

UNIVERSITE DJILLALI LIABES DE SIDI-BEL-ABBES Faculté de Génie Electrique Département d'Electrotechnique

Thèse présentée par :

République Algérienne Démocratique et Populaire

DJILANI KOBIBI Youcef Islam

Pour l'obtention du diplôme de :

Doctorat 3^{ème} Cycle : Electrotechnique

Option : Réseaux Électriques

Intitulé de la thèse :

Incorporation de l'UPFC dans le calcul de la répartition des puissances dans un réseau électrique

Présentée devant le jury composé de :

Dr. HADJERI Samir Dr. SAYAH Houari Dr. ZIDI Sid Ahmed Dr. LAKDJA Fatiha

Dr. GHERBI Fatima Zohra Professeur (U.D.L. Sidi Bel-Abbès) Professeur (U.D.L. Sidi Bel-Abbès) Professeur (U.D.L. Sidi Bel-Abbès) Professeur (U.D.L. Sidi Bel-Abbès) MC A (Université de Saida)

Président Directeur de thèse Examinateur Examinateur Examinateur

Soutenue le :

21/06/2016

Laboratoire de Recherche ICEPS (Intelligent Control & Electrical Power Systems)

A mes chers parents

A mon frére et mes sœurs

A toute ma famille

Ainsi qu'à tous mes amis

Y.I.Djilani Kobibi

« Les grandes âmes ont de la volonté, les faibles n'ont que des souhaits. »

Proverbe Chinois

AVANT-PROPOS

D'abord, je tiens à exprimer mes profonds remerciements et ma respectueuse gratitude à mon directeur de thèse, le Professeur HADJERI Samir, le doyen de la faculté de génie électrique, pour sa grande disponibilité et pour la confiance qu'il m'a accordée, ainsi qui ces directives et conseils qu'il m'a donnés jusqu'à l'aboutissement de ce travail.

Je remercie Madame le Professeur GHERBI Fatima Zohra Pour avoir acceptée de présider le jury.

Mes plus vifs remerciement s'adresse aux membres de jury je cite : le Professeur SAYAH Houari, le Professeur ZIDI Sid Ahmed et Madame LAKDJA Fatiha.

Je tiens à remercier Monsieur Djehaf Mohammed, mon collègue pour son soutien dans la préparation de la soutenance.

Mes gratitudes vont aussi à tous mes enseignants et enseignantes pendant tout mon cursus d'études pour leurs disponibilités et pour le savoir qu'ils m'ont fidèlement transmis.

Mes remerciements vont également à l'ensemble du personnel technique du laboratoire ICEPS pour la sympathie qu'ils m'ont témoignés. Enfin, mes sincères remerciements s'adressent à tous ceux qui m'ont apporté leur aide et leur appui pour mener à bien ce travail.

RESUME

L'UPFC comme élément FACTS présente l'avantage d'être l'unique dispositif capable de contrôler simultanément la répartition des puissances actives et réactives dans les lignes de transport d'énergie en plus de sa capacité de réguler la tension dans les différents nœuds interconnectés. L'UPFC joue un rôle primordial dans l'amélioration de la qualité de l'énergie et la stabilité des réseaux électriques puisqu'il permet aux lignes de transport de véhiculer l'énergie jusqu'à leurs limites thermiques. Ainsi l'opérateur des réseaux électriques disposera d'une grande flexibilité quant à la satisfaction des demandes en énergie. L'objectif de cette thèse est de développer un modèle d'UPFC qui peut être facilement incorporé dans un programme de résolution de répartition des puissances.

MOTS CLES

UPFC ; Répartition des puissances ; FACT.

ABSTRACT

The UPFC as a FACTS device has the advantage of being the only device capable of simultaneously controlling the distribution of active and reactive power in the power transmission lines in addition to its ability to regulate the voltage in the various interconnected nodes. The UPFC plays a major role in improving power quality and stability of power systems as it allows transmission lines to convey energy to their thermal limits. Thus, the operator of power system will have great flexibility in meeting energy demands. The objective of this thesis is to develop a model of UPFC that can be easily incorporated into a load flow resolution program.

KEYWORDS

UPFC; Load Flow; FACTS.

ملخص

المتحكم في الطاقة الموحد (UPFC) كعنصر من الأجهزة المرنة لنقل الطاقة الكهربائية المتناوبة (FACTS) لديه ميزة كونه الجهاز الوحيد القادر على التحكم في وقت واحد لتوزيع الإستطاعة الفاعلة والردية في خطوط نقل الطاقة الكهربائية، بالإضافة إلى قدرته على تنظيم التوتر في مختلف العقد المترابطة . UPFC يلعب دورا حيويا في تحسين نوعية الطاقة واستقرار أنظمة الطاقة لأنها تتيح خطوط النقل لنقل الطاقة إلى حدودها الحرارية. فبهذا سيكون لمهندس شبكات الكهرباء قدرا كبيرا من المرونة في تلبية الطلب على الطاقة. والهدف من هذه الرسالة هو تطوير نموذج لUPFC الذي يمكن إدراجه بسهولة في برنامج تقسيم الإستطاعات في الشبكات الكهربائية.

الكلمات المفتاحية

المتحكم في الطاقة الموحد (UPFC)، توزيع الطاقة، الأجهزة المرنة لنقل الطاقة الكهربائية المتناوبة (FACTS)

SOMMAIRE

Résumé II Sommaire III Liste des figures V Liste des tableaux VII Nomenclature VIII INTRODUCTION GENERALE 1 CHAPITRE 1 : Généralité sur les réseaux électriques 5 1.1 Structure de réseau électrique 7 1.2 Consommation 8 1.2.1 L'augmentation de la demande 10 1.2.2 Profils de la demande 10 1.2.3 Qualité de service 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
Sommaire III Liste des figures V Liste des tableaux VII Nomenclature VIII INTRODUCTION GENERALE 1 CHAPITRE 1 :Généralité sur les réseaux électriques 5 1.1 Structure de réseau électrique. 7 1.2 Consommation 8 1.2.1 L'augmentation de la demande 8 1.2.2 Profils de la demande 10 1.2.3 Qualité de service 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
Liste des figures V Liste des tableaux VII Nomenclature VIII INTRODUCTION GENERALE 1 CHAPITRE 1 : Généralité sur les réseaux électriques 5 1.1 Structure de réseau électrique. 7 1.2 Consommation 8 1.2.1 L'augmentation de la demande 8 1.2.2 Profils de la demande 10 1.2.3 Qualité de service. 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
Liste des tableaux VII Nomenclature
Nomenciature vin INTRODUCTION GENERALE 1 CHAPITRE 1 : Généralité sur les réseaux électriques 5 1.1 Structure de réseau électrique 7 1.2 Consommation 8 1.2.1 L'augmentation de la demande 8 1.2.2 Profils de la demande 10 1.2.3 Qualité de service 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
CHAPITRE 1 :Généralité sur les réseaux électriques
1.1 Structure de réseau électrique
1.2 Consommation 8 1.2.1 L'augmentation de la demande 8 1.2.2 Profils de la demande 10 1.2.3 Qualité de service 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
1.2.1 L'augmentation de la demande 8 1.2.2 Profils de la demande 10 1.2.3 Qualité de service 12 1.3 Production de l'énergie électrique 12 1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
1.2.2 Profils de la demande
1.2.3 Qualité de service
1.3 Production de l'énergie électrique
1.3.1 Différentes technologies de production 12 1.3.2 Raison d'une production d'énergie électrique mixte : 17
1.3.2 Raison d'une production d'énergie électrique mixte :
11312 Traison à une production à energie electrique minite running
1.4 Le transport de l'énergie électrique 17
1 4 1 Lignes de transport d'énergie électrique 18
1 4 2 Sous-stations (nostes de transformations) 19
1.5 Distribution 21
1.6 Commande et protection 21
1.7 Conclusion 23
CHAPITRE 2 · Les FACTS 24
2.1 Concept de commande de transit de puissance
2.2 Généralité
2.3 Configurations des FACTS 28
2.3.1 Dispositifs shunt 28
2.3.2 Dispositifs séries 30
2.3.3 Dispositifs hybrides série – Shunt
2.3.4 Dispositifs dos– à –dos (Back-to-Back) 34
2.4 Conclusion
CHAPITRE 3 : L'UPFC
3.1 Principe de fonctionnement
3.2 Aptitudes de commande conventionnelle de transport d'énergie
3.3 Commande indépendante d'écoulement de puissance active et réactive
3.4 Commande de l'UPFC
3.4.1 Commande fonctionnelle du convertisseur shunt
3.4.2 Commande fonctionnelle du convertisseur série
3.4.3 Compensation shunt et série autonome
3.4.4 Système de commande de base pour le contrôle de <i>P</i> et de Q47
3.5 Protection de l'UPFC
3.6 Conclusion
CHAPITRE 4 : Simulation de l'UPFC51

4.1	Réseau à 4 nœuds	51
4.2	Réseau à 5 nœuds	54
4.3	Réseau multimachines à 11 nœuds	57
4.4	Conclusion	60
CHAPITR	E 5 : Modélisation de l'UPFC pour le calcul d'écoulement de puissance	61
5.1	Modélisation de réseau	62
5.2	Formulation du problème	63
5.3	Méthodes itératives simples	66
	5.3.1 Méthode de Gauss Seidel	66
	5.3.2 Méthode de la matrice d'impédance	67
5.4	Méthode de Newton-Raphson	68
	5.4.1 Formulation polaire	68
	5.4.2 Formulation rectangulaire	70
5.5	Méthode découplée rapide (fast decoupled load flow)	71
5.6	Autres méthodes efficaces pour la solution d'écoulement de puissance	74
	5.6.1 Méthode robuste de Newton	74
	5.6.2 Méthode d'Iwamoto	75
	5.6.3 Runge Kutta du 4 ^{ème} ordre	76
5.7	Modélisation de l'UPFC	77
	5.7.1 Modèle découplé	77
	5.7.2 Modèle complèt	78
	5.7.3 Modèle d'injection de puissance	79
	5.7.4 Modèle en π d'Injection de puissance	80
	5.7.5 Le Modèle indirect	81
	5.7.6 Modélisation de l'UPFC en utilisant la technique de partitionnement de mat	rice82
5.8	Le modèle complet de l'UPFC	83
	5.8.1 La matrice jacobienne	85
	5.8.2 Les conditions initiales et les limites de l'UPFC :	86
	5.8.3 Incorporation de l'UPFC dans un programme d'écoulement de puissance	87
5.9	Résultats et discussion	88
	5.9.1 Réseau IEEE 14 nœuds	88
	5.9.2 Réseau IEEE 30 nœuds	90
	5.9.3 Réseau IEEE 57 nœuds	91
	5.9.4 Réseau IEEE 118 nœuds	93
	5.9.5 Réseau IEEE 300 nœuds	95
5.10	Comparaison des méthodes d'analyse d'écoulement de puissance	98
5.11	CPF (Continuation Power Flow) pour l'analyse de la stabilité de tension	
	5.11.1 Généralité	100
	5.11.2 Modele de reseau	103
	5.11.3CPF	104
	5.11.4 viouensation de l'OFFC pour l'analyse de flux de puissance continu	109
Carro	5.11.5 Kesultais numeriques	109
Conclusion	1051011	112
Biblingran	001101 alt	
Annexe A :	Stabilité de tension	124
Annexe B :	Elements de la matrice jacobienne de l'UPFC	127
Annexe C :	Code Matlab d'écoulement de puissance	130
Annexe D :	Données des réseaux test IEEE	139
Annexe E :	Résultat d'écoulement de puissance	153

LISTE DES FIGURES

Figure 1.1 structure du réseau électrique	8
Figure 1.2 la production de l'électricité [8]	9
Figure 1.3 charge horaire de puissance pour un réseau sud-américain [1]	.11
Figure 1.4 Charge mensuelle de puissance pour un réseau sud-américain [1]	.11
Figure 1.5 Centrales hydro-électrique, thermique, et nucléaire	.13
Figure 1.6 centrales thermique à gaz et centrales thermique à cycle combiné	.14
Figure 1.7 Centrales électriques solaire et éolienne.	.15
Figure 1.8 Centrales de biomasse et de cogénération.	.16
Figure 1.9 Ligne en deux faisceaux	.18
Figure 1.10 Transformateurs de puissance d'une sous-station.	.20
Figure 2.1 Ligne de transport avec les diagrammes de phase relatifs	.25
Figure 2.2 Deux méthodes pour commander la tension: (a) avec une tension de compensation connectée en série et (b)
avec une tension shunt.	.26
Figure 2.3 Présentation de l'ensemble des FACTS	.27
Figure 2.4 Blocs constitutifs de SVC et caractéristique statique	.29
Figure 2.5 Structure de STATCOM et caractéristique tension/courant	.30
Figure 2.6 Structure et diagramme de fonctionnement du TCSC	.31
Figure 2.7 Structure de SSSC	.31
Figure 2.8 Configuration de DPFC	.32
Figure 2.9 Configuration d'un UPFC	.33
Figure 2.10 Configuration de l'IPFC	.33
Figure 2.11 Configuration d'un GUPFC	.34
Figure 2.12 configuration schématique de VSC HVDC Back-to-Back	.35
Figure 3.1 Représentation conceptuelle de l'UPFC dans un réseau à deux-machines.	.36
Figure 3.2 Implémentation de l'UPFC par deux convertisseurs source de tension dos à dos.	.37
Figure 3.3 Diagrammes de phase illustrant les possibilités de commande conventionnelles de transport d'énergie de	
l'UPFC.	.38
Figure 3.4 La gamme de la puissance active transmissible <i>P</i> et la puissance réactive de la demande Q en fonction de	
l'angle de transport δ d'une ligne commandée par UPFC.	.40
Figure 3.5 Diagramme de phase de l'UPFC (a) et de la variation de la puissance active et réactive, et la puissance activ	ve
et réactive assurée par l'UPFC, avec la rotation angulaire du vecteur de tension injectée (b).	.40
Figure 3.6 la puissance active transmissible P_0 et la puissance réactive de la demande Q_{0r} en fonction de l'angle de	
transport δ d'un système à deux-machine (a) et le lieu correspondant de Q_{0r} en fonction de P_0 (b)	.41
Figure 3.7 la région de commande possible de la puissance active P et la puissance réactive demandée Q_r pour une lig	gne
de commandée par l'UPFC à $\delta = 0^{\circ}$ (a), $\delta = 30^{\circ}$ (b), $\delta = 60^{\circ}$ (c), et $\delta = 90^{\circ}$ (d)	.42
Figure 3.8 Schéma de base de commande de l'UPFC.	.44
Figure 3.9 Structure globale de commande de l'UPFC.	.45
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série	.45 .47
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu	.45 .47 .48
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu	.45 .47 .48 .49
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC	.45 .47 .48 .49 .51
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes	.45 .47 .48 .49 .51 .52
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC. Figure 4.2 Puissance active et réactive de l'UPFC et des lignes. Figure 4.3 région de commande de l'UPFC.	.45 .47 .48 .49 .51 .52 .53
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut	.45 .47 .48 .49 .51 .52 .53
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC	.45 .47 .48 .49 .51 .52 .53 .53 .53
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC. Figure 4.2 Puissance active et réactive de l'UPFC et des lignes. Figure 4.3 région de commande de l'UPFC. Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC. Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance	.45 .47 .48 .49 .51 .52 .53 .53 .54 .55
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC. Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance Figure 4.7 puissance active et réactive des nœuds.	.45 .47 .48 .49 .51 .52 .53 .53 .53 .54 .55 .56
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance Figure 4.8 la région de commande de l'UPFC	.45 .47 .48 .49 .51 .52 .53 .53 .54 .55 .56
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance Figure 4.8 la région de commande de l'UPFC Figure 4.8 la région de commande de l'UPFC Figure 4.9 puissance active et réactive du nœud B3 sans et avec l'UPFC après un défaut	.45 .47 .48 .49 .51 .52 .53 .54 .55 .56 .56 .57
Figure 3.9 Structure globale de commande de l'UPFC Figure 3.10 Schéma fonctionnel de la commande de convertisseur série Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC Figure 4.2 Puissance active et réactive de l'UPFC et des lignes Figure 4.3 région de commande de l'UPFC Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance Figure 4.8 la région de commande de l'UPFC Figure 4.8 la région de commande de l'UPFC Figure 4.9 puissance active et réactive des nœuds. Figure 4.10 Réseau multimachines à 11 noeuds	.45 .47 .48 .49 .51 .52 .53 .53 .54 .55 .56 .57 .57

Figure 4.12 facteurs de participation des nœuds à la valeur propre critique du réseau avec l'UPFC	59
Figure 4.13 vitesse des générateurs et puissance active et tensions nodales après un défaut	59
Figure 5.1 Éléments reliés à un nœud i.	62
Figure 5.2 Interprétation géométrique de la méthode de Newton pour la fonction $f(x)$ (a) pour les cas bien condition	ınés,
(b) cas sans solution, (c) et (d) les cas mal conditionnés.	74
Figure 5.3 Interprétation géométrique de la méthode robuste de Newton d'une fonction f(x) (a) la méthode standard	l et
(b) méthode robuste.	75
Figure 5.4 UPFC connecté entre les noeuds n et j	77
Figure 5.5 modèle découplé	78
Figure 5.6 modèle complet	78
Figure 5.7 modèle d'injection	79
Figure 5.8 modèle simple de l'UPFC	80
Figure 5.9 modèle en π d'injection de puissance	81
Figure 5.10 le modèle indirect.	82
Figure 5.11 circuit équivalent de l'UPFC	83
Figure 5.12 organigramme de l'algorithme utilisé [135]	88
Figure 5.13 Le réseau test IEEE-14 nœuds	89
Figure 5.14 Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes	89
Figure 5.15 Le réseau test IEEE-30 nœuds	90
Figure 5.16 Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes	90
Figure 5.17 Profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°?	
Figure 5.18 écoulement de la puissance active sans UPFC et avec l'UPFC installé dans la ligne n°2.	
Figure 5.19 Le réseau test IEEE-30 nœuds	
Figure 5.20 Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes.	
Figure 5.21 profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°15	93
Figure 5.22 écoulement de la puissance active sans UPEC et avec l'UPEC installé dans la ligne n°15	93
Figure 5.22 decardement de la parisonne deure sans erre et arec r'erre mistaire dans la righe il re-	94
Figure 5.25 reseau IDDD 110 floctus installe avec l'LIPEC installé dans différentes lignes	94
Figure 5.25 profil de la tension sans LIPEC et avec l'LIPEC installé dans la ligne n°97	95
Figure 5.26 écoulement de la puissance active sans UPEC et avec l'UPEC installé dans la ligne n°97	95
Figure 5.27 réseau IEEE 300 Nœuds	96
Figure 5.29 Peseus IDEE 500 Flocaus innovation and IPEC et avec l'UPEC installé dans différentes lignes	97
Figure 5.29 profil de la tension sans LIPEC et avec l'LIPEC installé dans la ligne n°232	97
Figure 5.30 écoulement de la puissance active sans UPEC et avec l'UPEC installé dans la ligne n°232	98
Figure 5.31 convergence en fonction de nombre d'itérations (a) de la méthode de Newton-Ranhson. Runge Kutta et	
Iwamoto et (b) EDI E	98
Figure 5 32 convergence en fonction de nombre d'itérations (a) de la méthode de Newton-Ranhson Runge Kutta et	
Iwamoto et (b) EDI E	90
Figure 5.33 courbe DV	00
Figure 5.37 réseau test à deux nœuds	100
Figure 5.35 courbe PV du réseau test à 2 nœuds	101
Figure 5.36 Courbe PV nour le réseau test à deux nœuds en considérant la limite de la nuissance réactive	102
Figure 5.37 tangent de prédicteur	104
Figure 5.37 rangent de predicteur sécant : (a) fonction lisse et (b) coin pointu	107
Figure 5.30 intersection perpendiculaire du correcteur	100
Figure 5.40 Deremétrisetion locale de correction	100
Figure 5.40 Farametrisation locale de contection.	1109
Figure 5.42 Courbes DV avea LIDEC	110
Figure 5.42 Courbes DV de tous les nourde nour les réseaux test IEEE 20.57, 119, 2001-	1 1 U
Figure 5.45Courses r v de tous les nœuds pour les reseaux test IEEE 50, 37, 118, 500 nœuds	1 1 1

LISTE DES TABLEAUX

Tableau 1.1 Consommation d'électricité (TWh), 1990-2012 [8]	9
Tableau 2.1 Nombre de FACTS installés dans le monde et leur puissance installée	
Tableau 4.1 Valeur propres sans et avec l'UPFC	58
Tableau 5.1 Expressions correspondant aux éléments de la matrice jacobienne sous forme polaire	70
Tableau 5.2 Expressions correspondant aux éléments de la matrice jacobienne sous forme rectangulaire	71
Tableau 5.3 Valeur de µmax pour les différents réseaux test	111

NOMENCLATURE

$ ilde{\mu}$	La distance entre le cas de base et l'état de								
	fonctionnement en surcharge								
*	Conjugue								
\tilde{e}_{se}	vecteur de tension du convertisseur serie								
\tilde{e}_{sh}	Vecteur de tension du convertisseur shunt								
$i_{sh} \sim$	Vecteur de courant du convertisseur shunt								
V_I	Vecteur de tension d'entrée								
\widetilde{V}_2	Vecteur de tension de sortie								
\tilde{v}_{pq}	Vecteur de tension série injectée								
$A^0_{\ j}$	Impédance calculé d'entrée du modèle en π								
A^0_n	Impédance calculé de sortie du modèle en π								
A_{ij}	Elément de la matrice jacobienne modifiée								
A_{nj}	Impédance calculé du modèle en π								
B_{ij}	Susceptance de la ligne qui relie les noeuds i et <i>j</i>								
BSN	Bifurcation selle-nœud								
c ₀ , c ₁ , c ₂ Constants de la méthode d'Iwamoto									
C1	Constant d'initailisation								
CA ou AC Courant alternatif									
CC ou I	DC Courant continu								
CPF	Continuation Power Flow								
CSC	Convertible static compensator								
det	déterminant								
Diag	les éléments de la diagonale d'une matrice								
DPFC	Dynamic power flow controller								
DSM	Demand side management								
f(x)	Fonction non linéaire								
F(x)	La prémitive de f(x)								
FACTS	Flexible AC Transmission Systems								
FDLF	Fast decoupled Load flow								
G_{ij}	Conductance du ligne entre les nœuds i et j								
GUPFC	Generlized Unified Power Flow Controller								
H_{ij} , N_{ij} , M_{ij} , L_{ij} Elements de la matrice jacobienne pour la méthode fast découpled en cordonnées polaires									
HVDC back	B2B High voltage direct current back-to-								
HVDC VSC B2B High voltage direct current voltage sourced converter back-to-back									
IGBT	Insulated Gate Bypolar Transistor								
i_{l}	Courant de la ligne								
i _{l,1}	Courant de la Ligne n°1								

I_{Ng}	La matrice identité de l'ordre <i>nG</i>							
i_p	Courant direct injecté							
IPFC	Interline Power Flow Controller							
i_q	Courant en quadrature							
is	Courant du convertisseur du dispositif FACTS							
$i_{_{shp}}$	Courant direct du convertisseur shunt							
i_{shq}	Courant en quadrature du convertisseur shunt							
J	La matrice jacobienne							
J_{ij}	élément de ligne i et de colonne j de la matrice jacobienne							
J_R	La matrice jacobienne réduite du système.							
K_G	Variable scalaire							
L	Inductance							
LIB	Limites induites de bifurcation							
n_G	Nombre des générateurs							
n_L	Nombre des lignes							
NR	Newton-Raphson							
0	Fonction continue							
Р	Matrice de permutation							
р.и.	per unit							
P_0	Puissance active initiale							
P_{bb}	Puissance résiduelle de l'UPFC							
P_{en}	Puissance d'entrée							
PE _{sh} , P	<i>E_{se}</i> Puissance échanger du convertisseur shunt et série respectivement							
P_{pq}	Puissance active de l'UPFC							
pso, poo	et q_{D0} sont appelés la direction de puissance des générateurs et des charges							
P_{sn}	Puissance active de sortie							
PST	Phase shifting transformer							
PWM a	<i>MLI</i> Pulse width modulation ou Modulation de largeur d'impulsion							
Q_0	Puissance réactive initiale							
Q_{en}	Puissance réactive d'entrée							
Q_{pq}	Puissance réactive de l'UPFC							
Q_{sn}	Puissance réactive de sortie							
R	Résistance							
r et β	Les paramètres de commande de l'UPFC.							
S	Longueur d'arc							
S_{Gi}	Puissance apparente du générateur i							

S_{ij} , T_{ij} , l	U _{ij} , W _{ij} , C _{ij} , D _{ij} éléments de la matrice								
	jacobienne par la méthode FDLF er								
S.	Puissance apparente des charges								
SLi	Valour do référence								
SSSC	Valeur de reference Static Synchropous Series Compensator								
STATC	COM Static compensator								
SVC	Static Var Compensator								
T Trans	nosé								
TCR	Thyristor controlled reactor								
TCSC	Thyristor controlled series compensator								
TSC	Thyristor controlled series compensator								
TSR	Thyristor switched reactor								
- ~ Uhh	Les éléments diagonaux de la matrice U								
UPFC	Unified Power Flow Controller								
\mathbf{V}_1	Tension d'entrée								
V_{2p}	Tension directe de sortie								
V_{2q}	Tension en quadrature de sortie								
V_{dc}	Tension de lien continu								
V_e	Tension d'entrée								
Vi, Vj	Tension des noeuds i et j respectivement								
V_l	Tension de la ligne								
$V_{l,l}$	Tension du ligne n°1								
V_{pq}	Tension injectée par l'UPFC								
V_q	Tension en quadrature injectée par l'UPFC								
V_r	Tension de sortie								
V_s	Tension d'entrée								
VSC	Voltage sourced Converter								
V_{seff}	Tension efficace de sortie								
V_{xi}	Tension aux bornes du ligne i								
V_{σ}	Tension de régulation d'angle de phase								
X	Réactance								
<i>x</i> ⁰	Valeur initiale du variable x								
x_i^k	Valeur de x d'ordre i à l'itération k								

trice	Y_{ii}, Y_{ij}	Eléments de la matrice d'admittace						
en	y _{ij}	Admittance mutuelle						
	Z	Impédance						
	α	Multiplicateur optimale d'Iwamoto						
	a acc	Facteur d'accélération						
	$\alpha_{1}, \alpha_{2}, o$	3 Coefficient du multiplicateur optimal						
	γ	Coefficient d'admittance du modèle indirecte						
	$\Gamma = dia$	$\Gamma = diag (\gamma 1, \gamma 2,, \gamma nG)$ Les facteurs de participation de perte des générateurs						
	δ	Angle de transport						
	δ_{e}	Angle de phase de la tension d'entrée						
	ΔP	Variation de la puissance active						
	∆Q	Variation de la puissance réactive						
	δ_s	Angle de phase de la tension de sortie						
	Δt	Longueur d'étape						
	ΔV	Variation de la tension						
	$\varDelta \theta$	Variation d'angle de phase						
	3	Critère d'arrét						
	θ	Angle de phase						
	$ heta_{ij}$	Angle de phase de tension de ligne entre i et j						
	λ	Matrice diagonale des valeurs propres de J_R						
	λ_i	Les valeurs propres						
	μ	Coefficient d'admittance du modèle indirect de l'UPFC						
	μ	Paramètre de charge						
,	ξ	Matrice gauche des vecteurs propres de J_R						
	ρ	Angle de phase de la tension de l'UPFC						
	$ ho_{pq}$	Angle de phase de la tension injectée par l'UPFC						
	$\boldsymbol{\tau}^{(i)}$	Tangente utilisé dans CPF						
	φ	Différence d'angle de phase						
	ψ	Application d'homotopie						

 Φ Matrice droite des vecteurs propres de J_R

INTRODUCTION GENERALE

L'industrie de l'énergie électrique est en cours des changements techniques, économiques et organisationnelles profondes depuis sa création. Ces changements de paradigme sont le résultat du processus de mondialisation, stipulé par la politique et suivi par l'industrie. Pendant de nombreuses années, l'industrie de l'énergie électrique a été caractérisée par une structure verticalement intégrée, comprenant la production d'électricité, le transport / distribution et la commercialisation. Le processus de mondialisation a conduit à la séparation de cette structure organisationnelle. Maintenant, la production et la commercialisation sont organisées en entités économiques distinctes, soumises à la concurrence, tandis que l'activité de transport / distribution reste un monopole naturel. Étant donné que les échanges d'énergie électrique se passent sur deux niveaux : le niveau physique et le niveau contractuel, il faut savoir que ces deux niveaux sont complètement différents. Le marché de l'électricité comme étant une industrie est basé sur ces deux niveaux. Les propriétés fondamentales de l'énergie électrique sont les suivantes :

- L'électricité a toujours besoin d'un réseau pour le transport et la distribution.
- L'électricité ne peut être stockée en grande quantité, d'où la production et la consommation doivent correspondre à chaque instant.
- Le transport physique de l'électricité n'a rien à voir avec les contrats de marché d'électricité.

Le rôle du réseau électrique est d'une importance primordiale, son fonctionnement est régi par des lois physiques. Le réseau électrique a une structure fixe constituée de différents niveaux de tension ; les hauts niveaux de tension sont utilisés dans les réseaux de transport, tandis que les bas niveaux sont utilisés pour les réseaux de distribution. Chaque élément de réseau a une capacité limitée, limitant la quantité d'électricité à être transportée ou distribuée. Actuellement, le fonctionnement des réseaux a été poussé vers ses limites techniques, c'est la raison pour laquelle le niveau de tension dans les réseaux est considérablement plus élevé que dans le passé. L'utilisation efficace de tous les éléments de réseau est d'intérêt majeur pour l'opérateur du réseau parce que les contraintes de coût sont également devenues beaucoup plus serrées que dans le passé. Sachant que le fonctionnement d'un grand réseau électrique est une tâche d'ingénierie complexe et difficile, il devient évident que les contraintes de coût augmentent considérablement la complexité opérationnelle. La flexibilité par rapport à la négociation transfrontalière de l'électricité (marché d'électricité) augmente avec l'augmentation d'échelle et de complexité des grands réseaux interconnectés. Simultanément, la complexité des problèmes de fonctionnement augmente en raison des problèmes de stabilité de la tension, l'angle et de la fréquence.

Les approches traditionnelles de planification pour les réseaux électriques sont en pleine réingénierie. L'ancienne approche avec l'énergie électrique qui circule purement à partir des installations de production vers les clients n'est plus valide. La volatilité croissante et le comportement imprévisible du système nécessitent un équipement avancé pour gérer de telles situations avec succès. Gardant à l'esprit que les réseaux électriques interconnectés ont été conçus de telle sorte que chaque partenaire de réseau peut contribuer avec réserve de puissance en cas d'urgence, la tendance avance vers un vaste marché d'électricité. Un autre développement fondamental est la construction des micro-réseaux au niveau des réseaux de distribution. L'introduction de la production décentralisée à proximité des clients modifie la fonctionnalité et les exigences des réseaux de distribution. Dans le passé, le flux d'énergie dans les réseaux de distribution était unidirectionnel, maintenant le système doit gérer les flux de puissance d'une façon bidirectionnels. Cela permet au réseau de distribution d'assumer de plus en plus la fonction d'un réseau d'équilibrage, en sachant que la capacité de chaque élément puisse ne pas être suffisante pour faire face aux situations de flux de puissance résultant.

Résumant les développements actuels, il faut noter que la planification et l'exploitation de réseaux électriques subissent des changements fondamentaux et radicaux afin de faire face à la complexité croissante de trouver des solutions et assurer un réseau fiable et économique. Le fonctionnement des réseaux de transport et de distribution sera plus proche de leurs limites physiques. La nécessité de concevoir des réseaux électriques fournissant la capacité de transport maximale et en même temps, entraînant des coûts minimes est un grand défi d'ingénierie.

Il faut noter aussi que la demande d'énergie électrique dans le monde augmente d'une façon continue. Le besoin croissant pour le transport de plus d'électricité peut être atteint soit par l'installation de nouvelles lignes de transport ou en utilisant celles existantes d'une manière plus efficace. La construction de nouvelles lignes de transport est de plus en plus difficile à cause de diverses raisons, telles que les politiques réglementaires, environnementales et publiques, ainsi que les coûts élevés d'installation.

Les équipements avancés basés sur l'électronique de puissance offrent des solutions nouvelles et impeccables. Communément décrit par le terme « FACTS : Flexible AC Transmission System», c-à-d les : «Systèmes Flexible de transport à courant alternatif», de tels équipements sont disponibles depuis plusieurs années, mais n'ont pas toujours été largement accepté par tous les opérateurs de réseau pour plusieurs raisons.

Les FACTS représentent un aspect de la révolution de l'électronique de puissance qui est en cours dans tous les domaines de l'énergie électrique. Une variété de dispositifs semi-conducteurs puissants offrent l'avantage de la grande vitesse et la fiabilité de la commutation, ainsi que la variété de concepts innovants de circuits basés sur ces dispositifs de puissance permet d'accroître la qualité de l'énergie électrique.

Les FACTS peuvent être utilisés pour augmenter la capacité de transport, améliorer la stabilité et le comportement dynamique et assurer une meilleure qualité d'énergie dans les réseaux électriques modernes. Leurs fonctions principales sont : la compensation de puissance réactive, le contrôle de la tension et le contrôle de flux de puissance. En raison de leurs électroniques de puissance embarquées, les FACTS fournissent toujours des mesures de contrôle rapides par rapport aux dispositifs classiques comme la compensation conventionnelle ou les transformateurs déphaseurs ou les changeurs de prises à commutation mécanique.

Ils peuvent être divisés grosso modo en deux groupes principaux, un groupe qui redirige le flux de puissance par le contrôle des réactances dans le réseau et l'autre qui utilise des convertisseurs statiques comme des sources de tension pour injecter ou absorber la puissance selon le cas. On peut les classer aussi suivant leur connexion au réseau électrique.L'UPFC : Unified Power Flow Controller ou Le contrôleur Unifié de flux de puissance est l'un des membres les plus polyvalents de la famille des FACTS qui peut contrôler tous les paramètres qui affectent le flux de puissance de la ligne de transport.

MOTIVATION

Cette thèse est motivée par les développements récents des FACTS. De nombreux types de FACTS ont été implantés avec succès dans les réseaux électriques. Certains sont encore au stade pilote et beaucoup sont proposés dans la recherche et le développement.

Le choix de l'UPFC est principalement dû à ces aptitudes de contrôler tous les paramètres de flux de puissances car il est l'un des plus performants des dispositifs FACTS, ainsi, il offre la flexibilité fonctionnelle nécessaire à l'application combinée de contrôle de l'angle de phase avec la compensation série et shunt commandée.

Le mode de fonctionnement de l'UPFC (régulation de tension, compensation série, régulation d'angle de phase, ou toute combinaison entre eux) peut être modifié d'un état à un autre instantanément pour adapter aux changements particuliers des conditions du système. Cette caractéristique lui en fait un dispositif compétent.

Aujourd'hui, l'implantation des dispositifs FACTS dans les algorithmes de flux de puissance considérés comme une exigence fondamentale dans la planification, l'exploitation et le contrôle des réseaux.

OBJECTIF

Un modèle mathématique est nécessaire pour étudier les effets de l'UPFC dans le fonctionnement du réseau. A partir d'une recherche bibliographique on a trouvé beaucoup de modèles mathématiques pour l'incorporation de l'UPFC dans un programme d'écoulement de puissance.

L'objectif de cette thèse est d'étudier les modèles disponibles dans la littérature et de choisir un modèle qui peut être facilement incorporé dans un programme MATLAB d'écoulement de puissance, pour voir l'impact de l'UPFC sur les réseaux électriques en variant l'emplacement de l'UPFC et la complexité des réseaux tests, et avec différents algorithmes de flux de puissance.

Ce modèle sera aussi utilisé pour l'étude CPF : Continuation Power Flow, qui est une technique d'analyse de la stabilité des réseaux électriques pour voir l'apport de l'UPFC sur la capacité du réseau à alimenter plus de charges et aussi sur la stabilité de tension, toute en variant aussi l'emplacement de l'UPFC et la complexité des réseaux tests.

ORGANISATION

Le premier chapitre présente des généralités sur les réseaux électriques, leur structure qui se compose de trois parties principales : la production, le transport, et la distribution en spécifiant chaque partie et les technologies utilisées dans chaque entité, et en introduisant les dispositifs de commande et de protection. Toute en passant par les problèmes des réseaux électriques modernes.

Les dispositifs FACTS ont été abordés au deuxième chapitre en tant que solutions des problèmes mentionnés au chapitre précédent, leurs classifications et configurations ont été traitées avec la définition de chaque dispositif, son schéma général et ses aptitudes.

Le troisième chapitre a été consacré pour l'étude détaillée de l'UPFC, son principe de fonctionnement, ses aptitudes de contrôle, sa commande et ces divers modes de fonctionnement, et enfin sa protection et la comparaison avec d'autres dispositifs.

Le quatrième chapitre vise l'analyse des performances et des aptitudes de l'UPFC concernant le contrôle indépendant et instantané de flux de puissance actif et réactif, ensuite l'apport de l'UPFC sur la stabilité de tension a été présenté, et enfin la réponse du réseau après un défaut et le rôle de l'UPFC dans l'amélioration de la stabilité dynamique. Cette analyse a été réalisée en tenant compte des résultats de simulations en utilisant plusieurs technique de modélisation de l'UPFC et plusieurs modèles, ainsi que des logiciels comme MATLAB/Simulink, et NEPLAN.

Le but de cinquième chapitre est l'étude des différents modèles de l'UPFC disponible dans la littérature, en commençant par la présentation des méthodes de calcul d'écoulement de puissance suivi par les modèles de l'UPFC avec l'avantage et l'inconvénient de chaque modèle. Ensuite, le modèle complet a été

présenté d'une façon détaillée, ce modèle est choisi comme modèle le plus adapté pour le programme d'analyse d'écoulement de puissance, ensuite les résultats sont montrés pour différents réseaux et différents cas, avec l'utilisation de différentes méthodes d'analyse. Puis, la méthode d'analyse CPF a été présentée, pour l'étude de la stabilité de tension, et les résultats ont été montrés pour le même modèle utilisé dans le chapitre précédent et pour différents réseaux.

Enfin, il ne nous restera plus qu'à conclure et à proposer des perspectives d'études futures permettant de compléter ce travail.

CHAPITRE 1 GENERALITE SUR LES RESEAUX ELECTRIQUES

L'énergie est un ingrédient fondamental de la société moderne et son approvisionnement influe directement sur le développement économique et social des nations. Le développement économique implique l'augmentation de la consommation d'énergie. Le développement et la qualité de nos vies et de notre travail dépendent totalement d'un approvisionnement énergétique continu, abondant, et économique. Cette réalité est faite face dans le monde entier, car les ressources énergétiques de base sont devenues rares et de plus en plus coûteuses. Tandis que le charbon reste une ressource abondante, le pétrole et le gaz naturel subissent des restrictions, à cause des volumes en baisse à long terme. Cette dépendance à l'énergie pour la croissance économique, avec des implications géopolitiques, car les ressources énergétiques n'ont pas été généralement dans les endroits où la consommation est élevée. L'énergie s'est transformée en nouvelle forme de puissance politique internationale, utilisée par des propriétaires des ressources énergétiques (principalement pétrole et gaz naturel) [1].

Dans ce cadre, l'électricité est devenue une forme préférée d'utilisation d'énergie au bout du consommateur, en employant du charbon, du pétrole, du gaz, d'uranium, et d'autres ressources de base pour la produire. En raison de sa polyvalence, sa contrôlabilité, sa propreté et sa disponibilité instantanée, l'électricité est devenue une forme d'énergie indispensable et universelle. Son utilisation domestique se prolonge maintenant au-delà du but initial qui est l'éclairage, elle est devenue pratiquement irremplaçable dans la cuisine, pour des réfrigérateurs, des fours, et des cuiseurs, aussi bien dans le reste de la maison, pour des climatiseurs, radios, télévisions, ordinateurs, etc.. En plus l'utilisation de l'électricité est encore plus large dans les domaines commerciaux et industriels : en plus de fournir la puissance pour l'éclairage et la climatisation, elle est aussi utilisée pour les moteurs industriels dans nombreuses applications : ascenseurs, grues, moulins, pompes, compresseurs, tours, etc., il est presque impossible d'imaginer une activité industrielle qui n'emploie pas l'électricité. Ainsi, les sociétés modernes sont devenues totalement dépendantes d'une alimentation d'électricité abondante.

Au premier regard, l'électricité doit sembler être un produit tout comme tout autre sur la liste de dépenses courantes des consommateurs. En fait, ceci peut être le point de vue incitant la révolution qui a basculé les réseaux électriques dans le monde entier, car ils ont été submergés dans la vague de la libéralisation et de la déréglementation, ce qui a changé tant d'autres secteurs de l'économie. Mais l'électricité est définie par une série de propriétés qui la distinguent d'autres produits, un argument souvent utilisé afin d'essayer d'empêcher ou limiter au moins l'emploi d'un tel changement dans l'industrie de l'électricité. L'électricité est un produit non stockable, elle peut, naturellement, être stockée dans des batteries, mais le prix, et l'encombrement, rendent ceci impraticable pour manipuler les quantités d'énergie habituellement requises dans le monde développé. Par conséquent, l'électricité doit être produite et transmise pendant qu'on la consomme, ainsi ceci signifie que les réseaux électriques sont dynamiques et fortement complexes, aussi bien qu'immense [1] [2].

À n'importe quel moment donné, ces vastes systèmes dynamiques doivent être en équilibre entre la production et la demande, en tenant compte qu'une perturbation provoquée par un défaut d'un composant simple peut être transmise à travers le système entier presque instantanément. Cette réalité joue un rôle décisif dans la structure, l'opération, et la planification des réseaux électriques.

Une autre particularité de l'électricité est son transport : ce n'est pas un produit qui peut être embarqué en « conteneurs » de son origine à la destination à n'importe quel moment. L'énergie électrique est transmise par les réseaux de transport dans lesquelles la voie ne peut pas être choisie volontairement, car elle est déterminée par les lois de Kirchhoff, de sorte que la distribution du courant dépend de l'impédance dans les lignes et d'autres éléments traversés par l'électricité. Sauf dans des cas très simples, on peut dire que l'énergie électrique dans le réseau s'écoule de la production vers la consommation, parce que c'est extraordinairement complexe d'attribuer l'écoulement à n'importe quelle voie donnée. D'ailleurs, selon ces lois de la physique, les itinéraires alternatifs qui forment le réseau sont fortement interdépendants, de sorte que n'importe quelle variation d'une installation de transport puisse causer la reconfiguration instantanée des flux de puissance et qui peut avoir un effet substantiel sur d'autres équipements. Tout cela rend l'équilibre dynamique visé au paragraphe précédent encore plus complexe [3] [4] [5].

En effet, la combinaison de l'extrême commodité des applications et des services de l'électricité d'une part et de ses particularités d'une autre part a engendré ces systèmes industriels immenses et sophistiqués. Leur taille dépend de leurs capacités, car ils sont pratiquement conçus pour transporter l'électricité à n'importe quel endroit habité par des humains à partir des centrales de production d'énergie électrique situées où il y'a un approvisionnement en énergie primaire, dans la forme d'énergie potentielle dans l'eau mobile ou de plusieurs carburants, facilement accessibles.

L'énergie électrique nécessite les réseaux de transport et les réseaux de distribution qui composent le réseau entier et lui permettent de fonctionner en tant qu'entité intégrale. Leurs développement est un résultat de leurs complexité, déterminée par les caractéristiques suivantes: l'équilibre dynamique entre la production et la consommation qui doit être de manière permanente maintenue en tenant compte des caractéristiques d'amplitude et de la fréquence de la tension et du courant ainsi que la forme d'onde de ces signaux.

Une telle régularité est réalisée avec les systèmes de contrôle complexes, qui surveillent sans interruption le fonctionnement de système, et adaptent une réponse aux états constamment changeantes. Une partie importante de ces tâches de commande est exécutée par les ordinateurs puissants aux centres de gestion de l'énergie électrique en réalisant beaucoup d'applications de gestion : en utilisant des programmes pour l'estimation de la demande d'énergie électrique dans différents nœuds du réseau pour certains minutes, heures, jours, ou mois à l'avance ; d'autres programmes déterminent la génération requise pour satisfaire cette demande; d'autres programmes aussi calculent l'écoulement de puissance dans les lignes et les transformateurs et les tensions nodales du réseau sous un certain nombre de prétentions sur des conditions de fonctionnement ou le cas d'un défaut des composants, et déterminent l'action la plus appropriée pour chaque cas. D'autres étudient le comportement dynamique du réseau électrique sous divers types de perturbation. Quelques programmes non seulement essayent de déterminer les mesures de contrôle les plus appropriées de prendre quand un problème surgit, mais également de prévoir leur occurrence possible, en modifiant des conditions de fonctionnement de réseau pour diminuer ou éliminer sa vulnérabilité aux éventualités les plus susceptibles.

Cependant, ce n'est pas tout : l'aspect économique du problème doit également être considéré. Les agents qui font fonctionner le réseau peuvent être des entreprises privées anonymes qui essayent logiquement de maximiser leurs revenus ou ce sont des établissements publics qui visent à réduire au minimum le coût du service fourni. Dans l'un où l'autre cas, les implications économiques des décisions prises ne peuvent pas être ignorées, sauf, naturellement, où la sécurité des systèmes est en jeu. Le réseau fonctionne dans des conditions normales pratiquement toujours, donc il y'a suffisamment de temps pour prendre les décisions qui sont non seulement sûres, mais également économiques. Par conséquent, quand la demande monte de manière prévisible pendant le jour, la puissance devrait être produite par des équipements avec la capacité inutilisée qui peut générer la puissance d'une façon efficace. L'objectif est de répondre aux besoins quotidiens de la courbe de charge avec la puissance générée au moindre coût. Cette nouvelle dimension dans l'opération des réseaux électriques est présente dans tous les calendriers : de la répartition horaire des centrales de production au choix des unités qui doivent être démarrer ou arrêter et le temps d'exécution de cette tâche, y compris des décisions sur l'utilisation de la capacité de réservation hydro-électrique, et de la programmation d'entretien et de l'investissement dans des nouveaux équipements. On devrait d'ailleurs noter que toutes ces décisions sont prises dans un contexte de l'incertitude : pour que la future demande doit être assuré, les prix des paramètres divers impliqués dans le processus de production, en particulier, le fuel, et même la législation de normalisation en effet quand des décisions à long terme doivent être mises en application [1].

Dans ce chapitre la structure du réseau électrique sera présentée, un réseau électrique moderne se compose des centrales de productions, un réseau de transport et un réseau de distribution et les systèmes de contrôle et protection, qui sont responsable de l'opération en sécurité, stabilité et d'une façon économique du réseau électrique.

1.1 STRUCTURE DE RESEAU ELECTRIQUE

Les réseaux électriques sont développés plus ou moins de la même façon dans tous les pays, convergeant vers une structure et une configuration très semblables. C'est tout à fait normal en tenant compte des caractéristiques très spécifiques de l'énergie électrique. Comme cité précédemment, la production d'électricité, le transport, la distribution, et la consommation sont inévitablement conditionnés par le fait que la génération et la demande doivent être dans l'équilibre instantané et permanent. La pertinence des facteurs techniques en maintenant un tel système à grande échelle dans l'équilibre dynamique ne peut pas être négligée. Une perturbation n'importe où dans le réseau peut mettre en danger l'équilibre dynamique global, avec des conséquences défavorables pour l'approvisionnement en électricité à travers de vastes secteurs, même des régions entières d'un pays ou un pays entier. Pour cette raison l'existence des systèmes de commande en temps réel sophistiqués, les dispositifs de surveillance, ainsi que les équipements de protection est indispensable, et ce qui, du point de vue technique, différencie principalement la configuration et la structure des réseaux électriques d'autres activités industrielles. Les fonctions typiques de n'importe quelle industrie, telles que la production, expédition, planification, et organisation, sont également hautement spécialisées dans l'industrie de l'électricité.

L'organisation de l'industrie de l'électricité, comme tout autre, est divisée en centrales de production; le transport (équivalente au transport ou à l'expédition dans d'autres industries) ; le réseau à haute tension ; distribution ; le réseau de basse tension ; et consommation (également nommée approvisionnement dans quelques contextes), en plus de la protection et des systèmes de contrôle associés. Plus formellement, la configuration du réseau électrique est représentée dans la figure 1.1. Les centrales de production produisent de l'électricité aux tensions de plusieurs kiloVolts, typiquement de 6 à 20 kV, et transforment immédiatement cette puissance aux tensions des centaines de kilovolts : 132, 220, 400, 500, et 700 kV, ce sont des valeurs relativement communes pour optimiser le transport à long-distance à travers les lignes aux secteurs où la consommation est la plus intense. L'élévation de la tension

permet de transporter de grandes puissances en minimisant les pertes joules dans les lignes de transport [1] [6].

Figure 1.1 structure du réseau électrique

1.2 CONSOMMATION

1.2.1 L'AUGMENTATION DE LA DEMANDE

La demande d'électricité a subi une haute augmentation. La création des normes pour l'électricité : tension, fréquence, courant, a ouvert la voie pour l'énorme croissance dans la consommation d'électricité. Ceci a mené à l'étalonnage des dispositifs qui fonctionne avec l'électricité -les ampoules et les moteurs et les PCs-en abaissant le coût de fabrication et en augmentant la polyvalence de produit, permettant d'employer un dispositif qui fonctionne avec l'électricité pratiquement partout. La consommation de l'énergie électrique est l'un des indicateurs les plus clairs du développement industriel d'un pays. Il n'y a à peine aucun processus ou secteur de fabrications d'intérêt économique qui n'exigent pas l'électricité. En effet, la consommation de l'énergie électrique a été également employée comme mesure de développement social. La consommation d'électricité par habitant et particulièrement le degré d'électrification dans un pays, c.-à-d., le pourcentage de la population vivant dans les maisons électrifiées, fournis une indication claire du niveau de vie. Ce n'est pas étonnant, car des fondations telles que l'éclairage, l'approvisionnement en eau potable, les réfrigérateurs, et d'autres appareils électroménagers dépendent de l'accès à l'électricité.

La courbe représentée dans la figure 1.2 illustre l'augmentation de la production d'énergie électrique à l'échelle du temps, on remarque une croissance très élevée de la consommation d'énergie électrique dans l'Asie qui dépasse l'Europe à partir de l'année 1995 et dépasse l'Amérique à partir de l'année 2006 et prédomine les continents dans la production d'électricité à cause de développement social et industriel. Il y'a un développement remarquable dans la production d'électricité dans

l'Amérique et l'Europe par rapport à l'Afrique, ce qui montre la différence du niveau social et industriel [7].

Les taux d'électrification et la consommation d'électricité varient par habitant considérablement d'un secteur du monde à l'autre, car le tableau 1.1 illustre la consommation d'électricité

La croissance de la consommation d'électricité n'est pas limitée aux pays en voie de développement, elle a certainement augmentée, mais pas autant que les pays développés. Tandis que la mentalité du consommateur des pays industrialisés peut en partie conduire une telle croissance. L'utilisation généralisée de la climatisation dans ces pays est un exemple évident qui a apporté un changement radical dans les courbes saisonnières de consommation.

Figure 1.2 la production de l'électricité [8]

Tableau 1.1 Consommation d'électricité (TWh), 1990-2014 [8]									
Année	1990	1994	1998	2002	2006	2008	2010	2012	2014
Monde	10123	10971	12257	13821	16277	17401	18498	19462	20302
L'Europe	2519	2560	2820	3059	3316	3391	3384	3335	3226
L'Amérique	3652	4104	4586	4963	5321	5494	5515	5525	5644
L'Amérique du Nord	3146	3505	3852	4144	4343	4435	4390	4301	4368
L'Amérique latine	507	599	735	818	978	1059	1125	1224	1275
L'Asie	1898	2492	2985	3711	5191	5905	6839	7660	8439
Pacifique	165	179	206	238	246	256	255	248	265
L'Afrique	262	293	366	417	502	542	575	629	602
Moyen-Orient	208	277	352	440	562	623	729	813	883
L'Algérie	14	16	19	23	29	33	36	44	53

En outre, la croissance de consommation d'électricité existe malgré l'amélioration substantielle de l'efficacité de la plupart des équipements et processus utilisant l'énergie électrique, qui réduit la puissance d'entrée en kWh requise pour atteindre un résultat donné. De plus en plus des voix sont élevées à la défense de la nécessité de rationaliser la consommation de l'électricité et toutes autres formes d'énergie. De telles voix réclament correctement la solidarité entre générations car ils sont avertis des

incidences sur l'environnement d'une telle consommation et de la vaste quantité de ressources naturelles qui montent littéralement dans la fumée, la solidarité réclamée est pour pouvoir léguer aux générations venantes, une planète écologiquement acceptable dont les ressources énergétiques n'ont pas été épuisées. Par conséquent l'importance de la gestion de côté de la demande (DSM : demand side management), une limite a inventé aux États-Unis pour désigner toutes les techniques et actions adaptées pour rationaliser la consommation d'énergie électrique. Le but, d'une part, est une utilisation plus efficace de consommation existante de réduire l'énorme investissement impliqué en construction de nouvelles stations et le coût substantiel de produire l'électricité et, d'une autre part, pour ajuster des économies d'énergie en réduisant certaines consommations, des mêmes implications avantageuses [1].

DSM devrait, donc, être un composant actif des réseaux électriques futurs, reflétant la tentative d'internaliser les coûts environnementaux qui sont souvent ignorés. Le rôle et le règlement approprié de ces affaires est l'un des défis qui font face à la nouvelle structure et règlement d'une industrie libéralisée de l'électricité.

Il peut être important à cet égard pour les consommateurs de recevoir les messages économiques que la déréglementation envoie aux divers autres acteurs impliqués qui sont les producteurs, les transporteurs, les distributeurs, et les fournisseurs. L'évaluation devrait être conçue pour mettre au courant des consommateurs du vrai coût (économique et environnemental) pour répondre à leurs besoins de puissance, tenant compte de leurs modèles de consommation en termes de profil horaire et charge totale. À moyen terme, ceci devrait habituer les utilisateurs domestiques, commerciaux, et industriels à contrôler activement la consommation électrique. La capacité de demande pour répondre à l'évaluation est généralement caractérisée par un paramètre nommé « élasticité de la demande. » Ceci est défini par la variation en pourcentage de la consommation de l'électricité ou de n'importe quel autre produit en fonction de la variation d'unité du prix. La demande d'électricité est caractérisée, d'une facon générale, par l'élasticité à court terme limitée ; en d'autres termes, la réaction aux changements du prix est petite, bien que cette affirmation soit plus précise pour quelques types de consommateurs que d'autres. Une telle élasticité limitée est due à la mentalité régnant très récemment dans l'industrie de l'électricité : la continuité de l'alimentation a été considérée pour être un devoir presque sacré, qui doit être accompli à n'importe quel prix. Les consommateurs, qui ont été identifiés, en effet, comme abonnés plutôt que des clients, étaient les destinataires simplement passifs du service fourni. [9] [10]

Les développements en technologie des communications, en même temps que la libéralisation des industries électriques et énergétiques dans une grande partie du monde, vont changer le rôle des consommateurs radicalement. La mentalité de côté de la demande ne changera pas aisément. Néanmoins, les années à venir seront témoin très probablement à la maturation et l'accentuation du rôle a joué par la demande dans l'industrie de l'électricité, qui deviendra aussi appropriée que d'autres secteurs, tels que la production. L'élasticité se développera bien qu'une grande partie de la demande reste de manière prévisible imperméable au prix.

