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Abstract 
 
First-principles spin polarized density functional theory (DFT) investigations of 

the structural, electronic, magnetic and thermodynamics characteristics of the half-

Heusler, CoMnTe and RuMnTe, compounds are carried out. Calculations are 

accomplished within the state of the art full-potential (FP) linearized (L) augmented 

plane wave (APW) computational approach framed within DFT. Generalized gradient 

approximation (GGA) parameterized by Perdew, Burke and Ernzerhof (PBE) is 

implemented as an exchange correlation functional as a part of total energy 

calculation. From the analysis of calculated electronic band structure as well as density 

of states for both compounds, a strong hybridization between d states of the higher 

valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is 

observed. Furthermore total and partial density of states (PDOS) of ground state and 

the results of spin magnetic moments reveal that these compounds are both stable and 

ideal half-metallic ferromagnetic. The effects of the unit cell volume on magnetic 

properties and half-metallicity are crucial. It is worth noting that our computed results 

of total spin magnetic moments, for CoMnTe equal to 4 �B and 3 �B per unit cell for 

RuMnTe, nicely follow the rule �tot = Zt-18. Using the quasi-harmonic Debye model 

which considers the phononic effects, the effects of pressure P and temperature T on 

lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, 

and heat capacity for these compounds are investigated for the first time. 
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Résumé 

 

La théorie de la fonctionnelle de la densité DFT est utilisée pour étudier les 

caractéristiques structurelles, électroniques, magnétiques et thermodynamiques des 

composés half-Heusler CoMnTe et RuMnTe. Les calcules sont réalisés via FP-LAPW 

computationnelle approches dans le cadre de l’approximation des gradients généralisée 

GGA paramétrée par Perdew, Burke and Ernzerhof (PBE) et implémenté comme une 

corrélation et échange fonctionnelle autant qu’une partie de calcul de l’énergie total. A 

partir de l’analyse de la structure des bandes d’énergies et des densités d’états 

calculées pour les deux composés, une forte hybridisation entre les états d des atomes 

des métaux de transition de forte valence (Co,Ru) et les états d des atomes du métal de 

transition de faible  valence (Mn) est observée. De plus, les densités d’états totales et 

partielles (PDOS) et les résultats des moments magnétiques de spin révèlent que ces 

composés sont à la fois stable et half-métallique ferromagnétique idéaux. Les effets du 

volume de la maille élémentaire sur les propriétés half-metalliques et magnétiques sont 

cruciaux. Il est intéressant de noter que nos résultats du moment magnétique total pour 

CoMnTe égale à 4�B et 3�B par maille élémentaire pour RuMnTe, obéit  à la règle   

�tot = Zt-18. On utilisant le modèle quasi-harmonique de Debye qui considère les effets 

phononiques, les effets de la pression P et de la température T, le paramètre de maille, 

le module de masse, le coefficient de dilatation thermique, la température de Debye et 

la capacité calorifique de ces composés sont étudies pour la première fois.   
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  ملخص

  

تمت دراسة الخواص البنیویة، الالكتروبیة،  DFT نظریة الكثافة الوظیفیة باستعمال

. CoMnTeو RuMnTeھاسلر  -المغناطیسیة و الدینامیكیة الحراریة للمركبین النصف

 الكمون التام للموجات الخطیة المتزایدة               مقاربة أساسالحسابات على  أجریت

(FP-LAPW)  معمم التدرج  بتقریب (GGA)  نظریة باري، بارك و ارنزرھف  إطارفي

(PBE)  من كونھا جزء من حساب الطاقة  أكثرعلاقة تبادل وظیفیة  بالأخصباعتبارھا

المحسوبة من اجل  المستویاتالطاقویة و كثافة  للأشرطةمن خلال التحلیل البنیوي . الكلیة

و  (Co,Ru)  للذرات ذات التكافؤ العالي ) د(المركبین لوحظ تھجین قوي بین الحالات 

من خلال دراسة . TMللمعادن الانتقالیة  )Mn( المنخفضللذرات ذات التكافؤ ) د(الحالات 

ھذان المركبان  أنالمغناطیسي تبین و العزم  (PDOs)العامة و الجزئیة  المستویاتكثافة 

- على الخواص نصف الأساسیةحجم الخلیة  تأثیر أنكما . معادن ممغنطة مستقرة- ھما نصف

نتائجنا في ما یخص العزم  أن إلى الإشارةانھ لمن المھم . معدنیة و المغناطیسیة كبیر

تخضع للقاعدة  RuMnTeمن اجل μB  3وμB  4یساوي CoMnTeالمغناطیسي الكلي ل 

= ZT-18 μtot . باستعمال نموذج دیباي شبھ التوافقي الذي یأخذ بعین الاعتبار التأثیرات

تمت دراسة لأول مرة تأثیرات الضغط و درجة الحرارة على معامل الخلیة، , الفونونیة

معامل الحجم، معامل التمدد الحراري، درجة حرارة دیباي و السعة الحراریة لھذین 

  .المركبین
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1. General introduction 

 

erromagnetic Heusler alloys exhibited magnetic shape memory effect, 

magnetic field induced superelasticity and large strain-induced changes in 

the magnetization are recently very attractive subject of current researches.[1–14] The 

ferromagnetic martensites are experimentally found in different Heusler alloys such as 

Ni–Mn–Ga, Ni–Fe–Ga, Co–Ni–Ga and other alloys. The magnetic shape memory 

effect is related to martensite transformations that are sensitive to pronounced 

magnetoelastic interaction. A high efficiency of the magneto-mechanical properties 

makes these materials very attractive for applications as different kind of actuators, 

sensors, magnetic micro-electro-mechanical systems, for the recording and storage of 

information, etc. The current advantages in new materials are promising for 

engineering of new spintronic devices. In this context the problem of local magnetic 

properties can be one of the most important in the physics of these materials.  

 

It is known that magnetic properties of Heusler alloys are strongly dependent on 

both the conduction electron concentration and chemical bonding. For example Mn-

based compounds demonstrate rather localized magnetism due to configuration of Mn 

d-orbitals [9,13,14] whereas Co-based compounds show more itinerant behavior.[15] 

So-called full-Heusler alloys with a general formula unit of X2YZ, here X and Y 

denote the transition metals and Z is s-p element such as Al, Ga, Sn, Sb, etc., are 

studied also with respect to the transition from the ferromagnetic phase to an 

antiferromagntic one with changing of the concentration of the carriers. Half-metallic 

Heusler ferromagnets (XYZ) have an energy gap for minority spin bands and the 

conduction electrons at the Fermi level (EF) show 100% spin polarization and can be 

used as spin-polarized electron sources along with metal oxides and III–V group 

semiconductors. It is known that the full-Heusler alloys such as Co2MnZ with Z is Si, 

Ge demonstrate half-metallic behavior also. 
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The magnetic properties of the Heusler alloys are very sensitive to the local 

geometry and chemical composition. In order to understand the dependence of 

magnetic properties on the atomic composition and crystal structure the ab-initio 

investigation of the electronic structure can be very useful. 

 

The Ni2MnGa remains most investigated Heusler alloy by both experimental 

and theoretical approaches. It is known from the literature that the physical properties 

of this alloy very sensitive to structural disorder and deviations from stoichiometric 

composition. At present exist several band structure calculations of Ni2MnGa which 

were performed using different ab-initio techniques, in particular augmented spherical- 

wave method [9] full-potential linearized augmented-plane-wave method [12,15] 

pseudo potential plane-wave approach [16] etc. Less attention was paid to other alloys 

but a number of the theoretical investigations of the full-Heusler alloys are sharply 

increased.[17] The similar tendency is observed for half-metallic Heusler 

alloys.[18,19] The calculations were mainly performed using the local spin density 

approximation (LSDA), which are known to be underestimated lattice constants and 

provide smaller magnetic moments. 

 

In present thesis we report the results of ab-initio calculations of the electronic 

structure and structural and magnetic properties in different series of full and half-

Heusler alloys based on Mn, focusing on the effects of their composition and s-p Z 

atom and extend our study on the half-Heusler CoMnTe and RuMnTe alloys also 

using the full-potential approach within the generalized gradient approximation (GGA) 

for exchange correlation potential. 

 

In the chapter II, we will deal with the general properties of the full and the 

half-Heusler alloys, from a theoretical and experimental point of view. A review of 

what has been already published will be presented.  
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______________________________________________________ General introduction 

 

 

Before starting our discussion about these systems, it is appropriate to point out 

the differences between full-Heusler and half-Heusler and explain shortly their 

properties, in order to approach the argument in a systematic way. In order to show the 

importance of these materials we mentioned in this part briefly their different fields of 

application. 

 

In the chapter III, we recall the principle of the Density Functional Theory, The 

Local Density Approximation LDA, The Generalised Gradient Approximation GGA 

and the FP-LAPW computational approximation 

 

In the chapter IV, the First-principles spin polarized density functional theory 

(DFT) investigations of the structural, electronic, magnetic and thermodynamics 

characteristics of the half-Heusler, CoMnTe and RuMnTe, compounds are carried out. 

The calculations are accomplished within the state of the art full-potential (FP) 

linearized (L) augmented plane wave (APW) computational approximation. The 

generalized gradient approximation (GGA) parametrized by Perdew, Burke and 

Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of 

total energy calculation. 

 

Finally, in the last part, we summarized the main results and we shall conclude 

that this work opens interesting perspectives, including the study of a several 

properties in order to use this type of materials in the technological applications.  
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2 Full and half-Heusler alloys 

 

2.1 Areas of technological application 

ince the discovery of giant magnetoresistance (GMR) spintronics has 

become a field of intense commercial and research interest. A 

magnetoresistive sensor can be found in the read head of every hard disk drive sold 

every year. The field of spintronics continues to grow with renewed interest and vigour 

as second generation magnetic random access memory (MRAM) becomes 

commercially viable. All spintronic devices need a source of spins. This is usually in 

the form of a ferromagnet. However, these typical transition metal ferromagnets have 

low spin polarisation or low spin injection efficiency, typically less than 50%. Half-

metallic ferromagnets are a leading candidate to replace current materials and offer 

much greater spin polarisation, possibly up to 100%. However there are a number of 

key issues that must be overcome before these films can be used in commercial 

devices.  

 

2.1.1 Spintronics  

Today the integrated circuit and semiconductors are the backbone of modern 

technology. Complementary metal-oxide-semiconductor (CMOS) and metal-oxide-

semiconductor field effect transistor (MOSFET) technologies form the building blocks 

of this backbone [1]. In recent years there have been a number of astonishing advances 

in this technology, driven by advances in the scalability of these devices. The drive 

towards the current state of technology is due to Moore’s law [2] which states that the 

number of transistors on a single chip doubles every 18 months. This has held true for 

over 30 years to the point where today’s most advanced home computer components 

have 7.1bn transistors per chip [3].  
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However, this trend cannot continue. We are approaching the physical limit 

where these devices can function, either due to high leakage currents [4] or simply the 

limitations of lithography to pattern them. This technological advancement is mirrored 

in the magnetic storage industry where the same trend is seen for areal density, 

information stored per unit area. However this is beginning to plateau due to material 

limitations in both the hard disk and the read head sensor. New technologies are 

required to overcome these difficulties and continue the technological advance.  

Spin-electronics is a promising candidate to allow further development of 

current semiconductor technologies as it is widely used in the hard disk industry for 

read head sensors. This means that the processes for commercialising spintronics are 

already in-place. To improve spintronic devices beyond their current limitations new 

materials and device technologies must be implemented. Spintronics is a field 

comprising many sub disciplines although these can be broadly divided up into 

semiconductor spintronics [5] and magnetoelectronics [6,7]. The latter is concerned 

with all metallic systems such as magnetoresistive devices. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Schematic diagram of Datta-Das Spin FET. [8]  

Source Drain 

Gate 

Spin Injection Spin 
Detection 

Spin 
Manipulation 
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___________________________________________________________ Spintronics 

 

 

Spintronics is based around the concept of using quantised angular momentum, 

spin, of an electron instead of or as well as its charge. Although the effects of the spin 

of the electron had been observed experimentally in the late 19th century it was not 

defined until the early 20th century by Dirac. In 1857 Lord Kelvin (formally W. 

Thomson) observed anisotropic magnetoresistance (AMR) [9]. AMR is the directional 

dependence of the resistivity of a material relative to a magnetic field. AMR is one of 

many forms of magnetoresistance. Since these early observations of spin dependent 

electron transport many different devices have been designed and fabricated all using 

slightly different spin dependent phenomena. The most basic and best example of the 

requirements of a spintronic device is the spin field effect transistor (SpinFET) as 

designed by Datta and Das [8], shown in Figure 2.1.  

This work is primarily concerned with the spin source where a high spin 

polarisation is required. The simplest spin source is a typical ferromagnet interfaced 

with non-magnetic metal or semiconductor. The Heusler alloys used in this work are 

intended for use in such a spin source. However spin generation has also been 

achieved through the manipulation of magnetisation dynamics, resulting in a 

phenomenon known as spin pumping [10].  

