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derson professeur à l’université de Baylor(U.S.A), Sidi Mohamed Bouguima pro-
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Chapter 1

Introduction

Mathematics consists initially of a language, which makes it possible to tran-
scribe problems of quantitative nature: this is modeling. Once this transcription
is made, tools are available to solve these problems, partially or completely. Then,
one brings back the solution into its context of origin. Ordinary and partial dif-
ferential equations (PDE’s) are at the heart of mathematical modelization. They
constitute the basic language in which most of the laws in physics or engineering
can be written and one of the most important mathematical tools for modelling in
the universe and socio-economical sciences. And they occur in many applications
in chemistry to model reactions, to study economics market behavior, to study
in finance and derivatives and in image processing to restore the damage. . . ,etc.
We make some simple basic assumptions, actually it is the physical properties of
the universe, which are shared today by every fundamental theory in physics and
which will have very deep consequences (see [9]).

(α) The universe is variational, that is we suppose that all the physical phe-
nomena are governed by differential equations which admit a variational
formulation. This variational principle is at once reasonable, if we think
that all the fundamental equations of physics can be seen as the Euler-
Lagrange equations of a suitable action functional.

Remark 1.0.1. The variational principle has a very long history and can be
traced back even to the ideas of Aristotle. However, its very discovery has been
attributed to P.L.M. de Maupertuis (1698-1759), after he was engaged in polemics
with the followers of G.W. Leibniz; in his work ”Examen philosophique de la
preuve de l’existence de Dieu” (1756), he stated the principle of minimal action
as an evidence of rationality in the divine creation. It is well known that these
metaphysical ideas were then formalized by L. Euler and G.L. Lagrange in the
eighteenth century, but the ultimate reason for which the variational principle
holds true in nature is still today a mystery. On the subject, we refer to the essay
”Le Meilleur des mondes possibles. Mathématiques et destinée” by I. Ekeland [38].
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(β) The universe is invariant for the Poincare group, that is we suppose that
all the equations of the universe are invariant with respect to the group
generated by the following transformations:

• time translations, i.e. transformations depending on one parameter having
the form {

x → x
t → t+ t0

• space translations, i.e. transformations depending on three parameters hav-
ing the form {

x → x+ x0

t → t

• space rotations, i.e. transformations depending on three parameters having
the form, {

x → Rx, R ∈ O(3)
t → t+ t0

• Lorentz transformations, i.e. space-time rotations depending on one pa-
rameter ν having the form

x1 → γ(x1 − νt)
x2 → x2

x3 → x3

t → γ(t− ν
c2
x1)


x1 → x1

x2 → γ(x2 − νt)
x3 → x3

t → γ(t− ν
c2
x2)

x1 → x1

x2 → x2

x3 → γ(x3 − νt)
t → γ(t− ν

c2
x3), where γ = c√

c2−ν2 , |ν| < c

and c is a constant (dimensionally a velocity). Indeed, the Poincaré group
P is the ten parameters Lie group generated by the above transformations
together with the time and parity inversions t→ −t and x→ −x.

The assumptions of the first three invariances cannot be omitted if we want
to make a physical theory, for they express the possibility of repeating
experiments. More precisely, translational invariances ask for time and
space to be homogeneuos (i.e., whenever and wherever an experiment is
performed, it gives the same results) and rotational invariance requires that
the space is isotropic (i.e., there are no privileged directions in the universe).
Finally, the Lorentz invariance is an empirical fact and we will see that it
is the very cause of relativistic effects.
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1.1 What is a soliton ?

1.1 What is a soliton ?

Solitons are nonlinear waves. As a preliminary definition, a soliton is considered
as a solitary, traveling wave pulse solution of a nonlinear partial differential equa-
tion (PDE). The soliton phenomenon was first described in 1834 by John Scott
Russell (1808-1882) who observed a solitary wave on the canal from Edimburgh to
Glasgow in 1834. Reporting to the British Association, he wrote [80]: ”I believe
I shall best introduce this phenomenon by describing the circumstances of my
own first acquaintance with it. I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly
stopped - not so the mass of water in the channel which it had put in motion;
it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on
at a rate of some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance interview with
that rare and beautiful phenomenon which I have called the Wave of Translation
[. . . ].”

A soliton is a solution of a field equation whose energy travels as a localized
packet and which preserves its form under perturbations. The nonlinearity will
play a significant role. For most dispersive evolution equations these solitary
waves would scatter inelastically and lose ’energy’ due to the radiation. Not so
for the solitons: after a fully nonlinear interaction, the solitary waves remerge,
retaining their identities with same speed and shape. It should have remarkable
stability properties. In this respect solitons have a particle-like behavior. The
soliton equations, in the mathematical sense, provide outstanding examples of
systems completely integrable possdant an infinite number of degrees of freedom.
That is why they so interest mathematicians.

1.2 History and Problematic

Solitons also concern physicists and they even become indispensable to explain
and describe many phenomena, they occur in many areas of mathematical physics,
such as classical and quantum field theory, non linear optics, fluid mechanics,
plasma physics and in many models in chemistry and biology (see [38, 56, 57,
65, 70, 90] ). Probably, the simplest equation which has soliton solutions is the
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sine-Gordon equation (see below in Chapter 1),

−∂
2ψ

∂x2
+
∂2ψ

∂t2
+ sinψ = 0,

where ψ = ψ(x, t) is a scalar field, x, t are real numbers, representing, respectively,
the space and the time variable. In 1964, Derrick, in a celebrated paper [40],
considers the more realistic three-space-dimension model (see below in Chapter
2),

−∆ψ +
∂2ψ

∂t2
+ V ′(ψ) = 0,

∆ being the 3-dimensional Laplace operator and V ′ is the gradient of a nonneg-
ative C1 real function V.

In [40] it is proved by a simple rescaling argument that the last equation
in three-space-dimension does not possess any nontrivial finite-energy static so-
lutions. Derrick proposed some possible ways out of this difficulty. The first
proposal was to consider models which are the Euler-Lagrange equations of the
action functional relative to the functional

S =

∫ ∫
Ldxdt.

The Lorentz invariant Lagrangian density proposed in [40] has the form

L(ψ) = −
(
|∇ψ|2 − |ψt|2

) p
2 , p > 3. (1.2.1)

However, Derrick does not continue his analysis . He has been unable to demon-
strate either the existence or nonexistence of stable solutions.
In this spirit and in recent years, a considerable amount of work has been done by
V. Benci and collaborators (see [9–18,27] ), who which be the core of this work.

In this a thesis , we will be concerned about the generalization of some results
of V. Benci in generalized Sobolev spaces about variable exponents.

This thesis work is structured into 5 chapters and each chapter contains ad-
ditional sections. It is arranged as follows:
In Chapter 1, we introduce notations, definitions, lemmas and theorems which
are used throughout this monograph.
In Chapter 2, we present the simplest equation admitting soliton solutions (Sine-
Gordon equation). In the second part,we present the more realistic 3 + 1 dimen-
sional model admitting soliton solutions given by the nonlinear Klein-Gordon
equation.
In Chapter 3, we introduce here an existence result for a n + 1 dimensional
model generalizing the one suggested by Derrick in his first proposal (Chapter 4).
In Chapter 4, the main purpose is to obtain soliton-like solutions with variable
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1.3 Motivation

exponent which generalize the results of Chapter 4.
In Chapter 5, the main purpose is to obtain soliton-like solutions with twice
variable exponent which generalizing the Results of Chapter 5.

1.3 Motivation

In the mathematical models (soliton) studied in papers [10, 12] the space of the
finite energy configurations (solution space) splits into infinitely many connected
components according to the topological charge. They proved the existence of
infinitely many solutions, which are constrained minima of the energy. More pre-
cisely, on every one connected component characterized by an topological charge
equal to n ∈ N there exists a solution of charge n. Since p is arbitrary in static
equation (see equation 4.1.10), so it is natural to considered p = p(x) as a variable
that depends on the connected component.
Our aim of this work is to carry out an existence analysis of the finite energy
static solutions in more then one space dimension for a class of Lagrangian den-
sities which include (1.2.1) and generalizing the results of Benci in his paper [10].
More precisely we are concerned with Generalized Sobolev Spaces with Variable
Exponents.
The following examples give a more concrete notion of processes that can be
described by a soliton.

Example 1.3.1. Equivalence between mass and energy(the celebrated
Einstein equation):( [12])

One of the main features of these soliton solutions is that they behave as
relativistic particles. In fact, by using the Nöether theorem, we can introduce the
energy E(ψ) and the mass m(ψ) and it can be proved that the celebrated Einstein
relation E(ψ) = m(ψ)c2 holds true.

We shall consider Lagrangian densities of the form

L1(ψ, ρ) = −1

2
α(ρ)− V (ψ), (1.3.1)

where the function V is a real function defined in an open subset Ω ⊂ Rm and α
is a real function defined by

α(ρ) = ρ+
ε

3
|ρ|3, ε > 0; (1.3.2)

ρ = c2|∇ψ|2 − |ψt|2.

11
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The action functional related to (1.3.1)is

S1(ψ) =

∫
R3+1

L1(ψ, ρ)dxdt

=

∫
R3+1

−1

2
α(ρ)− V (ψ)dxdt.

The Euler-Lagrange equation is

∂

∂t
((1 + ε|ρ|2)ψt)− c2∇((1 + ε|ρ|2)∇ψ) + V ′(ψ) = 0. (1.3.3)

So the static solutions u solve the equation

−c2∆u− c6ε∆6u+ V ′(u) = 0. (1.3.4)

Clearly (1.3.4) are the Euler-Lagrange equations with respect to the energy
functional

E(u) =

∫
R3

(
c2

2
|∇u|2 + ε

c6

6
|∇u|6 + V (u)

)
dx. (1.3.5)

Equation (1.3.3) probably is the simplest Lorentz invariant equation which has
static solitons. Nevertheless, these solitons have some interesting properties since
they behave as relativistic bodies, namely:

• they experience a relativisic contraction in the direction of the motion;

• the rest mass is a scalar and not a tensor;

• the mass equals the energy;

• the mass increases with the velocity by the factor γ.

Our Lagrangian (1.3.1) is Lorentz invariant, thus it is reasonable to expect at
least some of these features. However, it is somewhat surprising that they can be
deduced from a single equation without extra assumptions. Moreover, this equa-
tion might be interpreted as the equation of an ”elastic medium” in a Newtonian
space-time. Thus, this model shows, from a purely formal point of view, that the
main features of the special relativity can be deduced from a partial differential
equation in a Newtonian space-time.

Example 1.3.2. Solitons and the electromagnetic field:( [11])
In the example 1.3.1, there has been introduced a Lorentz invariant equation in
three space dimensions, having soliton like solutions, the equation introduced is
the Euler Lagrange equation of an action functional

S1(ψ) =

∫ t1

t0

∫
R3

L1dxdt.

12



1.3 Motivation

The soliton solutions behave as relativistic particles. Moreover a topological
invariant is associated to these solitons. If we interpret this invariant as the elec-
tric charge, it is natural to analyze the interaction between the soliton and the
electromagnetic field and to try to construct a simple Lorentz invariant model for
the electromagnetic theory namely a model describing particle-like matter inter-
acting with the electromagnetic field through (deterministic) differential equations
defined in a Newtonian space-time.

In the following, (A, φ) will denote the gauge potentials associated to the elec-
tromagnetic field (E;H) by the relations

E = −(At +∇φ) (1.3.6)

H = ∇× A. (1.3.7)

We need to define the Lagrangian density L2 of the electromagnetic field and
the Lagrangian density L3 describing the interaction between theme and the elec-
tromagnetic field.

L2 =
1

8π
(|E|2 − |H|2)

=
1

8π

(
|At +∇φ|2 − |∇ × A|2

)
L3 = (J(ψ,∇ψ, ψt) | A)− %(ψ,∇ψ)φ

For the definition of the dependence of electric current J(ψ,∇ψ, ψt) and the
electric density %(ψ,∇ψ) on and its derivatives see ( [11], Subsect. 1.2).

The total action will be

S = S(ψ,A, φ)

= S1(ψ) + S2(A, φ) + S3(ψ,A, φ)

with

Si(ψ) =

∫ t1

t0

∫
R3

Lidxdt.

The model we introduce permits us to describe the interaction of a relativistic par-
ticle with an electromagnetic field by using only concepts of classical field theory.
In this work we confine ourselves to analyze some mathematical questions related
to the existence of solutions for this model. More precisely we prove the existence
of static solutions (with non trivial charge) of the Euler-Lagrange equations

dS = 0 (1.3.8)

namely solutions (u,A, φ) (u = (u1, . . . , u4), A = (A1, A2, A3)) which traveling do
not depend on t ∈ R. Let us point out that these solutions give rise to travelling
solutions (ψ,Av, φv) (Av = (Av,1, Av,2, Av,3)) with velocity (v, 0, 0) where
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ψ(x, t) = u

(
x1 − vt√
1− (v

c
)2
, x2, x3

)

Av,1(x, t) =

A1

(
x1−vt√
1−( v

c
)2
, x2, x3

)
− v

c
φ

(
x1−vt√
1−( v

c
)2
, x2, x3

)
√

1− (v
c
)2

Av,2(x, t) = A2

(
x1 − vt√
1− (v

c
)2
, x2, x3

)

Av,3(x, t) = A3

(
x1 − vt√
1− (v

c
)2
, x2, x3

)

φv(x, t) =

φ

(
x1−vt√
1−( v

c
)2
, x2, x3

)
− v

c
A1

(
x1−vt√
1−( v

c
)2
, x2, x3

)
√

1− (v
c
)2

ψ is a traveling soliton ”surrounded” by the electromagnetic field (Av, φv).

The aim of this work is to prove the existence of static solutions of the Euler-
Lagrange equations relative to the action functional.

S = S(ψ,A, φ).

First we take the variation with respect to A Therefore we get dS[δA] = 0 if and
only if

∇× (∇× A) = 4πJ(ψ,∇ψ, ψt)−
∂

∂t
(At +∇φ). (1.3.9)

Second we take the variation with respect to φ Therefore we get dS[δφ] = 0 if
and only if

−∇(At +∇φ) = 4π%(ψ,∇ψ). (1.3.10)

By (1.3.6) and (1.3.7), we get

∇×H = 4πJ(ψ,∇ψ, ψt) + Et (1.3.11)

∇.E = 4π%(ψ,∇ψ) (1.3.12)

which complete the Maxwell equations (1.3.6) and (1.3.7).
Now, if we want to take the variation with respect to the j − th component of

ψ, we notice that it has a complicated form. Anyway we can write the equation

dS[δψ] = 0

14



1.3 Motivation

in the following form:

�ψj − ε�6ψ
j +

∂V

∂ξj
(ψ) = Fj (1.3.13)

where the left hand side derives from the variation of the action S1 describing
the matter field. The right hand side Fj of (1.3.13), which derives from the
interaction term S3, depends on (and its first and second derivatives) and on A
and φ (and their first derivatives). such that

�6ψ =
∂

∂t
[(c2|∇ψ|2 − |ψt|2)2ψt)]− c2∇[(c2|∇ψ|2 − |ψt|2)2∇ψ]

�ψ = ψtt − c2∆ψ.

We confine ourselves to search static solutions, namely fields ψ,A, φ which do
not depend on t. We get immediately

J(ψ,∇ψ, ψt) = 0

then, (1.3.9), (1.3.10) and (1.3.13) give respectively

∆φ = 4π%(ψ,∇ψ) (1.3.14)

∇× (∇× A) = 0 (1.3.15)

∆ψj − ε∆6ψ
j +

∂V

∂ξj
(ψ) = Fj (1.3.16)

where Gj depends on ψ (and its first and second derivatives) and φ (and its first
derivatives). Clearly A = 0 (as well as A = ∇h) solves (1.3.15), so the unknowns
of our problem are (ψ, φ). In particular, since our field ψ does not depend on t,
from now on, we rename it u. Finally we can state our main result.

Theorem 1.3.1. There exist two fields

u : R3 → R4

φ : R3 → R

such that ch(u) = 0 and (u, 0, φ) is a (weak) static solution of the Euler-Lagrange
equation (1.3.8).

Example 1.3.3. Soliton as a model for the dislocations in crystal
In 1939,J. Frenkel and T. Kontrova [61] introduced the SG equation (see

Chapter 3.1) as a model for the dislocations in a crystal. The displacement φ(x, t)
of atoms connected by linear springs may propagate as a kink in the periodic
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crystal field. Around 1960, J.K. Perring and Tony Skyrme [76] considered the SG
equation, which is relativistic invariant, as a model for elementary particles (more
rigorously, baryons). They examined collisions of kink-kink and kink-antikink and
confirmed the particle-like stability of kinks (Historically, A. Seeger, H. Donth and
A. Kochendĺorfer [78] found kink-kink solutions and kink-antikink solutions in the
study of the SG equation as a dislocation model).

Example 1.3.4. Soliton in the field of nonlinear optics.
In 1967, S.L. Mc Call and E.L. Hahn [35] discovered an interesting phe-

nomenon in the field of nonlinear optics. Coherent light propagating in the sys-
tem of 2-level atoms obeys the SG equation when the spectral widths are neglected
(perfect resonance). The observed soliton-like behavior is called self-induced trans-
parency (SIT ). The 2π-pulse is the soliton and 0π-pulse is the breather. In the
other limit, that is, the interaction between the media and the light wave is not res-
onant, the envelope of the electric field is described by the NLS equation. Further
extension of research along this line is the eletromagnetically induced transparency
(EIT ) where two coherent lights propagate in the system of 3-level atoms. EIT
and soliton propagations have attracted much attention [86].

Now we illustrate some mathematical models with variable exponent. The
equations to nonlinear partial differential equations involving the operator p(x)-
Laplacian are modeling many physical phenomena such as elasticity nonlinearity,
the electrorheological fluids (the interaction between fluids and EMF) and ther-
morheological, image restoration and propagation through porous medium.

Example 1.3.5. Image restoration [31]: Image restoration is the adjustment
of image, mesh or more generally of discrete data, by variational methods. These
have been successfully applied to solve problems in different intervening computer
vision, computer graphics or further data analysis. The aim of the regulation
is to provide an approximation of the actual data from the observed data that
suffered a deterioration from the environment (noise) or methods acquisition as
quantification and discretization. We confine ourselves to the model [30] proposed
by Blomgren, Chan, Mulet, Wong in 2000,

min

∫
Ω

|∇u|p(∇u)

where lim
s→0

p(s) = 2, lim
s→∞

p(s) = 1, and p is monotonically decreasing. An image,

(u : Ω → Rn), is recovered from an observed, noisy image, Ω ⊂ R2 being the
domain of the image.

Example 1.3.6. Electrorheological fluids [37]: is composed of fine particles
dispersed in a dielectric liquid. Under the action of an electric field, the particles
are attracted to form fibers connecting the electrodes parallel to the direction of
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1.3 Motivation

the electric field giving the following equations given by Rajagopal an Ružička in
2001 (see [72]),

∑n
i=1

∂E
∂xi
, curlE = 0

∂v
∂t
−
∑n

i=1
∂S
∂xi

(x,E,E(v)) + v|∇v|+∇π = g(x,E)∑n
i=1

∂v
∂xi

= 0

where E is the electromagnetic fields. v : R3 → R3 is the velocity of fields. πthe
pressure, (v) is the symmetric part of the gradient, S is a tensor and its expression

S(x,E, z) = v(E)(1 + ‖z‖2)
p−2
2 z, ∀z ∈ R3,

p = (‖E‖2), E depending on x.
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Chapter 2

Preliminaries

In this chapter, we recall from the literature some notations, definitions, and
auxiliary results which will be used throughout this thesis.

Ω ⊂ Rn : open set in Rn, n ∈ N∗.
x ∈ Rn : x = (x1, x2, . . . , xn).

⇀ : weakly converges.

σ(E,E∗) : weak topology on E.

→ : strongly converges.

h′ = grad h =

(
∂h

∂x1

,
∂h

∂x2

, . . . ,
∂h

∂xn

)
.

Lp(Ω) =

{
h : Ω −→ R;u is measurable and

∫
Ω

|h(x)pdx < +∞
}
,

1 ≤ p <∞.
L∞(Ω) = {h : Ω −→ R;h is measurable and |h(x)| ≤ c a.e. in Ω

for some constant c}.

‖h‖Lp =

(∫
Ω

|h(x)|pdx
)1/p

.

‖h‖L∞ = inf{c ; |u(x)| ≤ c a.e. on Ω}.
W 1,p(Ω) = {h ∈ Lp(Ω);h′ ∈ (Lp(Ω))n}.
W 1,p

0 (Ω) : the closure of C∞0 (Ω) in W 1,p(Ω).

‖h‖W 1,p = ‖h‖Lp + ‖h′‖Lp .
Ck

0 (Ω) : space of k times continuously differentiable functions with compact

support in Ω.

C∞(Ω) : functions which are continuously differentiable arbitrarily

many times.

C∞0 (Ω) : space of C∞ continuous functions with compact support in

Ω (some authors write D(Ω) or C∞c (Ω) instead of C∞0 (Ω).
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Preliminaries

ψjt =
∂ψj

∂t
.

ψji =
∂ψj

∂xi
.

u = (u0, ũ) ∈ R× Rn.

∇u : denoting, the Jacobian.

‖u‖a = a‖∇u‖L2 + ‖∇u‖Lp + ‖u‖L2 , a > 0.

Ea = C∞0 (Rn,Rn+1)
‖·‖a

: the completion of C∞0 (Rn,Rn+1) with the norm ‖ · ‖a .
∆pu = ∇

(
|∇u|p−2∇u

)
.

∇(|∇u|p−2∇u) : denotes the vector whose j − th component is given by

div(|∇u|p−2∇uj).
4u : denotes the vector whose j − th component is given by

div(∇uj).
Λa = {u ∈ Ea : u(x) 6= η, for all x ∈ Rn} .
∂Λa = {u ∈ Ea : there exist x ∈ Rn such that u(x) = η} .

deg(h,Ω, b) =
∑

x∈h−1(b)∩Ω

sgnJh(x),

Jh : denoting the determinate of the Jacobian matrix .

ch(u) :=


deg(ũ, Ku, 0) if Ku 6= ∅,

0 if Ku = ∅.
Λ∗q = {u ∈ Λa : ch(u) 6= 0}.
Λa =

⋃
q∈Z

Λq.

O(n) : denotes the symmetry group of rotations and translations.

P(Ω) := P(Ω, µ) : the set of all µ-measurable functions p : Ω→ [1,∞].

C+(Rn) = {p ∈ C(Rn) ∩ L∞(Rn) : p(x) > 1 for all x ∈ Rn} .
p+ = ess sup

x∈Rn
p(x).

p− = ess inf
x∈Rn

p(x).

Lp(·)(Ω) = {h : Ω −→ R;h is measurable and

∫
Ω

|h(x)|p(x)dx < +∞} .

ρp(·)(h) =

∫
Ω

|h(x)|p(x)dx.

‖h‖p(·) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣h(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
.
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2.1 Classical Sobolev spaces

W 1,p(·)(Ω) = {h ∈ Lp(·)(Ω);h′ ∈ (Lp(·)(Ω))N}.
H

1,p(·)
0 (Ω) : the closure of C∞0 (Ω) in W 1,p(·)(Ω).

‖u‖a,p = a‖∇u‖L2 + ‖∇u‖Lp(·) + ‖u‖L2 , a > 0.

Ea,p = C∞0 (Rn,Rn+1)
‖·‖a,p

: The completion of C∞0 (Rn,Rn+1),

with the norm‖ · ‖a,p.
Γa = {u ∈ Ea,p : u(x) 6= η, for all x ∈ Rn} .
∂Γa = {u ∈ Ea,p : there exist x ∈ Rn such that u(x) = η} .

L(Rn) : The set of linear applications.

2.1 Classical Sobolev spaces

For all information of this section we see [28]. Let Ω ⊂ RN be an open set.

Definition 2.1.1. Let p ∈ R with 1 ≤ p <∞; we set

Lp(Ω) =

{
u : Ω −→ R;u is measurable and

∫
Ω

|u|pdx < +∞
}
,

with the norm

‖u‖Lp = ‖u‖p =

(∫
Ω

|u(x)|pdx
)1/p

.

Definition 2.1.2. We set

L∞(Ω) =

{
u : Ω −→ R :

u is measurable and there is a constant c
such that |u(x)| ≤ c a.e. on Ω

}
with the norm

‖u‖L∞ = inf{c ; |u(x)| ≤ c a.e. on Ω}.

• The space Lp is a separable Banach space; it is reflexive if 1 < p <∞ and
the dual of Lp is isomorphic to the space Lp

′
with

1

p
+

1

p′
= 1.

• The space L1 is a separable Banach space; it is never reflexive and the dual
of L1 is isomorphic to the space L∞.

• The space L∞ is Banach space, it is not separable, it is not reflexive and
the dual of L∞ is strictly bigger than L1.
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Definition 2.1.3. For 1 ≤ p <∞ the Sobolev space W 1,p(Ω)is defined by

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ (Lp(Ω))n}
equipped with the norm

‖u‖W 1,p = ‖u‖Lp + ‖∇u‖Lp .

we set
W 1,2(Ω) = H1(Ω).

Remark 2.1.1.

∇u = gradu =

(
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xN

)
such that ∂u

∂xi
is derived in the sense of distribution, i.e.,

∃ gi ∈ Lp(Ω),

∫
Ω

u
∂φ

∂xi
=

∫
Ω

giφ ∀φ ∈ C∞0 (Ω).

Proposition 2.1.1. ( [28], Proposition 8.1, page 203) The space W 1,p(Ω) is a
Banach space for 1 ≤ p ≤ ∞. It is reflexive for 1 < p < ∞ and separable for
1 ≤ p <∞. The space H1 is a separable Hilbert space.

Definition 2.1.4. Let 1 ≤ p <∞;W 1,p
0 (Ω) denotes the closure of C∞0 (Ω) in W 1,p(Ω).

Set
H1

0 (Ω) = W 1,2
0 (Ω).

The space W 1,p
0 equipped with the W 1,p norm, is a separable Banach space; it is

reflexive if 1 < p < ∞. H1
0 equipped with the H1 scalar product, is a Hilbert

space.

Corollary 2.1.2. ( [28], Corollary 4.23,page 109) Let Ω ⊂ RN be an open set.
Then C∞0 (Ω) is dense in Lp(Ω) for any

1 ≤ p <∞.

Theorem 2.1.3. ( [28], Theorem 9.2, page 265) Let u ∈ W 1,p(Ω) with 1 ≤ p <∞
then there exists a sequence (un) from C∞0 (RN) such that

un/Ω → u in Lp(Ω)

and
∇un/ω → ∇u/ω in (Lp(Ω))N for all ω ⊂⊂ Ω.

In case Ω = RNand u ∈ W 1,p(Ω) with 1 ≤ p < ∞. Then there exists a
sequence (un) from C∞0 (RN) such that

un/Ω → u in Lp(RN)

and
∇un → ∇u in (Lp(RN))N .
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2.1 Classical Sobolev spaces

C∞0 (RN) is dense in W 1,p(RN).

Remark 2.1.2. Since C∞0 (RN) is dense in W 1,p(RN), we have

W 1,p
0 (RN) = W 1,p(RN).

