIDTH TLW= DIVISI*(NW+ 1) %%% 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    IMPLICIT REAL*8 (A-H,O-Z) 

! 

    INTEGER NB,NW,ND,NN,NP,NK 

    PARAMETER 

(NB=43,NW=17,ND=NB+NW+NB,NN=ND+ND+ND,NP=ND+2,NK=50) 

! 

 REAL*8 DIVISI,FH(NP),FL(NP),FSO(NP),DEL(NP),DEL1,DEL2(NP) 

    REAL*8 A1(NP),A2(NP),A3(NP),A4(NP),A5(NP),A6(NP) 

    INTEGER NVB !,KK 

!======= VB:EIGENVALUE ===== 

    OPEN (UNIT=50,FILE='HVADUAS.txt',STATUS='UNKNOWN') 

!======= VB STRUCTURE FOR PLOT ===== 

    OPEN (UNIT=80,FILE='GRPHUAS.txt',STATUS='UNKNOWN') 

! 

    !WRITE(*,7) ('NVB=') 

!7 FORMAT(20F10.5) 

!DO 5  KK=1,30 

READ (*,*) NVB 

 !NVB=7 !I=NN,NN-NVB,-1 

!%%%%%% MATERIAL PARAMETERS %%%%%%%%%%% 

    CALL MATER(DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,DEL,DEL1,DEL2) 

!%%%%% OBTAINING VB EIGENVALUE %%%%%% 

! 

    CALL 

VBEIGEN(NVB,DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,DEL,DEL1,DEL2) 

! 

!5 CONTINUE 

    STOP 

    END 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

!%     MATERIAL PARAMETERS         %% 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    SUBROUTINE 

MATER(DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,DEL,DEL1,DEL2) 

    INTEGER NB,NW,ND,NN,NP,NK 

    PARAMETER 

(NB=39,NW=30,ND=NB+NW+NB,NN=ND+ND+ND,NP=ND+2,NK=50) 

    REAL*8 EV,AUNG 

    REAL*8 DIVISI,LL,RATIO,AC1,MO 

    INTEGER I1,I2 

    REAL*8 BARX,WELLX 

    REAL*8 WEG,BEG 
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    REAL*8 TLCWELL,TLCBARR,C13,C33,C13B,C33B   !TLCSUB 

    REAL*8 AO,EXX,EZZ,AOB,EXXB,EZZB,HBAR 

    REAL*8 

A1(NP),A2(NP),A3(NP),A4(NP),A5(NP),A6(NP),FH(NP),FL(NP),FSO(NP) 