 

2.1.2 Magnetoresistance  

Although AMR was discovered in 1857 it was mainly of academic importance 

due to it only having a small effect (a few per cent). It was used for a number of early 

hard disk designs until superseded by the discovery of other magnetoresistive effects 

such as giant magnetoresistance (GMR).  

GMR was discovered in 1988 through electrical magnetotransport 

measurements of ferromagnetic/non-magnetic/ferromagnetic multi-layered systems. 

This was an attempt to further understand the dependence of interlayer exchange 

coupling on the spacer thickness in thin film multilayers [11]. 
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Grünberg [12] and Fert [13] discovered the effect simultaneously while 

measuring Fe/Cr/Fe superlattices spaced sufficiently to induce antiferromagnetic 

coupling between the two Fe layers. The pair received the Nobel prize in Physics for 

their discovery in 2007. In their initial publications both observed a large change in 

resistance for the structures when the spaced magnetic layers were changed from anti-

parallel to parallel alignment.  

This was explained using the two current model initially proposed by Mott in 

1936 [14,15]. Simply that the current through a transition metal can be separated into 

two spin channels. This model has since been extended by Campbell [16] and Fert 

[17] to include a large number of different electron scattering terms that provide better 

agreement with the experimental data. This effect in a GMR multilayer is often best 

explained pictorially as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

FiG. 2.2 : Schematic of the GMR effect [18].  
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For the parallel aligned case, one spin channel experiences small or no spin 

scattering through both ferromagnetic layers. This leads to a low resistance state. In 

the anti-parallel aligned case, both spin channels experience spin scattering in one of 

the ferromagnetic layers leading to a high resistance state. Initially this effect was 

small (1.5% at room temperature) [12]. Since its discovery, large developments have 

seen the magnitude of the GMR effect increase to 34% at room temperature [19]. 

There have also been demonstrations of the effect in two different orientations, known 

as current-in-plane (CIP) and current-perpendicular-to-plane (CPP) [18]. These two 

orientations have a number of different properties, however CPP-GMR is the current 

focus of much research interest due to its applicability to current generation MRAM.  

If the non-magnetic spacer is replaced by a non-metallic spacer then another 

phenomenon known as tunnelling magnetoresistance (TMR) can occur. This was first 

observed by Julliere in 1975 [20] with a resistance change of 14% between parallel 

and anti-parallel states at 4.2K. It was not until the early 1990s that this effect was 

observed at room temperature, initially by Miyazaki (18%) [21] and then by Moodera 

(11.8%) [22]. These experiments used amorphous insulating spacers such as AlOx 

however, since the pioneering theoretical work of Butler in 2001 [23], there has been 

much greater interest in using crystalline MgO barriers. These were predicted to allow 

TMR ratios of over 1000%. Experimentally, values of 600% at room temperature have 

been achieved by Ikeda et al. using CoFeB/MgO/CoFeB multilayer films [24]. 

Although similar in many ways to GMR, TMR is fundamentally quite different. 

TMR depends on the conduction states available to tunnel into across the 

barrier, not just the spin dependent scattering within the electrodes. This is shown 

schematically in figure 2.3. For the parallel orientation there are a large number of 

majority conduction states and majority valance states resulting in a large electron 

flow and thus low resistance. For the anti-parallel orientation there are fewer majority 

and minority states resulting in a high resistance.  
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This makes TMR dependent upon the number of available states for each spin 

direction at the Fermi energy or the spin polarisation, equation 2.1. 

 

��� = ∆	
	 = 
���

�����
                                                                                                              (2.1)  

where P1 and P2 are the spin polarisations of ferromagnetic layers in the junction. This 

means that for the most of the Heusler alloys the achievable TMR should be extremely 

high due to large values of spin polarisation from these materials. 

 

Fig. 2.3 : Schematic of the TMR effect. 
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2.1.3  Spin Transfer Torques  

The most promising new spintronic technology is MRAM. This will potentially 

replace current semiconductor based dynamic random access memory (DRAM). 

MRAM has a large number of advantages, most importantly it is non-volatile. This 

means that when the power is turned off the information is retained. 1st generation 

MRAM used the Oersted field generated by a current carrying wire to write 

information to an array of magnetic spin valves. The 2nd generation of MRAM will 

use a phenomenon known as spin-transfer-torque (STT) as a much more efficient way 

to write data.  

STT was first considered as a way to reverse the magnetisation in a magnetic 

multilayer by Slonczewski [25]. However the effect of spin transfer had been 

introduced by Berger 12 years earlier [26]. STT is easiest to consider in the case of a 

ferromagnetic/non-magnetic/ferromagnetic junction like those used for GMR. The two 

ferromagnetic layers have their magnetisations aligned at an angle to one another. 

When electrons flow into the junction they are initially aligned or polarised to the 

direction of the magnetisation in the first ferromagnetic layer. When the electrons then 

travel to the second ferromagnetic layer their spins align with the magnetisation of that 

layer. However as the spins align to the new direction of magnetisation they exert a 

torque on that magnetisation. This is the spin transfer torque. Figure 2.4 shows this 

effect schematically. 

If a sufficient number of electrons are injected into the second ferromagnetic 

layer the torque can be large enough to overcome the torque due to the magnetisation 

of the material and as a result align the magnetisation of the second ferromagnetic 

layer M2 with that of the first M1. It is also possible to reverse the direction of M2 back 

to its original state by injecting the electrons in the opposite direction. In this situation 

the spins align with M2 and are then injected into M1. However, those spins aligned 

antiparallel to M1 are reflected back at the interface and injected back into the second 

ferromagnetic layer where they once again exert a torque on M2.  
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Thus the magnetisation in one ferromagnetic layer can be switched by changing 

the polarity of the applied voltage. The form of the spin transfer torque is given by 

equation 2.2 [10]: 

���� = �� × ��� ×�
��
���
����

�                                                                                        (2.2) 

Here the cross products of the magnetisations M1 and M2 give the direction of 

the torque. The magnitude of the torque is then dictated by the spin polarisation of the 

ferromagnets P, the saturation magnetisation Ms, the volume of the magnetic layer on 

which the torque is acting V and the current applied to the junction I. γgm is the 

gyromagnetic ratio. The dependence of STT on the spin polarisation of the electrodes 

makes Heusler alloys a promising candidate for use in these devices due to their high 

spin polarisation. A detailed examination of spin transfer torques in a large number of 

systems can be found in Maekawa [27]. 

 
 Fig.2.4 : Schematic diagram of the spin transfer torque effect on magnetisation in a 

FM/NM/FM junction.  
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2.1.4  Half Metallic Ferromagnets  

Half metallic ferromagnets (HMF) are a possible route to highly spin polarised 

materials. This class of materials was initially proposed by de Groot et al. [28] in the 

early 1980s. In conventional ferromagnets, the spin polarisation arises from an im-

balance in the density of states for up (majority) and down (minority) spin electrons. In 

HMFs the conduction properties for the minority channel are completely different to 

that of the majority spin channel. The majority band has filled electron states up to the 

Fermi energy giving metallic conduction while the minority states have a band gap 

resembling a semiconductor. This is shown schematically in Figure 2.5. 

Since the original studies of half-metallic ferromagnetism on NiMnSb [28] a 

large number of compounds have been found to be half metallic. Many of these are 

complex alloys, predominantly Heusler alloys [29-31] although half-metallic 

ferromagnetism has been shown in CrO2 [32] and even predicted in graphene [33]. 

Because of these unusual conduction properties HMFs could potentially provide a 

material with 100% spin polarisation. This would provide extremely high values of 

TMR and GMR (TMR 832% [34] and GMR of 80% [19]) as well as large spin transfer 

torques for future spintronic devices. A more detailed discussion of the origin of this 

half metallicity in Mn-based Heusler alloys can be found in chapter 4.  

 

Fig. 2.5: Schematic diagrams of the band structures for a ferromagnet and a half 
metallic ferromagnet. 
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2.1.5 Heusler Alloys in Magnetoresistive Devices  

Since the discovery of half metallic ferromagnetism in a number of Heusler 

alloys they have been a field of great research interest for spintronic devices. Co-based 

Heusler alloys are of particular interest due to their high magnetic moment and Curie 

temperature, as well as their predicted 100% spin polarisation. Alloys of          

Co2(Mn1-xFex)Si [35], Co2Fe(Al1-x,Six)[34] and Co2MnGe [36] have found application 

in many different devices.  

The properties of Heusler alloy devices are extremely dependent upon their 

structure. This includes the Heusler film itself as well as any effects from those films 

around it. As such, many different structures and growth methods have been used to 

optimise these properties. Initially, Co2FeSi films deposited on V buffered Si 

substrates resulted in reasonable values of TMR of up to 52% at 16K (28% at room 

temperature) [37]. However this has been improved using Co2FeSi/Co2MnSi multi-

layered electrodes [37]. Improved values from single layer Co2FeSi electrodes have 

been achieved using MgO substrates and crystalline MgO tunnel barriers (TMR = 42% 

at RT) [38]. The real improvements to these values have occurred since the 

optimisation of the alloy composition to Co2FeAl0.5Si0.5.  

Co2FeAl0.5Si0.5 is optimised so that the Fermi energy lies in the middle of the 

minority band gap resulting in much improved spin polarisation (90%) [39,40]. 

Optimisation of both the alloy and the deposition conditions has led to the highest 

reported value of TMR in a Heusler alloy system, 832% at 9K and 386% at 300K [34]. 

GMR structures have also been created using Co2FeAl0.5Si0.5 electrodes with 

both Ag [41,42] and Cr [43] spacers. Extremely high values of GMR, 80% at 14K 

(34% at room temperature), have been achieved in these systems [41]. Magnetisation 

switching through spin transfer torque has also been observed in these structures with 

critical current densities for switching as low as 106 A/cm2 [42]. However, all these 

devices have a number of flaws for commercial applications.  
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The main problems are the high temperatures required to crystallise the Heusler 

alloy electrodes as well as the UHV deposition conditions. Recently, polycrystalline 

films have been used in device structures resulting in GMR values of up to 10% at 

room temperature. These films have significant advantages of reduced fabrication 

temperatures as well as much lower resistance values (30mΩμm2) [44]. 

 

2.2  Theoretical and experimental background 

In this chapter we will deal with the general properties of the full and the half-

Heusler alloys, from a theoretical and experimental point of view. A review of what 

has been already published will be presented. Before starting our discussion about 

these systems, it is appropriate to point out the differences between semimetals and 

half-metals and explain shortly their properties, in order to approach the argument in a 

systematic way. 

 

2.2.1 Semimetals and half-metals 

A semimetal is defined as a material which presents a small overlap in the 

energy of the conduction band and valence bands. One band is almost filled whereas 

the other band is nearly empty at zero temperature. Each atom is positioned closer to 

three of its neighbor atoms than to the rest. As an example, the structure of antimony 

and arsenic is composed of spheres that intersect along at circular areas. The covalent 

character of the bonds joining the four closest atoms is linked to the electronegative 

nature of the semimetals, reflected by their position in the periodic table. They lie 

between metals and non metals. Members of this group are fairly brittle, and do not 

conduct heat and current as well as the native metals. The bond type suggested by 

these properties is intermediate between metallic and covalent; it is consequently 

stronger and more directional than pure metallic bonding, resulting in crystals of lower 

symmetry. The classic semimetallic elements are arsenic, antimony and bismuth.  
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These are also considered metalloids but the concepts are not synonymous. 

Semimetals, in contrast to metalloids, can also build compounds such as HgTe; tin and 

graphite are typically not considered metalloids. The electronegativities and ionization 

energies of the metalloids are between those of the metals and nonmetals, so the 

metalloids exhibit characteristics of both classes. Silicon, for example, possesses a 

metallic luster, though it is an inefficient conductor and is brittle. The reactivity of the 

semimetals depends on the element with which they react. For example, boron acts as 

a nonmetal when reacting with sodium and as a metal when reacting with fluorine. The 

boiling points, melting points, and densities of the semimetals vary widely. The 

intermediate conductivity of semimetals means that they tend to make good 

semiconductors. 

A half-metal is defined as a ferromagnetic metal showing a band gap at the 

Fermi energy for one spin direction. Consequently, only charge carriers of one spin 

direction contribute to the conduction. Since the band gap is the essential ingredient in 

half-metals, it is important to consider its origin. Dozens of half-metals are known by 

now. 

Three categories can be distinguished on the basis of the nature of the band gap: 

(1) half-metals with covalent band gaps; (2) Charge transfer band gaps, and (3) d - d 

band gaps. This distinction is important because the origin of the half-metallicity is 

different in each category. Hence the influence of external perturbations (e.g., 

pressure) is different as well as the sensitivity to disorder, behavior at surfaces and 

interfaces, etc. A description of the three different categories follows below. 