1.2.2 PROFILS DE LA DEMANDE

La consommation est caractérisée par une série de facteurs du point de vue technique. Les deux facteurs les plus importants sont la puissance et l'énergie. La puissance, mesurée en watts (W), et l'énergie en (Wh) exigée par unité de temps. Donc, la puissance est l'énergie instantanée consommée. Puisque l'électricité n'est pas stockée, les équipements électriques doivent être conçus pour résister à l'énergie instantanée maximale. Par conséquent, non seulement toute la capacité électrique est requise, mais le profil de demande avec le temps est particulièrement approprié pour caractériser la consommation. De tels profils, connus sous le nom de courbes de charge, représentent la puissance

consommée en fonction du temps. Certains peuvent être plats, indiquant une consommation d'électricité très constante avec le temps, alors que d'autres peuvent avoir une ou plusieurs vallées ou crêtes très raides, dénotant une demande très variable. [1].

Par conséquent, selon le calendrier considéré, le profil de charge à employer peut être quotidien, hebdomadaire, mensuel, saisonnier, annuel, ou même multi-annuel. Les profils de charge ont également la pertinence économique : pour n'importe quel niveau donné de demande, il est moins cher de couvrir un profil plat qu'un profil pointu de charge. Pour cette raison, les courbes de charge constituent un des paramètres les plus considérés selon les méthodes employées pour le calcul des tarifs. [11]

Les figures 1.3 et 1.4 montrent des courbes de charge pour un réseau électrique sud-américain, spécifiquement Chili (www.cdec-sic.cl), avec l'indication de l'énergie fournie par l'énergie hydraulique de courant de fleuve, l'énergie hydraulique de réservoir (barrage), et les centrales thermiques.

Figure 1.4 Charge mensuelle de puissance pour un réseau sud-américain [1]

Il y a les crêtes et les vallées très claires dans chacun, dénotant des demandes cycliques maximales et minimales. Les prévisions de demande sont un problème essentiel à résoudre en prévoyant les conditions dans lesquelles le réseau fonctionnera dans le court, moyen, et le long terme. Par conséquent, la consommation à un moment donné peut être raisonnablement prévue des données de série chronologique corrigées pour des variations prévisibles de croissance économique, de jours ouvrables, et de température, et aussi de tenir compte des événements spéciaux qui peuvent avoir un effet substantiel sur la demande.

1.2.3 QUALITE DE SERVICE

Beaucoup de dispositifs fonctionnent mal ou simplement ne fonctionnent pas du tout, à moins que l'allure de tension soit parfaitement sinusoïdale et sa fréquence et son amplitude soient constantes et stables avec le temps. La précision, la qualité, les caractéristiques, et la performance des dispositifs électriques dépendent de la qualité du courant qui les actionne.

Les problèmes peuvent également surgir dans presque n'importe quel type de dispositif électrique quand la tension est si basse (chute de tension) ou trop haute (surtension). Les facteurs qui caractérisent fondamentalement la qualité du service de l'électricité sont présentés brièvement ci-dessous :

- Pannes d'alimentation: Les interruptions d'alimentation peuvent avoir des conséquences graves pour des consommateurs. La durée de telles interruptions peut être très court (microcoupures), souvent provoquées par la refermeture des disjoncteurs après un court-circuit. Les pertes causées augmentent avec la durée de la panne.
- Chutes de tension : L'immersion momentanée dans la tension d'alimentation provoquée par des courts-circuits ou des défauts de système, durant seulement jusqu'à l'enlèvement de défaut, ou en raison du démarrage des moteurs voisins avec une demande élevée, causant des chutes de tension dans le réseau de distribution. Quelques dispositifs sont particulièrement sensibles à ces baisses, en particulier les moteurs dont le couple électromagnétique varie avec la tension d'alimentation.
- **Harmoniques :** Déviations de la fréquence fondamentale de l'onde sinusoïdale de tension due à la saturation des matériaux ferromagnétiques, dans les transformateurs de réseau ou des alternateurs, par exemple, ou des charges elles-mêmes ; ces déviations peuvent également avoir des effets nuisibles sur les appareils du consommateur.
- Clignotement (Flicker) : Fluctuations de basse fréquence dans l'amplitude de tension due à certains types de charges. Les fours à arc et les appareils électroniques équipés des thyristors causent habituellement le clignotement, qui nuit au fonctionnement approprié des dispositifs se sont reliés au réseau. La solution à ce problème est complexe, puisqu'elle ne dépend pas du fournisseur, mais des charges du réseau.
- **Surtension** : Augmentations de tension provoquées par des courts-circuits, défauts, foudre, ou tout autre événement, endommageant considérablement des appareils du consommateur [12].

En conclusion, la consommation d'énergie électrique peut varier largement avec la température ou des éventualités. Ce qui doit être considéré à cet égard, on doit assurer que cette demande doit être satisfaite instantanément et donc les centrales électriques, le transport, la distribution, doit être conçu pour pouvoir détecter et répondre immédiatement aux telles variations. [13]

1.3 PRODUCTION DE L'ENERGIE ELECTRIQUE

1.3.1 DIFFERENTES TECHNOLOGIES DE PRODUCTION

L'électricité exigée pour répondre aux besoins de consommation est produite dans les centrales de production, où une source d'énergie primaire est convertie en énergie électrique avec des caractéristiques bien définies. Ses équipements produisent une tension sinusoïdale triphasée, avec une fréquence et une amplitude strictement normalisées et contrôlées. Il y a beaucoup de technologies de production, suivant le carburant utilisé. Les centrales électriques conventionnelles sont divisées en centrales hydro-électriques, thermiques, et nucléaires, suivant la figure 1.5 [14].

Figure 1.5 Centrales hydro-électrique, thermique, et nucléaire.

La source d'énergie primaire utilisée dans les centrales hydro-électriques est l'eau, qui est exprimée, en termes de débit et hauteur. L'énergie hydro-électrique est convertie par une turbine hydraulique en énergie mécanique, caractérisée par le couple et la vitesse de l'axe couplé à l'alternateur électrique. En d'autres termes, l'énergie hydraulique est convertie en énergie électrique dans l'alternateur, produisant la tension et le courant aux bornes de la machine. En raison de la source d'énergie primaire utilisée, les centrales hydro-électriques produisent moins de pollution atmosphérique que d'autres technologies conventionnelles de production. Un autre avantage à ce type de centrales, en plus du coût du carburant et du manque de pollution, est leur raccordement et leur flexibilité de débranchement, ceci les rend des centrales de régulation fortement appropriées pour ajuster la production sur la demande. Néanmoins, elles sont coûteuses pour construire, et l'assurance d'un approvisionnement régulier en eau implique normalement d'inonder de vastes secteurs. Et en conclusion, leur opération est dépendante des facteurs fortement aléatoires par exemple : la pluie dans le secteur où ils sont situés [1].

Les divers types de centrales hydro-électriques peuvent être groupés en trois catégories principales, qui sont distinguées dans l'exploitation du système :

- 1. Les centrales hydro-électriques conventionnelles représentées sur la figure 1.5 sont le type le plus commun ; leurs caractéristiques sont comme décrites dans le paragraphe précédent.
- 2. Les centrales de courant de fleuve n'ont aucune capacité de stockage et par conséquent ne peuvent pas être déployées pour utiliser des ressources en eau pour la génération opportuniste ; pour cette raison, elles ne sont pas employées en tant que centrales de régulation.
- 3. Les centrales électriques de pompage ont un réservoir mis en hauteur auquel elles peuvent pomper l'eau quand l'énergie électrique est meilleur marché, et puis la vider dessus à une turbine quand elle est plus rentable pour faire ainsi. Elles peuvent être considérées pour être des moyens efficaces de stocker l'énergie, mais pas l'électricité.

Les centrales thermiques représentées dans la figure 1.5, dans lequel l'énergie primaire est fournie par un combustible fossile (charbon, carburant, ou gaz), respectivement, se nomment les centrales à charbon, au fuel, ou à gaz. Le principe de fonctionnement de ces centrales est fondamentalement comme suit :

- 1. Le carburant est brûlé dans une chaudière pour produire la vapeur à haute pression.
- 2. La vapeur à haute pression est convertie dans la turbine à vapeur en énergie mécanique.
- 3. Énergie mécanique, comme aux centrales hydro-électriques, est converti en énergie électrique par l'alternateur.

L'efficacité thermique des centrales électriques à vapeur, qui convertissent la chaleur en énergie mécanique en énergie électrique, dépend principalement de la valeur calorifique du carburant utilisé. Quoi qu'il arrive, le rendement le plus élevé atteint n'est jamais plus de 45%. En raison de l'inertie de la chaleur de la chaudière, environ pendant sept heures, ces stations ne peuvent pas être aisément reliées et débranché, c.-à-d., ils sont moins flexibles par rapport aux centrales hydro-électriques. Bien que le carburant puisse être sujet à des variations de prix, dans la plupart des pays un approvisionnement constant est considéré pour être par habitude disponible [15].

Il y a deux types de technologies de centrales thermiques qui emploient le gaz comme carburant, suivant la figure 1.6. D'une part, il y a des centrales thermiques à turbine à gaz où la combustion de gaz en air à haute pression alimente une turbine qui produit l'énergie mécanique, absorbée par un alternateur.

Figure 1.6 centrales thermique à gaz et centrales thermique à cycle combiné.

Et d'une autre part, il y a le cycle combiné ou les centrales thermiques à cycle combiné en tant que technologie de choix d'aujourd'hui. L'opération de ces centrales, comme l'indique leur nom, implique deux types de cycles. Dans le cycle primaire, un compresseur fixé à l'axe d'une turbine à gaz absorbe l'air à la pression atmosphérique, le comprime, et le guide à une chambre de combustion où le gaz qui déclenche la combustion est injecté. Le gaz résultant circule dans les lames de turbine pour produire l'énergie mécanique. Le gaz expulsé de la turbine, qui est toujours à température élevée, est employé pour chauffer un circuit de vapeur d'eau où la chaleur latente dans le gaz est convertie en énergie mécanique dans une turbine à vapeur. En conclusion, l'électricité est produite par un ou deux alternateurs reliés à un axe commun simple ou à deux axes séparés, un pour chaque cycle. Grâce aux dernières avances dans la céramique, les matières employées pour protéger les lames contre les températures, le rendement dans ces cycles est sensiblement plus hautes que dans les centrales thermiques classiques, avec des valeurs d'efficacité thermique jusqu'à de 60%. Ainsi qu'une réduction considérable des émissions de pollution, un niveau important de modularité et des charges de placement raisonnables, rendent les centrales thermiques à cycle combiné une des technologies de génération les plus concurrentielles disponible.

Les centrales nucléaires (voir la figure 1.5), également connues sous le nom de centrales atomiques, consistent essentiellement en un réacteur nucléaire qui produit de grandes quantités de la chaleur avec la fission atomique de l'uranium. Cette chaleur est transférée à un fluide, anhydride carbonique, sodium liquide, ou l'eau, et portée à un échangeur de chaleur là où il est transféré à un circuit de l'eau. Comme dans les centrales à vapeur, le reste du processus implique de transformer la vapeur produite en énergie mécanique dans une turbine à vapeur et puis en énergie électrique d'un alternateur. Il y a deux inconvénients à l'utilisation des centrales nucléaires qui sont difficiles à résoudre, et qui les ont rendues socialement inacceptables dans quelques pays : l'importance de la catastrophe en cas d'un accident, n'importe comment le risque est minimal, et le problème d'éliminer les déchets radioactifs. À cause de ces difficultés, quelques pays ont imposé un moratoire à la construction des centrales nucléaires. Du point de vue de l'exploitation du système, les centrales nucléaires sont toujours les centrales de basses, rarement utilisées pour la régulation en raison des risques inhérents en changeant les conditions de refroidissement dans le réacteur nucléaire [1].

Dans les réseaux électriques, la plupart de production a lieu actuellement dans les soi-disant centrales conventionnelles, décrites dans la discussion antérieure. Il y a, cependant, d'autres types de centrales électriques qui acquièrent graduellement la signification dans quelques secteurs et pays. Ceuxci s'appellent souvent les centrales alternatives, caractérisées par leurs incidences limitées sur l'environnement et l'utilisation des sources d'énergie renouvelables : vent, solaire, biomasse, et usines de PCCE (production combinée de chaleur et d'électricité ou « cogénération "), représentées dans les figures 1.7 et 1.8. [16]

Figure 1.7 Centrales électriques solaire et éolienne.

De toutes ces technologies, celui qui a subi la plupart de croissance spectaculaire ces dernières années est l'énergie éolienne : en fait, les centrales thermiques à cycle combiné et les technologies de vent sont les centrales de production à moyen et à court terme. Les fermes éoliennes peuvent être équipées avec des générateurs synchrones, ou asynchrones qui s'adaptent aux variations. Dans les centrales qui emploient les générateurs asynchrones, les condensateurs sont nécessaires pour générer la puissance réactive consommée par les machines d'induction. Ces centrales peuvent être reliées au réseau directement ou indirectement, par un redresseur, un onduleur, et un filtre. [17].

La source d'énergie solaire est abondante, mais la technologie est encore maigrement développée dans l'installation des cellules photovoltaïques, qui convertissent l'énergie solaire directement en courant continu pour le stockage dans des batteries. Mais ce sont habituellement des équipements de génération autonome, typiquement déployés dans les endroits lointains et isolés sans source d'énergie primaire, ou dans les systèmes hybrides. Les cellules photovoltaïques sont tout à fait chères.

Il y'a très peu de centrales électriques solaires thermiques dans lesquelles le rayonnement solaire est employé pour chauffer un fluide et pour produire de l'électricité thermodynamiquement qui ont été commissionnées pour l'opération commerciale. Néanmoins, il y a une série de technologies thermiques solaires alternatives mises en place :

- Les centrales paraboliques utilisent les collecteurs paraboliques pour concentrer le rayonnement sur des pipes pour chauffer l'huile qu'elles portent. Cette huile libère alors la chaleur dans un cycle de turbine à vapeur dans les centrales qui utilisent seulement l'énergie solaire, ou dans une série de cycles aux centrales hybrides.
- Les centrales récepteur ou central de tour d'énergie solaire, représenté dans la figure 1.7, ont un champ des héliostats, des miroirs, qui concentrent le rayonnement sur des récepteurs, normalement situés dans une tour où la chaleur est accumulée pour l'usage suivant dans n'importe quel genre de cycle de puissance.

La génération de biomasse (figure 1.8), qui signifie obtenir l'énergie des cultures de ressources biologiques (également appelées les matières de base de biomasse), des déchets de bétail, ou du résidu de sylviculture, emploie une ressource disponible dans presque n'importe quel habitat et peut-être pour cette raison la biomasse gagne la popularité dans les pays en voie de développement tel que l'Inde.

Figure 1.8 Centrales de biomasse et de cogénération.

Les deux approches de base qui appliquent cette technologie sont :

- 1. Combustion directe dans des fours spécifiques pour produire la vapeur plus tard utilisée dans un cycle de turbine, comme dans les centrales électriques conventionnelles de vapeur.
- 2. Gazéification de la matière organique pour obtenir un gaz combustible, habituellement avec un contenu élevé de méthane, généralement employé pour alimenter un moteur à combustion interne ou une turbine à gaz couplée à un générateur électrique. La matière peut être gazéifiée avec des processus biologiques physico-chimiques ou anaérobies.

En conclusion, la technologie de PCCE ou de cogénération (voir la figure 1.10), est basée sur le fait que beaucoup d'ensembles industriels ont des conditions de chauffage de processus : le principe de base est d'employer la chaleur en surplus produite en industrie par un certain type de système de génération de vapeur au lieu de le gaspiller en refroidissant le fluide de retour [1].

1.3.2 RAISON D'UNE PRODUCTION D'ENERGIE ELECTRIQUE MIXTE :

Les coûts d'installation d'une centrale et les frais d'exploitation pour produire de l'électricité varient considérablement d'une technologie de production à l'autre. Les centrales nucléaires, par exemple, réclament un investissement très élevé, mais ils ont des frais d'exploitation comparativement bas dus au prix du carburant, et l'efficacité du processus de conversion d'énergie, qui rend l'énergie nucléaire une technologie attrayante pour la courbe de demande qui couvre les 8760 h par année. De l'autre part la technologie des centrales thermiques à gaz qui ont le plus haut rendement et les plus bas couts d'installation, ceci les rend un type très attrayant pour couvrir les crêtes de demande.

Les stratégies politiques et environnementales pèsent fortement dans les raisons de déployer un mélange de technologie dans la production d'électricité. [18]

Aujourd'hui, la plupart de production d'électricité a lieu dans des grands centrales de production dispersés à travers un pays, souvent à longue distance de la consommation. Il semble normal d'établir des centrales près de la source des carburants et les ports pour le charbon, les raffineries pour le carburant, les canalisations des pipes pour les centrales à gaz, les fleuves avec un écoulement lourd pour les centrales hydro-électriques, et pour le refroidissement pour les centrales thermiques. Des tentatives sont faites de situer des centrales de productions à une distance substantielle des secteurs peuplés dus aux issues telles que la pollution et la réaction sociale défavorable des centrales nucléaires [19].

L'aspect de la technologie des centrales thermiques à cycle combiné a changé le contexte économique sensiblement en réduisant de manière significative le risque : ces stations sont plus flexibles, modulaires et concurrentielles, plus petites, et donc peuvent être constituées plus vite. Ces issues ont considérablement facilité l'investissement privé, à la suite des changements de normalisation récents pour présenter la concurrence libre dans l'industrie de l'électricité.

1.4 LE TRANSPORT DE L'ENERGIE ELECTRIQUE

Le réseau de transport relie les grandes centrales de production géographiquement dispersées avec les consommateurs, en maintenant le réseau électrique entièrement relié et dans le fonctionnement synchrone. Le transport à longue distance de puissances considérables nécessite la haute tension pour réduire l'intensité du courant et, par conséquence, les pertes de puissance.

Son rôle principal dans l'équilibre dynamique entre la production et la consommation détermine sa structure typique maillée, dans laquelle chaque centrale dans le réseau est soutenue par tous les autres

pour éviter les conséquences des échecs possibles. Dans le meilleur des cas, le système devrait fonctionner comme si toute la génération et toute la demande ont été reliées à un simple nœud. Il est équipé avec des équipements sophistiqués de mesure, de protection et de commande, ainsi l'exploitation du système global n'est pas compromise par des défauts, c.-à-d., courts-circuits, foudre, erreurs de répartition de puissance, ou échec d'équipement. Le réseau de transport a acquis la pertinence particulière dans le nouveau contexte de normalisation qui encourage la concurrence, puisqu'il facilite le marché d'électricité, car il représente le point de réunion pour les membres du marché. La croissance de la capacité de réseau de transport, ainsi que le développement de la connectivité entre les réseaux de transport, dans et à travers des frontières nationales, a préparé le terrain pour les marchés régionaux et internationaux de l'électricité [1] [20].

1.4.1 LIGNES DE TRANSPORT D'ENERGIE ELECTRIQUE

Les lignes de réseau de transport se composent des câbles en aluminium avec un noyau en acier, ces lignes se reposent sur des pylônes. La conception des lignes est basée sur des considérations mécaniques et électriques. Les pylônes doivent être assez vigoureux pour soutenir le poids des câbles et pour résister à la tension dans les câbles tout en maintenant la distance de sûreté minimum entre les câbles, et entre les câbles et les pylônes, et entre les câbles et la terre. Un ensemble des isolateurs attache les câbles aux pylônes. Puisque chaque isolateur peut s'adapter à la tension de 12-18 kiloVolts, les lignes de 400 kiloVolts ont besoin d'un ordre de 20-25 liens dans la chaîne d'isolation. Parfois deux lignes prennent le long d'un itinéraire parallèle, partageant les mêmes pylônes : ceci est connu comme double circuit, un exemple est illustré dans la figure 1.9.

Électriquement, la section des câbles détermine l'intensité maximale du courant qu'ils peuvent transmettre et donc elle détermine la capacité de transmission de la ligne. Plus l'intensité est grande, plus les pertes des lignes dues à l'effet de Joule est grande, et plus la température de conducteur est élevée, ceci nécessite des lignes très longues et lourdes avec une distance plus courte entre les lignes et le sol qui représente un grand risque de décharge. [21]

Pour réduire ce qu'on appelle la décharge de couronne (rupture de la capacité d'isolation d'air autour des câbles dus aux champs électriques élevés, causant des pertes et des perturbations électromagnétiques qui peuvent causer l'interférence dans des systèmes de communications) chaque phase de la ligne est généralement divisée en deux, trois, câbles ou plus, donnant des câbles en deux ou trois faisceaux [22].

Figure 1.9 Ligne en deux faisceaux

Un paramètre le plus important de la ligne est l'inductance qui dépend en grande partie de la position géométrique relative des trois phases sur le pylône.

D'ailleurs, les lignes provoquent un effet capacitif avec la terre qui représente la valeur de leur capacité. En conséquence, l'effet inductif prédomine dans les lignes qui portent la puissance près de leur limite, tandis que l'effet capacitif règne et les lignes qui portent peu de puissance, typiquement dans la nuit. Quelques lignes de transport sont des câbles souterrains, la plupart du temps dans les réseaux urbains où la tension d'opération est basse et très rarement dans le cas des circuits à haute tension. Les câbles souterrains à haute tension impliquent de la technologie plutôt chère, puisque la distance très courte entre la ligne et la terre rend nécessaire l'installation des isolateurs très résistants. Ces lignes ont un effet capacitif beaucoup plus significatif que les lignes aériennes.

Dans un système maillé tel que le réseau de transport, les puissances sont réparties à travers les lignes selon leur impédance, selon les lois de Kirchhoff. Les longues distances et les grandes puissances transmises peuvent réduire la capacité de réseau à maintenir l'exploitation du système, favorisant l'aspect de l'instabilité nuisible à l'équilibre dynamique entre la génération et la demande. Ceci peut réduire la capacité de la ligne de transport moins que sa limite thermique normale.

Pour des raisons d'incidences sur l'environnement, il est de plus en plus difficile d'augmenter et renforcer le réseau de transport, ce qui rend nécessaire l'utilisation optimale des installations en place. Ceci représente un défi important, puisqu'il nécessite de rétrécir des marges de sûreté et de perfectionner la protection, la mesure, et la commande. Avec le développement de l'électronique de puissance, les nouveaux dispositifs sont devenus disponibles ; en essayant d'augmenter la capacité de la ligne et d'orienter l'écoulement de puissance vers les lignes moins chargées. De tels dispositifs sont connus en tant que les systèmes FACTS : Flexible AC transmission system (les systèmes flexibles de transport à courant alternatif) [23].

1.4.2 Sous-stations (postes de transformations)

Les sous-stations ou les postes de transformation constituent le deuxième composant fondamental du réseau de transport. Elles ont trois fonctions : elles sont des nœuds d'interconnexion pour les lignes de transport, elles sont aussi des nœuds de transformation qui alimentent les réseaux de distribution, et elles sont des centres où la mesure de système, la protection, l'interruption, et les équipements de répartition sont situés. Typiquement, plusieurs lignes à haute tension sont reliées aux postes de transformations, qui abaissent la tension et envoient la puissance transformée à travers des lignes de transport à tension inférieure ou de distribution. Les postes de transformation sont structurés avec des jeux de barres épaisses auxquelles les diverses lignes se relient. Les équipements d'ouverture et de fermeture de circuit assurent les opérations de raccordement et de débranchement requises pour la répartition de puissance, les changements de configuration, ou l'isolation des lignes en défauts. Il existe une large variété de configurations des sous-stations. Il existe aussi plusieurs arrangements des jeux de barres (simples, double, ou à triples jeux de barre) et de disjoncteurs et des dispositifs de répartition de puissance dans les lignes sortantes et entrantes déterminant le type de configuration du poste de transformation.

L'élément clé le plus représentatif dans les postes de transformation est le transformateur, qui soulève ou abaisse la tension. La transformation fonctionne électromagnétiquement avec deux enroulements autour d'un noyau ferromagnétique. L'assemblée entière est immergée dans une cuve d'huile pour assurer l'enveloppe isolante optimale. Ce sont des dispositifs très grands, chers et lourds, avec un taux d'échec très bas. Beaucoup de transformateurs sont impliqués pour la commande de la tension de système : dans ces derniers, les enroulements sont équipés avec des prises qui tiennent compte de légères modifications dans le rapport de transformation et donc la tension et abaissée ou élevée. Dans quelques transformateurs, la régulation peut être exécutée en charge, alors que ce n'est pas possible pour

d'autres. La figure 1.10 montre plusieurs transformateurs d'un poste de transformation. D'autres composants de sous-station incluent des disjoncteurs et des dispositifs de commutation. En effet, le système doit absolument être protégé contre les courts-circuits qui se produisent dans les lignes ou les jeux de barres de sous-station, puisqu'ils déclenchent la circulation des courants très forts qui pourraient endommager les câbles et les équipements. Un défaut doit être dégagé, c.-à-d., la surintensité est dégagée, aussitôt que possible et isolée pour réparer le composant endommagé ; autrement, le système dans son ensemble peut être mis en danger.

Figure 1.10 Transformateurs de puissance d'une sous-station.

Les disjoncteurs les plus sophistiqués sont des disjoncteurs automatiques, qui peuvent ouvrir un circuit quand les surintensités se produisent. Les dispositifs de protection détectent des surintensités et décident quelles lignes doivent être ouvertes pour dégager le défaut. Il existe plusieurs types de disjoncteurs : disjoncteurs à l'air comprimé (ou pneumatique) ou des disjoncteurs magnétiques pour les petites puissances et les disjoncteurs immergés dans l'huile ou les dispositifs d'hexafluorure sulfurique pour des systèmes avec la très haute tension. Un usage spécial de ces mécanismes est leur capacité de s'ouvrir deux fois dans la succession immédiate. Puisque beaucoup de défauts ont une petite durée parce que la cause de la panne disparaît spontanément, si en raison d'un faux contact ou un contact grillé par exemple, le système essaye habituellement de rebrancher le disjoncteur automatiquement, au cas où on éliminerait la cause du défaut. Sinon, le disjoncteur rouvrira. On doit noter ici qu'en raison de la conception de disjoncteur, il n'est pas habituellement possible pour s'assurer de la vue qu'un disjoncteur soit ouvert ou fermé. [24]

Une fois que le défaut est dégagé et identifié, le secteur endommagé doit être électriquement isolé pour rebrancher le reste d'éléments par le disjoncteur. Ceci est fait avec des sectionneurs locaux, employés pour ouvrir ou fermer une ligne quand le courant est négligeable. Leur fonction n'est pas, donc, de couper le courant, mais pour isoler simplement visiblement une section de ligne ou un dispositif, une machine, un jeu de barre de sous-station, ou n'importe quel autre élément ainsi ils peuvent être manipulés pour la réparation ou l'entretien dans toute l'assurance qu'elle n'est pas chargée. L'opérateur ferme le circuit manuellement après confirmation que le disjoncteur a fonctionné correctement et la tension est enlevé du secteur entier [1].

En conclusion, les disjoncteurs utilisés dans la répartition de puissance ont un pouvoir de coupure sur l'ordre de l'intensité nominale du courant dans le circuit ou la ligne qu'elles sont conçues pour s'ouvrir ou se fermer. En conséquence, elles ne s'ouvrent pas en cas du court-circuit. Les disjoncteurs à air comprimé, disjoncteurs automatiques à air comprimé, disjoncteurs à gaz,

disjoncteurs magnétiques, et les disjoncteurs à l'huile ou d'hexafluorure sulfurique sont des dispositifs de protection utilisés à ce but.

Aujourd'hui quelques sous-stations sont entièrement immergées dans l'hexafluorure sulfurique. Bien que ça coute plus cher, cet arrangement permet de raccourcir considérablement la distance entre les barres, les conducteurs, et les câbles, et c'est particulièrement attrayant pour les environnements urbains où la surface est coûteuse.

1.5 DISTRIBUTION

Les réseaux de distribution sont les réseaux à moyenne et basse tension se connectent avec le réseau de transport à travers les sous-stations dans des directions multiples pour porter l'énergie électrique même aux secteurs les plus loin. La structure de ce réseau est très différente de la structure de réseau de transport. Le réseau régional, qui fait réellement partie de réseau de transport, a une configuration en boucle et fonctionne aux tensions légèrement inférieures, en général 132, 66, et 45 kiloVolts. Les sous-stations alimentées par ce réseau abaissent la tension à 20, 15, ou 6.6 kiloVolts, débitant l'énergie électrique dans le réseau de distribution, qui est la partie du réseau fournissant la puissance au consommateur final. Les sous-stations sont équipées normalement des disjoncteurs pour la protection des équipements, c.-à-d., des lignes reliées à d'autres postes de transformation où la tension est abaissée encore pour assurer la puissance de basse tension, qui peut être 380, 220, 127, ou 110V, selon le pays, aux clients, aux grossistes, et aux détaillants résidentiels et semblables. Les problèmes de chute de tension qui surgissent également dans ces réseaux sont résolus en plaçant des prises dans les transformateurs et les banques de condensateur qui assurent la puissance réactive [23].

Les réseaux de distribution dans les zones urbaines, qui sont caractérisés par des densités de charge élevées et concentrés dans de petits secteurs, sont généralement des lignes souterraines. En raison du nombre plus grand d'utilisateurs, les conditions de fiabilité sont plus strictes. La structure de système urbaine est habituellement maillée pour une plus grande fiabilité, mais généralement ces réseaux fonctionnent radialement, avec des disjoncteurs normalement ouverts, pour des raisons de coût et de facilité d'emploi. Les réseaux de distribution, qui comportent des milliers des kilomètres de câblage, sont sujets à un échec plus fréquent que le réseau de transport et leur structure est moins superflue ; ceci signifie que la plupart des pannes d'alimentation qui affectent le consommateur final proviennent du réseau de distribution. En termes d'investissement, ils expliquent une grande partie des coûts de système totaux et réclament normalement un investissement plusieurs fois plus haut que le réseau de transport. [25]

1.6 COMMANDE ET PROTECTION

La commande et la protection sont les aspects technologiques du réseau électrique. En raison de la large variété de tels systèmes, la discussion suivante sera limitée à une seule énumération des dispositifs impliqués. Ils sont organisés par des niveaux [26].

Au premier niveau, les éléments qui composent la base du réseau électrique, les centrales de production, les réseaux à haute tension, les grandes sous-stations, sont centralement surveillés et commandés par un centre de commande qui dirige l'état de fonctionnement du système en temps réel (centrales de production, écoulements de puissance, niveaux de tension, fréquence ; ...) par des mesures à distance transmises et traitées. Ces systèmes de surveillance et de contrôle sont appelés SCADA : supervisory control and data acquisition ; (acronyme pour la commande de surveillance et acquisition de données). Ces centres de commande- peuvent être un pour le pays entier, ou plusieurs, mesuré par

ordre de l'importance et coordonner-tâchent d'assurer la sécurité des systèmes et peuvent transmettre des instructions aux centrales de production pour générer la puissance active ou réactive, pour commander la répartition de puissance, pour changer des prises de transformateur ou pour relier des banques de condensateur. De telles instructions sont basées sur des données de système, interprétées par des opérateurs en raison de leur expérience ou avec l'appui des modèles sophistiqués qui analysent des conditions de fonctionnement et déterminent l'écoulement de puissance des lignes ou les tensions nodales sous différentes éventualités hypothétiques. [27]

Les systèmes de contrôle installés aux centrales de production constituent le deuxième niveau de l'opération. Les deux systèmes les plus importants sont les régulateurs de tension et de vitesse. Les régulateurs de vitesse maintiennent l'équilibre instantané entre la génération et la consommation dans le système. La production doit répondre immédiatement à n'importe quelle augmentation ou diminution de la demande. De même, le déclenchement d'une unité en fonction à un moment donné à cause d'un défaut, où l'énergie nucléaire est impliquée, ceci peut signifier jusqu'à 1000MW, occasionne un déséquilibre instantané entre la puissance générée et consommée qui doit être compensée en remplaçant immédiatement l'unité en échec. Quand la puissance générée diffère de la charge du système, la puissance en surplus ou le manque de puissance est stocké ou retiré, respectivement, de l'énergie cinétique stockée dans des machines rotatives. [28]

Un tel changement de paramètre active automatiquement la vapeur, l'eau, ou la valve de conduite de gaz pour modifier la génération en conséquence. Ceci s'appelle la régulation primaire de la commande de charge-fréquence.

Un manque de puissance provoqué par un échec de centrale électrique, par exemple, incite une réponse commune à travers le réseau interconnecté entièrement (tous les pays synchroniquement reliés au pays où le manque s'est produit sont impliqués), qui empêche l'effondrement de la fréquence, mais ne peut pas la rétablir exactement à la valeur nominale. De même les échanges de puissance avec les réseaux voisins soutiennent leurs valeurs prédéterminées dues aux écoulements exigés pour maintenir la fréquence. Une deuxième boucle de commande connue sous le nom de CAG ou commande automatique de génération rétablit la fréquence à la valeur nominale et les opérations d'échange à leurs valeurs initiales.

Ceci constitue ce qui est connu en tant que régulation secondaire, qui est également habituellement automatique, et n'implique pas tous les générateurs, en particulier aucun situé sur les systèmes voisins. La génération supplémentaire exigée est redistribuée parmi les stations choisies à cette fin. Ceci régénère également la capacité primaire de réservation, d'assurer l'opération continue et d'empêcher l'arrêt de système, résultant des unités atteignant leur capacité de limite. En conclusion, la régulation tertiaire peut également être mise en application. À ce niveau, dans lequel la surveillance n'est pas automatique, le centre de commande peut changer des instructions de répartition de puissance à long terme d'augmenter l'efficacité économique et de reconstituer ce qu'on appelle capacité secondaire de réservation, de la même façon que la commande secondaire reconstitue la capacité primaire de réservation. On le notera que la régulation secondaire et tertiaire font partie du niveau plus élevé de commande, mais elles ont été décrites ici pour une plus grande clarté.

Les centrales électriques sont équipées d'une deuxième boucle de commande liée à la tension de système. La tension de système doit être gardée dans certaines marges permises d'assurer la sécurité des systèmes et pour garantir que la puissance fournie est d'une qualité raisonnable. Le niveau de tension d'un réseau électrique est étroitement lié à l'équilibre de la puissance réactive. La consommation réactive élevée, par les lignes chargées ou les moteurs inductifs, tend à diminuer la tension de système, tandis

qu'une génération de la puissance réactive par des lignes moins chargées ou des banques de condensateur par exemple, tend à soulever la tension de système. Pour ces raisons, les centrales électriques, qui peuvent produire ou consommer la puissance réactive à la volonté avec leurs générateurs CA (synchrones), sont les candidats idéaux pour surveiller et corriger des fluctuations de tension dangereuse. Le régulateur de tension mesure des tensions aux bornes de générateur ou aux points choisis du système, compare la mesure à une valeur de référence et ajuste le courant d'excitation de générateur CA, qui commande l'énergie réactive assurée ou absorbée par l'unité [29].

Des centrales électriques, naturellement, sont équipées des systèmes de protection qui empêchent des dommages potentiels. Le générateur CA, des pompes, les turbines, et n'importe quel autre composant essentiel sont équipés des systèmes de mesure, des relais de déclenchement, et des alarmes. L'approche est comme discuté ci-dessus pour des sous-stations : les relais de protection doivent détecter les anomalies, les disjoncteurs automatiques doivent les dégager et les sectionneurs doivent isoler le manque de puissance pour rétablir le service dans le reste du système tandis que le défaut est réparé. Les relais de protection doivent être assez sensibles pour détecter le défaut, sélectif pour réduire au minimum l'impact du dégagement, et capable de répondre rapidement pour que la protection soit efficace, et fiable, c.-à-d., ni des déclenchements inutiles ni des mal fonctionnements dans des situations critiques. Ils doivent également être robustes, puisqu'ils fonctionnent sous des circonstances variablement et considérablement défavorables, et doivent fonctionner indépendamment et automatiquement, même en l'absence de l'électricité [1].

1.7 CONCLUSION

Dans ce chapitre nous avons vu que la demande de puissance augmente rapidement et l'expansion des réseaux de transport et des centrales de productions est limitée à cause des ressources épuisables et des contraintes environnementales strictes, les réseaux électriques sont aujourd'hui beaucoup plus chargés qu'avant. Ceci conduit les réseaux électriques à fonctionner près de leurs limites de stabilité.

Les systèmes de transport à courant alternatif flexibles -mentionnés dans la section des réseaux de transport-basés sur l'électronique de puissance offrent de nouvelles solutions. Les dispositifs FACTS peuvent être utilisés pour augmenter la capacité de transport, pour améliorer la stabilité et le comportement dynamique ou pour assurer une meilleure qualité de puissance dans les réseaux modernes. Ils sont capables de compenser la puissance réactive, commander la tension et commander de l'écoulement de puissance. En raison de leur électronique de puissance contrôlable,

Les dispositifs FACTS présentent une rapidité de commande par rapport aux dispositifs conventionnels comme la compensation conventionnelle ou aux transformateurs déphaseurs avec des commutateurs mécaniques de prises. Le chapitre suivant présente une étude approfondie des dispositifs FACTS.

CHAPITRE 2 LES FACTS

Les activités du marché de l'électricité et la demande croissante en énergie électrique ont mené aux réseaux électriques fortement surchargés. Ceci exige l'opération des réseaux de plus en plus près de leurs limites de stabilité. L'opération de réseau électrique est affectée par des problèmes liés à la stabilité, menant à un comportement imprévisible. Le besoin croissant de transporter plus d'électricité peut être satisfait en installant de nouvelles lignes de transport et des centrales de production. Dans beaucoup de pays, il est difficile d'obtenir des permis pour établir de nouvelles lignes de transport et des centrales de production, qui signifie que le réseau existant doit être renforcé et employé d'une manière plus efficace pour remplir les conditions changeantes.

L'utilisation efficace des installations existantes peut être effectivement abordée par l'introduction des convertisseurs à base d'électroniques de puissance pour la régulation d'écoulement de puissance et des tensions dans les réseaux de transport. Ceci permet l'opération flexible des réseaux de transport par lequel les changements puissent être adaptés facilement sans soumettre le réseau à des contraintes. Les systèmes flexibles de transport à courant alternatif (FACTS) sont des systèmes basés sur l'électronique de puissance et d'autre équipement statique qui fournissent la contrôlabilité de l'écoulement de puissance et de la tension.

Les FACTS fournissent une meilleure adaptation à des conditions de fonctionnement variées et améliorent l'utilisation des installations existantes [30].

Les applications de base des FACTS sont :

- commande d'écoulement de puissance,
- augmentation de la capacité de transport,
- commande de la tension,
- compensation de puissance réactive,
- amélioration de la stabilité,
- amélioration de la qualité de puissance,
- conditionnement de puissance,
- réduction des Flicker,
- interconnexion de centrales de productions renouvelables et distribuées et de stockages. [1]

Ce chapitre donne une introduction aux dispositifs FACTS. Les conceptions de base des FACTS sont présentées et discutées d'un point de vue pratique.
2.1 CONCEPT DE COMMANDE DE TRANSIT DE PUISSANCE

La figure 2.1 montre un réseau simple de transport d'énergie avec une tension d'entrée, $V_e (V_e \angle \delta_e)$, et une tension de sortie, $V_s (V_s \angle \delta_s)$, relié par une ligne de transport de réactance (X) et les diagrammes de phase relatifs.

Figure 2.1 Ligne de transport avec les diagrammes de phase relatifs

La tension de la ligne, V_{Xn} ($V_e - V_s$), est la différence entre les tensions d'entrée et de sortie. Le courant résultant de la ligne (I) est en retard par rapport à la tension (V_{Xn}) de 90°. Le module et l'angle de phase de la tension par rapport au courant de la ligne sont différents à chaque point de la ligne de transport. Les tensions intermédiaires (V_1 , V_2 , etc.) ont des modules plus petits que les tensions d'entrée et de sortie (V_e et V_s). La tension la plus petite (V_m) est au point médian de la ligne de transport dans cette illustration. Les composants directs ou actifs et les composant en quadrature ou réactifs du courant d'entrée de la ligne sont I_{de} et I_{qe} , et les composant actifs et réactifs du courant de sortie de la ligne sont I_{ds} et I_{qs} . Les flux de puissance actif et réactif à l'entrée sont P_{en} et Q_{en} et à la sortie de la ligne sont P_{sn} et Q_{sn} .

D'une façon générale, les puissances d'entrée active et réactive (P_{en} et Q_{en}) sont : [19]

$$P_{en} = \frac{V_e V_s}{X} \sin\left(\delta_e - \delta_s\right) \tag{2.1}$$

Et
$$Q_{en} = \frac{V_e V_s}{X} \left[\frac{V_e}{V_s} - \cos(\delta_e - \delta_s) \right]$$
 (2.2)

Les puissances de sortie active et réactive (P_{sn} et Q_{sn}) sont :

$$P_{sn} = \frac{V_e V_s}{X} \sin\left(\delta_e - \delta_s\right) \tag{2.3}$$

Et
$$Q_{sn} = \frac{V_e V_s}{X} \left[\cos\left(\delta_e - \delta_s\right) - \frac{V_e}{V_s} \right]$$
 (2.4)

Les flux de puissance actifs et réactifs dans la ligne peuvent être régulés si le module et l'angle de phase de tension sont commandés. Ainsi qu'une inductance ou un condensateur additionnel en série avec la ligne peut commander la réactance efficace de la ligne de transport et la conséquence est la régulation des flux de puissance actifs et réactifs dans la ligne. Quand un ou plusieurs paramètres de

commande de flux de puissance (module de tension, son angle de phase, et la réactance de la ligne) sont commandés, la ligne serait « compensée ».

Considérant une ligne de transport compensée à son entrée. Supposant qu'il n'y a aucun changement de la réactance de la ligne (X) et de la tension de sortie, V_s (c.-à-d., $V_s \angle \delta_s$), le flux de puissance dans la ligne peut être régulé en commandant le module et l'angle de phase de la tension d'entrée de sorte que ce devienne la tension modifiée d'entrée, $V_{e'}$ (c.-à-d., $V_{e'} \angle \delta_{e'}$). Le contrôle d'un paramètre (module de tension ou son angle de phase) en utilisant un contrôleur de flux de puissance actifs et réactifs (P_s et Q_s) dans la ligne simultanément.

La clef pour régler les flux de puissance actifs et réactifs (P_s et Q_s) est de commander la tension d'entrée à une grandeur spécifique ($V_{e'}$) et à l'angle de phase ($\delta_{e'}$). La tension d'entrée modifiée peut être obtenue en ajoutant une tension de compensation connectée en série $V_{e'e}$ (c.-à-d., $V_{e'e} \angle \delta_{e'e}$) à la tension originale d'entrée comme le montre la figure 2.2a.

Figure 2.2 Deux méthodes pour commander la tension: (a) avec une tension de compensation connectée en série et (b) avec une tension shunt.

Pour le transfert de puissances entre deux réseaux isolés ou l'interconnexion de deux lignes de transport avec différents tensions ou angles de phase (ou fréquences), la tension modifiée d'entrée peut être obtenue à partir d'une tension de compensation shunt E (c.-à-d., $E \angle \delta_{e'}$) comme le montre la figure 2.2(b). Quel que soit la connexion de la tension de compensation série ou shunt, elle est à n'importe quel angle de phase par rapport à son courant et échange, en conséquence, des puissances actives et réactives avec la ligne [31].

Il y a trois méthodes connues pour mettre en application les tensions de compensation série et shunt qui sont :

- 1. FACTS à base des convertisseurs de source de tension (VSC : Voltage Sourced converter) série, shunt et série shunt
- 2. FACTS à base des convertisseurs à bases des valves de thyristors série, shunt et série shunt
- Dispositifs conventionnels à base des résistances, inductances, capacités, les transformateurs changeurs de prises (LTC : load tap changers) et transformateur déphaseur [30] [32].

2.2 GENERALITE

Le développement des FACTS a commencé par le développement croissant des composants électroniques de puissance. Des interrupteurs pour des niveaux de puissance élevée ont été rendus disponibles dans des convertisseurs pour la haute et même la très haute tension. Les éléments de départ globaux sont des dispositifs de réseau influençant la puissance réactive ou l'impédance d'une partie du réseau. La figure 2.3 montre un certain nombre de dispositifs de base conventionnels et FACTS [30] [33] [34].

Dispositifs Shunt: Compensation, régulation de tension, amélioration de stabilité et de qualité de puissance
 Dispositifs Série : Compensation, amélioration de stabilité, qualité de puissance, limitation de court-circuit
 Shunt + Série : Commande de flux de puissance

Figure 2.3 Présentation de l'ensemble des FACTS

La classification des FACTS en termes « rapide » et « statique » a besoin d'une certaine explication. Le terme « rapide » est employé pour exprimer la contrôlabilité rapide des FACTS fournis par l'électronique de puissance. C'est l'un des facteurs principaux de différenciation des dispositifs conventionnels. Le terme « statique » signifie que les dispositifs n'ont aucune pièce mobile comme les commutateurs mécaniques pour exécuter la contrôlabilité rapide. [35]

La colonne gauche de la figure 2.1 contient les dispositifs conventionnels à base des composants fixes ou mécaniquement permutables comme les résistances, les inductances ou les capacités ainsi que des transformateurs. Les FACTS contiennent ces éléments aussi bien, mais utilisent les valves ou les convertisseurs additionnels d'électronique puissance pour commuter les éléments à des fréquences élevées. La colonne gauche des FACTS utilise des valves ou des convertisseurs à base des thyristors. Ces valves ou convertisseurs sont bien connus depuis plusieurs années. Elles ont de basses pertes en raison de leur basse fréquence de commutation.

La colonne droite des FACTS contient une technologie plus avancée des convertisseurs de source de tension basés aujourd'hui principalement sur les transistors bipolaires à grille isolés (IGBT) ou les thyristors commutés à grille isolés (IGCT). Les convertisseurs de source de tension fournissent une tension contrôlable dans le module et la phase due à la modulation de largeur d'impulsions de l'IGBT ou de l'IGCT. Les hautes fréquences de modulation permettent d'obtenir moins d'harmoniques dans le signal de sortie et même de compenser des perturbations venant du réseau. L'inconvénient est que les pertes augmentent avec une fréquence croissante de commutation [32].

Dans chaque colonne les éléments peuvent être classés selon leur raccordement au réseau. Les dispositifs shunt sont principalement pour la compensation de la puissance réactive et la régulation de tension.

Les dispositifs série compensent la puissance réactive. Avec leur influence sur l'impédance des lignes, ils ont une influence sur la stabilité et le flux de puissance. Ces dispositifs sont installés sur des plates-formes en série à la ligne.

Les FACTS shunt et série obtiennent de plus en plus une importance croissante. Ces dispositifs sont utilisés pour la contrôlabilité de flux de puissance [36].

Les FACTS sont vus en tant que nouvelle technologie, mais des centaines d'installations ont été établie dans le monde entier, particulièrement le SVC depuis le début des années 70 avec une puissance installée totale de 90.000 MVAr, ceci montre l'acceptation de ce genre de technologie. Le tableau 2.1 montre le nombre de dispositifs FACTS installés dans le monde avec la puissance installée. Même les développements récents comme le STATCOM ou le TCSC montrent un taux de développement croissance et rapide dans leurs domaines d'application spécifiques.

Tableau 2.1 Nombre de FACTS installés dans le monde et leur puissance installée					
Туре	Nombre	Puissance totale installée en MVA			
SVC	600	90.000			
STATCOM	20	3.000			
Compensation série	700	350.000			
TCSC	10	2.000			
HVDC B2B	45	18.000			
HVDC VSC B2B	1 + (12 avec cable)	2250			
UPFC	2-3	250			

2.3 CONFIGURATIONS DES FACTS

2.3.1 DISPOSITIFS SHUNT

Le dispositif FACTS le plus utilisé est le SVC ou la version avec le convertisseur de source de tension appelé STATCOM. Ces dispositifs shunt fonctionnent en tant que compensateurs de puissance réactive.

Les applications principales dans le réseau du transport, distribution et les réseaux industriels sont :

- Réduction de flux de puissance réactifs non désirés et donc de pertes réduites de réseau,
- Conservation des échanges de puissance contractuelle avec une puissance réactive équilibrée,
- La compensation des consommateurs et l'amélioration de la qualité de puissance particulièrement avec des fluctuations énormes de demande comme les machines industrielles, les usines de fusion des métaux, le chemin de fer..etc.
- La compensation des convertisseurs de thyristor par exemple dans le CCHT(courant continu haute tension) conventionnel,
- Amélioration de stabilité statique et dynamique [37].

2.3.1.1 SVC : Static Var Compensator

Le compensateur statique de puissance réactive peut sans interruption fournir la puissance réactive exigée pour contrôler les oscillations dynamiques de tension dans de diverses conditions du système pour améliorer la stabilité des réseaux de transport et de distribution. L'installation d'un SVC à un ou plusieurs points appropriés dans le réseau peut augmenter la capacité de transfert et réduire des pertes et maintient bon un profil de tension sous différentes conditions. En outre un SVC peut atténuer les oscillations de la puissance active par la modulation d'amplitude de tension. [38]

Les SVC se composent d'un certain nombre de blocs. Le plus important est la valve des thyristors antiparallèles connectés en série. Les réactances à noyau d'air et les condensateurs de la haute tension sont les éléments de puissance réactive utilisés avec les valves de thyristor. Le raccordement de cet équipement à la ligne de transport est réalisé par un transformateur de puissance.

En principe le SVC se compose des condensateurs contrôlés par thyristor (TSC : Thyristor Switched Capacitors) et des réactances contrôlées par thyristor (TSR/TCR : Thyristor Switched/Controlled Reactors). La commande coordonnée d'une combinaison de ces branches varie la puissance réactive comme le montre la figure 2.4 [30].

Figure 2.4 Blocs constitutifs de SVC et caractéristique statique

La caractéristique statique est donnée sur la figure 2.4 trois zones sont distinctes :

- une zone où seules les capacités sont connectées au réseau,
- une zone de réglage où l'énergie réactive est une combinaison des TCR et des TSC,
- une zone où le TCR donne son énergie maximale (butée de réglage), les condensateurs sont déconnectés [39].

2.3.1.2 STATCOM : Static Compensator

En 1999 le premier SVC avec VSC appelé STATCOM (COMpensateur STATique) est met en pratique. Un STATCOM est construit avec des thyristors commandés à la fermeture et l'ouverture comme les GTO(Gate turn Off thyristor) ou les IGCT(Integrated gate-commutated thyristor) ou avec des IGBT(Insulated-gate bipolar transistor). La structure et la caractéristique opérationnelle sont montrée dans la figure 2.5. La ligne statique entre les limites du courant a une certaine inclinaison qui détermine la commande caractéristique pour la tension. L'avantage d'un STATCOM est que le contrôle de la puissance réactive est indépendant de la tension sur le point de raccordement. Ceci peut être vu dans le diagramme pour les courants maximaux qui sont indépendants de la tension en comparant avec

le SVC dans la figure 2.4. Cela veut dire que même pendant la plupart des éventualités graves, le STATCOM garde ses pleines capacités [40] [41].

Le rôle du STATCOM est d'échanger de l'énergie réactive avec le réseau. Pour ce faire, l'onduleur est couplé au réseau par l'intermédiaire d'une inductance, qui est en général l'inductance de fuite du transformateur de couplage [42] [39].

Figure 2.5 Structure de STATCOM et caractéristique tension/courant

2.3.2 **DISPOSITIFS SERIES**

Des dispositifs séries sont les compensations séries contrôlées par thyristors (TCSC) de ou même des dispositifs basés sur les VSCs. Les applications principales sont :

- réduction de la chute de tension série de la ligne en module et en angle,
- réduction de fluctuations de tension dans des limites définies pendant les changements des puissances transmis,
- l'atténuation des oscillations,
- limitation des courants de court-circuit dans les réseaux ou les postes,
- prévention de flux de boucle et ajustement de flux de puissance [43] [44].

2.3.2.1 TCSC (Thyristor Controlled Series Capacitor)

Les TCSC (compensateur série contrôlé par thyristors) abordent des problèmes dynamiques spécifiques dans les réseaux de transports. Premièrement ils augmentent l'amortissement des oscillations lors de l'interconnexion des grands réseaux électriques. Deuxièmement ils peuvent surmonter le problème de la résonance Sous-Synchrone (SSR), un phénomène qui implique une interaction entre les grandes unités de production des et les réseaux de transports compensés en série. La grande vitesse de commutation du TCSC fournit un mécanisme pour le contrôle d'écoulement de puissance de la ligne, qui permet l'augmentation de la puissance transportée par les lignes de transport existantes, et tient compte du réajustement rapide d'écoulement de puissance de la ligne en réponse à des éventualités diverses. Le TCSC peut également régler le flux de puissance à l'état stable dans ses limites d'estimation. [45] [42]

La figure 2.6 montre l'installation d'un TCSC et de son diagramme opérationnel. L'angle d'amorçage et les limites thermiques des thyristors déterminent les frontières du diagramme opérationnel.

Figure 2.6 Structure et diagramme de fonctionnement du TCSC

Les grands principes du concept de TCSC sont deux ; premièrement, fournir l'amortissement électromécanique entre de grands réseaux électriques en changeant la réactance d'une ligne d'interconnexion spécifique, c.-à-d. le TCSC fournira une réactance capacitive variable. Deuxièmement, le TCSC changera son impédance apparente (comme vu par le courant de la ligne) pour des fréquences sous-synchrone, telles qu'une résonance sous-synchrone éventuelle est évitée. Les deux objectifs sont atteints avec le TCSC, en utilisant les algorithmes de commande qui fonctionnent concurremment. Les commandes fonctionneront sur le circuit de thyristor en parallèle au banc principal de condensateur tel que des charges commandées sont ajoutées au condensateur principal, lui faisant un condensateur variable à la fréquence fondamentale et «une inductance virtuelle » aux fréquences sous-synchrone. Le premier TCSC a été commissionné en 1996 [30].

2.3.2.2 SSSC(Static Synchronous Series Compensator)

Tandis que le TCSC peut être modélisé comme une impédance série, le SSSC est une source de tension série. La configuration est montrée dans la figure 2.7, qui se ressemble fondamentalement la même que le STATCOM. Mais en réalité ce dispositif est plus compliqué en raison de la plate-forme de support et de la protection. Une protection de semi-conducteurs est absolument nécessaire, particulièrement quand les IGBTs sont employés. [46]

Figure 2.7 Structure de SSSC

Si l'on utilise un système de stockage d'énergie, le SSSC peut à ce moment-là échanger de la puissance active avec la ligne électrique. Ceci peut contribuer à améliorer la stabilité du réseau. Dans ce cas la tension V_S n'est pas obligatoirement en quadrature avec le courant de ligne.

2.3.3 DISPOSITIFS HYBRIDES SERIE – SHUNT

2.3.3.1 DPFC (Dynamic Power Flow Controller)

Un nouveau dispositif dans le domaine de contrôle d'écoulement de puissance est le contrôleur dynamique de flux de puissance (DPFC). Le DPFC est un dispositif hybride entre un transformateur déphaseur (PST) et une compensation série. [47]

La structure du contrôleur dynamique de flux de puissance est montrée dans la figure 2.8. Le contrôleur dynamique de flux de puissance comprend les composants suivants :

- un transformateur déphaseur standard avec changeur de prise (PST : phase shifting transformer).
- condensateurs et inductance commutés par thyristor connecté en série (TSC/TSR).
- Un condensateur shunt mécaniquement commuté (MSC : mechanically switched shunt capacitor). (C'est facultatif selon le besoin de puissance réactive).

Figure 2.8 Configuration de DPFC

Basé sur les conditions de système, un DPFC pourrait se composer d'un certain nombre de TSC ou de TSR en série. Le condensateur shunt mécaniquement commuté (MSC) fournira le support de tension en cas de surcharge de réseau et d'autres conditions.

Cependant, généralement le principe de la commande de l'angle de phase utilisé dans TCSC peut être appliqué pour le DPFC. L'opération d'un DPFC est basée sur les règles suivantes :

- TSC/TSR sont utilisés quand une réponse rapide est exigée.
- Le soulagement de la surcharge est manipulé par TSC/TSR.
- La commutation du changeur de prise du transformateur déphaseur devrait être réduite au minimum en particulier pour les courants les plus élevés.
- La compensation d'énergie réactive peut être obtenue par MSC, changeur de prises avec les capacités et les inductances commutées [30].