Corollary 2.1.4. ( [28],Corollary 9.8 (density), page 277) Assume that Ω is of
class C1, and let u ∈ W 1,p(Ω) with 1 ≤ p <∞. Then there exists a sequence (un)
from C∞0 (RN) such that un/Ω → u in W 1,p(Ω). In other words, the restrictions
to Ω of C∞0 (RN) functions form a dense subspace of W 1,p(Ω).

Theorem 2.1.5. ( [28],Theorem 9.12, page 282) Let p > N . Then

W 1,p(RN) ⊂ L∞(RN)

with continuous injection. Furthermore, for all u ∈ W 1,p(RN), we have

|u(x)− u(y)| ≤ Cα|x− y|‖∇u‖Lp a.e. x, y ∈ RN ,

where α = 1− (N/p) and C is a constant (depending only on p and N).

Furthermore lim
|x|→+∞

u(x) = 0.

Corollary 2.1.6. ( [28], Corollary 9.13, page 283) Let m ≥ 1 be an integer and
let p ∈ [1,+∞).
We have

Wm,p(RN) ⊂ Lq(RN), where
1

q
=

1

p
− m

N
, if

1

p
− m

N
> 0

Wm,p(RN) ⊂ Lq(RN),∀q ∈ [p,+∞), if
1

p
− m

N
= 0

Wm,p(RN) ⊂ L∞(RN), if
1

p
− m

N
< 0

and all these injections are continuous.

Theorem 2.1.7. ( [28], Theorem, page 285) Suppose that Ω is bounded and of
class C1. Then we have the following compact injections:

W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [1, p?), where
1

p?
=

1

p
− 1

N
, if p < N,

W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [p,∞), if p = N,

W 1,p(Ω) ⊂ C(Ω), if p = N.

In particular,W 1,p(Ω) ⊂ Lp(Ω) with compact injection for all p (and
all N).
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Theorem 2.1.8. ( [28], Theorem, page 278)
Let 1 ≤ p < N. Then

W 1,p(RN) ⊂ LP
∗
(RN), where p∗is given by

1

p?
=

1

p
− 1

N

and there exists a constant c = c(p,N) such that

‖u‖Lp? ≤ c‖∇u‖Lp ∀u ∈ W 1,p(RN).

2.2 Lebegue and Sobolev generalized spaces

Variable exponent Lebesgue spaces appeared in the literature for the first time in
a 1931 article by Orlicz [75]. In that article the following question is considered:
let (pi) (with pi > 1) and (xi) be sequences of real numbers such that

∑
xpi

converges. What are the necessary and sufficient conditions on (yi) for
∑

i xiyi
to converge. It turns out that the answer is that

∑
(λyi)

qi should converge for
some λ > 0 and p = qi

(pi−1)
. This is essentially Hölder’s inequality in the space

`p(). Orlicz also was interested in the study of function spaces that contain all
measurable functions u : Ω→ R such that∫

Ω

(φ(λ|u(x)|)dx,

for some λ > 0 and φ. Satisfying some natural assumptions, where Ω is an open
set in RN . This space is denoted by Lφ(.) and it is now called Orlicz space.

However, we point out that in [75] the case |u(x)|p(x) corresponding to variable
exponents was not included. In the 1950’s these problems were systematically
studied by Nakano [68], who developed the theory of modular function spaces.
Nakano explicitly mentioned variable exponent Lebesgue spaces as an example of
more general spaces he considered, see Nakano ( [68], p. 284). Later, Polish math-
ematicians investigated the modular function spaces, see Musielak [66]. Variable
exponent Lebesgue spaces on the real line have been independently developed by
Russian researchers. In that context, we refer to the work of Tsenov [89] and
Sharapudinov [88].

In 1991, Kovacik and Rakosnik [60] established several basic properties of
spaces Lp(x) and W 1,p(x) with variable exponents. Their results were extended
by Fan and Zhao [54] in the framework of Sobolev spaces Wm,p(x). Pioneering
regularity results for functionals with nonstandard growth are due to Acerbi and
Mingione [4]. Density of smooth functions in W k,p(x)(Ω) and related Sobolev
embedding properties are due to Edmunds and Rakosnik [51,52].

The variable Lebesgue spaces, as their name implies, are a generalization of
the classical Lebesgue spaces, replacing the constant exponent p with a variable
exponent function p(.). The resulting Banach function spaces Lp(.) have many
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2.3 Lebesgue generalized space

properties similar to the Lp spaces, but they also differ in surprising and subtle
ways. For this reason the variable Lebesgue spaces have an intrinsic interest, but
they are also very important for their applications to partial differential equations
and variational integrals with non-standard growth conditions.

2.3 Lebesgue generalized space

In this section we shall introduce generalized Lebesgue space and state some of
their basic properties.

Definition 2.3.1. Let (A,
∑

, µ) be a σ-finite, complete measure space. We de-

fine P(A, µ) to be the set of all µ-measurable functions p : A→ [1,∞]. Functions
p ∈ P(A, µ) are called variable exponents on A.

In the special case that µ is the n-dimensional Lebesgue measure and Ω is
an open subset of Rn, we abbreviate P(Ω) := P(Ω, µ). For p ∈ L∞(Rn), with
1 < p−,

Lp(x)(Rn) =

{
u : Rn → R :

∫
Rn
|u(x)|p(x)dx <∞

}
,

which is a Banach space when furnished with the Luxemburg norm

|u|p(x) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
.

For all u ∈ Lp(x)(Rn), the relation between modular and Luxemburg norm is
clarified by following proposition.

Proposition 2.3.1. Let u ∈ Lp(x)(Rn) and (um) be a sequence in Lp(x)(Rn), then

(1) |u|p(x) < 1(= 1, > 1)⇔ ρp(x)(u) < 1(= 1, > 1).

(2) |u|p(x) > 1⇒ |u|p
−

p(x) < ρp(x)(u) < |u|p
+

p(x).

(3) |u|p(x) < 1⇒ |u|p
+

p(x) < ρp(x)(u) < |u|p
−

p(x).

(4) |u− um|p(x) → 0⇔ ρp(x)(u− um)→ 0.

(5) |u|p(x) → 0⇔ ρp(x)(u)→ 0, |u|p(x) →∞⇔ ρp(x)(u)→∞.

Remark 2.3.1. While this more technical definition is necessary when p(.) is
unbounded, we can simplify it when p+ <∞.

Denoting by q(x) the conjugate exponent of p(x), namely the function satis-
fying

1

p(x)
+

1

q(x)
= 1 pointwise in R,
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let Ω ⊂ Rn be a measurable subset and meas Ω > 0. The following Hölder-type
inequality holds for any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω)∫

Ω

uvdx ≤
(

1

p−
+

1

q−

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

An important role in manipulating the generalized Lebesgue and Sobolev spaces
is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :
Lp(x)(Ω)→ R defined by

ρp(x)(u) =

∫
Rn
|u(x)|p(x)dx,

where the ρp(x) are convex and continuous modular, (see [41, Theorem 3.4.1 (p.
87) and Theorem 3.4.9 (p. 89)]) i.e. ρp(.) verifies the following properties

• ρp(.)(u) = 0⇔ u = 0;

• ρp(.)(u) = ρp(.)(−u),

• ρp(.)(αu + βv) ≤ αρp(.)(u) + βρp(.)(v), ∀u, v ∈ E, ∀α, β ≥ 0, α + β = 1,
where

E = {u : Ω→ R : u is a measurable function in Ω}.

Theorem 2.3.2. Let p ∈ P(Ω) ∩ L∞(Ω). Then the set C(Ω) ∩ Lp(x)(Ω) is dense
in Lp(x)(Ω). If, moreover, Ω is open, then the set C(Ω) is dense in Lp(x)(Ω).

Proposition 2.3.3. Given Ω and p(.) ∈ P(Ω), if p+ < ∞, then f ∈ Lp(.)(Ω) if
and only if

ρp(.)(u) <∞.

Lemma 2.3.4. ( [41, Lemma 3.2.12 (page 78)]) Let s ∈ P(A, µ) then

1

2
min

{
µ(A)

1
s+ , µ(A)

1
s−

}
≤ ‖1‖Ls(·)(A,µ) ≤ 2 max

{
µ(A)

1
s+ , µ(A)

1
s−

}
.

2.4 Sobolev space with variable exponent

In this section we define the variable exponent Sobolev space by

W 1,p(x)(Rn) =
{
u ∈ Lp(x)(Rn) : ∇u ∈ Lp(x)(Rn)

}
,

which is a Banach space equipped with the norm

|u|1,p = |u|p(x) + |∇u|p(x) and it is reflexive, 1 < p− ≤ p+ <∞.

Definition 2.4.1. ( [41, Definition 11.2.1 (page 346)]) Let p ∈ P(Ω) and k ∈ N.
The space H

k,p(·)
0 (Ω) is defined as the closure of C∞0 (Ω) in W k,p(·)(Ω).
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2.4 Sobolev space with variable exponent

Theorem 2.4.1. Let p ∈ P(Ω). Then H
k,p(·)
0 (Ω) is Banach space. If p(·) is

bounded, H
k,p(.)
0 (Ω) is separable and if 1 < p− ≤ p+ <∞, then it is reflexive and

uniformly convex.

Definition 2.4.2. ( [41, Definition 4.1.1 (page 100)]) We say that a function
α : Ω→ R is locally log-Hölder Continuous on Ω if there exists c1 > 0 such that

|α(x)− α(y)| < c1

log |e+ 1/|y − x||

for all x, y ∈ Ω. We say that α satisfies the log if there exist an α∞ ∈ R and a
constant c2 > 0 such that

|α(x)− α∞| <
c2

log |e+ |x||

for all x ∈ Ω. We say that α is globally log-Hölder Continuous in Ω if it is locally
log-Hölder continuous and satisfies the log-Hölder decay condition.

Definition 2.4.3. ( [41, Definition 4.1.4]) We define the following class of vari-
able exponents

P log(Ω) := {p ∈ P(Ω) :
1

p
is globally log − Hölder Continuous}

Remark 2.4.1. ( [41, Remark 4.1.5(page 101)] If p ∈ P(Ω) with p+ <∞, then
p ∈ P log(Ω) if and only if p is globally Hölder continuous.

Lemma 2.4.2. ( [41, Lemma 4.1.6 ]) Let α : Rn → R be continuous and bounded,
i.e., −∞ < α− ≤ α+ < +∞. The flowing conditions are equivalent:

(a) α is locally log-Hölder Continuous.

(b) for all balls we have |B|α−B−α+
B ≤ c.

(c) for all x ∈ B we have |B|α−B−α(x) ≤ c.

(d) for all x ∈ B we have |B|α(x)−α+
B ≤ c.

Instead of balls it is also possible to use cubes.

Density results for generalized Lebesgue and Sobolev spaces.

Corollary 2.4.3. Let p ∈ P log(Rn) be a bounded exponent. Then the set C∞0 (Rn)
is dense in Lp(.)(Rn).

Theorem 2.4.4. Letp ∈ P(Ω) be a bounded exponent. If p ∈ E or p ∈ P log(Ω),
C∞0 (Rn) is dense in W 1,p(.)(Rn).
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2.5 Convergence theorems

The next Theorems collect analogues of the classical Lebesgue integral conver-
gence results.

Theorem 2.5.1. Given Ω and p(.) ∈ P(Ω), let {fk} ⊂ Lp(.)(Ω) be a sequence of
non-negative functions such that fk increases to a function f pointwise a.e. Then
either f ∈ Lp(.)(Ω) and ‖fk‖1,p(.) → ‖f‖1,p , or f 6∈ Lp(.)(Ω) and ‖fk‖1,p(.) →∞.

The next result is the analog of Fatou’s Lemma.. It is proved in [64].

Lemma 2.5.2. (Fatou’s lemma). Given Ω and p(.) ∈ P(Ω), suppose the sequence
{fk} ⊂ Lp(.)(Ω) be a sequence fkf such that pointwise a.e. If

f(x) = lim inf
k→∞

fk(x) < +∞.

Then f ∈ Lp(.)(Ω) and ∫
Ω

f(x)dx ≤ lim inf
k→∞

∫
Ω

fk(x)dx.

Theorem 2.5.3. (dominated convergence theorem, Lebesgue). Given Ω and
p(.) ∈ P(Ω), suppose the sequence {fk} ⊂ Lp(.)(Ω) be a sequence fk → f such
that pointwise a.e. and there is a function g ∈ Lp(.)(Ω,R+) such that for all
k, |fk(x)| ≤ g(x) a.e. on Ω. Then f ∈ Lp(.) and

‖fk − f‖Lp(.) → 0 as k →∞.

The final convergence result shows that norm convergence yields pointwise
convergence on subsequences. The proof depends on showing that norm conver-
gence implies convergence in measure; see [64] for details.

Theorem 2.5.4. Given Ω and p(.) ∈ P(Ω), suppose the sequence fk → f in
norm in Lp(.)(Ω), then there exists a subsequence {fkj} that converges pointwise
a.e. to f.

2.6 Lower and upper semicontinuous

Definition 2.6.1. Let f : X → [−∞,∞] be a function. We define the following
set

dom(f) = {x ∈ X|f(x) <∞}.

We say that the function f is proper if dom(f) 6= ∅.
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Definition 2.6.2. Let X be a topological space. A function f : X → [−∞,∞]
is called lower(upper) semicontinuous at a point x0 ∈ X, abbreviated l.s.c.(u.s.c.)
if for each a ∈ R with f(x0) > a(f(x0) < a) there exists a neighbourhood U of x0

such that the following implication holds true

x ∈ U ⇒ f(x) > a(x ∈ U ⇒ f(x) < a).

We say that f is l.s.c.(u.s.c.) on a set M ⊆ X if it is such at each point of the
set M.

The next proposition gives the characterization of local semicontinuity of func-
tions.

Proposition 2.6.1. [58] Let X be a Hausdorff space, let f : X → [−∞,∞], and
x0 ∈ X. Then

(i) f is l.s.c at x0, if for each net (xα)α∈I → x0 in X then

lim inf
i∈I

f(x0) ≥ f(x0);

(ii) f is u.s.c at x0 , whenever xα → x0 in X then

lim sup
i∈
f(x0) ≤ f(x0),

(iii) f is l.s.c. if and only if −f is u.s.c.

The following result is a closely related characterization of the local semicon-
tinuity

Proposition 2.6.2. For any function f : X → [−∞,∞] and x0 ∈ X the follow-
ing assertions are true:

(i) f is l.s.c at x0 if and only if lim inf
x→x0

f(x) = f(x0),

(ii) f is u.s.c at x0 if and only if lim sup
x→x0

f(x) = f(x0).

The classical Weierstrass theorem states that a continuous function defined
on a compact set achieves its minimum and its maximum on that set. The
following refinement is a fundamental tool in proving the existence of solutions
to minimization problems.

Theorem 2.6.3. (Weierstrass) [58] Let X be a Hausdorff space, let f : X →
[−∞,∞] be l.s.c., and let C be a compact subset of X. Suppose that C∩domf 6= ∅.
Then f achieves its infimum over C.
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2.7 Ekeland’s variational principle

The variational principle which provides an approximate minimizer of a bounded
below and lower semicontinuous function in a given neighborhood of a point, was
discovered introduced by Ekeland [48] in 1972 (see also, [49, 50]. It is known as
Ekeland’s variational principle (in short,E.V.P.). In 1981, Sullivan [82] estab-
lished the validity of the E.V.P. statement on a metric space (X, d) is equivalent
to the completeness of the metric space (X, d). In 1982, McLinden [67] showed
how E.V.P., or more precisely the augmented form of it provided by Rockafel-
lor [74], can be adapted to extremum problems of minimax type. In this section,
we present several forms of Ekeland’s variational principle. From Weirstrass the-
orem 2.6.3, for each C ⊂ X compact, and if f is lower semicontinuous, then the
following constrained optimization problem.

inf
x∈C

f(x), (2.7.1)

has a solution. Note only that, the solution set of (2.7.1) is compact. Now the
question is ”Can we achieve the infimum of the following optimization problem

inf
x∈X

f(x), (2.7.2)

or of (2.7.2) without the compactness assumption? The answer is ”yes”. But we
need some kind of coercivity assumption as well as convexity structure on C. But
we can always obtain an approximately ε-solution, that is, a point xε for ε > 0
satisfying

inf
x∈X

f(x) ≤ inf f(xε) ≤ inf
x∈X

f(x) + ε.

The Ekeland’s variational principle guarantees the existence of such an ε-solution
where neither compactness nor convexity on the underlying space is needed.

Theorem 2.7.1. (Strong Form of Ekeland’s Variational Principle) [49] Let (X, d)
be a complete metric space and f : X → R∪{∞} be a proper, bounded below and
l.s.c. functional. Let ε > 0 and x∗ ∈ X be given such that

f(x∗) ≤ inf
x∈x

f(x) + ε.

Then for a given λ > 0, there exists x̄ ∈ X such that

(a) f(x̄) ≤ f(x∗)

(b) d(x∗, x̄) ≤ λ

(c) f(x̄) < f(x) + ε
λ
d(x, x̄) for all x ∈ X\{x̄}.

Aubin and Frankowska [7] established the following form of Ekeland’s varia-
tional principle which is equivalent to Theorem 2.7.1.
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2.8 Topological Degree

Theorem 2.7.2. Let (X, d) be a complete metric space and f a lower semi-
continuous map from X to R. We assume that f is lower bounded and we set
c := infx∈X f(x). Then for all ε > 0; there exist uε such that{

c ≤ f(uε) ≤ c+ ε,
∀x ∈ X, x 6= uε f(x)− f(uε) + εd(x, uε) > 0.

We now present, the so called, weak formulation of Ekeland’s variational prin-
ciple.

Corollary 2.7.3. (Weak form of Ekeland’s variational principle) [5] Let (X, d)
be a complete metric space and f : X → R ∪ {∞} be proper, bounded below and
l.s.c. Then for any given ε > 0, there exists x̄ ∈ X such that

f(x̄) ≤ inf
x∈x

f(x) + ε

and
f(x̄) < f(x) + εd(x, x∗) for all x ∈ X\{x̄}.

The property of Ekeland’s variational principle for proper but, extended real-
valued lower semicontinuous and bounded below functions, on a metric space
characterizes compactness of the metric space.

Theorem 2.7.4. (Converse of E.V.P.) [5] A metric space (X, d) is complete if
for every functional f : X → R∪{∞} which is a proper, bounded below and l.s.c.
then for any given ε > 0, there exists x̄ ∈ X such that

f(x̄) ≤ inf
x∈x

f(x) + ε

and
f(x̄) < f(x) + εd(x, x∗) for all x ∈ X\{x̄}.

2.8 Topological Degree

For more information on this topic see [43] and [69] .
Now, we give the construction of Brouwer degree in this section as follows:

Definition 2.8.1. ( [43],Definition 1.2.1,page 4 ).

Let Ω ⊂ RN be open and bounded and f ∈ C1(Ω). If b /∈ f(∂Ω) and Jf (b) 6= 0,
then we define

deg(f,Ω, b) =
∑

x∈f−1(b)

sgnJf (x),

where deg(f,Ω, b) = 0 if f−1(b) = ∅.
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The definition of the degree can be extended to functions that are only con-
tinuous and also to non-regular values;

• Let f ∈ C(Ω), then there exists a sequence fk ∈ C1(Ω) such that

‖fk − f‖∞ := sup
x∈Ω

‖fk(x)− f(x)‖ → 0 on Ω,

and we can show that

deg(f,Ω, b) = lim
k→∞

deg(fk,Ω, b).

• Let f ∈ C(Ω) and b /∈ f(∂Ω) not necessarily a regular value.

Then there is sequence bk, (regular values of f)such that bk → b

and we can show that

deg(f,Ω, b) = lim
k→∞

deg(f,Ω, bk),

and the limit is independent of the sequence bk.

Theorem 2.8.1. ( [43],Theorem 1.2.6,page 7 ) Let Ω ⊂ RN be an open bounded
subset and f : Ω −→ RN be a continuous mapping. If b /∈ f(∂Ω), then there
exists an integer deg(f,Ω, b) satisfying the following properties:

(1) (Normality) deg(I,Ω, b) = 1 if and only if b ∈ Ω , where I denotes the
identity mapping;

(2) (Solvability) deg(f,Ω, b) 6= 0 then f(x) = b has a solution in Ω;

(3) (Additivity) . Suppose that Ω1,Ω2are two disjoint open subsets of Ω and
b /∈ f(Ω− Ω1 ∪ Ω2) . Then deg(f,Ω, b) = deg(f,Ω1, b) + deg(f,Ω2, b);

(4) (Homotopy) If ft(x) : [0 1]×Ω −→ RN is continuous and b /∈ ∪t∈[0 1]ft(∂Ω)
then deg(ft,Ω, b) does not depend on t ∈ [0, 1];

(5) deg(f,Ω, b)is a constant on any connected component of RN \ f(∂Ω).

Another properties include (see [69]):

(6) (excision) let A ⊂ Ω an compact set and b /∈ f(A) then

deg(f,Ω, b) = deg(f,Ω/A, b).

(7) (stability):topological degree with respect to the uniform convergence
Let f, g ∈ C(Ω), b /∈ f(∂Ω) ∪ g(∂Ω).

If ‖g − f‖∞ ≤
1

4
d (b, f(∂Ω) ∪ g(∂Ω)) then deg(f,Ω, b) = deg(g,Ω, b).

(8) If f = g on ∂Ω then deg(f,Ω, b) = deg(g,Ω, b).
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Chapter 3

Solitons in one and three
dimensions of spaces

3.1 Solitons in one dimension of space: Sine-

Gordon equation (SG)

In this section, we consider the 1 + 1 dimensional sine-Gordon equation

ψtt − ψxx + sinψ = 0, (3.1.1)

where ψ = ψ(x, t) is a scalar field, x, t are real numbers.
This is probably the simplest equation admitting soliton solutions and can

be seen as a pattern for our study, to see more clearly soliton’s properties and
characteristics. Its name was coined by J. Rubinstein [73] as a pun on ”Klein-
Gordon” and it arises in the study of surfaces with constant negative Gaussian
curvature in differential geometry and also in many physical applications, such as
two-dimensional models of elementary particles, stability of fluid motions, prop-
agation of crystal dislocations (see [1, 2, 8, 29, 33, 38, 42, 59, 63, 70, 76] and [81] for
exhaustive discussions and references).

(3.1.1) is the Euler-Lagrange equation of the action functional

S(ψ) =

∫
R×R

[
1
2
(ψ2

t − ψ2
x)− V (ψ)] dx dt, (3.1.2)

where we can choose V (ψ) = 1− cosψ so to obtain V ≥ 0, and then the related
energy functional is

E(ψ) =
1

2

∫
R
ψ2
t dx+

1

2

∫
R
ψ2
x dx+

1

2

∫
R
V (ψ) dx. (3.1.3)

Note that the potential V has a discrete infinite set of degenerate minima 2πZ,
where it vanishes. Obviouslyψ(x) = kπ is a trivial solution of (3.1.2) for every
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Solitons in one and three dimensions of spaces

k ∈ Z, but of course we are interested in nontrivial solutions. In particular, we
will concern ourselves with nonsingular finite-energy solutions (of which solitary
waves are special cases).

So, let ψ be a classical solution with E(ψ) < ∞. By this we mean of course
that all the integrals in (3.1.3) are finite , and this implies 1− cosψ(., t) ∈ H1(R)
for all fixed t, being [1− cosψ(., t)]2 ≤ 2[1− cosψ(., t)] ∈ L1 and | d

dx
cosψ(., t)| ≤

|ψx(., t)| ∈ L2.
Hence limx→±∞[1 − cosψ(x, t)] = 0 and from this we deduce that every con-

figuration of u satisfies the following asymptotic conditions

ψ(±∞, t) = lim
x→±∞

ψ(x, t) ∈ 2πZ. (3.1.4)

Moreover, if we assume that ψt ∈ L∞(R2) (which is necessarily the case of
solitary waves) then the functions of the variable t defined by the left-hand side
of (3.1.4), being continuous and discrete-valued, must be constant

ψ(±∞, t) ≡ ψ(±∞) ∈ 2πZ. (3.1.5)

i.e., ψ preserves its asymptotic values as t varies. These facts suggest to consider
the sets

H(k1,k2) = {f ∈ C2(R;R) | lim
x→+∞

f(x, t) = 2k1π, lim
x→−∞

f(x, t) = 2k2π}

with k1, k2 ∈ Z, and the topological space

H =
⋃

(k1,k2)∈Z2

H(k1,k2) ⊂ L∞(R).

It is easy to see that (k1, k2) 6= (h1, h2) =⇒ H(k1,k2) ∩ H(k1,k2) = ∅ is an open
path-connected subset of H, called a sector. The property (3.1.5) implies that,
for a solution ψ, the function x 7→ ψ(x, t) (which we call a configuration of ψ)
stays always in the same connected component H(k1,k2) as time evolves. This
fact allows a topological classification of the finite-energy nonsingular solutions
to the equation (3.1.1) satisfying (3.1.5), each bearing thereby the pair of indices
(k1, k2). Moreover, consistent with the invariance of the equation (3.1.1) (and
also of the action (3.1.2) under the change ψ 7→ ψ+ 2πk, we can fix k1 and relate
to such solutions a single integer index given by the difference k2 − k1, namely

Q(ψ) :=
1

2π

∫
R
ψx(x, t) dx.

Q(ψ) defines a topological index, called topological charge. Note that Q is essen-
tially a boundary condition which is constant in time because of the finiteness of
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3.1 Solitons in one dimension of space: Sine-Gordon equation (SG)

energy, in contrast with the other more familiar conserved quantities (see Subsec-
tion 1.2.1 in [9]) coming from the symmetries of the action functional. Now, we
turn to the particular case of static (i.e. t -independent) nonsingular finite-energy
solutions. They solve the equation

−u” + sinu = 0, u : R→ R (3.1.6)

which can be interpreted as a conservative system (or, by a mechanical analogy,
as the equation of motion for a unit-mass point particle). The mechanical energy

EM =
1

2
(u
′
)2 − V (u)

(in the analogy, kinetic energy plus potential energy) is constant with respect to
x and must equal zero. Indeed u(±∞) ∈ 2πZ implies EM = lim x→±∞(u

′
)2/2,

so EM < ∞ implies EM = 0. Hence in the phase plane we get the zero-energy
orbits, that is, the solutions u for which

• ∀x ∈ R u
′
(x) = ±sinu(x)

2

• ∃k ∈ Z ∀x ∈ R, 2πk < u(x) < 2π(k + 1)

• u is monotone and either lim x→−∞u(x) = 2kπ and lim x→+∞u(x) = 2(k+
1)π or lim x→−∞u(x) = 2(k + 1)π and lim x→+∞u(x) = 2kπ.

This implies that Q(u) = ±1 for these solutions.
Finally, upon integration,

x− x0 = ±
∫ x

x0

du(x)

u′(x)

and
(u−1(u(x)))

′
= u−1

′

(u).u
′
(x) = 1,

then

x− x0 = ±
∫ u(x)

u(x0)

u−1
′

(u)du = ±u−1(u)|u(x)
u(x0).

So we have x−x0 = ±
∫ u(x)

u(x0)

du

2 sin(u/2)
= ±

∫ u(x)

u(x0)

d(tan(u/4))

tan(u/4)
= ± ln

tan[u(x)/4]

tan[u(x0)/4]
,

∀x ∈ R.