    REAL*8 gan1,inn1,gan2,inn2,gan3,inn3,gan4,inn4,gan5,inn5,gan6,inn6 

    REAL*8 AW1,AB1,AW2,AB2,AW3,AB3,AW4,AB4,AW5,AB5,AW6,AB6 

    REAL*8 DW1,DB1,DW2,DB2,DW3,DB3,DW4,DB4,QQ 

 REAL*8 

DEL(NP),DEL1(NP),DEL2(NP),DELW,DEL1W,DEL2W,DELB,DEL1B,DEL2B 

    MO=9.1095D-31 

 HBAR=1.0546D-34 

    EV=1.60219D-19 !Electron-volt energy 

    AUNG=1.0D-10 

!======= QW STRUCTURE ============== 

    DIVISI=2.0*AUNG 

    I1=NB !BOUNDARY BETWEEN BARRIER AND WELL 

    I2=NB+NW+1 !BOUNDARY BETWEEN OF QW STRUCTURE 

    LL=DIVISI*(NB+NW+NB+1)!TOTAL LENGTH OF QW STRUCTURE 

    AC1=(ND+1)**2 

    RATIO=MO/HBAR*LL/HBAR*LL 

!========InxGa1-xN/InxGa1-xN=========== 

    BARX=0.02 

    WELLX=0.15 

!=========PARAMETERS=============== 

 inn1=-9.28 

 gan1=-7.24 

    AW1=gan1*(1.0-WELLX)+inn1*WELLX   

    AB1=gan1*(1.0-BARX)+inn1*BARX  

    inn2=-0.60 

 gan2=-0.51 

 AW2=gan2*(1.0-WELLX)+inn2*WELLX   

    AB2=gan2*(1.0-BARX)+inn2*BARX  

    inn3=8.68 

 gan3=6.73 

 AW3=gan3*(1.0-WELLX)+inn3*WELLX   

    AB3=gan3*(1.0-BARX)+inn3*BARX  

    inn4=-4.34 

 gan4=-3.36 

 AW4=gan4*(1.0-WELLX)+inn4*WELLX   

    AB4=gan4*(1.0-BARX)+inn4*BARX  

    inn5=-4.32 

 gan5=-3.35 

 AW5=gan5*(1.0-WELLX)+inn5*WELLX   

    AB5=gan5*(1.0-BARX)+inn5*BARX  

    inn6=-6.08 

 gan6=-4.72 

 AW6=gan6*(1.0-WELLX)+inn6*WELLX   

    AB6=gan6*(1.0-BARX)+inn6*BARX  

 

!======================================= 
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    WEG=(3.42*(1-WELLX)+1.89*WELLX-3.8*WELLX*(1-WELLX))*EV 

    BEG=(3.42*(1-BARX)+1.89*BARX-3.8*BARX*(1-BARX))*EV 

!====STRAIN RELATED=================== 

    TLCWELL=(3.189*(1.0-WELLX)+3.548*WELLX)*AUNG 

    TLCBARR=(3.189*(1.0-BARX)+3.548*BARX)*AUNG 

    !IF(TLCWELL.GT.TLCBARR)THEN 

    TLCSUB=TLCBARR 

    !ELSE 

 !TLCSUB=TLCBARR 

    !ENDIF 

! 

    C13=(94*(1.0-WELLX)+114*WELLX) 

    C33=(200*(1.0-WELLX)+381*WELLX) 

    C13B=(94*(1.0-BARX)+114*BARX) 

    C33B=(200*(1.0-BARX)+381*BARX) 

    AO=(TLCSUB-TLCWELL)/TLCWELL  !3.189*AUNG  

    EXX=AO 

    EZZ=(-2.0)*C13/C33*EXX 

    AOB=(TLCSUB-TLCBARR)/TLCBARR  ! 3.189*AUNG 

    EXXB=AOB 

    EZZB=(-2.0)*C13B/C33B*EXXB 

!  Deformation potentials  

 DW1=-0.89*EV 

 DW2=4.27*EV 

 DW3=5.18*EV 

 DW4=-2.59*EV 

 DB1=-0.89*EV 

 DB2=4.27*EV 

 DB3=5.18*EV 

 DB4=-2.59*EV 

! 

    QQ=0.7 !BAND OFFSET IN CONDUCTION BAND 

 DELW=(0.0047*(SQRT(2.0))*(1.0-

WELLX)+0.00033*(SQRT(2.0))*WELLX)*EV 

 DEL1W=(0.019*(1.0-WELLX)+0.041*WELLX)*EV 

 DEL2W=(0.0047*(1.0-WELLX)+0.00033*WELLX)*EV 

 DELB=(0.0047*(SQRT(2.0))*(1.0-BARX)+0.00033*(SQRT(2.0))*BARX)*EV 

 DEL1B=(0.019*(1.0-BARX)+0.041*BARX)*EV 

 DEL2B=(0.0047*(1.0-BARX)+0.00033*BARX)*EV 

 !DEL=0.024*(SQRT(2.0))*EV 

    !DEL1=0.03*EV 

    !DEL2=0.024*EV 

 !AW6=gan6*(1.0-WELLX)+inn6*WELLX   

    !AB6=gan6*(1.0-BARX)+inn6*BARX 

 

!===LUTTINGER PARAMETERS RELATED 

    DO 45 I=1,NP,1 

      IF((I.GT.(I1+1)).AND.(I.LT.(I2+1)))THEN 

        A1(I)=AW1 

        A2(I)=AW2 
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        A3(I)=AW3 