2.3.3.2 UPFC (Unified Power Flow Controller)

L'UPFC est une combinaison d'un compensateur statique (STATCOM) et d'un compensateur série statiques contrôlé (SSSC). Il agit en tant que compensation shunt et dispositif déphaseur simultanément. [48]

Figure 2.9 Configuration d'un UPFC

L'UPFC se compose d'un transformateur shunt et un autre série, qui sont reliés à deux VSCs qui ont une capacité DC commune. Le circuit DC permet l'échange de puissance active entre les convertisseurs série et shunt pour commander l'angle de phase de la tension. Cette installation, comme le montre la figure 2.9, fournit la pleine contrôlabilité pour l'écoulement de puissance et pour la tension. Le convertisseur série doit être protégé avec un pont en thyristor. En raison des efforts élevés des VSCs et de la protection, un UPFC devient tout à fait cher, qui limite les applications pratiques où la commande d'écoulement de puissance et de tension est exigée simultanément [30] [49].

2.3.3.3 IPFC (Interline Power Flow Controller)

L'IPFC combine deux convertisseurs série ou plus. [50] Quand les flux de puissance de deux lignes du même poste besoin d'être commandé, un contrôleur interligne de flux de puissance (IPFC) peut être employé. L'IPFC se compose de deux VSCs séries dont ils partagent un condensateur DC commun. Ceci permet à la puissance active de circuler entre les deux VSCs. La figure 2.10 montre la configuration d'un IPFC. Avec cette configuration deux lignes peuvent être commandées simultanément pour optimiser l'utilisation de réseau. Généralement en raison de son installation complexe, des cas spécifiques d'application doivent être identifiés justifiant l'investissement [30].

Figure 2.10 Configuration de l'IPFC

2.3.3.4 GUPFC (Generalized Unified Power Flow Controller)

Le GUPFC combine trois convertisseurs shunt et séries ou plus. Il prolonge le concept de la commande d'écoulement de puissance et de tension au-delà de ce qui est réalisable avec l'UPFC. Le GUPFC le plus simple se compose de trois convertisseurs, un convertisseur shunt et les autres sont en

série avec deux lignes de transport d'un poste. La figure 2.11 montre la configuration de GUPFC. Un GUPFC de base peut commander cinq quantités des réseaux tels que la tension nodale, et l'écoulement de puissance active et réactive de deux lignes de transport. [51]

Le concept de GUPFC peut être prolongé pour plus de lignes si nécessaire. Le dispositif peut être installé dans quelques postes centrales pour contrôler l'écoulement de puissance de plusieurs lignes et pour fournir le support de tension aussi. En utilisant des dispositifs GUPFC, la capacité de transfert des lignes de transmission peut être augmentée sensiblement. En outre, en employant la gestion multilignes du GUPFC, des flux de puissance actifs sur des lignes peuvent être augmentés, et diminués également en ce qui concerne l'opération et les conditions de transaction du marché. En général le GUPFC peut être employé pour augmenter la capacité de transfert et pour soulager les congestions d'une manière flexible [30]. La complexité de sa configuration et sa commande nécessitent des cas spécifiques d'applications. [52]

Figure 2.11 Configuration d'un GUPFC

2.3.4 DISPOSITIFS DOS-À-DOS (BACK-TO-BACK)

Les dispositifs dos à dos fournissent en général une contrôlabilité et une limitation d'écoulement de puissance. Une surcharge de ces dispositifs est donc impossible. Ils peuvent résister les défauts en cascade, qui pourraient se produire en raison des défauts de la ligne lorsqu'une ligne après l'autre est surchargée.

Les systèmes HVDC(high voltage direct current) dos à dos conventionnels avec des convertisseurs à base de thyristor ont besoin des filtres pour réduire la déformation harmonique. La puissance réactive n'est pas contrôlable. Ces dispositifs sont principalement utilisés quand deux réseaux asynchrones doivent être interconnectés ou dans le cas de transport d'énergie pour de très grandes distances. [53]

Le HVDC VSC a des avantages même lors d'interconnexion entre deux réseaux de même fréquence. Il fournit la pleine contrôlabilité de tension au réseau sur les deux extrémités. Par conséquent il peut être fonctionné en plus de la commande d'écoulement de puissance en tant que deux STATCOMS. Sur les deux extrémités un plein diagramme opérationnel circulaire de quatre quadrants est fourni. Cette disposition de puissance réactive peut être employée pour augmenter les capacités de transmission des lignes en plus d'équilibrer le flux de puissance.

La figure 2.12 montre la configuration d'un VSC HVDC B2B [30] [54].

Figure 2.12 configuration schématique de VSC HVDC Back-to-Back

2.4 CONCLUSION

Les équipements à base de l'électronique de puissance, y compris leurs commandes appropriées, offrent des solutions efficaces à beaucoup de problèmes des réseaux modernes. Grâce aux avancées récentes dans la technologie d'électronique de puissance, le temps de réaction des dispositifs FACTS est diminué à quelques millisecondes [55].

En effet les systèmes FACTS ont la capacité d'améliorer la stabilité transitoire en utilisant une commande appropriée. Elles peuvent également contrôler la puissance transmissible de la ligne en utilisant deux méthodes : la compensation série et la compensation parallèle.

Dans ce chapitre, nous avons présenté les systèmes FACTS en général. Nous avons choisi d'étudier l'UPFC pour contrôler le transit de puissance dans un réseau électrique. L'UPFC est un compensateur qui est plus complet que les autres, grâce à sa caractéristique spéciale. En pratique, l'UPFC pourra être utilisé pour la gestion de l'énergie dans les réseaux électriques. Le chapitre suivant présente une étude approfondie de l'UPFC son principe et mode de fonctionnement, et son apport sur le réseau électrique.

CHAPITRE 3 L'UPFC

Nous avons étudié dans le chapitre 2, les dispositifs FACTS : shunt, série et hybride "série-shunt". Le concept de contrôleur unifié de flux de puissance (UPFC) a été proposé par Gyugyi en 1991. L'UPFC a été conçu pour la commande en temps réel et la compensation dynamique des réseaux de transports, fournissant la flexibilité multifonctionnelle exigée pour résoudre plusieurs problèmes de transport d'énergie électrique. Dans le cadre des concepts traditionnels de transport d'énergie, l'UPFC peut commander, simultanément ou sélectivement, tous les paramètres affectant le flux de puissance dans la ligne de transport (c.-à-d., tension, impédance, et angle de phase), et ses aptitudes uniques sont signifiées par l'adjectif « unified » dans son nom. Alternativement, il peut indépendamment commander le flux de puissance active et réactive de la ligne. Dans ce chapitre ainsi une étude détaillée de l'UPFC sera présentée.

3.1 PRINCIPE DE FONCTIONNEMENT

La figure 3.1 illustre un réseau à deux machines avec l'UPFC qui est une source de tension, représentée à la fréquence fondamentale (du réseau) par le vecteur de tension V_{pq} avec le module contrôlable V_{pq} ($0 \le V_{pq} \le V_{pqmax}$) et l'angle ρ ($0 \le p \le 2\pi$), en série avec la ligne de transport.

Figure 3.1 Représentation conceptuelle de l'UPFC dans un réseau à deux-machines.

Dans ce cas, qui inclut clairement la régulation de la tension et de l'angle de transport, l'UPFC échange généralement la puissance active et réactive avec le système de transport. Puisqu'une source de tension peut générer seulement la puissance réactive échangée, la puissance active doit être assurée pour elle, ou être absorbée d'elle. Dans l'arrangement de l'UPFC, la puissance active échangée est fournie par une des bornes d'extrémité (par exemple, l'entrée de la ligne), comme indiqué dans la figure 3.1. [40]

Dans l'implémentation pratique actuellement utilisée, l'UPFC se compose de deux convertisseurs de source de tension, comme illustré dans la figure 3.2.

Figure 3.2 Implémentation de l'UPFC par deux convertisseurs source de tension dos à dos.

Ces convertisseurs dos à dos (« convertisseur 1 » et le « convertisseur 2 » dans la figure), partagent un lien commun en courant continu, ce lien est un condensateur de stockage à courant continu. Cet arrangement fonctionne comme convertisseur idéal de puissance C.A.-à-C.A. en lequel la puissance active peut librement transiter dans l'une ou l'autre direction entre les bornes C.A. des deux convertisseurs, et chaque convertisseur peut indépendamment fournir (ou absorber) la puissance réactive sur sa propre borne C.A. Le convertisseur 2 fournit la fonction principale de l'UPFC en injectant une tension V_{pq} de module V_{pq} et d'angle de phase ρ contrôlable en série avec la ligne par l'intermédiaire d'un transformateur d'insertion. Cette tension injectée agit essentiellement comme une source de tension synchrone CA. [32]

Le courant de la ligne traverse cette source de tension ayant pour résultat l'échange de puissance réactive et active entre elle et le système à C.A. La puissance réactive échangée sur la borne à C.A. (c.-à-d. sur la borne du transformateur série) est générée par le convertisseur 2. La puissance active échangée sur la borne à C.A. est convertie en courant continu qui apparaît au lien de courant continu comme demande de puissance active positive ou négative.

La fonction de base du convertisseur 1 est de fournir ou absorber la puissance active demandée par le convertisseur 2 au lien commun C.C pour soutenir l'échange de la puissance active résultant de l'injection de tension série. Cette demande de puissance de lien de C.C du convertisseur 2 est convertie de nouveau en C.A. par le convertisseur 1 et couplée à la ligne par l'intermédiaire d'un transformateur shunt. En plus de la demande de puissance active du convertisseur 2, le convertisseur 1 peut également générer ou absorber la puissance réactive contrôlable, si on le désire, et fournir de ce fait la compensation réactive shunt pour la ligne. Il est important de noter que tandis qu'il y a un chemin direct fermé pour la puissance active par l'injection de tension série par les convertisseurs 1 et 2 de nouveau à la ligne, la puissance réactive correspondante échangée est assurée ou absorbée localement par le convertisseur 2 et donc ne doit pas être transmis par la ligne. Ainsi, le convertisseur 1 peut fonctionner à un facteur de puissance d'unité ou être commandé pour avoir un échange de puissance réactive avec la ligne indépendant de la puissance réactive échangée par le convertisseur 2. Évidemment, il ne peut y avoir aucune puissance réactive traversant le lien de C.C d'UPFC. [30]

3.2 Aptitudes de commande conventionnelle de transport d'energie

En regardant le fonctionnement du contrôleur unifié de flux de puissance du point de vue du transport d'énergie traditionnel basé sur la compensation réactive shunt, la compensation série, et la régulation d'angle de phase, l'UPFC peut accomplir toutes ces fonctions et répondre à des objectifs multiples de commande en ajoutant la tension injectée V_{pq} , dont l'amplitude et l'angle de phase appropriés, avec la tension V_s (d'entrée). La représentation de diagramme de phase montre les fonctions de commande de base de flux de puissance d'UPFC qui sont illustrées dans la figure 8.5.

La régulation de tension avec l'injection d'une tension variable en phase/contre phase, est montrée dans la figure 3.3 (a) pour une variation de tension $V_{pq} = \pm \Delta V$ ($\rho = 0$). C'est fonctionnellement semblable à un transformateur changeur de prises ayant des étapes infiniment petites.

La compensation réactive série est montrée dans la figure 3.3 (b) où $V_{pq} = V_q$ est injecté en quadrature avec le courant *I* de la ligne. Fonctionnellement ceci est semblable à la compensation série capacitive et inductive par le SSSC: la tension de compensation injectée en série peut être gardée constante, indépendante de la variation du courant de la ligne, ou peut être variée dans la proportion avec le courant de la ligne pour imiter la compensation obtenue avec un condensateur ou une inductance en série. [56]

La régulation d'angle de phase (déphasage) est montrée dans la figure 3.3 (c) où $V_{pq} = V_{\sigma}$ est injecté avec un rapport angulaire avec V, cela réalise le déphasage σ désiré (avance ou arrière) sans n'importe quel changement de l'amplitude. Ainsi l'UPFC peut fonctionner comme régulateur parfait d'angle de phase qui peut également générer la puissance réactive impliquée avec la commande d'angle de transport par la génération interne de puissance réactive

La commande multifonctionnelle de flux de puissance, exécutée par la régulation de tension, la compensation capacitive série, et la régulation d'angle de phase simultanément, ceci est montrée dans la figure 3.3 (d) où $V_{pq} = \Delta V + V_q + V_{\sigma}$. Ces possibilités fonctionnelles sont uniques à l'UPFC. Aucun dispositif classique n'a les possibilités multifonctionnelles semblables.

Figure 3.3 Diagrammes de phase illustrant les possibilités de commande conventionnelles de transport d'énergie de l'UPFC.

La commande générale de flux de puissance de l'UPFC, du point de vue de la commande de transmission conventionnelle, peuvent être illustrées mieux par le transport de la puissance active et réactive et les caractéristiques d'angle de transport du système simple à deux-machine représenté dans la figure 3.1. Concernant cette figure, la puissance transmise P et la puissance réactive - jQ, de sortie, peut être exprimé comme suit : [37] [40]

$$P - jQ_r = V_r \left(\frac{V_s + V_{pq} - V_r}{jX}\right)^*$$
(3.1)

Où le symbole * représente le conjugué d'un nombre complexe et $j = e^{j\pi/2} = \sqrt{-1}$. Si $V_{pq} = 0$, alors (3.1) décrit le système non compensé, c.-à-d.,

$$P - jQ_r = V_r \left(\frac{V_s - V_r}{jX}\right)^*$$
(3.2)

Ainsi, avec $V_{pq} \neq 0$, la puissance active et réactive totale peut être écrite sous la forme

$$P - jQ_r = V_r \left(\frac{V_s - V_r}{jX}\right)^* + \frac{V_r V_{pq}^*}{-jX}$$
(3.3)

En remplaçant

$$V_s = Ve^{j\delta/2} = V\left(\cos\frac{\delta}{2} + j\sin\frac{\delta}{2}\right)$$
(3.4)

$$V_r = V e^{-j\delta/2} = V \left(\cos\frac{\delta}{2} - j\sin\frac{\delta}{2} \right)$$
(3.5)

Et

$$V_{pq} = V_{pq} e^{j(\delta/2+\rho)} = V_{pq} \left(\cos\left(\frac{\delta}{2} + \rho\right) + j\sin\left(\frac{\delta}{2} + \rho\right) \right)$$
(3.6)

Les expressions suivantes sont obtenues pour P et Q_r :

$$P(\delta,\rho) = P_0(\delta) + P_{pq}(\rho) = \frac{V^2}{X} \sin \delta - \frac{VV_{pq}}{X} \cos\left(\frac{\delta}{2} + \rho\right)$$
(3.7)

Et
$$Q_r(\delta,\rho) = Q_{r0}(\delta) + Q_{pq}(\rho) = \frac{V^2}{X}(1-\cos\delta) - \frac{VV_{pq}}{X}\sin\left(\frac{\delta}{2}+\rho\right)$$
 (3.8)

$$Ou: P_0(\delta) = \frac{V^2}{X} \sin \delta$$
(3.9)

$$\operatorname{Et}: Q_{r0}(\delta) = \frac{V^2}{X} (1 - \cos \delta) \tag{3.10}$$

Sont les puissances actives et réactive caractérisant le transport d'énergie du système non compensé à un angle δ donné. Puisque l'angle ρ est librement variable entre 0 et 2π à n'importe quel angle de transport δ donné ($0 \le \delta \le \pi$), il suit que $P_{pq}(\rho)$ et $Q_{pq}(\rho)$ sont contrôlables entre - VV_{pq}/X et + VV_{pq}/X indépendant de l'angle δ . Par conséquent, la puissance active transmissible P est contrôlable entre : [42]

L'UPFC

$$P_0(\delta) - \frac{VV_{pq\max}}{X} \le P_0(\delta) \le P_0(\delta) + \frac{VV_{pq\max}}{X}$$
(3.11)

Et la puissance réactive Q_r est contrôlable entre :

$$Q_{0r}\left(\delta\right) - \frac{VV_{pq\max}}{X} \le Q_{0r}\left(\delta\right) \le Q_{0r}\left(\delta\right) + \frac{VV_{pq\max}}{X}$$
(3.12)

Pour n'importe quel angle de transport δ , comme illustré dans la figure 3.4. La marge vaste de commande pour la puissance transmise qui est indépendante de l'angle de transport δ , observable dans la figure 3.4, indique non seulement des possibilités supérieures de l'UPFC dans des applications de flux de puissance, mais il suggère également la capacité puissante pour l'amélioration de stabilité dynamique et l'atténuation d'oscillation de puissance.

Figure 3.4 La gamme de la puissance active transmissible P et la puissance réactive de la demande Q en fonction de l'angle de transport δ d'une ligne commandée par UPFC.

Pour illustrer plus loin la signification de (3.7) et (3.8), considérant encore la figure 3.1 qui, pour de la convenance, est également montrée d'une façon simplifiée sur le schéma 3.5 (a).

Figure 3.5 Diagramme de phase de l'UPFC (a) et de la variation de la puissance active et réactive, et la puissance active et réactive assurée par l'UPFC, avec la rotation angulaire du vecteur de tension injectée (b).

Un diagramme de phase, définissant le rapport entre V_s , V_r , V_X (le vecteur de tension aux bornes de X), et le vecteur de tension injectée V_{pq} , avec le module contrôlable ($0 \le V_{pq} \le V_{pqmax}$) et l'angle ($0 \le \rho_{pq} \le 360^\circ$), est montré dans la figure 3.5 (a). (Pour les illustrations, $\delta = 30^\circ$ et $V_s = V_r = 1$, X = 0.5, $V_{pqmax} = 0.25$ les valeurs per unit ont été assumés.)

Comme illustré, le vecteur de tension injectée V_{pq} est ajouté au vecteur fixe de la tension d'entrée V_s , pour produire la tension efficace d'entrée $V_{seff} = V_s + V_{pq}$. La différence, $V_{seff} - V_r$ donne le vecteur de tension compensée, V_x , aux bornes de X. Pendant que l'angle ρ_{pq} varie sur sa pleine gamme de 360 degrés, l'extrémité du vecteur V_{pq} se déplace le long d'un cercle avec son centre situé à l'extrémité de vecteur V_s . Le secteur dans ce cercle, obtenu avec V_{pqmax} , définit la plage de fonctionnement du vecteur V_{pq} et de ce fait la compensation réalisable de la ligne. [40] La rotation du vecteur V_{pq} avec l'angle ρ_{pq} commande le module et l'angle du vecteur V_x , et par conséquence, la puissance active transmise, P, et la puissance réactive, Q_r varient avec la variation de l'angle ρ_{pq} d'une façon sinusoïdale, comme illustré dans la figure 3.5 (b). [57] Ce processus, naturellement, exige de la source de tension (V_{pq}) de fournir et d'absorber la puissance active et réactive, P_{pq} et Q_{pq} , qui sont également des fonctions sinusoïdales de l'angle ρ_{pq} , suivant les indications de la figure. L'UPFC commande simplement le module et la position angulaire de la tension injectée en temps réel afin de maintenir ou varier le flux de puissance actif et réactif dans la ligne pour satisfaire à des conditions de fonctionnement et la demande. [39] [49]

3.3 COMMANDE INDEPENDANTE D'ECOULEMENT DE PUISSANCE ACTIVE ET REACTIVE

Afin d'étudier les possibilités de l'UPFC pour commander le flux de puissance active et réactive dans la ligne, on se réfère à la figure 3.5 (a). On doit supposer que la tension de compensation injectée, V_{pq} est nul. Alors le système élémentaire à deux machines (à deux nœuds) avec la tension d'entrée V_s et la tension de sortie V_r et l'angle de transport δ , et l'impédance de la ligne X, avec ces derniers, la puissance transmise normale, P_0 (δ) = { V^2/X } sin δ = sin δ , et la puissance réactive normale, $Q_0(\delta) = Q_{0s}$ (δ) = - Q_{0r} (δ) = { V^2/X } {1 - $\cos \delta$ } = 1 - $\cos \delta$, sont tracés en fonction de l'angle (δ) dans la figure 3.6 (a). Le rapport entre la puissance active P_0 (δ) et la puissance réactive Q_{0r} (δ) peut aisément être exprimé avec V^2/X = 1 sous la forme suivante :

$$Q_{0r}\left(\delta\right) = -1 - \sqrt{1 - \left(P_0\left(\delta\right)\right)^2} \tag{3.13}$$

$$\operatorname{Ou}\left[Q_{0r}\left(\delta\right)+1\right]^{2}+\left(P_{0}\left(\delta\right)\right)^{2}=1$$
(3.14)

Figure 3.6 la puissance active transmissible P_0 et la puissance réactive de la demande Q_{0r} en fonction de l'angle de transport δ d'un système à deux-machine (a) et le lieu correspondant de Q_{0r} en fonction de P_0 (b).

L'équation (3.14) décrit un cercle avec un rayon de 1.0 autour du centre défini par des coordonnées P = 0 et $Q_r = -1$ dans le plan $\{Q_r, P\}$, comme illustré pour des valeurs positives de P dans la figure 3.6 (b). Chaque point de ce cercle donne le P_0 correspondant et les valeurs de Q_{0r} du système non compensé à un angle de transport spécifique δ . par exemple, pour $\delta = 0$, $P_0 = 0$ et $Q_{0r} = 0$; pour $\delta = 30^\circ$, au $P_0 = 0.5$ et au $Q_{0r} = -0.134$; au $\delta = 90^\circ$, $P_0 = 1.0$ et $Q_{0r} = -1.0$; etc.

On considère encore la figure 3.5 (a) et on suppose maintenant que $V_{pq} \neq 0$. Par la suite d'après (3.3), ou (3.7) et (3.8), et la figure 3.5 (b), il y'a un changement de la puissance active et réactive de leurs valeurs non compensées, P_0 (δ) et $Q_{0r}(\delta)$, car ce sont des fonctions du module V_{pq} et d'angle ρ de la tension injectée V_{pq} . Puisque l'angle ρ est une variable sans restriction. ($0 \le \rho \le 2\pi$), la frontière de la région de commande possible pour P (δ , ρ) et Q_r (δ , ρ) est obtenue à partir d'une rotation complète du vecteur V_{pq} avec son module maximal V_{pqmax} . [40]

Il résulte d'après les équations ci-dessus que cette région de commande est un cercle avec un centre défini par les coordonnées $P_0(\delta)$ et $Q_{0r}(\delta)$ et un rayon de $V_r V_{pq}/X$. Avec $V_s = V_r = V$, les frontières du cercle peuvent être décrits par l'équation suivante :

$$\left\{P\left(\delta,\rho\right) - P_0\left(\delta\right)\right\}^2 + \left\{Q_r\left(\delta,\rho\right) - Q_{0r}\left(\delta\right)\right\}^2 = \left\{\frac{VV_{pq\max}}{X}\right\}^2$$
(3.15)

Les régions de commande circulaires définies par (8.15) sont montrées dans la figure 3.7 (a) à (d) pour V = 1.0, $V_{pqmax} = 0.5$, et X = 1.0 (valeurs per unit) avec leurs centres sur l'arc circulaire caractérisant le système non compensé (3.14) à différent angle de transport $\delta = 0^\circ$, 30° , 60° , et 90°. En d'autres termes, les centres des régions de commande sont définis par les cordonnées correspondants $P_0(\delta)$, $Q_{0r}(\delta)$ aux angles $\delta = 0$, 30° , 60° , et 90° dans le plan {Qr, P}. [31]

Figure 3.7 la région de commande possible de la puissance active *P* et la puissance réactive demandée Q_r pour une ligne de commandée par l'UPFC à $\delta = 0^\circ$ (a), $\delta = 30^\circ$ (b), $\delta = 60^\circ$ (c), et $\delta = 90^\circ$ (d).

On considère d'abord la figure 3.7 (a), qui illustre le cas quand l'angle de transport est zéro ($\delta = 0$). Avec $V_{pq} = 0$, P, Q_r (et Q_s) sont nulles, c.-à-d., le système est à l'arrêt à l'origine des cordonnées Q_r , P. Le cercle autour de l'origine du plan $\{Q_r, P\}$ est le lieu des valeurs correspondantes de Q_r et de P, obtenus avec la rotation du vecteur de tension V_{pq} ($0 \le \rho \le 360^\circ$) avec son module maximal V_{pqmax} . La surface de ce cercle définit tous les valeurs de P et Q_r obtenus en commandant le module V_{pq} et l'angle ρ . En d'autres termes, le cercle dans le plan $\{Q_r, P\}$ définit tous les valeurs possibles de P et Q_r avec l'UPFC. Il est possible d'observer, par exemple, que l'UPFC avec une tension injectée de 0.5 p.u. peut établir 0.5 p.u. de flux de puissance, dans l'une ou l'autre direction, sans imposer n'importe quelle demande de puissance réactive au générateur. (Ce rapport suppose tacitement que les tensions d'entrée et de sortie sont fournies par les réseaux indépendants qui peuvent assurer et absorber la puissance active sans aucun changement angulaire interne.) Naturellement, l'UPFC, peut forcer le système à une extrémité à assurer, ou absorber la puissance réactive, de l'autre extrémité. On peut observer des caractéristiques semblables de commande pour la puissance active P et la puissance réactive Q_r aux angles $\delta = 30^\circ$, 60° , et 90° dans les figures 3.7 (b), (c) et (d). [58]

Généralement à n'importe quel angle de transport δ donné, la puissance active transmise *P*, comme la demande de puissance réactive Q_r peut être commandée librement par l'UPFC dans le cercle obtenu dans le plan $\{Qr, P\}$ en tournant le vecteur de la tension injectée V_{pq} avec son module maximal. En outre, on doit noter que, la présentation ci-dessus se concentre sur la puissance réactive demandée, Q_r , alors que le composant réactif de courant la ligne, et la puissance réactive correspondante peut réellement être commandé en ce qui concerne la tension choisie à un point quelconque de la ligne. [59]

Les figures 3.7 (a) à (d) démontrer clairement que l'UPFC, avec ses possibilités uniques pour commander indépendamment le flux de puissance actif et réactif à n'importe quel angle de transport, fournit un outil puissant, nouveau pour la commande des réseaux de transport. [40]

3.4 COMMANDE DE L'UPFC

Les caractéristiques de fonctionnement supérieures de l'UPFC sont dues à son aptitude unique d'injecter une tension de compensation avec un module et un angle arbitraires en série avec la ligne, dans les limites évaluées de l'équipement. Avec une commande appropriée, l'UPFC peut varier le module et/ou l'angle de la tension injectée en série d'une façon rapide et continue comme désirée. Ainsi, il peut non seulement établir un point de fonctionnement dans une large gamme de conditions possibles de P, Q de la ligne, mais il a également l'aptitude inhérente à la transition rapide d'un tel point possible de fonctionnement à un autre. [60]

La commande de l'UPFC est basée sur l'approche de commande vectorielle proposée par Schauder et Mehta pour « les compensateurs statique avancés» (c.-à-d., pour STATCOMs) en 1991. Le terme « vecteur » est employé dans cette section pour représenter un ensemble de trois variables instantanées de tensions, ou de courant qui ont la somme de zéro. Les symboles \tilde{i} et \tilde{v} sont employés pour les vecteurs du courant et de la tension. Ces vecteurs ne sont pas stationnaires, car ils se déplacent autour d'un point fixe dans le plan avec le changement de valeurs des variables de phase, décrivant les diverses trajectoires, qui deviennent des cercles. Afin de commander la puissance il est utile de voir ces vecteurs dans un système à cordonnée orthogonal avec les axes p et q tels que l'axe p est toujours coïncident avec le vecteur instantané de tension \tilde{v} et l'axe q est en quadrature avec lui. Dans ce système le composant du courant de l'axe p, i_p , développe la puissance active instantanée et le composant du courant de l'axe q, i_q , pour la puissance réactive.

Dans les conditions équilibrées en régime normal, les composants des axes p et q des vecteurs de la tension et du courant sont des quantités constantes. Cette caractéristique de la représentation vectorielle rend la commande de l'UPFC fortement approprié en facilitant la commande découplée des composants active et réactive de courant. [33] [40]

Le système de commande de l'UPFC peut être divisé fonctionnellement en commande interne (ou commande de convertisseur) et commande des opérations fonctionnelles. Les commandes internes actionnent les deux convertisseurs afin de produire la tension injectée en série commandée et, simultanément, commander le courant réactif shunt désiré. Les commandes internes fournissent les signaux d'amorçage aux valves de convertisseur de sorte que les tensions de sortie de convertisseur répondent correctement aux variables internes de référence, i_{pRef} , i_{qRef} et \tilde{v}_{paRef} , selon la structure de commande représentée dans la figure 3.8. [30]

Figure 3.8 Schéma de base de commande de l'UPFC.

Il est possible d'observer, que le convertisseur série répond directement et indépendamment à la demande de l'injection de tension série. Les changements dans le vecteur de tension série, \tilde{v}_{pq} peut donc être affecté pratiquement instantanément. En revanche, le convertisseur shunt fonctionne sous une structure de commande de courant en boucle fermé par lequel les composants de la puissance active et réactive du convertisseur shunt soient indépendamment commandés. La puissance réactive shunt (si cette option est employée, par exemple, pour la régulation de la tension) répond directement à une demande d'entrée.

Cependant, la puissance active shunt est commandée par une autre boucle de commande qui agit de maintenir un niveau de tension de préréglage dans le lien à courant continu, pourvoyant la génération ou l'absorption de la puissance active nécessaire pour l'appui de l'injection de tension série. En d'autres termes, la boucle de commande de la puissance active shunt assure l'équilibre exigé de la puissance active entre les deux convertisseurs. Les convertisseurs n'échangent pas (et ne pourrait pas) la puissance réactive par le lien commun. [31]

La commande externe ou des opérations fonctionnelles définissent le mode fonctionnel d'opération de l'UPFC qui est responsable de produire des références internes, \tilde{v}_{pqRef} et i_{qRef} pour que la compensation série et shunt satisfasse les demandes actuelles du système de transport. Les modes d'opération fonctionnelle et les demandes de compensation, représentées par les entrées de référence externes, peuvent être réglés manuellement (par l'intermédiaire d'un clavier d'ordinateur) par l'opérateur ou être dictés par un système automatique d'optimisation de commande pour répondre aux exigences spécifiques de fonctionnement et d'éventualité.

Une structure de commande globale, montrant la commande interne, et la commande d'opération fonctionnelle, et le système d'optimisation de commandes avec les références internes et externes est présentée dans la figure 3.9.

Suivant la figure 3.9 l'aptitude de l'injection de tension série ainsi que l'échange de la puissance réactive indépendamment contrôlable offert par la structure de circuit de deux convertisseurs dos à dos, facilitent plusieurs modes de fonctionnement et de commande de l'UPFC. [54]

Figure 3.9 Structure globale de commande de l'UPFC.

Ceux-ci incluent l'option de la compensation réactive shunt et la commande libre de l'injection de tension série selon une approche fonctionnelle choisie pour la commande de flux de puissance. La structure de circuit d'UPFC permet également le découplage des deux convertisseurs (c.-à-d., séparant les bornes à courant continu des deux convertisseurs) pour fournir la compensation indépendante shunt de la puissance réactive (STATCOM) et la compensation séries de la puissance réactive (SSSC) sans n'importe quel échange de puissance active entre les deux convertisseurs. [40]

3.4.1 Commande fonctionnelle du convertisseur shunt.

Le convertisseur shunt fonctionne afin d'absorber un courant commandé, $\tilde{\iota}_{sh}$, de la ligne. Le composant actif de ce courant, i_{shp} , est automatiquement déterminé par la condition d'équilibre de la puissance active du convertisseur série. Le composant réactif de ce courant, i_{shq} , peut être régler à n'importe quel niveau de référence désiré (inductif ou capacitif) dans les limites du convertisseur. Les modes de commande de compensation réactive du convertisseur shunt sont, naturellement, très semblables à ceux généralement utilisés pour le STATCOM et le compensateur statique conventionnel SVC.

Mode de commande de la puissance réactive : dans ce mode, l'entrée de référence est la demande inductive ou capacitive de la puissance réactive. La commande de convertisseur shunt traduit la référence de variété en demande de courant shunt correspondant et ajuste les impulsions de commande du convertisseur pour obtenir le courant désiré. La commande en boucle fermée emploie les signaux de retour de

courants obtenus à partir du courant de sortie du convertisseur shunt pour imposer le courant de référence. Un signal de retour représentant la tension de bus continu, V_{dc} , est également employé pour assurer la tension nécessaire de bus continu.

Mode de commande automatique de tension : Dans ce mode de commande de tension (qui est normalement employé dans des applications pratiques), le courant réactif de convertisseur shunt est automatiquement régulé pour maintenir la tension de la ligne à une valeur de référence au point de raccordement, avec une caractéristique définie de dégradation (droop). Le facteur de dégradation (the droop factor) définit par l'erreur de tension d'unité en per unit du courant réactif de convertisseur dans la marge du courant de convertisseur. La commande automatique de tension emploie des signaux de retour de tension, représentant habituellement le module du composant de séquence positif de la tension du nœud \tilde{v}_1 . [40]

3.4.2 COMMANDE FONCTIONNELLE DU CONVERTISSEUR SERIE.

Le convertisseur série commande le module et l'angle du vecteur de tension \tilde{v}_{pq} injecté en série avec la ligne. Cette injection de tension est, directement ou indirectement, toujours prévue pour influencer l'écoulement de la puissance de la ligne. Cependant, \tilde{v}_{pq} dépend du mode de fonctionnement choisi pour que l'UPFC commande le flux de puissance. Les principaux modes de fonctionnement sont comme suit : [61]

Mode d'injection directe de tension : Le convertisseur série produit simplement le vecteur de tension, \tilde{v}_{pq} avec le module et l'angle de phase étant demandé par l'entrée de référence. Ce mode de fonctionnement peut-être avantageux quand une commande séparée d'optimisation coordonne le fonctionnement de l'UPFC et d'autres dispositifs FACTS utilisé dans le réseau de transport. Les cas fonctionnels spéciaux de l'injection directe de tension incluent ceux qui ont des objectifs de commande consacrée, par exemple, quand le vecteur de tension injectée, \tilde{v}_{pq} , est maintenu dans la phase avec la tension de système pour la commande de module de tension, ou en quadrature avec elle pour la « l'amplification en quadrature commandée, » ou en quadrature avec le vecteur de la ligne, \tilde{i} , pour fournir la compensation réactive contrôlable série.

Mode de régulation de tension du nœud : Le vecteur de tension injectée, \tilde{v}_{pq} , est maintenu dans la phase avec le vecteur de tension du nœud d'entrée \tilde{v}_1 avec le module commandé pour maintenir le module de vecteur de tension du nœud de sortie \tilde{v}_2 à la valeur de référence donnée.

Mode de compensation d'impédance de la ligne : Le module du vecteur de tension injectée, \tilde{v}_{pq} , est commandé proportionnellement au module de courant de la ligne, \tilde{i} , de sorte que l'insertion de tension série émule une impédance vue par la ligne. L'impédance désirée est spécifiée par l'entrée de référence. En général, l'impédance de référence peut être une impédance complexe avec les composants résistifs et réactifs de l'une ou l'autre polarité. Un cas spécial de compensation d'impédance se produit quand la tension injectée est maintenue en quadrature en avec le courant de la ligne pour émuler la compensation (capacitive ou inductive) purement réactive. Ce mode de fonctionnement peut être choisi pour assortir la compensation série existante capacitive dans le réseau.

Mode de régulation d'angle de phase : Le vecteur de tension injectée, \tilde{v}_{pq} est commandé par rapport au vecteur de tension du nœud d'entrée \tilde{v}_1 de sorte que le vecteur de tension du nœud de sortie \tilde{v}_2 est déphasé, sans aucun changement de module. L'entrée de référence est un angle spécifique. Un cas spécial de régulation d'angle de phase se produit quand \tilde{v}_{pq} est maintenu en quadrature avec \tilde{v}_1 pour émuler le « l'amplificateur de quadrature».

Mode de commande automatique de flux de puissance : Le module et l'angle du vecteur de tension injectée, \tilde{v}_{pq} , sont commandés afin de renforcer le courant de la ligne, \tilde{i} , par conséquence, flux de puissance actif et réactif désiré dans la ligne est obtenu. Dans ce mode de commande automatique de flux de puissance, la tension injectée en série est déterminée d'une façon automatique et continue par un système de commande en boucle fermée pour assurer que P et Q désirés sont maintenus en dépit des changements de réseau électrique. La ligne contenant l'UPFC apparaît ainsi au reste du réseau comme une source de puissance ou une charge à grande impédance. Ce mode de fonctionnement, qui n'est pas réalisable avec les équipements compensateurs conventionnels, a accompli des options de grande importance pour la conduite et la gestion de flux de puissance. Il peut être également appliqué pour manipuler les perturbations dynamiques de système (par exemple, pour atténuer les oscillations de puissance). [40] [62]

3.4.3 Compensation shunt et serie autonome.

La structure de l'UPFC offre la possibilité de fonctionnement indépendant des convertisseurs shunt et série en déconnectant leur terminal commun (bus continu) en sectionnant le banc de condensateur. Dans ce cas, le convertisseur shunt fonctionne comme STATCOM autonome, et le convertisseur série comme SSSC autonome. Cette caractéristique permet de manipuler des éventualités (par exemple, un échec de convertisseur) et être plus adaptable aux futurs changements de système (par exemple, l'utilisation des convertisseurs pour la compensation shunt seulement ou séries seulement). En mode autonome, naturellement, ni l'un ni l'autre convertisseur n'est capable d'absorber ou de générer la puissance active de sorte que le domaine de fonctionnement soit seulement possible dans de puissance réactive. Le fonctionnement autonome du convertisseur série signifie la limitation considérable en modes de commande disponibles. Puisque la tension injectée doit être en quadrature avec le courant de la ligne, seulement la compensation réactive commandée ou l'émulation réactive d'impédance est possible à la commande de flux de puissance. [63]

3.4.4 Systeme de commande de base pour le controle de P et de Q

Selon la figure 3.9, l'UPFC a beaucoup de modes possibles de fonctionnement. Cependant, afin de concentrer sur le but principal de l'UPFC, seulement le mode de commande automatique de flux de puissance, fournissant la commande indépendante pour le flux de puissance actif et réactif dans la ligne, sera considéré davantage. Ce mode de commande utilise la plupart des aptitudes uniques de l'UPFC, ceci le permet d'être employé comme mode de base dans la majorité d'applications pratiques, juste comme la compensation shunt qui est employée normalement pour la commande automatique de tension. En conséquence, des schémas fonctionnels fournissant de plus grands détails des arrangements de commande sont montrés pour le convertisseur série dans la figure 3.10 . [64]

Figure 3.10 Schéma fonctionnel de la commande de convertisseur série.

Et les schémas fonctionnels pour le convertisseur shunt dans la figure 3.11 et 3.12 pour le fonctionnement en ces modes.

Figure 3.11 Schéma fonctionnel de la commande de convertisseur shunt avec la tension constante de bus continu.

Pour la clarté et la concision, seulement les dispositifs les plus significatifs sont montrés dans ces figures tandis que le traitement des signaux et les fonctions de limitation moins importantes ont été omis.

Le schéma de commande représenté dans la figure 3.10 suppose que le convertisseur série peut générer une tension avec le module et l'angle de phase contrôlables à une tension donnée de bus continu. Le schéma de commande pour le convertisseur shunt représenté dans la figure 3.11 suppose également que le convertisseur peut produire une tension de module et d'angle de phase contrôlables. Cependant, ceci ne peut pas être toujours le cas, puisque les pertes et les harmoniques de convertisseur peuvent être réduits en permettant à la tension de bus continu de varier selon la demande de compensation shunt. Bien que la variation de la tension de bus continu réduise inévitablement le module abouti de la tension série injectée quand le convertisseur shunt absorbe une grande valeur de la puissance réactive, dans beaucoup d'applications ceci peut être une différence acceptable. Dans le schéma de commande pour le convertisseur shunt représenté la figure 3.12 le module de la tension est directement proportionnelle à la tension de bus continu et seulement son angle est contrôlable. Avec cet arrangement de commande, la tension de bus continu est variable (typiquement jusqu'à la gamme de $\pm 12\%$) par l'ajustement momentané d'angle qui force le convertisseur d'échanger la puissance active avec la ligne pour répondre aux exigences réactives de compensation shunt. [65]

Selon la figure 3.10, la commande automatique de flux de puissance pour le convertisseur série est réalisée au moyen d'un arrangement de commande vectorielle qui régule le courant de la ligne utilisant une référence synchrone (établie avec une boucle à verrouillage de phase appropriée produisant l'angle de référence θ) dans lequel les quantités de commande apparaissent comme des signaux C.C en régime normal. [40]

Figure 3.12 Schéma fonctionnel de la commande de convertisseur shunt avec la tension variable de bus continu.

Les composants appropriés actifs et réactifs du courant, i_p^* et i_q^* sont déterminées pour P_{Ref} et Q_{Ref} désirés. Ceux-ci sont comparés aux courants mesurés de la ligne, i_q et i_p , et employés pour conduire le module et l'angle de la tension de convertisseur série, V_{pq} et ρ , respectivement. On doit noter qu'un limiteur de tension est employé pour imposer les limites pratiques, résultant des restrictions de système (par exemple, limites de tension et de courant) ou des estimations d'équipement et de composant, sur la tension série injectée.

Un schéma de commande vectoriel est également employé pour le convertisseur shunt, comme illustré par les schémas fonctionnels des figures 3.11, 3.12. Dans ce cas la quantité commandée est le courant \tilde{i}_{sh} tiré de la ligne par le convertisseur shunt. Cependant, Les composants actifs et réactifs de ce courant ont une signification différente. Pour la figure 3.11, la référence pour le courant réactif, i_{shq}^* , est produit par une boucle de commande externe de tension, responsable de réguler la tension alternative du convertisseur, et la référence pour le courant soutenant la puissance active, \tilde{i}_{shp}^* , est produite par une deuxième boucle de commande de tension qui régule la tension de bus continu. En particulier, la puissance active négociée par le convertisseur shunt est réglée pour équilibrer la puissance de bus continu du convertisseur série et pour maintenir une tension désirée dans la ligne. La référence de tension de bus continu, V_{dcRef} peut être maintenue essentiellement constante. Dans l'arrangement représenté sur la figure 3.12, la boucle externe de tension régule la tension alternative du convertisseur et commande également la tension de bus continu. Cette boucle externe change le l'angle α de la tension de convertisseur par rapport à la tension de la ligne jusqu'à ce que la tension de bus continu atteigne la valeur nécessaire pour réaliser la compensation réactive exigée. [34] [30]

La boucle fermée commandant les signaux de sortie du convertisseur série est responsable de maintenir le module de la tension injectée, \tilde{v}_{pq} , malgré la tension variable de bus continu.

La limite la plus importante imposée au convertisseur shunt est le courant réactif shunt qui est une fonction de la puissance actif étant passée par le bus continu pour soutenir la demande de la puissance actif du convertisseur série. Ceci empêche la référence de courant de convertisseur shunt de dépasser sa valeur maximale évaluée.

Les diagrammes de bloc de commande représentés sur les figures 3.10, 3.11, 3.12, représentent seulement une partie choisie des nombreux algorithmes de commande requis si des modes additionnels de fonctionnement de l'UPFC doivent également être mis en application. Les schémas fonctionnels omettent des fonctions de commande liées à la protection de convertisseur, aussi bien que le séquencement des routines pendant des changements de mode d'opération et les procédures de démarrage et d'arrêt. [32]

3.5 PROTECTION DE L'UPFC

Il y a une limite maximale du courant traversant les interrupteurs qui peut être arrêté en appliquant une impulsion. Cette limite est généralement beaucoup plus haute que le courant nominal du convertisseur.

Les convertisseurs sont protégés en cas de défaut par des disjoncteurs, au niveau du primaire de transformateur, et des interrupteurs à base de thyristors au niveau du secondaire, ces dispositifs de protection permettent la déviation (bypass) de courant de défaut. [66]

Quand le courant de la ligne augmente rapidement au-dessus du niveau critique, en cas de défaut, il est nécessaire de détourner le courant du convertisseur série. La déviation du courant de défaut peut être réalisée dans des microsecondes à l'aide d'un interrupteur shunt à base des thyristors du côté secondaire du transformateur. L'interrupteur doit être conçu pour supporter le courant de défaut maximum pendant des courtes périodes. Si le défaut est un défaut transitoire, l'interrupteur s'ouvre en cas de chute d'intensité et l'opération normale peuvent être reprise. Si le défaut est de longue durée, il est nécessaire de fermer le disjoncteur qui est situé à l'enroulement primaire du transformateur, afin de soulager l'interrupteur shunt à base des thyristors. [67]

Une fois que l'interrupteur shunt primaire est fermé, la réinsertion du transformateur série exige le même procédé du démarrage. Le convertisseur série, pendant le démarrage doit conduire un courant par l'enroulement primaire du transformateur série, qui est égale au courant de la ligne. Dans ce cas, le courant dans disjoncteur réduit à zéro et il peut être ouvert sans créer aucune perturbation transitoire. Le démarrage peut être réalisé dans quelques cycles après l'élimination de défaut.

Bien que le courant de convertisseur shunt soit soigneusement commandé en fonctionnement normal, il pourrait dépasser le niveau critique dans les conditions de défaut. La mesure de défense dans de telles conditions est d'interrompre la séquence normale des impulsions. Généralement, dans des conditions transitoires, il est possible de retourner à l'opération normale dans un cycle (après l'interruption de la séquence normale des impulsions). Dans la plupart des cas, il n'y a aucun besoin de se déclencher le disjoncteur shunt. Cependant, un échec interne important peut rendre nécessaire l'ouverture du disjoncteur shunt. [36]

3.6 CONCLUSION

L'UPFC comme le dispositif FACTS le plus souple peut être exigé toutes les fois que les problèmes du flux de puissance et de tension sont présents. Un avantage important avec l'UPFC est la polyvalence et la flexibilité accordées par plus d'un degré de liberté. Avec un UPFC, il y a 3 degrés de liberté qui peuvent être utilisés pour régler 3 quantités dans le réseau - la tension et/ou les flux de puissance actifs et réactifs dans les lignes. Une telle flexibilité est d'importance dans le fonctionnement des réseaux électriques restructurés.

Dans ce chapitre, nous avons présenté l'UPFC son principe de fonctionnement et ces aptitudes de commander l'écoulement de puissance, et son système de commande, et finalement une comparaison avec d'autres dispositifs FACTS qui montre la supériorité de l'UPFC par rapport à d'autres dispositifs, le chapitre suivant ce concentre sur le fonctionnement de l'UPFC.

CHAPITRE 4 SIMULATION DE L'UPFC

Dans les chapitres précédents, nous avons vu que les systèmes flexibles de transport à C.A. (FACTS) fournissent des nouvelles solutions pour améliorer la flexibilité, la contrôlabilité et la stabilité d'un réseau électrique.

Le contrôleur unifié de flux de puissance (UPFC), comme un FACTS exceptionnel pour La régulation de flux de puissance, peut commander respectivement la puissance active, la puissance réactive et la tension de nœud, et a été identifié pour l'amélioration du comportement dynamique du réseau électrique.

Le but de ce chapitre est d'analyser l'effet d'un UPFC sur la stabilité du réseau électrique, la performance de l'UPFC est démontrée pour la commande instantanée et indépendante de flux de puissance et l'amélioration de la stabilité de tension et la réponse après un défaut. Afin d'étudier les performances de l'UPFC, plusieurs réseaux dans différentes conditions de fonctionnement et avec différents modèles de l'UPFC ont été testés.

4.1 RESEAU A 4 NŒUDS

Le réseau étudié dans cette partie est montré dans la figure 4.1, c'est un réseau de transport de 500kV, il se compose de 4 nœuds (B1 à B4), trois lignes de transport (L1 à L3), et deux charges.

Figure 4.1 Réseau test comprenant le modèle détaillé de l'UPFC

L'UPFC est utilisé pour contrôler le flux de puissance dans un réseau de transport de 500 kV (figure 4.1). L'UPFC situé à l'extrémité gauche de la ligne L2 de 75 km, entre les nœuds B1 et B2 de 500 kV, est utilisé pour contrôler les puissances actives et réactives traversant le nœud B2, tout en contrôlant la tension du nœud B1. Il se compose de deux convertisseurs 100 MVA à trois niveaux, à base de GTO-48-impulsions, l'une reliée en parallèle au nœud B1 et connectés en série entre les nœuds B1 et B2. Les convertisseurs shunt et série peuvent échanger de la puissance active à travers un bus continu. Le convertisseur série peut injecter un maximum de 10% de la tension nominale (28,87 kV) en série avec la ligne L2.

La technique de modélisation utilisée pour les convertisseurs de l'UPFC est la modélisation détaillée. La simulation du modèle détaillé donne beaucoup d'informations concernant les convertisseurs de puissance. En effet, elle permet la sélection de la méthode de génération des impulsions de commande par modulation de largeur d'impulsion (MLI), le réglage de la fréquence de commutation et le réglage de la bande d'hystérésis du régulateur de courant nécessaire pour la commande vectorielle (moteur et générateur). En outre, elle permet le dimensionnement des convertisseurs tant que les valeurs instantanées des courants sont connues avec précision. La sélection des semi-conducteurs de puissance et le dimensionnement des dissipateurs de chaleur peuvent être effectués par la suite. Dans une perspective plus large, cette simulation permet de valider avec une grande précision le fonctionnement du circuit électrique et permet la détection de tous les problèmes causés par l'instabilité, la surintensité ou la surtension. Ce haut degré de précision est obtenu bien sûr, au prix d'un temps de calcul plus long [68].

Les manipulations suivantes ont été réalisées :

- 1- Initialement, Pref = 8,7 pu / 100MVA (870 MW) et Qref = -0.6 pu / 100MVA (-60 Mvar). A t = 0,25 s Pref est changé à +10 pu (+ 1000MW). Puis, à t = 0,5 s, Qref est modifié à 0,7 pu (70 Mvar).
- 2- A t=1s, un court-circuit monophasé est appliqué sur L2, à t=1.05s le défaut est enlevé.

Pour cette simulation on utilise MATLAB\Simulink qui est un logiciel multifonctionnel pour la simulation des réseaux électriques, en particulier le toolbox SimPowerSystems [75] qui offre des bibliothèques de composants et d'outils d'analyse pour la modélisation et la simulation des réseaux électriques. Les bibliothèques offrent des modèles de composants électriques, y compris les machines triphasés, moteurs et des composants pour des applications telles que les systèmes flexibles de transmission en courant alternatif (FACTS) et des systèmes d'énergie renouvelable, l'analyse d'harmonique, le calcul de la distorsion harmonique (THD), le flux de puissance, et d'autres analyses de réseau électrique clés qui sont automatisées.

La 1^{ère} manipulation sert à étudier l'aptitude de contrôle indépendant en temps réel du flux de puissance active et réactive de la ligne par l'UPFC. [69], les résultats sont montrés dans la figure 4.2.

Figure 4.2 Puissance active et réactive de l'UPFC et des lignes.

D'après la figure 4.2 on peut observer qu'après une période transitoire d'une durée approximative de 0,15 s, l'état d'équilibre est atteint (P = + 8,7 pu; Q = -0.6 pu). Ensuite, P et Q ont accru aux nouveaux paramètres (P = + 10 PU Q = + 0,7 pu): P atteint la nouvelle valeur après 0,2 s avec une petite fluctuation dans Q, Q atteint la nouvelle valeur après 0,1 s, avec une petite fluctuation dans P, on peut voir que l'UPFC peut contrôler le flux de puissance active et réactive de façon indépendante et instantanée. On observe aussi les changements qui en résultent dans le flux de puissance sur les trois lignes de transport ; on peut voir clairement que l'UPFC changer le flux de puissance dans le réseau sans qu'il perde son équilibre.

Figure 4.3 région de commande de l'UPFC.

La figure 4.3 montre la région de commande P-Q de l'UPFC, le centre de l'ellipse représente l'état équilibré du réseau ou l'UPFC n'injecte pas une tension en série, la valeur correspondante de la puissance active est 870 MW et de la puissance réactive est -60 Mvar, l'ellipse représente la puissance active est réactive qui peut être obtenue par l'injection d'une tension 0.1 p.u. avec la variation de l'angle de phase de cette tension, par exemple à l'angle 0° on peut obtenir P=956 MW et Q=295 Mvar, et à l'angle 180° on peut obtenir 819 MW et -370 Mvar [70] [71].

Figure 4.4 flux de puissance active et réactive des lignes sans et avec l'UPFC après un défaut

Le défaut instantané de court-circuit provoque l'oscillation sur les flux de puissance active et réactive des lignes, et à partir de la figure 4.4 on peut voir clairement que l'oscillation du système est plus importante et dangereuse sans UPFC installé, elle peut atteindre 3000 MW et 2000 MVar, tandis que l'oscillation de réseau avec l'UPFC est moins importante, elle peut atteindre 1000 MW et -500 MVar. Et lorsque le défaut est supprimé, le fonctionnement normal est récupéré avec et sans le UPFC. Ainsi, l'UPFC amortir les oscillations du réseau électrique et fournit une meilleure performance dynamique. [70] [72]

4.2 RÉSEAU À 5 NŒUDS

Le réseau, connecté en boucle, est essentiellement constitué de cinq nœuds (B1 à B5) reliés par trois lignes de transport (L1, L2, L3) et deux transformateurs 500 kV / 230 kV Tr1 et Tr2. Deux centrales de productions situées sur le côté 230 kV génèrent une puissance totale de 1 500 MW, qui est transmise au côté 500 kV, vers une source équivalente de 15 000 MVA et à une charge de 200 MW connectée au nœud B3. Chaque modèle de centrale de production comprend un régulateur de vitesse, un système d'excitation ainsi qu'un stabilisateur de réseau électrique (Power System Stabilizer PSS) [76]. Un UPFC est utilisé pour contrôler le flux de puissance dans un réseau de transport 500 kV / 230kV (figure 4.5). L'UPFC situé à l'extrémité droite de la ligne L2 est utilisé pour contrôler les puissances actives et réactives du nœud B3 500 kV, ainsi que la tension au nœud B_UPFC. L'UPFC se compose de deux convertisseurs à base d'IGBT de 100 MVA, (un convertisseur de shunt et un convertisseur de série interconnectés par un bus continu). Le convertisseur série peut injecter un maximum de 10% de la tension nominale (28,87 kV) en série avec la ligne L2.

Figure 4.5 Réseau test comprenant le modèle des phaseurs de l'UPFC

Le modèle de l'UPFC utilisé pour cet exemple est le modèle des phaseurs, qui est un modèle simplifié permet de résoudre un ensemble beaucoup plus simple d'équations algébriques reliant les phaseurs de tension et de courant, au lieu de résoudre toutes les équations différentielles résultant de l'interaction des éléments. La simulation est donc beaucoup plus rapide à exécuter. [73] [68] le logiciel utilisé est MATLAB\Simulink.

Les manipulations suivantes ont été réalisées :

- Nous envisageons un cas de contingence où seuls deux transformateurs sur trois sont disponibles (Tr2 = 2 * 400 MVA = 800 MVA). Le flux de puissance montre que la plupart de l'électricité produite par le générateur 2 est transmise par le transformateur Tr2 de 800 MVA (899 MW sur 1000 MW) et que 96 MW circule dans la boucle.
- 2- À t=1s l'UPFC et mise en marche, puis, à t = 3s, la référence de la puissance active (Pref) est augmentée de 1 pu (100 MW), de 5,87 pu à 6,87 pu, avec la référence de la puissance réactive (Qref) est maintenue constante à -0,27 pu. Puis, à t = 7s Qref change de -0,27 à -0,17 pu.

3- A t=0.75s, un court-circuit monophasé est appliqué sur L3, à 0.8s le défaut est enlevé. Le réseau avant le défaut est en fonctionnement normal, et les références sont comme suit : Pref = 6.87pu, Qref = -0.27pu, Vref = 1.0pu.