Using again the invariance u 7→ u + 2πk, we impose u(x0) = π and we get the
explicit solutions
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Solitons in one and three dimensions of spaces

uK(x) = 4 arctan ex−x0 and uA(x) = −4 arctan ex−x0 (3.1.7)

which are the so-called kink and antikink, respectively, and carry Q(uK) = 1
and Q(uA) = −1. Note that the translational invariance of (3.1.6) is reflected
by the fact that a different choice of the arbitrary constant x0 only brings the
solution to shift in space.

Given on the space-time R × R a nonlinear equation with associated energy
functional (see Section 1.2 in [9])

E(ψ) =

∫
R
εψ(x, t)

we call solitary wave any nonsingular solution whose energy density has a space-
time dependence of the form

εψ(x, t) = ε̃ψ(x− vt) (3.1.8)

where ε̃ψ is a localized function and v is velocity in the direction of the motion.
The energy density of both kink and antikink is given by the localized function

ε̃(x) =
16e2(x−x0)

[1 + e2(x−x0)]2

and hence they are static solitary waves (i.e. corresponding to v = 0 in (3.1.8)).
By the Lorentz invariance of (3.1.2), traveling solitary waves can be trivially

obtained on Lorentz-transforming (3.1.7) and their energy density turns out to
be

ε(x, t) = γ2ε̃(γ[x− vt])

which represents a single bump traveling undistorted with uniform velocity.

3.2 Solitons in three dimensions of space : Der-

rickś Problem

In 1963, attempting to find a model for extended elementary particles in contrast
with point particles, U. Enz [44] was led to study an equation like (3.1.1). He
proved the existence of nonsingular time-independent solutions with energy den-
sity localized about a point on the x axis, and under a further request of stability,
he found that the energy is bound to assume only certain discrete values, which
can be seen as corresponding to the rest energies of elementary particles. Moving
beyond this work, G.H. Derrick proposed, in a celebrated paper [40], the more
realistic 3+1 dimensional model given by the nonlinear Klein-Gordon equation
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3.2 Solitons in three dimensions of space : Derrickś Problem

�ψ +W
′
(ψ) = 0, (3.2.1)

where

�ψ = −∆ψ +
∂2ψ

∂t2

(∆ being the 3-dimensional Laplace operator) and W
′

is the gradient of a non-
negative C1 real function W .

Owing to the relativistic invariance of (3.2.1), moving waves can be trivially
obtained from static solutions by boosting, i.e., turning to a moving coordinate
frame by applying a Lorentz transformation. Thus, we are led to concern ourselves
with finite-energy static solutions (of which solitary waves are a particular case)
u = u(x), x ∈ R3 with

E(u) =

∫
RN

[
1

2
|∇u|2 +W (u)] dx <∞ (3.2.2)

where N = 3, solve the equation

∆u+W
′
(u) = 0

which is the also the Euler-Lagrange equation of the energy functional (3.2.2).
In [40] Derrick showed that, if the potential W is nonnegative, any finite-

energy static solution of (3.2.1) is necessarily trivial, namely it takes a constant
value which is a minimum point of W . On the other hand, if the nonnegativity
of W is not required, no stable finite-energy static solution is permitted to the
equation (3.2.1). In fact, the following theorem holds.

Theorem 3.2.1. Let N ≥ 3 . The energy functional (3.2.2) has no nontrivial
local minima, i.e.,

δ2E(u) ≥ 0 with u non constant ⇒ δE(u) 6= 0.

Moreover, if W > 0 then E does not have any nontrivial critical point at all,
namely

δE(u) = 0⇒ u ≡ u0withW (u0) = 0.

Proof. Using Derrick’s simple rescaling argument, we set uλ(x) := u(λx) and

E(u) =
1

2λN−2

∫
RN
|∇u|2 dx+

1

λN

∫
RN
W (u) dx :=

1

λN−2
I1 +

1

λN
I2.

If δE(u)h = 0 for any variation h, we have in particular

d

dλ
E(uλ)

∣∣∣∣
λ=1

=
2−N

2
I1 +NI2 = 0, (3.2.3)
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and therefore

d2

dλ2
E(uλ)

∣∣∣∣
λ=1

=
(2−N)(1−N)

2
I1 +N(N + 1)I2 = (2−N)I1.

Hence the second variation of E at any nonconstant critical point u is negative
for a variation corresponding to a uniform stretching of u. Finally, if W > 0 then
both I1 and I2 are nonnegative and from (3.2.3) we deduce I1 = I2 = 0.

Remark 3.2.1. According to Enźs results as well as to our previous discussion on
the equation (3.1.1), the above argument is not applicable to the 1+1 dimensional
case: if N = 1 we obtain E(uλ)/ = λI1/2 + I2/λ yielding on differentiation
I1 = 2I2, which gives no contraddiction.

On the other hand, if we consider non-positive potential, we are forced to seek
saddle points, instead of minima, and for these static solutions we have lack of
stability. As an example we recall that, if we take

W (ξ) =
1

2
ξ2 − 1

4
ξ4

critical points of the energy functional

E(u) =

∫
R3

[
1

2
|∇u|2 +

1

2
u2 − 1

4
u4] dx

have been found in [26] and [83] and for more general potentials in [25, 79]; but
in [3] and [24] it has been proved that these static solutions are not stable.

In [40], these facts led Derrick to say :”We are thus faced with the disconcert-
ing fact that no equation of type ”(3.2.1) ” has any time-independent solutions
which could reasonably be interpreted as elementary particles.”

Derrick proposed some possible ways out of this difficulty. The first proposal
was to consider models which are the Euler-Lagrange equations of the action
functional relative to the functional

S =

∫ ∫
Ldxdt.

The Lorentz invariant Lagrangian density proposed in [40] has the form

L(ψ) = −
(
|∇ψ|2 − |ψt|2

) p
2 . (3.2.4)

For p = 2, the Euler Lagrange equations reduce to (3.2.1). For every integer
p > 3, the nonexistence proof in [40] for the finite energy static solutions fails.
However, Derrick does not continue his analysis and he concludes that a La-
grangian density of type (3.2.4) leads to a very complicated differential equation.
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3.2 Solitons in three dimensions of space : Derrickś Problem

He has been unable to demonstrate either the existence or nonexistence of stable
solutions.

In this spirit, a considerable amount of work has been done by V. Benci and
collaborators and a model equation proposed in [12] will be the topic of the next
Chapter.
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Chapter 4

Solitons in several space
dimensions

We introduce here an existence result for a 3 + 1 dimensional model generalizing
the one suggested by Derrick in his first proposal. A first existence result is
stated in [12], which also gives a topological classification of static solutions by
means of a topological invariant: the topological charge. In order to prove the
existence of static solutions with nontrivial charge, a study of the behaviour
of sequences of bounded energy is needed, in the spirit of the concentration-
compactness principle. A further generalization is carried out in [10], which
develops an existence analysis of the finite-energy static solutions in higher spatial
dimension and for a larger class of Lorentz invariant Lagrangian densities.

4.1 Statement of the problem

The class of Lagrangian densities we consider generalizes the problem studied
in [12], in such a way as to include the Derrick proposal. First we introduce some
notation. If n,m are positive integers, Rn+1 and Rm will denote respectively
the physical space-time (typically n = 3) and the internal parameters space .We
are interested in the multidimensional case, so we assume that

n ≥ 2.

A point in Rn+1 will be denoted by (x, t), where x ∈ Rn denotes the space
variable and t ∈ R denotes the time variable. The fields we are interested in are
maps ψ : Rn+1 → Rm, ψ = (ψ1, . . . , ψm). We set

ρ = |∇ψ|2 − |ψt|2,
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4.1 Statement of the problem

∇ψ and ψt denoting, respectively, the Jacobian with respect to x and the deriva-
tive with respect to t, such that

|∇ψ|2 =
∑

1≤j≤m,1≤i≤n

|ψji |2,

|ψt|2 =
∑

1≤j≤m

|ψjt |2.

We shall consider Lagrangian densities of the form

L(ψ, ρ) = −1

2
α(ρ)− V (ψ), (4.1.1)

where the function V is a real function defined in an open subset Ω ⊂ Rm and α
is a real function defined by

α(ρ) = aρ+ b|ρ|
p
2 , p > n, (4.1.2)

where a ≥ 0 and b > 0.
The results of [12] were concerned with the case: a = 1, n = 3 and p = 6. If

a = 0 and n = 3 , (4.1.1) is equivalent to the Lagrangian density (3.2.4) proposed
by Derrick in [40], when we look for static solutions.

The action functional related to (4.1.1) is

S(ψ) =

∫
Rn+1

L(ψ, ρ)dxdt

=

∫
Rn+1

−1

2
α(ρ)− V (ψ)dxdt.

So the Euler-Lagrange equations are (system of m scalar equations in n + 1
dimension) see [32]

∂

∂t
(
∂L
∂ψjt

) +
n∑
i=1

∂

∂xi
(
∂L
∂ψji

)− ∂L
∂ψj

= 0 (4.1.3)

where (ψji = ∂ψj

∂xi
), 1 ≤ i ≤ n and 1 ≤ j ≤ m

∂L
∂ψj

= −1

2
α′(ρ)

∂ρ

∂ψj︸︷︷︸
=0

−∂V
∂ξj

(ψ) (4.1.4)

∂L
∂ψji

= −1

2
α′(ρ)

∂ρ

∂ψji
= −α′(ρ)ψji (4.1.5)

∂L
∂ψjt

= −1

2
α′(ρ)

∂ρ

∂ψjt
= α′(ρ)ψjt . (4.1.6)
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Substituting (4.1.4),(4.1.5) and (4.1.6) into (4.1.3), we get

∂

∂t
(α′(ρ)ψjt )−

n∑
i=1

∂

∂xi
(α′(ρ)ψji ) +

∂V

∂ξj
(ψ) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m. (4.1.7)

So we have

∂

∂t
(α′(ρ)ψjt )− div(α′(ρ)∇ψj) +

∂V

∂ξj
(ψ) = 0,

1 ≤ j ≤ m.

Then we have

∂

∂t
(α′(ρ)ψt)−∇(α′(ρ)∇ψ) + V ′(ψ) = 0 inRm (4.1.8)

where ∇(α′(ρ)∇ψ) denotes the vector whose j − th component is given by

div(α′(ρ)∇ψj)

and V ′ denotes the gradient of V

Remark 4.1.1. Lorentz transformations, i.e. space-time rotations depending on
one parameter v have the form

x1 7→ γ(x1 − vt)
x2 7→ x2

x3 7→ x3

t 7→ γ(t− v
c2
x1)

where γ = 1√
1−( v

c
)2

, |v| < c and c is a constant (dimensionally a velocity), for

sake of simplicity we assume c = 1.

The equation(4.1.8) is Lorentz invariant (see below in subsection 4.1.1). The
static solutions ψ(x, t) = u(x) of (4.1.8) solve the equation

−∇(α′(ρ)∇u) + V ′(u) = 0. (4.1.9)

Using (4.1.2), (4.1.9) becomes

−a∆u− bp
2

∆p + V ′(u) = 0, (4.1.10)

where

∆pu = ∇
(
|∇u|p−2∇u

)
.
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4.1 Statement of the problem

It is easy to verify that, if u = u(x) is a solution of the (4.1.10) and v =
(v, 0, 0, . . . , 0) with |v| < 1, the field

ψv(x, t) = u(γ(x1 − vt), x2, . . . , xn) (4.1.11)

is a solution of (4.1.8) (see below in subsection 4.1.2). Notice that the function
ψv experiences a contraction by a factor

γ =
1√

1− v2

in the direction of the motion; this is a consequence of the fact that (4.1.8) is
Lorentz invariant. Clearly (4.1.10) are the Euler-Lagrange equations with respect
to the energy functional

fa(u) =

∫
Rn

(
a

2
|∇u|2 +

b

2
|∇u|p + V (u)

)
dx, (4.1.12)

where m = n+ 1, so the time independent fields u are maps

u : Rn → Rm.

For every ξ ∈ Rn+1, we write

ξ = (ξ0, ξ̃) ∈ R× Rn.

As to the function V , we assume that it is defined on

V : Ω→ R

where Ω = Rn+1 \ {η}, η = (1, 0), and V is positive and singular in η. More
precisely we assume:

(V 1) V ∈ C1(Ω,R).

(V 2) V (ξ) ≥ V (0) = 0.

(V 3) V is twice differentiable in 0 and the Hessian matrix V ′′(0) is nondegenerate.

(V 4) There exist c, ρ > 0 such that if |ξ| < ρ then

V (η + ξ) ≥ c|ξ|−q, (4.1.13)

where
1

q
=

1

n
− 1

p
.
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Solitons in several space dimensions

(V 5) For every ξ ∈ Ω\{0} we have

V (ξ) > 0, and lim
|ξ|→∞

inf V (ξ) = v > 0.

Taking a = 1 we observe that, for j = 1, . . . , n+ 1,
α(0) = a = 1 and, since 0 is a minimum for V , we can choose a base in Rn+1

which diagonalizes V ′′(0) so thatm
2
1 0

. . .

0 m2
n+1


such that

V ′(ξ) = V ′′(0)ξ + ◦(ξ) ' V ′′(0)ξ

in a neighborhood of 0.
Then, linearizing (4.1.8) at 0 and taking a = 1, we get a system of Klein-

Gordon equations

�ψj +m2
jψ

j = 0,

1 ≤ j ≤ n+ 1,

where m2
j denote the eigenvalues of V ′′(0) and �ψ = ∂ψ

∂t2
−4ψ.

Example 4.1.1. A potential satisfying the assumptions (V1)− (V5) is

V (ξ) = ω2
(
|ξ|2 +

|ξ|4

|ξ − η|q
)
,

where q = np/(p− n).

Definition 4.1.1. We call soliton a solution of equation (4.1.8) having the form
of equation (4.1.11), where u is a local minimum of the energy functional (4.1.12).

4.1.1 Lorentz invariant field equations

For simplicity we take n = 1 and m = 1 so equation (4.1.8) in R2 becomes

∂

∂t
(α′(ρ)ψt)−

∂

∂x
(α′(ρ)ψx) + V ′(ψ) = 0 (4.1.14)

where

∂

∂t
(α′(ρ)ψt) = α′′(ρ)ρtψt + α′(ρ)ψtt,
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4.1 Statement of the problem

∂

∂x
(α′(ρ)ψx) = α′′(ρ)ρxψx + α′(ρ)ψxx.

Then the equation (4.1.14) becomes

α′′(ρ) (ρtψt − ρxψx)︸ ︷︷ ︸
A

+α′(ρ) (ψtt − ψxx)︸ ︷︷ ︸
B

+V ′(ψ) = 0.

To prove the equation (4.1.14) is Lorentz invariant, it is sufficient to prove
that the parts A and B are invariant

Lorentz transformations:

{
X = γ(x− vt)
T = γ(t− vx)

ψ(X,T ) = ψ(γ(x− vt), γ(t− vx)).

First we show that the part B is Lorentz invariant we have

ψx = γψX − vγψT ,

ψt = −vγψX + γψT .

Then we have

ψxx = (γψX − vγψT )x = γ(ψX)x − vγ(ψT )x,

ψtt = (−vγψX + γψT )t = −vγ(ψX)t + γ(ψT )t,

which implies
ψxx = γ2ψXX + (vγ)2ψTT − 2vγ2ψTX ,

ψtt = (vγ)2ψXX + γ2ψTT − 2vγ2ψTX .

So,
ψtt − ψxx = ψTT − ψXX .

The proof of the part A invariant follows from the same arguments used in the
proof of B invariant.

4.1.2 Static solution and stability

For simplicity and with no loss of generality we take n = 1 and m = 1 so
equation (4.1.10) in R2 becomes

−auxx − b
p

2

∂

∂x
(|ux|p−2ux) + V ′(u) = 0. (4.1.15)

Let u be a solution of equation (4.1.15).
We show that ψ(x, t) = u(γ(x1 − vt)) is a solution of (4.1.14).
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Solitons in several space dimensions

By easy calculation we have
ρ = |ψx|2 − |ψt|2 = ux

2

ψx = γux, ψt = (γv)ux

ψxx = γ2uxx, ψtt = (γv)2uxx

ρx = γ(ux
2)x, ρt = (γv)(ux

2)x.

(4.1.16)

Recall that γ = 1√
1−v2 .

We have

∂

∂t
(α′(ρ)ψt)−

∂

∂x
(α′(ρ)ψx) = α′′(ρ)(ρtψt − ρxψx) + α′(ρ)(ψtt − ψxx),

and using (4.1.16) we get

∂

∂t
(α′(ρ)ψt)−

∂

∂x
(α′(ρ)ψx) = −α′′(ux2)((ux

2)xux)− α′(ux2)(uxx)

= − ∂

∂x
(α′(ux

2)ux)

= − ∂

∂x
(aux + b

p

2
|ux|P−2ux).

So the conclusion follows and ψ(x, t) = u(γ(x1− vt)) is a solution of (4.1.14).

4.2 Functional setting

Let p > n ≥ 2, and with no loss of generality, we can consider the functional
(4.1.12) with b = 1. It will be convenient to introduce the following notation:

fa(u) =

∫
Rn

(
a

2
|∇u|2 +

1

2
|∇u|p + V (u)

)
dx,

and we define the space Ea to be the completion of C∞0 (Rn,Rn+1) with respect
to the norm

‖u‖a = a‖∇u‖L2 + ‖∇u‖Lp + ‖u‖L2 , p > n ≥ 2, a ≥ 0,

i.e.,

Ea = C∞0 (Rn,Rn+1)
‖·‖a

;

‖u‖L2 =

(
n+1∑
j=1

‖uj‖2
L2

) 1
2

,

‖∇u‖L2 =

(
n+1∑
j=1

‖∇uj‖2
L2

) 1
2

,
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4.2 Functional setting

and

‖∇u‖Lp =

(
n+1∑
j=1

‖∇uj‖pLp

) 1
p

.

For every a > 0, the norms ‖ · ‖a are equivalent, so we have to study only two
cases: a = 0, a > 0.

Proposition 4.2.1. The Banach space E0 is continuously embedded in
Ls(Rn,Rn+1), for every s ∈ [2,∞].

Proof. The space E0 is continuously embedded in L2(Rn,Rn+1), therefore it is
sufficient to show that E0 is embedded also in L∞(Rn,Rn+1). Since C∞0 (Rn,Rn+1)
is dense in E0, and also in Ls (see Corollary 2.1.2). So it is sufficient to prove
that there exists c > 0 such that, for every u ∈ C0(Rn,Rn+1), we have

‖u‖L∞ ≤ c‖u‖0.

We fix u ∈ C0(Rn,Rn+1) and consider a family of cubes Qk ⊂ Rn such that

mes(Qk) = 1, ∪k∈NQk = Rn.

Then, by a well-known inequality (see [28] page 283), for every k ∈ N and Qk ⊂
Rn,

|u(x)| ≤
∣∣∣∣∫
Qk

udy

∣∣∣∣+M‖∇u‖Lp(Qk), (4.2.1)

where M ≥ 0 being independent of u. Thus

|u(x)| ≤ mes(Qk)‖u‖L2 +M‖∇u‖Lp(Qk)

≤ ‖u‖L2(Rn) +M‖∇u‖Lp(Rn)

≤ (1 +M)‖u‖0.

Hence
‖u‖L∞ ≤ c‖u‖0, c = 1 +M.

Corollary 4.2.2. The Banach space E0 is continuously embedded in W 1,p(Rn,Rn+1).

Proof. By definition of the space E0, we have for every u ∈ E0

‖u‖0 > ‖∇u‖Lp .
From Proposition 4.2.1 there exists c1 > 0 such that

c1‖u‖0 > ‖u‖Lp ,

and so
‖u‖0 > c‖u‖W 1,p .
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Solitons in several space dimensions

Corollary 4.2.3. For every a > 0, the space Ea can be identified with the Banach
space

W = W 1,p(Rn,Rn+1) ∩W 1,2(Rn,Rn+1),

equipped with the usual norm

‖u‖W = ‖u‖W 1,2 + ‖u‖W 1,p .

Proof. C∞0 (Rn,Rn+1) is dense in W 1,p(·)(Rn,Rn+1) and also in W 1,2(Rn,Rn+1);
see Theorem 2.1.8. For any u ∈ Ea we have

‖u‖a ≤ sup(1, a)‖u‖W .

From Corollary 4.2.2, there exists c > 0 such that for every u ∈ C∞0 (Rn,Rn+1),
we have

‖u‖a ≥ c(‖u‖W 1,2 + ‖u‖W 1,p(·)).

By Proposition 3.1 and well-known Sobolev embeddings we have the following:

Remark 4.2.1. Since p > n, by the preceding Corollaries and well-known Sobolev
embeddings (see Theorem 2.1.5), we get easily some useful properties of the Ba-
nach space Ea:

(1) We have

Ea ⊂ W 1,p(Rn,Rn+1) ⊂ L∞(Rn,Rn+1), (4.2.2)

if {uk} converges weakly in Ea to u , then it converges uniformly on every
compact set contained in Rn.

(2) Furthermore they are Hölder continuous of order (p− n)/p

|u(x)− u(y)| = C(p−n)/p|x− y|‖∇u‖Lp , (4.2.3)

i.e.

Ea ⊂ C0,(p−n)/p(Rn,Rn+1)

is a locally compact injection.

(3) For every value a ≥ 0, the functions in Ea are bounded and decay to zero
at infinity,

lim
|x|→∞

u(x) = 0. (4.2.4)
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4.3 Topological charge and connected components of Λa

The presence of4p in (4.1.8) implies that the functions u on which the energy
fa is finite are continuous and decay to 0 at infinity; the presence of the singular
term V ′(u) implies that such maps u take values in Ω. So the nontrivial topolog-
ical properties of Ω (namely πn(Ω) = Z) permit, as in the sine-Gordon equation
(Chapter 2), to give a topological classification of the static configurations. This
classification is carried out by means of a topological invariant, the topological
charge (see Definition 4.3.1), which depends only on the region where the func-
tion is concentrated, namely the support. We point out that in other models
(see [19, 51, 53, 84]), the topological classification follows from the fact that the
field u takes values in suitable manifolds.

Recall that η is a singular point of the potential V, so it is reasonable to
consider in space Ea, the open subset

Λa = {u ∈ Ea : u(x) 6= η, for all x ∈ Rn} .

In fact, if u ∈ Λa, by Remark 4.2.1, we have

inf
x∈Rn
|u(x)− η| = d > 0.

Then, by using Proposition 4.2.1 (E0 is continuously embedded in L∞), we deduce
that there exists a small neighborhood of u contained in Λa.
The boundary of Λa is given by

∂Λa = {u ∈ Ea : there exist x ∈ Rn such that u(x) = η} .

We can show that Λa has a rich topological structure, more precisely it consists
of infinitely many connected components. These components are identified by the
topological charge we are going to introduce.

4.3 Topological charge and connected compo-

nents of Λa

For the sake of simplicity, we consider the function space

C =

{
u : Rn → Rn+1\{η} is continuous and lim

|x|→∞
u(x) = 0

}
where η = (1, 0). Every function u ∈ C we write in the form u(x) = (u0(x), ũ(x)) ∈
Rn+1 where u0 : Rn → R and ũ : Rn → Rn.

Definition 4.3.1. For every function u ∈ C we define the support of u

Ku = {x ∈ Rn : u0(x) > 1}.
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Solitons in several space dimensions

Then we define the topological charge of u

ch(u) :=


deg(ũ, Ku, 0) if Ku 6= ∅,

0 if Ku = ∅,

such that
deg(ũ, Ku, 0) =

∑
x∈ũ−1(0)

sgnJũ(x).

(Brouwer degree) For more information about this subject, see Section 2.8;
where Jũ denotes the determinante of the Jacobian matrix.

We notice that the above definition is well posed. Indeed, since

lim
|x|→∞

u(x) = 0,

we have that Ku is an open, bounded set; moreover, for every x ∈ ∂Ku, we have,
together with u(x) 6= η, that ũ(x) 6= 0.

Proposition 4.3.1. For every u = (u0, ũ) ∈ Λa there exists l ∈ N and there exist
x1, . . . , xl ∈ Rn , R1, . . . , Rl > 0.
We set Bi = B(xi, Ri), such that

Bi ∩Bj = ∅, i 6= j;

∀x ∈ Rn\
l⋃

i=1

Bi, u0(x) < 1;

Ku ⊂
l⋃

i=1

Bi; (4.3.1)

ch(u) = deg(ũ,
l⋃

i=1

Bi, 0) =
l∑

i=1

deg(ũ, Bi, 0). (4.3.2)

Proof. Let u ∈ Λa

ch(u) :=


deg(ũ, Ku, 0) if Ku 6= ∅,

0 if Ku = ∅.
If Ku = ∅, we have

deg(ũ, Ku, 0) = 0.

We consider Ku 6= ∅.
Recall thatEa is a reflexive Banach space and continuously embedded in L∞(Rn,Rn+1).
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4.3 Topological charge and connected components of Λa

Let x1 ∈ Rn be a maximum point for u0. By Remark 4.2.1, x1 always exists. Since
Ku 6= ∅ then u0(x1) > 1.
We take R1 such that ∀x ∈ B(x1, R1), u0(x) > 1.
For simplicity we setB1 = B(x1, R1). Now we distinguish two cases

(A1) ∀x ∈ RN/B1, u0(x) ≤ 1

or

(B1) ∃x ∈ RN/B1, u0(x) > 1.

In the case (A1) the proposition is proved with l = 1, indeed by additivity
properties we have

deg(ũ, B1, 0) = deg(ũ, Ku, 0) + deg(ũ, B1/Ku, 0).

Since B1/Ku = ∅, thus
deg(ũ, B1/Ku, 0) = 0.

Then
ch(u) = deg(ũ, B1, 0). (4.3.3)

Let us consider the subcase (B1). Let x2 be a maximum point for u0 in RN/B1;
we have that u0(x2) > 1. We set B2 = B(x2, R2) and we take R1 such that

∀x ∈ B2 ⇒ u0(x) > 1.

Also in this second step we have an alternative: either

(A2) ∀x ∈ RN \ (B1 ∪B2), u0(x) ≤ 1

or

(B2) ∃x ∈ RN/(B1 ∪B2), u0(x) > 1

If case (A2) holds true, the proposition is proved with l = 2; endded the spheres
B1 and B2 are disjoint for R1, R2 sufficiently small, with the same arguments in
(4.3.3)

ch(u) = deg(ũ, B1, 0) + deg(ũ, B2, 0),

such that
Ku ⊂ B1 ∪B2.

In case (B2) we consider a maximum point of u0 in RN \ (B1 ∪ B2) and we
repeat the same argument used in the case (B1).
By Remark 4.2.1 this alternative process terminates in a finite number of steps.

The open set Ku := {x ∈ RN : u0(x) > 1} is the support of u; by Proposition
4.3.1 there exists R(u), B(0, R) ⊂ RN such that Ku := B(0, R).
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Solitons in several space dimensions

Theorem 4.3.2. For every u ∈ Λa there exists r = r(u) > 0 such that; for every
v ∈ Λa

‖u− v‖∞ ≤ r =⇒ ch(u) = ch(v). (4.3.4)

Proof. Let un = (un0 , ũ
n) ∈ Λa be uniformly convergent to u = (u0, ũ).