        A4(I)=AW4 

        A5(I)=AW5 

        A6(I)=AW6 

  FH(I)=RATIO*(DW2*(EXX+EXX)+DW1*EZZ)/AC1 

  FL(I)=RATIO*(DW4*(EXX+EXX)+DW3*EZZ)/AC1 

  FSO(I)=0 

  DEL(I)=RATIO*DELW/AC1 

  DEL1(I)=RATIO*DEL1W/AC1 

  DEL2(I)=RATIO*DEL2W/AC1 

      ELSE 

        A1(I)=AB1 

        A2(I)=AB2 

        A3(I)=AB3 

        A4(I)=AB4 

        A5(I)=AB5 

        A6(I)=AB6 

  FH(I)=RATIO*(DB2*(EXXB+EXXB)+DB1*EZZB)/AC1 

  FL(I)=RATIO*(DB4*(EXXB+EXXB)+DB3*EZZB)/AC1 

  FSO(I)=RATIO*(1.0-QQ)*(BEG-WEG)/AC1 

  DEL(I)=RATIO*DELB/AC1 

  DEL1(I)=RATIO*DEL1B/AC1 

  DEL2(I)=RATIO*DEL2B/AC1 

      ENDIF 

45  CONTINUE 

! 

    RETURN 

    END 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

!% DEFINE UPPER & LOWER HAMILTONIAN  %% 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    SUBROUTINE 

VBMAT(KP,DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,HUPMAT,DEL,DEL1,DEL2) 

    INTEGER NB,NW,ND,NN,NP,NK 

    PARAMETER 

(NB=39,NW=30,ND=NB+NW+NB,NN=ND+ND+ND,NP=ND+2,NK=50) 

    REAL*8 KP,HUPMAT(NN,NN),DIVISI,HBAR,MO 

    REAL*8 

A1(NP),A2(NP),A3(NP),A4(NP),A5(NP),A6(NP),FH(NP),FL(NP),FSO(NP) 

    REAL*8 B11(ND,ND),B12(ND,ND),B13(ND,ND),B21(ND,ND),AC1 

 REAL*8 

UNIM(ND,ND),B22(ND,ND),B23(ND,ND),B31(ND,ND),B32(ND,ND),B33(ND,ND) 

    REAL*8 B11V1(NP),B11V2(NP),B11V3(NP),B12V1(NP),B13V1(NP) 

    REAL*8 B21V1(NP),B22V1(NP),B22V2(NP),B22V3(NP),B23V1(NP),B23V2(NP) 

    REAL*8 B31V1(NP),B32V1(NP),B32V2(NP),B33V1(NP),B33V2(NP),B33V3(NP) 

    REAL*8 B(NN,NN),LL 

 REAL*8 DEL(NP),DEL1(NP),DEL2(NP) 

!,DELW,DEL1W,DEL2W,DELB,DEL1B,DEL2B 

    INTEGER I,J,I1,I2 

! 
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    MO=9.1095D-31 

    HBAR=1.0546D-34 

 I1=NB 

    I2=NB+NW+1 

    EV=1.60219D-19 !Electron-volt energy 

    AUNG=1.0D-10 

 DIVISI=2.0*AUNG 

    LL=DIVISI*(NB+NW+NB+1) 

 ! 

 !DEL=0.024*(SQRT(2.0))*EV 

    !DEL1=0.03*EV 

    !DEL2=0.024*EV 

 ! 

    AC1=(ND+1)**2 

    RATIO=MO/HBAR*LL/HBAR*LL 

    DO 305 I=1,ND,1 

    DO 307 J=1,ND,1 

    UNIM(I,J)=0.0 

307 CONTINUE 

305 CONTINUE 

        DO 315 I=1,ND,1 

        UNIM(I,I)=UNIM(I,I)+1.0 

315 CONTINUE 

!=====DEFINE MATRIX================= 

    DO 320 I=1,NP,1 

        B11V1(I)=0.5*(A1(I)+A3(I)) 

        B11V2(I)=0.5*(A2(I)+A4(I))*((KP*LL)**2) 

        ! 

        B22V1(I)=0.5*(A1(I)+A3(I)) 

        B22V2(I)=0.5*(A2(I)+A4(I))*((KP*LL)**2) 

        ! 

        B33V1(I)=0.5*A1(I) 

        B33V2(I)=0.5*A2(I)*((KP*LL)**2) 

        ! 

        B21V1(I)=0.5*A5(I)*((KP*LL)**2) 

        ! 