Figure 4.6 Réponse de l'UPFC à un changement de référence de puissance

Le transformer Tr2 est donc surchargé de 99 MVA. L'exemple illustre comment un UPFC peut soulager cette congestion de puissance. Initialement, l'UPFC est hors service et le flux de puissance naturelle obtenue au nœud B3 est 587 MW et -27 Mvar, comme le montre la figure 4.6, l'UPFC augmente le taux de puissance active de 1 p.u. à t = 3s sans un régime transitoire visible sur la puissance réactive, il le faut une seconde pour que la puissance active augmente à 687 MW. Cette augmentation de puissance active au nœud B3 est réalisée par l'injection d'une tension en série de 0,089 p.u. avec un angle de phase de 94 degrés. Cela se traduit par une diminution d'environ 100 MW de la puissance active qui passe à travers Tr2 (de 899 MW à 796 MW), qui transmit désormais une charge acceptable.

A t = 7s, Qref change de -0,27 à -0,17, ceci nécessite 0.17s pour que la puissance réactive atteigne cette nouvelle valeur, sans un régime transitoire visible sur la puissance active, cette variation de la puissance réactive est obtenue en maintenant la tension injectée à 0.089 p.u. avec un angle de 92 degrés.

Figure 4.7 puissance active et réactive des nœuds.

D'après la figure 4.7 on observe les changements qui en résultent dans la puissance active et réactive des nœuds ; on peut voir clairement que l'UPFC change le flux de puissance dans le réseau sans perdre l'équilibre. À t=3s le flux de puissance active des nœuds change et on peut voir l'effet de ce changement sur la puissance réactive des nœuds, puis à t=7s la puissance réactive change sans aucun effet sur la puissance active des nœuds [70].

La trajectoire de la puissance réactive de l'UPFC en fonction de sa puissance active, mesurée au nœud B3, est reproduite dans la figure 4.8. La zone située l'intérieur de l'ellipse représente la région contrôlable de l'UPFC.

Figure 4.8 la région de commande de l'UPFC

Figure 4.9 puissance active et réactive du nœud B3 sans et avec l'UPFC après un défaut

Le défaut instantané de court-circuit provoque l'oscillation de la puissance active et réactive du réseau, en considérant deux cas : réseau sans UPFC et réseau avec l'UPFC, en raison de la commande de puissance du UPFC, et lorsque le défaut est enlevé, la puissance active peut encore suivre la valeur de référence, tandis que l'oscillation de la puissance active autour de la valeur de référence est plus importante lorsque UPFC est hors service [74]. La figure 4.9 montre également que le fonctionnement dynamique de système est mieux en installant l'UPFC. La puissance active du système peut rétablir la stabilité après 0.15s fonctionnement lorsque le défaut éliminé, tandis que la puissance active et réactive du système encore fluctuent sérieusement et plus longtemps après l'élimination du défaut lorsque UPFC ne fonctionne pas. Alors on a réalisé que l'UPFC a une très bonne amélioration par rapport à la stabilité transitoire du système, il peut améliorer le flux de puissance de la ligne de transmission et améliorer la stabilité de réseau électrique. [70] [75] [76]

On peut améliorer la stabilité de tension si le convertisseur shunt travaille comme un compensateur pour maintenir la tension constante du système et d'améliorer la stabilité du système. [77] [78]

4.3 RÉSEAU MULTIMACHINES À 11 NŒUDS

Le système à deux zones utilisé dans cette étude est un réseau multimachine à 11 nœuds disponibles dans [12], et représenté sur la Figure 4.10.

Le système contient onze nœuds et les deux zones, reliées par une liaison faible entre les nœuds 7 et 9. Deux charges sont reliées aux nœuds 7 et 9. Deux condensateurs shunt sont également connectés aux nœuds 7 et 9. La fréquence fondamentale du système est 60 Hz. Le système comprend deux zones similaires reliées par une liaison faible, chaque zone est constituée de deux générateurs, chacun ayant une puissance maximale de 900 MVA et une tension nominale de 20 kV.

Pour cette étude on a utilisé la toolbox Power System Analysis Toolbox (PSAT) de MATLAB qui est conçu pour l'analyse statique et dynamique et le contrôle des réseaux électriques [49] [79], cet outil offre le calcul d'écoulement de puissance, l'analyse de stabilité des signaux, et l'analyse des valeurs propres qu'on a utilisée pour cette étude.

Les manipulations suivantes ont été réalisées :

- 1- L'analyse des valeurs propres (déduit à partir de l'analyse modale : voir annexe A) a été effectué sur le réseau sans et avec l'UPFC installé à la liaison faible entre les nœuds 8 et 9, pour voir l'impacte de l'UPFC sur la stabilité de tension.
- 2- Un défaut triphasé de 50 ms est créé à la ligne de transport reliant les nœuds 8 et 9 à l'instant t=1s.

Tableau 4.1 Valeur propres sans et avec l'UPFC						
Sans UPFC			Avec UPFC			
Valeur	Valeur	Le nœud le plus	Valeur	Valeur	Le nœud le plus	
propre		associé	propre		associé	
1	276,86885	Nœud 06	1	1543,63286	Nœud 03	
2	280,00962	Nœud 10	2	1451,49991	Nœud 02	
3	141,22562	Nœud 05	3	1511,05548	Nœud 01	
4	142,90581	Nœud 11	4	1496,16337	Nœud 04	
5	82,50159	Nœud 09	5	33,05775	Nœud 07	
6	79,18928	Nœud 02	6	39,8808	Nœud 09	
7	34,42864	Nœud 08	7	91,63737	Nœud 05	
8	24,41203	Nœud 03	8	98,81855	Nœud 11	
9	18,11043	Nœud 08	9	118,27875	Nœud 08	
10	-0,34419	Nœud 05	10	261,35378	Nœud 06	
11	1,24273	Nœud 11	11	266,19304	Nœud 10	

Les résultats sont montrés dans le tableau 4.1.

D'après le tableau 4.1 on peut voir clairement que la valeur propre critique du réseau sans UPFC est inférieur à zéro (valeur propre N°10=-0,34419), ce qui confirme que la tension de réseau est instable et risque l'effondrement à n'importe quelle perturbation, on peut aussi voir du tableau que la valeur propre critique du réseau avec l'UPFC installé est supérieur à zéro (valeur propre N°5=33,05775) ce qui confirme que le système est stable et le point de bifurcation n'a pas encore été atteint. Cette amélioration de stabilité de tension est obtenue par l'installation de l'UPFC qui augmente considérablement la marge de la stabilité.

Figure 4.11 facteurs de participation des nœuds à la valeur propre critique du réseau sans l'UPFC

Figure 4.12 facteurs de participation des nœuds à la valeur propre critique du réseau avec l'UPFC

Les facteurs de participation des nœuds à la valeur propre critique sont générés pour prédire les nœuds critiques dans le réseau. Les nœuds avec les plus hauts facteurs de participation sont les nœuds les plus critiques ou les plus proches de l'instabilité. Ceux-ci comprennent tous les nœuds du réseau sans UPFC, cependant, le nombre des nœuds critiques diminue considérablement en installant l'UPFC dans le réseau comme le montre la figure 4.11 et 4.12.

Le rendement du régulateur PI classique, en amortissant les oscillations des générateurs et de la puissance active et les tensions nodales sont présentées sur la figure 4.13.

Figure 4.13 vitesse des générateurs et puissance active et tensions nodales après un défaut.

Sans l'UPFC, c'est clair que la vitesse des générateurs fluctue en raison du défaut, et continue à diverger de sa valeur nominale. La puissance active et les tensions nodales oscillent aussi après le défaut, tandis qu'avec l'UPFC la vitesse des générateurs fluctue et récupère sa valeur nominale autour de t = 12s, le même effet est observé sur la puissance active et la tension. Le temps de récupération de régime normal de fonctionnement après le court-circuit est considérablement réduit par l'UPFC. [88] [89]

4.4 CONCLUSION

Dans ce chapitre nous avons étudié les performances et l'aptitude de l'UPFC à contrôler l'écoulement de puissance actif et réactif instantanément et indépendamment, nous avons présenté aussi son effet sur la stabilité de tension en utilisant l'analyse modale, et enfin son effet sur la stabilité transitoire du réseau face à des perturbations.

Les résultats démontrent que la commande de puissance active et réactive dans les réseaux électriques, peut être efficacement réalisée avec l'UPFC, la stabilité de tension est améliorée aussi avec l'UPFC. Dans des conditions de défaut, le temps de stabilisation du système peut être considérablement réduit par l'UPFC, ce qui rend le système stable avec moins d'oscillations.
CHAPITRE 5 MODELISATION DE L'UPFC POUR LE CALCUL D'ECOULEMENT DE PUISSANCE

Le problème d'écoulement de puissance ou de flux de puissance consiste à trouver le point de fonctionnement en régime permanent d'un réseau électrique, en tenant compte de la puissance demandée par les charges et de la puissance produite par les générateurs. Le but est d'obtenir toutes les tensions nodales et de la puissance active et réactive circulant à travers tous les composants du réseau.

Sans doute, le calcul de flux de puissance est très important dans l'exploitation et la planification, comme un outil autonome ou comme un sous-programme au sein des processus plus complexes (analyse de la stabilité, les problèmes d'optimisation, simulateurs de formation, etc.).

Le flux de puissance constitue l'outil de base pour l'analyse de comportement du réseau, par l'identification des écarts inacceptables de tension ou la surcharge des composants, causées par la variation de la puissance demandée et les changements structurels brusques. Il permet également à l'ingénieur de la planification de simuler différents scénarios qui peuvent survenir pour une demande prévue.

La solution de flux de puissance se déroule en deux étapes. La première et la plus critique c'est de trouver la tension de tous les nœuds, pour laquelle les techniques classiques d'analyse de circuits linéaires ne sont pas utiles. Ceci est une conséquence des puissances complexes, et les impédances et les sources, qui sont considérées comme des contraintes de liaison, conduisant à un ensemble d'équations non linéaires. La deuxième étape consiste simplement à calculer les grandeurs d'intérêt restantes, tels que les flux puissance active et réactive, les pertes ohmiques, etc., ce qui est un problème simple parce que toutes les tensions nodales sont disponibles.

Maintenant, l'implantation des dispositifs FACTS dans les algorithmes d'écoulements de puissance est considérée comme une exigence fondamentale dans la planification, l'exploitation et le contrôle. En règle générale, les programmes existants de flux de puissance doivent être modifiés pour intégrer ces dispositifs. Les modifications sont nécessaires pour de nombreuses raisons telles que ; les nœuds additionnels liés au nombre de FACTS doivent être ajoutés dans le réseau, les impédances des FACTS doivent être incorporés dans la matrice d'admittance, et les puissances contribuées par les FACTS doivent être inclus dans le vecteur de variation de puissance. Plusieurs excellents travaux de recherche ont été faits pour réduire la complexité des programmes d'écoulement de puissance avec le dispositif UPFC [40] [90].

Dans ce chapitre, les techniques les plus populaires pour le calcul des flux de puissance sont expliqués en détail et l'étude des techniques de la modélisation de l'UPFC (la technique découplée, la technique complète, la technique d'injection de puissance, la technique d'injection de puissance en π , la technique indirecte, et la technique de partitionnement de la matrice) est présentée. Les avantages, les inconvénients et l'idée principale pour chaque technique sont décrits. En outre, on va présenter une modélisation facile pour l'UPFC dans la méthode de Newton-Raphson.

Ensuite le modèle découplée est expliqué en détail, puis il est incorporé dans un programme de flux de puissance basé sur les algorithmes décrits dans le chapitre précédent (Méthode de Newton Raphson, FDLF, Méthode robuste de Newton, méthode d'Iwamoto, et Runge Kutta 4ème ordre), et les résultats sont discutés, et enfin, l'analyse de CPF sera présentée, cette méthode s'effectue en commençant par le point de fonctionnement initial et en augmentant la charge progressivement afin de déterminer la valeur de la charge maximale, cette étude sera effectuée sur le réseau sans et avec l'UPFC pour voir l'effet de l'UPFC sur la valeur de la charge maximale tolérée par un réseau électrique.

5.1 MODELISATION DE RESEAU

Tous les composants du réseau (lignes, câbles, transformateurs) reliant ensemble différents nœuds peuvent être représentés par un modèle en π . Ce modèle simple permet d'obtenir le flux de puissance envoyé et reçu et par conséquent les pertes de puissance.

Cependant, quand on fait l'analyse d'un réseau entier, plutôt que des composants individuels, une représentation plus compacte surgit par le recours à la matrice d'admittance, qui est obtenue comme suit.

Considérant un nœud *i*, comme le montre la figure 5.1, relié par des admittances série à un sousensemble réduit des nœuds.

Figure 5.1 Éléments reliés à un nœud *i*.

Une petite admittance shunt est directement reliée au nœud de neutre ou de terre. Le courant net injecté au nœud par les générateurs ou les charges, I_i , se conforme à la loi de Kirchhoff, c.-à-d.,

$$I_i = \sum_{j \in i} y_{ij} \left(V_i - V_j \right) + y_{si} V_i$$
(5.1)

Où V_j dénote la tension complexe du nœud j, et $j \in i$ signifie l'ensemble des nœuds 1, 2,..., m directement relié au nœud i. en réarrangeant les termes on obtient

$$I_{i} = \left[\sum_{j \in i} y_{ij} + y_{si}\right] V_{i} - \sum_{j \in i} y_{ij} V_{j}$$
(5.2)

La répétition du développement ci-dessus pour l'ensemble des nœuds n mène aux équations nodales, qui peuvent être écrites sous la forme matricielle comme suit :

$$I = YV \tag{5.3}$$

Où Y est la matrice d'admittance $n \times n \alpha \omega ds$, et les éléments des vecteurs colonnes V et I représentent des tensions complexes de nœud et les courants injectés, respectivement. Les éléments de la matrice Y peuvent être obtenus en comparant la rangée *i de l*'équation 5.3

$$I_i = \sum_{i=1}^n Y_{ij} V_j \quad i = 1, \ 2, \dots, n$$
(5.4)

Avec l'équation 3.2 menant à

$$Y_{ii} = \left[\sum_{j \in i} y_{ij} + y_{si}\right]; \quad Y_{ij} = -y_{ij}$$
(5.5)

En résumé, les éléments diagonaux de *Y* sont obtenus par la somme de toutes les admittances reliées au nœud respectif, tandis que les éléments non-diagonaux sont simplement l'admittance négative reliant les nœuds impliqués. Au cas où il y aurait plusieurs admittances en parallèle, l'admittance équivalente devrait être précédemment calculée. La grande majorité d'éléments non diagonaux sera nulle, parce qu'un nœud est directement relié seulement à quelques nœuds [1].

5.2 FORMULATION DU PROBLEME

En plus des n équations linéaires 5.4, représentant sous forme compacte la topologie et les composants réseau, la contrainte de puissance suivante doit être appliquée pour chaque nœud :

$$S_{i} = S_{Gi} - S_{Li} = V_{i} I_{i}^{*}$$
(5.6)

Ou S_i est la puissance nette complexe injectée au nœud *i*, obtenu dans le cas général par la différence entre la puissance complexe injectée par les éléments générateurs, S_{GI} , et la puissance complexe absorbée par des charges, S_{Li} . Finalement, S_{Li} peut refléter l'effet d'autres composants passifs non inclus dans la matrice Y. l'expression ci-dessus, appliquée à tous les nœuds, peut être écrit sous forme matricielle comme suit :

$$S = diag(V)I^*$$
(5.7)

Où S est le vecteur colonne comprenant puissances complexes des nœuds et diag(V) désigne une matrice diagonale dont les éléments sont ceux de vecteur V.

Étant donné Y, les équations 5.3 et 5.7 constituent un système de 2n d'équations complexes en termes de 3n inconnues complexes S, V et I. En théorie, sachant n de ces inconnues, le système non linéaire résultant pourrait être résolu pour obtenir les 2n variables restants. Cependant, en pratique, les courants nodaux complexes sont rarement connus ou spécifiés a priori dans un réseau électrique. Par conséquent, ils sont généralement retirés des inconnus par la substitution de l'équation 5.3 dans l'équation 5.7. Cela conduit à l'ensemble non linéaire de n équations complexes suivant :

$$S = diag \left(V \right) \left[YV \right]^* \tag{5.8}$$

Exprimant la puissance complexe en termes de puissance active et réactive, S = P + jQ, en utilisant les coordonnées rectangulaires pour les éléments de la matrice d'admittance, Y = G + jB, l'expression ci-dessus devient :

$$P + jQ = diag \left(V\right) \left[G - jB\right] V^*$$
(5.9)

$$P_i + jQ_i = V_i \sum_{j=1}^n \left(G_{ij} - jB_{ij} \right) V_j^* \quad , i = 1, 2, \dots, n$$
(5.10)

Les méthodes les plus pertinentes qu'on vient de décrire ci-dessous pour résoudre le problème d'écoulement de puissance ne peuvent pas appliquer directement les équations ci-dessus, parce que l'opérateur conjugué "*" empêche l'application de dérivés sous forme complexe. Pour cette raison, il est courant de les diviser en 2n équations réelles. Habituellement, les tensions complexes sont exprimées sous forme polaire, $V = V \angle \theta$, conduisant à :

$$P_i = V_i \sum_{j=1}^n V_j \left(G_{ij} \cos \theta_{ij} - j B_{ij} \sin \theta_{ij} \right)$$
(5.11)

$$Q_{i} = V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \sin \theta_{ij} - j B_{ij} \cos \theta_{ij} \right) , i = 1, 2, ..., n$$
(5.12)

Alternativement, exprimant les tensions en coordonnées rectangulaires $V = V_r + jV_X$:

$$P_{i} = V_{ri} \sum_{j=1}^{n} \left(G_{ij} V_{rj} - B_{ij} V_{xj} \right) + V_{xi} \sum_{j=1}^{n} \left(G_{ij} V_{xj} - B_{ij} V_{rj} \right)$$
(5.13)

$$Q_{i} = V_{xi} \sum_{j=1}^{n} \left(G_{ij} V_{rj} - B_{ij} V_{xj} \right) - V_{ri} \sum_{j=1}^{n} \left(G_{ij} V_{xj} - B_{ij} V_{rj} \right), i = 1, 2, \dots, n$$
(5.14)

Sauf indication contraire, les coordonnées polaires seront assumées.

Chaque nœud fournit deux équations et quatre inconnues, ce qui signifie que deux variables par nœud doivent être spécifiées pour résoudre les équations de flux de puissance résultant. Selon les variables qui sont spécifiées, deux principaux types de nœuds peuvent être distingués :

 Les nœuds charge ou PQ : la puissance active et réactive absorbée par les charges connectées au nœud sont spécifiés. En supposant que la puissance générée localement est nulle (P_{Gi} = Q_{Gi} = 0), ce qui conduit aux contraintes du nœud suivantes :

$$P_{i} = P_{i}^{sp} = -P_{Li}^{sp}; \quad Q_{i} = Q_{i}^{sp} = -Q_{Li}^{sp}$$
(5.15)

Laissant les deux composantes de tension, V_i et θ_i , comme des inconnues restantes. Une majorité des nœuds, en particulier au bas niveau de tension, appartiennent à ce type.

Les nœuds générateurs ou PV : Ce sont des nœuds où le régulateur de tension d'un générateur locale conserve l'amplitude de tension à une valeur spécifiée (Vi^{sp}). En outre, la puissance active injectée par le générateur est spécifiée en fonction de certains critères économiques. Tenant compte de la puissance demandée par les charges, les contraintes qui en résultent sont donc :

$$P_{i} = P_{i}^{sp} = P_{Gi}^{sp} - P_{Li}^{sp}; V_{i} = V_{i}^{sp}$$
(5.16)

Laissant Q_i et θ_i comme inconnues. Un cas particulier de nœud PV se produit lorsqu'un compensateur de puissance réactive (statique ou tournant), équipé d'un régulateur de tension, est connecté à un nœud. Dans ce cas, $P_{Gi}^{sp} = 0$. La présence de petites unités de production, en général non capable d'effectuer la régulation de tension, conduit à un nœud PQ avec les valeurs spécifiées (généralement positifs) appropriées.

Néanmoins, si seulement ces deux types des nœuds ont été considérés, toutes les puissances actives injectées doivent être spécifiées a priori, ceci exige que les pertes ohmiques doivent être aussi connues à l'avance. Cependant, les pertes de puissance dépendent des flux de puissance résultants et ne peuvent pas être déterminées avec précision jusqu'à ce que le flux de puissance soit résolu. Par conséquent, la puissance active d'au moins un générateur doit être laissée comme une inconnue.

Heureusement, cet inconnu supplémentaire est compensé par le fait que, lors de l'exécution de l'analyse du réseau à l'état stable, l'angle de phase d'un phaseur arbitraire peut être fixé arbitrairement à zéro. Ceci constitue la référence d'angle de phase pour les formes d'ondes sinusoïdales restantes. Pour plus de commodité, le phaseur de tension du nœud de génération dont la puissance active reste indéterminée est pris comme référence pour les angles de phase.

Ce nœud PV particulièr, connue sous le nom de nœud bilan (swing or slack bus), est généralement choisi parmi les nœuds générateurs à plus grande capacité, étant souvent en charge des fonctions de régulation de fréquence. En résumé, pour le nœud bilan, la tension complexe est entièrement spécifiée, tandis que les deux composants de puissance, active et réactive, appartiennent à l'ensemble des inconnues.

Dans [91], au lieu de déterminer a priori le nœud bilan, il est choisi à la volée au cours du processus de calcul des flux de puissance de manière à ce que le déséquilibre de puissance du réseau soit minimisé.

Soit n_L le nombre des nœuds PQ. Alors, le nombre des nœuds PV, à l'exclusion du nœud bilan, sera $n_G = n \cdot n_L \cdot 1$. On supposera que les premiers nœuds n_L correspondent avec des nœuds PQ, suivie par des nœuds PV ordinaires et puis le nœud bilan. Suite à cette classification des nœuds, les équations de l'écoulement de puissance en forme polaire seront :

$$P_{i} = V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \cos \theta_{ij} - j B_{ij} \sin \theta_{ij} \right) , i = 1, 2, \dots, n_{L} + n_{G}$$
(5.17)

$$Q_{i} = V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \sin \theta_{ij} - j B_{ij} \cos \theta_{ij} \right) , i = 1, 2, \dots, n_{L}$$
(5.18)

La résolution d'écoulement de puissance consiste à trouver l'ensemble des angles de phase θ_i , i = 1, 2,..., $n_L + n_G$, et l'ensemble des amplitudes de tension V_i , $i = 1, 2, ..., n_L$, satisfaisant les $2n_L + n_G$ équations 5.17 et 5.18.

La Spécification de la tension complexe du bus bilan et la libération de sa puissance complexe implique simplement que la paire d'équations respective sera ignorée pendant le processus d'écoulement de puissance. Ces équations seront utiles par la suite pour obtenir la puissance complexe du nœud bilan.

De la même manière, les n_G équation 5,12 exclus de l'équation 5,18 fournira par la suite la puissance réactive requise par chaque générateur de maintenir la tension à la valeur cible. Comme la capacité de puissance réactive des générateurs est limitée, il est nécessaire de vérifier qu'aucune des limites sont dépassées, ce qui complique et ralentit le processus de solution (ce problème sera abordé plus en détail à la section 5.7.1).

Tant que le système d'équation résultante est non linéaire, sa solution implique nécessairement un processus itératif, pour lesquelles les valeurs initiales adéquates devraient être données aux variables d'état. Bien que la recherche des valeurs initiales appropriées ne puisse pas être triviale dans le cas général, le début dit à plat est généralement le meilleur choix pour le problème d'écoulement de puissance. Il consiste à mettre en $\theta_i^0 = 0$ pour chaque bus et $V_i^0 = 1$ p.u. pour les nœuds PQ, reflétant le fait que les modules de tension se trouvent normalement dans une bande relativement étroite autour de 1 p.u. alors que les différences d'angle de phase entre les nœuds adjacents sont également très petites.

Une fois que les équations 5.17 et 5.18 sont résolues, toute autre valeur souhaitée peut être facilement calculée. Quand il y a un seul élément (ligne ou transformateur) connecté entre deux nœuds i et j, le flux de puissance sortant du nœud i peut être obtenus à partir de :

$$P_i = V_i V_j \left(G_{ij} \cos \theta_{ij} - j B_{ij} \sin \theta_{ij} \right) - G_{ij} V_i^2$$
(5.19)

$$Q_i = V_i V_j \left(G_{ij} \sin \theta_{ij} - j B_{ij} \cos \theta_{ij} \right) + V_i^2 \left(B_{ij} - b_{s,ij} \right)$$
(5.20)

Où $b_{s,ij}$ désigne la susceptance shunt associé au modèle π respectif (flux de puissance sortant du nœud *j* peut être facilement obtenu en échangeant les indices correctement).

De même, les pertes totales de réseau (actif et réactif) peuvent être calculées soit en ajoutant les puissances injectées de tous les nœuds, à condition que la puissance complexe du nœud bilan soit disponible, ou en ajoutant les pertes correspondant à chaque composant individuel. La seconde alternative est le seul choix lorsque les pertes correspondant à une zone spécifiée sont nécessaires [1].

5.3 METHODES ITERATIVES SIMPLES

Historiquement, en raison de la puissance de calcul réduite et la quantité de mémoire disponible dans les ordinateurs primitifs, des méthodes simples qui appliquent les itérations sur un nœud à chaque fois ont été adoptées. La caractéristique commune de ces méthodes est qu'une seule rangée doit être manipulée de façon séquentielle, plutôt que l'ensemble de la matrice admittance [92] [93] ou la matrice d'impédance [94] [95] [96]. Ce sont des applications directes sur le cas non linéaire de solveurs d'équations linéaires bien connues. Même si leur intérêt pratique est discutable actuellement, certains des algorithmes les plus populaires et simples, toujours offerts dans des paques commerciaux, seront présentés ci-dessous.

5.3.1 METHODE DE GAUSS SEIDEL

. .

Cette méthode balaie séquentiellement chaque nœud, avec la mise à jour de sa tension complexe en termes de tensions des nœuds voisins.

En général, cette méthode consiste à trouver le vecteur x qui satisfait le système non linéaire :

$$f(x) = 0 \tag{5.21}$$

Ceci peut-être reformulé comme un problème de point fixe,

$$x = F\left(x\right) \tag{5.22}$$

Dont la solution, à partir de la valeur initiale x^0 , est obtenue de façon itérative par la séquence :

$$x_i^{k+1} = F_i\left(x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, \dots, x_n^k\right) \quad i = 1, 2, \dots, n$$
(5.23)

Nouvelles valeurs de variables déjà mises à jour (i = 1, 2, ..., i-1) sont utilisés lors du calcul de x_i .

Concentrant maintenant sur le problème d'écoulement de puissance, l'équation 5.10 peut être réécrite de la façon suivante qui est avérée être le plus efficace :

$$V_{i}^{k+1} = \frac{1}{Y_{ii}} \left[\frac{P_{i}^{sp} - jQ_{i}^{sp}}{\left(V_{i}^{k}\right)^{*}} - \sum_{j=1}^{i-1} Y_{ij}V_{j}^{k+1} - \sum_{j=i+1}^{n} Y_{ii}V_{j}^{k} \right] \quad i = 1, 2, \dots, n-1$$
(5.24)

Le processus itératif est interrompu lorsque la condition :

$$\max_{i} \left| V_{i}^{k+1} - V_{i}^{k} \right| \le \varepsilon \tag{5.25}$$

Est satisfaite, où ε est le suffisamment petit seuil (par exemple, 0,0001).

Bien que l'effort de calcul par itération est modéré, la convergence de cette méthode est linéaire, ce qui signifie que la tolérance diminue plus ou moins linéairement avec le nombre d'itérations (et tends à augmenter à mesure que la dimension n du système augmente). Cela pose une limitation importante pour les grands réseaux, comme l'effort de calcul total, et le temps de solution qui augmente considérablement lors du calcul de flux de puissance des grands réseaux. Le nombre d'itérations peut être significativement réduit, parfois de plus de la moitié, en utilisant un facteur d'accélération α ,

$$\left[V_{i}^{k+1}\right]^{acc} = V_{i}^{k} + \alpha \left(V_{i}^{k+1} - V_{i}^{k}\right)$$
(5.26)

Dont la valeur ne doit pas dépasser 2 pour éviter une divergence. Des valeurs optimales de α Déterminée de manière empirique sont comprises entre 1,4 et 1,6.

Cependant, l'équation 5.24 ne peut pas être appliqué directement aux nœuds PV pour deux raisons : (1) Q_i^{sp} est inconnue pour les nœuds et (2) l'amplitude de tension résultant après chaque itération sera différente de la valeur spécifiée. La méthode habituellement utilisée pour contourner le premier problème consiste à remplacer Q_i^{sp} par la valeur calculée avec les meilleures tensions disponibles. La seconde limitation est évitée en escaladant la tension estimée de sorte que l'angle de phase est mis à jour, mais l'amplitude de tension spécifiée est conservée : [97]

$$\left[V_{i}^{k+1}\right]^{corr} = V_{i}^{sp}V_{i}^{k+1} / V_{i}^{k+1}$$
(5.27)

Ce mécanisme de correction ne devrait pas être prématurément mis en œuvre pour ne pas détériorer la convergence globale du processus.

Peut-être, la seule application pratique de la méthode de Gauss-Seidel est son utilisation comme un démarreur de la méthode de Newton-Raphson, seulement dans les cas rares où la méthode de Newton-Raphson ne converge pas du profil de démarrage à plat [1].

5.3.2 METHODE DE LA MATRICE D'IMPEDANCE

L'inverse de la matrice admittance $Z=Y^{1}$ connue sous le nom de la matrice d'impédance, trouve application dans le contexte de l'analyse de défaut. Lorsque le réseau est faiblement relié à la terre (très petites admittances shunt), la matrice Y est presque singulière et Z est numériquement mal défini. Ce problème est évité en éliminant le nœud bilan et de travailler avec les matrices réduites résultantes, comme expliquées dans ce qui suit. Soit V_r et I_r les vecteurs obtenus en éliminant les variables du nœud bilan. Ensuite, l'équation 5.3 peut être réécrite comme :

$$I_r = Y_r V_r + Y_s V_s \tag{5.28}$$

Où Y_r est la matrice d'admittance obtenue en enlevant la ligne et la colonne de nœud bilan, Y_s est la colonne éliminée, et V_s est la tension de nœud bilan. La réorganisation des termes conduits à :

$$V_r = Z_r \left[I_r - Y_s V_s \right] \tag{5.29}$$

Où $Z_r = Y_r^{-1}$ est la matrice d'impédance réduite. À partir d'un ensemble de tensions V_r^0 initiale, les courants des nœuds sont obtenus à partir :

$$I_{i} = \left(P_{i}^{sp} - jQ_{i}^{sp}\right) / V_{i}^{*} \quad i = 1, 2, \dots, n-1$$
(5.30)

Ensuite, on les remplace dans l'équation 5.29, et le processus est répété jusqu'à ce que la convergence soit obtenue.

Cette procédure de base permet plusieurs améliorations à être mis en œuvre, amenant à une convergence beaucoup mieux que la convergence de la méthode de Gauss-Seidel. La raison pour laquelle la convergence est améliorée vient de matrice Z_r étant pleine. En dépit de cela, cette catégorie de méthodes n'est pas considérée comme concurrentiel de nos jours, sauf peut-être lorsque les réseaux de distribution radiales sont résolus [1].

5.4 METHODE DE NEWTON-RAPHSON

Cette méthode améliore successivement les valeurs inconnues par approximations de premier ordre des fonctions non linéaires concernées. En conservant les deux premiers termes du développement en série de Taylor de l'équation 5.21 autour x^k :

$$f(x) \cong f(x^{k}) + F(x^{k})(x^{k+1} - x^{k}) = 0$$

$$(5.31)$$

Où F = $\partial f/\partial x$ est la matrice Jacobienne de f (x). Puis, à partir de la valeur initiale x^0 , les corrections Δx^k sont obtenues en résolvant le système d'équations linéaires :

$$-F(x^{k})\Delta x^{k} = f(x^{k})$$
(5.32)

Et la mise à jour des valeurs x^{k+1} est à partir de :

$$x^{k+1} = x^k + \Delta x^k \tag{5.33}$$

Le processus itératif est arrêté lorsque :

$$\max_{i} \left| f_{i}\left(x^{k}\right) \right| \leq \varepsilon \tag{5.34}$$

Pour un ε suffisamment petit. Pour des valeurs de x^0 proche de la solution, le procédé de Newton-Raphson converge quadratiquement (cependant, quand il diverge, il le fait aussi quadratiquement). À partir du profil de tension plat, il faut de trois à cinq itérations pour atteindre la convergence, Indépendamment de la taille du réseau [98].

Contrairement aux méthodes simples décrites ci-dessus, qui peuvent être mises en œuvre sous forme complexe, la nécessité de procéder à des dérivés dans la présence de l'opérateur conjugué nécessite que le système d'équations doive être décomposé. Ainsi, selon la façon dont tensions complexes sont exprimés, la version polaire ou rectangulaire de flux de puissance est obtenue, le premier étant de loin le plus populaire.

5.4.1 FORMULATION POLAIRE

Dans ce cas, le vecteur x comprend les éléments $2n_L + n_G$ suivants :

$$x = [\theta | V]^{T} = [\theta_{1}, \theta_{2}, ..., \theta_{n-1} | V_{1}, V_{2}, ..., V_{n_{L}}]^{T}$$
(5.35)

Et les fonctions non linéaires respectives peuvent être exprimées, pour chaque nœud, en tant que la différence (résiduel) entre la puissance spécifiée et la puissance calculée avec la valeur la plus récente de x,

$$f(x) = \left[\Delta P \mid \Delta Q\right]^{T} = \left[\Delta P_{1}, \Delta P_{2}, \dots, \Delta P_{n-1} \mid \Delta Q_{1}, \Delta Q_{2}, \dots, \Delta Q_{n_{L}}\right]^{T}$$
(5.36)

Tels que :

$$\Delta P_{i} = P_{i}^{sp} - V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right) \quad i = 1, 2, \dots, n-1$$
(5.37)

$$\Delta Q_{i} = Q_{i}^{sp} - V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \sin \theta_{ij} + B_{ij} \cos \theta_{ij} \right) \quad i = 1, 2, \dots, n_{L}$$
(5.38)

Sur la base de la notation ci-dessus et en divisant le jacobien en blocs correspondant à ceux des vecteurs résiduels et inconnus, l'équation 5.32, lorsqu'elle est appliquée au problème d'écoulement de puissance, devient [99] [100]:

$$\begin{bmatrix} H & N \\ M & L \end{bmatrix}^{k} \begin{bmatrix} \Delta \theta \\ \Delta V / V \end{bmatrix}^{k} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}^{k}$$
(5.39)

Et l'équation 5.33

$$\begin{bmatrix} \theta \\ V \end{bmatrix}^{k+1} = \begin{bmatrix} \theta \\ V \end{bmatrix}^k + \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}^k$$
(5.40)

L'utilisation de $\Delta V / V$ au lieu de ΔV n'affecte pas l'algorithme numériquement, mais rend la matrice jacobienne plus symétrique (à noter que, le Jacobien est entièrement symétrique structurellement, mais pas numériquement). Gardant à l'esprit que

$$-\partial \left(f_i^{sp} - f_i\right) / \partial x_j = \partial f_i / \partial x_j \tag{5.41}$$

Où f est indistinctement se refère à *P* ou *Q* et *x* se réfère à *V* ou θ , les éléments de la matrice jacobiennes sont obtenus selon les définitions de la manière suivante :

$$\begin{aligned} H_{ij} &= \partial P_i / \partial \theta_j; \ N_{ij} &= \partial P_i / \partial V_j; \\ M_{ij} &= \partial Q_i / \partial \theta_j; \ L_{ij} &= \partial Q_i / \partial V_j; \end{aligned}$$

$$(5.42)$$

Les expressions qui en résultent sont rassemblées dans le tableau 5.1. Il y a beaucoup de termes communs entre les expressions jacobiennes et ceux des vecteurs résiduels ΔP Et ΔQ , qui devraient être prises en compte pour sauver effort de calcul.

La résolution d'écoulement de puissance avec la méthode de Newton-Raphson consiste à suivre les étapes suivantes :

- 1. Initialisation du vecteur d'état avec le profil de tension plat ou avec la solution d'un cas précédent.
- 2. Calculer $[\Delta P | \Delta Q]$ et les éléments de matrice Jacobienne. Si toutes les composantes du vecteur résiduel sont en valeur absolue inférieure à ε , donc le calcul doit s'arrêter. Sinon, le calcul continue.
- 3. Obtenir $[\Delta \theta \mid \Delta V/V]$ par résolution de l'équation du système 5.39.

4. Mise à jour $[\theta|V]$ au moyen de l'équation 5.40 et revenir à l'étape 2.

Pour chaque nœud PV, une équation est retirée du système ci-dessus, ce qui représente l'un des avantages de la formulation polaire.

Dans plusieurs cas, la convergence est améliorée si ΔQ est remplacé par $\Delta Q/V$, qui est simplement obtenue en divisant la ligne respective par V_i . De cette façon, le seul terme non linéaire par rapport à V_i dans $\Delta Q_i / V_i$ est Q_i^{sp} / V_i , qui est relativement faible par rapport aux autres.

Même si, pour la clarté de la présentation, la matrice Jacobienne a été divisée en sous-matrices, dans la pratique, les lignes et les colonnes de chaque nœud PQ sont réunies.

Tableau 5.1 Expressions correspondant aux éléments de la matrice jacobienne sous forme polaire
Pour <i>i≠j</i>
$H_{ij} = L_{ij} = V_i V_j \left(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \right)$
$N_{ij} = -M_{ij} = V_i V_j \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}\right)$
Pour $i=j$
$H_{ii} = -Q_i - B_{ii}V_i^2$ $L_{ii} = Q_i - B_{ii}V_i^2$
$N_{ii} = P_i + G_{ii}V_i^2 \ M_{ii} = P_i - G_{ii}V_i^2$

5.4.2 FORMULATION RECTANGULAIRE

Le vecteur d'état x est désormais composé de 2n-2 éléments suivants :

$$x = \left[V_{r1}, V_{r2}, \dots, V_{r(n-1)} \mid V_{x1}, V_{x2}, \dots, V_{x(n-1)}\right]^{T}$$
(5.43)

Les vecteurs résiduels sont donnés par les expressions :

$$\Delta P_{i} = P_{i}^{sp} - \left[V_{ri} \sum_{j=1}^{n} \left(G_{ij} V_{rj} - B_{ij} V_{xj} \right) + V_{xi} \sum_{j=1}^{n} \left(G_{ij} V_{xj} + B_{ij} V_{rj} \right) \right] \quad i = 1, 2, \dots, n-1$$
(5.44)

$$\Delta Q_{i} = Q_{i}^{sp} - \left[V_{xi} \sum_{j=1}^{n} \left(G_{ij} V_{rj} - B_{ij} V_{xj} \right) - V_{xi} \sum_{j=1}^{n} \left(G_{ij} V_{xj} + B_{ij} V_{rj} \right) \right] \quad i = 1, 2, \dots, n_{L}$$
(5.45)

Comme cela est clairement vu, le nombre d'équations ne correspond pas encore au nombre d'inconnues. La raison est que les contraintes d'amplitude de tension aux nœuds PV

$$\Delta V_i^2 = \left(V_i^{sp}\right)^2 - V_{ri}^2 - V_{xi}^2 = 0 \quad i = 1, 2, \dots, n_G$$
(5.46)

Devrait en outre être appliquées. Par conséquent, les équations de l'écoulement de puissance sous forme matriciel en coordonnées rectangulaires sont

$$\begin{bmatrix} S & T \\ U & W \\ C & D \end{bmatrix}^{k} \begin{bmatrix} \Delta V_{r} \\ \Delta V_{x} \end{bmatrix}^{k} = \begin{bmatrix} \Delta P \\ \Delta Q \\ \Delta V^{2} \end{bmatrix}^{k}$$

$$\begin{bmatrix} V_{r} \\ V_{x} \end{bmatrix}^{k+1} = \begin{bmatrix} V_{r} \\ V_{x} \end{bmatrix}^{k} + \begin{bmatrix} \Delta V_{r} \\ \Delta V_{x} \end{bmatrix}^{k}$$
(5.47)
(5.48)

Où les éléments de la matrice Jacobienne sont donnés dans le tableau 5.2. Dans ce tableau, I_{ri} et I_{xi} se réfèrent, respectivement, aux composantes réelle et imaginaire du courant net injecté au nœud *i*, calculé à partir de l'expression :

$$I_{ri} + jI_{xi} = \sum_{j=1}^{n} \left(G_{ij} + jB_{ij} \right) \left(V_{rj} + jV_{xj} \right)$$
(5.49)

Tableau 5.2 Expressions correspondant aux éléments de la matrice jacobienne sous forme rectangulaire

Pour
$$i \neq j$$

 $S_{ij} = -W_{ij} = G_{ij}V_{ri} + B_{ij}V_{xi}$
 $T_{ij} = U_{ij} = G_{ij}V_{xi} - B_{ij}V_{ri}$
 $C_{ij} = D_{ij} = 0$
Pour $i=j$
 $S_{ii} = I_{ri} - G_{ii}V_{ri} + B_{ii}V_{xi}$ $U_{ii} = -I_{xi} - B_{ii}V_{ri} + G_{ii}V_{xi}$
 $W_{ii} = I_{ri} - G_{ii}V_{ri} - B_{ii}V_{xi}$ $T_{ii} = I_{xi} - B_{ii}V_{ri} + G_{ii}V_{xi}$
 $C_{ii} = 2V_{ri}$ $D_{ii} = 2V_{xi}$

Le processus itératif comprend les mêmes étapes décrites pour la formulation polaire, à l'exception pour les expressions concernées.

5.5 MÉTHODE DÉCOUPLÉE RAPIDE (FAST DECOUPLED LOAD FLOW)

Le temps d'exécution associé à la mise en œuvre exacte de la méthode de Newton-Raphson décrite cidessus peut être inacceptable pour certaines applications, spécialement ceux qui traitent avec de multiples cas et de très grands réseaux.

Parfois, la vitesse de réponse est aussi importante que la précision, ce qui justifie les efforts consacrés dans les années 1970 à développer des versions rapides de la méthodologie de Newton-Raphson.

La première simplification et la plus évidente, consiste à ignorer la dépendance de la matrice jacobienne à l'état actuel. Comme la matrice jacobienne est essentiellement un sous-produit de calcul de vecteur résiduel de la puissance, l'économie majeure de la puissance de calcul provenant de l'utilisation d'une matrice jacobienne constante doit se faire avec sa factorisation triangulaire. En outre, comme le taux de convergence diminue légèrement, les itérations supplémentaires compensent l'économie réalisée à chaque itération. [101]

La seconde simplification et la plus importante se pose en considérant le couplage faible entre la puissance active et les amplitudes de tension, d'une part, et de la puissance réactive et les angles de phase sur l'autre [100] [99], qui se traduit par des valeurs numériques des matrices N et M dans l'équation 5.40 étant nettement plus petits que ceux des matrices diagonales H et L. Comme on peut le vérifier à partir d'expressions données dans le Tableau 5.1, cela est dû principalement à deux raisons : (a) la différence d'angle de phase entre les nœuds adjacentes sont plutôt petites, ce qui implique que $\cos\theta_{ij}\approx 1$ et $\sin\theta_{ij}\approx 0$ et (b) pour les réseaux de transport à haute tension le rapport $r/x = g/b \ll 1$ (pour 220 et 400 kV, ce ratio se situe entre 1/5 et 1/10). [102]

Par conséquent, il est prévu que les performances des modèles découplées, à savoir les modèles en ignorant le couplage entre les sous-problèmes l'actif et réactifs, peuvent-être moins satisfaisante lors de la résolution de réseaux fortement chargés et des réseaux de la moyenne tension (par les lignes de 50 kV, le rapport $r/x \approx 1$, alors qu'il dépasse nettement l'unité pour les lignes de 20 kV). Notant que le découplage visé

dans ce paragraphe n'est pas si évident quand les coordonnées rectangulaires sont utilisées [103], ce qui explique en partie pourquoi cette formulation n'est pas devenu si populaire.

Parmi plusieurs formulations de Newton-Raphson découplé proposées dans la littérature, de loin la plus efficace est la méthode découplée rapide de flux de puissance (fast decoupled load flow FDLF), publié en 1974 [104]. En plus de la réduction à zéro des matrices N et M, les hypothèses simplificatrices suivantes sont faites comme suit :

- 1. Les vecteurs résiduels mise en échelle $\Delta P/V$, $\Delta Q/V$ sont utilisés, au lieu de ΔP , ΔQ .
- 2. Sur la base du fait que Q_i est généralement inférieur à 1 p.u. et B_{ii} et typiquement comprise entre 20 et 50 p.u., on suppose que :

$$\cos \theta_{ij} \approx 1$$

$$G_{ij} \sin \theta_{ij} \ll B_{ij}$$

$$Q_i \ll B_{ii} V_i^2$$

- 3. Dans le sous-problème actif, les amplitudes de la tension sont mises à 1 p.u., les réactances et les capacités shunt sont omises dans la matrice H, y compris ceux des modèles π , et les régulateurs de tension des transformateurs sont ignorés (rapports de transformation nominaux sont supposés).
- 4. En ce qui concerne le sous-problème réactif, les transformateurs déphaseurs sont ignorés dans la matrice L.

Gardant à l'esprit ces considérations, l'équation 5.40 se réduit aux systèmes découplés suivants :

$$B'\Delta\theta = \Delta P/V \tag{5.50}$$

$$B''\Delta V = \Delta Q / V \tag{5.51}$$

Tels que les matrices B' et B'', étant constante, doivent être construits et factoriser une seule fois. En outre, des expériences ont montré qu'en ignorant la résistance des lignes dans la matrice B' bénéfice la convergence en quelque sorte. De cette façon, les éléments des matrices B' et B'' deviennent :

$$B'_{ij} = -1/x_{ij}; \quad B'_{ii} = \sum_{j \in i} 1/x_{ij}$$
(5.52)

$$B''_{ij} = -B_{ij}; \quad B''_{ii} = -B_{ii} \tag{5.53}$$

Où x_{ij} est la réactance série de l'élément de liaison des nœuds i et j, B_{ij} est la composante imaginaire de l'élément respectif de la matrice d'admittance, et $j \in i$ désigne l'ensemble des nœuds j adjacent aux nœuds i. Notant que B'' est une matrice symétrique, et aussi B' si le réseau ne contient pas des déphaseurs, qui devraient être prises en compte pour réduire l'effort de calcul. [105]

Le processus itératif consiste à résoudre les équations 5.50 et 5.51 séquentiellement, en utilisant chaque fois les valeurs les plus récentes de θ et V, jusqu'à ce que ΔP et ΔQ satisfont au critère de convergence. Le taux de convergence de FDLF est à peu près le même que celle de la version couplée au cours des premières itérations, mais il ralentit en approchant de la solution. Dans tous les cas, les itérations supplémentaires nécessaires sont bien compensées par le fait que l'effort par itération peut être compris entre quatre et cinq fois plus petite que celle de la méthode de Newton-Raphson standard. Cela rend le FDLF l'outil parfait dans les applications impliquant un grand nombre de solutions.

Comme indiqué ci-dessus, les hypothèses sur lesquelles la FDLF est fondée peuvent être remises en question lorsque le réseau est très chargé ou les rapports r/x sont élevés. Dans ces cas, la FDLF peut diverger ou se comporter d'une manière oscillante, l'approche de Newton-Raphson entièrement couplé est préférable. Dans [106], les résultats sont présentés suggérant que la FDLF montre un taux de convergence mieux dans les cas difficiles si la résistance des lignes sont ignorées dans B'' plutôt que dans B'. Donc, la FDLF standard est connu comme la version "XB" tandis que la FDLF proposée dans Réf. [106] est appelée la version "BX".

Le bon comportement montré par la FDLF est un peu surprenant, compte tenu du grand nombre de simplifications sur lesquelles il est fondé. Cela a conduit les chercheurs à trouver une théorie plausible capable d'expliquer les preuves fournies par des résultats. Dans ce qui suit, un résumé des arguments les plus pertinents discutés dans Réf. [107] est présenté.

L'équation 5.39 peut être décomposée en deux sous-systèmes suivants :

$$\left[H - NL^{-1}M\right]\Delta\theta = \Delta P - NL^{-1}\Delta Q$$
(5.54)

$$\left[L - MH^{-1}N\right]\Delta V = \Delta Q - MH^{-1}\Delta P \tag{5.55}$$

Où les termes de couplage ont été décalés vers la droite. Concentrons-nous sur le sous-problème actif, car des conclusions similaires sont atteintes pour le sous-problème réactif.

Contrairement au modèle couplé, dans lequel ΔP^k et ΔQ^k sont des fonctions des vecteurs θ^k et V^k , obtenu lors de l'itération précédente, chaque moitié d'itération de la FDLF utilise de valeurs mises à jour en partie dans la première demi-itération. Par exemple, à l'étape k + 1, ΔP^{k+1} est une fonction des vecteurs θ^k et le V^{K+1} qui vient d'être mis à jour. Effectuant le développement de Taylor ΔP^{k+1} autour du point θ^k , V^k qui donne :

$$\Delta P(\theta^{k}, V^{k+1}) \cong \Delta P(\theta^{k}, V^{k}) - N\Delta V^{k}$$
(5.56)

Mais en gardant à l'esprit que ΔV_k vient d'être obtenu à partir du sous-problème réactif

$$L\Delta V^{k} \cong \Delta Q\left(\theta^{k}, V^{k}\right) \tag{5.57}$$

L'approximation de la série devient

$$\Delta P(\theta^{k}, V^{k+1}) \cong \Delta P(\theta^{k}, V^{k}) - NL^{-1} \Delta Q(\theta^{k}, V^{k})$$
(5.58)

En comparant l'expression 5.58 avec l'équation 5.54, on peut conclure que la FDLF n'a pas vraiment ignoré le couplage entre les deux sous-problèmes, mais elle le prend en compte implicitement en utilisant des variables qui ont été mises à jour au cours de la demi-itération précédente.

En ce qui concerne la matrice de coefficients dans l'équation 5.54, pour un profil plat de tension et des réseaux radiaux [107]on peut démontrer que

$$H - NL^{-1}M = B' \tag{5.59}$$

Si les résistances sont ignorées lors de la construction de B'. Il en va de même pour les réseaux maillés avec un rapport uniforme r/x. Dans le cas général, l'expression ci-dessus n'est pas exacte (la matrice gauche est pleine tandis que B' est creuse), mais les différences sont assez petites. Cela explique pourquoi en ignorant les résistances nous conduit généralement à des meilleurs résultats.

5.6 AUTRES METHODES EFFICACES POUR LA SOLUTION D'ECOULEMENT DE PUISSANCE

5.6.1 METHODE ROBUSTE DE NEWTON

Pour les cas bien conditionnés, la méthode standard de Newton converge généralement en 4-5 itérations. La plupart des livres sur les méthodes numériques préviennent la possibilité que la méthode de Newton-Raphson peut faire des cycles autour de la solution sans réellement jamais arriver à elle. Les figures 5.2.c et 5.2.d illustrent deux cas mal conditionnés d'une fonction f(x) [49].

Figure 5.2 Interprétation géométrique de la méthode de Newton pour la fonction f(x) (a) pour les cas bien conditionnés, (b) cas sans solution, (c) et (d) les cas mal conditionnés.

Un exemple d'écoulement de puissance qui montre un comportement similaire à ceux représentés dans les figures 5.2.c et 5.2.d est assez rare. Cependant, il y a des cas idiosyncrasiques pour lesquels la technique basique de Newton ne converge pas. Des variations robuste de la méthode de Newton ont été proposés dans la littérature pour résoudre des cas mal conditionnés [108] [109] [110] [111] [112] [113] [114]La plupart de ces techniques consiste principalement à modifier la première équation (5.32), comme suit [49]:

$$\Delta x^{k} = -\alpha \left[F\left(x^{k}\right) \right]^{-1} f\left(x^{k}\right)$$
(5.60)

Où α est un facteur qui permet d'améliorer les propriétés de convergence du procédé itératif. Si α est le résultat d'un processus d'optimisation, α est appelé multiplicateur optimal. L'interprétation géométrique de méthode robuste de Newton est représentée sur la figure 5.3.

Figure 5.3 Interprétation géométrique de la méthode robuste de Newton d'une fonction f(x) (a) la méthode standard et (b) méthode robuste.

Il est important de ne pas confondre les cas mal conditionnés avec ceux qui sont insolubles puisque la solution n'existe pas (voir Figure 5.2.b). Les solveurs robustes sont utiles dans le cas des systèmes mal conditionnés, mais généralement ils ne fonctionnent pas bien pour les cas insolubles.

Lors d'une itération *i* donnée, la valeur optimale de α est celui qui minimise la valeur maximale de vecteur résiduel de puissance max { $|f(x^{(i+1)})|$ }. Étant donné qu'on ne connait pas à priori le décalage maximal de puissance à l'itération *i*+1, on doit effectuer une itération sur α . Cependant, il est nécessaire de trouver l'optimum. Un procédé simple, mais très robuste est la méthode de dichotomie, comme suit.

- 1. Définir $\alpha \leftarrow 1$.
- 2. Calculer max $\{|f(x^{(i+1)})|\}$.
- 3. Si max $\{|f(x^{(i+1)})|\} \le \max \{|f(x^{(i)})|\}$, continuer avec la prochaine itération, sinon mettre $\alpha \leftarrow 0, 5.\alpha$ et revenir à l'étape 2.

Pour les cas insolubles, $\alpha \rightarrow 0$, donc on doit fixer une valeur minimale pour α . [49]

5.6.2 METHODE D'IWAMOTO

Des méthodes plus sophistiquées cherchent à estimer max $\{|f(x^{(i+1)})|\}$. Par exemple, ce paragraphe décrit la méthode d'Iwamoto, qui est l'une des méthodes robustes d'écoulement de puissance proposées dans [110]. Considérant le développement de Taylor de (5.21) à l'*i*^{ème} itération :

$$f(x) = f^{(i)} + F(x^{(i)})\Delta x^{(i)} + f(\Delta x^{(i)})$$
(5.61)

Dans (5.61) le vecteur de correction $\Delta x^{(i)}$ n'est pas connu. Afin d'optimiser la longueur de $\Delta x^{(i)}$, un facteur α est inclus dans (5.61), comme suit :

$$f(x) = f^{(i)} + F(x^{(i)})\alpha\Delta x^{(i)} + f(\alpha\Delta x^{(i)})$$
(5.62)

Supposant la forme rectangulaire (5.13 et 5.14) des équations d'écoulement de puissance :

$$f\left(\alpha\Delta x^{(i)}\right) = \alpha^2 f\left(\Delta x^{(i)}\right) \tag{5.63}$$

Ainsi (5.61) est une équation quadratique par rapport à α :

$$d(\alpha) = c_0 + c_1 \alpha + c_2 \alpha^2 \tag{5.64}$$

Où

$$c_0 = f^{(i)}, c_1 = F(x^{(i)})\Delta x^{(i)}, \quad c_2 = f(\Delta x^{(i)})$$
(5.65)

Il est pertinent de noter qu'à partir de (5.32), on a c_1 =- c_0 . La valeur optimale de α est déterminée en minimisant la fonction de coût suivante :

$$k(\alpha) = \frac{1}{2}d(\alpha)^{T}d(\alpha)$$
(5.66)

Dans ce cas, les conditions de Karush-Kuhn-Tucker donnent simplement :

$$\frac{\partial k}{\partial \alpha} = 0 \Longrightarrow f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 = 0$$
(5.67)

Où

$$f_0 = c_0^T c_1, \ f_1 = c_1^T c_1 + 2c_0^T c_2, \ f_2 = 3c_1^T c_2, \ f_3 = 2c_2^T c_2$$
(5.68)

Puisque (5.67) est un scalaire polynomial cubique, la formule de Cardan fournit la solution analytique :

$$\alpha = \alpha_1 + \sqrt[3]{\alpha_2 + \alpha_3} + \sqrt[3]{\alpha_2 - \alpha_3}$$
(5.69)

Où

$$\alpha_{1} = -\frac{f_{2}}{3f_{3}} \qquad \qquad \alpha_{2} = \alpha_{1}^{3} + \frac{f_{2}f_{1} - 3f_{3}f_{0}}{6g_{3}^{2}} \\ \alpha_{3} = \sqrt{\alpha_{2}^{2} + (\alpha_{4} - \alpha_{1}^{2})^{3}} \qquad \qquad \alpha_{4} = \frac{f_{1}}{3f_{3}}$$
(5.70)

Un problème de la méthode d'Iwamoto c'est que le multiplicateur optimal α diminue lorsque x converge vers la solution, ce procédé d'Iwamoto converge généralement lentement [49].