By Proposition 4.3.1 there exists l ∈ N. such that ch(u) = deg(ũ,
⋃l
i=1 B

i, 0) =∑l
i=1 deg(ũ, Bi, 0). We shall show that, for n sufficiently large,

ch(un) = ch(u).

First we show that

K(un) ⊂
l⋃

i=1

Bi.

Let x 6∈
⋃l
i=1 B

i then u0(x) < 1 since un0 be uniformly convergent to u0; for n
sufficiently large, un0 (x) < 1 so,

x 6∈ K(un).

Using the excision property of the degree, we have

deg(ũn,
l⋃

i=1

Bi, 0) = deg(ũn, K(un), 0)︸ ︷︷ ︸
=ch(un)

+ deg(ũn,
l⋃

i=1

Bi \K(un), 0)︸ ︷︷ ︸
=0

(4.3.5)

where the second term on the right-hand side of (4.3.5) is 0. Indeed, let x ∈⋃l
i=1 B

i \K(un). then un0 (x) < 1 and u0(x) > 1 for n sufficiently large. We get a
contradiction, u0(x) < 1 and u0(x) > 1. So,

l⋃
i=1

Bi \K(un) = ∅

then

deg(ũn,
l⋃

i=1

Bi \K(un), 0) = 0. (4.3.6)

From (4.3.5), (4.3.6) and by additivity properties we have

ch(un) = deg(ũn,
l⋃

i=1

Bi, 0) =
l∑

i=1

deg(ũn, Bi, 0).

Now, using the previous proposition and the continuity of topological degree with
respect to the uniform convergence, we get, for n sufficiently large,

ch(un) =
l∑

i=1

deg(ũ, Bi, 0) = ch(u),
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4.4 Properties of the energy functional

ch(u) = deg(ũ, B(0, R), 0). (4.3.7)

We recall that the topological charge is continuous with respect to the uniform
convergence. Now, for every q ∈ Z we set

Λq = {u ∈ Λa : ch(u) = q}.

Since the topological charge is continuous with respect to the uniform conver-
gence (see Theorem 4.3.2) and the continuity of the embeddings Ea in L∞ (see
Proposition 4.2.1 ) assure that the topological charge is continuous on Λa, it
follows that Λq is open in Ea, since we have also

• Λa =
⋃
q∈Z Λq,

• Λq ∩ Λp = ∅, p 6= q.

We conclude that every Λq is a connected component of Λa.
We assume that the space dimension is odd then we conclude that for every q ∈ Z
the component Λq is isomorphic to the component Λ−q.

So for every u ∈ Λa we can define the charge ch(u) ∈ Z. Now, we consider the
set of a minimizer of fa in the open set

Λ∗q = {u ∈ Λa : ch(u) 6= 0}.

Remark 4.3.1. We can easily see that ch(u) 6= 0 implies ‖u‖L∞ > 1.

4.4 Properties of the energy functional

Lemma 4.4.1. The functional fa takes real values and it is continuous on Λa.

Proof. We have

fa(u) =

∫
Rn

(
a

2
|∇u|2) +

b

2
|∇u|p

)
dx︸ ︷︷ ︸+

∫
Rn
V (u)dx︸ ︷︷ ︸ .

First we show that
fa(u) <∞.

The first term on the left-hand side of energy fa is finite and continuous. Let us
prove that the second term is finite and continuous.

We have
V (ξ) = V (0) + V ′(0)ξ + V ′′(0)ξ · ξ + o(ξ2),
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Solitons in several space dimensions

by (V1) and (V2) then
V (ξ) = V ′′(0)ξ · ξ + o(ξ2).

By (V3) there exist a small neighborhood of 0 ∈ Rn+1 and M > 0 such that, for
every ξ ∈ Rn+1,we have

V (ξ) ≤M |ξ|2. (4.4.1)

Since every u ∈ Ea decays to zero at infinity (see (4.2.4)), there exists a ball
Bu such that, for every x ∈ Rn/Bu, |u(x)| < ε,

by (6.4.1) and for ε sufficiently small

V (u(x)) ≤M |u(x)|2. (4.4.2)

From u ∈ L2(Rn,Rn+1), we deduce∫
Rn/Bu

V (u)dx <∞.

On the other hand, since u is continuous (see (4.2.3)), we also have∫
Bu

V (u)dx <∞.

Let{uk} ⊂ Λa be a sequence such that fa(uk) <∞ and uk → u in Ea.
We show that ∫

Rn
V (uk) −→

∫
Rn
V (u).

Since fa(uk) <∞ and with Lemma 4.4.4, u belongs to Λa.
We have uk → u on L∞(Rn,Rn+1) see (4.2.2).

We deduce that V (uk)→ V (u) uniformly on R, then∫
Bu

V (uk)dx→
∫
Bu

V (u)dx. (4.4.3)

On the other hand by (4.4.2) we have∫
RN\Bu

V (u(x))dx ≤
∫
RN\Bu

|u(x)|2dx,

and since uk → u ∈ L2(RN ,RN+1), and using the dominated convergence (see
Theorem 2.5.3) ∫

RN\Bu
V (uk)dx→

∫
RN\Bu

V (u)dx. (4.4.4)
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4.4 Properties of the energy functional

Lemma 4.4.2. The map f ′ : Ea → E ′a defined by

〈f ′a(u), v〉 = 〈−a∆u− b∆pu+ V ′(u), v〉

=

∫
Rn

(
a(∇u|∇v) + b

p

2
|∇u|p−2(∇u|∇v) + V ′(u).v

)
dx

is continuous .

Proof. We have

f ′a(u) = −a∆u− bp
2

∆pu︸ ︷︷ ︸+V ′(u)︸ ︷︷ ︸ .
The proof of the first term on the left-hand side of f ′a is given in the Appendix
B. Let us prove that the second term is continuous.
Let {uk} ⊂ Λa be a sequence such that fa(uk) <∞ and uk −→ u.
We show that

V ′(uk) −→ V ′(uk) in E ′a.

Since fa(uk) < ∞ and with Lemma 4.4.4, u belongs to Λa. Recall that Ea is
continuously embedded in L∞ see (4.2.2). We have

‖V ′(uk)− V ′(u)‖E′a = sup
‖h‖Ea≤1

< V ′(uk)− V ′(u), h >E′a×Ea ,

with
〈V ′(uk)− V ′(u), h〉E′a×Ea =

∫
Rn(V ′(uk)− V ′(u))h dx

=

∫
Bu

(V ′(uk)− V ′(u))h dx︸ ︷︷ ︸
1

+

∫
RN\Bu

(V ′(uk)− V ′(u))h dx︸ ︷︷ ︸
2

in the term 1: since ‖h‖L∞ ≤ ‖h‖Ea ≤ 1 with the same reasoning as in (4.4.3)
we have ∫

Bu

(V ′(uk)− V ′(u))h dx <
ε

2
,

with the same choice of Bu as in proof of Lemma 4.4.1.
In the term 2: we have V ′(ξ) = (V ′′(0)ξ + o(ξ) then by V 3

∫ .

RN\Bu
(V ′(uk))h dx = M

∫ .

RN\Bu
|uk||h| dx

≤ ‖uk‖L2‖h‖L2

≤ ‖uk‖L2 . (4.4.5)
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From (4.4.5)with the same reasoning as in (4.4.4) we have∫
Rn/Bu

(V ′(uk)− V ′(u))h dx <
ε

2
.

Lemma 4.4.3. The functional fa is coercive in Λa; that is, for every sequence
uk ⊂ Λa such that ‖uk‖a →∞, we have fa(uk)→∞.

Proof. In the case a > 0, n > 2, we have

‖u‖a = a‖∇u‖L2 + ‖∇u‖Lp + ‖u‖L2 .

Let uk ∈ Λa such that
‖uk‖a →∞ as k →∞.

It is clear that, if

a‖∇uk‖L2 + ‖∇uk‖Lp →∞ as k →∞, (4.4.6)

we have
fa(uk)→∞ as k →∞.

Assume now that there exists c∗ > 0 such that

a‖∇uk‖L2 + ‖∇uk‖Lp < c∗ (4.4.7)

and
‖uk‖L2 →∞ as k →∞. (4.4.8)

We shall prove that ∫
Rn
V (uk)dx as k →∞.

From (V3), we have for every r > 0 there exists ωr > 0 such that

|ξ| ≤ r ⇒ V (ξ) ≥ ωr|ξ|2. (4.4.9)

For every k ∈ N, we set

Ak = {x ∈ Rn : |uk(x)| ≤ r},

where uk ∈ W 1,2(Rn,Rn+1). By the Sobolev inequality (see Theorem 2.1.8)

‖uk‖L2∗ ≤ c‖∇uk‖L2 , 2∗ =
2n

n− 2
, n > 2. (4.4.10)

From (4.4.7), we obtain
‖uk‖L2∗ < c∗. (4.4.11)
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Moreover, from (4.2.1), there exists M ≥ 0 independent of uk, such that

|uk(x)| ≤
∣∣∣∣∫
Qk

udy

∣∣∣∣+M‖∇uk‖Lp(Qk), mes(Qk) = 1

≤ ‖u‖L2∗ (Qk) +M‖∇uk‖Lp(Qk).

By (4.4.6) and (4.4.11), for any x ∈ Rn, we have

|uk(x)| < c∗ +Mc∗. (4.4.12)

Then, there exists c > 0 such that

mes(Rn\Ak) < c. (4.4.13)

From (4.4.12) and (4.4.13), we deduce that there exists c1 > 0 such that∫
Rn\Ak

|uk|2dx < c1. (4.4.14)

By (4.4.11), we obtain∫
Rn
V (uk)dx ≥

∫
Ak

V (uk)dx

≥ ωr

∫
Ak

‖uk‖2dx

≥ ωr

(
‖uk‖2

L2 −
∫
Rn\Ak

|uk|2dx
)
.

From (4.4.14) and (4.4.10), we have∫
Rn
V (uk)dx ≥ ωr(‖uk‖2

L2 − c1)→∞ as k →∞.

In the case, a = 0 or n = 2, by (V5), there exists r∗ > 0 such that, for every
ξ ∈ Rn with |ξ| ≥ r∗, we have

V (ξ) ≥ ν

2
. (4.4.15)

Let uk ∈ Λa be a sequence such that

‖uk‖0 →∞ as k →∞.

Since the functional fa is invariant with respect to translation in Rn, we can
assume

‖uk‖L∞ = |uk(0)|. (4.4.16)

Now, we consider the case

‖∇uk‖Lp ≤M∗ and ‖uk‖L2 →∞ as k →∞.

Here we have two subcases:
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(a)

‖uk‖L∞ →∞ as k →∞, (4.4.17)

or

(b)

‖uk‖L∞ is bounded. (4.4.18)

In the subcase (a), by (4.4.17), we can choose a sequence (rk) ⊂ (0,∞) such
that

r∗ ≤ ‖uk‖L∞ −K(r
p−n
p

k ) and rk →∞, (4.4.19)

where K = cM∗ and c is the same constant as in (4.2.3). For every y ∈ Rn, we
have

|uk(0)| − |uk(y)| ≤ |uk(0)− uk(y)|.

Hence by (4.2.3), we obtain

|uk(0)| − |uk(y)| ≤ K(|y|
p−n
p ).

From (4.4.16), we get

|uk(y)| ≥ ‖uk‖L∞ −K(|y|
p−n
p ).

For |y| ≤ rk and (4.4.19), we have

|uk(y)| ≥ ‖uk‖L∞ −K(r
p−n
p

k ) ≥ r∗. (4.4.20)

From (4.4.15) and (4.4.20), we get∫
Rn
V (uk)dx ≥

∫
B(0,rk)

V (uk)dx ≥
ν

2
mes(B(0, rk)).

This implies that ∫
Rn
V (uk)dx→∞ as rk →∞.

In the last subcase (b), we assume there exists M̄ > 0 such that

‖uk‖L∞ ≤ M̄.

From (4.4.11), we obtain∫
Rn
V (uk)dx ≥ ωM̄‖uk‖L2 →∞ as k →∞.
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4.4 Properties of the energy functional

We are going to study the behaviour of energy fa when u approaches the
boundary of Λa; in the spirit of a well-known result of Gordon (see [85]), concern-
ing strongly attractive potentials. We remark that ∂Λa = Ea \ Λa.

Lemma 4.4.4. Let (uk) ⊂ Λa be a weakly converging sequence. If the weak limit
belongs to ∂Λa, then

fa(uk)→∞ as k →∞.

Proof. Let (uk) ⊂ Λa such that

uk ⇀ u ∈ ∂Λa as k →∞.

Since u ∈ ∂Λa then there exists x∗ ∈ Rn such that u(x∗) = η.
Since V is nonnegative, it is sufficient to show that there exists a small ball

centered at x∗ such that

lim
k→∞

∫
B(x∗,R)

V (uk(x))dx = +∞.

Using the fact that (uk) is bounded in Ea, then by the uniform convergence
on compact sets, we have

uk(x∗)→ u(x∗) as k →∞. (4.4.21)

Since (uk) is bounded in Ea, then ∇uk is bounded in Lp.
Then from (4.2.3), we obtain

|uk(x)− uk(x∗)| ≤ c sup(|x− x∗|
p−n
p ). (4.4.22)

Thus
|uk(x)− uk(x∗)| ≤ |uk(x)− uk(x∗)|+ |uk(x∗)− η| (4.4.23)

By (4.4.21) and (4.4.22), there exists εk > 0 such that

|uk(x)− η| ≤ c sup(|x− x∗|
p−n
p ) + εk

where
εk → 0 as k →∞.

Let x ∈ B(0, r). For r sufficiently small, there exists ρ > 0 such that

|uk(x)− η| ≤ c sup(r
p−n
p ) + ε < ρ. (4.4.24)

From (4.4.24) and (V4), we have

V (uk(x)) ≥ c(|uk(x)− η|
np
p−n ). (4.4.25)
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Then from (4.4.24) and (4.4.25), we obtain

V (uk(x)) ≥ c

|x− x∗|+ εk
.

Restricting our attention to B(x∗, r), we have

lim
k→∞

∫
B(x∗,r)

V (uk(x))dx ≥
∫
B(x∗,r)

lim
k→∞

V (uk(x))dx ≥ c

∫
B(x∗,r)

1

|x− x∗|n
dx =∞.

Corollary 4.4.5. For every b > 0, there exists d = d(b) such that, for every
u ∈ Λa we have

fa(u) ≤ b⇒ min
x∈Rn
|u(x)− η| ≥ d.

Proof. Arguing by contradiction, assume that there exist b > 0 and a sequence
(uk) ⊂ Λa such that

fa(uk) ≤ b

and

min
x∈Rn
|uk(x)− η| < 1

k
. (4.4.26)

For every k ∈ N, by Remark 4.2.1 , there exists xk ∈ Rn such that

|u(xk)− η| = min
x∈Rn
|u(x)− η|.

Then we can consider the sequence

ψk = u(·+ xk).

Since
fa(ψk) = fa(uk) ≤ b (4.4.27)

we have that {faψk} is bounded in Ea, then, up to a subsequence, it weakly
converges to ψ .

Now, from the definition of ψk and (4.4.26), we obtain

ψ(0) = lim
k→∞

ψk(0) = η.

Therefore ψ ∈ ∂Λa. Taking into account (4.4.27) we have got a contradiction
with Proposition 4.4.4.

Lemma 4.4.6. The functional fa is weakly lower semicontinuous in Λa.
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4.4 Properties of the energy functional

Proof. Let u ∈ Λa and let a sequence (uk) ⊂ Λa weakly converge to u. We show
that

lim inf
k→∞

fa(uk) ≥ fa(u).

The result is obvious when

lim inf
k→∞

fa(uk) = +∞,

we have

fa(uk) =
a

2
‖∇uk‖2

L2 +
b

2
‖∇uk‖pLp︸ ︷︷ ︸

A

+

∫
Rn
V (uk)dx︸ ︷︷ ︸
B

,

the part A is convex and strongly continuous then is weakly lower semicontinuous
(see [28], Remark 6, page 61).
Now we have to study the part B

Since {uk} converges to u uniformly on every compact set, we fix a sphere
BR(0) and we have

lim
k→∞

∫
BR(0)

V (uk)dx =

∫
BR(0)

V (u)dx.

On the other hand, since V is nonnegative, we have

lim inf
k→∞

∫
Rn
V (uk)dx ≥ lim inf

k→∞

∫
BR(0)

V (uk)dx =

∫
BR(0)

V (u)dx

and taking the limit for R→∞,we obtain

lim inf
k→∞

∫
Rn
V (uk)dx ≥

∫
Rn
V (u)dx.

So, the proposition is completely proved.

Proposition 4.4.7. There exists ∆a > 0 such that, for every u ∈ Λa satisfying
‖u‖L∞ ≥ 1 we have

fa(u) ≥ ∆a.

Proof. By continuous injection in Proposition 4.2.1,

‖u‖a ≥ ‖u‖L∞ ≥ 1,

and by the coercivity of fa, we get

‖u‖a ≥ 1⇒ ∃ ∆a > 0 such that fa(u) ≥ ∆a.
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4.5 Non trivial solution

We recover Λa =
⋃
q∈Z Λq

a and the natural idea is to minimize Ea on each Λq
a.

Unfortunately, in this approach the following problems arise:
Λq
a is not weakly closed, the operator ∆p is not weakly continuous and the

concentration-compactness methods cannot be applied directly These difficulties
can be overcome if we are able to ’localize’ the charge, so that every bump has
its own charge and the charge of any configuration equals the sum of the charge
of its bumps.

4.5.1 The splitting lemma

The proof of our main result is based on the following proposition, in the spirit of
the Concentration-Compactness principle for unbounded domains (see [21,65]).

Proposition 4.5.1. (Splitting proposition) Let (uk) ∈ Λ∗a be a sequence and M
be a positive real number such that

fa(uk) ≤M. (4.5.1)

Then there exists l ∈ N such that

1 ≤ l ≤M \∆a, (4.5.2)

where ∆a was introduced in Proposition 4.4.7, and there exist ū1, . . . , ūl ∈ Λa,
(x1

k), . . . , (x
l
k) ⊂ Rn,R1, . . . , Rl such that, up to a subsequence,

uk(·+ xik) ⇀ ūi; (4.5.3)

‖ūi‖L∞ ≥ 1; (4.5.4)

|xik − x
j
k| → ∞, i 6= j; (4.5.5)

l∑
i=1

fa(ūi) ≤ lim inf
k→∞

fa(uk); (4.5.6)

∀x ∈ Rn\
l⋃

i=1

Bi(xin) : |un(x)| ≤ 1. (4.5.7)

Then we have also

ch(uk) =
l∑

i=1

ch(ūi), (4.5.8)

lim sup
k→∞

‖uk −
l∑

i=1

ūi(· − xik)‖L∞ ≤ 1. (4.5.9)
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4.5 Non trivial solution

Proof. The proof is divided in two parts. Into the first part, with an iterative
procedure, we prove the existence of l ∈ N, ū1, . . . , ūl ∈ Λa,
(x1

k), . . . , (x
l
k) ⊂ Rn, R1, . . . , Rl such that (4.5.2)-(4.5.7) are satisfied;in the second

part from these properties we shall easily deduce (4.5.8) and (4.5.9).
For the sake of simplicity, whenever it is necessary. We shall tacitly consider a
subsequence of uk. First of all we arbitrarily choose γ ∈]0 1[. Let x1

k ∈ Rn be a
maximum point for|uk|; by Remark 4.3.1. We have |uk(x1

k)| > 1. We set

u1
k = uk(·+ x1

k)

and we obtain

‖u1
k‖∞ = |u1

k(0)| > 1. (4.5.10)

Since fa(u
1
k) = fa(uk) and the functional fa is coercive, then the sequence {u1

k}
is bounded in Ea and we have

u1
k ⇀ ū1 ∈ Ea. (4.5.11)

From (4.5.10) and (4.2.2) it follows

‖ū1‖∞ ≥ 1. (4.5.12)

Since u1
k ⊂ Λa and fa(u

1
k) is bounded, by (4.5.11) and Lemma 4.4.4, we get

ū1 ∈ Λa.
Since fa is weakly lower semi-continuous, we have

fa(ū1) ≤ lim inf
k→∞

fa(u
1
k) = lim inf

k→∞
fa(uk). (4.5.13)

We set ū1 = (ū01, ˜̄u1) ∈ R×Rn. Now, using (4.2.4), we consider R1 > 0 such that

∀x ∈ Rn \B(0, R1), |ū1(x)| ≤ γ; (4.5.14)

for simplicity we set
B1
k = B(x1

k, R1).

Now we distinguish two cases: either

(A1) for k sufficiently large

∀x ∈ Rn \B1
k, |uk(x)| ≤ 1,

or

(B1) eventually passing to a subsequence,

∃x ∈ Rn \B1
k, |uk(x)| > 1.
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In the case (A1)the first part of the Proposition is proved with l = 1; let us
consider the case (B1). Let x2

k be a maximum point for |uk| in Rn \B1
k. We have

that uk(x
2
k) > 1. We set

u2
k = uk(·+ x2

k)

and we obtain
‖u2

k‖∞ = |u2
k(0)| > 1.

As for {u1
k}, we have that

u2
k ⇀ ū2 ∈ Λa, (4.5.15)

with

‖ū2‖∞ ≥ 1. (4.5.16)

Now we have to show that

|x1
k − x2

k| → ∞. (4.5.17)

We set
yk = x1

k − x2
k

and, arguing by contradiction, we assume that the sequence {yk} is bounded in
Rn; then, up to subsequence, we have that

yk → ỹ.

Since |yk| = |x1
k − x2

k| ≥ R1, we have |ỹ| ≥ R1; then, using (4.5.14),

|ū1(ỹ)| ≤ γ < 1. (4.5.18)

On the other hand we have

1 ≤ |uk(x2
k)| = |uk(yk + x1

k)| = |u1
k(yk)|.

Then, by (4.5.18),

0 < 1− |ū1(ỹ)| ≤ |u1
k(yk)| − |ū1(ỹ)| ≤ |u1

k(yk)− ū1(ỹ)|

0 < 1− |ū1(ỹ)| ≤ |u1
k(yk)| − |ū1(ỹ)| ≤ |u1

k(yk)− ū1(ỹ)|
≤ |u1

k(yk)− ū1(yk)|+ |ū1(yk)− ū1(ỹ)|

≤

(
sup
|y−ỹ|≤1

|u1
k(y)− ū1(y)|

)
+ |ū1(yk)− ū1(ỹ)|,

by (4.2.3) ū1 is continuous and by (4.2.2) we have locally a compact injection
(Ea ⊂ L∞(Rn,Rn+1)), then taking the limit for k →∞ we get a contradiction,

0 < 1− |ū1(ỹ)| ≤ 0.
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4.5 Non trivial solution

Now we show that

fa(ū1) + fa(ū2) ≤ lim
k→∞

fa(uk). (4.5.19)

Hereafter, for sake of simplicity, we set, for every u ∈ Λa and A ⊂ Rn

fa/A(u) =

∫
A

(
a

2
|∇u|2 +

1

2
|∇u|p + V (u)

)
dx.

Since fa is continuous, fa(0) = 0 and by (4.2.4), then for a fixed η > 0, there
exists ρ > 0 such that

fa/CBρ(0)(ū1) < η/2 and fa/CBρ(0)(ū2) < η/2,

CBρ(0) = Rn+1 \B(0, ρ).

From (4.5.17) it follows that the spheres Bρ(x
1
k) and Bρ(x

2
k) are disjoint for k

sufficiently large, then we get:

lim inf
k→∞

fa(uk) ≥ lim inf
k→∞

(
fa/C

Bρ(x
1
k
)
(uk) + fa/C

Bρ(x
2
k
)
(uk)

)
≥ lim inf

k→∞
fa/C

Bρ(x
1
k
)
(uk) + lim inf

k→∞
fa/C

Bρ(x
2
k
)
(uk)

= lim inf
k→∞

fa/CBρ(0)(u
1
k) + lim inf

k→∞
fa/CBρ(0)(u

2
k)

≥ fa/CBρ(0)(ū1) + fa/CBρ(0)(ū2)

> fa(ū1) + fa(ū2)− η.

From the arbitrariness of η, we get (4.5.19).

Finally, as well as for ū1, from (4.2.4) we get R2 > 0, such that

∀x ∈ CBR2
(0), |ū2(x)| ≤ γ

and we set

B2
k = BR2(x

2
k).

Also in this second step we have an alternative: either

(A2) for k sufficiently large

∀x ∈ C(B1
k∪B

2
k), |uk(x)| ≤ 1,

or
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(B2) eventually passing to a subsequence,

∃x ∈ C(B1
k∪B

2
k), |uk(x)| > 1.

If case (A2) holds true, the first part of the Proposition is proved with l =2;
in the case (B2) we consider a maximum point of |uk| in C(B1

k∪B
2
k) and we repeat

the same argument used in the case (B1). This alternative process terminates in
a finite number of steps. Indeed,now we prove (4.5.2).

From (4.5.12) and (4.5.16)

‖ūi‖∞ ≥ 1 i = 1, . . . , l;

and with Proposition 4.4.7 we get, fa(ūi) ≥ ∆a > 0, then From (4.5.1) and (4.5.6)

l ·∆a ≤
l∑

i=1

fa(ūi) ≤ lim inf
k→∞

fa(uk) ≤M.

So, we get (4.5.2); we notice that this estimate is independent of the sequence
{uk}.

Now we prove (4.5.8). We consider k sufficiently large so that (4.5.7) holds
and

Bi
k ∩B

j
k = ∅ for i 6= j. (4.5.20)

By using the same arguments used in proposition4.3.1 Kuk ⊂
⋃l
i=1B

i
k we have

ch(uk) = deg(ũk,
l⋃

i=1

Bi
k, 0)

=
l∑

i=1

deg(ũk, B
i
k, 0)

=
l∑

i=1

deg(ũik, BRi(0), 0). (4.5.21)

On the other hand, for every i ∈ {1, . . . , l}, since {uik} converges uniformly
to{ūi} on BRi(0) we obtain,

deg(ũik, BRi(0), 0) = deg( ¯̃ui, BRi(0), 0), (4.5.22)

recall that uik ⇀ ūi ∈ Λa, ūi = (ū0i, ˜̄ui) ∈ R× Rn, uik = (ui0k, ũ
i
k) ∈ R× Rn.
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4.5 Non trivial solution

And since we have ∀x ∈ C(BRi (0)), |ūi(x)| ≤ γ < 1. Then we have, by the
excision property of the topological degree,

deg( ¯̃ui, BRi(0), 0) = deg( ¯̃ui, Kui , 0) + deg( ¯̃ui, BRi(0) \ K̄ui , 0).

Let x ∈ BRi(0) \ K̄ūi , 0). then γ < u0i(x) ≤ 1. From the arbitrariness of γ, we
get u0i(x) = 1 and since {ūi} ⊂ Λa then ¯̃ui 6= 0 which implies by the solvability
property of the topological degree,

deg( ¯̃ui, BRi(0) \ K̄ui , 0) = 0,

then
ch(ūi) = deg( ¯̃ui, BRi(0), 0). (4.5.23)

From (4.5.23), (4.5.22) and (4.5.21)

ch(uk) =
l∑

i=1

ch(ūi).