 

2.2.1.1  Covalent band gaps 

The origin of the band gap in these materials is strongly related with the well 

known semiconductors of group III-V type, like GaAs. A well known example is 

NiMnSb. It crystallizes in the half-Heusler structure "C1b", which is closely related 

with the zincblend structure: one of the empty positions is occupied by the third 

constituent, Ni in this case, and both Mn and Sb have to occupy sites with tetrahedral  
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coordination. The presence of occupied d minority states is essential in these materials: 

half-metals of this category are weak magnets. 

 

2.2.1.2 Charge-transfer band gaps 

This category is found in strongly magnetic compounds, where the d bands of 

the transition metals are empty for the minority spin direction and the itinerant s,p 

electrons of the transition metals have been localized on the anions. Examples of half-

metals in this category are CrO2, the colossal magnetoresistance (CMR) materials and 

double perovskites such as La0.7Sr0.3MnO3. The presence of band gaps in these 

materials is not very dependent on the crystal structure. Compounds in this category 

are strong magnets. 

 

2.2.1.3 d-d band gap 

Half metals in this category show rather narrow bands, so that gaps occur 

between crystal- field split bands. The exchange splitting can be such that the Fermi 

level is positioned in a gap for one spin direction only. These materials are weak 

magnets by definition. Examples in this category are Fe3O4, FexCo1-xS2 and Mn2VAl. 

 

As a comparison, in figure 2.1 we show the band structures of three half metals, 

each of them belonging to one of the different categories described above. The images 

were taken from refs [45], [46], respectively. In figure 2.1.a the band structure for 

NiMnSb is shown. This system crystallizes in the structure C1b. As we will see later 

on, also another Heusler structure exists (called L21), where the fourth position is 

filled. If this is the case, compounds like Ni2MnSb, which is a normal ferromagnet, can 

result. According to what has been studied by Weht et al. [45], the half metallic 

properties of NiMnSb should be attributed to the lower density with respect to 

Ni2MnSb. 
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In figure 2.1.b the structure of CrO2 is presented. As already stated, this system 

is a strong ferromagnet and shows for the minority channel a clear gap between the 

empty and nonempty states at the Fermi level. CrO2 crystallizes in the rutile structure. 

This structure allows for stoichiometric (001) surface, which is unlikely to reconstruct 

or to show surface segregation. Calculations show two oxygen-derived surface states 

in the band gap for the minority spin direction, but these states are located well below 

the Fermi energy and do not corrupt the half-metallic properties at the surface. 

Experimentally CrO2 shows the highest degree of spin polarization of all 

materials studied by Andreev reection. As a third example we show the band structure 

calculations for Mn2VAl [ 46]. We notice that the majority and minority bands, within 

1 eV of the Fermi level are very different.  

 

FiG. 2.6 : Band structures of (a) NiMnSb, (b) CrO2, (c) Mn2VAl. 
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In figure 2.2 we observe the different materials which are commonly classified 

as half-metals. They can assume different structures known as rutile, zincblend, spinel, 

perovskite and Heusler. We will focus our attention on the Heusler alloys, since most 

of this thesis work has been devoted to them. 

 

Fig. 2.7: The tree of half metallic ferromagnets. 
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2.3 Stuctural properties of full and half-Heusler alloys 

The discovery of Heusler alloys dates back to 1903 when A. Heusler reported 

that the addition of sp elements (Al, In, Sn, Sb or Bi) in a Cu-Mn alloy turn it into a 

ferromagnetic material, even though no ferromagnetic element was contained [47]. 

The basic understanding of crystal structure and composition of these alloys remained 

unknown for a long time. In 1929 X-ray measurements of Potter [48] on a Cu-Mn-Al 

alloy revealed that all constituents of this system were ordered in a fcc lattice. Bradley 

and Rodgers [49] investigated the Cu-Mn-Al system in detail using X-ray and 

anomalous X-ray scattering. 

 

They established a relationship between composition, chemical order and 

magnetic properties. After a successful interpretation of the crystal structure numerous 

investigations were made on these systems. It was found that the Heusler structure is 

formed essentially from the ordered combination of two binary B2 compounds XY and 

XZ. Both compounds may have the CsCl type crystal structure, for instance CoMn and 

CoAl yield Co2MnAl. Thus the ability of compounds to form B2 structure indicates 

the possibility of forming new Heusler compounds. It was also discovered that it is 

possible to leave one of the four sublattices unoccupied (C1b structure). The latter 

compounds are often called half- or semi-Heusler alloys, while the L21 compounds, 

where all four sublattices are occupied are referred to as full-Heusler alloys. Extensive 

experimental studies showed that the majority of Heusler compounds order 

ferromagnetically in stoichiometric composition. Crystal structure, composition and 

heat treatment were found to be important parameters for determining magnetic 

properties. 
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Fig. 2.8 : Structure of full and half-Heusler  

 

With the discovery of half-metallic ferromagnetism in NiMnSb and the 

observation of shape memory effect in Ni2MnGa compound, Heusler alloys received 

tremendous experimental and theoretical interest. In the following we will briefly 

present the previous experimental and theoretical studies on structural and magnetic 

properties of Heusler alloys. Also, an overview of the experimental and theoretical 

studies in literature will be given. 
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Fig. 2.9 : (a) L21 full-Heusler and (b) C1b half-Heusler ordered structures. The 
structure consists of 4 interpenetrating fcc lattices. In the case of the half-
Heusler alloys one of the four sublattices is empty. One notices that if all 
atoms are identical, the lattice is simply bcc.  

 
 

Heusler alloys are ternary intermetallic compounds. At the stoichiometric 

composition, the full Heusler alloys X2Y Z and the half-Heusler XYZ crystallize in the 

L21 and C1b structures, respectively. The elements associated with X and Y are 

transition metal elements; the atom which sits in position Z is non-magnetic. The unit 

cell consists of four interpenetrating fcc sublattices with the positions (000) and           

( 
�

 ,

�

 ,

�

) for X, ( 

�
� ,

�
� ,

�
�) for Y and (

 
� ,
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� ) for Z atom. The site (

�

 ,

�

 ,

�

) is empty in 

half-Heusler compounds as shown in the figures 2.8 and 2.9. The two structures are 

closely related with vacant site.  
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The C1b structure can be obtained from the L21 one by replacing the half of the 

X sites in an ordered manner. In most of the Heusler alloys Mn enters as the Y 

element. The compounds where Mn occupies the X positions are very rare: Mn2VAl 

[50] and Mn2VGa [51, 46] are two examples.  

 

2.4 Magnetic properties of Heusler alloys 

Heusler alloys are very interesting materials which possess attractive magnetic 

properties. One can study in the same family of alloys a series of interesting diverse 

magnetic phenomena like itinerant and localized magnetism, antiferromagnetism, 

helimagnetism, Pauli paramagnetism or heavy-fermionic behavior [52], [53], [54], 

[55]. 

 

2.4.1 Ferromagnets 

The majority of the full and the half-Heusler alloys order ferromagnetically and 

saturate in weak applied magnetic fields. If the magnetic moment is carried by Mn 

atoms, as it often happens in the alloys X2MnZ, a value close to 4µB is usually 

observed. Although they are metals, these compounds have localized magnetic 

properties and are ideal model systems for studying the effects of both atomic disorder 

and changes in the electron concentration on magnetic properties. In order to reveal the 

role played by the 3d (X) and sp (Z) atoms on the magnetic properties of Heusler 

alloys, extensive magnetic measurements have been performed on quaternary Heusler 

alloys [57]. It has been shown that sp electron concentration has a primary importance 

in establishing magnetic properties, inuencing both the magnetic moment formation 

and the type of the magnetic order.  

 

2.4.2 Antiferromagnets and ferrimagnets 

Although the majority of Heusler alloys are ferromagnetic, some of them order 

antiferromagnetically, in particular those compounds containing 3d element in which 

the magnetic moment is only carried by Mn atoms at the Y site.  
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Experimentally, antiferromagnetic order is measured both in half-Heusler (C1b 

structure) and in full-Heusler alloys (L21 and B2 structure). Antiferromagnetism is 

more favorable in full Heusler alloys presenting B2-type crystal structure due to 

smaller interatomic Mn-Mn distances. Antiferromagnetic behaviour has been reported 

in several B2-type disordered X2MnZ (X=Ni, Pd; Z=Al,In) Heusler alloys [57]. The 

situation is different in half-Heusler alloys. Due to large Mn-Mn distances in C1b 

structure the antiferromagnetic interaction between Mn atoms is assumed to be 

mediated by intermediate atoms (X or Z). Ferrimagnetic ordering (antiferromagnetic 

coupling of X and Y atoms) is very rare in Heusler alloys compared to ferromagnetic 

or antiferromagnetic order, though ferrimagnetism has been detected in CoMnSb, 

Mn2VAl and Mn2VGa compounds. Mn2VAl received much experimental attention, 

because it is among the few Heusler alloys where Mn sits in the X position. This 

compound is somewhat peculiar regardless of its detailed electronic structure: while 

there are many Heusler compounds of the form X2YZ where Y is Mn, in this 

compound the X site is occupied by Mn. When Mn sits on the Y site, it has a spin 

around 4!B, while when sitting on the X site (which is the case for Mn2VAl) it has a 

lower spin moment, in agreement with LDA calculation. Although V and Al atoms 

may substitute on each others sublattice, in the system Mn2V1-xAl 1-x the lattice constant 

and x-ray intensities show a kink at x = 0, clearly identifying the stoichiometric 

composition. The structure remains the Heusler one from x between -0.3 and +0.2, 

with linearly varying saturation moment. At stoichiometry the saturation moment is 

reported to be 1.9!B , close to the integral value characteristic of the spin moment of 

half-metallic magnets and the Curie temperature is TC = 760K. 

 

2.5 band structure calculations 

The band structure calculations of Heusler alloys has been initiated by Ishida et 

al., in the early eighties. The authors used non-self-consistent spherical augmented 

plane wave method (SAPW) to study electronic structure of Ni2MnSn, Pd2MnSn [62] 

and Cu2MnAl [ 63]. 
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In 1983 Kübler et al., gave a detailed study on the formation and coupling of the 

magnetic moments in several Heusler alloys using self-consistent augmented spherical 

wave method (ASW) [64]. In the same year de Groot et al., [65] discovered the half-

metallic ferromagnetism in semi Heusler compounds NiMnSb and PtMnSb. Since then 

many efforts have been devoted to the study of electronic and magnetic properties of 

these systems on the basis of band structure calculations. Here we would like to 

present the theoretical explanations given in literature, which should help us to clarify 

the behaviour of these systems, starting from a theoretical background. 

 

The origin of ferromagnetic behaviour in Heusler alloys is rather complicated 

and the mechanisms of magnetic moment localization in transition metals (and their 

alloys) is one of the most interesting problems in modern magnetism. The picture that 

emerged from the systematic calculations of Kübler et al. of the microscopic 

mechanism responsible for the formation of magnetic moments in these systems is that 

the magnetization is very much confined to the Mn atoms. The localized character of 

the magnetic moment results from the fact that the large exchange splitting of the Mn 

d states implies that Mn atoms support d states of only one spin direction. In the 

ferromagnetic state the spin-up d electrons of the Mn atom hybridize with those of the 

X atoms in forming a common d band, but spin-down d electrons are almost 

completely excluded from the Mn sites. Thus we are left with the completely localized 

magnetic moments composed of completely itinerant electrons. Using the calculated 

total energies, it was possible to compare the relative stability of various magnetic 

phases (one ferromagnetic phase and two different antiferromagnetic ones) for a 

number of Heusler compounds [64] and study the coupling of magnetic moments. 

Based on these results, it was found that there is no significant direct interaction 

between the d states on different Mn atoms.  
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2.5.1 Half-metallic ferromagnetism 

The concept of half-metallic ferromagnetism was introduced by de Groot et al., 

on the basis of band structure calculations in NiMnSb and PtMnSb semi Heusler 

compounds [64]. In these materials one of the spin sub-bands (usually majority spin 

band) is metallic, whereas the Fermi level falls into a gap of the other sub-band. Ishida 

et al. have proposed that also the full-Heusler alloys of the type Co2MnZ, (Z=Si,Ge) 

are half-metals. Since then a number of further systems were predicted to be half-

metallic. Among them the binary magnetic oxides (CrO2 and Fe3O4), colossal 

magnetoresistance materials (Sr2FeMoO6, CrO2 and La0,7Sr0,3MnO3), diluted magnetic 

semiconductors (GaAs, Ga1-xMnxAs) and zinc-blende compounds MnAs and CrAs. 