5.6.3 Runge Kutta du 4^{EME} ordre

Référence [115] suggère que, compte tenu de l'analogie entre les équations de l'écoulement de puissance (5.21) et les équations différentielles ordinaires, toute méthode numérique bien évaluée peut être utilisé pour l'intégration. Il est donc intéressant d'utiliser une méthode d'intégration efficace pour résoudre (5.21). Puisque le calcul de (5.71) implique l'inversion de la matrice jacobienne de flux de puissance, les méthodes d'intégration explicites ne sont approprié et de calcul efficace, car on n'a pas besoin de calculer la matrice jacobienne.

$$\Delta x^{k} = -\left[F\left(x^{k}\right)\right]^{-1} f\left(x^{k}\right)$$
(5.71)

Les formules classiques de Runge-Kutta du 4^{ème} ordre sont :

$$f^{(0)} = f(x(t))$$

$$f^{(1)} = f(x(t) + 0.5\Delta t f^{(0)})$$

$$f^{(2)} = f(x(t) + 0.5\Delta t f^{(1)})$$

$$f^{(3)} = f(x(t) + \Delta t f^{(2)})$$

$$\Rightarrow x(t + \Delta t) = x(t) + \Delta t (f^{(0)} + 2f^{(1)} + 2f^{(2)} + f^{(3)}) / 6$$
(5.72)

Où *t* est le temps d'intégration en cours et Δt est la longueur d'étape [49].

5.7 MODELISATION DE L'UPFC

Cette partie se concentre sur les techniques pour l'inclusion des modèles d'état stable de l'UPFC dans les programmes de flux de puissance. Six techniques de modélisation sont choisis de nombreux disponibles en littérature qui sont : la technique découplée, la technique globale, la technique d'injection de puissance, la méthode d'injection de puissance en π , la technique indirecte, et technique de partitionnement la matrice. [116]

Un de ces modèles de l'UPFC (modèle complet) sera intégré dans un programme de flux de puissance MATLAB, basé sur l'algorithme de Newton-Raphson, XB et BX FDLF, Méthode robuste de Newton, méthode d'Iwamoto et finalement la méthode de Runge Kutta dans la section 5.9. Par la suite les six modèles sont présentés avec leurs avantages et leurs inconvénients.

5.7.1 MODELE DECOUPLE

Figure 5.4 (a) décrit le schéma de l'UPFC (deux convertisseurs de source de tension connectés avec un lien commun CC). Le circuit équivalent de l'UPFC avec deux sources de tension (V_{sh} , V_{se}) et une impédance en série (représentant les transformateurs de couplage) peut être donné dans la figure 5.4 (b). [40] [32]

Figure 5.4 UPFC connecté entre les noeuds n et j

Basé sur ce circuit équivalent, Nabavi-Niaki et Iravani proposé un modèle simple de l'UPFC basé sur l'approche découplée [117]. Dans cette technique, l'UPFC et les transformateurs de couplage sont supposés être sans perte. Les bornes d'émission et de réception de l'UPFC sont séparées. Le nœud de réception est transformé en nœud PQ tandis que celle d'émission est transformée en un nœud PV. Les puissances active et réactive injectées au nœud PQ et l'amplitude de tension du nœud PV sont fixées à des valeurs de référence, comme indiqué dans la figure 5.5. Un flux de puissance standard est effectué afin de déterminer la solution d'écoulement de puissance avec la nouvelle représentation de l'UPFC. Après la convergence de flux de puissance, la solution est utilisée pour résoudre les équations d'état stable de l'UPFC pour déterminer ces paramètres (V_{sh} , V_{se}). [118]

Figure 5.5 modèle découplé

5.7.1.1 Avantages du modèle découplé

La simplicité est considérée comme l'avantage principal de cette technique. Où, la modification de la matrice jacobienne originale est évitée, seul le vecteur résiduel de puissance doit être changé.

5.7.1.2 Inconvénients du modèle découplé

Cette méthode fait face à des insuffisances telles que :

- La technique n'a pas la possibilité de connaître si les paramètres de l'UPFC sont dans les limites ou non. Où, les paramètres sont calculés après la convergence d'écoulement de puissance.
- La technique ne traite que les situations où l'UPFC est utilisé pour contrôler la puissance active, la puissance réactive et la tension simultanément et non individuellement.
- Le problème de sélection de valeurs initiales appropriées de l'UPFC. Où, ces paramètres sont calculés après la convergence en utilisant un ensemble d'équations non-linéaires.
- La technique n'a pas pris en compte la situation où l'UPFC est le seul lien entre deux sousréseaux.

5.7.2 MODELE COMPLET

La référence [119], a présenté un nouveau modèle complet de l'UPFC pour contourner les limites de la technique découplé. Dans ce modèle, L'UPFC est considéré comme une simple extension des équations de flux de puissance. Tels que, les paramètres de commande de l'UPFC sont pris comme des variables indépendantes et leurs valeurs sont calculées pendant le processus itératif. La technique complète est considérée comme une approche unifiée qui relie les variables d'état du réseau et de l'UPFC dans un seul système d'équations simultanés. Par la suite, la matrice jacobienne est agrandie en fonction du nombre d'UPFCs. En général, la structure de la matrice jacobienne modifiée avec l'UPFC peut être donnée sur la figure 5.6.

Figure 5.6 modèle complet

5.7.2.1 Avantages du mdèle complet

Les principaux avantages de l'approche complète par rapport à la technique découplée peuvent être résumés comme suit :

- En raison de l'incorporation de variables d'état de l'UPFC à l'intérieur de la matrice jacobienne et le vecteur résiduel, une bonne convergence caractéristique peut être obtenue.
- L'approche donne la possibilité de contrôler la tension, la puissance active et réactive simultanément ou individuellement.
- L'approche donne une solution lorsque l'UPFC est le seul lien entre deux sous-réseaux.

5.7.2.2 Inconvénients du modèle complet

Cette technique présente les paramètres de contrôle UPFC comme des variables indépendants et leurs valeurs sont calculées pendant le processus itératif. Par conséquent, la taille de la matrice jacobienne est augmentée afin de tenir compte des variables d'état indépendantes de l'UPFC supplémentaires. La technique a également fait face au problème associé à la sélection de valeurs initiales appropriées des paramètres de commande de l'UPFC.

5.7.3 MODELE D'INJECTION DE PUISSANCE

La référence [120] a présenté une approche de modélisation de l'UPFC pour les études d'écoulement de puissance. Cette approche est basée sur la puissance active et réactive injectée aux bornes de l'UPFC. Les puissances injectées sont en fonction de la tension de nœuds aux bornes de l'UPFC et ses impédances. Le modèle d'injection peut être mis en œuvre dans le programme de flux de puissance en ajoutant les puissances injectées et leurs dérivés par rapport aux variables d'état du réseau aux endroits appropriés dans le vecteur résiduel et la matrice jacobienne. Les dimensions d'origine du vecteur résiduel et de la matrice jacobienne sont maintenues constantes. [121]

Figure 5.7 montre le modèle d'injection de l'UPFC connecté entre les nœuds n et k. La source de tension série V_{se} est prise égal à $rV_n \angle \beta$, Où $0 < r < r_{max}$ and $0 < \beta < 360^\circ$. r et β représentent les paramètres de commande de l'UPFC. Le modèle peut être facilement incorporé dans un algorithme de flux de puissance. Où, la matrice admittance est modifiée par l'ajout de la réactance série de l'UPFC (X_{se}) entre les nœuds n et k. Ensuite, la matrice jacobienne est modifiée en ajoutant les puissances injectées. Pour rendre cela plus clairement, le modèle linéarisé de flux de puissance peut être considéré comme suit : [122]

Haque et Yam proposé un modèle de l'UPFC simple Basé sur cette technique, pour éliminer les modifications de la matrice jacobienne [123]. Dans ce modèle, les puissances injectées sont mis à jour pendant le processus itératif sur la base des tensions aux bornes de l'UPFC et les valeurs de demande pour le flux de puissance de la ligne et la tension shunt. Les paramètres de commande de l'UPFC peuvent être mises à jour au

cours du processus itératif. La figure 5.8 montre le modèle simple de l'UPFC basé sur l'approche d'injection de charge.

Où :

$$S_n = V_n \left(\frac{P_{sp} + jQ_{sp}}{V_k}\right)^* - \left(\frac{V_n - V_k}{Z_{se}}\right)$$
(5.74)

$$S_{k} = -V_{k} \left(\frac{P_{sp} + jQ_{sp}}{V_{k}} \right)^{2} - \left(\frac{V_{n} - V_{k}}{Z_{se}} \right)$$
(5.75)

$$P_{sh} = \operatorname{Re}\left(V_{se}\left(\frac{V_n + V_{se} - V_k}{Z_{se}}\right)^*\right)$$
(5.76)

Où les indices (sp), (se) et (sh), indiquent les valeurs spécifiées, séries et shunt, respectivement.

Figure 5.8 modèle simple de l'UPFC

5.7.3.1 Avantages du modèle d'injection de puissance

En utilisant la technique d'injection de puissance, la mise en œuvre de l'UPFC dans un programme de flux de puissance peut se faire facilement par rapport à l'approche complète. En outre, cette technique a résolu le problème lorsque l'UPFC est le seul lien entre deux sous-réseaux.

5.7.3.2 Inconvénients du modèle d'injection

Le principal inconvénient de cette approche est la modification de la matrice Jacobienne pour inclure les éléments de l'UPFC. En outre, les paramètres UPFC sont ajustés par tâtonnement pour atteindre la solution de flux de puissance.

5.7.4 MODELE EN Π D'INJECTION DE PUISSANCE

Dans cette technique, l'UPFC est considéré comme un dispositif sans perte et les résistances de la ligne de transport entre les nœuds d'envoi et de réception sont négligées. L'UPFC a été modélisé avec la réactance du transformateur de couplage série et la susceptance de la ligne comme un circuit équivalent en π avec des puissances actives et réactives injectées à ses bornes. Les variables d'état de l'UPFC sont ajustées simultanément avec les variables d'état du réseau pour atteindre les valeurs de demande. Le modèle en π d'injection de puissance de l'UPFC peut être donné dans la figure 5.9 [124] [125].

$$P_{se}^{n} = V_{n}V_{se} \frac{\left(1 - y_{0}X_{L}\right)}{\left(X_{se} - y_{0}X_{se}X_{L} + X_{L}\right)} \sin\left(\theta_{n} - \theta_{se}\right)$$
(5.77)

$$P_{se}^{j} = \frac{-V_{j}V_{se}}{\left(X_{se} - y_{0}X_{se}X_{L} + X_{L}\right)}\sin\left(\theta_{j} - \theta_{se}\right)$$
(5.78)

$$A_{nj} = -\frac{1}{Z_{se} \left(1 + jZ_L - y_0\right) + Z_L}$$
(5.79)

$$A_{n}^{0} = -\left(j2y_{0} - Z_{L}y_{0}^{2}\right) + \frac{\left(1 + jZ_{L}y_{0}\right)\left(1 + Z_{se}\left(j2y_{0} - Z_{L}y_{0}^{2}\right) + \left(1 + jZ_{L}y_{0}\right)\right)}{Z_{se}\left(1 + jZ_{L} - y_{0}\right) + Z_{L}}$$
(5.80)

$$A_{j}^{0} = \frac{Z_{se}(j2y_{0} - Z_{L}y_{0}^{2}) + jZ_{L}y_{0}}{Z_{se}(1 + jZ_{L} - y_{0}) + Z_{L}}$$
(5.81)

$$P_{sh}^{n} = \frac{V_{n}V_{sh}}{X_{sh}}\sin\left(\theta_{n} - \theta_{sh}\right)$$
(5.82)

Figure 5.9 modèle en π d'injection de puissance

5.7.4.1 Avantages du modèle en π

Dans ce modèle, la réactance du transformateur de couplage et la susceptance de la ligne sont considérées dans la solution d'écoulement de puissance. La structure originale et la symétrie de la matrice d'admittance peuvent encore être maintenues. La matrice jacobienne peut garder les propriétés du blocdiagonale. Par conséquent, la technique des matrices creuses peut être appliquée facilement à la solution d'écoulement de puissance.

5.7.4.2 Inconvénients du modèle en π

Dans cette technique, les variables de l'UPFC sont réglés simultanément avec les variables de réseau pour atteindre les objectifs de contrôle nécessaires. Par conséquent, la matrice jacobienne doit être modifiée pour inclure les éléments de l'UPFC. En outre, cette méthode a besoin de bonnes conditions initiales pour les variables d'état d'UPFC pour obtenir une bonne convergence.

5.7.5 LE MODELE INDIRECT

Dans la référence [126], ils ont essayé de réduire la complexité des codes des programmes d'écoulement de puissance avec l'UPFC. Cet objectif a été fait en développant une approche indirecte pour la modélisation de l'UPFC. Dans cette approche, le réseau avec l'UPFC sont représentés avec un réseau équivalent modifié qui ne possède pas ce dispositif. Ensuite, le flux de puissance standard peut être utilisé pour calculer la solution d'écoulement de puissance et les paramètres de tension requise de l'UPFC. [127]

En supposant, un réseau de N incorporé avec (K) UPFCs. Le nouveau circuit équivalent de réseau avec UPFCs peut être représenté comme un réseau de N + 2K nœud sans UPFC. Dans la figure 5.4, un UPFC est connecté entre les nœuds n et j d'un réseau existant de (N) nœuds. Sur cette base, le réseau équivalent de (N + 2) nœuds peut être donné dans la figure 5.10.

$$\mu = \frac{Y_{se} \left(Y_0 + Y_{ij} \right)}{Y_0 + Y_{ij} + Y_{se}}$$
(5.83)

$$\gamma = \frac{Y_{ij}Y_{se}}{Y_0 + Y_{ii} + Y_{se}}$$
(5.84)

$$I_{N+1} = -I_{se} = \sum_{k=1}^{N+2} Y_{(N+1),k} V_k$$
(5.85)

$$I_{N+2} = -I_{sh} = \sum_{k=1}^{N+2} Y_{(N+2),k} V_k$$
(5.86)

Figure 5.10 le modèle indirect.

5.7.5.1 Avantages du modèle indirect

Le principal avantage de l'approche indirecte est la réduction de la complexité des flux de puissance lorsqu'il contient le dispositif UPFC. Cette réduction a été faite par la transformation du réseau avec l'UPFC au réseau équivalent sans UPFC.

5.7.5.2 Inconvénients du modèle indirect

Le principal inconvénient de cette approche est l'augmentation de la taille de la matrice jacobienne afin d'accueillir les variables d'état de l'UPFC. À la suite de cela, les éléments jacobiennes relatifs à l'UPFC doivent être modifiés.

5.7.6 MODELISATION DE L'UPFC EN UTILISANT LA TECHNIQUE DE PARTITIONNEMENT DE MATRICE

La référence [90] a appliquée la méthode de partitionnement de matrice pour modéliser l'UPFC dans l'algorithme de flux de puissance. Cette approche a essayé d'éviter la modification de la matrice jacobienne originale ($J_{réseau}$) et d'atteindre la réutilisabilité. Cette approche repose sur la séparation de la matrice jacobienne initiale en matrice originale et de nouvelles sous-matrices liées à l'UPFC, comme décrit dans (5.87).

L'équation (5.87) peut être réécrite comme suit :

$$J_{old}X_1 + A_{12}X_2 = B_1$$
(5.88)
$$A_{21}X_1 + A_{22}X_2 = B_2$$
(5.89)

L'équation (5.90) peut être obtenue par le réarrangement de (5.88).

$$X_{1} = J_{old}^{-1} \left(B_{1} - A_{12} X_{2} \right)$$
(5.90)

En substituant (5.90) dans (5.89), l'équation (5.91) peut être obtenue comme suit :

$$X_{2} = \left[A_{22} - A_{21}J_{old}^{-1}A_{12}\right]^{-1} \left[B_{2} - A_{21}J_{old}^{-1}B_{1}\right]$$
(5.91)

Afin d'obtenir la valeur de X1, X2 est résolu en premier et ensuite substitué dans (5.90).

5.7.6.1 Avantages de la technique de partitionnement de matrice

L'approche de partitionnement de matrice est basée sur le modèle complet de l'UPFC ; par conséquent, les avantages de l'approche globale ont été recueillis dans cette technique. En outre, l'ajout et la modification dans les codes de flux de puissance peut être faite avec quelques modifications dans les codes originaux.

5.7.6.2 Inconvénients de la technique de partitionnement de matrice

Le principal inconvénient de cette technique est que les nouveaux codes relatifs à l'UPFC doivent être écrits, à la suite de cela, la complexité de programme du flux de charge avec l'UPFC est toujours conservée.

5.8 LE MODELE COMPLET DE L'UPFC

Le principe de fonctionnement de l'UPFC a été discuté dans le chapitre 3. Il résulte de cette discussion que l'UPFC devrait être représenté par un circuit équivalent constitué de deux sources de tensions synchrones coordonnées pour l'analyse de l'état d'équilibre à la fréquence fondamentale. Un tel circuit équivalent est représenté sur la Figure 5.11. Les sources de tension synchrones représentent la composante fondamentale de série de Fourier des formes d'ondes de tension aux bornes AC des convertisseurs de l'UPFC [40].

Figure 5.11 circuit équivalent de l'UPFC

Les sources de tensions sont :

$$V_{sh} = V_{sh} (\cos \theta_{sh} + j \sin \theta_{sh})$$

$$V_{se} = V_{se} (\cos \theta_{se} + j \sin \theta_{se})$$
(5.92)
(5.93)

Où V_{sh} et θ_{sh} sont l'amplitude commandée ($V_{shmin} \leq V_{sh} \leq V_{shmax}$) et l'angle ($\theta \leq \theta_{sh} \leq 2\pi$) de la source de tension représentant le convertisseur shunt. L'amplitude V_{se} et l'angle θ_{se} de la source de tension du convertisseur série sont commandés entre des limites ($V_{semin} \leq V_{se} \leq V_{semax}$) et ($\theta \leq \theta_{se} \leq 2\pi$), respectivement.

Basant sur le circuit équivalent représenté sur la figure 5.11, les équations de puissance active et réactive sont :

Au nœud i :

$$P_{i} = V_{i}^{2}G_{ii} + V_{i}V_{j}(G_{ij}\cos(\theta_{i} - \theta_{j}) + B_{ij}\sin(\theta_{i} - \theta_{j})) + V_{i}V_{sh}(G_{ij}\cos(\theta_{i} - \theta_{sh}) + B_{ij}\sin(\theta_{i} - \theta_{sh})) + V_{i}V_{se}(G_{se}\cos(\theta_{i} - \theta_{se}) + B_{se}\sin(\theta_{i} - \theta_{se}))$$

$$Q_{i} = V_{i}^{2}B_{ii} + V_{i}V_{j}(G_{ij}\sin(\theta_{i} - \theta_{j}) - B_{ij}\cos(\theta_{i} - \theta_{j})) + V_{i}V_{sh}(G_{ij}\sin(\theta_{i} - \theta_{sh}) - B_{ij}\cos(\theta_{i} - \theta_{sh})) + V_{i}V_{se}(G_{se}\sin(\theta_{i} - \theta_{se}) - B_{se}\cos(\theta_{i} - \theta_{se}))$$
(5.94)
$$(5.94)$$

$$V_{i}V_{se}(G_{se}\sin(\theta_{i} - \theta_{se}) - B_{se}\cos(\theta_{i} - \theta_{se}))$$
(5.95)

Au nœud j :

$$P_{j} = V_{j}^{2}G_{jj} + V_{j}V_{i}(G_{ji}\cos(\theta_{j} - \theta_{i}) + B_{ji}\sin(\theta_{j} - \theta_{i})) + V_{j}V_{sh}(G_{ji}\cos(\theta_{j} - \theta_{sh}) + B_{ji}\sin(\theta_{j} - \theta_{sh})) + V_{j}V_{se}(G_{se}\cos(\theta_{j} - \theta_{se}) + B_{se}\sin(\theta_{j} - \theta_{se}))$$

$$(5.96)$$

$$Q_{j} = V_{j}^{2} B_{jj} + V_{j} V_{i} (G_{ji} \sin(\theta_{j} - \theta_{i}) - B_{ji} \cos(\theta_{j} - \theta_{i})) + V_{j} V_{sh} (G_{ji} \sin(\theta_{j} - \theta_{sh}) - B_{ji} \cos(\theta_{j} - \theta_{sh})) + V_{j} V_{se} (G_{se} \sin(\theta_{j} - \theta_{se}) - B_{se} \cos(\theta_{j} - \theta_{se}))$$

$$(5.97)$$

Au convertisseur série :

$$P_{se} = V_{se}^2 G_{jj} + V_{se} V_i (G_{ij} \cos(\theta_{se} - \theta_i) + B_{ij} \sin(\theta_{se} - \theta_i)) + V_{se} V_j (G_{jj} \cos(\theta_{se} - \theta_j) + B_{jj} \sin(\theta_{se} - \theta_j))$$
(5.98)

$$Q_{se} = -V_{se}^2 B_{jj} + V_{se} V_i (G_{ij} \sin\left(\theta_{se} - \theta_i\right) - B_{ij} \cos\left(\theta_{se} - \theta_i\right)) + V_{se} V_j (G_{jj} \sin\left(\theta_{se} - \theta_j\right) - B_{jj} \cos\left(\theta_{se} - \theta_j\right))$$
(5.99)

Au convertisseur shunt :

$$P_{sh} = -V_{sh}^2 G_{sh} + V_{sh} V_i (G_{sh} \cos(\theta_{sh} - \theta_i) + B_{sh} \sin(\theta_{sh} - \theta_i))$$
(5.100)

$$Q_{sh} = V_{sh}^2 B_{sh} + V_{sh} V_i (G_{sh} \sin\left(\theta_{sh} - \theta_i\right) - B_{sh} \cos\left(\theta_{sh} - \theta_i\right))$$
(5.101)

Ou :

$$Y_{ii} = G_{kk} + jB_{kk} = z_{se}^{-1} + z_{sh}^{-1}$$
(5.102)

$$Y_{jj} = G_{jj} + jB_{jj} = z_{ser}^{-1}$$
(5.103)

$$Y_{ij} = Y_{ji} = G_{ij} + jB_{ij} = -z_{se}^{-1}$$
(5.104)

$$Y_{sh} = G_{sh} + jB_{sh} = -z_{sh}^{-1}$$
(5.105)

Si les pertes doivent être inclus dans l'injection de puissance active de la source de tension shunt au nœud i, P_{sh} est égale à 1,02 fois la puissance active injectée par le convertisseur série P_{se} .

$$P_{sh} = -1.02P_{se} \tag{5.106}$$

5.8.1 LA MATRICE JACOBIENNE

Les variables d'état correspondant à l'UPFC sont combinés avec les amplitudes et les angles des tensions de réseau dans un cadre unique de référence pour une solution unifiée à travers la méthode de Newton-Raphson. Les variables d'état de l'UPFC sont automatiquement ajustées de manière à satisfaire les flux de puissance et les amplitudes de tension spécifiées [30] [32].

Les équations linéarisé de l'UPFC sont combinées avec le système linéarisé d'équations correspondant au reste du réseau,

$$\left[f\left(x\right)\right] = \left[J\right]\left[\Delta X\right] \tag{5.107}$$

Où

$$\left[f\left(x\right)\right] = \left[\Delta P_{i}\,\Delta P_{j}\,\Delta Q_{i}\,\Delta Q_{j}\,\Delta P_{ji}\,\Delta Q_{ji}\,\Delta P_{bb}\right]^{T}$$
(5.108)

 ΔP_{bb} est la puissance résiduelle donnée par l'équation 5.106 et l'exposant *T* indique la transposition. $[\Delta x]$ est le vecteur de solution et [J] est la matrice jacobienne. Pour le cas où l'UPFC contrôle l'amplitude de la tension à la borne AC de convertisseur shunt (nœud *i*), la puissance active circule à partir du nœud *j* vers le nœud *i* et la puissance réactive injectée au nœud *j*, et en supposant que le noeud *j* est un nœud PQ, le vecteur solution et la matrice jacobienne sont, [132]

$$\begin{bmatrix} \Delta X \end{bmatrix} = \begin{bmatrix} \Delta \theta_{i} \Delta \theta_{j} \frac{\Delta V_{sh}}{V_{sh}} \frac{\Delta V_{m}}{V_{m}} \Delta \theta_{se} \frac{\Delta V_{se}}{V_{se}} \Delta \theta_{sh} \end{bmatrix}$$
(5.109)
$$\begin{bmatrix} \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{i}}{\partial \theta_{j}} & \frac{\partial P_{i}}{\partial V_{sh}} V_{sh} & \frac{\partial P_{i}}{\partial V_{j}} V_{j} & \frac{\partial P_{i}}{\partial \theta_{se}} & \frac{\partial P_{i}}{\partial V_{se}} V_{se} & \frac{\partial P_{i}}{\partial \theta_{sh}} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{j}}{\partial \theta_{j}} & 0 & \frac{\partial P_{j}}{\partial V_{j}} V_{j} & \frac{\partial P_{i}}{\partial \theta_{se}} & \frac{\partial P_{j}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{j}} & 0 & \frac{\partial Q_{i}}{\partial V_{sh}} V_{sh} & \frac{\partial Q_{i}}{\partial V_{j}} V_{j} & \frac{\partial Q_{i}}{\partial \theta_{se}} & \frac{\partial Q_{j}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{j}}{\partial \theta_{i}} & \frac{\partial Q_{j}}{\partial \theta_{j}} & 0 & \frac{\partial Q_{j}}{\partial V_{sh}} V_{j} & \frac{\partial Q_{j}}{\partial \theta_{se}} & \frac{\partial Q_{j}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial P_{ji}}{\partial \theta_{i}} & \frac{\partial P_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial P_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial P_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial P_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial P_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial Q_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial P_{ji}}{\partial \theta_{i}} & \frac{\partial P_{ji}}{\partial \theta_{j}} & 0 & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial Q_{ji}}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \end{bmatrix} \\\begin{bmatrix} \frac{\partial P_{bb}}}{\partial \theta_{i}} & \frac{\partial P_{bb}}}{\partial \theta_{j}} & \frac{\partial P_{bb}}}{\partial V_{sh}} V_{j} & \frac{\partial P_{bb}}}{\partial \theta_{se}} & \frac{\partial P_{bb}}}{\partial V_{se}} V_{se} & \frac{\partial P_{bb}}}{\partial \theta_{sh}} \end{bmatrix} \end{bmatrix}$$
(5.110)

Si le contrôle de la tension par l'UPFC est désactivé, la troisième colonne de l'équation 5.110 est remplacée par les dérivées partielles de puissances résiduelles nodales et de l'UPFC par rapport à l'amplitude de tension nodale V_i En outre, l'incrémentation de l'amplitude de la tension de la source shunt dans l'équation 6.18, $\Delta V_{sh} / V_{sh}$, est remplacé par l'incrément d'amplitude de tension nodale au noeud i, $\Delta V_i / V_i$. Dans ce cas, V_{sh} est maintenu à une valeur fixe dans les limites prescrites, $V_{shmin} \leq V_{sh} \leq V_{shmax}$.

Si les deux nœuds, i et j, sont des nœuds PQ le système linéarisé d'équations est donné comme suit :

$$\begin{bmatrix} \frac{\partial P_{i}}{\partial \theta_{i}} & \frac{\partial P_{i}}{\partial \theta_{j}} & \frac{\partial P_{i}}{\partial V_{i}} V_{i} & \frac{\partial P_{i}}{\partial V_{j}} V_{j} & \frac{\partial P_{i}}{\partial \theta_{se}} & \frac{\partial P_{i}}{\partial V_{se}} V_{se} & \frac{\partial P_{i}}{\partial \theta_{sh}} \\ \frac{\partial P_{j}}{\partial \theta_{i}} & \frac{\partial P_{j}}{\partial \theta_{j}} & \frac{\partial P_{j}}{\partial V_{i}} V_{i} & \frac{\partial P_{j}}{\partial V_{j}} V_{j} & \frac{\partial P_{j}}{\partial \theta_{se}} & \frac{\partial P_{j}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial Q_{i}}{\partial \theta_{i}} & \frac{\partial Q_{i}}{\partial \theta_{j}} & \frac{\partial Q_{i}}{\partial V_{i}} V_{i} & \frac{\partial Q_{i}}{\partial V_{j}} V_{j} & \frac{\partial Q_{i}}{\partial \theta_{se}} & \frac{\partial Q_{i}}{\partial V_{se}} V_{se} & \frac{\partial Q_{i}}{\partial \theta_{sh}} \\ \frac{\partial P_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{j}}{\partial \theta_{j}} & \frac{\partial Q_{j}}{\partial V_{i}} V_{i} & \frac{\partial Q_{j}}{\partial V_{j}} V_{j} & \frac{\partial Q_{j}}{\partial \theta_{se}} & \frac{\partial Q_{j}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial P_{ji}}{\partial \theta_{i}} & \frac{\partial P_{ji}}{\partial \theta_{j}} & \frac{\partial P_{ji}}{\partial V_{i}} V_{i} & \frac{\partial P_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & \frac{\partial P_{ji}}{\partial V_{i}} V_{i} & \frac{\partial P_{ji}}{\partial V_{j}} V_{j} & \frac{\partial P_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & \frac{\partial Q_{ji}}{\partial V_{i}} V_{i} & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial Q_{ji}}{\partial \theta_{se}} & \frac{\partial P_{ji}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & \frac{\partial Q_{ji}}{\partial V_{i}} V_{i} & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial Q_{ji}}{\partial \theta_{se}} & \frac{\partial Q_{ji}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial Q_{ji}}{\partial \theta_{i}} & \frac{\partial Q_{ji}}{\partial \theta_{j}} & \frac{\partial Q_{ji}}{\partial V_{i}} V_{i} & \frac{\partial Q_{ji}}{\partial V_{j}} V_{j} & \frac{\partial Q_{ji}}{\partial \theta_{se}} & \frac{\partial Q_{ji}}{\partial V_{se}} V_{se} & 0 \\ \frac{\partial P_{bb}}{\partial \theta_{i}} & \frac{\partial P_{bb}}{\partial \theta_{j}} & \frac{\partial P_{bb}}{\partial V_{i}} V_{i} & \frac{\partial P_{bb}}{\partial V_{j}} V_{j} & \frac{\partial P_{bb}}{\partial \theta_{se}} & \frac{\partial P_{bb}}{\partial V_{se}} V_{se} & \frac{\partial P_{bb}}{\partial \theta_{sh}} \end{bmatrix}$$

$$(5.111)$$

Les dérivées partielles pour l'UPFC sont données dans l'annexe B.

5.8.2 LES CONDITIONS INITIALES ET LES LIMITES DE L'UPFC :

La solution d'un ensemble non linéaire des équations algébriques par une technique d'analyse nécessite de bonnes conditions de départ. Dans le problème de flux de puissance, l'expérience a montré que, pour le cas où aucun nœud ou ligne contrôlées sont présents, l'amplitude de tension 1p.u. pour tous les nœuds PQ et l'angle de tension 0 offrent une condition de départ approprié. Cependant, si des dispositifs contrôlables sont inclus dans l'analyse, la question devient plus complexe. Pour l'UPFC, un ensemble d'équations qui donnent de bonnes estimations initiales peut être obtenu en supposant l'UPFC et les transformateurs de couplage sans perte et des angles de tensions nulles dans les équations 5.94-5.97. [133]

5.8.2.1 Conditions initiales de la source série :

Pour des puissances nodales spécifiées au nœud i, la solution des équations 5.96 et 5.97 sont les suivants :

$$\theta_{se}^{0} = \arctan\left(\frac{P_{j\,ref}}{|C1|}\right) \tag{5.112}$$

$$V_{se}^{0} = \left(\frac{X_{se}}{V_{j}^{0}}\right) \sqrt{P_{j\,ref}^{2} + C1^{2}}$$
(5.113)

Ou :

$$C1 = Q_{j ref} - \frac{V_j^0}{X_{se}} \left(V_j^0 - V_i^0 \right) \, siV_j^0 \neq V_i^0 \tag{5.114}$$

$$C1 = Q_{j ref} \quad siV_j^0 = V_i^0 \tag{5.115}$$

 X_{se} est la réactance inductive de la source série et l'exposant 0 indique la valeur initiale.

5.8.2.2 Conditions initiales de la source série :

L'équation pour l'initialisation de la source de tension shunt peut être obtenue en substituant les équations 5.98 et 5.100 dans l'équation 5.106 l'exécution d'opérations simples :

$$\theta_{sh} = -\arcsin\left(\frac{\left(V_{i}^{0} - V_{j}^{0}\right)V_{se}^{0}X_{sh}\sin\left(\theta_{sh}^{0}\right)}{1.02V_{sh}^{0}V_{i}^{0}X_{se}}\right)$$
(5.116)

 X_{sh} est la réactance inductive de la source shunt.

Lorsque le convertisseur shunt fonctionne comme un régulateur de tension, l'amplitude de la tension de la source shunt est initialisée à la valeur de tension cible, puis elle est mis à jour à chaque itération. Sinon, si le convertisseur shunt ne fonctionne pas comme un régulateur de tension, l'amplitude de tension de la source shunt est maintenue à une valeur fixe dans les limites prescrites, ($V_{shmin} \le V_{sh} \le V_{shmax}$) pour l'ensemble du processus itératif. [134]

5.8.2.3 Limites de l'UPFC :

Les équations de puissance résiduelle sont utilisées comme principe directeur pour mener la révision des limites [7]. Le décalage fournit un indicateur précis pour déterminer l'activation de la révision des limites pour les paramètres de dispositifs contrôlables. Le critère de révision de l'UPFC est basé sur son équation de décalage de la puissance active des convertisseurs :

$$\Delta P_{bb}^{n} = P_{sh} + 1.02P_{se} \tag{5.117}$$

Où n varie de 1 vers le nombre des UPFCs. Si un dépassement de limite aura lieu dans l'une des amplitudes de tension des sources de l'UPFC, l'amplitude de tension est fixée à cette limite et le variable régulée est libérée. [3]

5.8.3 Incorporation de l'UPFC dans un programme d'ecoulement de puissance

La figure 5.12 représente l'organigramme de l'algorithme utilisé dans un programme MATLAB basé sur l'algorithme de Newton-Raphson, le programme est donné dans l'annexe C.

Figure 5.12 organigramme de l'algorithme utilisé [135]

5.9 RESULTATS ET DISCUSSION

L'étude d'écoulement de puissance a été effectuée pour les réseaux test IEEE 14-30-57-118- et 300 nœuds les données des réseaux test sont disponibles dans [85]. Dans ce travail, UPFC est situé dans chaque ligne possible et le meilleur emplacement est déterminé en considérant les pertes minimales de la puissance active. Les résultats choisit sont ceux de la méthode de Newton-Raphson car il n y'a pas de grande différence avec les résultats des autres méthodes sauf si on considère l'amplitude de vecteur résiduel et le nombre d'itérations qui sera discuté dans la section 5.10. [136]

5.9.1 RESEAU IEEE 14 NŒUDS

Les données du réseau IEEE 14 nœuds figure 5.13) comprennent 20 lignes et 5 alternateurs, les données sont mentionnées dans l'annexe D.

Figure 5.13 Le réseau test IEEE-14 nœuds

L'analyse d'écoulement de puissance a été effectuée pour ce réseau sans l'UPFC, puis avec l'UPFC dans tous les emplacements possibles, les pertes de puissance active sans et avec l'UPFC sont montrés dans la figure 5.14.

Figure 5.14 Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes

On remarque que l'UPFC diminue les pertes de la puissance active, la valeur de cette diminution dépend de son emplacement, L'emplacement qui présente les pertes de puissance les plus faibles est de relier l'UPFC à la ligne n° 1 entre les nœuds 1 et 2. Les pertes de puissance active se sont diminué de 13,39 MW à 8,83 MW, avec 38% de réduction des pertes.

Le résultat d'analyse d'écoulement de puissance sans et avec l'UPFC installé dans la ligne n°1 est montré dans l'Annexe E. on peut dire que l'UPFC change la répartition de puissance dans le réseau, les lignes 2, 6, 7, 10, 11, 13 ont été soulagés en diminuant leur flux de puissance et en augmentant le flux de puissance dans les lignes 1, 3, 4, 5, (voir l'annexe E) avec un effet négligeable sur le profil de la tension.

5.9.2 RESEAU IEEE 30 NŒUDS

Les données du réseau IEEE 30 nœuds (figure 5.15) comprennent 41 lignes et 6 alternateurs, les données sont mentionnées dans l'annexe D.

Figure 5.15 Le réseau test IEEE-30 nœuds

Le même travail a été réalisé pour le réseau à 30 nœuds, l'analyse a été faite pour le réseau sans UPFC et pour le réseau avec l'UPFC localisé dans tous les emplacements possible, les pertes de puissance active sans et avec l'UPFC sont montrés dans la figure 5.16.

Lorsque l'UPFC est placé dans la ligne 2 entre les nœuds 1 et 3, les pertes de puissance active se diminuent de 17,55 MW à 11,05 MW, avec 33% de réduction des pertes, comme le montre la figure 5.16.

Le résultat d'analyse d'écoulement de puissance sans et avec l'UPFC installé dans la ligne n°2 est mentionné dans l'annexe E, et la représentation graphique du profil de la tension et d'écoulement de puissance est montrée dans la figure 5.17 et 5.18 respectivement.

Figure 5.17 Profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°2

Figure 5.18 écoulement de la puissance active sans UPFC et avec l'UPFC installé dans la ligne n°2

À partir de la figure 6.7, on peut voir que le profil de tension est améliorée après avoir intégré l'UPFC dans le réseau, car l'amplitude a été augmentée sans dépasser les limites, et la figure 6.8, représente une amélioration du flux de puissance, l'UPFC soulager de nombreuses lignes dans sa région qui sont les lignes 1, 2, 3, 5, 6, 8 en augmentant le flux de puissance à travers les lignes 4, 7, 9 (voir l'annexe E).

5.9.3 RESEAU IEEE 57 NŒUDS

Les données du réseau IEEE 57 nœuds (figure 5.19) comprennent 80 lignes et 7 alternateurs, les données sont mentionnées dans l'annexe D.

Figure 5.19 Le réseau test IEEE-57 nœuds

Le même travail a été réalisé pour le réseau à 57 nœuds, l'analyse a été faite pour le réseau sans UPFC et pour le réseau avec l'UPFC localisé dans tous les emplacements possible, les pertes de puissance active sans et avec l'UPFC sont montrés dans la figure 5.20.

On observe le même effet de l'UPFC sur le réseau test, le meilleur emplacement est d'installer l'UPFC à la ligne 15 entre les nœuds 1 et 15 présente les pertes actives les plus basses, l'UPFC diminue les pertes de 27,86 MW à 20,08 MW, avec 27% de réduction, comme indiqué dans la figure 5.20.

Le résultat d'analyse d'écoulement de puissance sans et avec l'UPFC installé dans la ligne n°15 est montré dans l'annexe E, et la représentation graphique du profil de la tension et d'écoulement de puissance est montrée dans la figure 5.21 et 5.22 respectivement.

Figure 5.21 profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°15

L'emplacement de l'UPFC dans la ligne 15 présente un profil de tension plus élevée, comme indiqué dans la figure 5.21 sans dépasser les limites, et un flux de puissance améliorée en soulageant la plupart des lignes surchargées comme les lignes 2, 3, 4, 10, 11, 12 ...etc en améliorant le flux de puissance active des lignes moins chargées telles que les lignes 1, 5, 8, 15...etc(voir l'annexe E) comme le montre la figure 5.22.

5.9.4 RESEAU IEEE 118 NŒUDS

Les données du réseau IEEE 118 nœuds (figure 5.23) comprennent 186 lignes et 54 alternateurs, les données sont mentionnées dans l'annexe D.

Modélisation de l'UPFC pour le calcul d'écoulement de puissance

Figure 5.23 réseau IEEE 118 Nœuds

Le même travail a été réalisé pour le réseau à 118 nœuds, l'analyse a été faite pour le réseau sans UPFC et pour le réseau avec l'UPFC localisé dans tous les emplacements possibles, les pertes de puissance active sans et avec l'UPFC sont montrés dans la figure 5.24.

Figure 5.24Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes

On voit clairement que les pertes de puissance diminuent en installant l'UPFC dans la ligne 97 entre les nœuds 64 et 65 à partir de 132,86 MW à 123.13 MW, avec 7,23% de réduction comme le montre la figure 5.24.

Le résultat d'analyse d'écoulement de puissance sans et avec l'UPFC installé dans la ligne n°97 est montré dans l'annexe E, et la représentation graphique du profil de la tension et d'écoulement de puissance est montrée dans la figure 5.25 et 5.26 respectivement.

Figure 5.25 profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°97

Figure 5.26 écoulement de la puissance active sans UPFC et avec l'UPFC installé dans la ligne n°97

À partir de la figure 5.25, on peut voir que le profil de tension est amélioré par l'introduction de l'UPFC et de la figure 5.26, on peut voir que le flux de puissance a également été amélioré par l'UPFC en soulageant les lignes dans la zone où l'UPFC a été installé.

5.9.5 RESEAU IEEE 300 NŒUDS

Les données du réseau IEEE 300 nœuds (figure 5.27) comprennent 295 lignes et 69 alternateurs, les données sont mentionnées dans l'annexe D.

Figure 5.27 réseau IEEE 300 Nœuds
Le même travail a été réalisé pour le réseau à 300 nœuds, l'analyse a été faite pour le réseau sans UPFC et pour le réseau avec l'UPFC localisé dans tous les emplacements possibles, les pertes de puissance active sans et avec l'UPFC sont montrés dans la figure 5.28.

Figure 5.28Pertes de puissance active sans UPFC et avec l'UPFC installé dans différentes lignes

Pour le réseau test IEEE 300 nœuds, l'UPFC également diminue les pertes de la puissance active comme indiqué dans la figure 6.18, à partir de 409 MW à 381,82 MW quand il est installé sur la ligne 232 entre les nœuds 192 et 225, avec 6,41% de réduction.

Le résultat d'analyse d'écoulement de puissance sans et avec l'UPFC installé dans la ligne n°232 est montré dans l'annexe E, et la représentation graphique du profil de la tension et d'écoulement de puissance est montrée dans la figure 5.29 et 5.30 respectivement.

Figure 5.29 profil de la tension sans UPFC et avec l'UPFC installé dans la ligne n°232

Modélisation de l'UPFC pour le calcul d'écoulement de puissance

Figure 5.30 écoulement de la puissance active sans UPFC et avec l'UPFC installé dans la ligne n°232

La figure 5.29, montre une amélioration de profil de tension dans la zone où l'UPFC a été installé, et la figure 5.30, montre une amélioration sur le flux de puissance où certaines lignes ont été soulagées telle que la ligne 268 et d'autres en augmentant le flux de puissance d'autres lignes comme la ligne 269.

5.10Comparaison des methodes d'analyse d'ecoulement de puissance

Plusieurs méthodes d'analyse d'écoulement de puissance ont été utilisées, les résultats sont trop proches entre ces méthodes, la différence consiste dans le nombre d'itérations et le temps d'exécution du programme, la figure 5.31 représente la valeur d'erreur de convergence en fonction de nombre d'itérations pour le réseau test IEEE à 14 nœuds

Figure 5.31convergence en fonction de nombre d'itérations (a) de la méthode de Newton-Raphson, Runge Kutta et Iwamoto et (b) FDLF.

À partir de la figure 5.31 on remarque que la méthode de Newton-Raphson atteint la convergence avec un minimum d'itération (deux itérations), puis la méthode découplée rapide avec 3 itérations, et enfin la méthode de Rung Kutta avec 7 itérations, cependant la méthode d'Iwamoto n'atteint pas la convergence.

On utilise ces méthodes pour le même réseau avec l'UPFC, on obtient les résultats suivant :

Figure 5.32convergence en fonction de nombre d'itérations (a) de la méthode de Newton-Raphson, Runge Kutta et Iwamoto et (b) FDLF.

On remarque à partir de la figure 5.32 que l'UPFC influe sur le nombre d'itérations, car l'intégration de l'UPFC avec ces équations et la modification du programme original rend le calcul d'écoulement de puissance un peu plus complexe.

La méthode de Newton-Raphson et la méthode robuste de Newton offrent les mêmes caractéristiques de convergence car cette dernière est inspirée de la méthode de base de Newton Raphson avec l'ajout d'un facteur d'accélération de convergence pour les cas mal conditionnés.

Le même effet est observé pour les autres réseaux (IEEE 30, 57, 118, 300 nœuds) les caractéristiques de convergence ne changent pas avec le changement de la taille du réseau, la méthode de Newton raphson reste la plus efficace, avec un minimum de nombre d'itération, puis la FDLF puis Runge Kutta, mais la méthode d'iwamoto reste la moins efficace avec une convergence très lente.

5.11CPF (CONTINUATION POWER FLOW) POUR L'ANALYSE DE LA STABILITE DE TENSION

L'écoulement de puissance est un outil utile pour surveiller les tensions de réseau en fonction du changement de charge. Une application courante est de tracer la tension à un nœud particulier lorsque la charge est variée à partir du cas de base vers une limite de charge (souvent connu comme le point de la charge maximale). Si la charge est augmentée à la limite, puis a diminué vers la charge originale, il est possible de retrouver la courbe puissance-tension ou "PV". Cette courbe, illustrée à la figure 5.33, est parfois appelée la courbe du nez pour sa forme. [137]

Figure 5.33courbe PV

A la limite de charge, ou la pointe de la courbe du nez, la matrice jacobienne du système des équations de l'écoulement de puissance va devenir singulière comme la pente de la courbe du nez devient infinie. Ainsi, la méthode de Newton-Raphson traditionnelle qui permet d'obtenir la solution de flux de puissance ne fonctionne pas. Dans ce cas, une modification de la méthode de Newton-Raphson connu sous le nom de CPF est utilisé. Le CPF introduit une équation et un inconnue supplémentaire dans les équations de base de flux de puissance. L'équation additionnelle est choisie spécifiquement pour que la matrice jacobienne ne soit plus singulière à la limite de charge. L'inconnue supplémentaire est souvent appelée le paramètre continu [138].

5.11.1 GENERALITE

Un problème important de l'analyse des réseaux électriques est la détermination de la charge maximale tolérée par un réseau. Dans ce but, on considère le réseau test à 2 nœuds représenté dans la figure 5.34.

Figure 5.34 réseau test à deux nœuds

Les équations de l'écoulement de puissance qui décrivent ce système sont :

$$-p_2 = \frac{v_2 v_1^{ref}}{x_L} \sin \theta_2$$
(5.118)

$$-q_2 = \frac{v_2^2}{x_L} - \frac{v_2 v_1^{ref}}{x_L} \cos \theta_2$$
(5.119)

On suppose que l'angle de la tension du générateur du nœud bilan 1 est la référence de phase. Après quelques manipulations simples, on obtient :

$$-p_2^2 = \frac{v_2^2 \left(v_1^{ref}\right)^2}{x_L^2} \sin^2\theta_2$$
(5.120)

$$q_{2}^{2} + \frac{v_{2}^{4}}{x_{L}^{2}} + 2q_{2}\frac{v_{2}^{2}}{x_{L}} = \frac{v_{2}^{2}\left(v_{1}^{ref}\right)^{2}}{x_{L}^{2}}\cos^{2}\theta_{2}$$

$$\Rightarrow 0 = p_{2}^{2} + q_{2}^{2} + \frac{v_{2}^{4}}{x_{L}^{2}} + 2q_{2}\frac{v_{2}^{2}}{x_{L}} - \frac{v_{2}^{2}\left(v_{1}^{ref}\right)^{2}}{x_{L}^{2}}$$
(5.121)

La tension v_2 peut être écrite en fonction de la puissance p_2 :

$$v_{2} = \sqrt{-\left(q_{2}x_{L} - \left(v_{1}^{ref}\right)^{2}/2\right) \pm \sqrt{\left(q_{2}x_{L} - \left(v_{1}^{ref}\right)^{2}/2\right)^{2} - x_{L}^{2}\left(p_{2}^{2} + q_{2}^{2}\right)}}$$
(5.122)

Supposant que la charge a un facteur de puissance constant, à savoir, $q_2 = p_2 \tan \varphi_2$, (5.122) devient :

$$v_2 = \sqrt{-a \pm \sqrt{a^2 - x_L^2 p_2^2 \left(1 + \tan^2 \phi_2\right)}}$$
(5.123)

Tels que :

$$a = p_2 \tan \phi_2 x_L - \frac{\left(v_1^{ref}\right)^2}{2} \tag{5.124}$$

L'équation (5.123) est représentée sur la figure 5.35 et est connu en tant que courbe « PV »ou courbe de nez mentionnée auparavant (figure 5.33), en raison de sa forme caractéristique. Il est intéressant de noter qu'afin de tracer la courbe PV de la figure 5.35, en utilisant l'équation (5.123) n'est pas le meilleur choix parce que la fonction $v_2(p_2)$ n'est pas définie sur l'ensemble \mathbb{R} et n'est pas bijective. Pour utiliser l'autre sens, à savoir, la fonction $p_2(v_2)$ le résultat est plus facile : [49]

$$p_{2} = \frac{v_{2}^{2}}{x_{L}} \left(\frac{-\tan \phi_{2} + \sqrt{\tan^{2}\phi_{2} - \left(1 - \frac{\left(v_{1}^{ref}\right)^{2}}{v_{2}^{2}}\right)}}{1 + \tan^{2}\phi_{2}} \right)$$
(5.125)

Figure 5.35 courbe PV du réseau test à 2 nœuds

Quelques remarques pertinentes sur l'équation (5.123) sont :

- 1. Le système est caractérisé par une valeur maximale de la puissance, p_{max2} , qui est connue en tant que condition de charge maximale.
- 2. Pour $p_2 > p_{max2}$ les équations de l'écoulement de puissance (5.118) et (5.119) n'ont aucune solution. Pour cette raison, la solution de flux de puissance pour $p_2 = p_{max2}$ est connu comme point d'effondrement. En termes physiques, cela signifie que le système ne peut pas alimenter une charge dont la puissance est $p_2 > p_{max2}$. Ainsi, p_{max2} est la puissance maximale qui peut être transmise par le réseau et il peut être considéré comme une limite du réseau électrique.
- 3. Pour $p_2 < p_{max2}$, il y a deux valeurs de v_2 qui résolvent (5.118) et (5.119). Toutefois, seule la solution à la valeur de v_2 supérieur (solution supérieure) est physiquement acceptable. L'autre valeur (solution inférieure) a seulement un intérêt mathématique.
- 4. La forme de la courbe PV est indépendante du facteur de puissance de la charge, ainsi que des paramètres du réseau. En d'autres termes, tous les réseaux de toute taille et complexité montrent une relation similaire entre tensions nodales et les puissances de charge. Les courbes PV sont inhérentes de la structure des équations d'écoulement de puissance classiques. En fait, comme représenté dans les équations (5.11)-(5.14), ceux-ci ont une dépendance quadratique aux tensions nodales. [139]

La courbe PV représenté dans la figure 5.35 a été obtenue en supposant que le générateur du nœud bilan peut fournir toute quantité de puissance active et réactive. Si l'hypothèse de la puissance réactive est retirée, il peut y avoir une valeur de p_2 pour laquelle la puissance réactive générée par le nœud bilan est au maximum, on peut la nommer q_{max1} . Étant donné que le système n'a pas d'autre source de puissance réactive, la charge ne peut pas être augmentée davantage. Si la limite de puissance réactive du générateur est atteinte avant la limite du réseau, cette limite de puissance réactive donne le point de l'effondrement ou la valeur de p_{max2} .[2]

Afin de déterminer le point d'effondrement résultant de la limite de puissance réactive, on suppose que le nœud bilan est modélisé comme un générateur QV constant, où $q_1 = q_{max1}$. Les équations d'écoulement de puissance qui en résultent sont :

$$-p_2 = \frac{v_2 v_1}{x_L} \sin \theta_2$$
(5.126)

$$-q_2 = \frac{v_2^2}{x_L} - \frac{v_2 v_1}{x_L} \cos \theta_2$$
(5.127)

$$q_1^{\max} = \frac{v_1^2}{x_L} - \frac{v_2 v_1}{x_L} \cos(-\theta_2)$$
(5.128)

Dans ce cas, l'amplitude de la tension v_1 est variable. Utilisant les équations (5.127) et (5.128), on aura :

$$v_1 = \sqrt{x_L q_1^{\max} + v_2^2 + x_L p_2 \tan \phi_2}$$
(5.129)

Ensuite, en remplaçant (5.129) dans (5.121), l'expression $p_2(v_2)$ devient :

$$p_{2} = \frac{\frac{v_{2}^{2}}{x_{L}}\tan\phi_{2} + \sqrt{\left(\frac{v_{2}^{2}}{x_{L}}\tan\phi_{2}\right)^{2} + 4v_{2}^{2}q_{1}^{\max}\left(1 + \tan^{2}\phi_{2}\right)/x_{L}}}{2\left(1 + \tan^{2}\phi_{2}\right)}$$
(5.130)

Si (5.125) et (5.130) se croisent dans la partie supérieure de (5.130), alors la limite de la puissance réactive du générateur se produit avant la limite du réseau. Cette situation est illustrée à la figure 5.36. L'interprétation de la figure 5.36 est la suivante : dans la mesure où $q_1 < q_{max1}$, le système est décrit par (5.125); puis, à $q_1 = q_{max1}$, le modèle de nœud bilan change de $v\theta$ constante vers qv constante et le comportement du système est décrit par l'équation (5.130).

Figure 5.36Courbe PV pour le réseau test à deux nœuds en considérant la limite de la puissance réactive

La détermination des courbes PV et, en particulier, de l'état de charge maximale, a une grande pertinence dans l'analyse de la sécurité. En effet, la connaissance de l'état de charge maximal permet de définir la distance entre l'état de fonctionnement actuel et l'effondrement. Si cette distance est trop petite, l'opérateur du réseau doit prendre des mesures correctives pour assurer une marge de sécurité minimale, soit une distance minimale entre le point de fonctionnement courant et l'effondrement. [49]

Malheureusement, des formules analytiques tels que (5.125) ou (5.130) ne peuvent pas être trouvées pour un système générique. Même pour le réseau test à 2 nœuds considérés jusqu'ici, y compris une résistance dans la ligne de transport empêche d'obtenir une expression explicite de $p_2(v_2)$. Ainsi, une méthode numérique générale pour la détermination de la condition de charge maximale est souhaitable. La section suivante décrie des approches systématiques pour lutter contre ce problème. [140]

5.11.2 MODELE DE RESEAU

Afin de généraliser les concepts présentés dans la section précédente, il est nécessaire de définir un modèle de réseau électrique adapté pour rencontrer l'état de charge maximale. Dans ce but, le modèle de flux de puissance est modifié comme suit :

$$0 = f\left(x,\mu\right) \tag{5.131}$$

Où les *x* sont, comme d'habitude, les variables algébriques et $\mu \in \mathbb{R}$ est le paramètre de charge, à savoir, un paramètre scalaire indépendant qui multiplie toutes les puissances des générateurs et des charges, comme suit :

$$p_G = \left(\mu I_{nG} + k_G \Gamma\right) p_{G0} \tag{5.132}$$

$$p_L = \mu p_{L0} \tag{5.133}$$

$$q_L = \mu q_{L0} \tag{5.134}$$

Où I_{nG} est la matrice identité de l'ordre nG, $\Gamma = diag (\gamma I, \gamma 2,..., \gamma nG)$ sont les facteurs de participation de perte des générateurs, K_G est une variable scalaire utilisée pour accomplir le modèle de nœud bilan distribué, et p_{G0} , p_{L0} et q_{L0} sont les puissances initiales des générateurs et des charges, respectivement. Un modèle alternatif de charge qui peut être trouvé dans la littérature est le suivant :

$$p_G = \left(I_{nG} + \tilde{\mu}I_{nG} + k_G\Gamma\right)p_{G0}$$
(5.135)

$$p_{L} = \left(1 + \tilde{\mu}\right) p_{L0} \tag{5.136}$$

$$q_L = \left(1 + \tilde{\mu}\right) q_{L0} \tag{5.137}$$

Où $\tilde{\mu}$ exprime la distance entre le cas de base et l'état de fonctionnement en surcharge et $\tilde{\mu}^{\text{max}}$ est donc la distance entre le cas de base et le point d'effondrement.