        B12V1(I)=0.5*A5(I)*((KP*LL)**2) 

        B13V1(I)=0.5*A6(I)*(KP*LL) 

         

         

        B23V1(I)=0.5*A6(I)*(KP*LL) 

        B31V1(I)=0.5*A6(I)*(KP*LL) 

        B32V1(I)=0.5*A6(I)*(KP*LL) 

         

320 CONTINUE 

    DO 325 I=1,NP,1 

      IF ((I.EQ.(I1+1)) .OR. (I.EQ.(I2+1))) THEN 

       B33V2(I)=(B33V2(I-1)+B33V2(I+1))/2.0 

       B33V1(I)=(B33V1(I-1)+B33V1(I+1))/2.0 

       B32V1(I)=(B32V1(I-1)+B32V1(I+1))/2.0 
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       B31V1(I)=(B31V1(I-1)+B31V1(I+1))/2.0 

       B23V1(I)=(B23V1(I-1)+B23V1(I+1))/2.0 

       B22V2(I)=(B22V2(I-1)+B22V2(I+1))/2.0 

       B22V1(I)=(B22V1(I-1)+B22V1(I+1))/2.0 

       B21V1(I)=(B21V1(I-1)+B21V1(I+1))/2.0 

       B13V1(I)=(B13V1(I-1)+B13V1(I+1))/2.0 

       B12V1(I)=(B12V1(I-1)+B12V1(I+1))/2.0 

       B11V2(I)=(B11V2(I-1)+B11V2(I+1))/2.0 

       B11V1(I)=(B11V1(I-1)+B11V1(I+1))/2.0 

    ENDIF 

325 CONTINUE 

! 

    DO 335 I=1,ND,1 

     DO 337 J=1,ND,1 

        B11(I,J)=0.0 

        B12(I,J)=0.0 

        B13(I,J)=0.0 

        B21(I,J)=0.0 

        B22(I,J)=0.0 

        B23(I,J)=0.0 

        B31(I,J)=0.0 

        B32(I,J)=0.0 

        B33(I,J)=0.0 

337 CONTINUE 

335 CONTINUE 

! 

    DO 340 I=1,ND,1 

        B11(I,I)=B11(I,I)-B11V1(I+1)-(B11V1(I)+B11V1(I+2))/2.0 

        B22(I,I)=B22(I,I)-B22V1(I+1)-(B22V1(I)+B22V1(I+2))/2.0 

        B33(I,I)=B33(I,I)-B33V1(I+1)-(B33V1(I)+B33V1(I+2))/2.0 

 

340 CONTINUE 

! 

    DO 350 I=1,ND-1,1 

        B11(I,I+1)=B11(I,I+1)+(B11V1(I+1)+B11V1(I+2))/2.0 

        B11(I+1,I)=B11(I+1,I)+(B11V1(I+2)+B11V1(I+1))/2.0 

  B13(I,I+1)=B13(I,I+1)-(B13V1(I+1)+B13V1(I+2))/2.0 

        B13(I+1,I)=B13(I+1,I)+(B13V1(I+2)+B13V1(I+1))/2.0 

  B22(I,I+1)=B22(I,I+1)+(B22V1(I+1)+B22V1(I+2))/2.0 

        B22(I+1,I)=B22(I+1,I)+(B22V1(I+2)+B22V1(I+1))/2.0 

  B23(I,I+1)=B23(I,I+1)-(B23V1(I+1)+B23V1(I+2))/2.0 

        B23(I+1,I)=B23(I+1,I)+(B23V1(I+2)+B23V1(I+1))/2.0 

        B31(I,I+1)=B31(I+1,I)+(B31V1(I+2)+B31V1(I+1))/2.0 

        B31(I+1,I)=B31(I,I+1)-(B31V1(I+1)+B31V1(I+2))/2.0 

  B32(I,I+1)=B32(I,I+1)+(B32V1(I+1)+B32V1(I+2))/2.0 

        B32(I+1,I)=B32(I+1,I)-(B32V1(I+2)+B32V1(I+1))/2.0 

  B33(I,I+1)=B33(I,I+1)+(B33V1(I+1)+B33V1(I+2))/2.0 

        B33(I+1,I)=B33(I+1,I)+(B33V1(I+2)+B33V1(I+1))/2.0 

350 CONTINUE 

! 
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 DO 365 I=1,ND,1 

     DO 367 J=1,ND,1 

  B11(I,J)=B11(I,J)*AC1 

        B13(I,J)=B13(I,J)*SQRT(AC1)/2 

        B22(I,J)=B22(I,J)*AC1 

        B23(I,J)=B23(I,J)*SQRT(AC1)/2 

        B31(I,J)=B31(I,J)*SQRT(AC1)/2 

        B32(I,J)=B32(I,J)*SQRT(AC1)/2 

        B33(I,J)=B33(I,J)*AC1 

367  CONTINUE 

365 CONTINUE 

! 