Finally, in order to prove (4.5.9), since uik converges uniformly to ūi in BRi(0),
for every i ∈ {1, . . . , l}, we assume that,

∀x ∈ Bk
i : |uk(x)− ūi(x− xki )| < γ. (4.5.24)

We shall prove that, for k large enough,

∀x ∈ Rn : |uk(x)−
l∑

i=1

ūi(x− xki )| < 1 + lγ. (4.5.25)

Indeed, if x ∈
⋃l
i=1B

k
i , then, by (4.5.20), there exists a unique index j ∈ {1, . . . , l}

such that x ∈ Bk
j then

|uk(x)−
l∑

i=1

ūi(x− xki )| ≤ |uk(x)− ūj(x− xkj )|+
∑
i 6=j

|ūi(x− xki )|

< γ + (l − 1)γ = lγ < 1 + lγ. (4.5.26)

On the other hand, if x /∈
⋃l
i=1 B

k
i , then, by (4.5.7),

|uk(x)−
l∑

i=1

ūi(x− xki )| ≤ |uk(x)|+
l∑

i=1

|ūi(x− xki )|

≤ 1 + lγ.
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Now fix η > 1; choosing γ sufficiently small we have

1 + lγ < η. (4.5.27)

Substituting (4.5.27) in (4.5.25), we get

∀x ∈ Rn : |uk(x)−
l∑

i=1

ūi(x− xki )| < η,

and, by the arbitrariness of η > 1, we obtain (4.5.9).

4.5.2 Existence of minima in the connected components
of Λa

The minimum is attained on the set Λa, and it is easy to see that u ≡ 0 is a trivial
solution of the problem. But, of course, we are interested in nontrivial solutions.
Now, we consider the following problem

I∗ = inf
u∈Λ∗a

fa(u), Λ∗a = {u ∈ Ea : ch(u) 6= 0}.

The functional is bounded below and the set Λa is not empty. We consider fields
u having the form

u(x) = (
2

1 + |x|m
,

1

1 + |x|m
x). (4.5.28)

Lemma 4.5.2. There exists a suitable m ≥ 1, such that, the field u defined in
(4.5.28) belongs to Λ∗a .

Proof. Clearly, if m is sufficiently large, then the field u defined in (4.5.28) belongs
to Ea. For the sake of contradiction, suppose that there exists x̄ ∈ Rn such that
u(x̄) = η = (1, 0). We deduce that

2

1 + |x̄|m
= 1,

1

1 + |x̄|m
x̄ = 0.

We get the contradiction: |x̄| = 1 and x̄ = 0. So, u ∈ Λa.
We show that ch(u) 6= 0. Set g(x) = 1

2
x then we have

Ku = {x ∈ Rn :
2

1 + |x|m
> 1} = B(0, 1),

if |x| = 1 then g(x) =
1

1 + |x|m
x,
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by the properties of the topological degree (see Theorem 2.8.1) we get,

deg(
1

1 + |x|m
x,B(0, 1), 0) = deg(g(x), B(0, 1), 0) 6= 0.

And moreover the set Λ∗a is open in the space Ea; indeed, since the topological
charge is continuous with respect to the uniform convergence, see Theorem 4.3.2,
and the continuity of the embedding Ea in L∞ (see Proposition 4.2.1) assure that
the topological charge is continuous on Λa.

Theorem 4.5.3. Let a ≥ 0, b > 0, p > n > 2. If V satisfies (V1) − (V5),
then there exists a weak solution of (4.1.10) (i.e., a static solution of (4.1.8),
which is a minimizer of the energy functional (4.1.12) in the class of maps whose
topological charge is different from 0.

Proof. By Lemma 4.4.1 and Proposition 4.4.7 we have,

∀u ∈ Λ∗a, 0 < ∆a ≤ fa(u) <∞.
We consider a minimizing sequence{uk} ⊂ Λ∗a. It has obviously bounded en-

ergy; then we can apply Proposition 4.5.1. There exist l ∈ N and ū1, . . . , ūl ∈ Λa

such that, up to a subsequence, (4.5.6), (4.5.8) hold true. Since ch(uk) 6= 0, from
(4.5.8) we deduce that there exists ī ∈ {1, . . . , l} such that ch(ūī) 6= 0. Then,
from (4.5.6), we obtain

I∗ ≤ fa(ūī) ≤
l∑

i=1

fa(ūi) ≤ lim inf
k→∞

fa(uk) = I∗.

So we conclude that
fa(ūī) = I∗.

Moreover since Λ∗a is an open set then there exists a weak solution of (4.1.10)
(i.e., a static solution of (4.1.8)) then we deduce a solution of equation (4.1.8)
having the form of equation(4.1.11).

Remark 4.5.1. The functional exhibits an invariance for the symmetry group of
rotations and translations; indeed, for every function u and g ∈ O(n), if we set
ug(x) = u(gx), we have immediately

fa(gu) = fa(u).

Then our theorem gives the existence of an orbit of minimum solutions. This
orbit consists of two connected components, which are identified, respectively, by
ū and

ū ◦ P(x) = ū(−x).

Since typically n = 3 is odd, ū ◦ P and ū have opposite topological charge.
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4.5.3 Resolution of static equation

In this subsection we prove the existence of a solution for the static equation.

Theorem 4.5.4. The minimum points u ∈ Λa for the functional fa are weak
solutions of the system (4.1.10).

Proof. Let u be a minimum point of fa and h ∈ C∞0 (Rn,R). Let ej denote the
jth-vector of the canonical basis in Rn. If ε is sufficiently small, then u+εejh ∈ Λa

and fa(u+ εejh) <∞. Since u is a minimum point of fa, then

0 =
df(u+ εejh)

dε

∣∣∣∣
ε=0

=

∫
Rn

(
a∇uj∇h+ b

p

2
(|∇u|p−2∇uj∇h) +

∂V (ξ)

∂ξj
h

)
dx.

By Green’s formula,∫
Rn
b
p

2
(|∇u|p−2∇uj∇h)dx = −

∫
Rn
b
p

2
div(|∇ · u|p−2∇uj)hdx.

So ∫
Rn

(
−a∆uj − b

p

2
div(|∇ · u|p−2∇uj) +

∂V (ξ)

∂ξj

)
hdx = 0,

for 1 ≤ j ≤ n+ 1, and for any h ∈ C∞0 (Rn,R). Then∫
Rn

[
−a∆u− bp

2
∆pu+ V ′(u)

]
φdx = 0, for every φ ∈ C∞0 (Rn,Rn+1).

This implies by density

−a∆u− b

2
∆pu+ V ′(u) = 0.

4.6 Compactness properties related to symme-

try

We fix a ∈ R+ \ {0}; for sake of simplicity we assume a = 1; so hereafter in the
notation we omit the index a. We consider the Banach space E, the completion
of C∞0 (Rn,Rn+1) with respect to the norm

‖u‖E = ‖∇u‖L2 + ‖∇u‖Lp + ‖u‖L2 .

By Corollary 4.2.3, the space E coincides with

W 1,p(Rn,Rn+1) ∩W 1,2(Rn,Rn+1).
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In the space E we can consider the following O(n) action: for every u ∈ E,
g ∈ O(n)

Tgu(x) = (u0(gx), g−1ũ(gx)) (4.6.1)

We see below if the potential V satisfies a suitable symmetry property, it is
possible to prove the existence of infinitely many finite energy solutions. More
precisely we assume:

(V 6) There exist ρ1 and r > 1 such that

|V ′(ξ)− V ′′(0)ξ| ≤ c0|ξ| r

whenever |ξ| ≤ ρ1;

(V 7) for every ξ = (ξ0, ξ̃) and for every g in the orthogonal group O(n),

V (ξ0, gξ̃) = V (ξ0, ξ̃).

An easy calculation and assumption (V 7) give the following lemma.

Lemma 4.6.1. The open set Λ and the functional f are invariant under the
action (4.6.1), that is, for every g ∈ O(n) and u ∈ Λ, we have

Tg(u) ∈ Λ,

f(Tg(u)) = f(u).

Now, let F denote the subspace of fixed points

F = {u ∈ E | Tgu = u,∀g ∈ O(n)}.

We shall show that
ΛF = Λ ∩ F

is a natural constraint to finding the critical points of f . This means that any
u ∈ ΛF such that, for any v ∈ F ,

〈f ′(u), v〉 = 0

gives us f ′(u) = 0 (see Lemma 4.6.2).This fact is usual in Hilbert spaces and
unfortunately E is only a Banach space. Moreover we shall need a continuous
projection P : E → F .We can define P by using the O(n)-continuous action. For
every u ∈ E, we set

Pu =

∫
O(n)

Tgu dg, (4.6.2)

dg being the Haar measure on the group O(n). This map P is continuous and
takes its values in F ; moreover we have PoP = P. So we conclude that P is a
projection on F and F is a closed subspace.
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Lemma 4.6.2. For every u ∈ ΛF and v ∈ E we have

〈f ′(u), v〉 = 〈f ′(u),Pv〉,

P being the projection of E onto F .

Proof. Since the functional f is invariant, the map f ′ : E → E ′ is ”equivariant”,
that is

〈f ′(u), Tgv〉 = 〈f ′(Tg−1u), v〉. (4.6.3)

Now we recall that the integral commutes with continuous linear forms, so we
have

〈f ′(u),Pv〉 = 〈f ′(u),

∫
O(n)

Tgv dg〉 =

∫
O(n)

〈f ′(u), Tgv〉dg

by (4.6.3)

=

∫
O(n)

〈f ′(Tg−1u), v〉dg

since u ∈ F

=

∫
O(n)

〈f ′(u), v〉dg

= 〈f ′(u), v〉
∫
O(n)

dg = 〈f ′(u), v〉,

where the last equality follows from the fact that
∫
O(n)

dg = 1.

From this lemma we deduce that every local minimum of f restricted to ΛF

is a critical point of f .

Proposition 4.6.3. The space F, equipped with the norm on E, ‖ · ‖E, is com-
pactly embedded in Ls(Rn,Rn+1) for every s ∈]2, 2∗[, where

2∗ =


+∞ if n = 2,

2n/(n− 2) if n > 2.
(4.6.4)

This proposition is an easy consequence of the following theorem, which is
proved in Appendix A.

Theorem 4.6.4. If W is a bounded subset of W 1,2(Rn,Rn+1), then

WR = {u ∈ W | |u|is radial function}

is relatively compact in Ls(Rn,Rn+1) for every s ∈]2, 2∗[.
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4.6 Compactness properties related to symmetry

Proof. (Proposition 4.6.3.)
We have to prove that every bounded set in F is relatively compact in Ls(Rn,Rn+1).
To prove this, we can employ Theorem 4.6.4; we have only to notice that, for every
u ∈ F, |u| is a radial function. If u = (u0, ũ) ∈ F , the function u0 is O(n) invari-
ant, as well as the field u is O(n) equivariant, that is, for every x ∈ Rn, g ∈ O(n)

u0(gx) = u0(x),

ũ(gx) = gũ(x).

So we have

|u(gx)|2 = |u0(gx)|2 + |ũ(gx)|2

= |u0(x)|2 + |gũ(x)|2

= |u0(x)|2 + |ũ(x)|2 = |u(x)|2.

This means that |u(x)|2 depends only on |x|.

Proposition 4.6.5. The functional f/ΛF satisfies the Palais-Smale condition,
i.e., for every sequence {uk} ∈ ΛF such that

(a) f(uk) is bounded,

(b) f ′/ΛF (uk) converges to 0 in F ′, contains a convergent subsequence.

We remark that (b) means that, for every v ∈ F,

〈f ′(uk), v〉 ≤ εk‖v‖,

where εk → 0

In the proof we need the following lemmas.

Lemma 4.6.6. The map
A E −→ E ′

defined by

〈Au, v〉 = 〈−∆u−∆pu+ V ′′(0)u, v〉

=

∫
Rn

(
(∇u|∇v) + |∇u|p−2(∇u|∇v) + V ′′(0)u.v

)
dx

is invertible with continuous inverse.

The proof is given in the Appendix B.
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Lemma 4.6.7. For every u ∈ F , v ∈ E,

〈Au, v〉 = 〈Au,Pv〉. (4.6.5)

Proof. First we notice that, if u ∈ F , then for every g ∈ O(n)

〈Au, Tgv〉 = 〈Au, v〉.

Now, since the integral commutes with continuous linear forms, we have

〈Au,Pv〉 = 〈Au,
∫
O(n)

Tgv dg〉

=

∫
O(n)

〈Au, v〉 dg

= 〈Au, v〉.

Proof. Let {uk} be a sequence in ΛF such that

f(uk) is bounded, (4.6.6)

f ′/(uk) = −∆uk −∆puk + V ′(uk)→ 0 in F ′. (4.6.7)

By (4.6.6), since the functional f is coercive, the sequence {uk} is bounded in
E.
First we shall prove that, up to a subsequence, it is strongly convergent to u ∈ E.
Using the operator A we can write

A(uk) = f ′(uk)− U ′(uk), (4.6.8)

where
U(ξ) = V (ξ)− V ′′(0)ξ · ξ

.
Using (4.6.6) and Corollary 4.4.5, we have that there exists d > 0 such that,

for every k ∈ N and x ∈ Rn

|uk(x)− η| ≥ d. (4.6.9)

From (4.6.9), since {uk} is bounded in L∞, we deduce that, for a suitable M > 0,

|U ′(uk)| ≤M. (4.6.10)

Now we set

Ak = {x ∈ Rn : |uk| ≥ ρ1},

74



4.6 Compactness properties related to symmetry

where ρ1 is introduced in (V 6). Since {uk} is bounded in L2, we have that the
measure of Ak is uniformly bounded.

Since r > 1 (see (V 6)), we can find s such that

(2∗)′ < s′ < 2 ≤ rs′,

where

(2∗)′ =


1 if 2∗ = +∞,

2∗/(2∗ − 1) if 2∗ < +∞.
Now, by (V 6), we have, for every x ∈ Rn/Ak,
U ′(uk(x)) ≤ C0|uk(x)| r
and using (4.6.10), we get

∫
Rn
|U ′(uk)| s

′ ≤
∫
Rn/Ak

|U ′(uk)| s
′
dx+

∫
Ak

|U ′(uk)| s
′
dx

≤
∫
Rn/Ak

Cs′

0 |uk| rs
′
+M s′meas(Ak)

≤M1‖uk‖ rs
′

Lrs′
+M2. (4.6.11)

We know that {uk} is bounded in E; then Corollary 4.2.3 implies that {uk} is
bounded in Lrs

′
(Rn, Rn+1). So, from (4.6.11), we deduce the boundedness of

U ′(uk) in Ls
′
(Rn, Rn+1).

Since
(2∗)′ < s′ < 2,

we have

2 < s =
s′

s′ − 1
< 2∗.

and, from Proposition 4.6.3, is compactly embedded into Ls. Then, since U ′(uk)
is bounded in Ls

′
and with the Theorem 7.3.2 (Schauder theorem)

{U ′(uk)} is strongly convergent in F ′ (up to a subsequence).

f ′(uk)− U ′(uk) −→ χ ∈ F ′. (4.6.12)

Now we can define Pχ ∈ E ′ by setting, for every ω ∈ E,

〈Pχ, ω〉 = 〈χ,Pω〉, (4.6.13)

where P is defined in (4.6.2). Now we want to prove that

Auk −→ Pχ
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in E ′; indeed, using (4.6.5), (4.6.13) and (4.6.8), for every ω ∈ E we have

〈Auk − Pχ, ω〉 = 〈Auk − χ,Pω〉
= 〈f ′(uk)− U ′(uk)− χ,Pω〉 −→ 0.

Using Lemma 4.6.6, we deduce

uk = A−1Auk −→ A−1Pχ = u.

Finally we have u ∈ ΛF ; in fact u ∈ F since F is closed and u ∈ Λ by Lemma
4.4.4 and (4.6.6).

4.7 Infinitely many solutions

In this Section, we prove under some symmetry assumptions the existence of
infinitely many solutions, which are constrained minima of the energy. More pre-
cisely, for every N ∈ N there exists a solution of charge N .

Theorem 4.7.1. Assume p > n ≥ 2 and a ≥ 0. Assume that V satisfies (V1)−
(V5), moreover assume that

(V 6) There exist ρ1 and r > 1 such that

|V ′(ξ)− V ′′(0)ξ| ≤ c0|ξ| r

whenever |ξ| ≤ ρ1;

(V 7) for every ξ = (ξ0, ξ̃) and for every g in the orthogonal group O(n),

V (ξ0, gξ̃) = V (ξ0, ξ̃).

Then, for any N ∈ N, there exists uN solution of (4.1.10) such that
ch(uN) = N. Moreover we have

lim
N
f(uN) = +∞.

For the proof of Theorem 4.7.1 we shall prove the following statements:

(A) for every N ≥ 1, the connected component

ΛN
F = {u ∈ ΛF | ch(u) = N}

is not empty;
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4.7 Infinitely many solutions

(B) for every N ≥ 1, the energy functional attains its minimum in ΛN
F ;

(C) if we denote by uN a minimizer of the energy in ΛN
F then

lim
N
f(uN) = +∞.

4.7.1 Symmetric fields with arbitrary charge

This subsection is devoted to the proof of statement (A). We shall give a complete
proof of

ΛN
F 6= ∅ (4.7.1)

in the case of N odd; the case of N even is analogous.
To this end, we shall study suitable fields in F having the form

u(x) = (A(|x|), B(|x|)x), (4.7.2)

A and B being two scalar fields such that u ∈ Λ. Indeed, an easy calculation
shows that fields having the form (4.7.2), are fixed points for the action (4.6.1), so
they belong to ΛF . More precisely, we consider fields u having the form (4.7.2),
with

A(|x|) =
a

1 + (|x|/2π)m
cos |x|, (4.7.3)

B(|x|) =
1

1 + (|x|/2π)m
sin |x|. (4.7.4)

We show that u ∈ ΛF .

Lemma 4.7.2. There exists a suitable m ≥ 1, such that, for every a ∈ R/Q, the
field u defined by (4.7.2)-(4.7.4)) belongs to Λ (by the above remark, it belongs to
ΛF ).

Proof. An easy calculation with polar coordinates and for m sufficiently large,
we have that the field u defined by (4.7.2)-(4.7.4)) belongs to E, now we assume
a ∈ R \Q and we prove that u ∈ Λ.
We have to prove that, for every x ∈ Rn,

u(x) 6= η = (1, 0)

For the sake of contradiction, suppose that there exists x̄ ∈ Rn such that

u(x̄) = (1, 0).
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Using the definition of u, we deduce that

A(|x̄|) =
a

1 + (|x̄| \ 2π)m
cos |x̄| = 1, (4.7.5)

B(|x̄|) =
a

1 + (|x̄| \ 2π)m
sin |x̄| = 0. (4.7.6)

From (4.7.6) we deduce that |x̄| = kπ, k ∈ N; then from (4.7.5) we get

± a

1 + (k/2)m
= 1,

and this contradicts a ∈ R/Q, so Λ 6= ∅.

Proposition 4.7.3. Let N = 2L+ 1 (L ∈ N) an odd number. Then any field u
of type (4.7.2)-(4.7.4) with m as in Lemma 4.7.2 and a ∈ R/Q such that

1 + Lm < a < 1 + (L+ 1)m (4.7.7)

has charge equal to N .

Proof. By the definition of charge (see Definition 4.3.1), we have to prove that

deg(ũ, Ku, 0) = 2L+ 1,

where

ũ(x) =
sin |x|

1 + (|x| \ 2π)m
x

and

Ku = {x ∈ Rn :
a cos |x|

1 + (|x| \ 2π)m
> 1}.

We fix ε ∈]0, π/2[ set
K0 = {|x| < ε};

moreover, for every j = 1, . . . , L, we set

Kj = {2jπ − ε < |x| < 2jπ + ε}.

The open subsets {Kj}1≤j≤L are disjoint.
We show that

K0 ∪K1 ∪ . . . ∪KL ⊂ Ku.

Let x ∈ Kj, then 2jπ − ε < |x| < 2jπ + ε. We develop cos |x| on the ball B(0, ε)
for ε small enough, we set t = |x| ≥ 0

cos t = 1− t2

2
+
t3

9
R(t),
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such that R(t) = sin θt with 0 < θ < 1.
We deduce that

a cos t

1 + (t \ 2π)m
>

a(1− t2

2
)

1 + (j + t \ 2π)m
.

So it is enough to prove that

a(1− t2

2
)

1 + (j + t \ 2π)m
> 1.

We consider the function

s(t) =
(1 + tm)(1− t2

2
)

1 + (j + t \ 2π)m
, (4.7.8)

where 0 ≤ j ≤ L. The function s is continuous and strictly decreasing then s is
locally bijective such that s(0) = 1, and for t small enough we have,

1− s(t) < ε0. (4.7.9)

From (4.7.7) we can choose ε0 = 1− 1+tm

a
then from (4.7.9) and (4.7.8)

a(1− t2

2
)

1 + (j + t \ 2π)m
> 1.

So we have
K0 ∪K1 . . . ∪KL ⊂ Ku.

Moreover, using the right-hand side inequality of (4.7.7), we can prove

Ku = {x ∈ Ku | ũ(x) = 0} ⊂ K0 ∪K1 ∪ . . . ∪KL.

So, by the excision and the additive properties of the topological degree, we
conclude

deg(ũ, Ku, 0) = deg(ũ,
L⋃
j=1

Kj, 0) + deg(ũ, Ku \
L⋃
j=1

Kj, 0)︸ ︷︷ ︸
=0

=
L∑
j=1

deg(ũ, Kj, 0)

Clearly the conclusion will follow if we prove that

deg(ũ, K0, 0) = 1 (4.7.10)

79



Solitons in several space dimensions

and, for j = 1, . . . , L

deg(ũ, Kj, 0) = 2. (4.7.11)

First we prove (4.7.10). Consider the function

v0 =
sin ε

1 + (ε \ 2π)m
x.

We notice that for every x ∈ ∂K0 (that is such that |x| = ε), we have

ũ = v0 6= 0.

We have

deg(v0, K
0, 0) =

∑
x∈v0−1(0)

sgnJv0(x) = 1,

where the equality follows from the fact that v0 is the identity up to a multiplica-
tive constant.

Since the degree depends only on the values on the boundary, we conclude
that

deg(ũ, K0, 0) = deg(v0, K
0, 0) = 1.

Now, for every j ∈ {1, . . . , L}, we set

Bj
+ = {|x| < jπ + ε}

Bj
− = {|x| < jπ − ε}.

Since Kj = Bj
+ \B

j
−, by the additive property of the degree, we have

deg(ũ, Kj, 0) = deg(ũ, Bj
+, 0)− deg(ũ, Bj

−, 0). (4.7.12)

Then we consider the function

v+
j (x) =

sin ε

1 + (|2jπ + ε|/2π)m
x;

for every x ∈ ∂B+
j ,we have

ũ = v+
j 6= 0.

So, for the boundary dependence of the degree, we conclude, as before, that

deg(ũ, Bj
+, 0) = deg(v+

j , B
j
+, 0) = 1. (4.7.13)

Analogously we have

deg(ũ, Bj
−, 0) = deg(v−j , B

j
−, 0) = 1 (4.7.14)
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with

v−j (x) =
sin ε

1 + (|2jπ − ε| \ 2π)m
x.

Substituting (4.7.13) and (4.7.14) into (4.7.12), we get (4.7.11). So the Propo-
sition is completely proved.

By the preceding proposition, for every N ≥ 1, N odd, we can construct a
field u ∈ ΛF having the form (4.7.2) such that ch(u) = N.
The case of N even is analogous: We can consider again a field u ∈ ΛF having
the form (4.7.2) with coefficients

A(|x̄|) =
a

1 + (|x̄| \ 2π)m
sin |x̄| = 1, (4.7.15)

B(|x̄|) = − a

1 + (|x̄| \ 2π)m
cos |x̄| = 0. (4.7.16)

With the same choice of m as in Lemma 4.7.2, for every L ≥ 1, we can find
a ∈ R \Q, such that the field defined by (4.7.2), (4.7.15), (4.7.16) has charge 2L.

4.7.2 Minimizers in ΛN
F

We recall that

ΛN
F = {u ∈ ΛF | ch(u) = N} = ΛN ∩ F 6= ∅,

ΛN
F is a connected components of ΛF .

Fix N ≥ 1 and consider

cN = inf
ΛNF

f.

The proof of our main result is based on lemma 2.7.2 (Eckland’s lemma),
Proposition 4.6.5, Lemma 4.6.2 and Proposition4.5.1 (Splitting lemma).

We recall that, for every u ∈ Λ with ch(u) 6= 0, we have ‖u‖L∞ ≥ 1 (see
Remark 4.3.1), which from Proposition 4.4.7 implies

f(u) ≥ ∆∗ > 0. (4.7.17)

So we conclude that
cN ≥ ∆∗ > 0.

We want to prove that the value cN is attained in ΛN
F .

For every c ∈ R, the sublevels of f are given by

f c = {u ∈ ΛF | f(u) ≤ c}.

81



Solitons in several space dimensions

Taking into account Lemma 4.4.4 and since F is a closed subspace, it is easy to
prove that f c are complete in E, as well as in F. By (4.7.17) f is lower bounded on
ΛN
F , then from Lemma 2.7.2 (Eckland’s Lemma) there exists a sequence {uNk } ⊂

ΛN
F such that

cN ≤ f(uNk ) ≤ cN +
1

k
, (4.7.18)

and

∀v ∈ ΛN
F , f(v) +

1

k
‖v − uNk ‖E ≥ f(uNk ). (4.7.19)

Since f is C1 we have

f(v) = f(uNk )+ < f ′(uNk ), v − uNk > + ◦ (v − uNk ).

Then by (4.7.19) we have

∀v ∈ ΛN
F , < f ′(uNk ), uNk − v >≤

1

k
‖v − uNk ‖E + ◦(v − uNk ); (4.7.20)

we take v = uNk − εh such that h ∈ F, (ε small enough) then v ∈ ΛN
F = ΛN ∩ F,

indeed F is a subspace and ΛN is open in Λ.
So for all h ∈ F we have

〈f ′(uNk ), h〉
‖h‖E

≤ 1

k
+
◦(εh)

‖εh‖E
.

Then

f ′(uNk ) −→ 0 inF ′, (4.7.21)

and from (4.7.18)

f(uNk ) −→ cN . (4.7.22)

Moreover the functional f restricted to ΛF satisfies the Palais-Smale condition
(see Proposition 4.6.5). Then by (4.7.21) and (4.7.22), up to a subsequence, such
that

uNk −→ uN in ΛN
F

and since f is C1, we have
f(uN) = cN ,

and
f ′(uN) = 0 in F ′. (4.7.23)

From (4.7.23) and Lemma 4.6.2 we deduce that

f ′(uN) = 0 in E ′,
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4.7 Infinitely many solutions

uN is a critical point of f . Then uN is a weak solution of (4.1.10) (i.e., a static
solution of (4.1.8)).

We want to show that f(uN)→∞, for N →∞. For the sake of contradiction,
assume that, up to a subsequence,

f(uN) ≤M.