Un autre modèle de charge est le suivant :

$$p_{G} = p_{G0} + \left(\breve{\mu} I_{nG} + k_{G} \Gamma \right) p_{S0}$$
(5.138)

$$p_L = p_{L0} + \breve{\mu} p_{D0} \tag{5.139}$$

$$q_L = q_{L0} + \breve{\mu} q_{D0} \tag{5.140}$$

Où p_{S0} , p_{D0} et q_{D0} sont appelés la direction de puissance des générateurs et des charges car ils définissent un chemin d'accès pour lequel le réseau est chargé par le paramètre μ . Les trois modèles (5.132)-(5.140), sont équivalents et ne contiennent pas des différences conceptuelles. Ainsi, dans ce qui suit, sauf mention explicite, le modèle (5.132, 5.133, 5.134) est utilisé.

5.11.3CPF

Bien que la toute première apparition des méthodes d'homotopie dans une conférence de réseau électrique remonte aux années soixante-dix [141], la proposition de la technique connue sous le nom de CPF a été conçue dans les années nonante [142]. Actuellement, la référence la plus connue sur l'analyse de CPF et de son utilisation pour l'évaluation de la stabilité de la tension est [143].

Enfin, une mise en œuvre de méthodes d'homotopie pour l'analyse du réseau électrique est présentée dans [144], alors que les mises en œuvre de l'analyse CPF à base de Matlab et C peuvent être trouvés dans [145]et [146], respectivement.

Le procédé de CPF décrit dans les sous-sections suivantes consiste en une étape de prédiction réalisée par le calcul du vecteur de tangente et une étape de correction qui peut être obtenue soit au moyen d'un paramétrage local ou une intersection perpendiculaire. [147]

Avant de passer par le procédé de CPF, voici quelques généralités sur les méthodes d'homotopie [49].

L'approche d'homotopie consiste à définir une application d'homotopie ψ sur la base du système d'origine équations f(x), comme suit :

$$\psi(x,\mu) = f(x,\mu) \tag{5.141}$$

où la différence principale entre f et ψ est que dans cette dernière μ est une variable du système, ainsi $f: \mathbb{R}^{ny} \to \mathbb{R}^{ny}$ et $\psi: \mathbb{R}^{ny} \to \mathbb{R}^{ny+1}$. Selon cette définition μ ($\mu \in \mathbb{R}$) est une variable indépendante et $\psi: \mathbb{R}^{ny} \times \mathbb{R}^{n\mu} \to \mathbb{R}^{ny}$ où $n\mu = 1$. Dans les méthodes d'homotopie, μ est appelé paramètre continu. Cependant, dans ce qui suit, μ est appelé niveau de charge, en se référant donc à son sens physique plutôt à la mathématique.

L'équation (5.141) peut sembler insignifiante, puisque ψ et f coïncident. En effet, (5.141) est un paramètre d'homotopie naturel ou forcé, c.-à-d., μ est un paramètre de f. Il est important de noter que des applications d'homotopie peuvent également être définis en utilisant un paramètre externe qui n'a pas de signification physique et sans relation avec f(x). Dans ce cas, l'homotopie est homotopie à paramètre artificiel et a la forme générale :

$$\psi(x,\mu) = (1-\mu)r(x) + \mu f(x)$$
 (5.142)

Où $\mu \in [0, 1]$ et r(x) est une fonction lisse arbitraire. Cependant, dans ce qui suit, seulement les méthodes d'homotopie forcées sont considérées.

Avec le paramétrage de x et μ et au moyen d'une longueur d'arc s, on a :

$$\psi(x(s),\mu(s)) = 0 \tag{5.143}$$

Et la dérivation de (5.143) par rapport à s donne :

$$\frac{d\psi}{ds} = \begin{bmatrix} \psi_x \frac{dx}{ds} \\ \psi_\mu \frac{d\mu}{ds} \end{bmatrix}$$
(5.144)

Avec :

$$\left\| \left(\frac{dx}{ds}, \frac{d\mu}{ds} \right) \right\|_2 = 1$$
(5.145)

Et les conditions initiales :

$$x(0) = x^{(0)}, \mu(0) = \mu^{(0)}$$
(5.146)

L'équation (5.144) est utilisée pour le mappage de ψ long d'un chemin paramétré par s. Pour un point courant ($x^{(i)}$, $\mu^{(i)}$), le point suivant ($x^{(i+1)}$, $\mu^{(i+1)}$) peut être trouvé en utilisant une méthode de prédiction-correction. En particulier, l'étape de prédiction peut être donnée comme suit : [148]

$$\tilde{x}^{(i+1)} = x^{(i)} + \Delta x^{(i)} = x^{(i)} + k \frac{dx}{ds}$$
(5.147)

$$\tilde{\mu}^{(i+1)} = \mu^{(i)} + \Delta \mu^{(i)} = \mu^{(i)} + k \frac{d\mu}{ds}$$
(5.148)

Où k est la valeur adéquate de pas. L'étape de correction consiste à faire en sorte que le point $(x^{(i+1)}, \mu^{(i+1)})$ satisfait la condition $\psi(x^{(i+1)}, \mu^{(i+1)}) = 0$. Un choix possible de l'étape de correction consiste à résoudre un problème d'optimisation, comme suit :

Minimiser
$$x, \mu \| x^{(i+1)} - \tilde{x}^{(i+1)}, \mu^{(i+1)} - \tilde{\mu}^{(i+1)} \|_2$$
 (5.149)

$$\psi(x^{(i+1)}, \mu^{(i+1)}) = 0$$
(5.150)

La solution de (5.149) pour chaque itération peut être lourde. Dans les applications pratiques, il est donc préférable de substituer le problème d'optimisation (5.149) par :

$$f(x,\mu) = 0 \tag{5.151}$$

$$o\left(x,\mu,\tilde{x}^{(i+1)},\tilde{\mu}^{(i+1)}\right) = 0 \tag{5.152}$$

Où $o : \mathbb{R}^{ny+1} \to \mathbb{R}$ est la fonction continue. Comment choisir *o* dépend de l'application. Le paragraphe 5.11.3.2 traite des expressions typiques de *o* utilisé dans l'analyse des flux de puissance de continu.

La construction mathématique ci-dessus peut paraître artificielle. Cependant, l'avantage des méthodes homotopie est la robustesse. La convergence est garantie par une série de théorèmes qu'on peut trouver dans [149]. En outre, l'approche d'homotopie a été appliquée avec succès à l'analyse de bifurcation [150]. Si la fonction o est correctement mise en place, la matrice jacobienne de (5.152), à savoir,

$$\begin{bmatrix} f_x & f_\mu \\ o_x & o_\mu \end{bmatrix}$$
(5.153)

Est pas singulière au point de bifurcation selle-nœud (BSN) qui est la notation mathématique formelle de la limite du réseau de transport. Cette propriété est importante pour assurer la convergence de la méthode de Newton à proximité du point BSN.

Concernant le flux de puissance continu, les paragraphes suivants décrivent ces étapes.

5.11.3.1 Étape de prédiction

Dans l'analyse de flux de puissance continu, la longueur d'arc qui paramétrise (5.142) est définie comme $s \equiv \mu$. Ainsi, pour une étape générique *i* et pour la solution ($x^{(i)}$, $\mu^{(i)}$), la relation suivante pour l'application d'homotopie ψ applique :

$$\psi\left(x^{(i)}\left(\mu^{(i)}\right),\mu^{(i)}\right) = 0 \Longrightarrow \frac{d\psi}{d\mu}\Big|_{i} = 0 = \psi_{x}\Big|_{i}\frac{dx}{d\mu}\Big|_{i} + \psi_{\mu}\Big|_{i}$$
(5.154)

Par conséquent, le vecteur tangent de la solution $(y^{(i)}, \mu^{(i)})$ peut être approximée par :

$$\tau^{(i)} = \frac{dx}{d\mu} \bigg|_{r} \approx \frac{\Delta x^{(i)}}{\Delta \mu^{(i)}}$$
(5.155)

À partir de (5.154) et (5.155), on a:

$$\tau^{(i)} = -\psi_x^{-1} |_i \psi_\mu |_i$$
(5.156)

$$\Delta x^{(i)} = \tau^{(i)} \Delta \mu^{(i)} \tag{5.157}$$

La valeur de pas de commande *k* doit être choisi pour la détermination de l'incrément $Ax^{(i)}$ et $\Delta\mu^{(i)}$ qui apparaissent dans (5.147-5.148), ainsi que la normalisation (5.145) qui évite les grandes étapes lorsque $\|\tau^{(i)}\|_2$ augmente :

$$\Delta \mu^{(i)} \triangleq \frac{k}{\|\tau^{(i)}\|_{2}} \qquad \Delta x^{(i)} \triangleq \frac{k\tau^{(i)}}{\|\tau^{(i)}\|_{2}}$$
(5.158)

La figure 5.37 donne une représentation graphique de l'étape de prédiction. Le signe de la taille de pas k détermine si on doit augmenter ou diminuer μ . Afin d'obtenir une courbe complète de nez, k> 0 dans la partie supérieure et k <0 dans le niveau inférieur. Il est facile de savoir si le point courant est dans la partie supérieure ou inférieure de la courbe du nez, puisque le signe de déterminant de la matrice jacobienne change avant et après les points BSN ou les points critiques de limites induites de bifurcation (LIB) qui concernent les limites de puissance réactive des générateurs, puisque seules ces limites peuvent conduire à un point de l'éffondrement.

Figure 5.37 tangent de prédicteur

Il est intéressant d'observer que les pas de prédicteurs au contraire aux vecteurs tangent peuvent être mis en œuvre. Par exemple, un pas de prédiction alternative est basé sur la sécante [144]. La sécante permet une approximation de la tangente $\tau^{(i)}$ une fois que deux solutions ($x^{(i-1)}$, $\mu^{(i-1)}$) et ($x^{(i)}$, $\mu^{(i)}$) sont connus:

$$\tau^{(i)} = \frac{dx}{d\mu}\Big|_{i} \approx x^{(i)} - x^{(i-1)}$$
(5.159)

Des prédictions basées sur la sécante ont été observées pour atteindre l'état de charge maximale plus rapidement que ceux basés sur le vecteur tangent [143]. Plus rapidement veut dire que le sécant prédicteur nécessite moins de pas pour atteindre le point de charge maximal. Cependant, la méthode de la sécante peut fournir une prévision insuffisante en cas de coins pointus ou si les solutions i - 1 et i sont trop éloignés (voir Figure 5.38). Une méthode efficace pour accélérer la convergence de l'analyse de flux de puissance continu au point de l'effondrement est l'indice de vecteur tangent (IVT) proposé dans [151].

Figure 5.38Prédicteur sécant : (a) fonction lisse, et (b) coin pointu

Un point important de l'étape de prédiction est comment décider si le signe de pas k doit être changé. Comme discuté précédemment, le signe du déterminant de la matrice jacobienne change si le trajet a atteint la partie inférieure de la courbe de nez. Malheureusement, le calcul du déterminant est une opération lourde et ne peut pas être utilisé pour les grands réseaux. [152]

Une méthode simple pour calculer le déterminant d'une matrice est d'utiliser la factorisation LU on a:

$$A = LU$$

$$\Rightarrow \det(A) = \det(L)\det(U) = 1.\det(U) = \prod_{h=1}^{n} u_{hh}$$
(5.160)

Où u_{hh} sont les éléments diagonaux de la matrice U. Cependant, les algorithmes efficaces de matrice creuse fournit généralement une variante de la factorisation LU, à savoir la factorisation LU avec pivot partiel, ou factorisation LUP. Dans ce cas :

$$A = LUP \tag{5.161}$$

Où P est une matrice de permutation. Ainsi, le déterminant de la matrice A dépend également de P dont le nombre de permutations doit être prise en compte pour définir le signe du déterminant de A.

Le déterminant d'une matrice peut également être calculé comme le produit de toutes les valeurs propres λ_i de cette matrice :

$$\det(A) = \prod_{h=1}^{n} \lambda_h \tag{5.162}$$

Ainsi, si le nombre de valeurs propres négatives augmente ou diminue par un, le signe de déterminant change. L'approche proposée permet également de déterminer si le nombre de valeurs propres qui changent de signe est plus d'un. En particulier, ça fonctionne aussi si ce nombre est pair, alors que la méthode basée sur la factorisation LU échouera dans ce cas.

5.11.3.2 Etape de correction

Comme indiqué ci-dessus, l'équation la plus couramment utilisée dans l'étape de correction est (5.152), qui est un ensemble de n_x + 1 équations à n_x + 1 variables. La solution de (5.152) est le nouveau point ($x^{(i+1)}$, $\mu^{(i+1)}$). Cette solution doit être dans la courbe du nez de ψ , et o est une équation supplémentaire pour garantir un ensemble non singulier au point de bifurcation. Quant au choix de o, il y a plusieurs options. Les équations continues communes sont l'intersection perpendiculaire et la paramétrisation locale.

En cas d'intersection perpendiculaire, dont la représentation graphique est montrée dans la figure 5.39, l'expression de *o* devient [153]:

$$o(x,\mu) = \begin{bmatrix} \Delta x^{(i)} \\ \Delta \mu^{(i)} \end{bmatrix}^T \begin{bmatrix} x - (x^{(i)} + \Delta x^{(i)}) \\ \mu - (\mu^{(i)} + \Delta \mu) \end{bmatrix} = \begin{bmatrix} \Delta x^{(i)} \\ \Delta \mu^{(i)} \end{bmatrix}^T \begin{bmatrix} x - \tilde{x}^{(i)} \\ \mu - \tilde{\mu}^{(i)} \end{bmatrix}$$
(5.163)

Alors que pour le paramétrage local, soit le paramètre μ ou la variable x_k est obligés d'être une valeur de référence [142] [144]:

$$O(x,\mu) = \mu - \mu^{(i)} - \Delta \mu^{(i)} = \mu - \tilde{\mu}^{(i)}$$
(5.164)

Ou

$$O(x,\mu) = x_k - x_k^{(i)} - \Delta x_k^{(i)} = x_k - \tilde{x}_k^{(i)}$$
(5.165)

Figure 5.39 intersection perpendiculaire du correcteur

Le choix de la variable à être fixée dépend de la variété de bifurcation de ψ , comme représenté sur la figure 5.40.

Figure 5.40 Paramétrisation locale de correction

5.11.4 MODELISATION DE L'UPFC POUR L'ANALYSE DE FLUX DE PUISSANCE CONTINU

En principe, les modèles de l'UPFC pour l'analyse de flux de puissance sont applicables aux flux de puissance continu pour l'analyse de stabilité de la tension [30].

5.11.5 RESULTATS NUMERIQUES

5.11.5.1 L'application de flux de puissance continu sur les réseaux tests IEEE

L'analyse de flux de puissance continu devient de plus en plus importante pour l'analyse et la planification de réseau électrique et la détermination de la limite de stabilité, pour cette raison beaucoup de boites à outils (toolbox) d'analyse des réseaux électriques ont intégré le flux de puissance continu, on peut citer MATPOWER, PSAT, PAT... Etc. dans ce travail on a utilisé la toolbox PSAT (power system analysis toolbox).

PSAT est une boîte à outils Matlab pour l'analyse et le contrôle du réseau électrique. PSAT comprend l'analyse de flux de puissance, le flux de puissance continu, le flux de puissance optimal, l'analyse de la stabilité de petit signal et la simulation dans le domaine de temps. Toutes les opérations peuvent être évaluées au moyen d'interfaces graphiques d'utilisateur (GUI) et une bibliothèque basée sur Simulink qui fournit un outil convivial pour la conception du réseau. [146]

L'opération de base de PSAT est l'analyse de flux de puissance, qui se charge également de l'initialisation des variables d'état. Une fois que le flux de puissance a été résolu, une analyse plus poussée statique et / ou dynamique peut être effectuée.

On utilisant PSAT Toolbox, le flux de puissance continu a été effectué sur le réseau test IEEE 14 nœuds sans UPFC et avec l'UPFC, les résultats sont montrés dans les figures 5.41 et 5.42.

Figure 5.41 Courbes PV sans UPFC

Figure 5.42 Courbes PV avec UPFC

On remarque une différence dans le paramètre de charge dans les deux figures 5.41 et 5.42, ce paramètre est plus grand avec l'installation de l'UPFC dans le réseau (μ_{max} =4.0587 sans UPFC, μ_{max} =4.2927 avec UPFC), ce qui est traduit par l'aptitude de réseau électrique d'alimenter plus de charges en utilisant l'UPFC.

Le même effet est observé pour les autres réseaux de test, les résultats sont montrés dans la figure 5.43.

Figure 5.43Courbes PV de tous les nœuds pour les réseaux test IEEE 30, 57, 118, 300 nœuds.

D'après la figure 5.43, on observe le même effet de l'UPFC sur le paramètre de charge μ , cet effet est moins important avec l'augmentation de la taille du réseau, les valeurs de μ_{max} sont données dans le tableau 5.3 suivant :

Tableau 5.3 Valeur de µmax pour les différents réseaux test		
	μ_{max}	
	Sans UPFC	Avec UPFC
30 nœuds	2.9588	3.0066
57 nœuds	1.8921	1.9201
118 nœuds	3.187	3.1895
300 nœuds	1.4269	1.4289

Cette dégradation de la valeur de paramètre de charge se traduit par la complexité et la susceptibilité des grands réseaux électriques vis-à-vis l'instabilité, mais cette légère différence en incorporant l'UPFC est considérable lorsqu'elle est multipliée par la charge totale de ces grands réseaux électriques, l'UPFC augmente l'aptitude des réseaux électriques à alimenter plus de charges sans perdre la stabilité.

CONCLUSION

L'étude de flux de puissance est importante pour la planification de l'expansion future des systèmes électriques ainsi que dans la détermination du meilleur fonctionnement des systèmes existants. Dans ce chapitre les méthodes itératives pour le calcul d'écoulement de puissance ont été présentées, et les techniques de modélisation existantes dans la littérature de l'UPFC ont été décrites.

Ensuite, le modèle complet de l'UPFC a été présenté en détail, l'intégration de l'UPFC dans un programme de calcul d'écoulement de puissance a été effectuée, la solution d'écoulement de puissance a été faite par plusieurs méthodes d'analyse existante dans la littérature.

Les résultats montrent que l'UPFC modifie la configuration du réseau, et sa position dans le réseau influe sur les pertes de puissance et le profil de la tension. L'UPFC peut ajuster la répartition du flux de puissance entre les lignes de transmission et réduire les pertes et améliorer le profil de tension. La méthode de Newton-Raphson reste la méthode la plus efficace avec une convergence rapide et un temps d'exécution minimale quelle que soit la taille du réseau électrique.

Et enfin, l'analyse de CPF qui est une méthode de trouver la continuité des solutions de flux de puissance à partir d'une certaine valeur de charge de base et conduisant à une limite de stabilité de la tension en régime permanent (point critique) a été présenté.

La modélisation du réseau électrique et de l'UPFC a été discutée, la simulation a été exécutée en utilisant la toolbox PSAT du logiciel MATLAB/Simulink.

Les résultats de simulation montrent l'effet de l'UPFC sur la stabilité de la tension et sur l'aptitude du réseau électrique à alimenter plus de charges sans perdre la stabilité. l'UPFC a augmenté la marge de stabilité de tension et augmente la charge totale supportée par le réseau électrique, en plus de ces aptitudes à contrôler le flux de puissance actif et réactif du réseau et la régulation du module et d'angle de tension, l'UPFC devient une meilleur alternative pour la planification et le contrôle du réseau électrique.

CONCLUSION GENERALE

L'analyse d'écoulement de puissance est l'approche la plus importante et la plus essentielle pour l'étude des problèmes de fonctionnement et de planification des réseaux électriques, comme nous avons pu le constater tout le long de ce mémoire. Ce travail de recherche a été consacré à la modélisation de l'UPFC pour l'incorporer dans un programme de calcul d'écoulement de puissance.

Ce calcul a été réalisé avec plusieurs méthodes, parmi eux la méthode de Newton-Raphson qui est l'algorithme le plus utilisé (ainsi que la FDLF), ensuite on a vu la méthode découplée rapide qui est une version rapide de la méthode de Newton Raphson, puis la méthode robuste de Newton a été aussi présenté pour les cas mal conditionnés ou les méthodes précédentes divergent, et enfin la méthode de Runge Kutta 4^{ème} ordre et la méthode d'iwamoto.

Dans la modélisation, nous avons présenté les modèles mathématiques d'un UPFC connecté à un réseau électrique, en mentionnant les avantages et les inconvénients de chaque modèle. Six techniques de modélisation sont choisis de nombreux disponibles en littérature qui sont : la technique découplée, la technique globale, la technique d'injection de puissance, la méthode d'injection de puissance en π , la technique indirecte, et technique de partitionnement la matrice. Le modèle découplé est choisi en raison de sa simplicité. Où, la modification de la matrice jacobienne originale est évitée, seul le vecteur résiduel de puissance doit être changé.

Les résultats de calcul d'écoulement de puissance ont montré que l'UPFC modifie la configuration du réseau, et sa position dans le réseau influe sur les pertes de puissance et le profil de la tension, la réduction des pertes de puissance est considérable et l'ajustement de flux de puissance pour l'utilisation optimale des lignes de transport est le principal avantage de l'UPFC. La méthode de Newton raphson reste la plus efficace, avec un minimum de nombre d'itération, puis la FDLF puis Runge Kutta, mais la méthode d'iwamoto reste la moins efficace avec une convergence très lente.

Le calcul de flux de puissance continue représente un outil important pour l'analyse de la stabilité de tension, cette approche a été présentée dans ce travail car l'augmentation de la demande en période de pointe a élevé préoccupations concernant la sécurité de la tension du système. L'Effondrement de tension a été jugé responsable de plusieurs perturbations majeures. D'où la nécessité d'utiliser des méthodes qui permet l'évaluation de la limite de stabilité de tension, car les méthodes précédentes d'analyse d'écoulement de puissance sont limités en raison que la matrice jacobienne devient singulière au point d'effondrement, alors que l'analyse de flux de puissance continue représente le meilleur alternatif.

Le modèle de l'UPFC utilisé dans l'analyse de flux de puissance continue est le même utilisé pour le calcul de flux de puissance. À partir des résultats, on a vu que l'UPFC améliore aussi la stabilité de tension et augmente la charge transmissible par le réseau de transport.

L'UPFC est le dispositif FACTS multi variables le plus complet. Il permet le contrôle instantané et simultané de plusieurs variables du réseau pour éviter d'énormes difficultés. L'aptitude de contrôle indépendant en temps réel du flux de puissance active et réactive de la ligne a été testée en utilisant MATLAB Simulink, l'analyse modale de la stabilité de tension a été encore testée en utilisant NEPLAN, et la réponse après un défaut a été analysée, ces simulations ont été exécutées sur plusieurs modèles des réseaux et plusieurs

techniques de modélisation, les résultats montrent la rapidité de l'UPFC à modifier le flux de puissance des lignes. L'amélioration de la stabilité de tension a été remarquée à partir des valeurs propres de la matrice jaconbienne, et la réponse du réseau après un défaut a été améliorée.

Nous avons vu que l'UPFC est capable de contrôler indépendamment le flux de puissance active et réactive dans la ligne. Cette aptitude de l'UPFC est facilitée par son circuit de puissance qui est essentiellement un convertisseur AC-AC, généralement mis en œuvre par deux convertisseurs dos à dos avec un lien commun en tension continue. La sortie d'un convertisseur est couplée en série, tandis que la sortie de l'autre en parallèle avec la ligne de transport. Avec cet arrangement, l'UPFC peut injecter une tension entièrement contrôlable (amplitude et angle) en série avec la ligne et de soutenir la compensation active et réactive en fournissant la puissance active requise par le convertisseur série à travers le convertisseur shunt connecté à partir du nœud AC.

Le concept UPFC fournit un outil puissant pour l'utilisation rentable de lignes de transport en facilitant le contrôle indépendant de flux de puissance active et réactive, et donc la maximisation du transfert de puissance avec un minimum des pertes.

Il reste encore beaucoup de voies à explorer, mais il nous semble prioritaire de poursuivre une étude plus approfondie sur les trois thématiques suivantes :

- L'utilisation des méthodes métaheuristiques pour le calcul de flux de puissance optimal et pour choisir les paramètres optimaux de l'UPFC.
- L'étude des modèles détaillés de l'UPFC pour la simulation en régime dynamique et l'atténuation des harmoniques, par l'emploi des onduleurs multi-niveaux par exemple.
- l'UPFC conventionnel qui se compose de deux onduleurs dos-à-dos nécessite des transformateurs en zigzag encombrants et souvent compliquées pour l'isolement et pour atteindre des puissances élevés avec des formes d'ondes de tension souhaitée. Pour surmonter ce problème, un UPFC complètement sans transformateur basée sur une configuration innovante de deux convertisseurs multiniveaux en cascade a été proposé. Le nouveau UPFC offre plusieurs avantages par rapport à la technologie traditionnelle, comme l'élimination des transformateurs, le poids léger, l'efficacité, le coût moins cher et la réponse dynamique rapide. Ça sera très intéressant d'analyser cette nouvelle configuration de l'UPFC et voir ces avantages par rapport à la configuration conventionnelle

BIBLIOGRAPHIE

- A. Gomez-Exposito, A. J. Conejo et C. Canizares, Electric Energy Systems Analysis and Operation, London: CRC Press Taylor & Francis Group, LLC, 2009.
- [2] D. Elmakias, New Computational Methods in Power System Reliability, Berlin: Springer Science & Business Media, 2008.
- [3] S. Rebennack, P. Pardalos, M. Pereira et N. Iliadis, Handbook of Power Systems II, Berlin: Springer Science & Business Media, 2010.
- [4] A. v. Meier, Electrical Power Systems a Conceptual Introduction, New Jersey: IEEE Press, John Wiley & Sons, 2006.
- [5] M. E. El-Hawary, Electrical Power Systems Design and Analysis, New York: IEEE Press, John Wiley & Sons Inc, 1995.
- [6] J. D. Glover, T. Overbye et M. Sarma, Power System Analysis and Design, Cengage Learning, 2016.
- [7] M. E. El-Hawary, Introduction to Electrical Power Systems, New Jersey: IEEE Press, John Wiley & Sons, 2008.
- [8] ENERDATA, «Global energy statistical yearbook,» 2013. [En ligne]. Available: http://yearbook.enerdata.net/. [Accès le 2013].
- [9] S. Mei, X. Zhang et M. Cao, Power Grid Complexity, Berlin: Springer-Verlag Berlin Heidelberg, 2011.
- [10] J. Machowski, J. W. Bialek et J. R. Bumby, Power System Dynamics Stability and Control, United Kingdom: John Wiley & Sons, Ltd., 2008.
- [11] S. Sen, S. Sengupta et A. Chakrabarti, Electricity Pricing: Regulated, Deregulated and Smart Grid Systems, New York: CRC Press, 2014.
- [12] P. Kundur, N. J. Balu et M. G. Lauby, Power system stability and control, New York: McGraw-Hill, 1994.
- [13] M. Eremia et M. Shahidehpour, Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control, New York: John Wiley & Sons, 2013.
- [14] S. Hunt, Making Competition Work in Electricity, New York: John Wiley & Sons, 2002.
- [15] A. J. Wood et B. F. Wollenberg, Power Generation, Operation, and Control, New York: John Wiley & Sons, 2012.
- [16] D. Infield et L. Freris, Renewable Energy in Power Systems, New York: Wiley, 2016.
- [17] H. Saadat, Power System Analysis, New York: McGraw-Hill, 2002.
- [18] N. V. Ramana, Power System Analysis, New Delhi: Pearson Education India, 2011.
- [19] A. R. Bergen et V. Vittal, Power Systems Analysis, New Jersey: Prentice Hall, 1999.
- [20] S. Krishna, An Introduction to Modelling of Power System Components, New York: Springer Science & Business Media, 2014.
- [21] N. Mohan, Electric Power Systems: A First Course, New York: John Wiley & Sons, 2012.
- [22] F. C. Schweppe, M. C. Caramanis, R. D. Tabors et R. E. Bohn, Spot Pricing of Electricity, New York: Springer US, 1988.

- [23] S. Stoft, Power System Economics: Designing Markets for Electricity, New York: Wiley-IEEE Press, 2002.
- [24] F. Gonzalez-Longatt et J. L. Rueda, PowerFactory Applications for Power System Analysis, New York: Springer science & business media, 2014.
- [25] L. L. Grigsby, Power Systems, New York: CRC Press, 2012.
- [26] G. Rothwell et T. Gómez, Electricity Economics: Regulation and Deregulation, New York: Wiley-IEEE Press, 2003.
- [27] N. Ramana, Power System Operation & Control, New Delhi: Pearson Education India, 2010.
- [28] S. Khan, Power System Operation and Protection, Dhaka: bdstudies.com, 2014.
- [29] D. M. Newberry, Privatization, Restructuring, and Regulation of Network Utilities, USA: MIT Press, 2002.
- [30] X. Zhang, C. Rehtanz et B. Pal, Flexible AC Transmission Systems: Modelling and Control, New York: Springer Science and Business Media, 2012.
- [31] K. K. Sen et M. L. Sen, Introduction to FACTS Controllers Theory, Modeling, and Applications, New Jersey: IEEE Press, John Wiley & Sons, INC., 2009.
- [32] E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez et C. Angeles-Camacho, FACTS Modelling and Simulation in Power Networks, Chichester, West Sussex: John Wiley & Sons Ltd., 2004.
- [33] E. Acha, V. Agelidis, O. Lara et T. Miller, Power Electronic Control in Electrical System, Oxford: Newnes Power Engineering Series, 2002.
- [34] A. Yazdani et R. Iravani, Voltage-Sourced Converters in Power Systems Modeling, Control, and Applications, New Jersey: John Wiley & Sons, Inc., 2010.
- [35] E. d. Santos et E. da-Silva, Advanced Power Electronics Converters: PWM Converters Processing AC Voltages, New York: John Wiley & Sons, 2014.
- [36] K. R. Padiyar, FACTS Controllers in Power Transmission and Distribution, New Delhi: New Age International (P) Ltd., 2007.
- [37] J. Arrillaga, Y. H. Liu et N. R. Watson, Flexible Power Transmission: The HVDC Options, Chichester, West Sussex: John Wiley & Sons Ltd, 2007.
- [38] M.-m. Cheng, K. Feng, T. Isobe et R. Shimada, «Characteristics of the magnetic energy recovery switch as a static Var compensator technology,» *IET Power Electronics*, vol. 8, n° 18, pp. 1329-1338, 2015.
- [39] E. G. Shahraki, Apport de l'UPFC à l'amélioration de la stabilité transitoire des réseaux électriques, Nancy: Thèse présentée pour l'obtention du titre de Docteur de l'Université Henri Poincaré, 2003.
- [40] N. G. Hingoranl et L. Gyugyi, Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems, New York: IEEE Press, John Wiley & Sons, Inc., 2000.
- [41] F. Shahnia, S. Rajakaruna et A. Ghosh, Static Compensators (STATCOMs) in Power Systems, New York: Springer, 2014.
- [42] R. M. Mathur et R. K. Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, USA: IEEE Press, Jhon Wiley & Sons, Inc., 2002.
- [43] G. Benysek, Improvement in the Quality of Delivery of Electrical Energy using Power Electronics Systems, London: Springer Science and Business Media, 2007.
- [44] A. R. Messina, Inter-area Oscillations in Power Systems ANonlinear and Nonstationary Perspective, New York: Springer Science+Business Media, 2009.
- [45] Y. H. Song et A. T. Johns, Flexible Ac Transmission Systems (FACTS), London: IET Power and Energy Series, 1999.

- [46] V.-P. Cheung, H.-H. Chung, K.-w. Wang et A.-L. Lo, «Paralleling Multiple Static Synchronous Series Compensators Using Daisy-Chained Transformers,» *IEEE Transactions on Power Electronics*, vol. 29, n° 16, pp. 2764-2773, 2014.
- [47] U. Hager, K. Gorner et C. Rehtanz, «Hardware model of a Dynamic Power Flow Controller,» chez *IEEE PowerTech*, Trondheim, 2011.
- [48] A. Rajabi-Ghahnavieh, M. Fotuhi-Firuzabad et M. Othman, «Optimal unified power flow controller application to enhance total transfer capability,» *IET Generation, Transmission & Distribution*, vol. 9, n° 14, pp. 358-368, 2015.
- [49] F. Milano, Power System Modelling and Scripting, London: Springer Science+Business Media, 2010.
- [50] A. Mishra et G. Nagesh Kumar, «Congestion management of power system with interline power flow controller using disparity line utilization factor and multi-objective differential evolution,» CSEE Journal of Power and Energy Systems, vol. 1, n° 13, pp. 76-85, 2015.
- [51] X. Zhang, «Modelling of the interline power flow controller and the generalised unified power flow controller in Newton power flow,» *IEE Proceedings Generation, Transmission and Distribution*, vol. 150, n° 13, pp. 268-274, 2003.
- [52] C. V. Suresh et S. S. Raju, «Mathematical modeling and analysis of a Generalized Unified Power Flow Controller with Device rating Methodology,» *International Journal on Electrical Engineering and Informatics*, vol. 7, n° 11, pp. 59-78, 2015.
- [53] K. Sekiguchi, P. Khamphakdi, M. Hagiwara et H. Akagi, «A Grid-Level High-Power BTB (Back-To-Back) System Using Modular Multilevel Cascade Converters WithoutCommon DC-Link Capacitor,» *IEEE Transactions on Industry Applications*, vol. 50, n° 14, pp. 2648-2659, 2013.
- [54] V. K. Sood, HVDC and FACTS Controllers Applications of Static Converters in Power Systems, New York: Kluwer Academic Publishers, 2004.
- [55] R. Strzelecki et G. Benysek, Power Electronics in Smart Electrical Energy Networks, London: Springer Science+Business Media, 2008.
- [56] A. R. Ghahnavieh, M. F. Firuzabad et M. Othman, «Optimal unified power flow controller application to enhance total transfer capability,» *IET Generation, Transmission & Distribution*, vol. 9, n° 14, p. 358 – 368, 2015.
- [57] N. Santos, J. Silva, J. Verveckken et V. Pires, «Enhancing the Ride-Through Capability of DC-Link Voltage in NPC Multilevel Unified Power-Flow Controllers,» *IEEE Transactions on Power Delivery*, vol. 29, n° 14, pp. 1542-1550, 2014.
- [58] S. Galvani, M. Hagh et M. Sharifian, «Unified power flow controller impact on power system predictability,» *IET Generation, Transmission & Distribution,* vol. 8, n° 15, pp. 819-827, 2014.
- [59] E. Ghahremani et I. Kamwa, «Analysing the effects of different types of FACTS devices on the steadystate performance of the Hydro-Québec network,» *IET Generation, Transmission & Distribution*, vol. 8, n° 12, pp. 233-249, 2014.
- [60] M. Jena et S. Samantaray, «Data-Mining-Based Intelligent Differential Relaying for Transmission Lines Including UPFC and Wind Farms,» *IEEE Transactions on Neural Networks and Learning Systems*, vol. 27, n° 11, pp. 8-17, 2015.
- [61] W.-M. Lin, K.-H. Lu et T.-C. Ou, «Design of a novel intelligent damping controller for unified power flow controller in power system connected offshore power applications,» *IET Generation, Transmission & Distribution,* vol. 9, n° 113, pp. 1708 1717, 2015.
- [62] D. H. Reddy et R. S. R. K., «A novel Real and reactive power coordination controller for a unified power flow controller (UPFC),» *International Journal of Research*, vol. 2, n° 111, pp. 834-836, 2015.
- [63] M. S, Certain studies on UPFC controlled power systems for power quality improvement, Université Anna Chenai Inde: Thèse pour l'obtention de diplome de doctorat, 2015.

- [64] Q. M.R., «Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality,» *Energy*, vol. 17, n° 11, p. 576–592, 2015.
- [65] S. Yang, Y. Liu, X. Wang et D. Gunasekaran, «Modulation and Control of Transformerless UPFC,» IEEE Transactions on Power Electronics, vol. 31, n° 12, pp. 1050-1063, 2015.
- [66] R. S., C. Sureshd, S. S. et V. Reddy, «Power system security enhancement with unified power flow controller under multi-event contingency conditions,» *Ain Shams Engineering Journal*, vol. 6, n° 13, pp. 1-20, 2015.
- [67] P. Khandelwal et B. Modi, «Modeling, Simulation of UPFC and Its Effect on Power System Protection,» *International Journal of Emerging Research in Management & Technology*, vol. 4, n° 15, pp. 138-147, 2015.
- [68] G. Sybille, L.-A. Dessaint, B. DeKelper, O. Tremblay, J.-R. Cossa, P. Brunelle, R. Champagne et P. Giroux, SimPowerSystems[™] User's Guide R2013a, Québec: Hydro-Québec and The MathWorks, Inc., 2013.
- [69] Y. Kumari, A. Gupta, S. P. Bihari, C. R.N. et S. B., «Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller,» *Indonesian Journal of Electrical Engineering and Informatics*, vol. 3, n° 13, pp. 141-149, 2015.
- [70] D. K. Y. Islam, H. Samir et D. Mohammed, «Independent Power Flow Control and Dynamic Performance Enhancement by the UPFC,» chez *International Conference on Electrical and Information Technologies (ICEIT), 25-27 March*, Marrakesh Morocco, 2015.
- [71] F. Albasri, Impact of Shunt-Flexible AC Transmission System (FACTS) on Distance Based Transmission Line Protection, Canada: Library and Archives Canada, 2008.
- [72] Y. Shu-jun, S. Xiao-yan, W. Yan et Y. Yu-xin, «Research on dynamic characteristics of Unified Power Flow Controller (UPFC),» chez 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, 2011.
- [73] Mathworks, «Introducing the Phasor Simulation Method,» Mathworks, 2015. [En ligne]. Available: http://es.mathworks.com/help/physmod/sps/powersys/ug/introducing-the-phasor-simulationmethod.html. [Accès le 12 12 2015].
- [74] Z. Moravej, M. Pazoki et M. Khederzadeh, «New Pattern-Recognition Method for Fault Analysis in Transmission Line With UPFC,» *IEEE Transactions onPower Delivery*, vol. 30, n° 13, pp. 1231-1242, 2014.
- [75] D. K. Y. Islam, H. Samir, Z. S. Ahmed et D. Mohammed, «Incorporatring a Unified Power Flow Controller Model In Power Flow Calculation And Study Of Dynamic Characteristics,» chez Deuxième Conférence Internationale sur la Maintenance, la Gestion, la Logistique et l'Electrotechnique (CMIGLE'2012), Oran Algérie, 2012.
- [76] D. K. Y. Islam, H. Samir, Z. S. Ahmed et D. Mohammed, «Modeling a UPFC for the Study of Power System Steady state and Transient Characteristics,» chez International Conference on Electromechanical Engineering (ICEE'2012), Skikda Algérie, 2012.
- [77] D. K. Y. Islam, H. Samir, Z. S. Ahmed et D. Mohammed, «Modelling a unified power flow controller for the study of power system steady state and dynamic characteristics,» chez 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamat Tunisie, 2013.
- [78] D. K. Y. Islam, H. Samir et D. Mohammed, «Modelling a UPFC for the Study of Power System Steady state and Transient Characteristics,» *International Journal of Advanced Engineering and Science*, vol. 3, n° 11, pp. 124-133, 2014.
- [79] B. Gao, G. Morison et P. Kundur, «Voltage stability evaluation using modal analysis,» IEEE Transactions on Power Systems, vol. 7, n° 14, pp. 1529 - 1542, 1992.

- [80] E. F., O. C. et A. A., «Modal Based Analysis and Evaluation of Voltage Stability of Bulk Power System,» *International Journal of Engineering Research and Development*, vol. 6, n° 112, pp. 71-79, 2013.
- [81] I. Perez-Arriaga, G. Verghese et F. Schweppe, «Selective Modal Analysis with Applications to Electric Power Systems, PART I: Heuristic Introduction,» *IEEE Transactions on Power Apparatus and Systems*, Vols. 1 sur 2PAS-101, n° 19, pp. 3117 - 3125, 1982.
- [82] V. Ajjarapu et B. Lee, «Bibliography on voltage stability,» *IEEE Transactions on Power Systems*, , vol. 13, n° 11, pp. 115-125, 1998.
- [83] V. Balamourougan et M. Sachdev, «Technique for online prediction of voltage collapse,» *Generation, Transmission and Distribution, IEE Proceedings*, vol. 151, n° 14, pp. 453 460, 2004.
- [84] C. Sharma et M. Ganness, «Determination of Power System Voltage Stability Using Modal Analysis,» chez International Conference on Power Engineering, Energy and Electrical Drives, POWERENG 2007., Setubal, Portugal, 2007.
- [85] University-of-Washington, «Power Systems Test Case Archive-UWEE,» University of Washington, [En ligne]. Available: http://www.ee.washington.edu/research/pstca/. [Accès le 12 12 2015].
- [86] D. K. Y. Islam, H. Samir et D. Mohammed, «Power Flow and Modal Analysis of a Power System Including the UPFC,» *International Journal of Electrical and Computer Engineering*, vol. 3, n° 12, 2016.
- [87] L. Tripathy et P. Dash, «Sparse S-transform for location of faults on transmission lines operating with unified power flow controller,» *IET Generation, Transmission & Distribution*, vol. 9, n° 115, pp. 2108-2116, 2015.
- [88] D. K. Y. Islam, H. Samir et D. Mohammed, «Effect of the UPFC on a Multimachine Power System Steady State and Dynamic Performance,» *Journal of Electrical Engineering*, vol. 15, n° 14, pp. 1-6, 2015.
- [89] R. W. Pandita et V. K. Garg, «Unified Power Flow Controller and its Implementation On A WSCC System to Bring System in Synchronism after Fault Occurs.,» *International Journal of Recent Research Aspects*, vol. 2, n° 12, pp. 143-146, 2015.
- [90] K. Nor, H. Mokhlis et T. Gani, «Reusability techniques in load-flow analysis computer program,» IEEE Transactions on Power Systems, vol. 19, n° 14, pp. 1754-1762, 2004.
- [91] A. Gomez Exposito, J. Martinez Ramos et J. Santos, «Slack bus selection to minimize the system power imbalance in load-flow studies,» *IEEE Transactions on Power Systems*, vol. 19, n° 12, pp. 987 - 995, 2004.
- [92] J. Ward et H. Hale, «Digital Computer Solution of Power-Flow Problems [includes discussion],» *Power Apparatus and Systems*, vol. 75, n° 13, p. 398–394, 1956.
- [93] A. Glimn et G. Stagg, «Automatic Calculation of Load Flows,» Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, vol. 76, n° 13, pp. 817 - 825, 1957.
- [94] H. Hale et R. Goodrich, «Digital Computation or Power Flow Some New Aspects,» Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, vol. 78, n° 13, pp. 919 - 923, 1959.
- [95] P. Gupta et M. Humphrey Davies, «Digital computers in power system analysis,» *Proceedings of the IEE Part A: Power Engineering*, vol. 108, n° 141, pp. 383 398, 1961.
- [96] A. Brameller et J. Denmead, «Some improved methods for digital network analysis,» Proceedings of the IEE - Part A: Power Engineering, vol. 109, n° 143, pp. 109 - 116, 1962.
- [97] J. Zhu, Optimization of Power System Operation, New York: John Wiley & Sons, 2015.
- [98] B. Stott, «Effective starting process for Newton-Raphson load flows,» Proceedings of the Institution of Electrical Engineers, vol. 118, n° 18, pp. 983 - 987, 1971.

- [99] W. F. Tinney et C. Hart, «Power Flow Solution by Newton's Method,» *IEEE Transactions on Power Apparatus and Systems*, vol. PAS 86, n° 111, pp. 1449 1460, 1967.
- [100] W. F. Tinney et J. Walker, «Direct solutions of sparse network equations by optimally ordered triangular factorization,» *Proceedings of the IEEE*, vol. 55, n° 111, pp. 1801 1809, 1967.
- [101] A. F. Zobaa et A. Vaccaro, Computational Intelligence Applications in Smart Grids: Enabling Methodologies for Proactive and Self-Organizing Power Systems, World Scientific, 2014.
- [102] R. Idema et D. Lahaye, Computational Methods in Power System Analysis, New York: Springer, 2014.
- [103] S. Borivoje Babiç, «Decoupled load flow with variables in rectangular form,» *Generation, Transmission and Distribution, IEE Proceedings C*, vol. 130, n° 12, pp. 98-102, 1983.
- [104] B. Stott et O. Alsac, «Fast Decoupled Load Flow,» IEEE Transactions on Power Apparatus and Systems, vol. 93, n° 13, pp. 859 - 869, 1974.
- [105] R. Idema et D. Lahaye, Computational Methods in Power System Analysis, New York: Springer science & business media, 2014.
- [106] R. Van Amerongen, «A general-purpose version of the fast decoupled load flow,» *IEEE Transactions on Power Systems*, vol. 4, n° 12, pp. 760 770, 1989.
- [107] A. Monticelli, A. Garcia et O. Saavedra, «Fast decoupled load flow: hypothesis, derivations, and testing,» *IEEE Transactions on Power Systems*, vol. 5, n° 14, pp. 1425 - 1431, 1990.
- [108] P. Bijwe et S. Kelapure, «Nondivergent fast power flow methods,» IEEE Transactions on Power Systems, vol. 18, n° 12, pp. 633 - 638, 2003.
- [109] L. Braz, C. Castro et C. Murati, «A critical evaluation of step size optimization based load flow methods,» *Power Systems, IEEE Transactions on*, vol. 15, n° 11, pp. 202 - 207, 2002.
- [110] S. Iwamoto et Y. Tamura, «A Fast Load Flow Method Retaining Nonlinearity,» IEEE Transactions on Power Apparatus and Systems, vol. 97, n° 15, pp. 1586 - 1599, 1978.
- [111] S. Iwamoto et Y. Tamura, «A Load Flow Calculation Method for Ill-Conditioned Power Systems,» IEEE Transactions on Power Apparatus and Systems, vol. 100, n° 14, pp. 1736 - 1743, 1981.
- [112] M. Schaffer et D. Tylavsky, «A nondiverging polar-form Newton-based power flow,» IEEE Transactions on Industry Applications, vol. 24, n° 15, pp. 870 - 877, 1988.
- [113] J. Tate et T. Overbye, «A comparison of the optimal multiplier in polar and rectangular coordinates,» *IEEE Transactions on Power Systems*, vol. 20, n° 14, pp. 1667 1674, 2005.
- [114] D. Tylavsky, L. Jarriel, P. Crouch et R. Adapa, «Improved power flow robustness for personal computers,» *Industry Applications Society Annual Meeting, Conference Record of the 1990 IEEE*, vol. 2, n° 11, pp. 1401 - 1407, 1990.
- [115] S. M. Hetzler, «A Continuous Version of Newton's Method,» *The College Mathematics Journal*, vol. 28, n° 15, p. 348–351, 1997.
- [116] S. M. Muyeen, A. Sattar, A. G. Abo-Khalil et C. E. Capovilla, An Integrated Power Flow Solution of Flexible AC Transmission Systems Containing Wind Energy Conversion Systems, INTECH Open Access Publisher, 2013.
- [117] A. Nabavi-Niaki et M. Iravani, «Steady state and dynamic models of Unified Power Flow Controller (UPFC) for power system studies,» *IEEE Transactions on Power Systems*, vol. 11, n° 14, pp. 1937 -1943, 1996.
- [118] S. Kamel, F. Jurado et J. P. Lopes, «Comparison of various UPFC models for power flow control,» Electric Power Systems Research, vol. 121, n° 11, pp. 243-251, 2015.
- [119] C. Fuerte-Esquivel et E. Acha, «Unified power flow controller: a critical comparison of Newton-Raphson UPFC algorithms in power flow studies,» *Generation, Transmission and Distribution, IEE Proceedings*, vol. 144, n° 15, pp. 437 - 444, 1997.

- [120] M. Noroozian, L. Angquist, M. Ghandhari et G. Andersson, «Use of UPFC for optimal power flow control,» *IEEE Transactions on Power Delivery*, vol. 12, n° 14, pp. 1629 - 1634, 1997.
- [121] M. Vural et M. Tumay, «Mathematical modeling and analysis of a unified power flow controller: A comparison of two approaches in power flow studies and effects of UPFC location,» *Electrical Power and Energy Systems*, vol. 29, n° 11, p. 617–629, 2007.
- [122] M. Tumay et M. Vural, «ANALYSIS AND MODELING OF UNIFIED POWER FLOW CONTROLLER: MODIFICATION OF NEWTON–RAPHSON ALGORITHM AND USER-DEFINED MODELING APPROACH FOR POWER FLOW STUDIES,» *The Arabian Journal for Science and Engineering*, vol. 29, n° 12B, pp. 135-153, 2004.
- [123] M. Haque et C. Yam, «A simple method of solving the controlled load flow problem of a power system in the presence of UPFC,» *Electric Power Systems Research*, vol. 65, n° 11, pp. 55-62, 2003.
- [124] M. Alomoush, «Derivation of UPFC DC load flow model with examples of its use in restructured power systems,» *IEEE Transactions on Power Systems*, vol. 18, n° 13, pp. 1173 - 1180, 2003.
- [125] M. I. Alomoush, «Exact Pi-Model of UPFC-Inserted Transmission Lines in Power Flow Studies,» Power Engineering Review, IEEE, vol. 22, n° 112, pp. 54 - 56, 2002.
- [126] S. Bhowmick, B. Das et N. Kumar, «An Indirect UPFC Model to Enhance Reusability of Newton Power-Flow Codes,» *IEEE Transactions on Power Delivery*, vol. 23, n° 14, pp. 2079 - 2088, 2008.
- [127] K. S., J. F. et M. R., «Advanced modeling of center-node unified power flow controller in NR load flow algorithm,» *Electric Power Systems Research*, vol. 121, n° 11, pp. 176-182, 2015.
- [128] L. Gyugyi, C. Schauder, S. Williams, T. Rietman, D. Torgerson et A. Edris, «The unified power flow controller: a new approach to power transmission control,» *IEEE Transactions on Power Delivery*, vol. 10, n° 12, pp. 1085 - 1097, 1995.
- [129] K. Sen et E. Stacey, «UPFC-unified power flow controller: theory, modeling, and applications,» *IEEE Transactions on Power Delivery*, vol. 13, n° 14, pp. 1453 1460, 1998.
- [130] X. Zhang et E. Handschin, «Optimal power flow control by converter based FACTS controllers,» chez Seventh International Conference on AC-DC Power Transmission (Conf. Publ. No. 485), 2001.
- [131] X. Zhang, «Comprehensive modelling of the unified power flow controller for power system control,» *Electrical Engineering*, vol. 88, n° 14, pp. 241-246, 2006.
- [132] S. Ahmadnia, N. Boroomand, S. I. Tous et S. Hasanpour, «New Modeling of UPFC for Power Flow Study and Setting Parameters to Increase Voltage Level and Reduce Power Losses,» *International Journal of Automation and Power Engineering*, vol. 12, n° 11, pp. 77-82, 2012.
- [133] K. Sreenivasachar, Unified power flow controller: Modeling, Stability analysis, Control strategy and Control system Design, Université de Waterloo: Thèse pour l'obtention de diplome de doctorat, 2001.
- [134] S. E. Mubeen, N. R. K. et G. Agnihotri, «Power Flow Control with UPFC in Power Transmission System,» International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 2, n° 111, pp. 2507-2511, 2008.
- [135] D. K. Y. Islam, H. Samir et D. Mohammed, «Study of UPFC Optimal Location Considering Loss Reduction and Improvement of Voltage Stability and Power Flow,» *Leonardo Journal of Science*, n° 124, pp. 85-100, 2014.
- [136] M. Sayed et T. Takeshita, «Line Loss Minimization in Isolated Substations and Multiple Loop Distribution Systems Using the UPFC,» *IEEE Transactions on Power Electronics*, vol. 29, n° 111, pp. 5813-5822, 2014.
- [137] W. Li, Probabilistic Transmission System Planning, New York: John Wiley & Sons, 2011.
- [138] M. L. Crow, Computational Methods for Electric Power Systems, USA: Taylor and Francis Group, LLC, 2010.

- [139] V. P., M. B.V., C. RAJA et S. A., ELECTRICAL POWER SYSTEMS: ANALYSIS, SECURITY AND DEREGULATION, New Delhi: PHI Learning Pvt. Ltd., 2012.
- [140] S. Savulescu, Real-Time Stability in Power Systems: Techniques for Early Detection of the Risk of Blackout, New York: Springer, 2014.
- [141] R. Thomas, R. Barnard et J. Meisel, «The Generation of Quasi Steady-State Load-Flow Trajectories and Multiple Singular Point Solutions,» *IEEE Transactions on Power Apparatus and Systems*, vol. 90, n° 15, pp. 1967 - 1974, 1971.
- [142] V. Ajjarapu et C. Christy, «The continuation power flow: a tool for steady state voltage stability analysis,» *IEEE Transactions on Power Systems*, vol. 7, n° 11, pp. 416 423, 1992.
- [143] C. Canizares, «Voltage stability assessment : concepts, practices and tools,» University of Waterloo, 2002. [En ligne]. Available: http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2002/Can02. [Accès le 12 12 2015].
- [144] H.-D. Chiang, A. Flueck, K. Shah et N. Balu, «CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations,» *IEEE Transactions on Power Systems*, vol. 10, n° 12, pp. 623-634, 1995.
- [145] C. A. Canizares, F. L. Alvarado, S. Zhang et M. Watson, « UWPFLOW Continuation and Direct Methods to Locate Fold Bifurcations in AC/DC/FACTS Power Systems,» University of Waterloo, [En ligne]. Available: https://ece.uwaterloo.ca/~ccanizar/software/uwpflow/readme.txt. [Accès le 12 12 2015].
- [146] F. Milano, Power System Analysis Toolbox, Quick Reference Manual for PSAT version 2.1.2, 2008.
- [147] Y. Ju, W. Wu, B. Zhang et H. Sun, «Continuation power flow based on a novel local geometric parameterisation approach,» *IET, Generation, Transmission & Distribution*, vol. 8, n° 15, pp. 811-818, 2014.
- [148] Y. Ju, W. Wu, B. Zhang et H. Sun, «Loop-analysis-based continuation power flow algorithm for distribution networks,» *IET, Generation, Transmission & Distribution*, vol. 8, n° 17, pp. 1284-1292, 2014.
- [149] J. M. Ortega et W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, New York: Academic, 1969.
- [150] R. Seydel, Practical Bifurcation and Stability Analysis, New York : Springer Science+Business Media, 2009.
- [151] A. de Souza, C. Canizares et V. Quintana, «New techniques to speed up voltage collapse computations using tangent vectors,» *IEEE Transactions on Power Systems*, vol. 12, n° 13, pp. 1380-1387, 1997.
- [152] P. Xu, X. Wang et V. Ajjarapu, «Continuation power flow with adaptive stepsize control via convergence monitor,» *IET, Generation, Transmission & Distribution*, vol. 6, n° 17, pp. 673-679, 2012.
- [153] K. Iba, H. Suzuki, M. Egawa et T. Watanabe, «Calculation of critical loading condition with nose curve using homotopy continuation method,» *IEEE Transactions on Power Systems*, vol. 6, n° 12, pp. 584-593, 1991.
- [154] B. Teneubaum, «The Real World of Power Sector Regulation,» The World Bank, 1995.
- [155] O. I. Elgerd, Electric energy systems theory : an introduction, New York: McGraw-Hill, 1982.
- [156] S. Ramar et S. Kuruseelan, Power System Analysis, PHI Learning Pvt. Ltd., 2013.
- [157] J. Grainger et S. William, Power System Analysis, l'Université du Michigan: McGraw-Hill, 1994.
- [158] Energy-and-Development-Report, Energy Services for the World's Poor, Washington, DC: The World Bank, 2000.
- [159] O. Z. V., S. Wara, I. A. Adejumobi et A. O. Mustapha, «Effect of Unified Power Flow Controller on Power System Performance: A Case Study of Maryland 132/33/11 kv Transmission Station,»

International Journal of Emerging Technology and Advanced Engineering, vol. 5, n° 16, pp. 355-364, 2015.