    N2=ND+ND 

    DO 375 I=1,NN,1 

     DO 377 J=1,NN,1 

        B(I,J)=0.0 

377  CONTINUE 

375 CONTINUE 

! 

    DO 380 I=1,ND,1 

     DO 383 J=1,ND,1 !here where start filling the matrix 

  B(I,J)=B(I,J)+B11(I,J)+B11V2(I+1)*UNIM(I,J)-

FSO(I+1)*UNIM(I,J)*AC1+(DEL1(I+1)+DEL2(I+1)+FH(I+1)+FL(I+1))*UNIM(I,J)*

AC1 

        B(I+ND,J+ND)=B(I+ND,J+ND)+B22(I,J)+B22V2(I+1)*UNIM(I,J)-

FSO(I+1)*UNIM(I,J)*AC1+(DEL1(I+1)-

DEL2(I+1))*UNIM(I,J)*AC1+(FH(I+1)+FL(I+1))*UNIM(I,J)*AC1 

        B(I+N2,J+N2)=B(I+N2,J+N2)+B33(I,J)+B33V2(I+1)*UNIM(I,J)-

FSO(I+1)*UNIM(I,J)*AC1+FH(I+1)*UNIM(I,J)*AC1 

        B(I+ND,J)=B(I+ND,J)+B21V1(I+1)*UNIM(I,J) 

        B(I+N2,J)=B(I+N2,J)+B31(I,J) 

        B(I+N2,J+ND)=B(I+N2,J+ND)+B32(I,J)+DEL(I+1)*UNIM(I,J)*AC1        

  B(I,J+ND)=B(I,J+ND)+ B12V1(I+1)*UNIM(I,J) 

  B(I,J+N2)=B(I,J+N2)+B13(I,J) 

  B(I+ND,J+N2)=B(I+ND,J+N2)+B23(I,J)+DEL(I+1)*UNIM(I,J)*AC1 

383  CONTINUE 

380 CONTINUE 

! 

    DO 404 I=1,NN,1 

     DO 408 J=1,NN,1 

        HUPMAT(I,J)=-B(I,J)/AC1 

408  CONTINUE 

404 CONTINUE 

    RETURN 

    END 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

!% EIGENVLAUE ANDEIGENVECTOR FOR VB  %% 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    SUBROUTINE 

VBEIGEN(NVB,DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,DEL,DEL1,DEL2) 
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    INTEGER NB,NW,ND,NN,NP,NK 

    PARAMETER 

(NB=39,NW=30,ND=NB+NW+NB,NN=ND+ND+ND,NP=ND+2,NK=50) 

    REAL*8 DIVISI,B(NN,NN),HBAR,MO 

    REAL*8 

A1(NP),A2(NP),A3(NP),A4(NP),A5(NP),A6(NP),FH(NP),FL(NP),FSO(NP) 

    INTEGER NVB 

    INTEGER II,I,J,NLAST 

    REAL*8 KPINT,KP,NORM,AUNG,EV,RATIO,AC1,LL 

    REAL*8 EVALN(NN),EN(NN),ASKN(NN),HEVEC(NN,NN) 

    REAL*8 HUPMAT(NN,NN) 

 REAL*8 DEL(NP),DEL1(NP),DEL2(NP) 

!,DELW,DEL1W,DEL2W,DELB,DEL1B,DEL2B 

! 

    AUNG=1.0D-10  

    HBAR=1.0546D-34 

    MO=9.1095D-31 

    EV=1.60219D-19 !Electron-volt energy 

    NLAST=120 

    KPINT=0.001/AUNG 

! 