 

2.5.2 Origin of the half-metallic gap 

The half-metallic ferromagnetism of Heusler alloys is intimately connected to 

their C1b crystal structure and consequently to the symmetry of the system. Due to a 

vacant site at the position (1/2,1/2,1/2) in the C1b crystal structure the symmetry of the 

systems is reduced to tetrahedral from the cubic in the case of L21 type full Heusler 

alloys. As described by Galanakis et al. [66] the gap arises from the covalent 

hybridization between the lower-energy d states of the high-valent transition metal 

atom (like Ni or Co) and the higher-energy d states of the lower-valent atom, leading 

to the formation of bonding and anti-bonding bands with a gap in between. The 

bonding hybrids are localized mainly at the high-valent transition metal atom site 

while the unoccupied anti-bonding states are mainly at the lower-valent transition 

metal atom site. This is shown schematically in figure 2.10. All Mn atoms are 

surrounded by six Z nearest neighbors - for the Mn atom at the (0,0,0) these neighbors 

are at (1/2,0,0), (0,1/2,0); (0,0,1/2), (-1/2,0,0),(0, -1/2,0) and (0,0,-1/2). As a result the 

interaction of Mn with the Z sp states splits the Mn 3d states into a low-lying triplet of 

t2g states (dxy; dxz and a higher lying doublet of eg states dx2-y2 , d3z2-r2 ). The 

splitting is partly due to the different electrostatic repulsion, which is strongest for the 

eg states which directly point at the Z atoms.  
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In the majority band the Mn 3d states are shifted to lower energies and form a 

common 3d band with X (X=Ni, Co) 3d states, while in the minority band the Mn 3d 

states are shifted to higher energies and are unoccupied. A band gap at EF is formed, 

which separates the occupied d bonding states from the unoccupied d antibonding 

states as shown in the figure 2.10. 

For instance, in the compound NiMnSb the minority occupied bonding d states 

are mainly of Ni character while the unoccupied anti-bonding states are mainly of Mn 

character. These structures are particularly stable when only the bonding states are 

occupied. The p states strongly hybridize with the transition metal d states and the 

charge in these bands is delocalized. What counts is that the s and p bands 

accommodate eight electrons per unit cell, effectively reducing the d charge of the 

transition metals atoms. The sp-elements like Sb play an important role for the 

existence of the Heusler alloys with a gap at the EF. Thus NiMnSb is a half-metal with 

a gap at EF in minority band and a metallic DOS at the Fermi level in majority band. 

Also for systems with more (or less) than 18 electrons, the gap can still exist. 

 

Fig. 2.10: Illustration of the origin of the gap in the minority band in half-Heusler 

alloys, as described in ref. [66]. 
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The explanation of the valence and conduction bands given in ref.[66] is 

internally consistent. It explains the existence of exactly nine minority valence bands 

and simultaneously describes the magnetic properties of these compounds. With small 

modifications it can be also extended to explain the properties of the half-

ferromagnetic full-Heusler alloys like Co2MnGe. Nevertheless the Sb atoms or in 

general the sp atoms are important for the properties of the Heusler alloys. The 

calculated total magnetic moment is 4!B per unit cell and mostly located in Mn atom. 

NiMnSb has 22 valence electrons per unit cell, 10 from Ni, 7 from Mn and 5 from Sb. 

Because of the gap at EF , in the minority band exactly 9 bands are fully occupied      

(1 Sb-like s band, 3 Sb-like p bands and 5 Ni-like d bands) and the remaining 13 

electrons are accommodated in majority band, resulting in a magnetic moment of     

13-9=4µB per unit cell. Note that half-Heusler alloys like CoTiSb with 18 valence 

electrons show semiconducting behavior. It should be noted that the halfmetallic 

character of half-Heusler compounds is highly sensitive to the crystal structure and 

symmetry e.g., the cubic point symmetry at Mn sites in ordinary X2MnZ Heusler 

alloys gives rise to a symmetry of Mn-3d-t2g, states that is different from the 

symmetry of the Sb p states. Hence, these states do not hybridize, so that no gap is 

opened in the minority spin band. 

 

2.5.3 Slater-Pauling behavior 

The total moment of the half- and full-Heusler alloys follows the rule:             

M t = Zt - 18 (half) and Mt = Zt - 24 (full) where Zt is the total number of valence 

electrons [23]. Zt is given by the sum of the number of spin-up and spin-down 

electrons Zt = N↑ + N↓, while the total moment Mt is given by the difference              

M t = N↑ - N↓. Since 9 (12) minority bands of half (full) Heusler alloys are fully 

occupied, a simple rule of 18 (24) is obtained for half-metallicity in C1b-type (L21) 

Heusler alloys. This is analogous to the well-known Slater-Pauling behavior of the 

binary transition metal alloys. 
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Fig 2.11: Total spin moments for half- Heusler alloys  and full- Heusler  
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The dashed line represents the Slater Pauling behavior. The open circles 

indicate the compounds deviating from SP behavior. The difference with respect to 

these alloys is that in the half-Heusler alloys the minority population is fixed to 9 and 

12, so that the screening is achieved by filling the majority band, while in the 

transition metal alloys the majority band is filled with 5d states or completely empty 

and charge neutrality is achieved by filling the minority or majority states. Therefore 

in the transition metals alloys the total moment is given by Mt = 10 -Zt for the systems 

on the left side and Mt = Zt for the systems on the right side of the Slater-Pauling 

curve. For the half-metallic zinc-blende compounds like CrAs the rule is: Mt = Zt - 8, 

since the minority As-like valence bands accommodate 4 electrons. In all cases the 

moments are integer. In Figure 2.11 the calculated total spin magnetic moments for 

both Heusler alloys, plotted as a function of the total number of valence electrons, are 

gathered. The dashed line represents the rule Mt = Zt - 18 (Mt = Zt - 24) fulfilled by 

these compounds. The total moment Mt is an integer quantity, assuming the values 0, 

1, 2, 3, 4 and 5 if Zt > 18. In the case of full Heusler alloys (Zt = 24) Mt can also take   

-2, -1 and 6. The value 0 corresponds to the semiconducting phase [67]. 
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3 Density Functional Theory 

 

hysics and chemistry use a theory called Density functional theory (DFT), 

which is a quantum mechanical theory, to examine the electronic structure 

of many body systems, especially, atoms, molecules and the condensed phases. DFT is 

one of the most common and flexible technique obtainable in condensed matter 

physics, computational physics, and computational chemistry [1], due to its capability 

to deal with large numbers of electrons with complete precision [2]. 

Time-dependent density-functional theory (TDDFT) is the generalization of 

ground-state DFT to include time-dependent external potentials on electrons, and its 

formal validity was set up with the Runge- Gross theorem [3]. The analogous 

connection between time-dependent densities and time-dependent potentials for a 

given preliminary state guides to the time-dependent Kohn-Sham system, which is a 

set of no interacting presumptive electrons moving in a time-dependent Kohn-Sham 

potentials. 

TDDFT has been applied to many problems in atomic, molecular and solid state 

systems, including optical response, dynamic polarizabilities and hyper-

polarizabilities, excitation energies, species in intense laser fields and highly energetic 

collisions [4]. 

The principle of DFT is to illustrate an interconnecting system of fermions by 

means of its density and not by its many-body wave function [5]. While DFT chiefly 

gives a good explanation and portrayal of ground state qualities. Practical applications 

of DFT rely on rough calculations for the so-called exchange-correlation probability. 

The exchange-correlation probability portrays the influences of the Pauli principle and 

the Coulomb possibility beyond a pure electrostatic interaction of the electrons. The 

precise exchange-correlation probability gives a solution of the many-body problem 

precisely, which is obviously not possible in solids [6]. 
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In spite of the fact that density functional theory has its theoretical roots in the 

Thomas-Fermi model, it was put on a solid hypothetical foundation by the two 

Hohenberg-Kohn theorems (H-K) [7]. The original H-K theorems held only for non-

degenerate ground states in the absence of a magnetic field, although they have since 

been generalized to include them [8]. 

The ground state properties of a many-electron system are exclusively decided 

by an electron density that depends only on 3 spatial coordinates, this is shown in the 

first H-K theorem. It puts down the base work for reducing the many-body problem of 

N electrons with 3N spatial coordinates to only 3 spatial coordinates, by the use of 

functional of the electron density. This theorem can be expanded to the time-

dependent sphere to build up time-dependent density functional theory, which can be 

applied to portray stimulated conditions. The second H-K theorem defines an energy 

functional for the system and gives evidences to prove that the proper ground state 

electron density reduces this energy functional [1]. 

The intractable many-body problem of interacting electrons in a static external 

potential, within the framework of Kohn-Sham DFT(KSDFT), is reduced to a tractable 

problem of non-interacting electrons moving in an effectual potential. The effective 

potential contains the external potential and the effects of the Coulomb interactions 

between the electrons, e.g., the exchange and correlation interactions. Modeling the 

latter two interactions becomes the difficulty within KS DFT. The simplest rough 

calculation is the local-density approximation (LDA), which depends on precise 

exchange energy for a uniform electron gas, which can be obtained from the Thomas-

Fermi model, and from fits to the correlation energy for a uniform electron gas. 

 

3.1  The Hohenburg-Kohn Theorems 

Hohenberg and Kohn [6] were the first to formulate the special place of DFT in 

1964 which becomes directly clear from the fundaments, Here a derivation of DFT and 

its formula.  
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The nuclei of the treated molecules or clusters, as usual in many body electronic 

structure calculations, are seen as fixed (the Born-Oppenheimer approximation), 

generating a static external potential V in which the electrons are moving. A stationary 

electronic state is then portrayed by a wave function �����, … . , ��	
 satisfying the 

many-electron Schrodinger equation: 

 

�� = ��� + �� + ����  

= �� − ℏ�2� ��� + � �����
 + � � ��� , ��!"	
�#!

	
�

	
�

$ � 

 = E �                                                                                                                             (3.1) 

 

Where � is the electronic molecular Hamiltonian, N is the number of electrons, � � is 

the N-electron kinetic energy, ��  is the N–electron potential energy from the external 

field, and �� is the electron-electron interaction energy for the N-electron system. The 

operators ��  and �� are so-called universal operators as they are alike for any system, 

while ��  is system dependent, i.e. non-universal. The differentiation between having 

separate single-particle problems and the much more complex many-particle problem 

stems from the interaction term ��. 

The many-body Schrodinger equations solved by many complicated technique 

based on the extension of the wave function in Slater determinants. While the easiest 

one is the Hartree-Fock technique, more sophisticated techniques are usually classified 

as post-Hartree-Fock techniques. However, the problem with these techniques is the 

vast computational effort, which makes it almost unfeasible to apply them competently 

to larger, more complicated systems. 
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Here DFT offers an attractive substitute, being much more adaptable as it 

provides a way to systematically map the many-body problem, with ��, onto a single-

body problem without ��. In DFT the key changeable is the particle density n(��) , 

which for a normalized is given by: 

 

%���
 = & ' ()�� ' ()�� … ' ()�	�∗� ������, … , ��	
��������, … , ��	
                             (3.2) 

 

This relation can be reversed, that is to say, for a given ground-state density 

n0(��) it is principally potential, to work out the equivalent ground-state wave function �+(���,..., ��	). That is to say, Ψ+is a sole functional of n0, �+ = �-%+. and as a result 

the ground-state expectation value of an observable /� is also a functional of n0 

 

O-%+. = 0�-%+.1 /�1�-%+.2                                                                                       (3.3) 

In particular, the ground-state energy is a functional of n0 

 3+ = 3-%+. = 0�-%+.1�� + �� + ��1�-%+.2  

        = 0�-%+.1��1�-%+.2 + 0�-%+.1��1�-%+.2 + 0�-%+.1��1�-%+.2 

     = ��-%+. + ��-%+. + ��-%+.                                                                                    (3.4) 

 

Where the contribution of the external 0�-%+.1�� 1�-%+.2 

The potential can be written clearly in terms of the ground-state density n0 

 �-%+. = ' ����
%+���
()�                                                                                          (3.5) 

 

More commonly, the contribution of the external potential 0�1��1�2 can be written 

clearly in terms of the density n, 

 

 



40 

 

__________________________________________________The Hohenburg-Kohn Theory 

 

 

�-%. = ' ����
%���
()�                                                                                              (3.6) 

 

As mentioned above, the functional T -%. and U -%. are called universal 

functional, whereas V -%. is called a non-universal functional, as it relies on the system 

under study. Having a definite system, i.e., having specified ��  , one then has to reduce 

the functional 

 3�%
 = �-%. + �-%. + ' ����
%���
()�                                                                    (3.7) 

 

In regards to n ( �� ), taking for granted one has got dependable terms for T(n) 

and U(n) . A successful reduction of the energy functional will produce the ground-

state density n0 and thus all other ground-state observables. 