Then, by Proposition 4.5.1 (see (4.5.8)), there exists Q ∈ N such that (up to a
subsequence)

ch(uN) = Q,

and this contradicts
ch(uN) = N →∞.
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Chapter 5

Soliton in Generalized Sobolev
Space

The aim of this chapter is to carry out an existence analysis of the finite-energy
static solutions in more than one space dimension for a class of Lagrangian densi-
ties L which include (4.1.1) with variable exponents.We study a class of Lorentz
invariant nonlinear field equations in several space dimensions. The main purpose
is to obtain soliton-like solutions with variable exponent. The fields are character-
ized by a topological invariant, which we call the charge. We prove the existence
of a static solution which minimizes the energy among the configurations with
nontrivial charge. The study of partial differential equations with p(x)−growth
condition has received more and more attention in recent years. The specific
attention accorded to such kinds problems is due to applications in mathematical
physics. More precisely, such an equation is used in electrorheological fluid [71]
and in elastic mechanics [87]. They also have wide applications in different re-
search fields; see [6, 34,54] and the reference therein.

5.1 Statement of the Problem

The class of Lagrangian densities we consider generalizes the problem studied
in [10], Lagrangian density with variable exponent, in such a way as to include the
Lorentz invariant Lagrangian density proposed in [10]. First we introduce some
notation. For n,m positive integers, we will denote, respectively, the physical
space-time (typically n = 3) and the internal parameters space. We are interested
in the multi-dimensional case, so we assume that n ≥ 2. A point in Rn+1 will be
denoted by X = (x, t), where x ∈ Rn and t ∈ R. The fields we are interested in
are maps ψ : Rn+1 → Rm, ψ = (ψ1, . . . , ψm). We set

ρ = |∇ψ|2 − |ψt|2,
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5.1 Statement of the Problem

∇ψ and ψt denoting, respectively, the Jacobian with respect to x and the deriva-
tive with respect to t. Let

s : Rn+1 → R.

We shall consider Lagrangian densities of the form

L(ψ, ρ) = −1

2
α(ρ, s)− V (ψ), (5.1.1)

where the function V is a real function defined in an open subset Ω ⊂ Rm and α
is a real function defined by

α(ρ, s) = aρ+ b|ρ|
s(·)
2 , a ≥ 0, b > 0, s(0) > n. (5.1.2)

The results of Chapter 4 were concerned with the case: s(·) ≡ p, (we fix the
variable exponent). The action functional related to (5.1.1) is

S(ψ) =

∫
Rn+1

L(ψ, ρ)dxdt

=

∫
Rn+1

−1

2
α(ρ, s)− V (ψ)dxdt.

So the Euler-Lagrange equations are

∂

∂t
(α′ψt)−∇

(
α′∇ψ

)
+ V ′(ψ) = 0, (5.1.3)

where∇
(
α′∇ψ

)
denotes the vector whose j−th component is given by div

(
α′∇ψj

)
,

and V ′ denotes the gradient of V. The equation (5.1.3) is Lorentz invariant. Static
solutions ψ(x, t) = u(x) of (5.1.3) solve the equation

−∇
(
α′∇u

)
+ V ′(u) = 0. (5.1.4)

Set s(x, t) = p(x) on Rn (the restrictions of s on Rn). Using (5.1.2) and (5.1.4)
we obtain

−a∆u− b

2
∆p(.) + V ′(u) = 0, (5.1.5)

where
∆p(·)u = ∇

(
p(·)|∇u|p(·)−2∇u

)
.

We introduce the following notations and functional spaces:

C+(Rn) = {p ∈ C(Rn) ∩ L∞(Rn) : p(x) > 1 for all x ∈ Rn}

and
p+ = sup

x∈Rn
p(x), p− = inf

x∈Rn
p(x).

We assume that
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Soliton in Generalized Sobolev Space

(p1) S(x, t) = p( x1−tν√
1−ν2 , . . . , xn), where ν is a parameter used in the Lorentz

transformation.

(p2) lim
x→∞

p(x) = p∞ = p− > n.

Recall that the results of Chapter 4 were concerned with the case

p(·) ≡ p− > n.

Under (p1), it is easy to verify that, if u = u(x) is a solution of the (5.1.3)
and v = (ν, 0, . . . , 0) with |ν| < 1, the field

ψν(x, t) = u

(
x1 − νt√

1− ν2
, x2, . . . , xn

)
(5.1.6)

is solution of (5.1.3). Notice that the function undergoes a contraction by a factor,

γ =
1√

1− ν2
,

in the direction of the motion; this is a consequence of the fact that (5.1.3) is
Lorentz invariant. Clearly (5.1.5) are the Euler-Lagrange equations with respect
to the energy functional

fa(u) =

∫
Rn

(
a

2
|∇u|2 +

b

2
|∇u|p(x) + V (u)

)
dx, (5.1.7)

where m = n+ 1, so the time independent fields u are maps

u : Rn → Rm.

For every ξ ∈ Rn+1, we write ξ = (ξ0, ξ̃) ∈ R× Rn. V : Ω→ R where
Ω = Rn+1 \ {η}, η = (1, 0), and V is positive and singular in η. More precisely
we assume:

(V1) V ∈ C1(Ω,R).

(V2) V (ξ) ≥ V (0) = 0.

(V3) V is twice differentiable in 0 and the Hessian matrix V ′′(0) is nondegenerate.

(V4) There exist c, ρ > 0 such that if |ξ| < ρ then

V (η + ξ) ≥ c
(
|ξ|−q+ + |ξ|−q−

)
where

1

q−
=

1

n
− 1

p−
,

1

q+
=

1

n
− 1

p+
.
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5.2 Solution space

(V5) For every ξ ∈ Ω\{0} we have

V (ξ) > 0, and lim
|ξ|→∞

inf V (ξ) = v > 0.

Example 5.1.1. A potential satisfying the assumptions (V1)− (V5) is

V (ξ) = ω2
0

(
|ξ|2 +

|ξ|4

|ξ − η|q+ + |ξ − η|q−
)
.

Definition 5.1.1. We call p(x)-soliton a solution of equation (5.1.3) having the
form of equation (5.1.6), where u is a local minimum of the energy functional.

5.2 Solution space

Let p− > n ≥ 2 and, with no loss of generality, we can consider the functional
(5.1.7) with b = 1. It will be convenient to introduce the following notation:

fa(u) =

∫
Rn

(
a

2
|∇u|2 +

1

2
|∇u|p(x) + V (u)

)
dx,

and we define the space Ea to be the completion of C∞0 (Rn,Rn+1) with respect
to the norm

‖u‖a = a‖∇u‖L2 + ‖∇u‖Lp(·) + ‖u‖L2 , p− > n ≥ 2, a ≥ 0,

i.e.,

Ea = C∞0 (Rn,Rn+1)
‖·‖a

,

‖u‖L2 =

(
n+1∑
j=1

‖uj‖2
L2

) 1
2

,

‖∇u‖L2 =

(
n+1∑
j=1

‖∇uj‖2
L2

) 1
2

,

and

|∇u|p(x) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
.

For every a > 0, the norms ‖ · ‖a are equivalent, so we have to study only two
cases: a = 0, a > 0.

Proposition 5.2.1. The Banach space E0 is continuously embedded in Ls(Rn,Rn+1),
for every s ∈ [2,∞].
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Soliton in Generalized Sobolev Space

Proof. The space E0 is continuously embedded in L2(Rn,Rn+1), therefore it is
sufficient to show that E0 is embedded also in L∞(Rn,Rn+1). Since C∞0 (Rn,Rn+1)
is dense in E0, so it is sufficient to prove that there exists c > 0 such that, for
every u ∈ C0(Rn,Rn+1), we have

‖u‖L∞ ≤ c‖u‖0.

We fix u ∈ C∞0 (Rn,Rn+1) and consider a family of cubes Qk ⊂ Rn such that

mes(Qk) = 1, ∪k∈NQk = Rn.

Then, by a well-known inequality (see below equation (5.2.4), in Proposition
5.4.6),

for every k ∈ N and Qk ⊂ Rn,

|u(x)| ≤
∣∣∣∣∫
Qk

udy

∣∣∣∣+M‖∇u‖Lp(·)(Qk), (5.2.1)

where M ≥ 0 is independent of u. Thus

|u(x)| ≤ mes(Qk)‖u‖L2 +M‖∇u‖Lp(·)(Qk)

≤ ‖u‖L2(Rn) +M‖∇u‖Lp(·)(Rn)

≤ (1 +M)‖u‖0.

Hence

‖u‖L∞ ≤ c‖u‖0, c = 1 +M.

Corollary 5.2.2. The Banach space E0 is continuously embedded in
Lp(·)(Rn,Rn+1).

Proof. Since 2 ≤ n < p0 ≤ p− < p+ <∞, E0 = C∞0 (Rn,Rn+1)
‖·‖0

, so
C∞0 (Rn,Rn+1) is dense in E0 and also in Lp(·)(Rn,Rn+1) (see [41, Theorem 3.4.12]),
it is sufficient to prove that there exists c > 0 such that

‖u‖Lp(·) ≤ c‖u‖0, for allu ∈ C∞0 (Rn,Rn+1).

Let B the support of u, then

‖u‖Lp(.)(Rn) = ‖u‖Lp(·)(B).

From [41, Theorem 3.3.1, p. 82], we have

‖u‖Lp(·)(B) ≤ ‖u‖Lp+ (B).
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5.2 Solution space

It is clear that

‖u‖Lp+ (B) ≤ ‖u‖Lp+ (Rn).

From Proposition 5.2.1, we deduce that there exists c > 0 such that

‖u‖Lp+ (Rn) ≤ c‖u‖0.

This implies that

‖u‖Lp(·)(Rn) = ‖u‖Lp(·)(B) ≤ ‖u‖Lp+ (B) ≤ ‖u‖Lp+ (Rn) ≤ c‖u‖0.

Corollary 5.2.3. The Banach space E0 is continuously embedded in H
1,p(·)
0 (Rn,Rn+1).

Proof. By definition of the space E0, we have for every u ∈ E0

‖u‖0 > ‖∇u‖Lp(·) .

From Corollary 5.2.2 there exists c1 > 0 such that

c1‖u‖0 > ‖u‖Lp(·) ,

and so

‖u‖0 > c‖u‖
H

1,p(·)
0

.

Corollary 5.2.4. For every a > 0, the space Ea can be identified with the Banach
space

W = H
1,p(·)
0 (Rn,Rn+1) ∩W 1,2(Rn,Rn+1),

equipped with the usual norm

‖u‖W = ‖u‖W 1,2 + ‖u‖W 1,p(·) .

Proof. C∞0 (Rn,Rn+1) is dense in H
1,p(·)
0 (Rn,Rn+1) (see Definition 2.4.1), and

C∞0 (Rn,Rn+1) is dense in W 1,2(Rn,Rn+1); see [28]. For any u ∈ Ea we have

‖u‖a ≤ sup(1, a)‖u‖W .

From Corollary 5.2.2, there exists c > 0 such that for every u ∈ C∞0 (Rn,Rn+1),
we have

‖u‖a ≥ c(‖u‖W 1,2 + ‖u‖W 1,p(·))
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Soliton in Generalized Sobolev Space

Proposition 5.2.5. Since p > n, for every value a ≥ 0, the functions in Ea are
bounded, continuous, and decay to zero at infinity. Furthermore, the following
inequality holds:

|u(x)− u(y)| ≤ c sup
(
|x− y|1−

n
p− , |x− y|1−

n
p+

)
‖∇u‖Lp(·)(Rn) for all x, y ∈ R.

(5.2.2)

Proof. By Proposition 5.2.1 we have

Ea ⊂ E0 ⊂ L∞(Rn,Rn+1) (5.2.3)

and since Ea = C∞0 (Rn,Rn+1)
‖·‖a

, then it is easy to get that all functions in Ea
are bounded, and decay to zero at infinity. Now we show the inequality .
Fix u ∈ C∞0 (Rn,R) and consider a family of cubes Qk ⊂ Rn such that

mesQk = 1,
⋃
k∈N

Qk = Rn,

with each Qk an open cube, containing 0, whose sides-of length r-are parallel to
the coordinate axes. For x ∈ Qk we have

u(x)− u(0) =

∫ 1

0

du(tx) =

∫ 1

0

du(tx)

dt
dt,

where
du(tx)

dt
=

n∑
i=1

∂u

∂xi
(tx) · ∂(txi)

∂t
=

n∑
i=1

∂u

∂xi
(tx) · xi.

Then

|u(x)− u(0)| ≤
∫ 1

0

n∑
i=1

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ |xi|dt, x ∈ Qk, |xi| < r.

Hence

|u(x)− u(0)| ≤ r

∫ 1

0

n∑
i=1

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ dt.
Let

u =
1

|Qk|

∫
Qk

udx.

Integrating the last inequality on Qk , we obtain for every k ∈ N and Qk ⊂ Rn

we have ∫
Qk

|u(x)− u(0)|dx ≥
∣∣∣∣∫
Qk

(u(x)− u(0))dx

∣∣∣∣ = |Qk||u− u(0)|

and

|Qk||u− u(0)| ≤ r

∫
Qk

dx

∫ 1

0

n∑
i=1

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ dt, |Qk| = rn.
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5.2 Solution space

Then

|u− u(0)| ≤ 1

rn−1

∫ 1

0

dt

∫
Qk

n∑
i=1

∣∣∣∣ ∂u∂xi (tx)

∣∣∣∣ dx
≤ rn−1

∫ 1

0

dt

∫
tQk

n∑
i=1

∣∣∣∣ ∂u∂xi (y)

∣∣∣∣ dytn , tQk ⊂ Qk, t ∈ (0, 1),

From Hölder’s inequality and Lemma 2.3.4, we have∫
tQk

∣∣∣∣ ∂u∂xi (y)

∣∣∣∣ dy ≤ 2‖ ∂u
∂xi
‖Lp(·)(Qk) + ‖1‖Lq(·)(tQk)

≤ 2‖ ∂u
∂xi
‖Lp(·)(Qk)

(
|tQk|

n
q− + |tQk|

n
q+

)
,

where 1
p(x)

+ 1
q(x)

= 1.
Then we have

|u− u(0)| ≤ 2

rn−1

∫ 1

0

dt‖∇u‖Lp(.)(Qk)

1

tn

(
(tr)

n
q− + (tr)

n
q+

)
.

We can easily show that

2
(r)

n
q−

rn−1
‖∇u‖Lp(·)(Qk)

∫ 1

0

(t)
n
q−

tn
dt = 2

r
1− n

p−

1− n
p−
‖∇u‖Lp(·)(Qk)

and

2
(r)

n
q+

rn−1
‖∇u‖Lp(·)(Qk)

∫ 1

0

(t)
n
q+

tn
dt = 2

r
1− n

p+

1− n
p+

‖∇u‖Lp(·)(Qk).

We deduce from this that

|u− u(0)| ≤ c sup
(
r

1− n
p− , r

1− n
p+

)
‖∇u‖Lp(·)(Qk).

By translation, this inequality remains true for all cubes Qk whose sides-of length
r-are parallel to the coordinate axes. Thus we have

|u− u(x)| ≤ c sup
(
r

1− n
p− , r

1− n
p+

)
‖∇u‖Lp(·)(Qk). (5.2.4)

By adding these (and using the triangle inequality) we obtain

|u(x)− u(y)| ≤ c′ sup
(
r

1− n
p− , r

1− n
p+

)
‖∇u‖Lp(·)(Qk).

Given any two points x, y ∈ Rn, there exists such a cube with side r = 2|x− y|

|u(x)− u(y)| ≤ c sup
(
|x− y|1−

n
p− , |x− y|1−

n
p+

)
‖∇u‖Lp(·)(Qk)

≤ c sup
(
|x− y|1−

n
p− , |x− y|1−

n
p+

)
‖∇u‖Lp(·)(Rn).
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Soliton in Generalized Sobolev Space

Remark 5.2.1. We deduce from Proposition 5.4.6 that if u ∈ Ea with
n < p− <∞, then u is bounded and lim|x|→∞ u(x) = 0.

Recall that η is a singular point of the potential V, so it is reasonable to
consider in space Ea, the open subset

Γa = {u ∈ Ea : u(x) 6= η, for all x ∈ Rn} .

The subset Γa is open in Ea. Indeed, by Remark 5.2.1, we have

inf
x∈Rn
|u(x)− η| = d > 0.

Then, by (5.2.3) (Eais continuously embedded in L∞), we deduce that for all
u ∈ Γathere exists a small neighborhood of u contained in Γa.
The boundary of Γa is given by

∂Γa = {u ∈ Ea : there exist x ∈ Rn such that u(x) = η}
= Ea \ Γa.

5.3 Topological charge and connected compo-

nents of Γa

For the sake of simplicity, we consider the function space

C =

{
u : Rn → Rn+1\{η} is continuous and lim

|x|→∞
u(x) = 0

}
where η = (1, 0). Every function u ∈ C we write in the form u(x) = (u0(x), ũ(x)) ∈
Rn+1 where u0 : Rn → R and ũ : Rn → Rn.

Definition 5.3.1. For every function u ∈ C we define the support of u

Ku = {x ∈ Rn : u0(x) > 1}.

Then we define the topological charge of u

ch(u) :=


deg(ũ, Ku, 0) if Ku 6= ∅,

0 if Ku = ∅,

such that

deg(ũ, Ku, 0) =
∑

x∈ũ−1(0)

sgnJũ(x),

(Brouwer degree) see Section 2.8;
where Jũ denotes the determinante of the Jacobian matrix.
For more information about this subject (Topological Degree), see [69].
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5.4 Properties of the energy functional

As a consequence of the fact that u is continuous and lim|x|→∞ u(x) = 0, we
have that Ku is an open, bounded set in Rn. Since u ∈ Γ, if x ∈ ∂Ku, then,
together with u(x) 6= η, we have ũ(x) 6= 0. Therefore the previous definition is
well posed. Moreover, the topological charge is continuous with respect to the
uniform convergence [12]. We notice that this definition of charge is the same as
in [10].

Now, for every q ∈ Z we set

Γqa = {u ∈ Γa : ch(u) = q}.

Since the topological charge is continuous with respect to the uniform convergence
and the continuity of the embeddings Ea in L∞ assure that the topological charge
is continuous on Γa, it follows that Γqa is open in Ea, and we have also

• Γa =
⋃
q∈Z Γqa,

• Γqa ∩ Γpa = ∅, p 6= q.

We conclude that every Γqa is a connected component of Γa. We observe that
for every q ∈ Z the component Γqa is isomorphic to the component Γ−qa . So for
every u ∈ Γa we can define the charge ch(u) ∈ Z. Now, we consider the set of a
minimizer of fa in the open set

Γ∗a = {u ∈ Γa : ch(u) 6= 0}.

Remark 5.3.1. We can easily see that ch(u) 6= 0 implies ‖u‖L∞ > 1.

5.4 Properties of the energy functional

Lemma 5.4.1. The functional fa takes real values and it is continuous on Γa.

Proof. We have

fa(u) =

∫
Rn

(
a

2
|∇u|2) +

b

2
|∇u|p(x)

)
dx+

∫
Rn
V (u)dx,

=
a

2
‖∇u‖2

L2 +
b

2
ρp(x)(u)︸ ︷︷ ︸+

∫
Rn
V (u)dx︸ ︷︷ ︸ .

The first term on the left-hand side of energy fa is finite and continuous. Let
us prove that the second term is finite and continuous.

We have V (ξ) = (V ′′(0)ξ · ξ+ o(ξ2). By (V3) there exist a small neighborhood
of 0 ∈ Rn+1 and M > 0 such that, for every ξ ∈ Rn+1, we have

V (ξ) ≤M |ξ|2. (5.4.1)
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Soliton in Generalized Sobolev Space

Since every u ∈ Ea decays to zero at infinity (see Proposition 5.4.6), there
exists a ball Bu such that, for every x ∈ Rn\Bu, |u(x)| < ε, by (5.4.1) and for ε
sufficiently small

V (u(x)) ≤M |u(x)|2, (5.4.2)

From u ∈ L2(Rn,Rn+1), we deduce∫
Rn\Bu

V (u)dx <∞.

On the other hand, since u is continuous (see Proposition 5.4.6), we also have∫
Bu

V (u)dx <∞.

Let{uk} ⊂ Λa be a sequence such that fa(uk) <∞ and uk → u in Ea.
We show that ∫

Rn
V (uk) −→

∫
Rn
V (u).

Since fa(uk) <∞ and with Lemma 5.4.3, u belongs to Λa.

By (5.2.3) we have uk → u on L∞(Rn,Rn+1), then V (uk)→ V (u) uniformly on R.
We deduce that ∫ ·

Bu

V (uk)dx→
∫ ·
Bu

V (u)dx. (5.4.3)

By (5.4.2) ∫ ·
Rn\Bu

V (u(x))dx ≤
∫ ·
Rn\Bu

|u(x)|2dx,

and since uk → u ∈ L2(Rn,Rn+1), and using the dominated convergence theorem∫
Rn/Bu

V (uk)dx→
∫
Rn/Bu

V (u)dx. (5.4.4)

Lemma 5.4.2. The functional fa is coercive in Γa; that is, for every sequence
uk ⊂ Γa such that ‖uk‖a →∞, we have fa(uk)→∞.

Proof. In the case a > 0, n > 2, we have

‖u‖a = a‖∇u‖L2 + ‖∇u‖Lp(·) + ‖u‖L2 .

Let uk ∈ Γa such that
‖uk‖a →∞ as k →∞.
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It is clear that, if

a‖∇uk‖L2 + ‖∇uk‖Lp(·) →∞ as k →∞, (5.4.5)

we have

fa(uk)→∞ as k →∞.

Assume now that there exists c∗ > 0 such that

a‖∇uk‖L2 + ‖∇uk‖Lp(·) < c∗ (5.4.6)

and

‖uk‖L2 →∞ as k →∞. (5.4.7)

We shall prove that ∫
Rn
V (uk)dx as k →∞.

From (V3), we have for every r > 0 there exists ωr > 0 such that

|ξ| ≤ r ⇒ V (ξ) ≥ ωr|ξ|2. (5.4.8)

For every k ∈ N, we set

Ak = {x ∈ Rn : |uk(x)| ≤ r},

where uk ∈ W 1,2(Rn,Rn+1). By the Sobolev inequality

‖uk‖L2∗ ≤ c‖∇uk‖L2 , 2∗ =
2n

n− 2
, n > 2. (5.4.9)

From (5.4.6), we obtain

‖uk‖L2∗ < c∗. (5.4.10)

Moreover, from (5.2.4), there exists M ≥ 0 independent of uk, such that

|uk(x)| ≤
∣∣∣∣∫
Qk

ukdy

∣∣∣∣+M‖∇uk‖Lp(·)(Qk), mes(Qk) = 1

≤ ‖uk‖L2∗ (Qk) +M‖∇uk‖Lp(·)(Qk).

By (5.4.6) and (5.4.10), for any x ∈ Rn, we have

|uk(x)| < c∗ +Mc∗. (5.4.11)

Then, there exists c > 0 such that

mes(Rn\Ak) < c. (5.4.12)
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From (5.4.11) and (5.4.12), we deduce that there exists c1 > 0 such that∫
Rn\Ak

|uk|2dx < c1. (5.4.13)

By (5.4.8), we obtain∫
Rn
V (uk)dx ≥

∫
Ak

V (uk)dx

≥ ωr

∫
Ak

‖uk‖2dx

≥ ωr

(
‖uk‖2

L2 −
∫
Rn\Ak

|uk|2dx
)
.

From (5.4.13) and (5.4.7), we have

lim
k

∫
Rn
V (uk)dx ≥ ωr(‖uk‖2

L2 − c1)→∞ as k →∞.

In the case, a = 0 or n = 2, by (V5), there exists r∗ > 0 such that, for every
ξ ∈ Rn with |ξ| ≥ r∗, we have

V (ξ) ≥ ν

2
. (5.4.14)

Let uk ∈ Γa be a sequence such that

‖uk‖0 →∞ as k →∞.

Since the functional fa is invariant with respect to translation in Rn, we can
assume

‖uk‖L∞ = |uk(0)|. (5.4.15)

Now, we consider the case

‖∇uk‖Lp(·) ≤M∗ and ‖uk‖L2 →∞ as k →∞.

Here we have two subcases:

(a)
‖uk‖L∞ →∞ as k →∞. (5.4.16)

(b)
‖uk‖L∞ is bounded. (5.4.17)

In the subcase (a), by (5.4.16), we can choose a sequence (rk) ⊂ (0,∞) such that

r∗ ≤ ‖uk‖L∞ −K(r
p+−n
p+

k + r
p−−n
p−

k ) and rk →∞, (5.4.18)

96



5.4 Properties of the energy functional

where K = cM∗ and c is the same constant as in (5.2.2). For every y ∈ Rn, we
have

|uk(0)| − |uk(y)| ≤ |uk(0)− uk(y)|.

Hence by (5.2.2), we obtain

|uk(0)| − |uk(y)| ≤ K(|y|
p+−n
p+ + |y|

p−−n
p− ).

From (5.4.15), we get

|uk(y)| ≥ ‖uk‖L∞ −K(|y|
p+−n
p+ + |y|

p−−n
p− ).

For |y| ≤ rk and (5.4.18), we have

|uk(y)| ≥ ‖uk‖L∞ −K(r
p+−n
p+

k + r
p−−n
p−

k ) ≥ r∗. (5.4.19)

From (5.4.14) and (5.4.19), we get∫
Rn
V (uk)dx ≥

∫
B(0,rk)

V (uk)dx ≥
ν

2
mes(B(0, rk)).

This implies that ∫
Rn
V (uk)dx→∞ as rk →∞.

In the last subcase (b), we assume there exists M̄ > 0 such that

‖uk‖L∞ ≤ M̄.

From (5.4.8), we obtain∫
Rn
V (uk)dx ≥ ωM̄‖uk‖L2 →∞ as k →∞.

We are going to study the behaviour of energie fa when u approaches the
boundary of Γa; we remark that ∂Γa = Ea \ Γa.

Lemma 5.4.3. Let (uk) ⊂ Γa be a weakly converging sequence. If the weak limit
belongs to ∂Γa, then

fa(uk)→∞ as k →∞.

Proof. Let (uk) ⊂ Γa such that

uk ⇀ u ∈ ∂Γa as k →∞.
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Since u ∈ ∂Γa then there exists x∗ ∈ Rn such that u(x∗) = η. Using the fact that
(uk) is bounded in Ea, then by the uniform convergence on compact sets, we have

uk(x∗)→ u(x∗) as k →∞. (5.4.20)

Since (uk) is bounded in Ea, then ∇uk is bounded in Lp(·). Then from (5.2.2), we
obtain

|uk(x)− uk(x∗)| ≤ c sup(|x− x∗|
p+−n
p+ , |x− x∗|

p−−n
p− ). (5.4.21)

Thus
|uk(x)− η| ≤ |uk(x)− uk(x∗)|+ |uk(x∗)− η|. (5.4.22)

By (5.4.20) and (5.4.21), there exists εk > 0 such that

|uk(x)− η| ≤ c sup(|x− x∗|
p+−n
p+ , |x− x∗|

p−−n
p− ) + εk (5.4.23)

where
εk → 0 as k →∞.