 DIVISI=2.0*AUNG 

    LL=DIVISI*(NB+NW+NB+1) 

    RATIO=MO/HBAR*LL/HBAR*LL 

    AC1=(ND+1)**2 

! 

    DO 1000 II=1,NLAST !START 

        KP=KPINT*(II-1) 

!%%%%%%%%% DEFINE MATRIX %%%%%%%%% 

    CALL 

VBMAT(KP,DIVISI,A1,A2,A3,A4,A5,A6,FH,FL,FSO,HUPMAT,DEL,DEL1,DEL2) 

! 

    DO 402 I=1,NN,1 

     DO 404 J=1,NN,1 

        B(I,J)=HUPMAT(I,J) 

404  CONTINUE 

402 CONTINUE 

! 

    DO 653 I=1,NN,1 

        EN(I)=0.0 

        EVALN(I)=0.0 

        ASKN(I)=0.0 

653 CONTINUE 

! 

    DO 4021 I=1,NN,1 

     WRITE(*,724)I,(B(I,J),J=1,NN,1) !I=NN,NN-NVB+1,-1 

724  FORMAT(620F10.5)        

4021 CONTINUE 

     

 CALL TRED2(B,NN,NN,EVALN,EN) 
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    CALL TQLI(EVALN,EN,NN,NN,B) 

    CALL EIGSRT(EVALN,B,NN,NN) 

!=NORMALIZATION OF EIGENVECTOR===== 

    DO 712 I=1,NN,1 

        NORM=0.0 

     DO 715 J=1,NN,1 

        NORM=NORM+B(J,I)*B(J,I) 

715  CONTINUE 

    DO 717 J=1,NN,1 

        HEVEC(J,I)=B(J,I)/SQRT(NORM) 

717 CONTINUE 

712 CONTINUE 

! 

     DO 720 I=1,NN,1 

        ASKN(I)=EVALN(I)/RATIO*AC1/EV !EV UNIT 

720  CONTINUE 

 

!=SAVING EIGENVALUES====== 

    WRITE(*,727)KP*AUNG,(-ASKN(I),I=1,NVB+1,1) !I=NN,NN-NVB+1,-1 

727 FORMAT(620F10.5) 

 

    WRITE (80,757)KP*AUNG,(-ASKN(I),I=1,NVB+1,1) 

757 FORMAT (620F10.5) 

  IF (II.EQ.1) THEN    

  DO 242 I=1,NN,1 

    WRITE(50,248)(HEVEC(I,J),J=1,NVB+1,1) 

248 FORMAT(900F10.5) 

242 CONTINUE  

 ENDIF 

1000 CONTINUE 

!   

    RETURN 

    END 

 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

!% SUBROUTINES FOR EIGEN:VALUES %%% 

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

! (C)COPR.1986-92 NUMERICAL RECIPES SOFTWARE 00. 

    SUBROUTINE TQLI(D,E,N,NP,Z) 

    INTEGER N,NP 

    REAL*8 D(NP),E(NP),Z(NP,NP) 

    INTEGER I,ITER,K,L,M 

    REAL*8 B,C,DD,F,G,P,R,S,PYTHAG 

    DO 11 I=2,N 

        E(I-1)=E(I) 

11  CONTINUE 

        E(N)=0. 

    DO 15 L=1,N 

        ITER=0 

1   DO 12 M=L,N-1 
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        DD=ABS(D(M))+ABS(D(M+1)) 

      IF (ABS(E(M))+DD.EQ.DD) GOTO 2 

12  CONTINUE 

        M=N 

2     IF(M.NE.L)THEN 

        IF(ITER.EQ.300) PAUSE' TOO MANY ITERATIONS IN TALI ' 

            ITER=ITER+1 

            G=(D(L+1)-D(L))/(2.*E(L)) 

            R=PYTHAG(G,1.0D0) 

            G=D(M)-D(L)+E(L)/(G+SIGN(R,G)) 

            S=1. 

            C=1. 

            P=0. 

    DO 14 I=M-1,L,-1 

        F=S*E(I) 

        B=C*E(I) 

        R=PYTHAG(F,G) 

        E(I+1)=R 

      IF(R.EQ.0.)THEN 

        D(I+1)=D(I+1)-P 

        E(M)=0. 