The Lagrangian technique of undetermined multipliers [7] can be applied to 

solve the variation problems of minimizing the energy functional E(n). First, one takes 

into accounts an energy functional that doesn't clearly have an electron-electron 

interaction energy term, 

 

34-%. = 0�4-%.1�4� + ��41�4-%.2                                                                                  (3.8) 

 

where �4�  indicates the non-interacting kinetic energy and ��4 is an external 

effectual potential in which the particles are moving. Clearly, if ��4 is                  %4���
 = %���
 selected to be 

 ��4 = �� + �� + ��� − ��4
 (3.9) 

 

Consequently, one can solve the so-called Kohn-Sham equations of this 

assisting non-interacting system, 
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5− ℏ6
�7 �� + �4���
8 9����
 = :�9����
                                                                         (3.10) 

 

which produces the Φ< orbital that reproduce the density n(��) of the authentic 

many-body system. 

 

%���
 = %4���
 = �|9����
|�	
�                                                                                             �3.11
 

               

The effective single-particle potential can be written in more detail as 

 

�4���
 = ����
 + ' @6AB�C�D
|C�EC�D| ()�F + �GH-%4���
.                                                          (3.12) 

 

where the second term stands for the so-called Hartree expression portraying the 

electron-electron Coulomb repulsion, while the last expression �GH is called the 

exchange-correlation possibility. Here, �GH has all the many-particle interactions. 

Since the Hartree expression and �GH rely on n(��) , which relies on the Φ< , which in 

turn relies on ��4 , the problem of solving the Kohn-Sham equation has to be done in a 

selfconsistent way. One typically begins with an first guess for n(��) , then works out 

the equivalent ��4 and solves the Kohn-Sham equations for the 9� [1]. 

To conclude, techniques in DFT are complex and different, but can roughly be 

partitioned into three categories [8]: 

 

• Techniques that apply a local density rough calculation (LDA). The LDA is 

decided exclusively and based on the qualities of the electron density. The 

significant supposition of this approximation is that, for a molecule with many 

electrons in a gaseous state, the density is consistent throughout the molecule.  
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_______________________________________________The Hohenburg-Kohn Theory 

 

 

This is not the case for molecules, where the electron density is decidedly not 

consistent.  

This approximation does, however, work well with electronic band structures of 

solids, which illustrates the scope of energies in which electrons are allowed or not 

allowed . Outside of these applications, however, LDA's are not very acceptable. 

 

• Techniques that unite the electron density calculations with a gradient 

correction factor. A gradient in mathematics is a function that measures the rate  

of change of some property. In this case, the gradient seems to explain the non-

uniformity of the electron density, and as such is known as gradient-corrected. 

Another expression for this is non-local. 

 

• Techniques that are a mixture of a HF approximation to the exchange energy 

and a DFT approximation to the exchange energy, all united with a functional 

that has electron correlation. These Techniques are known as hybrid techniques, 

and are now the most common and popular DFT techniques used in practically. 

 

3.2 Kohn-Sham Equations 

A set of eigen value equations within density functional theory (DFT) are called 

Kohn Sham equations. As mentioned above , DFT tries to minimize a many-body 

problem for the N particle wave function �+����, … , ��	
 to one in terms of the charge 

density n(��) which relies on 3 variables, using the Hohenberg-Kohn theorems[9]. The 

total energy E of the system as a functional of the charge density can be written as: 

 3�%
 = ��%
 + ' �@IJ��
%��
(� + �K-%. + 3IL-%.                                              (3.13) 

 

where T is the kinetic energy of the system, Vext is an external potential acting 

on the system, and 
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_______________________________________________________Kohn-Sham Equations 

 

 

�K = @6
� ' A�C
A�CD
|CECD| (�(�F

                                                                                                     (3.14) 

 

Is the Hartree energy and Exc is the exchange-correlation energy. 

 

The straight forward application of this formula has two barriers: 

First, the exchange-correlation energy Exc is not known precisely, and second, 

the kinetic term must be created in terms of the charge density. As was first suggested 

by Kohn and Sham, the charge density n(r) can be written as the sum of the squares of 

a set of orthonormal wave functions 9���
:   
 

%��
 = �|9���
|�	
�                                                                                                              �3.15
 

 

The unit of charge density n(r) is (c/m3). 

Equation (3-15) represents the solution to the Schrodinger equation for N non-

interacting electrons moving in an effectual potential Veff (r) 

 

− ℏ6
�7 ��9���
 + �@OO���
9���
 = P�9���
                                                               (3.16) 

 

where the effectual potential is defined to be 

 

�@OO��
 = �@IJ��
 + Q� ' A�CD
|CECD| (�F + RSTU-A.RV                                                           (3.17) 

 

These three equations form the Kohn-Sham orbital equations in their standard 

form. This system is then solved iteratively, until self-consistency is approached. Note 

that the eigen values ε< have no physical meaning, only the total sum, which matches 

the energy of the entire system E through the equation [10]: 
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_______________________________________________________Kohn-Sham Equations 

 

 

 

3 = � P� − �K-%. + 3IL-%. − X Y3IL-%.
Y%��
 %��
(�	

�                                                      �3.18
 

   

Schematic representation of the self-consistent loop for solution of the Kohn-

Sham equations. Generally speaking one must repeat two such circles at once for the 

two spins, with the potential for each spin relying upon the density of both spins [11]. 

Practically, there are several distinct ways in which Kohn-Sham theory can be 

applied depending on what is being examined. In solid state calculations, the local 

density approximations are still commonly used along with plane wave basis sets, as 

an electron gas approach is more suitable for electrons delocalized through an infinite 

solid. In molecular calculations, however, more complicated functional are needed, 

and a huge variety of exchange-correlation functional have been developed for 

chemical applications. Some of these are incompatible with the uniform electron gas 

approximation, however, they must reduce to LDA in the electron gas limit. For 

molecular applications, in particular for hybrid functional, Kohn-Sham DFT 

techniques are usually applied just like Hartree-Fock itself [12]. 

 

The main difficulty with DFT is that the precise functional for exchange and 

correlation are not identified except for the free electron gas. However, rough 

calculations exist which allow the calculation of certain physical amounts rather 

precisely. In physics the most widely used approximation is the local-density 

approximation (LDA). 
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_______________________________________________________Kohn-Sham Equations 

 

 

 

 

 
 
 
 
 
 
 

Fig. 3.1: flow chart of solving the self-consistent Kohn-Sham equation 
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__________________________________________________Local Density Approximation 

 

 

3.3 Local Density Approximation 

One of the efficient rough calculation techniques for working out the exchange-

correlation term in the density functional theory (DFT) is the local density 

approximation (LDA). LDA has widely been applied to portray a variety of close-

ranged exchange-correlation interactions of, for instance, covalent bonding systems. 

However, LDA has serious limitation that this approximation cannot provide 

estimation to the long-ranged exchange-correlation interaction, as typified by the Van 

der Waals (VdW) interaction. The VdW interaction is one of the long-ranged 

electronic interactions which mainly add to the first stage of the material reactions 

such as the chemical reaction, crystal growth and physical absorption. To assess the 

VdW interaction, many efforts have been devoted to develop useful calculating recipes 

for the non-local exchange-correlation term [13]. 

 

Kohn and Sham applied LDA approximation to DFT [9]. The Hohenberg-Kohn 

theorem states that the energy of the ground state of a system of electrons is a 

functional of the electronic density, especially, the exchange and correlation (XC) 

energy is also a functional of the density (this energy can be seen as the quantum part 

of the electron-electron interaction). This XC functional is not identified accurately 

and must be approximated [6]. LDA is the simplest approximation for this functional, 

it is local in the sense that the electron exchange and correlation energy at any point in 

space is a function of the electron density at that point only. 

The XC functional is the total of a correlation functional and an exchange 

functional: 

 

3IL = 3I + 3L                                                                                                          (3.19) 

 

LDA uses the exchange for the uniform electron gas of a density equal to the 

density at the point where the exchange is to be assessed: 
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__________________________________________________Local Density Approximation 

 

 

3IL = ' ()�%���
 [E)@6
\] ^ �3_�%���

� )`                                                                     (3.20) 

 

In SI units, n(��) is the electron density per unit volume at the point �� ; and e is the 

charge of an electron [14]. 

While looking for the ways out to the system of Schrodinger equation: 

 

3��a
 = − ��7 ����a
 + ��a
��a
                                                                      (3.21) 

 

It is found that all amounts are represented as functional of the electronic PIL��
 

charge density. The significant point that makes this system easier to solve (or more 

accurately, needs less computation) than, for instance the Hartree-Fock equations, is 

that the efficient possibility is local. Therefore there is no more complication added in 

solving Schrodinger equation than there is in the Hartree approximation. Of course, 

this is only true if the exchange-correlation energy can be portrayed as a function of 

the local charge density. A technique of doing so is known as the local density 

approximation (LDA) [9]. As mentioned above in LDA, the exchange-correlation 

energy of an electronic system is built by taking for granted that the exchange-

correlation energy for each electron at a point �� in the electron gas is equal to the 

exchange-correlation energy for each electron in a identical electron gas that has the 

same electron density at the point �� . It follows that: 

 3IL-%���
. = ' PIL�%���
%���
(�                                                                               (3.22) 

 

So that 

  

bIL���
 = R-A�C�
cTU�A�C�

.RA�C�
                                                                                   (3.23) 
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__________________________________________________Local Density Approximation 

 

 

With 

 

PIL %���
" = PILde7�%���

                                                                                         (3.24) 

 

Where PILde7�%���

 is exchange-correlation energy in identical electron gas. 

Equation (3-24) is the supposition that the exchange correlation energy is purely local. 

Several parameterizations for PILde7�%���

exist, but the most commonly used is that of 

Perdew and Zunger [15]. This parameterisation is based on the quantum Monte Carlo 

calculations of Ceperley and Alder [16] on homogeneous electron gases at various 

densities. The parameterization uses interpolation formulas to link these precise 

outcomes for the exchange and correlation energy at many dissimilar densities. 

Adjustment to the exchange-correlation energy because of the inhomogeneities 

in the electronic charge density about �� are overlooked, in LDA,. Therefore, it may at 

first seem somewhat surprising that such calculations are so successful, when taking 

into account this inexact nature of the approximation. This can be to some extent 

ascribed to the fact that LDA gives the accurate sum rule to the exchange-correlation 

hole. That is, there is a total electronic charge of one electron excluded from the 

vicinity of the electron at ��. Endeavors to improve on LDA, such as gradient 

extensions to correct for in-homogeneities do not seem to show any enhancement in 

results got by the simple LDA. One of the reasons for this failure is that the sum rule is 

not obeyed by the exchange-correlation hole. 

The contributions of electron-electron interactions in N-electron systems are 

shown briefly in Figure (3.2). It demonstrates the conditional electron probability 

distributions n (r) of N-1 electrons around an electron with given spin located at r = 0. 

All electrons are dealt with as independent, in the Hartree approximation [19], 

Figure (3-2a), therefore is structureless. Figure (3-2b) stands for the Hartree-Fock 

approximation where the N-electron wave function reflects the Pauli exclusion 

principle.  
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__________________________________________________Local Density Approximation 

 

Around the electron at r = 0. The exchange hole can be seen where the density 

of spins equal to that of the central electron is reduced. Electrons with opposite spins 

are unchanged. In the LDA (Figure (3-2c)), where spin states are degenerate, each sort 

of electron sees the same exchange-correlation hole (the sum rule being demonstrated 

where the size of the hole is one electron). 

Figure (3-2d) shows electron-electron interaction for non-degenerate spin 

systems (the local spin density approximation (LSDA). It can be seen that the spin 

degenerate LDA is basically the average of the LSDA.  

GGA's approximation has minimized the LDA errors of atomization energies of 

standard set of small molecules. This enhanced precision has made DFT an important 

element of quantum chemistry. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2: Summary of the electron-electron interaction (excluding coulomb 

effects) in (a) the Hartree approximation, (b) the Hartree-Fock approximation, (c) the 
local density approximation and (d) the local spin density approximation which allows 
for different interactions for like-unlike spins. 
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________________________________________ Generalized Gradient Approximation (GGA) 

 

 

3.4 Generalized Gradient Approximation (GGA) 

The local spin density (LSD) approximation has been the basis of electronic 

structure calculations in solid-state physics for many years [9]. This rough calculation 

may be written as: 

 

3ILfgh�%↑, %↓
 = ' ()�%���
PILkA�O-%↑���
, %↓���
.                                                        (3.25) 

 

PILkA�O�%↑, %↓
 exchange-correlation energy for each particle of a uniform electron gas 

[50]. The LSD exchange-correlation energies are inadequately negative (by about 

10%) for almost all atoms, molecules, and solids. The LSD is a dependable, moderate-

accuracy approximation. For many solid state objectives , the LSD level of precision is 

adequate, but LSD is not precise enough of most chemical applications, which need 

the determination of energy diversities with substantial accuracy. Hence the disinterest 

of the quantum chemistry community toward density functional techniques until 

recently [19]. New gradient-corrected functional of the form: 

 3ILllm-%↑, %↓. = ' ()� n�%↑���
, %↓���
 , �%↑, �%↓
                                                    (3.26) 

 

where f are functionals for different energies of the same system. These functionals 

may be partitioned into two wide categories : locally based functional, whose 

construction starts from the uniform electron gas, and "semi empirical" functional, 

which has one or more parameters fitted to a particular finite system, which have 

minimized LSD atomization energy errors by about a factor of 5 [20]. The generalized 

gradient approximation (GGA) has attracted much attention for its abstract simplicity 

and moderate computational workloads. At present, two GGA functional, one 

suggested by Becke and Perdew (BP)] and one suggested more recently by Perdew 

and Wang (PW), are the most popular ones in the literature [21].  
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________________________________________ Generalized Gradient Approximation (GGA) 

 

 

Many calculations assessing the accuracy of the GGA have been reported and 

commonly demonstrate that the GGA substantially corrects the LDA error in the 

cohesive energies of molecules and solids [22]. Generalized gradient approximations 

(GGA s) to the exchange-correlation (XC) energy in density-functional theory, are at 

present receiving increasing attention as a straightforward substitute to improve over 

the local-density approximation (LDA) in ab initio total-energy calculations [18]. In a 

variety of fields, the GGA provided evidence to be more suitable than the LDA: 

1. Binding energies of molecules and solids became more precise, correcting the 

trend of the LDA to over binding [24]. 