Let x ∈ B(0, r), for r sufficiently small, there exists ρ > 0 such that

|uk(x)− η| ≤ c sup(r
p+−n
p+ , r

p−−n
p− ) + εk < ρ. (5.4.24)

From (5.4.24) and (V4), we have

V (uk(x)) ≥ c(|uk(x)− η|−( np+

p+−n )
+ |uk(x)− η|−( np−

p−−n )
). (5.4.25)

Then from (5.4.23) and (5.4.25), we obtain

V (uk(x)) ≥ c

|x− x∗|n + εk
.

Restricting our attention to B(x∗, r), we have

lim
k→∞

∫
B(x∗,r)

V (uk(x))dx ≥
∫
B(x∗,r)

lim
k→∞

V (uk(x))dx ≥ c

∫
B(x∗,r)

1

|x− x∗|n
dx =∞.

Corollary 5.4.4. For every b > 0, there exist d∗ = d(b) such that, for every
u ∈ Γa we have

fa(u) ≤ b⇒ min
x
|u(x)− η| ≥ d∗.

Proof. The proof is the same as in [Corollary4.4.5-Chapter 4]

Lemma 5.4.5. The functional fa is weakly lower semicontinuous in Γa.
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Proof. The proof is the same as in [Lemma 4.4.6-Chapter 4]

Proposition 5.4.6. There exists ∆a > 0 such that, for every u ∈ Γa such that
for every u ∈ Γa satisfied ‖u‖L∞ ≥ 1 we have

fa(u) ≥ ∆a.

It is easy to see that ch(u) 6= 0 implies ‖u‖L∞ ≥ 1

Proof. By continuous injection in Proposition 5.2.1

‖u‖a ≥ ‖u‖0 ≥ ‖u‖L∞ ≥ 1,

and by the coercivity of fa, we get

‖u‖a ≥ 1⇒ ∃ ∆a > 0 such that fa(u) ≥ ∆a.

5.5 Existence result

Theorem 5.5.1. The minimum points u ∈ Γa for the functional fa are weak
solutions of the system (5.1.5).

Proof. Let u be a minimum point of fa and h ∈ C∞0 (Rn,R). Let ej denote the
jth-vector of the canonical basis in Rn. If ε is sufficiently small, then u+εejh ∈ Γa
and fa(u+ εejh) <∞. Since u is a minimum point of fa, then

0 =
df(u+ εejh)

dε

∣∣∣∣
ε=0

=

∫
Rn

(
a∇uj∇h+

b

2
(p(·)|∇u|p−2∇uj∇h) +

∂V (ξ)

∂ξj
h

)
dx.

By Green’s formula,∫
Rn

b

2
(p(.)|∇u|p−2∇uj∇h)dx =

∫
Rn
− b

2
div(p(.)|∇.u|p−2∇uj)hdx,∫

Rn
a∇uj∇h =

∫
Rn
−a∆ujh.

So ∫
Rn

(
−a∆uj −

b

2
div(p(.)|∇.u|p−2∇uj) +

∂V (ξ)

∂ξj

)
hdx = 0,

for 1 ≤ j ≤ n+ 1, and for any h ∈ C∞0 (Rn,R). Then∫
Rn

[
−a∆u− b

2
∆p(·)u+ V ′(u)

]
φdx = 0, for every φ ∈ C∞0 (Rn,Rn+1).

This implies by density

−a∆u− b

2
∆p(·)u+ V ′(u) = 0.
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Proposition 5.5.2. (Splitting proposition) Let (uk) ∈ Γ∗a be a sequence and M
be a positive real number such that

fa(uk) ≤M.

Then there exists l ∈ N such that

1 ≤ l ≤ M

∆a

where ∆a was introduced in Proposition 5.4.6 and there exist ū1, . . . , ūl ∈ Γa,
(x1

k), . . . , (x
l
k) ⊂ Rn such that, up to a subsequence,

uk(·+ xik)→ ūi,

|xik − x
j
k| → ∞, i 6= j,

l∑
i=1

fa(ūi) ≤ lim inf
k→∞

fa(uk),

and

ch(uk) =
l∑

i=1

ch(ūi).

Proof. From Lemmas 5.4.2, 5.4.3 and 5.4.5, and by the same method as used in
[Proposition 4.5.1-Chapter 4], we can conclude the result of this proposition.

The minimum is attained on the set Γa, and it is easy to see that u ≡ 0 is
a trivial solution of the problem. But, of course, we are interested in nontrivial
solutions, We consider the following problem

I∗ = inf
u∈Γ∗a

fa(u), Γ∗a = {u ∈ Ea : ch(u) 6= 0}.

The functional is bounded below and the set Ea is not empty. We consider fields
u having the form

u(x) = (
2

1 + |x|m
,

1

1 + |x|m
x). (5.5.1)

Lemma 5.5.3. There exists a suitable m ≥ 1, such that, the field u defined in
(5.5.1) belongs to Γ∗a .

Proof. Clearly, if m is sufficiently large, then the field u defined in (5.5.1) belongs
to Ea. For the sake of contradiction, suppose that there exists x̄ ∈ Rn such that
u(x̄) = η = (1, 0). We deduce that

2

1 + |x̄|m
= 1,
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1

1 + |x̄|m
x̄ = 0.

We get the contradiction : |x̄| = 1 and x̄ = 0. So, u ∈ Γa.
We show that ch(u) 6= 0. Set g(x) = 1

2
x, then we have

Ku = {x ∈ Rn :
2

1 + |x|m
> 1} = B(0, 1),

if |x| = 1 then g(x) =
1

1 + |x|m
x,

by the properties of the topological degree (see Section 2.8) we get,

deg(
1

1 + |x|m
x,B(0, 1), 0) = deg(g(x), B(0, 1), 0) 6= 0.

And moreover the set Γ∗a is open in the space Ea; indeed,

• Γ∗a =
⋃
q∈N∗ Γqa,

• Γqa ∩ Γpa = ∅, p 6= q.

where Γq is a connected component

Theorem 5.5.4. Let a ≥ 0, b > 0, p− > n > 2. Then, if V satisfies (V1)− (V6),
and if p satisfies (p1) − (p2), then there exists a weak solution of (5.1.5) (i.e., a
static solution of (5.1.3)), which is a minimizer of the energy functional (5.1.7)
in the class of maps whose topological charge is different from 0.

Proof. By the Splitting Proposition and the same technique used in Chapter 4 -
Theorem 4.5.3, we can conclude that there exists weak solution to (5.1.5).

And with suitable change of variable in (5.1.6) we deduce a solution of equation
(5.1.3).

Remark 5.5.1. The functional exibits an invariance for the symmetry group of
rotations and translations; indeed, for every function u and g ∈ O(n), if we set
ug(x) = u(gx), we have immediately

fa(ug) = fa(u).

Then our theorem gives the existence of an orbit of minimum solutions. This
orbit consists of two connected components, which are identified, respectively, by
ū and

ū ◦ P(x) = ū(−x).

Since typically n = 3 is odd, ū ◦ P and ū have opposite topological charge.
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Chapter 6

Derrick’s problem with twice
variable exponent

In the mathematical models (soliton) studied in chapter 4 the space of the fi-
nite energy configurations (solution space) splits into infinitely many connected
components according to the topological charge. In that Chapter was proved
the existence of infinitely many solutions, which are constrained minima of the
energy. More precisely, on every one connected component characterized by a
topological charge equal to N ∈ N there exists a solution of charge N . Since p
is arbitrary in the static equation, it is natural to consider p = p(x) as a vari-
able that depends on the connected component. The aim of this chapter is to
carry out an existence analysis of the finite-energy static solutions in more than
one space dimension (n ≥ 2) for a class of Lagrangian densities L which include
(5.1.1) in Chapter 5 and generalizing the results of the Chapter 4. More precisely
we are concerned with Generalized Sobolev Spaces with twice variable exponent
r(·) ≤ n and p(·) > n.

6.1 Statement of the Problem

The class of Lagrangian densities we consider generalizes the problem studied in
Chapter 5, in such a way as to include the Derrick proposal.

First we introduce some notation. If n,m are positive integers, and they will
denote, respectively, the physical space-time (typically n = 3) and the internal
parameters space. We are interested in the multi-dimensional case, so we assume
that n ≥ 2. A point in Rn+1 will be denoted by X = (x, t), where x ∈ Rn and
t ∈ R. The fields we are interested in are maps ψ : Rn+1 → Rm, ψ = (ψ1, . . . , ψm).
We set

ρ = |∇ψ|2 − |ψt|2,

∇ψ and ψt denoting, respectively, the Jacobian with respect to x and the deriva-
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tive with respect to t. Let
s : Rn+1 → R.

We shall consider Lagrangian densities of the form

L(ψ, ρ) = −1

2
α(ρ, k, s)− V (ψ), (6.1.1)

where the function V is a real function defined in an open subset Ω ⊂ Rm and α
is a real function defined by

α(ρ, s, k) = aρ|ρ|
k(·)
2
−1 + b|ρ|

s(·)
2 , a ≥ 0, b > 0, s(0) > n, 2 ≤ k(·) < n. (6.1.2)

The results of [10] were concerned with the case: s(·) ≡ p and k(·) ≡ 2, (we fix
the variable exponent). The action functional related to (6.1.1) is

S(ψ) =

∫
Rn+1

L(ψ, ρ)dxdt

=

∫
Rn+1

−1

2
α(ρ, k, s)− V (ψ)dxdt.

So the Euler-Lagrange equations are

∂

∂t
(α′ψt)−∇

(
α′∇ψ

)
+ V ′(ψ) = 0, (6.1.3)

where∇
(
α′∇ψ

)
denotes the vector whose j−th component is given by div

(
α′∇ψj

)
,

and V ′ denotes the gradient of V. The equation (6.1.3) is Lorentz invariant. Static
solutions ψ(x, t) = u(x) of (6.1.3) solve the equation

−∇
(
α′∇u

)
+ V ′(u) = 0. (6.1.4)

Set k(x, t) = r(x), s(x, t) = p(x) on Rn (the restrictions of s on Rn). Using
(6.1.2) and (6.1.4) we obtain

−a
2

∆r(·) −
b

2
∆p(·) + V ′(u) = 0, (6.1.5)

where

∆r(·)u = ∇
(
r(·)|∇u|r(·)−2∇u

)
, ∆p(·)u = ∇

(
p(·)|∇u|p(·)−2∇u

)
.

We introduce the following notations and functional spaces:

C+(Rn) = {p ∈ C(Rn) ∩ L∞(Rn) : p(x) > 1 for all x ∈ Rn}

and
p+ = sup

x∈Rn
p(x), p− = inf

x∈Rn
p(x).

We assume that
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(p1) S(x, t) = p( x1−tν√
1−ν2 , . . . , xn), where ν is a parameter used in the Lorentz

transformation.

(p2) lim
x→∞

p(x) = p∞ = p− > n.

(r1) k(x, t) = r( x1−tν√
1−ν2 , . . . , xn), where ν is a parameter used in the Lorentz

transformation.

(r2) lim
x→∞

r(x) = r∞ = 2 = r− ≤ r+ ≤ n.

(r3) There exists c > 0 such that for all balls, ∀x ∈ B we have |B|r−B−r(x) < c.

(r4) For all x ∈ Rn, |r(x)− 2| < 1
log|e+|x|| .

Recall that the results of [10] were concerned with the case

r(·) ≡ 2 and p(·) ≡ p− > n.

Under (p1), it is easy to verify that, if u = u(x) is a solution of the (6.1.3)
and v = (ν, 0, . . . , 0) with |ν| < 1, the field

ψν(x, t) = u

(
x1 − νt√

1− ν2
, x2, . . . , xn

)
(6.1.6)

is solution of (6.1.3). Notice that the function undergoes a contraction by a factor,

γ =
1√

1− ν2
,

in the direction of the motion; this is a consequence of the fact that (6.1.3) is
Lorentz invariant. Clearly (6.1.5) are the Euler-Lagrange equations with respect
to the energy functional

fa(u) =

∫
Rn

(
a

2
|∇u|r(x) +

b

2
|∇u|p(x) + V (u)

)
dx, (6.1.7)

where m = n+ 1, so the time independent fields u are maps

u : Rn → Rm.

For every ξ ∈ Rn+1, we write ξ = (ξ0, ξ̃) ∈ R × Rn. Let V : Ω → R, where
Ω = Rn+1 \ {η}, η = (1, 0), and V is positive and singular in η. More precisely
we assume:

(V1) V ∈ C1(Ω,R).

(V2) V (ξ) ≥ V (0) = 0.
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(V3) V is twice differentiable at 0 and the Hessian matrix V ′′(0) is nondegenerate.

(V4) There exist c, ρ > 0 such that if |ξ| < ρ then

V (η + ξ) ≥ c
(
|ξ|−q+ + |ξ|−q−

)
where

1

q−
=

1

n
− 1

p−
,

1

q+
=

1

n
− 1

p+
.

(V5) For every ξ ∈ Ω\{0} we have

V (ξ) > 0, and lim
|ξ|→∞

inf V (ξ) = v > 0.

(V6) There exist R > 0 , |ξ| < R =⇒ V (ξ) ≥ ωR|ξ|r
+
, ωR > 0.

Example 6.1.1. A potential satisfying the assumptions (V1)− (V6) is

V (ξ) = ω2
0

(
|ξ|r+ +

|ξ|4

|ξ − η|q+ + |ξ − η|q−
)
.

6.2 Solution space

Let p− > n ≥ 2, 2 = r− ≤ r+ ≤ n, and with no loss of generality, we can consider
the functional (6.1.7) with b = 1. It will be convenient to introduce the following
notation:

fa(u) =

∫
Rn

(
a

2
|∇u|r(x) +

1

2
|∇u|p(x) + V (u)

)
dx,

and we define the space Ea to be the completion of C∞0 (Rn,Rn+1) with respect
to the norm

‖u‖a = a‖∇u‖Lr(·) + ‖∇u‖Lp(·) + ‖u‖Lr(·) , a ≥ 0,

i.e.,

Ea = C∞0 (Rn,Rn+1)
‖·‖a

;

‖u‖r(x) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣u(x)

σ

∣∣∣∣r(x)

dx ≤ 1

}
,

‖∇u‖r(x) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣∇u(x)

σ

∣∣∣∣r(x)

dx ≤ 1

}
,

and

‖∇u‖p(x) = inf

{
σ > 0 : Rn → R :

∫
Rn

∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
.

For every a > 0, the norms ‖ · ‖a are equivalent, so we have to study only two
cases: a = 0, a > 0.
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Remark 6.2.1.
We have lim

x→∞
r(x) = r∞ = 2 = r− ≤ r+ ≤ n.

• From (r3), (r4), Lemma 2.4.2 and Definition 2.4.2 it’s easy to see that r(·)
is globally Hölder continuous.

• From Definition 2.4.3 and Remark 2.4.1 it’s easy to see that r ∈ P log(Rn).

• Then Lr(.)(Rn,Rn+1) is continuously embedded in Lr
−

(Rn,Rn+1); see ( [41,
Proposition 4.1.8 (page 103)]).

Proposition 6.2.1. The Banach space E0 is continuously embedded in Ls(Rn,Rn+1),
for every s ∈ [r−,∞], r− = 2.

Proof. From Remark 6.2.1, the space E0 is continuously embedded in L2(Rn,Rn+1),
therefore it is sufficient to show that E0 is embedded also in L∞(Rn,Rn+1). Since
C∞0 (Rn,Rn+1) is dense in E0, it is sufficient to prove that there exists c > 0 such
that, for every u ∈ C0(Rn,Rn+1), we have

‖u‖L∞ ≤ c‖u‖0.

We fix u ∈ C∞0 (Rn,Rn+1) and consider a family of cubes Qk ⊂ Rn such that

mes(Qk) = 1, ∪k∈NQk = Rn.

Then, by a well-known inequality, see equation (5.2.4) in [Proposition 5.4.6 -
Chapter 5], Qk ⊂ Rn, then

|u(x)| ≤
∣∣∣∣∫
Qk

udy

∣∣∣∣+M‖∇u‖Lp(·)(Qk), (6.2.1)

where M ≥ 0 is independent of u. Thus

|u(x)| ≤ mes(Qk)‖u‖Lr(.) +M‖∇u‖Lp(·)(Qk)

≤ ‖u‖Lr(.)(Rn) +M‖∇u‖Lp(·)(Rn)

≤ (1 +M)‖u‖0.

Hence

‖u‖L∞ ≤ c‖u‖0, c = 1 +M.

Corollary 6.2.2. The Banach space E0 is continuously embedded in Lp(·)(Rn,Rn+1).
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Proof. Since 2 ≤ n < p0 ≤ p− < p+ <∞, E0 = C∞0 (Rn,Rn+1)
‖·‖0

, so C∞0 (Rn,Rn+1)
is dense in E0 and it is also dense in Lp(·)(Rn,Rn+1) (see [41, Theorem 3.4.12]).
So it is sufficient to prove that there exists c > 0 such that

‖u‖Lp(·) ≤ c‖u‖0, for allu ∈ C∞0 (Rn,Rn+1).

Let B be the support of u, then

‖u‖Lp(.)(Rn) = ‖u‖Lp(·)(B).

From [41, Theorem 3.3.1, p. 82], we have

‖u‖Lp(·)(B) ≤ ‖u‖Lp+ (B).

It is clear that
‖u‖Lp+ (B) ≤ ‖u‖Lp+ (Rn).

From Proposition 6.2.1, we deduce that there exists c > 0 such that

‖u‖Lp+ (Rn) ≤ c‖u‖0.

This implies that

‖u‖Lp(·)(Rn) = ‖u‖Lp(·)(B) ≤ ‖u‖Lp+ (B) ≤ ‖u‖Lp+ (Rn) ≤ c‖u‖0.

Corollary 6.2.3. The Banach space E0 is continuously embedded in H
1,p(·)
0 (Rn,Rn+1).

Proof. By definition of the space E0, we have for every u ∈ E0

‖u‖0 > ‖∇u‖Lp(·) .

From Corollary 6.2.2 there exists c1 > 0 such that

c1‖u‖0 > ‖u‖Lp(·) ,

and so
‖u‖0 > c‖u‖

H
1,p(·)
0

.

Remark 6.2.2.
We have r∞ = 2 = r− ≤ r+ ≤ n.

• From Remark 6.2.1 we have r ∈ P log(Rn), then H
1,r(.)
0 (Rn) = W

1,r(.)
0 (Rn);

see ( [41, Corollary 11.2.4 (page 347)]).
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• Since r ∈ P(Rn) is bounded, then W
1,r(.)
0 (Rn) = W 1,r(.)(Rn); see ( [41,

Corollary 9.1.3 (page 291)]).

Corollary 6.2.4. For every a > 0, the space Ea can be identified with the Banach
space

W = H
1,p(·)
0 (Rn,Rn+1) ∩W 1,r(·)(Rn,Rn+1),

equipped with the usual norm

‖u‖W = ‖u‖W 1,r(·) + ‖u‖W 1,p(·) .

Proof. C∞0 (Rn,Rn+1) is dense in H
1,p(·)
0 (Rn,Rn+1) (see Definition 2.4.1), and

C∞0 (Rn,Rn+1) is dense in W 1,r(.)(Rn,Rn+1); (see [41, Theorem 9.1.6 (page 291)]).
For any u ∈ Ea we have

‖u‖a ≤ sup(1, a)‖u‖W .

From Corollary 6.2.2, there exists c > 0 such that for every u ∈ C∞0 (Rn,Rn+1),
we have

‖u‖a ≥ c(‖u‖W 1,2 + ‖u‖W 1,p(·)).

Proposition 6.2.5. Since p > n, for every value a ≥ 0, the functions in Ea are
bounded, continuous, and decay to zero at infinity. Furthermore, the following
inequality holds:

|u(x)− u(y)| ≤ c sup
(
|x− y|1−

n
p− , |x− y|1−

n
p+

)
‖∇u‖Lp(·)(Rn) for all x, y ∈ R.

(6.2.2)

Proof. The proof is the same as in [Proposition 5.4.6 - Chapter 5].

Remark 6.2.3. By Proposition 6.2.1 we have

Ea ⊂ E0 ⊂ L∞(Rn,Rn+1). (6.2.3)

We deduce from Proposition 6.2.5 that if u ∈ Ea with n < p− <∞, then u is
bounded and

lim
|x|→∞

u(x) = 0.

Recall that η is a singular point of the potential V, so it is reasonable to
consider in space Ea, the open subset

Γa = {u ∈ Ea : u(x) 6= η, for all x ∈ Rn} .

The subset Γa is open in Ea. Indeed, since by Remark 6.2.3, we have

inf
x∈Rn
|u(x)− η| = d > 0.
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Then, by (6.2.3) (Ea is continuously embedded in L∞), we deduce that for all
u ∈ Γa, there exists a small neighborhood of u contained in Γa.

The boundary of Γa is given by

∂Γa = {u ∈ Ea : there exist x ∈ Rn such that u(x) = η}
= Ea \ Γa.

6.3 Topological charge and connected compo-

nents of Γa

For the sake of simplicity, we consider the function space

C =

{
u : Rn → Rn+1\{η} is continuous and lim

|x|→∞
u(x) = 0

}
where η = (1, 0). Every function u ∈ C we write in the form u(x) = (u0(x), ũ(x)) ∈
Rn+1 where u0 : Rn → R and ũ : Rn → Rn.

Definition 6.3.1. For every function u ∈ C we define the support of u

Ku = {x ∈ Rn : u0(x) > 1}.

Then we define the topological charge of u

ch(u) :=


deg(ũ, Ku, 0) if Ku 6= ∅,

0 if Ku = ∅,

such that the Brouwer degree [69],

deg(ũ, Ku, 0) =
∑

x∈ũ−1(0)

sgnJũ(x),

where Jũ denotes the determinant of the Jacobian matrix.

From lim|x|→∞ u(x) = 0, we have that Ku is an open, bounded set in Rn. Since
u ∈ Γ, if x ∈ ∂Ku, we have, together with u(x) 6= η, that ũ(x) 6= 0. Therefore the
previous definition is well posed. Moreover, the topological charge is continuous
with respect to the uniform convergence; see [12]. We notice that this definition
of charge is the same as in [10]. Now, for every q ∈ Z we set

Γqa = {u ∈ Γa : ch(u) = q}.

Since the topological charge is continuous with respect to the uniform convergence
and the continuity of the embeddings Ea in L∞ assure that the topological charge
is continuous on Γa, it follows that Γqa is open in Ea, since we have also
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• Γa =
⋃
q∈Z Γqa,

• Γqa ∩ Γpa = ∅, p 6= q.

We conclude that every Γqa is a connected component of Γa. We observe that for
every q ∈ Z the component Γqa is isomorphic to the component Γ−qa . containedin
the space C, which we have considered in the preceding Section. So for every
u ∈ Γa we can define the charge ch(u) ∈ Z. Now, we consider the set of a
minimizer of fa in the open set

Γ∗a = {u ∈ Γa : ch(u) 6= 0}.

Remark 6.3.1. We can easily see that ch(u) 6= 0 implies ‖u‖L∞ > 1.

For more information about this subject, see [69].

6.4 Properties of the energy functional

Lemma 6.4.1. The functional fa takes real values and it is continuous on Γa.

Proof. We have

fa(u) =

∫
Rn

(
a

2
|∇u|r(x) +

b

2
|∇u|p(x)

)
dx+

∫
Rn
V (u)dx,

=
a

2
ρr(x)(u) +

b

2
ρp(x)(u)︸ ︷︷ ︸+

∫
Rn
V (u)dx︸ ︷︷ ︸ .

The first term on the left-hand side of energy fa is finite and continuous. Let
us prove that the second term is finite and continuous.

We have V (ξ) = (V ′′(0)ξ · ξ+ o(ξ2). By (V3) there exist a small neighborhood
of 0 ∈ Rn+1 and M > 0 such that, for every ξ ∈ Rn+1, we have

V (ξ) ≤M |ξ|2. (6.4.1)

Since every u ∈ Ea decays to zero at infinity (see Proposition 6.2.5), there
exists a ball Bu such that,for every x ∈ Rn\Bu, |u(x)| < ε, by (6.4.1), and for ε
sufficiently small

V (u(x)) ≤M |u(x)|2. (6.4.2)

From u ∈ L2(Rn,Rn+1), we deduce∫
Rn\Bu

V (u)dx <∞.
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On the other hand, since u is continuous (see Proposition 6.2.5), we also have∫
Bu

V (u)dx <∞.

∫
Rn
V (uk) −→

∫
Rn
V (u).

Since fa(uk) < ∞ and with Lemma 6.4.3, u belongs to Λa. By (6.2.3) we have
uk → u on L∞(Rn,Rn+1). ∫

Bu

V (uk)dx→
∫
Bu

V (u)dx. (6.4.3)

By (6.4.2) ∫
Rn\Bu

V (u(x))dx ≤
∫
Rn\Bu

|u(x)|2dx,

and since uk → u ∈ L2(Rn,Rn+1), the dominated convergence theorem gives∫
Rn\Bu

V (uk)dx→
∫
Rn\Bu

V (u)dx. (6.4.4)

Lemma 6.4.2. The functional fa is coercive in Γa; that is, for every sequence
uk ⊂ Γa such that ‖uk‖a →∞, we have fa(uk)→∞.

Proof. In the case a > 0, n > r(x) ≥ 2, we have

‖u‖a = a‖∇u‖Lr(·) + ‖∇u‖Lp(·) + ‖u‖Lr(·) .

Let uk ∈ Γa such that
‖uk‖a →∞ as k →∞.

It is clear that, if

a‖∇uk‖Lr(·) + ‖∇uk‖Lp(·) →∞ as k →∞, (6.4.5)

we have
fa(uk)→∞ as k →∞.

Assume now that there exists c∗ > 0 such that

a‖∇uk‖Lr(·) + ‖∇uk‖Lp(·) < c∗ (6.4.6)

and
‖uk‖Lr(·) →∞ as k →∞. (6.4.7)

111



Derrick’s problem with twice variable exponent

We shall prove that ∫
Rn
V (uk)dx as k →∞.

From (V3), we have for every R > 0 there exists ωR > 0 such that

|ξ| ≤ R⇒ V (ξ) ≥ ωR|ξ|2, r− = 2. (6.4.8)

From (V6), and (6.4.8), we have there exists R > 0 such that

|ξ| ≤ R⇒ V (ξ) ≥ ωR|ξ|r(·), ωR > 0. (6.4.9)

For every k ∈ N, we set

Ak = {x ∈ Rn : |uk(x)| ≤ R},

where uk ∈ W 1,r(.)(Rn,Rn+1). By the inequality (see [41, Theorem 8.3.1 (page
265)])

‖uk‖Lr∗(.) ≤ c‖∇uk‖Lr(.) , r∗(x) =
r(x).n

n− r(x)
, n > r(x) ≥ 2. (6.4.10)

From (6.4.6), we obtain
‖uk‖Lr∗(.) < c∗. (6.4.11)

Moreover, from (5.2.4), there exists M ≥ 0 independent of uk, such that

|uk(x)| ≤
∣∣∣∣∫
Qk

ukdy

∣∣∣∣+M‖∇uk‖Lp(·)(Qk), mes(Qk) = 1,

≤ ‖uk‖Lr∗(.)(Qk) +M‖∇uk‖Lp(·)(Qk).