    GOTO 1 

    ENDIF 

        S=F/R 

        C=G/R 

        G=D(I+1)-P 

        R=(D(I)-G)*S+2.*C*B 

        P=S*R 

        D(I+1)=G+P 

        G=C*R-B 

! OMIT LINES FROM HERE ... 

    DO 13 K=1,N 

        F=Z(K,I+1) 

        Z(K,I+1)=S*Z(K,I)+C*F 

        Z(K,I)=C*Z(K,I)-S*F 

13 CONTINUE 

! ... TO HERE WHEN FINDING ONLY EIGENVALUES. 

14 CONTINUE 

        D(L)=D(L)-P 

        E(L)=G 

        E(M)=0. 

    GOTO 1 

    ENDIF 

15 CONTINUE 

    RETURN 

    END 

! 

    SUBROUTINE TRED2(A,N,NP,D,E) 

    INTEGER N,NP 

    REAL*8 A(NP,NP),D(NP),E(NP) 
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    INTEGER I,J,K,L 

    REAL*8 F,G,H,HH,SCALE 

    DO 18 I=N,2,-1 

        L=I-1 

        H=0. 

    SCALE=0. 

    IF(L.GT.1)THEN 

    DO 11 K=1,L 

    SCALE=SCALE+ABS(A(I,K)) 

11 CONTINUE 

    IF (SCALE.EQ.0.) THEN 

        E(I)=A(I,L) 

    ELSE 

    DO 12 K=1,L 

    A(I,K)=A(I,K)/SCALE 

    H=H+A(I,K)**2 

12 CONTINUE 

    F=A(I,L) 

    G=-SIGN(SQRT(H),F) 

    E(I)=SCALE*G 

    H=H-F*G 

    A(I,L)=F-G 

    F=0. 

    DO 15 J=1,L 

! OMIT FOLLOWING LINE IF FINDING ONLY EIGENVALUES 

        A(J,I)=A(I,J)/H 

        G=0. 

    DO 13 K=1,J 

    G=G+A(J,K)*A(I,K) 

13 CONTINUE 

    DO 14 K=J+1,L 

        G=G+A(K,J)*A(I,K) 

14 CONTINUE 

        E(J)=G/H 

        F=F+E(J)*A(I,J) 

15 CONTINUE 

        HH=F/(H+H) 

    DO 17 J=1,L 

    F=A(I,J) 

    G=E(J)-HH*F 

    E(J)=G 

    DO 16 K=1,J 

    A(J,K)=A(J,K)-F*E(K)-G*A(I,K) 

16 CONTINUE 

17 CONTINUE 

    ENDIF 

    ELSE 

        E(I)=A(I,L) 

    ENDIF 

    D(I)=H 
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18 CONTINUE 

! OMIT FOLLOWING LINE IF FINDING ONLY EIGENVALUES. 

    D(1)=0. 

    E(1)=0. 

    DO 24 I=1,N 

! DELETE LINES FROM HERE ... 

    L=I-1 

    IF(D(I).NE.0.)THEN 

    DO 22 J=1,L 

        G=0. 

    DO 19 K=1,L 

        G=G+A(I,K)*A(K,J) 

19 CONTINUE 

    DO 21 K=1,L 

        A(K,J)=A(K,J)-G*A(K,I) 

21 CONTINUE 

22 CONTINUE 

    ENDIF 

!   ... TO HERE WHEN FINDING ONLY ETGENVALUES. 

    D(I)=A(I,I) 

! ALSO DELETE LINES FROM HERE ... 

    A(I,I)=1. 

    DO 23 J=1,L 

        A(I,J)=0. 

        A(J,I)=0. 

23  CONTINUE 

! ... TO HERE WHEN FINDING ONLY EIGENVALUES. 

24  CONTINUE 

    RETURN 

    END 

! (C) COPR. 1986 - 92 NUMERICAL RECIPES SOFTWARE 00. 

    FUNCTION PYTHAG(A,B) 

    REAL*8 A,B,PYTHAG 

    REAL*8 ABSA,ABSB 

    ABSA=ABS(A) 

    ABSB=ABS(B) 

    IF(ABSA.GT.ABSB)THEN 

     PYTHAG=ABSA*SQRT(1.+(ABSB/ABSA)**2) 

    ELSE 

    IF(ABSB.EQ.0.)THEN 

    PYTHAG=0. 