2. Activation energy obstacles, e.g., for the dissociate adsorption of H2 on metal 

and semiconductor surfaces, are in distinctly better accordance with experiment. 

Reaction and activation energies for a variety of chemical reactions give the 

same enhancement [25]. 

3. The relative constancy of structural phases seems to be anticipated more 

realistically for magnetic and for nonmagnetic materials, too [26]. 

Bulk structural qualities are often not developed within the GGA. While the 

lattice parameters always rise in comparison with the LDA, a closer agreement with 

experimental data is reported for alkali metals, 3d metals, and some 4d metals. 

However, an overestimation of up to several percent is found for 5d metals and 

common semiconductors, their bulk moduli accordingly turning out to be too small 

(typically by ≤ 25%) [27]. 

 

3.5 The full-potential linearized augmented-plane wave technique 

The full-potential linearized augmented-plane wave (FP-LAPW) technique is 

well known to allow most precise calculation of the electronic structure and magnetic 

qualities of crystals and surfaces.  
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____________________________The Full-Potential linearized Augmented-Plane Wave Technique 

 

 

The application of atomic forces has greatly maximized its applicability, but it 

is still commonly supposed that FP-LAPW computations need considerable higher 

computational effort in comparison with the pseudopotential plane wave (PPW) based 

techniques [28]. 

FP-LAPW has recently showed important progress. For example, researchers 

habitually work out magnetism and nuclear quantities (for example, isomer shifts, 

hyperfine fields, electric field gradients, and core level shifts) [29]. Also, forces and 

molecular dynamics have been applied, and recent optimizations have decreased the 

CPU time of FP-LAPW calculations significantly [28]. Nevertheless, because the 

computational expense and memory requirements are still fairly high, FP-LAPW 

implementations are suitable only to fairly complicated systems.  

One successful implementation of the FP-LAPW technique is the program 

package WIEN2K, a code enhanced by Blaha, Schwarz and coworkers [30]. It has 

been successfully implemented to a various scope of difficulties such as electric field 

gradients [31] and systems such as high-temperature superconductors, minerals [32], 

surfaces of transition metals [33], or antiferromagnetic oxides [34] and even molecules 

[35]. Reducing the total energy of a system by comforting the atomic counterparts for 

complicated systems became potential by the application of atomic forces, and even 

molecular dynamics became possible. So far the main disadvantage of the FP-LAPW-

technique in comparison with the pseudopotential plane-wave (PPW) [36] method has 

been its higher computational expense. This may be largely because of an 

inconsistency in optimization efforts spent on both techniques, and so we have 

investigated the FP-LAPW technique from a computational arithmetical viewpoint. 

Lately, the development of the Augmented Plane Wave (APW) techniques from 

Slater's APW, to LAPW and the new APW+lo was portrayed by Schwarz et al. [37]. 

One of the most precise techniques for performing electronic structure calculations for 

crystals is the full potential linearized augmented plane wave FP-LAPW technique.  
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____________________________The Full-Potential linearized Augmented-Plane Wave Technique 

 

 

It is based on the density functional theory for the handling of exchange and 

correlation and uses (for example, the local spin density approximation) (LSDA).  

Effects, for valence states relativistic, can be incorporated either in a scalar 

relativistic handling or with the second dissimilarity technique including spin-orbit 

coupling. Core states are treated fully relativistically. 

The FP-LAPW technique ,which is Like most ``energy-band techniques ,is a 

process for solving the Kohn-Sham equations for the ground state density, total 

energy, and (Kohn-Sham) eigen values (energy bands) of a many-electron system by 

presenting a basis set which is particularly modified to the problem. 

 

 

 

 

 

 

 

 
 
 
 

Fig. 3.3: Partitioning of the unit cell into atomic spheres (I) and an interstitial region 
(II). 

 
 
This alteration is achieved by partitioning the unit cell into (I) nonoverlapping 

atomic circles (centered at the atomic sites) and (II) an interstitial region, that is to say, 

a region between two spaces. In the two sorts of regions diverse basis sets are used: 

 

I I 
I 

II  
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____________________________The Full-Potential linearized Augmented-Plane Wave Technique 

 

 

• Inside atomic sphere I of radius RI  a linear combination of radial functions 

times spherical harmonics Ylm(r) is used 

 

9pA = ∑ -rs7t����, 3s
 + us7tv ����, 3s
.s7 ws7���
                                                   (3.27) 

 

where t���, 3�
 is the (at the origin) normal way out of the radial Schrodinger 

equation for energy 3� and the spherical part of the potential inside sphere, tv s��, 3s
is 

the energy derived of t� taken at the similar energy. A linear mixture of these two 

functions comprise the linearization of the radial function; the coefficients rs7 and us7 are functions of xA decided by requiring that this root function tv s goes with the 

equivalent basis function of the interstitial region; ts and are achieved by numerical 

integration of the radial Schrodinger equation on a radial mesh inside the sphere. 

• (II) in the interstitial zone a plane wave extension is applied 

 

9pA = �√z Q�{VC                                                                                                        (3.28) 

 

where |A = x + xA, xA are the mutual lattice vectors and k is the wave vector inside 

the first Brillouin zone . Each plane wave is increased by an atomic-like function in 

every atomic sphere. 

The solutions to the Kohn-Sham equations are extended in this joint basis set of 

LAPW's according to the linear dissimilarity technique 

 �p = ∑ }A9xAA                                                                                                        (3.29) 

 

and the coefficients }A are decided by the Rayleigh-Ritz variation rule. The union of 

this basis set is controlled by a disconnected parameter ~7J|7�I, where ~7J is the 

smallest atomic sphere radius in the unit cell and |7�I is the magnitude of the largest 

K vector. 
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____________________________The Full-Potential linearized Augmented-Plane Wave Technique 

 

 

Additional (|A independent) basis functions can be added to improve upon the 

linearization and to make possible a reliable treatment of semi core and valence states 

in one energy window. They are called "local orbitals" and consist of a linear 

combination of 2 radial functions at 2 dissimilar energies and one energy derivative: 

 

9s7
f� = �rs7ts ��, 3�,s" + us7tv s ��, 3�,s" + }s7ts ��, 3�,s"�ws7��̂
                           (3.30) 

 

The coefficients rs7, us7, and }s7, are decided by the necessities that 9f� should be regularized and has zero value and slope at the sphere border. 

 

The FP- LAPW technique, in its general form, extends the potential in the 

following form 

 

����
 = �∑ �s7���
ws7��̂
         �%��(Q��ℎQ�Qs7∑ �{Q�pC{                    �t���(Q��ℎQ�Q �                                                      (3.31) 

 

And the charge densities analogously. Thus no form of rough calculations are made, a 

process often called the "full- potential" technique. 

The "muffin-tin" rough calculation applied in early band calculations matches 

to keeping only the L= 0 and M=0 component in the initial idiom of final equation. 

and only the K=0 constituent in the second. This process matches to take the spherical 

rate inside the spheres and the volume rate in the interstitial region. The entire energy 

is calculated according to Weinert et al [38]. The forces at the atoms are worked out 

according to Yu et al [39]. 

The Fermi energy and the weights of each band state can be worked out using 

an adapted tetrahedron (having four surfaces) technique [40]. 
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4 Study of the half-metallic behavior and the magnetic and 

thermodynamic properties of half-Heusler CoMnTe and 

RuMnTe compounds: A first-principles study 

 

he magnetic materials particularly of the crystallographic phase C1b of the 

half-Heusler compounds have been an active field of research, as a 

consequence of their frequently emerging novel properties and field of applications 

since their first discovery by Fritz Heusler.[1] In 1983, Groot et al.[2] discovered the 

half-metallic ferromagnetism in half- Heusler NiMnSb and PtMnSb compounds, and 

further revealed their potentials for promising technological applications. Moreover 

the importance of these materials has been uncovered by viewing the novel features of 

the electronic band structure and magnetic behavior of half Heusler NiMnSb 

compounds.[3] 

The target of recent research related to half Heusler materials is to investigate 

ferromagnetic half-Heusler compounds exhibiting magnetic shape memory effect, 

magnetic field induced super-elasticity and large strain-induced changes in the 

magnetization. [4–20] In this regard several efforts have been devoted and a lot of 

them are on the way to the study of their electronic, magnetic and thermodynamic 

properties of these systems on the basis of band structure calculations,[21] however 

some aspects are still vague. To contribute to this active area of research, which is 

expected to soon undergo a revolution in technological applications because of the 

multi functional properties that can be offered by a single half-Heusler ternary 

compound, we study the structural, electronic, magnetic and thermodynamic properties 

of CoMnTe and RuMnTe by one of the most accurate approaches to electronic band 

structure, i.e. first-principles. The main difference between NiMnSb and, CoMnTe and 

RuMnTe compounds is that the magnetic moments of Co and Ni are higher than Ru 

moment.[3,19] Surprisingly the properties of a large number of Heusler compounds 

can be predicted by the direct counting of valence electrons.  
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_________________________________Study of half-Heusler CoMnTe and RuMnTe compounds: 

 

 

 

Based on their C1b structure and the total number of valence electrons, the 

compounds CoMnTe and RuMnTe are expected to exhibit their half-metallic 

ferromagnetic natures. Electronic band structures of CoMnTe and RuMnTe 

compounds exhibit their metallic natures for spin up, and show their semiconductor 

behaviors for spin down. The effects of the unit cell volume on the magnetic properties 

and the half-metallicity are crucial. It is interesting to note that the scale of total spin 

moment is exactly consistent with total number of valence electrons. Moreover by 

applying quasi-harmonic Debye model to CoMnTe and RuMnTe compounds, 

calculations of heat capacity at constant volume (CV), heat capacity at constant 

pressure (CP), Debye temperature (θ), thermal expansion (α), and the Grüneisen 

parameter (γ) in a temperature range of 0 K–1200 K in steps of 100 K and in a 

pressure range of 0 GPa–45 GPa in steps of 5 GPa are performed, and the obtained 

results are in nice agreement with those from the Debye theory which is extensively 

applied to a wide range of materials. 

 

4.1  Crystal structure 

Heusler compounds (X2YZ) are defined as the ternary intermetallic compounds. 

[1] At the stoichiometric composition, the half-Heusler compounds (XYZ) each 

crystallize into a C1b structure. The elements associated with the X, Y, and Z are (Co, 

Ru), Mn, and Te, respectively. The unit cell consists of four interpenetrating face-

centered cubic sublattices with the positions (0, 0, 0) for Co and Ru, (1/4, 1/4, 1/4) for 

Mn, and (3/4, 3/4, 3/4) for Te. The site (1/2, 1/2, 1/2) is vacant in the half-Heusler 

compound. The crystal structure of half Heusler CoMnTe compound is shown in 

figure 4.1 as prototype. 
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__________________________________________________________Crystal structure 

 

 

 

Fig. 4.1: Crystal structure of the CoMnTe. 

 

4.2  Computational details 

Computations regarding geometry optimization, electronic structure 

calculations and magnetic properties are performed within FP-LAPW computational 

approach is realized in WIEN2k package. [22] To incorporate exchange correlation 

functional part into total energy functional calculations, GGA-PBE [23] is used 

whereas to include the relativistic effects the scalar approximation suggested by 

Koelling and Harmon is adopted. To control the size of basis set for reasonable 

convergence, the value of cutoff parameter RMTKmax = 8.0 as shown in the figures 4.2 

and 4.3, and the value of l = 10 is used to control the expansion of the partial waves 

inside the Muffin tins spheres. The values of radius RMT are chosen to be proportional 

to their ionic radii such that the spheres do not overlap.  
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Fig. 4.2: Energy as function of the cutoff parameter RMTKmax for CoMnTe. 