ANNEXE A : STABILITÉ DE TENSION

L'ANALYSE MODALE

L'analyse modale dépend principalement de la matrice jacobienne d'écoulement de puissance. Gao, Morison et Kundur ont proposé cette méthode en 1992. [79] Cette méthode nous permet de prédire l'effondrement de tension dans les réseaux électriques les plus complexes. Elle consiste principalement de calculer les valeurs propres les plus petites et les vecteurs propres associés de la matrice jacobienne réduit obtenu à partir de la solution d'écoulement de puissance. Les valeurs propres sont associées à un mode de tension et à la variation de la puissance réactive qui peut fournir une mesure relative de proximité de l'instabilité de la tension. Ensuite, le facteur de participation peut être utilisé efficacement pour connaître les nœuds les plus faibles du réseau. L'analyse est exprimée comme suit [80] :

La matrice jacobienne peut être réécrite comme suit :

 $\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \begin{bmatrix} \Delta \Theta \\ \Delta V \end{bmatrix}$

En remplaçant $\Delta P=0$:

$$\Delta P = 0 = J_{11}\Delta\theta + J_{12}\Delta V, \ \Delta\theta = -J_{11}^{-1}J_{12}\Delta V$$

$$\Delta Q = J_{21} \Delta \theta + J_{22} \Delta V$$

En substituant:

$$\Delta Q = J_R \Delta V$$

Tels que :

$$\boldsymbol{J}_{R} = \left[\boldsymbol{J}_{22} - \boldsymbol{J}_{21} \boldsymbol{J}_{11}^{-1} \boldsymbol{J}_{12} \right]$$

 J_R est la matrice jacobienne réduite du système.

L'équation (3) peut être écrite comme :

 $\Delta V = J_R^{-1} \Delta Q$

La matrice J_R représente la relation linéarisée entre les changements incrémentales de la tension (ΔV) et l'injection de puissance réactive (ΔQ) . Il est bien connu que, la tension du réseau est affectée par les variations de puissance active et réactive. Afin de concentrer l'étude du problème de la demande et la production réactive du système ainsi que de minimiser l'effort de calcul en réduisant les dimensions de la

matrice jacobienne J, la puissance active ($\Delta P = 0$) et la partie d'angle du système dans l'équation (4.1) sont éliminés.

Les valeurs propres et les vecteurs propres de la matrice jacobienne réduite J_R sont utilisés pour l'analyse des caractéristiques de stabilité de la tension. L'instabilité de la tension peut être détectée en identifiant les modes de la matrice de valeurs propres J_R . L'amplitude des valeurs propres fournit une mesure relative de la proximité de l'instabilité. Les vecteurs propres d'une autre part présentent des informations liés au mécanisme de la perte de stabilité de la tension.

L'analyse modale de J_R se traduit par :

 $J_{R} = \lambda \Phi \xi$

Tels que Φ = matrice droite des vecteurs propres de J_R

 ξ = matrice gauche des vecteurs propres de J_R

 λ = matrice diagonale des valeurs propres de J_R

L'équation (4.6) peut être écrite comme :

 $J_R^{-1} = \Phi \lambda^{-1} \xi$

En général, on peut dire qu'un système de tension est stable si les valeurs propres de J_R sont toutes positives. Ceci est différent des systèmes dynamiques où les valeurs propres à parties réelles négatives sont stables. On peut mieux comprendre la relation entre la stabilité de tension et les valeurs propres de la matrice J_R en rapportant les valeurs propres avec les sensibilités de V-Q de chaque nœud (qui doivent être positif pour la stabilité). J_R peut être considéré comme une matrice symétrique et donc les valeurs propres de J_R sont près d'être purement réelles. Si toutes les valeurs propres sont positifs, J_R est définie positive et les sensibilités de V-Q sont également positives, indiquant que le système est stable.

La tension est considéré comme instable si au moins une des valeurs propres est négative. Une valeur propre nulle de J_R signifie que le système est sur le point d'instabilité de tension. En outre, une petite valeur propre de J_R détermine la proximité de tension d'être instable [81].

Il n'y a aucune nécessité d'évaluer toutes les valeurs propres de J_R d'un grand réseau électrique, car il est connu que lorsque les valeurs propres minimales deviennent nulles, la matrice jacobienne devient singulière et l'instabilité de tension se produit. Par conséquent, les valeurs propres les plus importance sont les valeurs propres critiques de la matrice jacobienne réduite J_R . Ainsi, les plus petites valeurs propres de J_R sont considérées comme les modes les moins stables du système. Le reste des valeurs propres sont négligés parce qu'ils sont considérés comme des modes assez forts. Une fois que les valeurs propres et les vecteurs propres minimum gauches et droites correspondants ont été calculés le coefficient de participation peut être utilisé pour identifier le nœud le plus faible dans le réseau.

La définition et la détermination appropriée des nœuds qui participent dans les modes sélectionnés deviennent très importantes. Cela nécessite un outil, appelé le facteur de participation, pour identifier les nœuds les plus faibles qui font contribution significative aux modes sélectionnés [82]:

$$\Delta V = \sum_{i} \frac{\Phi_{i} \xi_{i}}{\lambda_{i}} \Delta Q$$

Où λ_i est la i^{ème} valeur propre, Φ_i est la i^{ème} colonne droite de vecteur propre et ξ_i est la i^{ème} rangée gauche de vecteur propre de la matrice J_R . Chaque valeur propre λ_i et chaque vecteur propre à droite et à gauche correspondant Φ_i et ξ_i , défini le mode de fonctionnement i de réseau.

ANNEXE B : ELEMENTS DE LA MATRICE JACOBIENNE DE L'UPFC

Les dérivées partielles pour l'UPFC au nœud i sont :

$$\begin{split} \frac{\partial P_i}{\partial \theta_i} &= -Q_i - V_i^2 B_{ii} \\ \frac{\partial Q_i}{\partial \theta_i} &= P_i - V_i^2 G_{ii} \\ \frac{\partial P_i}{\partial \theta_j} &= V_i V_k \left(G_{ij} \sin\left(\theta_i - \theta_j\right) - B_{ij} \cos\left(\theta_i - \theta_j\right) \right) \\ \frac{\partial Q_i}{\partial \theta_j} &= -N_{ij} \\ \frac{\partial P_i}{\partial V_i} V_i &= P_i - V_i^2 G_{ii} \\ \frac{\partial Q_i}{\partial V_j} V_j &= H_{ij} \\ \frac{\partial Q_i}{\partial V_i} V_i &= Q_i - V_i^2 B_{ii} \\ \frac{\partial P_i}{\partial \theta_{se}} &= V_i V_{se} \left(G_{ij} \sin\left(\theta_i - \theta_{se}\right) - B_{ij} \cos\left(\theta_i - \theta_{se}\right) \right) \\ \frac{\partial Q_i}{\partial \theta_{se}} &= -N_{ise} \\ \frac{\partial P_i}{\partial V_{se}} V_{se} &= V_i V_{se} \left(G_{ij} \cos\left(\theta_i - \theta_{se}\right) + B_{ij} \sin\left(\theta_i - \theta_{se}\right) \right) \\ \frac{\partial Q_i}{\partial V_{se}} V_{se} &= H_{ise} \\ \frac{\partial P_i}{\partial V_{se}} &= V_i V_{sh} \left(G_{sh} \sin\left(\theta_i - \theta_{sh}\right) - B_{sh} \cos\left(\theta_i - \theta_{sh}\right) \right) \end{split}$$

$$\frac{\partial Q_i}{\partial \theta_{sh}} = -N_{ish}$$

$$\frac{\partial P_i}{\partial V_{sh}} V_{sh} = V_i V_{sh} \left(G_{sh} \cos \left(\theta_i - \theta_{sh} \right) + B_{sh} \sin \left(\theta_i - \theta_{sh} \right) \right)$$
$$\frac{\partial Q_i}{\partial V_{sh}} V_{sh} = H_{ish}$$

Les dérivées partielles au nœud j sont :

Les dérivées partielles au convertisseur série de l'UPFC sont :

$$\frac{\partial P_{se}}{\partial \theta_{i}} = V_{se}V_{i}\left(G_{ij}\sin\left(\theta_{se}-\theta_{i}\right)-B_{ij}\cos\left(\theta_{se}-\theta_{i}\right)\right)$$

$$\frac{\partial P_{se}}{\partial \theta_{se}} = -Q_{se} - V_{se}^2 B_{jj}$$

$$\frac{\partial P_{se}}{\partial \theta_j} = V_{se} V_j \left(G_{jj} \sin\left(\theta_{se} - \theta_j\right) - B_{jj} \cos\left(\theta_{se} - \theta_j\right) \right)$$

$$\frac{\partial P_{se}}{\partial V_{se}} V_{se} = P_{se} - V_{se}^2 G_{jj}$$

$$\frac{\partial P_{se}}{\partial V_i} V_i = V_{se} V_i \left(G_{ij} \cos\left(\theta_{se} - \theta_i\right) + B_{jj} \sin\left(\theta_{se} - \theta_i\right) \right)$$

$$\frac{\partial P_{se}}{\partial V_j} V_j = V_{se} V_j \left(G_{jj} \cos\left(\theta_{se} - \theta_j\right) - B_{jj} \sin\left(\theta_{se} - \theta_j\right) \right)$$

Les dérivées partielles au convertisseur shunt de l'UPFC sont :

$$\frac{\partial P_{sh}}{\partial \theta_i} = V_{sh}V_i \left(G_{sh} \sin\left(\theta_{sh} - \theta_i\right) - B_{sh} \cos\left(\theta_{sh} - \theta_i\right) \right)$$
$$\frac{\partial P_{sh}}{\partial \theta_{sh}} = -Q_{sh} - V_{sh}^2 B_{sh}$$
$$\frac{\partial P_{sh}}{\partial V_i} V_i = V_{sh}V_i \left(G_{sh} \cos\left(\theta_{sh} - \theta_i\right) + B_{sh} \sin\left(\theta_{sh} - \theta_i\right) \right)$$
$$\frac{\partial P_{sh}}{\partial V_{sh}} V_{sh} = P_{sh} - V_{sh}^2 G_{sh}$$

ANNEXE C : CODE MATLAB D'ECOULEMENT DE PUISSANCE

% - - - Programme principal

clc; t0=clock; PowerFlowsData; % fonction pour lire les données de réseau UPFCdata; % fonction pour lire les données de l'UPFC

%-----% [YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,shresis,shreac,ntl,nbb,nsh);

[VM,VA,it,Vcr,Tcr,Vvr,Tvr] =

UPFCNewtonRaphson(tol,itmax,ngn,nld,nmax,nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Flow,Psp,PSta,Qsp,QSta,Vcr,Tcr,VcrLo,VcrHi,Vvr,Tvr,VvrLo,VvrHi,VvrTar,VvrSta);

[PQsend, PQrec, PQloss, PQbus] = PQflows(nbb, ngn, ntl, nld, genbus, loadbus, tlsend, tlrec, tlresis, tlreac, tlcond, tlsuscep, PLOAD, QLOAD, VM, VA);

 $[UPFC_PQsend, UPFC_PQrec, PQcr, PQvr] = PQUPFCpower(nbb, VA, VM, NUPFC, UPFCsend, UPFCrec, Xcr, Xvr, Vcr, Tcr, Vvr, Tvr);$

%affichage des résultats

it %nombre d'itérations VM %amplitude des tensions nodales (p.u.) VA=VA*180/pi % angles des tensions nodales (deg) Sources=[Vcr,Tcr*180/pi,Vvr,Tvr*180/pi] %paramètres finaux des tensions injectés UPFC_PQsend %puissance active et reactive sortant de l'UPFC(p.u.) UPFC_PQrec %puissance active et reactive entrant l'UPFC(p.u.) PQloss=sum(PQloss/100) et=etime(clock,t0); fprintf('time taken %f in seconds\n',et) %FIN de programme principal %construction de la matrice d'admittance function [YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,shresis,shreac,ntl,nbb,nsh) YR=zeros(nbb,nbb); YI=zeros(nbb,nbb); % contribution des lignes de transport for kk = 1: ntl ii = tlsend(kk); jj = tlrec(kk); denom = $tlresis(kk)^2 + tlreac(kk)^2;$ YR(ii,ii) = YR(ii,ii) + tlresis(kk)/denom + 0.5*tlcond(kk);YI(ii,ii) = YI(ii,ii) - tlreac(kk)/denom + 0.5*tlsuscep(kk); YR(ii,jj) = YR(ii,jj) - tlresis(kk)/denom; YI(ii,jj) = YI(ii,jj) + tlreac(kk)/denom; YR(jj,ii) = YR(jj,ii) - tlresis(kk)/denom; YI(jj,ii) = YI(jj,ii) + tlreac(kk)/denom;YR(jj,jj) = YR(jj,jj) + tlresis(kk)/denom + 0.5*tlcond(kk);YI(jj,jj) = YI(jj,jj) - tlreac(kk)/denom + 0.5*tlsuscep(kk);end % les éléments shunt for kk = 1: nsh

ii = shbus(kk); denom = shresis(kk)^2+shreac(kk)^2; YR(ii,ii) = YR(ii,ii) + shresis(kk)/denom; YI(ii,ii) = YI(ii,ii) - shreac(kk)/denom;

```
end
% Fin de la function YBus
%la solution de flux de puissance avec la méthode de newton Raphson
function [VM,VA,it,Vcr,Tcr,Vvr,Tvr] =
UPFCNewtonRaphson(tol,itmax,ngn,nld,nmax,nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,
NUPFC, UPFCsend, UPFCrec, Xvr, Flow, Psp, PSta, Qsp, QSta, Vcr, Tcr, VcrLo, VcrHi, Vvr, Tvr, VvrLo, VvrHi, VvrTar, VvrSta)
% paramètres généraux
flag = 0;
it = 1;
% calcul des puissances nets
[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN, PLOAD,QLOAD);
while (it < itmax & flag==0)
  % Puissances Calculés
  [PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);
  % puissances calculés de l'UPFC
  [UPFC POsend, UPFC POrec, POcr, POvr, PCAL, OCAL] =
UPFCCalculatedpower(nbb,VA,VM,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr,PCAL,QCAL);
   % puissances risiduelles
  [DPQ,DP,DQ,flag] = PowerMismatches(nmax,nbb,tol,bustype,flag,PNET,QNET,PCAL,QCAL);
  % puissances risiduelles de l'UPFC
  [DPQ,flag] = UPFCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NUPFC,Flow,Psp,PSta,Qsp,QSta,UPFC_PQsend,UPFC_PQrec,PQcr,PQvr);
  if flag == 1
    break
  end
% FORMATION de la matrice Jacobienne
[JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,VM,VA,YR,YI);
% MODIFICATION de la matrice jacobienne pour l'UPFC
[JAC] = UPFCJacobian(nbb,JAC,VM,VA,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Flow,PSta,QSta,Vcr,Tcr,Vvr,Tvr,VvrSta);
% resolution du jacobien
D = JAC \setminus DPQ';
% mise à jour des variables d'état
[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);
% mise à jour des variables de l'UPFC
[VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC,UPFCsend,PSta, QSta,Vcr,Tcr,Vvr,Tvr,VvrTar,VvrSta);
%vérifier les limites de tensions des convertisseurs
[Vcr,Vvr] = UPFCLimits(NUPFC,Vcr,VcrLo,VcrHi,Vvr,VvrLo,VvrHi);
it = it + 1;
end
% fonction pour calculer les puissances planifées
function [PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN, PLOAD,QLOAD)
% calcul des puissances nets
PNET = zeros(1,nbb);
QNET = zeros(1,nbb);
for ii = 1: ngn
  PNET(genbus(ii)) = PNET(genbus(ii)) + PGEN(ii);
  QNET(genbus(ii)) = QNET(genbus(ii)) + QGEN(ii);
end
for ii = 1: nld
  PNET(loadbus(ii)) = PNET(loadbus(ii)) - PLOAD(ii);
  QNET(loadbus(ii)) = QNET(loadbus(ii)) - QLOAD(ii);
end
% fin de la fontion netpowers
% fonction pour calculer les puissances injectés
function [PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI)
PCAL = zeros(1,nbb);
QCAL = zeros(1,nbb);
for ii = 1: nbb
  PSUM = 0;
  QSUM = 0;
  for ij = 1: nbb
    PSUM = PSUM + VM(ii)*VM(jj)*(YR(ii,jj)*cos(VA(ii)-VA(jj)) + YI(ii,jj)*sin(VA(ii)-VA(jj)));
    QSUM = QSUM + VM(ii)*VM(jj)*(YR(ii,jj)*sin(VA(ii)-VA(jj)) - YI(ii,jj)*cos(VA(ii)-VA(jj)));
  end
  PCAL(ii) = PSUM;
```

```
QCAL(ii) = QSUM;
end
%Fin de la fonction CalculatePowers
% fonction pour calculer les puissances injectés par l'UPFC
function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr,PCAL,QCAL] =
UPFCCalculatedpower(nbb,VA,VM,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr,PCAL,QCAL)
for ii = 1 : NUPFC
  Bkk = - 1/Xcr(ii)-1/Xvr(ii);
  Bmm = -1/Xcr(ii);
  Bmk = 1/Xcr(ii);
  Bvr = 1/Xvr(ii);
  for kk = 1 : 2
    A1 = VA(UPFCsend(ii))-VA(UPFCrec(ii));
    A2 = VA(UPFCsend(ii))-Tcr(ii);
    A3 = VA(UPFCsend(ii))-Tvr(ii);
    % calcul des termes conventionnels
    Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(A1);
    Qkm = - VM(UPFCsend(ii))^2*Bkk - VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*cos(A1);
    % calcul des termes du convertisseur shunt
    Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);
    Qvrk = - VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);
    if kk == 1
      % calcul des termes du convertisseur série
      Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);
       Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);
      %puissances au noeud i
      Pk = Pkm + Pcrk + Pvrk;
       Qk = Qkm + Qcrk + Qvrk;
      UPFC_PQsend(ii) = Pk + Qk*i;
      PCAL(UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pk;
       QCAL(UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qk;
      %puissances au convertisseur série
      Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);
      Qcr = - Vcr(ii)^2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);
      %puissances au convertisseur shunt
      Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);
      Qvr = Vvr(ii)^{2}Bvr - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(-A3);
      PQvr(ii) = Pvr + Qvr*i;
    else
      % calcul des terms du convertisseur série
      Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);
      Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);
       %puissances au noeud j
      Pcal = Pkm + Pcrk;
       Qcal = Qkm + Qcrk;
      UPFC_PQrec(ii) = Pcal + Qcal*i;
      PCAL(UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pcal;
       QCAL(UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qcal;
      %puissance au convertisseur série
      Pcr = Pcr + Vcr(ii)*VM(UPFCsend(ii))*Bkk*sin(-A2);
       Qcr = Qcr - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(-A2);
      PQcr(ii) = Pcr + Qcr^*i;
    end
    send = UPFCsend(ii);
    UPFCsend(ii) = UPFCrec(ii);
    UPFCrec(ii) = send;
    Beq = Bmm;
    Bmm = Bkk;
    Bkk = Beq;
  end
end
```
DPQ = zeros(1,nmax); DP = zeros(1,nbb);DO = zeros(1,nbb);DP = PNET - PCAL; DQ = QNET - QCAL;% pour enlever la contribution de la puissance active et reactive au noeud bilan et au noeuds PV for ii = 1: nbb if (bustype(ii) == 1) DP(ii) = 0;DQ(ii) = 0;elseif (bustype(ii) == 2) $DQ(ii) = \hat{0};$ end end % Réorganiser les entrées de disparité kk = 1;for ii = 1: nbb DPQ(kk) = DP(ii);DPQ(kk+1) = DQ(ii);kk = kk + 2;end % Vérifier la convergence for ii = 1: nbb*2 **if** (abs(DPQ) < tol) flag = 1; end end % fin de la fonction PowerMismatches %fonction pour calculer les puissances risiduelles de l'UPFC function [DPQ,flag] = UPFCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NUPFC,Flow,Psp,PSta,Qsp,QSta,UPFC_PQsend,UPFC_PQrec,PQcr,PQvr) iii = 0;for ii = 1 : NUPFC index = 2*(nbb + ii) + iii;if PSta(ii) == 1 if Flow(ii) == 1DPQ(index-1) = Psp(ii) - real(UPFC_PQsend(ii)); else DPQ(index-1) = - Psp(ii) - real(UPFC_PQrec(ii)); end else DPQ(index-1) = 0;end if QSta(ii) == 1 if Flow(ii) == 1DPQ(index) = Qsp(ii) - imag(UPFC_PQrec(ii)); else DPQ(index) = - Qsp(ii) - imag(UPFC_PQrec(ii)); end else DPQ(index) = 0;end DPQ(index + 1) = -real(PQcr(ii) + PQvr(ii));iii=iii+1; end % verifier la convergence if (abs(DPQ) < tol)flag = 1; end % fonction pour construire la matrice jacobienne function [JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,VM,VA,YR,YI) % formation de jacobienne JAC = zeros(nmax,nmax); iii = 1;for ii = 1: nbb jjj = 1; for jj = 1: nbb if ii == jj

```
JAC(iii,jjj) = -QCAL(ii) - VM(ii)^2*YI(ii,ii);
              JAC(iii,jjj+1) = PCAL(ii) + VM(ii)^{2*}YR(ii,ii);
              JAC(iii+1,iji) = PCAL(ii) - VM(ii)^{2*}YR(ii,ii);
              JAC(iii+1,jjj+1) = QCAL(ii) - VM(ii)^{2*YI(ii,ii)};
         else
              JAC(iii,jjj) = VM(ii)*VM(jj)*(YR(ii,jj)*sin(VA(ii)-VA(jj))-YI(ii,jj)*cos(VA(ii)-VA(jj)));
              JAC(iii+1,jjj) = -VM(ii)*VM(jj)*(YI(ii,jj)*sin(VA(ii)-VA(jj))+YR(ii,jj)*cos(VA(ii)-VA(jj)));
              JAC(iii,jjj+1) = -JAC(iii+1,jjj);
              JAC(iii+1,jjj+1) = JAC(iii,jjj);
         end
        jjj = jjj + 2;
    end
    iii = iii + 2;
end
% supprimer l'équation de module de tension et l'angle du noeud bilan
for kk = 1: nbb
    if (bustype(kk) == 1)
         ii = kk*2-1;
         for jj = 1: 2*nbb
              if ii == jj
                  JAC(ii,ii) = 1;
              else
                  JAC(ii,jj) = 0;
                  JAC(jj,ii) = 0;
              end
         end
    end
    if (bustype(kk) == 1) | (bustype(kk) == 2)
         ii = kk*2:
         for jj = 1: 2*nbb
              if ii == jj
                  JAC(ii,ii) = 1;
              else
                  JAC(ii,jj) = 0;
                  JAC(jj,ii) = 0;
              end
         end
    end
end
%Fin de la fonction NewtonRaphsonJacobian
% fonction pour ajouter les éléments de l'UPFC à la matrice jacobiene
function [JAC] = UPFCJacobian (nbb, JAC, VM, VA, NUPFC, UPFCsend, UPFCrec, Xvr, Flow, PSta, QSta, Vcr, Tcr, Vvr, Tvr, Vvr, Sta) (Intersteen Statement Stat
iii = 0;
for ii = 1 : NUPFC
    indexQ=2*(nbb + ii) + iii; %12
    indexP=indexQ-1;
                                                     %11
    indexL=indexQ + 1;
                                                      %13
    if VvrSta(ii) == 1
         JAC(:,2*UPFCsend(ii)) = 0.0;
    end
    Bmm = -1/Xcr(ii)-1/Xvr(ii); \%-20
                                                      %-10
    Bkk = -1/Xcr(ii);
    Bmk = 1/Xcr(ii);
                                                       %10
    Bvr = 1/Xvr(ii);
                                                     %10
    for kk = 1 : 2
         A1 = VA(UPFCsend(ii))-VA(UPFCrec(ii)); %0
         A2 = VA(UPFCsend(ii))-Tcr(ii);
                                                                                        %1.5206
         A3 = VA(UPFCsend(ii))-Tvr(ii);
                                                                                        %0
         % calcul des termes conventionnels
         Hkm = - VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*cos(A1); %-10
         Nkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(A1);
                                                                                                                                   %0
         % calcul des termes du convertisseur shunt
         Hvr = -VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);
                                                                                                                     %-10
         Nvr = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);
                                                                                                                     %0
         % calcul des termes du convertisseur série
         if kk == 1
              Hcr = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);
              Ncr = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);
         else
              Hcr = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);
```

```
Ncr = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);
end
if kk == 1
  JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)-1) = JAC(2*UPFCsend(ii)-1, 2*UPFCsend(ii)-1) - VM(UPFCsend(ii))^2*Bmm;
  if VvrSta(ii) == 1
    JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)) = Nvr;
    JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = Hvr;
  else
    JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)) = JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)) - Nkm + Nvr;
    JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = JAC(2*UPFCsend(ii),2*UPFCsend(ii)) - Hkm + Hvr + 2*VM(UPFCsend(ii))^2*Bmk;
  end
  JAC(2*UPFCsend(ii)-1,indexL) = Hvr;
  JAC(2*UPFCsend(ii),indexL) = - Nvr;
else
  JAC(2*UPFCsend(ii)-1, 2*UPFCsend(ii)-1) = JAC(2*UPFCsend(ii)-1, 2*UPFCsend(ii)-1) + VM(UPFCsend(ii))^{2*Bmk};
  JAC(2*UPFCsend(ii), 2*UPFCsend(ii)) = JAC(2*UPFCsend(ii), 2*UPFCsend(ii)) + VM(UPFCsend(ii))^{2}*Bmk;
  JAC(2*UPFCsend(ii)-1,indexL) = 0.0;
  JAC(2*UPFCsend(ii),indexL) = 0.0;
end
JAC(2*UPFCsend(ii)-1,2*UPFCrec(ii)-1) = JAC(2*UPFCsend(ii)-1,2*UPFCrec(ii)-1) + Hkm;
JAC(2*UPFCsend(ii),2*UPFCrec(ii)-1) = JAC(2*UPFCsend(ii),2*UPFCrec(ii)-1) - Nkm;
if VvrSta(ii) == 1 \& kk == 2
  JAC(2*UPFCsend(ii)-1,2*UPFCrec(ii)) = 0.0;
  JAC(2*UPFCsend(ii),2*UPFCrec(ii)) = 0.0;
else
  JAC(2*UPFCsend(ii)-1,2*UPFCrec(ii)) = JAC(2*UPFCsend(ii)-1,2*UPFCrec(ii)) + Nkm;
  JAC(2*UPFCsend(ii),2*UPFCrec(ii)) = JAC(2*UPFCsend(ii),2*UPFCrec(ii)) + Hkm;
end
% calcul des termes controlé par la puissance active
if PSta(ii) == 1
  if (Flow(ii) == 1 & kk == 1) | (Flow(ii) == -1 & kk == 2)
    if kk == 1
       JAC(indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr - Hvr;
       JAC(indexP, 2*UPFCsend(ii)) = - Nkm + Ncr;
      JAC(indexP, 2*UPFCrec(ii)-1) = - Hkm;
      if VvrSta(ii) == 1
         JAC(indexP, 2*UPFCrec(ii)) = 0.0;
       else
         JAC(indexP, 2*UPFCrec(ii)) = Nkm;
       end
       JAC(indexP, indexP) = Hcr;
       if OSta(ii) == 1
         JAC(indexP, indexQ) = Ncr;
       else
         JAC(indexP, indexQ) = 0.0;
      end
    else
       JAC(indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr;
      JAC(indexP, 2*UPFCsend(ii)) = Nkm + Ncr;
      JAC(indexP, 2*UPFCrec(ii)-1) = Hkm;
       if VvrSta(ii) == 1
         JAC(indexP, 2*UPFCrec(ii)) = 0.0;
       else
         JAC(indexP, 2*UPFCrec(ii)) = Nkm;
       end
      JAC(indexP, indexP) = Hcr;
       if OSta(ii) == 1
         JAC(indexP, indexQ) = Ncr;
       else
         JAC(indexP, indexQ) = 0.0;
       end
      JAC(indexP, indexL) = 0.0;
    end
  end
  JAC(2*UPFCsend(ii)-1, indexP) = + Hcr;
  JAC(2*UPFCsend(ii), indexP) = - Ncr;
else
  JAC(indexP, indexP) = 1.0;
end
% calcul des termes controlé par la puissance réactive
if OSta(ii) == 1
  if (Flow(ii) == 1 & kk == 1) | (Flow(ii) == -1 & kk == 2)
    if kk == 1
      JAC(indexQ, 2*UPFCsend(ii)-1) = - Nkm + Ncr;
      JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii))^2*Bmm - Hkm + Hcr;
```

```
JAC(indexQ, 2*UPFCrec(ii)-1) = Nkm;
           JAC(indexQ, indexQ) = Hcr;
           if VvrSta(ii) == 1
             JAC(indexQ, 2*UPFCrec(ii)) = 0.0;
           else
             JAC(indexQ, 2*UPFCrec(ii)) = Hkm;
           end
           if PSta(ii) == 1
             JAC(indexQ, indexP) = - Ncr;
           else
             JAC(indexQ, indexP) = 0.0;
           end
         else
           JAC(indexQ, 2*UPFCsend(ii)-1) = Nkm + Ncr;
           JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii))^2*Bkk + Hkm + Hcr;
           JAC(indexQ, 2*UPFCrec(ii)-1) = - Nkm;
           JAC(indexQ, indexQ) = Hcr;
           if VvrSta(ii) == 1
             JAC(indexQ, 2*UPFCrec(ii)) = 0.0;
           else
             JAC(indexQ, 2*UPFCrec(ii)) = Hkm;
           end
           if PSta(ii) == 1
             JAC(indexQ, indexP) = - Ncr;
           else
             JAC(indexQ, indexP) = 0.0;
           end
         end
      end
      JAC(2*UPFCsend(ii)-1, indexQ) = Ncr;
      JAC(2*UPFCsend(ii), indexQ) = Hcr;
    else
      JAC(indexQ, indexQ) = 1.0;
    end
    temp = UPFCsend(ii);
    UPFCsend(ii) = UPFCrec(ii);
    UPFCrec(ii) = temp;
  end
  A1 = Tcr(ii) - VA(UPFCsend(ii));
  A2 = Tcr(ii) - VA(UPFCrec(ii));
  A3 = Tvr(ii) - VA(UPFCsend(ii));
  Hcrk = - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(A1);
  Ncrk = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(A1);
  Hcrm = Vcr(ii)*VM(UPFCrec(ii))*Bmk*cos(A2);
  Ncrm = - Vcr(ii)*VM(UPFCrec(ii))*Bmk*sin(A2);
  Hvrk = - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(A3);
  Nvrk = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(A3);
  JAC(indexL, 2*UPFCsend(ii)-1) = Hcrk + Hvrk;
  if VvrSta == 1
    JAC(indexL, 2*UPFCsend(ii)) = Nvrk;
  else
    JAC(indexL, 2*UPFCsend(ii)) = Nvrk + Ncrk;
  end
  JAC(indexL, 2*UPFCrec(ii)-1) = Hcrm;
  JAC(indexL, 2*UPFCrec(ii)) = Ncrm;
  JAC(indexL, indexL) = - Hvrk;
  if PSta == 1
    JAC(indexL, indexP) = - Hcrk - Hcrm;
  else
    JAC(indexL, indexP) = 0.0;
  end
  if QSta == 1
    JAC(indexL, indexQ) = Ncrk + Ncrm;
  else
    JAC(indexL, indexP) = 0.0;
  end
  iii = iii + 1;
end
```

% fonction de mise à jour des variables d'état function [VA,VM] = StateVariablesUpdates(nbb,D,VA,VM) iii = 1; for ii = 1: nbb

```
VA(ii) = VA(ii) + D(iii):
  VM(ii) = VM(ii) + D(iii+1)*VM(ii);
  iii = iii + 2;
end
% fin de la fonction StateVariableUpdating
% fonction de mise à jour des varibles d'état de l'UPFC
function [VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC,UPFCsend,PSta, QSta,Vcr,Tcr,Vvr,Tvr,VvrTar,VvrSta)
iii = 0;
for ii = 1 : NUPFC
  indexQ=2*(nbb + ii) + iii;
  indexP=indexO-1;
  indexL=indexQ + 1;
  if PSta(ii) == 1
    Tcr(ii) = Tcr(ii) + D(indexP);
  end
  if QSta(ii) == 1
     Vcr(ii) = Vcr(ii) + D(indexQ)*Vcr(ii);
  end
  if VvrSta(ii) == 1
     Vvr(ii) = Vvr(ii) + D(2*UPFCsend(ii),1)*Vvr(ii);
     VM(UPFCsend(ii)) = VvrTar(ii);
  end
  Tvr(ii) = Tvr(ii) + D(indexL);
  iii = iii + 1;
end
%Fonction pour verifier les limites de tensions de l'upfc
function [Vcr,Vvr] = UPFCLimits(NUPFC,Vcr,VcrLo,VcrHi,Vvr,VvrLo,VvrHi)
for ii = 1 : NUPFC
   % verifier les limites d'amplitude de tension
  if abs(Vcr(ii)) < VcrLo(ii) | abs(Vcr(ii)) > VcrHi(ii)
     if abs(Vcr(ii)) < VcrLo(ii)
       Vcr(ii) = VcrLo(ii);
     elseif abs(Vcr(ii)) > VcrHi(ii)
       Vcr(ii) = VcrHi(ii);
    end
  end
  if abs(Vvr(ii)) < VvrLo(ii) | abs(Vvr(ii)) > VvrHi(ii)
    if abs(Vvr(ii)) < VvrLo(ii)
       Vvr(ii) = VvrLo(ii);
    elseif abs(Vvr(ii)) > VvrHi(ii)
       Vvr(ii) = VvrHi(ii);
    end
  end
end
% fonction pour calculer le flux de puissance
function [POsend,POrec,POloss,PObus] =
PQflows(nbb,ngn,ntl,nld,genbus,loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,VM,VA)
PQsend = zeros(1,ntl);
PQrec = zeros(1,ntl);
% calculer les puissance active et reactive envoyé et reçu par les noeuds
for ii = 1: ntl
   Vsend = (VM(tlsend(ii))*cos(VA(tlsend(ii))) + VM(tlsend(ii))*sin(VA(tlsend(ii)))*i);
  Vrec = (VM(tlrec(ii))*cos(VA(tlrec(ii))) + VM(tlrec(ii))*sin(VA(tlrec(ii)))*i);
  tlimped = tlresis(ii) + tlreac(ii)*i;
  current =(Vsend - Vrec) / tlimped + Vsend*( tlcond(ii) + tlsuscep(ii)*i )*0.5 ;
  PQsend(ii) = Vsend*conj(current);
  current =(Vrec - Vsend) / tlimped + Vrec*( tlcond(ii) + tlsuscep(ii)*i )*0.5 ;
  PQrec(ii) = Vrec*conj(current);
  PQloss(ii) = PQsend(ii) + PQrec(ii);
end
% Calculer les puissances actives et réactives injectés
PQbus = zeros(1,nbb);
for ii = 1: ntl
  PQbus(tlsend(ii)) = PQbus(tlsend(ii)) + PQsend(ii);
  PQbus(tlrec(ii)) = PQbus(tlrec(ii)) + PQrec(ii);
end
% faire des corrections au noeuds de productions
```

```
for ii = 1: nld
  jj = loadbus(ii);
  for kk = 1: ngn
    ll = genbus(kk);
    if jj == 11
      PQbus(jj) = PQbus(jj) + (PLOAD(ii) + QLOAD(ii)*i);
    end
  end
end
% fin de la fonction PQflows
%fonction pour calculer le flux de puissance de l'UPFC
function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr] = PQUPFCpower(nbb,VA,VM, NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr)
for ii = 1: NUPFC
  Bkk = -1/Xcr(ii)-1/Xvr(ii);
  Bmm = -1/Xcr(ii);
  Bmk = 1/Xcr(ii);
  Bvr = 1/Xvr(ii);
  for kk = 1 : 2
    A1 = VA(UPFCsend(ii))-VA(UPFCrec(ii));
    A2 = VA(UPFCsend(ii))-Tcr(ii);
    A3 = VA(UPFCsend(ii))-Tvr(ii);
    % calcul des termes conventionnels
    Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(A1);
    Qkm = - VM(UPFCsend(ii))^2*Bkk - VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*cos(A1);
    % Calcul des termes du convertisseur shunt
    Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);
    Qvrk = - VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);
    if kk == 1
      % calcul des termes du convertisseur série
      Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);
      Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);
      %puissance au noeud i
      Pk = Pkm + Pcrk + Pvrk;
      Qk = Qkm + Qcrk + Qvrk;
      UPFC_PQsend(ii) = Pk + Qk*i;
      %puissance dans le convertisseur série
      Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);
      Qcr = - Vcr(ii)^2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);
      %puissance dans le convertisseur shunt
      Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);
      Qvr = Vvr(ii)^{2*Bvr} - Vvr(ii)^{*VM}(UPFCsend(ii))^{*Bvr*cos(-A3)};
      PQvr(ii) = Pvr + Qvr*i;
    else
      % Calcul des termes du conv série
      Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);
      Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);
      %puissance au noeud j
      Pcal = Pkm + Pcrk;
       Qcal = Qkm + Qcrk;
      UPFC_PQrec(ii) = Pcal + Qcal*i;
      %puissance au convertisseur série
      Pcr = Pcr + Vcr(ii)*VM(UPFCsend(ii))*Bkk*sin(-A2);
      Qcr = Qcr - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(-A2);
      PQcr(ii) = Pcr + Qcr^*i;
    end
    send = UPFCsend(ii);
    UPFCsend(ii) = UPFCrec(ii);
    UPFCrec(ii) = send;
    Beq = Bmm;
    Bmm = Bkk;
    Bkk = Beq;
  end
end
```

ANNEXE D : DONNEES DES RESEAUX TEST IEEE

LE RESEAU TEST IEEE 14 NŒUDS

Parmètres des nœuds

Nœud N°	V_{θ}	θ_0	P_l	Q_l	P_{v}	Q_{ν}	Q_{min}	Q_{max}	Bsh
1	1.060	0.0	0.0	0.0	232.4	-16.9	0.0	0.0	0.0
2	1.045	-4.98	21.7	12.7	40.0	42.4	50.0	-40.0	0.0
3	1.010	-12.72	94.2	19.0	0.0	23.4	40.0	0.0	0.0
4	1.019	-10.33	47.8	-3.9	0.0	0.0	0.0	0.0	0.0
5	1.020	-8.78	7.6	1.6	0.0	0.0	0.0	0.0	0.0
6	1.070	-14.22	11.2	7.5	0.0	12.2	24.0	-6.0	0.0
7	1.062	-13.37	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	1.090	-13.36	0.0	0.0	0.0	17.4	24.0	-6.0	0.0
9	1.056	-14.94	29.5	16.6	0.0	0.0	0.0	0.0	0.19
10	1.051	-15.10	9.0	5.8	0.0	0.0	0.0	0.0	0.0
11	1.057	-14.79	3.5	1.8	0.0	0.0	0.0	0.0	0.0
12	1.055	-15.07	6.1	1.6	0.0	0.0	0.0	0.0	0.0
13	1.050	-15.16	13.5	5.8	0.0	0.0	0.0	0.0	0.0
14	1.036	-16.04	14.9	5.0	0.0	0.0	0.0	0.0	0.0

Paramètres des lignes

Ligne N•	Du	Vers	R	X	В	Rapport de prise
1	1	2	0.01938	0.05917	0.0528	0.0
2	1	5	0.05403	0.22304	0.0492	0.0
3	2	3	0.04699	0.19797	0.0438	0.0
4	2	4	0.05811	0.17632	0.0340	0.0
5	2	5	0.05695	0.17388	0.0346	0.0
6	3	4	0.06701	0.17103	0.0128	0.0
7	4	5	0.01335	0.04211	0.0	0.0
8	4	7	0.0	0.20912	0.0	0.978
9	4	9	0.0	0.55618	0.0	0.969
10	5	6	0.0	0.25202	0.0	0.932
11	6	11	0.09498	0.19890	0.0	0.0
12	6	12	0.12291	0.25581	0.0	0.0
13	6	13	0.06615	0.13027	0.0	0.0
14	7	8	0.0	0.17615	0.0	0.0
15	7	9	0.0	0.11001	0.0	0.0
16	9	10	0.03181	0.08450	0.0	0.0
17	9	14	0.12711	0.27038	0.0	0.0
18	10	11	0.08205	0.19207	0.0	0.0
19	12	13	0.22092	0.19988	0.0	0.0
20	13	14	0.17093	0.34802	0.0	0.0

LE RESEAU TEST IEEE 30 NŒUDS

Paramètres des nœuds :

Nœud N°	V_{θ}	θ_0	P_l	Q_l	P_{v}	Q_{v}	Q_{min}	Q_{max}	B_{sh}
1	1.060	0.0	0.0	0.0	260.2	-16.1	0.0	0.0	0.0
2	1.043	-5.48	21.7	12.7	40.0	50.0	50.0	-40.0	0.0
3	1.021	-7.96	2.4	1.2	0.0	0.0	0.0	0.0	0.0
4	1.012	-9.62	7.6	1.6	0.0	0.0	0.0	0.0	0.0
5	1.010	-14.37	94.2	19.0	0.0	37.0	40.0	-40.0	0.0
6	1.010	-11.34	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	1.002	-13.12	22.8	10.9	0.0	0.0	0.0	0.0	0.0
8	1.010	-12.10	30.0	30.0	0.0	37.3	40.0	-10.0	0.0
9	1.051	-14.38	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	1.045	-15.97	5.8	2.0	0.0	0.0	0.0	0.0	0.19
11	1.082	-14.39	0.0	0.0	0.0	16.2	24.0	-6.0	0.0
12	1.057	-15.24	11.2	7.5	0.0	0.0	0.0	0.0	0.0
13	1.071	-15.24	0.0	0.0	0.0	10.6	24.0	-6.0	0.0
14	1.042	-16.13	6.2	1.6	0.0	0.0	0.0	0.0	0.0
15	1.038	-16.22	8.2	2.5	0.0	0.0	0.0	0.0	0.0
16	1.045	-15.83	3.5	1.8	0.0	0.0	0.0	0.0	0.0
17	1.040	-16.14	9.0	5.8	0.0	0.0	0.0	0.0	0.0
18	1.028	-16.82	3.2	0.9	0.0	0.0	0.0	0.0	0.0
19	1.026	-17.00	9.5	3.4	0.0	0.0	0.0	0.0	0.0
20	1.030	-16.80	2.2	0.7	0.0	0.0	0.0	0.0	0.0
21	1.033	-16.42	17.5	11.2	0.0	0.0	0.0	0.0	0.0
22	1.033	-16.41	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	1.027	-16.61	3.2	1.6	0.0	0.0	0.0	0.0	0.0
24	1.021	-16.78	8.7	6.7	0.0	0.0	0.0	0.0	0.043
25	1.017	-16.35	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26	1.000	-16.77	3.5	2.3	0.0	0.0	0.0	0.0	0.0
27	1.023	-15.82	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	1.007	-11.97	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	1.003	-17.06	2.4	0.9	0.0	0.0	0.0	0.0	0.0
30	0.992	-17.94	10.6	1.9	0.0	0.0	0.0	0.0	0.0

Paramètres des lignes

Ligne N•	Du	Vers	R	X	В	Rapport de prise
1	1	2	0.0192	0.0575	0.0528	0.0
2	1	3	0.0452	0.1652	0.0408	0.0
3	2	4	0.0570	0.1737	0.0368	0.0
4	3	4	0.0132	0.0379	0.0084	0.0
5	2	5	0.0472	0.1983	0.0418	0.0
6	2	6	0.0581	0.1763	0.0374	0.0
7	4	6	0.0119	0.0414	0.0090	0.0
8	5	7	0.0460	0.1160	0.0204	0.0
9	6	7	0.0267	0.0820	0.0170	0.0
10	6	8	0.0120	0.0420	0.0090	0.0
11	6	9	0.0	0.2080	0.0	0.978
12	6	10	0.0	0.5560	0.0	0.969
13	9	11	0.0	0.2080	0.0	0.0
14	9	10	0.0	0.1100	0.0	0.0
15	4	12	0.0	0.2560	0.0	0.932
16	12	13	0.0	0.1400	0.0	0.0
17	12	14	0.1231	0.2559	0.0	0.0
18	12	15	0.0662	0.1304	0.0	0.0
19	12	16	0.0945	0.1987	0.0	0.0
20	14	15	0.2210	0.1997	0.0	0.0
21	16	17	0.0524	0.1923	0.0	0.0
22	15	18	0.1073	0.2185	0.0	0.0
23	18	19	0.0639	0.1292	0.0	0.0
24	19	20	0.0340	0.0680	0.0	0.0
25	10	20	0.0936	0.2090	0.0	0.0

26	10	17	0.0324	0.0845	0.0	0.0
27	10	21	0.0348	0.0749	0.0	0.0
28	10	22	0.0727	0.1499	0.0	0.0
29	21	22	0.0116	0.0236	0.0	0.0
30	15	23	0.1000	0.2020	0.0	0.0
31	22	24	0.1150	0.1790	0.0	0.0
32	23	24	0.1320	0.2700	0.0	0.0
33	24	25	0.1885	0.3292	0.0	0.0
34	25	26	0.2544	0.3800	0.0	0.0
35	25	27	0.1093	0.2087	0.0	0.0
36	28	27	0.0	0.3960	0.0	0.968
37	27	29	0.2198	0.4153	0.0	0.0
38	27	30	0.3202	0.6027	0.0	0.0
39	29	30	0.2399	0.4533	0.0	0.0
40	8	28	0.0636	0.2000	0.0428	0.0
41	6	28	0.0169	0.0599	0.0130	0.0

LE RESEAU TEST IEEE 57 NŒUDS

Parmètres des nœuds :

Nœud N•	V_{θ}	θ_0	P_l	Q_l	P_{v}	Q_{v}	Q_{min}	Q_{max}	B_{sh}
1	1.040	0.0	55.0	17.0	128.9	-16.1	0.0	0.0	0.0
2	1.010	-1.18	3.0	88.0	0.0	-0.8	50.0	-17.0	0.0
3	0.985	-5.97	41.0	21.0	40.0	-1.0	60.0	-10.0	0.0
4	0.981	-7.32	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.976	-8.52	13.0	4.0	0.0	0.0	0.0	0.0	0.0
6	0.980	-8.65	75.0	2.0	0.0	0.8	25.0	-8.0	0.0
7	0.984	-7.58	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	1.005	-4.45	150.0	22.0	450.0	62.1	200.0	-140.0	0.0
9	0.980	-9.56	121.0	26.0	0.0	2.2	9.0	-3.0	0.0
10	0.986	-11.43	5.0	2.0	0.0	0.0	0.0	0.0	0.0
11	0.974	-10.17	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	1.015	-10.46	377.0	24.0	310.0	128.5	155.0	-150.0	0.0
13	0.979	-9.79	18.0	2.3	0.0	0.0	0.0	0.0	0.0
14	0.970	-9.33	10.5	5.3	0.0	0.0	0.0	0.0	0.0
15	0.988	-7.18	22.0	5.0	0.0	0.0	0.0	0.0	0.0
16	1.013	-8.85	43.0	3.0	0.0	0.0	0.0	0.0	0.0
17	1.017	-5.39	42.0	8.0	0.0	0.0	0.0	0.0	0.0
18	1.001	-11.71	27.2	9.8	0.0	0.0	0.0	0.0	0.10
19	0.970	-13.20	3.3	0.6	0.0	0.0	0.0	0.0	0.0
20	0.964	-13.41	2.3	1.0	0.0	0.0	0.0	0.0	0.0
21	1.008	-12.89	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	1.010	-12.84	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	1.008	-12.91	6.3	2.1	0.0	0.0	0.0	0.0	0.0
24	0.999	-13.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.982	-18.13	6.3	3.2	0.0	0.0	0.0	0.0	0.059
26	0.959	-12.95	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	0.982	-11.48	9.3	0.5	0.0	0.0	0.0	0.0	0.0
28	0.997	-10.45	4.6	2.3	0.0	0.0	0.0	0.0	0.0
29	1.010	-9.75	17.0	2.6	0.0	0.0	0.0	0.0	0.0
30	0.962	-18.68	3.6	1.8	0.0	0.0	0.0	0.0	0.0
31	0.936	-19.34	5.8	2.9	0.0	0.0	0.0	0.0	0.0
32	0.949	-18.46	1.6	0.8	0.0	0.0	0.0	0.0	0.0
33	0.947	-18.50	3.8	1.9	0.0	0.0	0.0	0.0	0.0
34	0.959	-14.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.966	-13.86	6.0	3.0	0.0	0.0	0.0	0.0	0.0
36	0.976	-13.59	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	0.985	-13.41	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	1.013	-12.71	14.0	7.0	0.0	0.0	0.0	0.0	0.0
39	0.983	-13.46	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	0.973	-13.62	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	0.996	-14.05	6.3	3.0	0.0	0.0	0.0	0.0	0.0
42	0.966	-15.50	7.1	4.4	0.0	0.0	0.0	0.0	0.0
43	1.010	-11.33	2.0	1.0	0.0	0.0	0.0	0.0	0.0
44	1.017	-11.86	12.0	1.8	0.0	0.0	0.0	0.0	0.0

Annexe D : Données I	Des	Réseaux	Test	IEEE
----------------------	-----	---------	------	------

45	1.036	-9.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	1.050	-11.89	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47	1.033	-12.49	29.7	11.6	0.0	0.0	0.0	0.0	0.0
48	1.027	-12.59	0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	1.036	-12.92	18.0	8.5	0.0	0.0	0.0	0.0	0.0
50	1.023	-13.39	21.0	10.5	0.0	0.0	0.0	0.0	0.0
51	1.052	-12.52	18.0	5.3	0.0	0.0	0.0	0.0	0.0
52	0.980	-11.47	4.9	2.2	0.0	0.0	0.0	0.0	0.0
53	0.971	-12.23	20.0	10.0	0.0	0.0	0.0	0.0	0.063
54	0.996	-11.69	4.1	1.4	0.0	0.0	0.0	0.0	0.0
55	1.031	-10.78	6.8	3.4	0.0	0.0	0.0	0.0	0.0
56	0.968	-16.04	7.6	2.2	0.0	0.0	0.0	0.0	0.0
57	0.965	-16.56	6.7	2.0	0.0	0.0	0.0	0.0	0.0

Paramètres des lignes

N^{\bullet}	Du	Vers	R	X	В	Rapport de
						prise
1	1	2	0.0083	0.0280	0.1290	0.0
2	2	3	0.0298	0.0850	0.0818	0.0
3	3	4	0.0112	0.0366	0.0380	0.0
4	4	5	0.0625	0.1320	0.0258	0.0
5	4	6	0.0430	0.1480	0.0348	0.0
6	6	7	0.0200	0.1020	0.0276	0.0
7	6	8	0.0339	0.1730	0.0470	0.0
8	8	9	0.0099	0.0505	0.0548	0.0
9	9	10	0.0369	0.1679	0.0440	0.0
10	9	11	0.0258	0.0848	0.0218	0.0
11	9	12	0.0648	0.2950	0.0772	0.0
12	9	13	0.0481	0.1580	0.0406	0.0
13	13	14	0.0132	0.0434	0.0110	0.0
14	13	15	0.0269	0.0869	0.0230	0.0
15	1	15	0.0178	0.0910	0.0988	0.0
16	1	16	0.0454	0.2060	0.0546	0.0
17	1	17	0.0238	0.1080	0.0286	0.0
18	3	15	0.0162	0.0530	0.0544	0.0
19	4	18	0.0	0.5550	0.0	0.970
20	4	18	0.0	0.4300	0.0	0.978
21	5	6	0.0302	0.0641	0.0124	0.0
22	7	8	0.0139	0.0712	0.0194	0.0
23	10	12	0.0277	0.1262	0.0328	0.0
24	11	13	0.0223	0.0732	0.0188	0.0
25	12	13	0.0178	0.0580	0.0604	0.0
26	12	16	0.0180	0.0813	0.0216	0.0
27	12	17	0.0397	0.1790	0.0476	0.0
28	14	15	0.0171	0.0547	0.0148	0.0
29	18	19	0.4610	0.6850	0.0	0.0
30	19	20	0.2830	0.4340	0.0	0.0
31	21	20	0.0	0.7767	0.0	1.043
32	21	22	0.0736	0.1170	0.0	0.0
33	22	23	0.0099	0.0152	0.0	0.0
34	23	24	0.1660	0.2560	0.0084	0.0
35	24	25	0.0	1.1820	0.0	1.000
36	24	25	0.0	1.2300	0.0	1.000
37	24	26	0.0	0.0473	0.0	1.043
38	26	27	0.1650	0.2540	0.0	0.0
39	27	28	0.0618	0.0954	0.0	0.0

40	28	29	0.0418	0.0587	0.0	0.0
41	20	29	0.0	0.0648	0.0	0.967
42	25	30	0.1350	0.0040	0.0	0.0
43	30	31	0.3260	0.4970	0.0	0.0
44	31	32	0.5070	0.7550	0.0	0.0
45	32	33	0.0392	0.0360	0.0	0.0
46	34	32	0.0	0.9530	0.0	0.975
47	34	35	0.0520	0.0780	0.0032	0.0
48	35	36	0.0430	0.0537	0.0016	0.0
49	36	37	0.0290	0.0366	0.0	0.0
50	37	38	0.0651	0.1009	0.0020	0.0
51	37	39	0.0239	0.0379	0.0	0.0
52	36	40	0.0300	0.0466	0.0	0.0
53	22	38	0.0192	0.0295	0.0	0.0
54	11	41	0.0	0.7490	0.0	0.955
55	41	42	0.2070	0.3520	0.0	0.0
56	41	43	0.0	0.4120	0.0	0.0
57	38	44	0.0289	0.0585	0.0020	0.0
58	15	45	0.0	0.1042	0.0	0.955
59	14	46	0.0	0.0735	0.0	0.900
60	46	47	0.0230	0.0680	0.0032	0.0
61	47	48	0.0182	0.0233	0.0	0.0
62	48	49	0.0834	0.1290	0.0048	0.0
63	49	50	0.0801	0.1280	0.0	0.0
64	50	51	0.1386	0.2200	0.0	0.0
65	10	51	0.0	0.0712	0.0	0.930
66	13	49	0.0	0.1910	0.0	0.895
67	29	52	0.1442	0.1870	0.0	0.0
68	52	53	0.0762	0.0984	0.0	0.0
69	53	54	0.1878	0.2320	0.0	0.0
70	54	55	0.1732	0.2265	0.0	0.0
71	11	43	0.0	0.1530	0.0	0.958
72	44	45	0.0624	0.1242	0.0040	0.0
73	40	56	0.0	1.1950	0.0	0.958
74	56	41	0.5530	0.5490	0.0	0.0
75	56	42	0.2125	0.3540	0.0	0.0
76	39	57	0.0	1.3550	0.0	0.980
77	57	56	0.1740	0.2600	0.0	0.0
78	38	49	0.1150	0.1770	0.0030	0.0
79	38	48	0.0312	0.0482	0.0	0.0
80	9	55	0.0	0.1205	0.0	0.940