By (6.4.5) and (6.4.11), for any x ∈ Rn, we have

|uk(x)| < c∗ +Mc∗. (6.4.12)

Then, there exists c > 0 such that

mes(Rn\Ak) < c. (6.4.13)

From (6.4.12) and (6.4.13), we deduce that there exists c1 > 0 such that∫
Rn\Ak

|uk|r(.)dx < c1. (6.4.14)

By (6.4.11), we obtain∫
Rn
V (uk)dx ≥

∫
Ak

V (uk)dx

≥ ωR

∫
Ak

‖uk‖r(.)dx

≥ ωR

(
ρr(x)(u)−

∫
Rn\Ak

|uk|r(.)dx
)
.

112



6.4 Properties of the energy functional

From (6.4.14) and (6.4.7), we have

lim
k

∫
Rn
V (uk)dx ≥ ωR(ρr(x)(u)− c1)→∞ as k →∞.

In the case, a = 0 or n = 2 ≡ r(·), by (V5), there exists r∗ > 0 such that, for
every ξ ∈ Rn with |ξ| ≥ r∗, we have

V (ξ) ≥ ν

2
. (6.4.15)

Let uk ∈ Γa be a sequence such that

‖uk‖0 →∞ as k →∞.

Since the functional fa is invariant with respect to translation in Rn, we can
assume

‖uk‖L∞ = |uk(0)|. (6.4.16)

‖∇uk‖Lp(·) ≤M∗ and ‖uk‖L2 →∞ as k →∞.

Here we have two subcases:

(a)
‖uk‖L∞ →∞ as k →∞. (6.4.17)

(b)
‖uk‖L∞ is bounded. (6.4.18)

In the subcase (a), by (6.4.17), we can choose a sequence (Rk) ⊂ (0,∞) such that

R∗ ≤ ‖uk‖L∞ −K(R
p+−n
p+

k +R
p−−n
p−

k ) and Rk →∞, (6.4.19)

where K = cM∗ and c is the same constant as in (6.2.2). For every y ∈ Rn, we
have

|uk(0)| − |uk(y)| ≤ |uk(0)− uk(y)|.

Hence by (6.2.2), we obtain

|uk(0)| − |uk(y)| ≤ K(|y|
p+−n
p+ + |y|

p−−n
p− ).

From (6.4.16), we get

|uk(y)| ≥ ‖uk‖L∞ −K(|y|
p+−n
p+ + |y|

p−−n
p− ).

For |y| ≤ Rk and (6.4.19), we have

|uk(y)| ≥ ‖uk‖L∞ −K(R
p+−n
p+

k +R
p−−n
p−

k ) ≥ R∗. (6.4.20)
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From (6.4.15) and (6.4.20), we get∫
Rn
V (uk)dx ≥

∫
B(0,rk)

V (uk)dx ≥
ν

2
mes(B(0, Rk)).

This implies that ∫
Rn
V (uk)dx→∞ as Rk →∞.

In the subcase (b), we assume there exists M̄ > 0 such that

‖uk‖L∞ ≤ M̄.

From (6.4.8), we obtain∫
Rn
V (uk)dx ≥ ωM̄‖uk‖L2 →∞ as k →∞.

We are going to study the behaviour of energy fa when u approaches the
boundary of Γa. We remark that ∂Γa = Ea \ Γa.

Lemma 6.4.3. Let (uk) ⊂ Γa be a weakly converging sequence. If the weak limit
belongs to ∂Γa, then

fa(uk)→∞ as k →∞.

Proof. The proof is the same as in [Lemma 5.4.3 - Chapter 5].

Corollary 6.4.4. For every b > 0, there exists d∗ = d(b) such that, for every
u ∈ Γa we have

fa(u) ≤ b⇒ min
x
|u(x)− η| ≥ d∗.

Proof. The proof is the same as in [Corollary 4.4.5 - Chapter 4]

Lemma 6.4.5. The functional fa is weakly lower semicontinuous in Γa.

Proof. The proof is the same as in [Lemma 4.4.6 - Chapter 4]

Proposition 6.4.6. There exists ∆a > 0 such that, for every u ∈ Γa satisfying
‖u‖L∞ ≥ 1, we have

fa(u) ≥ ∆a.

It is easy to see that ch(u) 6= 0 implies ‖u‖L∞ ≥ 1.

Proof. The proof is the same as in [Proposition 5.4.6 - Chapter 5]
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6.5 Existence result

Theorem 6.5.1. The minimum points u ∈ Γa for the functional fa are weak
solutions of the system (6.1.5).

Proof. Let u be a minimum point of fa and h ∈ C∞0 (Rn,R). Let ej denote the
jth-vector of the canonical basis in Rn. If ε is sufficiently small, then u+εejh ∈ Γa
and fa(u+ εejh) <∞. Since u is a minimum point of fa, then for 1 ≤ j ≤ n+ 1,

0 =
df(u+ εejh)

dε

∣∣∣∣
ε=0

=

∫
Rn

(
a

2
(r(·)|∇u|r(·)−2∇uj∇h) +

b

2
(p(·)|∇u|p(·)−2∇uj∇h) +

∂V (ξ)

∂ξj
h

)
dx.

By Green’s formula,∫
Rn

b

2
(p(·)|∇u|p−2∇uj∇h)dx =

∫
Rn
− b

2
div(p(·)|∇ · u|p−2∇uj)hdx.

So∫
Rn

(
−a

2
div(r(·)|∇ · u|r−2∇uj)−

b

2
div(p(·)|∇ · u|p−2∇uj) +

∂V (ξ)

∂ξj

)
· hdx = 0,

for 1 ≤ j ≤ n+ 1, and for any h ∈ C∞0 (Rn,R). Then∫
Rn

[
−a

2
∆r(·)u−

b

2
∆p(·)u+ V ′(u)

]
φ dx = 0, for every φ ∈ C∞0 (Rn,Rn+1).

This implies by density

−a
2

∆r(·)u−
b

2
∆p(·)u+ V ′(u) = 0.

Proposition 6.5.2. (Splitting lemma) Let (uk) ∈ Γ∗a be a sequence and M be a
positive real number such that

fa(uk) ≤M.

Then there exists l ∈ N such that

1 ≤ l ≤ M

∆a

,

where ∆a was introduced in Proposition 6.4.6, and there exist ū1, . . . , ūl ∈ Γa,
(x1

k), . . . , (x
l
k) ⊂ Rn such that, up to a subsequence,

uk(·+ xik)→ ūi,
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|xik − x
j
k| → ∞, i 6= j,

l∑
i=1

fa(ūi) ≤ lim inf
k→∞

fa(uk),

and

ch(uk) =
l∑

i=1

ch(ūi).

Proof. From Lemmas 6.4.2, 6.4.3 and 6.4.5, and by the same method as used in
[Proposition 4.5.1 - Chapter 4], we can conclude the result of this proposition.

The minimum is attained on the set Γa, and it is easy to see that u ≡ 0 is
a trivial solution of the problem. But, of course, we are interested in nontrivial
solutions, We consider the following problem

I∗ = inf
u∈Γ∗a

fa(u), Γ∗a = {u ∈ Ea : ch(u) 6= 0}.

The functional is bounded below and the set Ea is not empty. We consider fields
u having the form

u(x) = (
2

1 + |x|m
,

1

1 + |x|m
x). (6.5.1)

Lemma 6.5.3. There exists a suitable m ≥ 1 such that, the field u defined in
(6.5.1) belongs to Γ∗a.

Proof. Clearly, if m is sufficiently large, then the field u defined in (6.5.1) belongs
to Ea. For the sake of contradiction, suppose that there exists x̄ ∈ Rn such that
u(x̄) = η = (1, 0). We deduce that

2

1 + |x̄|m
= 1,

1

1 + |x̄|m
x̄ = 0.

We get the contradiction : |x̄| = 1 and x̄ = 0. So, u ∈ Γa.

We show that ch(u) 6= 0. Set g(x) = 1
2
x, so we have

Ku = {x ∈ Rn :
2

1 + |x|m
> 1} = B(0, 1).

If |x| = 1, then

g(x) =
1

1 + |x|m
x,
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by the properties of the topological degree (see [69]), we get

deg(
1

1 + |x|m
x,B(0, 1), 0) = deg(g(x), B(0, 1), 0) 6= 0.

And moreover the set Γ∗a is open in the space Ea; indeed,

• Γ∗a =
⋃
q∈N∗ Γqa,

• Γqa ∩ Γpa = ∅, p 6= q,

where Γq is a connected component

Theorem 6.5.4. Let a ≥ 0, b > 0, p− > n > 2 and 2 = r− ≤ r+ ≤ n. If V
satisfies (V1) − (V6), if p satisfies (p1) − (p2), and if r satisfies (r1) − (r4),then
there exists a weak solution of (6.1.5) (i.e., a static solution of (6.1.3)), which is a
minimizer of the energy functional (6.1.7) in the class of maps whose topological
charge is different from 0.

Proof. By Splitting Proposition and the same technique used in [Theorem 4.5.3-
Chapter 4], we can conclude that there exists a weak solution (static) of equation
(6.1.5). And with suitable change of variable (6.1.6), we deduce a solution of
equation (6.1.3).

Remark 6.5.1. The functional exibits an invariance for the symmetry group of
rotations and translations; indeed, for every function u and g ∈ O(n), if we set
ug(x) = u(gx), we have immediately

fa(ug) = fa(u).

Then our theorem gives the existence of an orbit of minimum solutions. This
orbit consists of two connected components, which are identified, respectively, by
ū and

ū ◦ P(x) = ū(−x).

Since typically n = 3 is odd, ū ◦ P and ū have opposite topological charge.
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Chapter 7

Appendix

7.1 Appendix A: Compact embedding

In this Appendix we first prove a result which slightly extends a compactness
theorem in [23,79]. We set

W 1,2
R (Rn,R) = {u ∈ W 1,2(Rn,R) | u radial}.

Proposition 7.1.1. Consider n ≥ 2. The space W 1,2
R (Rn,R) is compactly em-

bedded in Ls(Rn,R) for every s ∈]2, 2∗[, where

2∗ =


+∞ if n = 2,

2n/(n− 2) if n > 2.

Proof. For n > 2, the proof is given in [23] (see Theorem A.I’). We give the proof
for n = 2.
First we recall that, for every m ∈ [2,+∞[,

W 1,2(R2,R) ⊂ Lm(R2,R) (7.1.1)

Fix s ∈]2,+∞[ and consider a bounded sequence {uk} ⊂ W 1,2
R (R2,R); by (7.1.1)

we have that {uk} is bounded Ls(R2,R) , so, up to a subsequence

uk ⇀ u in Ls(R2,R). (7.1.2)

Then we have to prove that the convergence is strong. Let m ∈]s,+∞[; clearly
{uk} is bounded in L2(R2,R)∩Lm(R2,R). Now we apply the compactness Lemma
A.I in [23] with

P (t) = ts, Q(t) = t2 + tm.

We conclude that

‖uk‖Ls −→ ‖u‖Ls . (7.1.3)
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From (7.1.2) and (7.1.3) we have

uk −→ u in Ls(R2,R).

Theorem 7.1.2. If W is a bounded subset of W 1,2(Rn,Rn+1), then

WR = {u ∈ W | u radial}
is relatively compact in Ls(Rn,Rn+1), for every s ∈]2, 2∗[.

Proof. Fix s ∈]2, 2∗[ and consider a sequence {uk} ∈ WR. We have to show that
there exists a subsequence that is strongly convergent in Ls(Rn,Rn+1). Since {uk}
is bounded in W 1,2(Rn,Rn+1), there exists u ∈ W 1,2(Rn,Rn+1) such that, up to
subtracting a subsequence

uk ⇀ u in W 1,2(Rn,Rn+1). (7.1.4)

By the continuous imbedding

W 1,2(Rn,Rn+1) ↪→ Ls(Rn,Rn+1)

we deduce that
uk ⇀ u in Ls(Rn,Rn+1). (7.1.5)

On the other hand, {|uk|} is bounded in W 1,2(Rn,R). Indeed∫
|∇|uk||2 dx ≤

∫
|∇uk|2 dx.

Then, by Proposition 7.1.1, we get

|uk| −→ χ in Ls(Rn,R), (7.1.6)

and, up to a subsequence,

|uk| −→ χ a.e. in Rn.

Moreover, from (7.1.4) we deduce

uk ⇀ u in Lsloc(Rn,Rn+1),

and therefore, by a Cantor diagonal process, we can select a subsequence such
that

uk −→ u a.e. in Rn.

So we conclude that
χ = |u|. (7.1.7)

From (7.1.6) and (7.1.7) we deduce

‖uk‖Ls −→ ‖u‖Ls ; (7.1.8)

then (7.1.5) and (7.1.8) allow us to conclude that

uk −→ u in Ls(Rn,Rn+1).
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Appendix

7.2 Appendix B: Continuity & invertibility of

∆p

Lemma 7.2.1. The map ∆p : E → E ′ defined by

〈−∆pu, v〉E′a×Ea =

∫
Rn
|∇u|p−2(∇u|∇v)dx, p > 2

is continuous.

Proof. Recall that E is the completion of C∞0 (Rn,Rn+1).
Let h ∈ C∞0 (Rn,Rn+1)

〈∆pu−∆pv, h〉 =

∫
Rn

(
|∇v|p−2(∇u|∇h)− |∇u|p−2(∇v|∇h)

)
dx

=

∫
Rn

(
|∇v|p−2∇u− |∇u|p−2∇v | ∇h

)
dx

≤
∫
Rn

∣∣|∇v|p−2∇u− |∇u|p−2∇v
∣∣ · |∇h| dx

(from Lemma 7.6.2) ≤ β

∫
Rn

∣∣|∇v|p−2 + |∇u|p−2
∣∣ · |∇u−∇v| · |∇h| dx

(from Hölder’s inequality ) ≤ β
(
‖∇v‖p−2

Lp + ‖∇u‖p−2
Lp

)
· ‖∇u−∇v‖Lp · ‖∇h‖Lp .

Lemma 4.6.6 follows from the following result.

Theorem 7.2.2. If H is a positive definite matrix of order N + 1, then the map

A E −→ E ′

defined by

〈Au, v〉 = 〈−∆u−∆pu+Hu, v〉

=

∫
Rn

(
(∇u|∇v) + |∇u|p−2(∇u|∇v) +Hu · v

)
dx

is invertible with continuous inverse.

For the proof we need some preliminary results. The first is concerned with
the monotonicity of −∆pu; for the utility of the reader we give a simple proof
(see also [77] and [20] for the scalar case).

Lemma 7.2.3. There exists a constant c > 0 such that, for every u, v ∈ E,

〈∆pu−∆pv, u− v〉 ≥ c‖∇u−∇v‖pLp , p > 2. (7.2.1)
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7.2 Appendix B: Continuity & invertibility of ∆p

Proof. We prove (7.2.1) for u, v ∈ C∞0 (Rn,Rn+1); then our statement follows by
density.
For every u, v ∈ C∞0 (Rn,Rn+1), we have

〈∆pu−∆pv, u− v〉

=

∫
Rn

[
|∇u|p + |∇v|p − (∇u|∇v)

(
|∇u|p−2 + |∇v|p−2

)]
dx

and

‖∇u−∇v‖pLp =

∫
Rn
|∇u−∇v|pdx

where we mean

|∇u| =

√√√√∑
j, i

(
∂uj

∂xi

)2

,

(∇u|∇v) =
∑
j, i

∂uj

∂xi

∂vj

∂xi
.

So it is enough to prove that there exists c > 0 such that, for every X, Y ∈
Rn(n+1)

|X|p + |Y |p − (X|Y )
(
|X|p−2 + |Y |p−2

)
≥ c|X − Y |p. (7.2.2)

Substituting

−(X|Y ) =
1

2

(
|X − Y |2 − |X|2 − |Y |2

)
into (7.2.2), we get

1

2
(|X|p + |Y |p) +

1

2
|X − Y |2

(
|X|p−2 + |Y |p−2

)
≥ c|X − Y |p +

1

2

(
|Y |2|X|p−2 + |X|2|Y |p−2

)
. (7.2.3)

We notice that (7.2.3) can be obtained by the inequalities

1

2
(|X|p + |Y |p) ≥ 1

2

(
|Y |2|X|p−2 + |X|2|Y |p−2

)
,

1

2
|X − Y |2

(
|X|p−2 + |Y |p−2

)
≥ c|X − Y |p.

The first holds true for every pair of vectors X, Y see Lemma 7.6.5; the second
is also true see Lemma 7.6.4 in Section 7.6.
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Now we come back to Theorem 7.2.2.

Proof. (Theorem 7.2.2.)
First we prove that A is invertible. For every h ∈ E ′, the solution of

Au = h

can be obtained as the critical points of the functional

J (u) =
1

p

∫
|∇u|pdx+

1

2

∫
|∇u|2dx+

1

2

∫
Hu · udx− 〈h, u〉.

Since the matrix H is positive definite, we have,

1

p

∫
|∇u|pdx+

1

2

∫
|∇u|2dx+

1

2

∫
Hu · udx ≥ 1

p
‖∇u‖pLp +m‖ u‖2

W 1,2 . (7.2.4)

On the other hand, for every λ > 0

〈h, u〉 ≤ ‖h‖E′‖u‖E ≤
1

2λ
‖h‖E′ +

λ

2
‖u‖E, (7.2.5)

where
‖u‖E = ‖∇u‖Lp + ‖ u‖W 1,2 .

Taking into account (7.2.4), (7.2.5), we conclude that the functional J is lower
bounded. Moreover it is strictly convex, so it has a unique critical point. Now,
let {hk} be a sequence of elements of E ′ and h ∈ E ′ such that {hk} → h in E ′.
Then, we can consider {uk} and u in E such that

A(uk) = hk, ∀k ∈ N,

A(u) = h.

We want to prove that uk → u in E. By (7.2.1), using again the fact that H
is positive definite, we get c1 > 0 such that

〈A(u)−A(v), u− v〉 ≥ c1

(
‖∇u−∇v‖pLp + ‖ u− v‖2

W 1,2

)
.

Then we have

c1

(
‖∇uk −∇u‖pLp + ‖ uk − u‖2

W 1,2

)
≤ 〈A(uk)−A(u), uk − u〉
= 〈hk − h, uk − u〉
≤ ‖ hk − h‖E′‖ uk − u‖E

that is,
1

c1

‖ hk − h‖E′ ≥
‖∇uk −∇u‖pLp + ‖ uk − u‖2

W 1,2

‖∇uk −∇u‖Lp + ‖ uk − u‖W 1,2

.
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By applying Lemma 7.6.3, to

ak = ‖∇uk −∇u‖Lp

and using
bk = ‖ uk − u‖W 1,2 ,

we deduce that
lim
k
‖∇uk −∇u‖Lp = 0,

lim
k
‖∇uk −∇u‖W 1,2 = 0,

so uk → u in E.

7.3 Appendix C: Linear operator

Proposition 7.3.1. ( [28],Proposition 3.5, page 58 )
Let (xn) be a sequence in E. Then

(i) [xk ⇀ x weakly in σ(E,E∗)]⇔ [〈f, xk〉 → 〈f, x〉∀ f ∈ E∗].

(ii) If xk → x strongly, then xk ⇀ x weakly in σ(E,E∗).

(iii) If xk ⇀ x weakly in σ(E,E∗), then(‖xk‖) is bounded and
‖x‖ ≤ lim inf ‖xk‖.

(iv) If xk ⇀ x weakly in σ(E,E∗) and fk → f strongly E∗

(i.e., ‖fk − f‖E∗ → 0), then 〈fk, xk〉 → 〈f, x〉.

Theorem 7.3.2. ( [28],Theorem 6.4 (Schauder),page 159)
If T ∈ K(E,F ), then T ∗ ∈ K(E∗, F ∗). And conversely.

K(E,F ) : The set of all compact operators from E into F ,

E∗ : The dual space of E,

T ∗ : The adjoint of T .

Definition 7.3.1. let E be a reflexive and separable Banach space , A application
from E to E ′

A is monotone if:

∀u, v ∈ E, 〈Au−Av, u− v〉 ≥ 0.

A is coercive if:

lim
‖u‖E→+∞

〈Au, v〉
‖u‖E

= +∞.
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7.4 Appendix D: Orthogonal group

Definition 7.4.1. g ∈ L(Rn) is said orthogonal when it preserves the scalar
product ∀x, y ∈ Rn,

〈g(x) | g(y)〉 = 〈x | y〉.

We denote by O(n) the set of orthogonal applications.

Properties:

1) g is orthogonal if and only if g preserves the norm.

2) If g is orthogonal, then it is bijective.

3) If g ∈ O(n) then its inverse bijection is also in O(n). Furthermore, if
f ∈ O(n) then g ◦ f ∈ O(n).

We conclude that O(n) is a group. Furthermore it is a compact group.

Proposition 7.4.1. The following are equivalent:

i g is orthogonal ;

ii there exists a b.o.n. in which the matrix of g is orthogonal;

iii in all b.o.n., the matrix of g is orthogonal.

Here b.o.n: base orthonormal.

Definition 7.4.2. The orthogonal matrices are matrices M ∈Mn(R)satisfying

tM ·M = In;

We denote by On(R) the set of orthogonal matrices.

Remark 7.4.1. For all g ∈ O(n) there exist M ∈ On(R) such that

g(x) = M · x,

|g(x)| = |M · x| = |x|;

with
detM = Jg = 1;

J being determining Jacobienne matrix.

Proposition 7.4.2. For all M ∈ On(R), A ∈Mn(R)

|A ·M | = |M · A| = |A|.
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7.5 Appendix E: Measure of Haar

7.5 Appendix E: Measure of Haar

Let G a locally compact group.

Theorem 7.5.1. (Weil1) - Definitions:

• Existence: There exists on G a measure of Radon (positive, nonworthless)
invariant by translations on the left. Such a measure is called invariant
measure of Haar on the left on G.

• Unicity: All measures of Haar on the left on G are proportional.

• Convention: If G is compact, there is a canonical choice of measure of Haar
on G, namely the Haar measure left invariant that is a probability measure
on G (i.e for which the measure of G is equal to 1). In general, we choose
an invariant measure of Haar on the left on G, which one calls (wrongly)
the measure of Haar to G and which one notes λG or more simply λ. Other
notations: dλ(x) = dx.

We notice that λ is translation invariant left, meaning: for any part Borel B
of G, and for any g ∈ G, we have:

λ(gB) = λ(B).

7.6 Appendix F: Elementary calculus

Lemma 7.6.1. ( [77],Lemma A.0.5, page 80 )
Let x; y ∈ Rn and 〈·, ·〉 be the standard scalar product in Rn. Then

〈x|x|p−2 − y|y|p−2, x− y〉 ≥


cp|x− y|p if p ≥ 2,

cp
|x−y|2

(|x|+|y|)2−p if 1 < p < 2.

Lemma 7.6.2. (see R. Glowinski and A. Marroco [62].)

(i) Ifp ∈ [2;∞) then it holds that∣∣z|z|p−2 − y|y|p−2
∣∣ ≤ β|z − y|(|z|+ |y|)p−2 for all z, y ∈ Rn

with β independent of y and z;

(ii) Ifp ∈ (1; 2], then it holds that∣∣z|z|p−2 − y|y|p−2
∣∣ ≤ β(|z|+ |y|)p−1 for all z, y ∈ Rn

with β independent of y and z.
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Lemma 7.6.3. Let ak and bk be two sequences of nonnegative numbers such that

lim
k

apk + b2
k

ak + bk
= 0. (7.6.1)

Then

lim
k
ak = lim

k
bk = 0.

Proof. Since ak ≥ 0 , bk ≥ 0, from (7.6.1), we immediately deduce

lim
k

apk
ak + bk

= 0, (7.6.2)

lim
k

b2
k

ak + bk
= 0. (7.6.3)

For contradiction, assume that, up to a subsequence,

ak ≥ δ > 0. (7.6.4)

From (7.6.2) and (7.6.4) we deduce

lim
k

(ak + bk) = +∞.

Then, up to a subsequence, either

lim
k
ak = +∞, (7.6.5)

or

lim
k
bk = +∞.

Suppose that (7.6.5) holds true. Then we write (7.6.2) in the following way,

lim
k

ap−1
k

1 + (bk/ak)
= 0,

from which we deduce

lim
k

bk
ak

= +∞.

So, for k sufficiently large,

ak ≤ bk. (7.6.6)

Then it is easy to deduce
1

2
bk ≤

b2
k

ak + bk
. (7.6.7)
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Then, from (7.6.7) and (7.6.3) we deduce

lim
k
bk = 0.

On the other hand, (7.6.5) and (7.6.6) imply

lim
k
bk = +∞.

So we get a contradiction. The proof for the other cases is analogous.

Lemma 7.6.4. Let a ≥ 0 , b ≥ 0 and 1 ≤ p <∞. we have

(a+ b)p ≤ 2p−1(ap + bp).

Proof. If a = 0 we have the trivial case
If a > 0 the inequality is equivalent to proving that

(1 +X)p ≤ 2p−1(1 + xp).

We set

f(x) =
(1 + x)p

(1 + xp)

which satisfies
f(0) = 1 = lim

x→+∞
f(x)

and
f(x) > 0 for all 0 < x < +∞.

So, for x ≥ 0 f attains their a maximum only at the point x = 1, f ′(1) = 0.
With

f(1) = 2p−1,

which immediately gives the result.

Lemma 7.6.5. Let a ≥ 0 , b ≥ 0 and p ≥ 2. we have

a2bp−2 + b2ap−2 ≤ ap + bp.

Proof. By homogeneity we can assume that a = 1 and b < 1 The inequality is
equivalent to proving that

bp − bp−2 − b2 + 1 ≥ 0,

we have
bp − bp−2 − b2 + 1 = (b2 − 1)(bp−2 − 1) ≥ 0.
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Remark 7.6.1. From Lemma 7.6.4, it is easy to see that under the assumption
1 ≤ p− ≤ p+ <∞, we have

(a+ b)p(x) ≤ 2p
+−1(ap(x) + bp(x)).

From Lemma 7.6.5, and under the assumption 2 ≤ p− ≤ p+, we have

a2bp(x)−2 + b2ap(x)−2 ≤ ap(x) + bp(x).
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Conclusion and Perspectives

In this monograph we study a class of Lorentz invariant nonlinear field equa-
tions in several space dimensions with classical Sobolev space and general space
Sobolev (variable exponent variable) as a functional setting. The main purpose
is to obtain soliton-like solutions. The fields are characterized by a topological
invariant, we call the charge. We prove the existence of a static solution which
minimizes the energy among the configurations with nontrivial charge. And with
the suitable change of variable we deduce the solution to the dynamic equation
(soliton solution). Moreover, under some symmetry assumptions, we prove the
existence of infinitely many solutions, which are constrained minima of the en-
ergy. More precisely, for every N ∈ N there exists a solution of charge N . We
notice that the nature of the convergence of energy is the same one as that of
the topological charge; when the charge explodes the energy explodes too. What
gives us important information characterizing the solution.

We plan to look for generalization of the problem in general space Sobolev
with variable exponent variable as a functional setting.

As anther perspective, we propose some possible ways:

• Generalization of the problem with an inclusion approach.

• Numerical treatment of soliton solution with finite element methods.

• The version of Chapter 4 and Chapter 5 Riemannian manifold.

• The stochastic version of the results of this thesis.
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