    ELSE 

    PYTHAG=ABSB*SQRT(1.+(ABSA/ABSB)**2) 

    ENDIF 

    ENDIF 

    RETURN 

    END 

! (C) COPR. 1986 - 92 NUMERICAL RECIPES SOFTWARE 00. 

    SUBROUTINE EIGSRT(D,V,N,NP) 

    INTEGER N,NP 
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    REAL*8 D(NP),V(NP,NP) 

    INTEGER I,J,K 

    REAL*8 P 

    DO 13 I=1,N-1 

        K=I 

        P=D(I) 

    DO 11 J=I+1,N 

     IF(D(J).GE.P)THEN 

        K=J 

        P=D(J) 

    ENDIF 

11  CONTINUE 

    IF(K.NE.I)THEN 

        D(K)=D(I) 

        D(I)=P 

    DO 12 J=1,N 

        P=V(J,I) 

        V(J,I)=V(J,K) 

        V(J,K)=P 

12  CONTINUE 

    ENDIF 

13 CONTINUE 

    RETURN 

    END 
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Crystal orientation effects on electronic and optical properties of 

wurtzite CdZnO/ZnO quantum well lasers 

Abstract: 

The object of this work is to investigate crystal orientation‘s effects on electronic 

optical properties of wurtzite CdZnO/ZnO quantum wells (QWs) with piezoelectric 

(PZ) and spontaneous (SP) polarization using the multiband effective-mass theory and 

the non-Markovian gain model with many-body effects. In this research, we address 

the electronic and the optical properties of wurtzite CdZnO grown on ZnO substrate, 

the valence -band structures for the QW structure are calculated based on the k.p 

method .The results will be confronted with those of WZ GaN/InGaN QW structures 

and also similar studies. 

Keywords:  

Optical gain,Comparative study,II-VI semiconductors,III-V semiconductors,Zinc 

oxides,Binary compounds,Quantum wells,Carrier density,Optical properties,Crystal 

orientation ,Semiconductor lasers 

 ملخص :

عٍى الاٌىزشًنٍخ ً اٌضٌئٍخ ٌزشوٍت اٌجئش اٌىمً اٌزي  ياٌيذف من ىزا اٌعمً ىٌ اٌزحمك من رأثٍش ارجبه اٌىشٌسزب

ًالاسزمطبة اٌعفٌي ثبسزعمبي اٌذساسخ ٌمزعذدح  خويشثٍضغطٍري اٌخبطٍخ  CdZnO/ZnOاسبسو اٌٌسرزٌذ 

دمبج خبطٍخ ربثٍش مزعذد اٌجسٍمبد. مشوٌفً لاٌشثح اٌضٌئً مع ا-ً اٌمٌدًٌ اٌغٍشاٌطجمبد راد اٌىزٍخ اٌزخٍٍٍخ 

,   ZnOاٌمشىً فٌق اٌمعذح ي  CdZnO , نذسس اٌخظبئض الاٌىزشًنٍخ ً اٌضٌئٍخ ٌٌٍسرزٌذ فً ىزا اٌجحث

رشىًٍ طجمخ اٌزىبفؤ ٌزشوٍت اٌجئش اٌىمً لذ رم حسبثو ثبعزمبد دساسخ طشٌمخ ن.ة .اٌنزبئح اٌمزحظً عٍٍيب غً 

فً اٌجئش اٌىمً ًوزأٌه اٌذساسبد  GaN/InGaNىزا اٌجحث سٍزم ممبسنزيب ثنضٍشريب اٌخبص ة اٌٌسرزٌذ 

 اٌمشبثيخ.

 كلمات مفتاحية:

انظبف نٌالً, اوسٍذ اٌزنه, اٌعنبطش اٌثنبئٍخ,  III-Vنظبف نٌالً, ا II-VIاٌشثح اٌضٌئً, دساسخ ممبسنخ,  

 , ٌٍزس انظبف اٌنٌالً.يارجبه اٌىشٌسزباٌضٌئٍخ, اٌجئش اٌىمً, وثبفخ اٌحٌامً, اٌخظبئض 
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