 

Fig. 4.3: Energy as function of the cutoff parameter RMTKmax for RuMnTe. 
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Fig. 4.4: Energy as function of K points for CoMnTe. 

 

 

Fig. 4.5: Energy as function of K points for RuMnTe. 
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By the use of total energy convergence test to obtain the energy precision of 105 

Ry/formula unit, 3000 k-points are adopted in the first part of Brillouin zone as shown 

in the figures 4.4 and 4.5. 

 

To study thermal effects, quasi-harmonic Debye model realized in Gibbs 

program [24] is used. This model is sufficiently flexible in giving all thermo 

dynamical quantities by incorporating the obtained results of energy and volume. We 

give, here, a brief description of this model. [24–29] In this model non-equilibrium 

Gibbs function G*(V; P, T) is described in the following form: 

 �∗��; �, �	 = ���	 + �� + �������	; �	,                                                                   �4.1	 

 

Where E (V) represents total energy/formula unit, PV the constant hydrostatic pressure 

condition, Θ(V) the Debye temperature, AVib the lattice vibration that is expressed as 

 

�����; �	 = ���� �9�8� + 3 ���1 −  !" #⁄ % − &�� �⁄ 	' .                                           �4.2	 

 

In the equation (2), n represents the number of atoms/formula unit, kB represents 

the well-known Boltzmann constant, and the last term D(Θ/T) on the right-hand side 

represents  the Debye integral. Here for anisotropic solid, Θ is expressed by the 

following expression: 

 

� = ħ) *6,-�. -⁄ �/. 0⁄ 1�2	3456   .                                                                                      �4.3	 

 

In the equation (3), M is the molecular mass, BS is the adiabatic bulk modulus, which 

is estimated in terms of static compressibility by using following relation: 
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45 ≅ 4��	 = � 8-���	8�- ,                                                                                                      �4.4	 

 

where f (ν) is defined as 

 

1�9	 = :3 ;2 < 21 + 931 − 29=0- + <11 + 931 − 9=0->
!.

?
.0 ,                                                               �4.5	 

 

and ν is the Poisson ratio in the above relation. 

The minimization of the non-equilibrium Gibbs function G*(V; P, T) with respect to 

the volume V at constant pressure and temperature is attained as;  

 

<A�∗��; �, �	A� =B,# =  0 .                                                                                                        �4.6	 

 

By solving the equation (6), one can obtain a relation for V(P,T) i.e. thermal equation 

of state (EOS). Using the equation (6) for different thermal properties, i.e., isothermal 

bulk modulus (BT), specific heat capacity values at constant volume (CV) and at 

constant pressure (CP), and thermal expansion coefficient α can be evaluated using the 

following formulas: 

 

4#��, �	 = � DA-�∗��; �, �	A�- EB,# ,                                                                                     �4.7	 

 

G� = 3��� H4&�� �⁄ 	 − 3 � �⁄ " #⁄ − 1I,                                                                                 �4.8	 
 GB = G��1 + JK�	,                                                                                                                �4.9	  
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J = KG�4#� ,                                                                                                                               �4.10	 
 

where γ is used to represent the Grüneisen parameter and is calculated from the 

following expression: 

 

K = − 8 �� � ��	8 �� �                                                                                                                  �4.11	 
 

4.3 Results and discussion 

4.3.1 Total energy and electronic structure 

  For both Heusler CoMnTe and RuMnTe compounds, first of all, the total 

energies of for their paramagnetic and ferromagnetic states are calculated in terms of 

volume per formula unit. It is found that the paramagnetic phase has high energy as 

compared with the ferromagnetic phase. Our optimized results for volume (V0), energy 

(E0), equilibrium lattice constant (a0) and bulk modulus (B) calculated for 

ferromagnetic phase are shown in Table 4.1. These results are obtained for both 

compounds by fitting data for energy as a function of volume to the Murnaghan 

equation of state [32] as shown in the figures 4.6 and 4.7.  The energy difference (∆E) 

between paramagnetic and ferromagnetic states is also calculated and the results are 

given in Table 4.1. There are no experimental results available to us for these 

compounds, but our values for CoMnTe are in excellent agreement with those 

obtained by Selçuk Kervan et al.[30] using the full potential linearized augmented 

plane wave method.  

 

At equilibrium lattice constants, the calculated spin polarized band structures in 

ferromagnetic phase, for majority and minority spin electrons, are demonstrated in 

figures 4.8, 4.10 and 4.9, 4.11 for CoMnTe and RuMnTe compounds respectively.   
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______________________________________________Total energy and electronic structure 

 

 

 

From the figures 4.8 and 4.9, it is obvious that the majority spin electrons 

exhibit metallic natures of the compounds and from the figures 4.10 and 4.11, it is 

evident that the minority spin channels display a band gap of 1.08 eV for CoMnTe and 

0.83 eV for RuMnTe around the Fermi level, revealing their semiconducting natures.  

 

However natures of band energy gaps are found to be indirect between Γ point 

of the highest occupied band (valence band) and X point for the lowest unoccupied 

band (conduction band). These semiconducting natures of the minority spin electrons 

and metallic natures of majority spin channel of these compounds are very analogous 

to those of NiMnSb and FeMnSb [33] and show that these systems are half-metallic 

ferromagnetic.  

 

Fig.4.6 : Curves of total energy versus volume per formula unit for the     
paramagnetic (PM) and ferromagnetic (FM) states of CoMnTe. 
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______________________________________________Total energy and electronic structure 

 

 

 

Fig. 4.7 : Curves of total energy versus volume per formula unit for the paramagnetic 
(PM) and ferromagnetic (FM) states of RuMnTe. 

 

Table 4.1: Predicted values of equilibrium lattice constant a0, volume V0, energy E0 

and bulk modulus B for the ferromagnetic phase and ∆E energy difference between 

paramagnetic states and the ferromagnetic states. 

 a0(Å) V0(a.u.3) B(GPa) B’  E0 (eV) ∆E (eV) 

CoMnTe 5.876 

5.86a 

342.347 118.869 

119.97a 

4.832 -254398.605 

 

1.583 

1.55a 

RuMnTe 6.092 381.373 124.485 5.978 -339800.069 1.254 

a Ref. [30]  
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______________________________________________Total energy and electronic structure 

 

 

To further depict the electronic structures of these compounds, spin-projected 

total and partial density of states (DOS) are also calculated and are represented in the 

figures 4.12 and 4.13 for CoMnTe and RuMnTe, respectively. The negative values of 

total and partial densities of states correspond to the minority-spin electrons. 

Examinations of the figures 4.12 and 4.13 reveal that the densities of states near the 

half metallic gap, where the influences of the s and p states are insignificant, are 

dominated by the d-states of Co, Ru and Mn. It is point to note that the bonding d 

states are largely contributed from Co and Ru, whereas anti-bonding d states are 

predominantly belonging to Mn characteristic.  

 

 

Fig. 4.8: Electronic band structure for majority spin electrons in CoMnTe  
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Fig. 4.9: Electronic band structure for majority spin electrons in RuMnTe. 

 

Fig. 4.10: Electronic band structure for minority spin electrons in CoMnTe. 
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Fig. 4.11: Electronic band structure for minority spin electrons in RuMnTe. 

 

Table 4.2: Values of magnetic moment per formula unit (µtot), M (M=Co, Ru, Mn and 

Te) magnetic moment (µM), magnetic moment in the interstitial region (µint), Fermi 

level EF and HM gap (Eg). 

 µtot 

(µB) 

µCo  

(µB) 

µRu  

(µB) 

µMn 

(µB) 

µTe  

(µB) 

µint  

(µB) 

EF  

(eV) 

HM gaps 

(eV) 

CoMnTe 4.00 

4.00a 

4.00b 

0.39 

0.38a 

0.40b 

- 3.49 

3.50a 

3.48b 

-0.01 

-0.04a 

0.14 9.13 1.08 

1.13a 

RuMnTe 3.00 - -0.29 3.28 -0.03 0.05 10.50 0.83 
a Ref. [31] 

b Ref. [30] 



71 

 

______________________________________________Total energy and electronic structure 

 

 

The corresponding d-d band gap near the Fermi level orignates from the strong 

hybridization between d states of higher valent TM atoms and the d states of lower 

valent TM atoms. The vertical dashed lines in the DOS presented in the figures 4.12 

and 4.13 represent the Fermi level, which is fixed to zero. 

For the spin-up states, the Fermi levels of CoMnTe and RuMnTe are located on 

the tails of the peaks of the partial densities of states (PDOSs) of Co and Ru, which are 

situated at ≈-0.47 eV for Co and at ≈0.24 eV for Ru; alternatively, the Fermi levels 

can be considered to be located on the tail of the peak at ≈-0.48 eV of the total density 

of states (TDOS) for CoMnTe and on the tail of the peak at ≈0.23 eV of the TDOS for 

RuMnTe. By contrast, the Fermi levels are located at the energy gaps for the spin-

down states.  

 

Fig. 4.12 : Calculated spin-projected total and partial DOSs of CoMnTe. 
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Fig. 4.13 : Calculated spin-projected total and partial DOSs of RuMnTe. 

 

The positions of main Co peaks are located at -1.47 eV for the spin down and at 

-2.68 eV for the spin up, whereas for the Ru, they are situated at -2.59 eV for the spin 

down and at -3.04 eV for the spin up. Total densities of states result from the 

contribution of each partial density of states; it is noticeable that the main peaks 

remain approximately at the same positions as in the partial densities of states. Similar 

profiles of the densities of states are noted in both compounds. However, the band gap 

in the spin down is wider for CoMnTe. From the further analyses of Te-DOS in figures 

4.12 and 4.13, it is found that the s and p states of Te reside in the lowest parts of the 

total densities of states and Te-s states are situated at ≈12.6 eV below EF.  
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4.3.2 Origin of the half-metallic gap  

The admixture of the several elements is responsible for the peculiarities of 

half-metallic ferromagnetism of CoMnTe and RuMnTe. Half-metallic behaviors of 

these compounds  are closely related to the symmetry of their C1b crystal structure, the 

number of valence electrons, covalent bonding, and the large swap splitting of the Mn-

3d electron band states [34]. As described by Galanakis et al. [35,36], the main reason  

for the creation of bonding and anti-bonding bands is because of strong hybridization 

between the d states of the lower valent TM (Mn) atoms and the higher valent TM (Co 

and Ru) atoms. Filled bonding states are located typically at higher valent TM atom 

site, while unoccupied anti-bonding states are at lower valent TM atom site. Minority 

occupied d state bonding is largely contributed from Co and Ru whereas anti-bonding 

d states are predominantly belonging to Mn characteristic. These types of structures 

are stable when solely the bonding states are occupied. The elements containing sp 

states are very important for half-Heusler compounds because of their particular role in 

tuning their several physical properties and structural stabilities of C1b compounds. 

Each Mn atom is surrounded by six nearest neighbors Te atoms in the structure under 

investigation. The strong electrostatic repulsion of the eg states at the Te atoms leads 

partly to the splitting of 3d states of Mn atoms into low-lying t2g triplet states, this 

phenomenon is a result of the interaction of Mn with the Te-p states. The development 

of band gap is a result of the separation of occupied d bonding states from unoccupied 

d anti-bonding states because of the shifting of Mn-3d states to higher energies in the 

minority band as schematically shown in figure 4.14, whereas in majority band, by the 

shifting of Mn-3d states to lower energies, a common 3d band together with Co-3d 

states is formed. A similar reason can be applied to RuMnTe to explain its band gap 

origin. Thus, CoMnTe and RuMnTe are half-metal in minority band with a gap at EF 

and metallic in majority band. Therefore, in the sense of their band gap origin these 

compounds are comparable to the semiconducting compounds like GaAs as the GaAs 

is strengthened by hybridizing the higher Ga-s and p states with the lower As-s and p 

states. 
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Fig. 4.14: Schematic illustration of the origin of the gap in the minority band in 

CoMnTe. [36] 

 

The calculated values of total and partial magnetic moment µtot are listed in the 

table 4.2. The values of µtot are 4µB and 3µB per unit cell, respectively, for CoMnTe 

and RuMnTe and most part is contributed from Mn atom. Up to now, there have been 

no experimental results on magnetic moments available to compare with our values. 

Our computed magnetic moments for CoMnTe compound are in excellent agreement 

with FPLAW and Pseudo Potential values obtained by Selçuk Kervan and Nazmiye 

Kervan [30] and by Lin et al. [31], respectively. Total magnetic moment of the half 

metallic half-Heusler compound is estimated by applying the rule µtot=Zt-18, where 

Zt=N↑+N↓ and µtot=N↑-N↓. N↑ represents the number of spin-up electrons, and N↓ is 

the number of spin-down electrons. 

 

 

  d1,d2,d3 

EF 

Mn 

d1,d2,d3 
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3xt2g 

2xeg 

3xt2g 

2xeg 

d4,d5 

Co 

gap 

Anti-bonding 
states 
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states 
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__________________________________________________Origin of the half-metallic gap 

 

 

Nine minority bands of half-Heusler compounds are fully occupied, which is in 

accordance with the straightforward rule of 18 regarding half-metallicity in the C1b 

structure [37-42]. CoMnTe has 22 valence electrons per unit cell and RuMnTe has 21. 

9 valence electrons are contributed from Co, 8 valence electrons from Ru, 7 valence 

electrons from Mn and 6 valence electrons from Te. Value of the calculated total 

magnetic moment nicely follows the above rule, i.e. µtot = Zt -18. 

 

 

Fig. 4.15: Unit cell volume dependences of the total magnetic moment, and the spin 

moments of Co, Ru, Mn and Te atoms for CoMnTe and RuMnTe, 

respectively. 

 

The calculated magnetic moment at the Mn site is 3.28 µB in RuMnTe but it is 

increased if Ru is replaced by Co (≈3.49 µB) as shown in the Table 4.2 while, 

contribution of Te is negative. 
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 The magnetic moment at the Co site is 0.39 µB, which is significantly larger 

than at the Ru site (-0.29 µB). Thus, the replacement of Co by Ru modifies the total 

magnetic moment from 4 µB to 3 µB. In fact all half Heusler compounds containing 

Mn each have a large value of total magnetic moment due to the contributions of Mn 

in the full-Heusler compounds [31]. 

 

4.3.3 Effect of the unit cell volume 

To see the influences of strains on the magnetic characteristics of the CoMnTe 

and RuMnTe, we study the variation of the magnetic moment with unit cell volume. 

Figure 4.15 depicts the variations of total magnetic moment and spin moment of Co, 

Ru, Mn and Te atoms with cell volume. 

 

Fig. 4.16: The total densities of states when the unit cell volumes of   CoMnTe are 

contracted (-). 
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Fig. 4.17: The total densities of states when the unit cell volumes of CoMnTe are 
expanded (+). 

 

Fig. 4.18: The total densities of states when the unit cell volumes of RuMnTe are 

contracted (-). 
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Fig. 4.19: The total densities of states when the unit cell volumes of RuMnTe are 

expanded (+). 

 

It is clear from the figure 4.15 that when CoMnTe and RuMnTe unit cells are 

expanded, hybridizations between Co, Ru and Mn decrease, as a result spin moments 

of the Co and Ru decrease, while the Mn spin moment increases. However total 

magnetic moments/formula unit almost remain unchanged for both CoMnTe and 

RuMnTe compounds. The variation in the total moment is found to be less than 0.01μB 

for each compound during contraction and expansion as compared with the predicted 

equilibrium unit cell volume.  It is interesting to note that during the contraction and 

expansion, the change in the number of occupied minority-spin states is also small. 

Regarding EF, contraction shifts it upwards in energy whereas the expansion shifts it 

downwards [24].  
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In figures 4.16, 4.17, 4.18 and 4.19 the densities of states are plotted for the 

contraction and expansion of CoMnTe and RuMnTe. Contraction moves EF upwards 

in energy whereas expansion moves it downwards. The half-metallic gaps remain non-

zero when unit cell volume is changed from −5% to +5% for CoMnTe and RuMnTe 

but for NiCrSe, reinforcement of the half-metallicity behavior is reported during 

expansion, and vice versa [24]. Thus, these results signify the crucial role of unit cell 

volume in the magnetic properties and half- metallicity.  

 

Table 4.3: Predicted elastic constants Cij (GPa), shear modulus G (GPa) and B/G. 

 C11 C12 C44 G B/G 
CoMnTe 208.800 80.229 167.330 98.95 1.244 
RuMnTe 181.705 98.745 161.919 94,328 1.3399 

 

The elastic constants of solids supply a relation between dynamical and the 

mechanical behaviors of crystals, and provide significant information about the 

character of the forces operating in solids. Especially, they give indication on the 

stability and rigidity of materials. The elastic constants are calculated via the “stress–

strain” method [25] and shown on the table 4.3. the two compounds are mechanically 

stable. 

 

4.4  Thermodynamic properties  

The values of thermodynamic parameters are computed at the level of quasi-

harmonic Debye model approach for half-Heusler CoMnTe and RuMnTe compounds. 

These calculations are done for specific heats at constant volume (CV) and constant 

pressure (CP), Debye temperature (θ), the thermal expansion coefficient �J	 and 

Grüneisen parameter (γ) in a temperature range of 0K-1200K in steps of 100K and at 

pressure ranging  from 0GPa to 45GPa in steps of 5GPa.  
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Table 4.4 : Calculated values of Debye temperature θ (K) and Grüneisen parameter (γ) 

of CoMnTe and RuMnTe at various pressures and temperatures. 

T (K)  P (GPa) 0 15 30 45 

300 

RuMnTe 
θ  363.91 461.66 525.79 574.97 

γ 2.79 2.14 1.82 1.63 

CoMnTe 
θ  365.83 477.93 558.28 622.18 

γ 2.71 2.41 2.20 2.04 

600 

RuMnTe 
θ  347.22 454.15 520.93 571.43 

γ 2.93 2.18 1.84 1.64 

CoMnTe 
θ  347.66 466.32 549.94 615.63 

γ 2.76 2.44 2.22 2.06 

900 

RuMnTe 
θ  326.05 445.82 515.80 567.68 

γ 3.12 2.22 1.87 1.65 

CoMnTe 
θ  327.58 453.80 540.85 608.51 

γ 2.80 2.48 2.24 2.08 

1200 

RuMnTe 
θ  297.80 436.65 510.09 563.78 

γ 3.39 2.28 1.89 1.67 

CoMnTe 
θ  305.63 440.27 531.38 601.06 

γ 2.86 2.51 2.27 2.09 

 

It is seen from figures 4.20 and 4.21 that the isothermal bulk modulus increases 

at the constant temperature as pressure increases, whereas the isothermal bulk modulus 

decreases at the constant pressure with the increase of temperature.  

In figures 4.22 and 4.23, our calculated results for CV and CP each as a function 

of temperature are illustrated for CoMnTe and RuMnTe compounds. 
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Fig. 4.20: Curves of bulk modulus versus temperature at different pressures for 

RuMnTe and CoMnTe. 

 

Fig. 4.21: Curves of bulk modulus versus pressure at different temperatures for 

RuMnTe and CoMnTe. 
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The specific heat capacity is closely related to the temperature dependence of 

fundamental thermodynamic functions, and it is the most important parameter for 

linking thermodynamics with dynamics and microscopic structure. 

 

It is clear that when the temperature is below 650 K, the CV and CP variations 

are very close together exhibiting strong dependent on temperature due to the 

anharmonic approximation used in this scheme of calculations. While at high 

temperatures, the Cv approaches to a constant value (≈ 75 Jmol!.K!.	, obeying 

Dulong and Petit’s rule, which is followed by all solids at high temperatures, owing to 

the suppression of the anharmonic effect [29].  

 

 

Fig. 4.22: Variations of specific heat capacity CV with temperature at various 

pressures for the half-Heusler alloys RuMnTe and CoMnTe. 
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Fig. 4.23: Variations of specific heat capacity CP with temperature at various pressures 

for the half-Heusler alloys RuMnTe and CoMnTe. 

 

It is remarkable that the specific heat capacity at constant pressure CP increases 

monotonically with the increase of the temperature. 

 

Many physical properties of solids are closely related to the Debye temperature 

(θ) and Grüneisen parameter (γ). The variations of the results of these parameters are 

shown in Table 4.3. It is found that the Debye temperature increases with increasing 

pressure whereas the Grüneisen parameter decreases when temperature is kept 

constant. However, at the constant pressure, the Debye temperature decreases and the 

Grüneisen parameter increases as temperature increases. 
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Fig. 4.24: Variations of calculated values of thermal expansion  with temperature at 

various pressures for half-Heusler alloys RuMnTe and CoMnTe. 

 

The volume thermal expansion coefficient (α) reflects the temperature 

dependence of volume at constant pressure : J = .� RS�S#TB. Figure 4.24 shows the 

variations of the thermal expansion coefficient with temperatures at different 

pressures. From this figure, we can see that the thermal expansion increases sharply 

with temperature going up to 300 K then slowly for temperature higher than 300 K, 

and gradually turns into a linear increase. At a fixed temperature, the higher the 

pressure, the smaller the thermal expansion coefficient is, indicating that high pressure 

suppresses thermal expansion. At zero pressure and 300 K, the values of the thermal 

expansion α for RuMnTe and CoMnTe  are 4.89 × 10-5 K-1 and 5.71× 10-5 K-1,  

respectively. 
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5 Conclusions 

 

Within the framework of this thesis, The First-principles DFT studies related to 

CoMnTe and RuMnTe compounds are performed. The calculations are accomplished 

within the state of the art full-potential (FP) linearized (L) augmented plane wave 

(APW) computational approach. Generalized gradient approximation (GGA) 

parameterized by Perdew, Burke and Ernzerhof (PBE) is implemented as an exchange 

correlation functional as a part of total energy calculation. The structural, electronic, 

magnetic and thermodynamics characteristics are carried out. For both Heusler 

CoMnTe and RuMnTe compounds, first of all, the total energies of their paramagnetic 

and ferromagnetic states are calculated in terms of volume per formula unit. It is found 

that the paramagnetic phase has high energy as compared with the ferromagnetic 

phase. volume (V0), energy (E0), equilibrium lattice constant (a0) and bulk modulus 

(B) are calculated for ferromagnetic phase. These results are obtained for both 

compounds by fitting data for energy as a function of volume to the Murnaghan 

equation of state.  The energy difference (∆E) between paramagnetic and 

ferromagnetic states is also calculated. There are no experimental results available to 

us for these compounds, but our values for CoMnTe are in excellent agreement with 

those obtained by Selçuk Kervan using the full potential linearized augmented plane 

wave method.  

 

However natures of band energy gaps are found to be indirect between Γ point 

of the highest occupied band (valence band) and X point for the lowest unoccupied 

band (conduction band). The densities of states near the half metallic gap, where the 

influences of the s and p states are insignificant, are dominated by the d-states of Co, 

Ru and Mn. It is point to note that the bonding d states are largely contributed from Co 

and Ru, whereas anti-bonding d states are predominantly belonging to Mn 

characteristic. 
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Our studies of the calculated electronic bands structures, the densities of states 

and the magnetic moments of ground state confirm that CoMnTe and RuMnTe 

compounds are half-metallic ferromagnetic materials. It is found that these materials 

behave as metals for the majority spin bands and exhibit semiconducting 

characteristics for minority spin bands. Total densities of states result from the 

contribution of each partial density of states; it is noticeable that the main peaks 

remain approximately at the same positions as in the partial densities of states.  

 

Origin of the band gap is traced out in the strong hybridization between the d 

states of higher valent TM atoms and lower valent TM atoms. The role of the elements 

containing sp states is crucial in tuning several physical properties of half Heusler 

compounds and structural stability of C1b compounds. Our calculated values of total 

magnetic moment �tot are 4�B and 3�B per unit cell for CoMnTe and RuMnTe, 

respectively, and most of the part is contributed from Mn atom. The total spin moment 

scale is accurately in agreement with total number of valence electrons contained by 

the atoms of these compounds. The calculated value of �tot is in the line with the rule 

of �tot = Zt -18.  

 

The effect of the unit cell volume is found to be decisive for the magnetic 

properties and the half-metallicity characteristics. When CoMnTe and RuMnTe unit 

cells are expanded, hybridizations between Co, Ru and Mn decrease, as a result spin 

moments of the Co and Ru decrease, while the Mn spin moment increases. However 

total magnetic moments/formula unit almost remain unchanged for both CoMnTe and 

RuMnTe compounds. The variation in the total moment is found to be less than 0.01μB 

for each compound during contraction and expansion as compared with the predicted 

equilibrium unit cell volume.  It is interesting to note that during the contraction and 

expansion, the change in the number of occupied minority-spin states is also small.  
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Contraction moves EF upwards in energy whereas expansion moves it 

downwards. The half-metallic gaps remain non-zero when unit cell volume is changed 

from −5% to +5% for CoMnTe and RuMnTe but for NiCrSe, reinforcement of the 

half-metallicity behavior is reported during expansion, and vice versa. Thus, these 

results signify the crucial role of unit cell volume in the magnetic properties and half- 

metallicity.  

 

 Finally thermodynamic properties including the isothermal bulk modulus, heat 

capacity, Debye temperature, and the thermal expansion coefficients of the half-

Heusler CoMnTe and RuMnTe compounds are investigated using the quasi-harmonic 

Debye model. The observed variations accord well with the results of the Debye 

theory which is regularly applied to several materials. 