LE RESEAU TEST IEEE 118 NŒUDS

Parmètres des nœuds

Nœud N°	V_{0}	$\theta_{ heta}$	P_l	Q_l	P_{v}	Q_{v}	Q_{min}	Q_{max}	B _{sh}
1	0.955	10.67	51.0	27.0	0.0	0.0	15.0	-5.0	0.0
2	0.971	11.22	20.0	9.0	0.0	0.0	0.0	0.0	0.0

3	0.968	11.56	39.0	10.0	0.0	0.0	0.0	0.0	0.0
4	0.998	15.28	30.0	12.0	-9.0	0.0	300.0	-300.0	0.0
5	1.002	15.73	0.0	0.0	0.0	0.0	0.0	0.0	-0.40
6	0.990	13.00	52.0	22.0	0.0	0.0	50.0	-13.0	0.0
7	0.989	12.56	19.0	2.0	0.0	0.0	0.0	0.0	0.0
8	1.015	20.77	0.0	0.0	-28.0	0.0	300.0	-300.0	0.0
9	1.043	28.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	1.010	35.61	0.0	0.0	450.0	0.0	200.0	-147.0	0.0
10	0.085	12 72	70.0	23.0	4.50.0	0.0	200.0	-147.0	0.0
11	0.965	12.72	17.0	10.0	85.0	0.0	120.0	25.0	0.0
12	0.990	12.20	47.0	10.0	85.0	0.0	120.0	-55.0	0.0
13	0.968	11.55	34.0	10.0	0.0	0.0	0.0	0.0	0.0
14	0.984	11.50	14.0	1.0	0.0	0.0	0.0	0.0	0.0
15	0.970	11.23	90.0	30.0	0.0	0.0	30.0	-10.0	0.0
16	0.984	11.91	25.0	10.0	0.0	0.0	0.0	0.0	0.0
17	0.995	13.74	11.0	3.0	0.0	0.0	0.0	0.0	0.0
18	0.973	11.53	60.0	34.0	0.0	0.0	50.0	-16.0	0.0
19	0.963	11.05	45.0	25.0	0.0	0.0	24.0	-8.0	0.0
20	0.958	11.93	18.0	3.0	0.0	0.0	0.0	0.0	0.0
21	0.959	13.52	14.0	8.0	0.0	0.0	0.0	0.0	0.0
22	0.970	16.08	10.0	5.0	0.0	0.0	0.0	0.0	0.0
23	1.000	21.00	7.0	3.0	0.0	0.0	0.0	0.0	0.0
24	0.992	20.89	0.0	0.0	-13.0	0.0	300.0	-300.0	0.0
25	1.050	27.93	0.0	0.0	220.0	0.0	140.0	-47.0	0.0
26	1.015	29.71	0.0	0.0	314.0	0.0	1000.0	-1000.0	0.0
23	0.968	15 35	62.0	13.0	-9.0	0.0	300.0	-300.0	0.0
27	0.900	13.55	17.0	7.0	0.0	0.0	0.0	0.0	0.0
20	0.902	12.02	24.0	1.0	0.0	0.0	0.0	0.0	0.0
29	0.903	12.03	24.0	4.0	0.0	0.0	0.0	0.0	0.0
30	0.908	10.79	0.0	0.0	0.0	0.0	200.0	200.0	0.0
31	0.967	12.75	43.0	27.0	/.0	0.0	300.0	-300.0	0.0
32	0.964	14.80	59.0	23.0	0.0	0.0	42.0	-14.0	0.0
33	0.972	10.63	23.0	9.0	0.0	0.0	0.0	0.0	0.0
34	0.986	11.30	59.0	26.0	0.0	0.0	24.0	-8.0	0.14
35	0.981	10.87	33.0	9.0	0.0	0.0	0.0	0.0	0.0
36	0.980	10.87	31.0	17.0	0.0	0.0	24.0	-8.0	0.0
37	0.992	11.77	0.0	0.0	0.0	0.0	0.0	0.0	-0.25
38	0.962	16.91	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39	0.970	8.41	27.0	11.0	0.0	0.0	0.0	0.0	0.0
39 40	0.970 0.970	8.41 7.35	27.0 20.0	11.0 23.0	0.0	0.0	0.0 300.0	0.0	0.0
39 40 41	0.970 0.970 0.967	8.41 7.35 6.92	27.0 20.0 37.0	11.0 23.0 10.0	0.0 -46.0 0.0	0.0 0.0 0.0	0.0 300.0 0.0	0.0 -300.0 0.0	0.0 0.0 0.0
$ \begin{array}{r} 39\\ 40\\ 41\\ 42 \end{array} $	0.970 0.970 0.967 0.985	8.41 7.35 6.92 8.53	27.0 20.0 37.0 37.0	11.0 23.0 10.0 23.0	0.0 -46.0 0.0 -59.0	0.0 0.0 0.0	0.0 300.0 0.0 300.0	0.0 -300.0 0.0 -300.0	0.0 0.0 0.0 0.0
	0.970 0.970 0.967 0.985 0.978	8.41 7.35 6.92 8.53 11.28	27.0 20.0 37.0 37.0 18.0	11.0 23.0 10.0 23.0 7.0	0.0 -46.0 0.0 -59.0 0.0	0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0	0.0 -300.0 0.0 -300.0 0.0	0.0 0.0 0.0 0.0 0.0
39 40 41 42 43 44 4	0.970 0.970 0.967 0.985 0.978 0.985	8.41 7.35 6.92 8.53 11.28 13.82	27.0 20.0 37.0 37.0 18.0 16.0	11.0 23.0 10.0 23.0 7.0 8.0	0.0 -46.0 0.0 -59.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ \end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.985	8.41 7.35 6.92 8.53 11.28 13.82 15.67	27.0 20.0 37.0 37.0 18.0 16.0 53.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0	0.0 -46.0 0.0 -59.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ \end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.985 0.987 1.005	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0	0.0 -46.0 0.0 -59.0 0.0 0.0 0.0 19.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 100.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 -100.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10
39 40 41 42 43 44 45 46 47	0.970 0.970 0.967 0.985 0.978 0.985 0.985 0.987 1.005	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0	0.0 -46.0 0.0 -59.0 0.0 0.0 0.0 19.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 8 \end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.985 0.987 1.005 1.017	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93	27.0 20.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0	0.0 -46.0 0.0 -59.0 0.0 0.0 0.0 19.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.1
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 49 \\ 49 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94	27.0 20.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 204.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 0.0 85.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.15 \\ 0.0 \\ 0.15 \\ 0.0 \\$
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94	27.0 20.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0	$ \begin{array}{r} 11.0\\23.0\\10.0\\23.0\\7.0\\8.0\\22.0\\10.0\\0.0\\11.0\\30.0\\4.0\end{array} $	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 204.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 210.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 0.0 0.0 -85.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.1
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 204.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 0.0 -100.0 0.0 -85.0 0.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.1
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 52 \\ 51 \\ 52 \\ 52 \\ 53 \\ 51 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0	$ \begin{array}{r} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.2\\ 10.0$	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 204.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 210.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 -85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.1
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 52 \\ 52 \\ 52 \\ 53 \\ 54 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55 \\ 55$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.967	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 18.0 22.5	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 204.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 210.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$ \begin{array}{r} 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.945	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 18.0 23.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 210.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$ \begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ \end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 18.0 23.0 23.0 25.1	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 0.0 0.0 0.0 100.0 0.0 210.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.0 0.
$ \begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 46\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	0.970 0.970 0.967 0.985 0.978 0.985 0.985 1.005 1.005 1.001 0.967 0.957 0.946 0.955 0.952	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 28.0 20.0 87.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 22.0\\ 11.0\\ 32.0\\ 22.0\\ 22.0\\ 22.0\\ 32.0\\ 22.0\\ 32.0\\$	0.0 -46.0 0.0 -59.0 0.0 0.0 0.0 0.0 0.0 204.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 300.0 23.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -300.0 -85.0 0.0 0.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 -300.0 -85.0 0.0 -300.0 -300.0 -300.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -300.0 -100.0 -300.0 -300.0 -100.0 -30.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ \begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 56\end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 20.0 87.0 17.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ \end{array}$	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 300.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.0\\ 0.$
$ \begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 55\\ 55\\ 56\\ 57\\ 57\end{array} $	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 19.0 \\ 0.0 \\ 0.0 \\ 204.0 \\ 0.0 $	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 10.0 30.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0	0.0 -46.0 0.0 -59.0 0.0 0.0 19.0 0.0 204.0 0.0 0.0 0.0 0.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 -300.0 -8.0 -8.0 0.0 0.0 -8.0 0.0 0.0 0.0 0.0 0.0 -8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 6\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 55\\ 56\\ 57\\ 58\\ 59\\ 59\end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.021 1.001 0.967 0.955 0.946 0.955 0.952 0.954 0.971 0.959 0.985	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 12.0 277.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 4.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 113.0	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 19.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 155.0 \\ \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 180.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 -85.0 0.0 0.0 -300.0 -8.0 -8.0 -8.0 0.0 -8.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 6\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.954 0.971 0.959 0.985 0.993	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.26 14.97 15.16 16.36 15.51 19.37 23.15	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 13.0 63.0 84.0 12.0 12.0 277.0 78.0	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 3.0\\ \end{array}$	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 19.0 \\ 0.0 \\ 0.0 \\ 204.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 155.0 \\ 0.$	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 180.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -300.0 -85.0 0.0 0.0 -300.0 -8.0 -8.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -54\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ \end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.985 1.005 1.005 1.007 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.954 0.959 0.985 0.993 0.995	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.35 15.26 16.36 15.51 19.37 23.15 24.04	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 13.0 63.0 84.0 12.0 12.0 277.0 78.0 0.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 11.0 32.0 11.0 32.0 11.0 3.0 3.0 3.0 3.0 0.0	0.0 -46.0 0.0 -59.0 0.0 155.0 0.0 160.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 180.0 0.0 300.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 -85.0 0.0 -300.0 -300.0 -8.0 -8.0 -6.0 0.0 -100.0 0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 -300.0	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.0\\ 0.$
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 55\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ \end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.985 1.005 1.017 1.021 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.995 0.998	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.57 23.15 24.04 23.43	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 277.0 78.0 0.0 77.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 3.0 3.0 113.0 3.0 14.0	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 155.0 \\ 0.0 \\ 160.0 \\ 0.0$	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 180.0 0.0 300.0 20.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 -85.0 0.0 -85.0 0.0 -85.0 0.0 -300.0 -300.0 -8.0 -8.0 -8.0 -6.0 0.0 -100.0 -20.0 -20.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.0 \\ 0$
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -55\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -63\\ -63\\ -63\\ -63\\ -63\\ -63\\ -60\\ -63\\ -63\\ -63\\ -63\\ -63\\ -63\\ -63\\ -63$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.954 0.971 0.959 0.995 0.995 0.995	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 277.0 78.0 0.0	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 0.0\\ 14.0\\ 0.0\\ \end{array}$	$\begin{array}{c} 0.0 \\ -46.0 \\ 0.0 \\ -59.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 155.0 \\ 0.0 \\ 160.0 \\ 0.0$	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 -80.0 -80.0 -80.0 -100.0 0.0 -20.0 -2	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.0 \\ 0$
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ \end{array}$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.985 0.993 0.993 0.998 0.998	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 22.75	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 28.0 20.0 87.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	0.0 -46.0 0.0 -59.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 15.0 0.0 300.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 -80.0 -80.0 -80.0 -90.0 -100.0 0.0 -100.0 0.0 -60.0 0.0 -100.0 -0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.0 \\ 0$
$\begin{array}{r} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ \end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.985 0.993 0.993 0.998 0.998 0.999 0.984	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.52 24.52 24.52 24.55	$\begin{array}{c} 27.0\\ 20.0\\ 37.0\\ 37.0\\ 18.0\\ 16.0\\ 53.0\\ 28.0\\ 34.0\\ 20.0\\ 87.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 0.0\\ 77.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\$	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	0.0 -46.0 0.0 -59.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 0.0 20.0	0.0 -300.0 0.0 -300.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 0.0 0.0 -85.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -85.0 0.0 0.0 -60.0 0.0 -700.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.0 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -55\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -64\\ -65\\ -66\end{array}$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.955 0.993 0.993 0.993 0.998 0.998 0.998 0.969 0.969 0.965	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.52 27.52 27.48	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 12.0 277.0 78.0 0.0 77.0 0.0 0.0 39.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 113.0 3.0 0.0 14.0 0.0 18.0	0.0 -46.0 0.0 -59.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 0.0 20.0 200.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -8.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0	0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -51\\ -52\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -64\\ -65\\ -66\\ -66\\ -66\\ -67\\ -7\\ -27\\ -27\\ -28\\ -27\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.021 1.021 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.955 0.993 0.993 0.995 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.995 0.998 0.995 0.998 0.995 0.998 0.998 0.995 0.998 0.995 0.998 0.995 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.52 27.65 27.48	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 113.0 3.0 113.0 3.0 0.0 14.0 0.0 0.0 18.0 7.0 22.0 18.0 3.0 7.0 8.0 22.0 10.0 0.0 8.0 22.0 10.0 0.0 8.0 22.0 10.0 0.0 8.0 10.0 0.0 10.0 10.0 10.0	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 300.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -8.0 -8.0 0.0 -8.0 -8.0 0.0 -8.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0 -67.0	0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -54\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -66\\ -67\\ -67\\ -67\\ -67\\ -68\\ -66\\ -67\\ -67\\ -68\\ -66\\ -67\\ -67\\ -68\\ -68\\ -66\\ -67\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.021 1.021 1.025 1.007 0.957 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.52 27.65 27.48 24.84	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 12.0 277.0 78.0 0.0 77.0 0.0 0.0 0.0 39.0 28.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 4.0 3.0 5.0 11.0 32.0 22.0 18.0 3.0 113.0 3.0 113.0 3.0 0.0 14.0 0.0 0.0 14.0 0.0 0.0 18.0 7.0 22.0 10.0 10.0 10.0 10.0 10.0 10.0 10	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0	0.0 0.0	0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 20.0 0.0 200.0 200.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 0.0 -300.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -54\\ -55\\ -55\\ -55\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -68\\ -66\\ -67\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68$	0.970 0.970 0.967 0.985 0.978 0.985 0.987 1.005 1.017 1.021 1.021 1.021 1.021 1.021 0.967 0.957 0.946 0.955 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.956 0.	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.64 23.43 22.75 24.84 27.65 27.48	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 12.0 277.0 78.0 0.0 77.0 0.0 0.0 0.0 39.0 28.0 0.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 113.0 3.0 0.0 14.0 0.0 0.0 14.0 0.0 0.0 18.0 7.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 0.0 0.0 0.0 -8.0 -300.0 -8.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -55\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -72\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22$	0.970 0.970 0.967 0.985 0.978 0.985 0.985 1.005 1.017 1.021 1.021 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.995 0.995 0.995 0.998 0.995 0.998 0.998 0.998 0.998 1.005 1.020 1.020 1.020 1.020	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.64 23.43 22.75 24.84 27.55 30.00	$\begin{array}{c} 27.0 \\ 20.0 \\ 37.0 \\ 37.0 \\ 18.0 \\ 16.0 \\ 53.0 \\ 28.0 \\ 34.0 \\ 20.0 \\ 87.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 17.0 \\ 0.$	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 10.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 18.0\\ 7.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0 0.2	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 20.0 0.0 0.0 200.0 0.0 300.0 300.0 300.0	0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -85.0 0.0 -300.0 -8.0 -8.0 -60.0 0.0 -100.0 -20.0 0.0 -67.0 0.0 -67.0 0.0 -67.0 0.0 -67.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.0 \\ 0$
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -55\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -68\\ -69\\ -70\\ -70\\ -70\\ -70\\ -70\\ -70\\ -70\\ -70$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.995 0.	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.65 27.48 24.52 27.65 27.48 24.84 27.55 30.00 22.58	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 28.0 20.0 87.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 11.3.0 3.0 0.0 0.0 0.0 0.0 0.0 18.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0 516.4 0.0	0.0 0.0	0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0 </td <td>0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -8.0 -8.0 -8.0 -8.0 -60.0 0.0 -100.0 -20.0 0.0 -67.0 -67.0 -67.0 -67.0 -67.0 -67.0</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.0</td>	0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -8.0 -8.0 -8.0 -8.0 -60.0 0.0 -100.0 -20.0 0.0 -67.0 -67.0 -67.0 -67.0 -67.0 -67.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -71\\ -11\\ -52\\ -52\\ -56\\ -57\\ -58\\ -56\\ -57\\ -56\\ -57\\ -58\\ -56\\ -57\\ -56\\ -57\\ -58\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -57\\ -56\\ -56\\ -57\\ -56\\ -56\\ -56\\ -57\\ -56\\ -56\\ -56\\ -56\\ -57\\ -56\\ -56\\ -56\\ -57\\ -56\\ -56\\ -56\\ -56\\ -57\\ -56\\ -56\\ -56\\ -56\\ -56\\ -56\\ -56\\ -56$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.021 1.021 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.971 0.959 0.985 0.993 0.995 0.998 0.998 0.995 0.998 0.998 0.998 0.995 0.998 0.988 0.	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.64 23.43 22.75 24.52 27.65 27.48 24.84 27.55 30.00 22.58 22.15	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 28.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	$\begin{array}{c} 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 3.0\\ 113.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 0.0\\ 18.0\\ 7.0\\ 0.0\\ 0.0\\ 20.0\\ 0.0\\ 20.0\\ 0.0\\ 0.0\\$	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0 0.0 516.4 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 200.0 0.0 300.0 300.0 300.0 300.0 300.0 32.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 -300.0 -85.0 0.0 0.0 -300.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -300.0 -100.0 0.0 -20.0 0.0 -67.0 -67.0 0.0 -300.0 -10.0 0.0 -300.0 -67.0 -67.0 0.0 -67.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 0.0 -67.0 -67.0 -67.0 0.0 -67.0 -67.0 -67.0 0.0 -67.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -71\\ -72\\ -72\\ -72\\ -72\\ -72\\ -72\\ -72\\ -72$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.971 0.959 0.985 0.993 0.993 0.995 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 15.32 14.35 15.26 14.35 15.26 14.35 15.26 14.37 23.15 24.52 24.52 27.65 27.48 24.55 30.00 22.58 22.15 20.98	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	$\begin{array}{c} 11.0\\ 11.0\\ 23.0\\ 10.0\\ 23.0\\ 7.0\\ 8.0\\ 22.0\\ 10.0\\ 0.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 30.0\\ 4.0\\ 8.0\\ 5.0\\ 11.0\\ 32.0\\ 22.0\\ 18.0\\ 3.0\\ 3.0\\ 113.0\\ 3.0\\ 0.0\\ 14.0\\ 0.0\\ 14.0\\ 0.0\\ 0.0\\ 18.0\\ 7.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	0.0 -46.0 0.0 -59.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 200.0 200.0 300.0 32.0 0.0 100.0	0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 -8.0 -8.0 -8.0 -8.0 -8.0 -300.0 -60.0 0.0 -67.0 0.0 -67.0 -67.0 -67.0 0.0 -10.0 0.0 -10.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{r} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -71\\ -72\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.971 0.959 0.985 0.993 0.993 0.993 0.998 0.999 0.998 1.005 1.020 1.020 1.020 1.035 0.984 0.987 0.980 0.991	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 15.26 14.35 15.26 14.35 15.26 14.35 15.26 14.37 23.15 24.04 23.43 22.75 27.48 24.84 27.55 30.00 22.58 22.15 20.98 21.94	$\begin{array}{c} 27.0\\ 20.0\\ 37.0\\ 37.0\\ 18.0\\ 16.0\\ 53.0\\ 28.0\\ 34.0\\ 20.0\\ 87.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 17.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 0.0 14.0 0.0 0.0 18.0 7.0 0.0 <t< td=""><td>0.0 -46.0 0.0 -59.0 0.0 516.4 0.0 -12.0</td><td>0.0 0.0</td><td>0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 200.0 200.0 0.0 300.0 32.0 0.0 100.0 100.0</td><td>0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -300.0 -100.0 -67.0 0.0 -67.0 0.0 -10.0 0.0 -10.0 -100.0 -100.0</td><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0</td></t<>	0.0 -46.0 0.0 -59.0 0.0 516.4 0.0 -12.0	0.0 0.0	0.0 300.0 0.0 300.0 300.0 23.0 15.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 200.0 200.0 0.0 300.0 32.0 0.0 100.0 100.0	0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -300.0 -100.0 -67.0 0.0 -67.0 0.0 -10.0 0.0 -10.0 -100.0 -100.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0
$\begin{array}{c} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -51\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -71\\ -72\\ -73\\ -74\\ -74\\ -74\\ -74\\ -74\\ -74\\ -74\\ -74$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.025 1.011 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.955 0.952 0.954 0.955 0.958 0.969 0.969 0.984 0.985 0.984 0.985 0.984 0.985 0.984 0.985 0.984 0.985 0.984 0.985 0.985 0.984 0.985 0.984 0.985 0.985 0.984 0.985 0.985 0.985 0.9984 0.985 0.984 0.985 0.985 0.985 0.985 0.9984 0.985 0.985 0.985 0.985 0.9984 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.984 0.985 0.995 0.955	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.52 27.65 27.48 24.84 27.55 30.00 22.58 22.15 20.98 21.94 21.64	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 18.0 23.0 113.0 63.0 84.0 12.0 12.0 277.0 78.0 0.0 77.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 0.0 11.0 30.0 4.0 8.0 5.0 11.0 32.0 22.0 18.0 3.0 3.0 113.0 3.0 0.0 0.0 </td <td>0.0 -46.0 0.0 -59.0 0.0 516.4 0.0 -6.0 0.0</td> <td>0.0 0.0</td> <td>0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 300.0 200.0 0.0 300.0 200.0 0.0 300.0 32.0 0.0 100.0 100.0 9.0</td> <td>0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 -300.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0 -67.0 -70.0 -10.0 -10.0 -100.0 -100.0</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0 <!--</td--></td>	0.0 -46.0 0.0 -59.0 0.0 516.4 0.0 -6.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 0.0 300.0 200.0 0.0 300.0 200.0 0.0 300.0 32.0 0.0 100.0 100.0 9.0	0.0 -300.0 0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 -100.0 0.0 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -85.0 0.0 -300.0 -8.0 0.0 -60.0 0.0 -60.0 0.0 -67.0 -67.0 -67.0 -70.0 -10.0 -10.0 -100.0 -100.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.0 </td
$\begin{array}{c} 39\\ -40\\ -41\\ -42\\ -43\\ -44\\ -45\\ -46\\ -47\\ -48\\ -49\\ -50\\ -51\\ -52\\ -53\\ -54\\ -55\\ -56\\ -57\\ -58\\ -55\\ -56\\ -57\\ -58\\ -59\\ -60\\ -61\\ -62\\ -63\\ -66\\ -67\\ -68\\ -66\\ -67\\ -68\\ -69\\ -70\\ -71\\ -72\\ -73\\ -74\\ -75\\ -55\\ -56\\ -57\\ -58\\ -57\\ -58\\ -59\\ -59\\ -50\\ -57\\ -58\\ -59\\ -56\\ -57\\ -58\\ -59\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -56\\ -57\\ -58\\ -57\\ -58\\ -58\\ -57\\ -58\\ -58\\ -57\\ -58\\ -58\\ -57\\ -58\\ -58\\ -58\\ -58\\ -58\\ -58\\ -58\\ -58$	0.970 0.970 0.967 0.985 0.985 0.987 1.005 1.017 1.021 1.025 1.001 0.967 0.957 0.946 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.952 0.954 0.955 0.955 0.952 0.954 0.955 0.955 0.954 0.955 0.	8.41 7.35 6.92 8.53 11.28 13.82 15.67 18.49 20.73 19.93 20.94 18.90 16.28 15.32 14.35 15.26 14.35 15.26 14.35 15.26 14.97 15.16 16.36 15.51 19.37 23.15 24.04 23.43 22.75 24.52 27.65 27.48 24.52 27.65 27.48 24.52 27.65 27.48 24.52 27.65 27.48 24.52 27.55 30.00 22.58 22.15 20.98 21.94 21.64 22.91	27.0 20.0 37.0 37.0 18.0 16.0 53.0 28.0 34.0 20.0 87.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1	11.0 23.0 10.0 23.0 7.0 8.0 22.0 10.0 0.0 11.0 30.0 4.0 8.0 22.0 11.0 30.0 11.0 32.0 22.0 18.0 3.0 3.0 3.0 0.0 11.0 </td <td>0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0 0.0 516.4 0.0 -12.0 -6.0 0.0</td> <td>0.0 0.0</td> <td>0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 200.0 200.0 200.0 0.0 300.0 300.0 300.0 300.0 32.0 0.0 100.0 100.0 9.0 0.0</td> <td>0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -60.0 0.0 -67.0 -67.0 -67.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.110 0.0</td>	0.0 -46.0 0.0 -59.0 0.0 391.0 392.0 0.0 0.0 516.4 0.0 -12.0 -6.0 0.0	0.0 0.0	0.0 300.0 0.0 300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300.0 23.0 15.0 0.0 300.0 20.0 0.0 200.0 200.0 200.0 0.0 300.0 300.0 300.0 300.0 32.0 0.0 100.0 100.0 9.0 0.0	0.0 -300.0 0.0 -300.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -8.0 0.0 -60.0 0.0 -67.0 -67.0 -67.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0	0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.110 0.0

77	1.006	26.72	61.0	28.0	0.0	0.0	70.0	-20.0	0.0
78	1.003	26.42	71.0	26.0	0.0	0.0	0.0	0.0	0.0
79	1.009	26.72	39.0	32.0	0.0	0.0	0.0	0.0	0.20
80	1.040	28.96	130.0	26.0	477.0	0.0	280.0	-165.0	0.0
81	0.997	28.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0
82	0.989	27.24	54.0	27.0	0.0	0.0	0.0	0.0	0.20
83	0.985	28.42	20.0	10.0	0.0	0.0	0.0	0.0	0.10
84	0.980	30.95	11.0	7.0	0.0	0.0	0.0	0.0	0.0
85	0.985	32.51	24.0	15.0	0.0	0.0	23.0	-8.0	0.0
86	0.987	31.14	21.0	10.0	0.0	0.0	0.0	0.0	0.0
87	1.015	31.40	0.0	0.0	4.0	0.0	1000.0	-100.0	0.0
88	0.987	35.64	48.0	10.0	0.0	0.0	0.0	0.0	0.0
89	1.005	39.69	0.0	0.0	607.0	0.0	300.0	-210.0	0.0
90	0.985	33.29	78.0	42.0	-85.0	0.0	300.0	-300.0	0.0
91	0.980	33.31	0.0	0.0	-10.0	0.0	100.0	-100.0	0.0
92	0.993	33.80	65.0	10.0	0.0	0.0	9.0	-3.0	0.0
93	0.987	30.79	12.0	7.0	0.0	0.0	0.0	0.0	0.0
94	0.991	28.64	30.0	16.0	0.0	0.0	0.0	0.0	0.0
95	0.981	27.67	42.0	31.0	0.0	0.0	0.0	0.0	0.0
96	0.993	27.51	38.0	15.0	0.0	0.0	0.0	0.0	0.0
97	1.011	27.88	15.0	9.0	0.0	0.0	0.0	0.0	0.0
98	1.024	27.40	34.0	8.0	0.0	0.0	0.0	0.0	0.0
99	1.010	27.04	0.0	0.0	-42.0	0.0	100.0	-100.0	0.0
100	1.017	28.03	37.0	18.0	252.0	0.0	155.0	-50.0	0.0
101	0.993	29.61	22.0	15.0	0.0	0.0	0.0	0.0	0.0
102	0.991	32.30	5.0	3.0	0.0	0.0	0.0	0.0	0.0
103	1.001	24.44	23.0	16.0	40.0	0.0	40.0	-15.0	0.0
104	0.971	21.69	38.0	25.0	0.0	0.0	23.0	-8.0	0.0
105	0.965	20.57	31.0	26.0	0.0	0.0	23.0	-8.0	0.20
106	0.962	20.32	43.0	16.0	0.0	0.0	0.0	0.0	0.0
107	0.952	17.53	28.0	12.0	-22.0	0.0	200.0	-200.0	0.06
108	0.967	19.38	2.0	1.0	0.0	0.0	0.0	0.0	0.0
109	0.967	18.93	8.0	3.0	0.0	0.0	0.0	0.0	0.0
110	0.973	18.09	39.0	30.0	0.0	0.0	23.0	-8.0	0.06
111	0.980	19.74	0.0	0.0	36.0	0.0	1000.0	-100.0	0.0
112	0.975	14.99	25.0	13.0	-43.0	0.0	1000.0	-100.0	0.0
113	0.993	13.74	0.0	0.0	-6.0	0.0	200.0	-100.0	0.0
114	0.960	14.46	8.0	3.0	0.0	0.0	0.0	0.0	0.0
115	0.960	14.46	22.0	7.0	0.0	0.0	0.0	0.0	0.0
116	1.005	27.12	0.0	0.0	-184.0	0.0	1000.0	-1000.0	0.0
117	0.974	10.67	20.0	8.0	0.0	0.0	0.0	0.0	0.0
118	0.949	21.92	33.0	15.0	0.0	0.0	0.0	0.0	0.0

Les paramètres des lignes

N^{\bullet}	Du	Vers	R	X	В	prise
1	1	2	0.03030	0.09990	0.02540	0.0
2	1	3	0.01290	0.04240	0.01082	0.0
3	4	5	0.00176	0.00798	0.00210	0.0
4	3	5	0.02410	0.10800	0.02840	0.0
5	5	6	0.01190	0.05400	0.01426	0.0
6	6	7	0.00459	0.02080	0.00550	0.0
7	8	9	0.00244	0.03050	1.16200	0.0
8	8	5	0.00000	0.02670	0.0	0.985
9	9	10	0.00258	0.03220	1.23000	0.0
10	4	11	0.02090	0.06880	0.01748	0.0
11	5	11	0.02030	0.06820	0.01738	0.0
12	11	12	0.00595	0.01960	0.00502	0.0
13	2	12	0.01870	0.06160	0.01572	0.0
14	3	12	0.04840	0.16000	0.04060	0.0
15	7	12	0.00862	0.03400	0.00874	0.0
16	11	13	0.02225	0.07310	0.01876	0.0
17	12	14	0.02150	0.07070	0.01816	0.0
18	13	15	0.07440	0.24440	0.06268	0.0
19	14	15	0.05950	0.19500	0.05020	0.0
20	12	16	0.02120	0.08340	0.02140	0.0
21	15	17	0.01320	0.04370	0.04440	0.0
22	16	17	0.04540	0.18010	0.04660	0.0
23	17	18	0.01230	0.05050	0.01298	0.0
24	18	19	0.01119	0.04930	0.01142	0.0
25	19	20	0.02520	0.11700	0.02980	0.0

26	15	19	0.01200	0.03940	0.01010	0.0
27	20	21	0.01830	0.08490	0.02160	0.0
28	21	22	0.02090	0.09700	0.02460	0.0
29	22	23	0.03420	0.15900	0.04040	0.0
30	23	24	0.01350	0.04920	0.04980	0.0
31	23	25	0.01560	0.08000	0.08640	0.0
32	26	25	0.00000	0.03820	0.0	0.960
33	25	27	0.03180	0.16300	0.17640	0.0
34	27	28	0.01913	0.08550	0.02160	0.0
35	28	29	0.02370	0.09430	0.02380	0.0
36	30	17	0.00000	0.03880	0.0	0.960
37	8	30	0.00431	0.05040	0.51400	0.0
38	26	30	0.00799	0.08600	0.90800	0.0
39	17	31	0.04740	0.15630	0.03990	0.0
40	29	31	0.01080	0.03310	0.00830	0.0
41	23	32	0.03170	0.11530	0.11730	0.0
42	31	32	0.02980	0.09850	0.02510	0.0
43	27	32	0.02290	0.07550	0.01926	0.0
44	15	33	0.03800	0.12440	0.03194	0.0
45	19	34	0.07520	0.24700	0.06320	0.0
46	35	36	0.00224	0.01020	0.00268	0.0
47	35	37	0.01100	0.04970	0.01318	0.0
48	33	37	0.04150	0.14200	0.03660	0.0
49	34	36	0.00871	0.02680	0.00568	0.0
50	34	37	0.00256	0.00940	0.00984	0.0
51	38	37	0.00000	0.03750	0.0	0.935

52	37	39	0.03210	0.10600	0.02700	0.0
53	37	40	0.05930	0.16800	0.04200	0.0
54	30	38	0.00464	0.05400	0.42200	0.0
55	39	40	0.01840	0.06050	0.01552	0.0
56	40	40	0.01040	0.04870	0.01332	0.0
57	40	41	0.01430	0.04870	0.01222	0.0
57	40	42	0.05550	0.18300	0.04660	0.0
58	41	42	0.04100	0.13500	0.03440	0.0
59	43	44	0.06080	0.24540	0.06068	0.0
60	34	43	0.04130	0.16810	0.04226	0.0
61	44	45	0.02240	0.09010	0.02240	0.0
62	45	46	0.04000	0.13560	0.03320	0.0
63	46	47	0.03800	0.12700	0.03160	0.0
64	46	48	0.06010	0.18900	0.04720	0.0
65	10	/0	0.01910	0.06250	0.01604	0.0
66	42	40	0.01710	0.22200	0.01004	0.0
00	42	49	0.07150	0.32300	0.08600	0.0
6/	42	49	0.0/150	0.32300	0.08600	0.0
68	45	49	0.06840	0.18600	0.04440	0.0
69	48	49	0.01790	0.05050	0.01258	0.0
70	49	50	0.02670	0.07520	0.01874	0.0
71	49	51	0.04860	0.13700	0.03420	0.0
72	51	52	0.02030	0.05880	0.01396	0.0
73	52	53	0.04050	0.16350	0.04058	0.0
74	52	54	0.02630	0.12200	0.03100	0.0
74	40	54	0.02030	0.12200	0.03100	0.0
75	49	54	0.07300	0.28900	0.07380	0.0
/6	49	54	0.08690	0.29100	0.07300	0.0
77	54	55	0.01690	0.07070	0.02020	0.0
78	54	56	0.00275	0.00955	0.00732	0.0
79	55	56	0.00488	0.01510	0.00374	0.0
80	56	57	0.03430	0.09660	0.02420	0.0
81	50	57	0.04740	0.13400	0.03320	0.0
82	56	58	0.03430	0.09660	0.02420	0.0
83	51	58	0.02550	0.07190	0.01788	0.0
0.5	54	50	0.02330	0.07170	0.01788	0.0
04	54	59	0.03030	0.22930	0.03980	0.0
85	56	59	0.08250	0.25100	0.05690	0.0
86	56	59	0.08030	0.23900	0.05360	0.0
87	55	59	0.04739	0.21580	0.05646	0.0
88	59	60	0.03170	0.14500	0.03760	0.0
89	59	61	0.03280	0.15000	0.03880	0.0
90	60	61	0.00264	0.01350	0.01456	0.0
91	60	62	0.01230	0.05610	0.01468	0.0
92	61	62	0.00824	0.03760	0.00980	0.0
03	63	50	0.000021	0.03860	0.0	0.060
93	62	53	0.00000	0.03800	0.0	0.900
94	05	04	0.00172	0.02000	0.21000	0.0
95	64	61	0.00000	0.02680	0.0	0.985
96	38	65	0.00901	0.09860	1.04600	0.0
97	64	65	0.00269	0.03020	0.38000	0.0
98	49	66	0.01800	0.09190	0.02480	0.0
99	49	66	0.01800	0.09190	0.02480	0.0
100	62	66	0.04820	0.21800	0.05780	0.0
101	62	67	0.02580	0.11700	0.03100	0.0
102	65	66	0.00000	0.03700	0.0	0.935
103	66	67	0.02240	0.10150	0.02682	0.0
103	65	60	0.00120	0.01600	0.62000	0.0
104	47	00	0.00136	0.01000	0.03800	0.0
105	4/	09	0.08440	0.27780	0.07092	0.0
106	49	69	0.09850	0.32400	0.08280	0.0
107	68	69	0.00000	0.03700	0.0	0.935
108	69	70	0.03000	0.12700	0.12200	0.0
109	24	70	0.00221	0.41150	0.10198	0.0
110	70	71	0.00882	0.03550	0.00878	0.0
111	24	72	0.04880	0.19600	0.04880	0.0
112	71	72	0.04460	0.18000	0.04444	0.0
113	71	73	0.00866	0.04540	0.01178	0.0
114	70	73	0.04010	0 12220	0.02269	0.0
114	70	74	0.04010	0.13230	0.03308	0.0
115	/0	/5	0.04280	0.14100	0.03600	0.0
116	69	75	0.04050	0.12200	0.12400	0.0
117	74	75	0.01230	0.04060	0.01034	0.0
				0.1.1000	0.00,000	0.0
118	76	77	0.04440	0.14800	0.03680	0.0

120	75	77	0.06010	0.19990	0.04978	0.0
121	77	78	0.00376	0.01240	0.01264	0.0
122	78	79	0.00546	0.02440	0.00648	0.0
123	77	80	0.01700	0.04850	0.04720	0.0
124	77	80	0.02940	0.10500	0.02280	0.0
125	79	80	0.01560	0.07040	0.01870	0.0
126	68	81	0.00175	0.02020	0.80800	0.0
127	81	80	0.00000	0.03700	0.0	0.935
128	77	82	0.02980	0.08530	0.08174	0.0
129	82	83	0.01120	0.03665	0.03796	0.0
130	83	84	0.06250	0.13200	0.02580	0.0
131	83	85	0.04300	0.14800	0.03480	0.0
132	84	85	0.03020	0.06410	0.01234	0.0
133	85	86	0.03500	0.12300	0.02760	0.0
134	86	87	0.02828	0.20740	0.04450	0.0
135	85	88	0.02000	0.10200	0.02760	0.0
136	85	89	0.02390	0.17300	0.04700	0.0
137	88	89	0.01390	0.07120	0.01934	0.0
138	89	90	0.05180	0.18800	0.05280	0.0
139	89	90	0.02380	0.09970	0.10600	0.0
140	90	91	0.02540	0.08360	0.02140	0.0
141	89	92	0.00990	0.05050	0.05480	0.0
142	89	92	0.03930	0.15810	0.04140	0.0
145	91	92	0.03870	0.12/20	0.03268	0.0
144	92	93	0.02580	0.08480	0.02180	0.0
145	92	94	0.04810	0.15800	0.04060	0.0
140	93	94	0.02230	0.07320	0.018/0	0.0
147	94	95	0.01320	0.04340	0.01110	0.0
148	82	90	0.05500	0.18200	0.04940	0.0
149	04	90	0.01020	0.03300	0.03440	0.0
150	94 80	90	0.02090	0.00090	0.02540	0.0
152	80	97	0.01830	0.09340	0.02340	0.0
152	80	90	0.02500	0.10000	0.02000	0.0
154	92	100	0.04340	0.20000	0.04720	0.0
155	94	100	0.01780	0.05800	0.06040	0.0
156	95	96	0.01710	0.05470	0.01474	0.0
157	96	97	0.01730	0.08850	0.02400	0.0
158	98	100	0.03970	0.17900	0.04760	0.0
159	99	100	0.01800	0.08130	0.02160	0.0
160	100	101	0.02770	0.12620	0.03280	0.0
161	92	102	0.01230	0.05590	0.01464	0.0
162	101	102	0.02460	0.11200	0.02940	0.0
163	100	103	0.01600	0.05250	0.05360	0.0
164	100	104	0.04510	0.20400	0.05410	0.0
165	103	104	0.04660	0.15840	0.04070	0.0
166	103	105	0.05350	0.16250	0.04080	0.0
167	100	106	0.06050	0.22900	0.06200	0.0
168	104	105	0.00994	0.03780	0.00986	0.0
169	105	106	0.01400	0.05470	0.01434	0.0
170	105	107	0.05300	0.18300	0.04720	0.0
171	105	108	0.02610	0.07030	0.01844	0.0
172	106	107	0.05300	0.18300	0.04720	0.0
173	108	109	0.01050	0.02880	0.00760	0.0
174	103	110	0.03906	0.18130	0.04610	0.0
175	109	110	0.02780	0.07620	0.02020	0.0
176	110	111	0.02200	0.07550	0.02000	0.0
177	110	112	0.02470	0.06400	0.06200	0.0
178	17	113	0.00913	0.03010	0.00768	0.0
179	32	113	0.06150	0.20300	0.05180	0.0
180	32	114	0.01350	0.06120	0.01628	0.0
181	2/	115	0.01640	0.0/410	0.01972	0.0
182	114	115	0.00230	0.01040	0.00276	0.0
103	10	110	0.00034	0.00405	0.10400	0.0
104	12	11/	0.03290	0.14000	0.03380	0.0
100	13	118	0.01430	0.04010	0.01198	0.0
100	/0	110	0.01040	0.03440	0.01550	0.0

LE RESEAU TEST IEEE 300 NŒUDS

Paramètres des nœuds :

Nœud N°	V ₀	θ_{0}	P_l	Q_l	P_{ν}	Q_{ν}	Q_{min}	Q _{max}	B _{sh}
1	1.0284	5.95	90.00	49.00	0.00	0.00	0.00	0.00	0.0000
2	1.0354	7.74	56.00	15.00	0.00	0.00	0.00	0.00	0.0000
3	0.9971	6.64	20.00	0.00	0.00	0.00	0.00	0.00	0.0000
4	1.0308	4.71	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
5	1.0191	4.08	120.00	41.00	0.00	0.00	0.00	0.00	0.0000
7	0.9934	6.19	0.00	41.00	0.00	0.00	0.00	0.00	0.0000
8	1.0153	2.40	58.00	14.00	-5.00	0.00	10.00	-10.00	0.0000
9	1.0034	2.85	96.00	43.00	0.00	0.00	0.00	0.00	0.0000
10	1.0205	1.35	148.00	33.00	-5.00	0.00	20.00	-20.00	0.0000
11	1.0057	2.46	83.00	21.00	0.00	0.00	0.00	0.00	0.0000
12	0.9974	5.21	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
13	0.9977	-0.55	58.00	10.00	0.00	0.00	0.00	0.00	0.0000
14	0.9991	-4.81	160.00	60.00	0.00	0.00	0.00	0.00	0.0000
15	1.0343	-8.59	126.70	23.00	0.00	0.00	0.00	0.00	0.0000
10	1.0513	-2.03	561.00	220.00	0.00	0.00	0.00	0.00	0.0000
18	0.9820	1.08	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
19	1.0010	-2.46	595.00	120.00	-10.00	0.00	20.00	-20.00	0.0000
20	0.9752	1.62	77.00	1.00	0.00	0.00	0.00	0.00	0.0000
21	0.9963	-1.97	81.00	23.00	0.00	0.00	0.00	0.00	0.0000
22	1.0501	3.94	21.00	7.00	0.00	0.00	0.00	0.00	0.0000
23	1.0057	6.02	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
24	1.0234	1.44	45.00	12.00	0.00	0.00	0.00	0.00	0.0000
25	0.9986	-1.73	28.00	9.00	0.00	0.00	0.00	0.00	0.0000
26	0.9750	-4.90	69.00	13.00	0.00	0.00	0.00	0.00	0.0000
27	1.0244	-12.02	55.00	6.00	0.00	0.00	0.00	0.00	0.0000
28	1.0414	-7.94	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
30	1.0011	-23.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
31	1.0201	-11.23	85.00	32.00	0.00	0.00	0.00	0.00	0.0000
32	1.0202	-12.56	155.00	18.00	0.00	0.00	0.00	0.00	0.0000
33	1.0535	-5.81	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
34	1.0216	-12.78	46.00	-21.00	0.00	0.00	0.00	0.00	0.0000
35	1.0292	-10.45	86.00	0.00	0.00	0.00	0.00	0.00	0.0000
36	1.0448	-7.44	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
37	1.0006	-16.79	39.00	9.00	0.00	0.00	0.00	0.00	0.0000
38	1.0086	-17.47	195.00	29.00	0.00	0.00	0.00	0.00	0.0000
39	1.0215	-14.74	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
40	0.9777	-11.75	58.00	11.80	0.00	0.00	0.00	0.00	0.0000
42	1.0019	-16.09	41.00	19.00	0.00	0.00	0.00	0.00	0.0000
43	1.0475	-2.95	92.00	26.00	0.00	0.00	0.00	0.00	0.0000
44	1.0253	-8.15	-5.00	5.00	0.00	0.00	0.00	0.00	0.0000
45	0.9979	-11.86	61.00	28.00	0.00	0.00	0.00	0.00	0.0000
46	0.9959	-17.60	69.00	3.00	0.00	0.00	0.00	0.00	0.0000
47	1.0050	-16.25	10.00	1.00	0.00	0.00	0.00	0.00	0.0000
48	1.0150	-12.21	22.00	10.00	0.00	0.00	0.00	0.00	0.0000
49	1.0335	-8.00	98.00	20.00	0.00	0.00	0.00	0.00	0.0000
50	0.9918	-5.99	218.00	106.00	0.00	0.00	0.00	0.00	0.0000
52	1.0246	-9.56	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
53	0.9906	-3.47	227.00	110.00	0.00	0.00	0.00	0.00	0.0000
54	1.0160	-1.10	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
55	0.9583	-17.62	70.00	30.00	0.00	0.00	25.00	-25.00	0.0000
56	0.9480	-12.97	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
57	0.9630	-25.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
58	0.9513	-35.16	56.00	20.00	0.00	0.00	0.00	0.00	0.0000
59	0.9793	-29.88	116.00	38.00	0.00	0.00	0.00	0.00	0.0000
60	0.9696	-21.48	57.00	19.00	0.00	0.00	0.00	0.00	0.0000
62	0.9775	-23.17	224.00	0.00	0.00	0.00	0.00	0.00	0.0000
63	0.9632	-26 54	208.00	107.00	0.00	0.00	35.00	12.00	0.0000
64	0.9837	-24.94	74.00	28.00	0.00	0.00	0.00	0.00	0.0000
65	0.9900	-24.05	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
66	0.9820	-24.97	48.00	14.00	0.00	0.00	0.00	0.00	0.0000
67	0.9872	-24.97	28.00	7.00	0.00	0.00	0.00	0.00	0.0000
68	1.0340	-18.89	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
69	1.0250	-17.16	37.00	13.00	375.00	0.00	240.00	-240.00	0.0000
70	0.9872	-17.68	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
71	0.9909	-14.19	0.00	0.00	0.00	0.00	0.00	0.00	0.0000

72	0.9921	-7.77	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
73	1.0151	-20.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
74	1.0217	11.12	44.20	0.00	0.00	0.00	0.00	0.00	0.0000
/4	1.0517	-11.15	44.20	0.00	0.00	0.00	0.00	0.00	0.0000
75	1.0272	-11.23	66.00	0.00	0.00	0.00	0.00	0.00	0.0000
76	1.0520	-9.40	17.40	0.00	155.00	0.00	96.00	-11.00	0.0000
77	1.0520	-6.20	15.80	0.00	290.00	0.00	153.00	-153.00	0.0000
70	0.0020	0.42	60.20	0.00	2)0.00	0.00	0.00	0.00	0.0000
/ 6	0.9930	-9.42	00.30	0.00	0.00	0.00	0.00	0.00	0.0000
79	1.0183	-13.24	39.90	0.00	0.00	0.00	0.00	0.00	0.0000
80	1.0000	-14.60	66.70	0.00	68.00	0.00	56.00	-30.00	0.0000
81	0 9894	-20.27	83 50	0.00	0.00	0.00	0.00	0.00	0.0000
82	1.0060	14.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
82	1.0000	-14.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
83	1.0008	-15.23	77.80	0.00	0.00	0.00	0.00	0.00	0.0000
84	1.0288	-12.06	32.00	0.00	0.00	0.00	0.00	0.00	0.0000
85	0.9958	-17.33	8.60	0.00	0.00	0.00	0.00	0.00	0.0000
86	1.0223	-12 94	49.60	0.00	0.00	0.00	0.00	0.00	0.0000
97	1.0005	16.02	4.60	0.00	0.00	0.00	0.00	0.00	0.0000
07	1.0095	-10.03	4.00	0.00	0.00	0.00	0.00	0.00	0.0000
88	0.9900	-20.26	112.10	0.00	117.00	0.00	//.00	-24.00	0.0000
89	0.9749	-26.06	30.70	0.00	0.00	0.00	0.00	0.00	0.0000
90	0.9730	-24.72	63.00	0.00	0.00	0.00	0.00	0.00	0.0000
91	0.9725	-28.69	19.60	0.00	0.00	0.00	0.00	0.00	0.0000
92	0.9700	-25 38	26.20	0.00	0.00	0.00	0.00	0.00	0.0000
02	0.0747	29.50	18.20	0.00	0.00	0.00	0.00	0.00	0.0000
93	0.9747	-28.39	18.20	0.00	0.00	0.00	0.00	0.00	0.0000
94	0.9603	-13.57	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
95	1.0249	-12.69	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
96	0.9348	-4.72	0.00	0.00	0.00	0.00	0.00	0.00	3.2500
97	0.9298	-4.12	14.10	650.00	0.00	0.00	0.00	0.00	0.0000
08	1.0435	5.17	0.00	0.00	1930.00	0.00	1500.00	-500.00	0.0000
20	0.0504	0.77	0.00	0.00	1950.00	0.00	1300.00	-500.00	0.0000
99	0.9584	-8.//	///.00	215.00	0.00	0.00	0.00	0.00	0.5500
100	0.9871	-12.64	535.00	55.00	0.00	0.00	0.00	0.00	0.0000
101	0.9728	-14.36	229.10	11.80	0.00	0.00	0.00	0.00	0.0000
102	1.0006	-17.64	78.00	1.40	0.00	0.00	0.00	0.00	0.0000
103	1.0233	13.40	276.40	59.30	240.00	0.00	120.00	60.00	0.0000
103	1.0233	-13.49	270.40	39.30	240.00	0.00	120.00	-00.00	0.0000
104	1.0103	-18.43	514.80	82.70	0.00	0.00	200.00	-25.00	0.0000
105	0.9978	-12.86	57.90	5.10	0.00	0.00	0.00	0.00	0.0000
106	1.0001	-10.52	380.80	37.00	0.00	0.00	0.00	0.00	0.0000
107	1.0024	-4.78	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
109	1.0028	4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
108	1.0028	-4.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
109	1.0191	5.56	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
110	0.9861	6.06	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
111	1.0045	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
112	1.0020	-5.46	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
113	1.0220	-8.04	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
113	1.0220	-0.04	1.0.20	0.00	0.00	0.00	0.00	0.00	0.0000
114	1.0193	-0./0	169.20	41.60	0.00	0.00	0.00	0.00	0.0000
115	1.0476	1.54	55.20	18.20	0.00	0.00	0.00	0.00	0.0000
116	1.0471	-1.45	273.60	99.80	0.00	0.00	0.00	0.00	0.0000
117	1.0550	-6.35	826.70	135.20	-192.50	0.00	350.00	-125.00	0.0000
118	1.0117	-3 57	595.00	83 30	0.00	0.00	0.00	0.00	0.0000
110	1.0420	3.01	297.70	114.70	0.00	0.00	0.00	0.00	0.0000
119	1.0430	-3.44	387.70	114.70	0.00	0.00	0.00	0.00	0.0000
120	1.0510	0.05	145.00	58.00	281.00	0.00	/5.00	-50.00	0.0000
121	1.0155	-2.77	56.50	24.50	0.00	0.00	0.00	0.00	0.0000
122	1.0435	4.03	89.50	35.50	696.00	0.00	300.00	-100.00	0.0000
123	1.0160	-0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
124	1.0081	-0.16	24.00	14.00	0.00	0.00	0.00	0.00	0.0000
125	1 0529	1 32	0.00	0.00	84.00	0.00	35.00	_15.00	0.0000
123	1.0520	4.32	0.00	0.00	04.00	0.00	100.00	-13.00	0.0000
126	1.0528	8.36	0.00	0.00	217.00	0.00	100.00	-50.00	0.0000
127	1.0577	0.28	63.00	25.00	0.00	0.00	0.00	0.00	0.0000
128	1.0735	5.23	0.00	0.00	103.00	0.00	50.00	-25.00	0.0000
129	0.9869	6.34	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
130	1.0048	4.13	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
121	1.0525	0.24	17.00	0.00	372.00	0.00	175.00	-50.00	0.0000
131	1.0333	7.24	17.00	9.00	312.00	0.00	1/3.00	-50.00	0.0000
152	1.0435	10.46	0.00	0.00	216.00	0.00	90.00	-50.00	0.0000
133	0.9663	-1.80	70.00	5.00	0.00	0.00	0.00	0.00	0.3450
134	1.0177	6.75	200.00	50.00	0.00	0.00	0.00	0.00	0.0000
135	0.9630	5.15	75.00	50.00	0.00	0.00	15.00	-10.00	0.0000
136	0.9845	-11.93	123.50	-24.30	0.00	0.00	0.00	0.00	0.0000
137	0 9987	-11 /0	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
120	0.9907	0.02	22.00	16 50	0.00	0.00	0.00	0.00	0.0000
138	0.986/	-9.82	33.00	10.50	0.00	0.00	0.00	0.00	0.0000
139	0.9998	-12.55	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
140	1.0360	8.85	35.00	15.00	0.00	0.00	0.00	0.00	0.0000
141	0.9918	18.50	85.00	24.00	0.00	0.00	0.00	0.00	0.0000
142	1 0410	2.91	0.00	0.40	0.00	0.00	0.00	0.00	0.0000
142	0.0020	0.66	0.00	0.00	0.00	0.00	0.00	0.00	2 1200
143	0.9039	9.00	0.00	0.00	0.00	0.00	0.00	0.00	-2.1200
144	1.0002	26.31	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
145	0.9973	30.22	0.00	0.00	0.00	0.00	0.00	0.00	-1.0300
146	0.9715	-6.91	299.90	95.70	0.00	0.00	0.00	0.00	0.0000
147	1.0024	-4.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
148	0 9879	-6.68	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
140	0.7019	0.00	181.00	205.00	205.00	0.00	00.00	40.00	0.0000
149	0 0200		401.00	203.00	203.00	0.00	90.00	-40.00	0.0000
	0.9290	0.09		0.0 1	0.00	0.0-	1 5 6 6 5		0 0000
150	0.9290 0.9829	-9.94	763.60	291.10	0.00	0.00	150.00	-50.00	0.0000
150 151	0.9290 0.9829 1.0244	-9.94 -6.22	763.60 26.50	291.10 0.00	0.00	0.00	150.00 0.00	-50.00 0.00	0.0000
150 151 152	0.9290 0.9829 1.0244 0.9837	-9.94 -6.22 -12.75	763.60 26.50 163.50	291.10 0.00 43.00	0.00 0.00 0.00	0.00 0.00 0.00	150.00 0.00 0.00	-50.00 0.00 0.00	0.0000 0.0000 0.5300
150 151 152 153	0.9290 0.9829 1.0244 0.9837 1.0622	-9.94 -6.22 -12.75 -2.69	763.60 26.50 163.50 0.00	291.10 0.00 43.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	150.00 0.00 0.00 0.00	-50.00 0.00 0.00 0.00	0.0000 0.0000 0.5300 0.0000
150 151 152 153	0.9290 0.9829 1.0244 0.9837 1.0622 0.9720	-9.94 -6.22 -12.75 -2.69	763.60 26.50 163.50 0.00	291.10 0.00 43.00 0.00 83.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	150.00 0.00 0.00 0.00	-50.00 0.00 0.00 0.00	0.0000 0.0000 0.5300 0.0000

155	1.0522	4.67	5.00	4.00	228.00	0.00	90.00	-45.00	0.0000
156	1 0077	0.62	28.00	12.00	84 00	0.00	35.00	-15.00	0.0000
157	0.0207	6.62	427.40	172.00	0.00	0.00	0.00	0.00	0.0000
157	0.9397	-0.30	427.40	175.00	0.00	0.00	0.00	0.00	0.0000
158	0.9699	-9.37	74.00	29.00	0.00	0.00	0.00	0.00	0.4500
159	0.9793	-3.09	69.50	49.30	0.00	0.00	0.00	0.00	0.0000
160	1.0518	1.22	72.40	0.00	0.00	0.00	0.00	0.00	0.0000
100	1.0318	-1.33	73.40	0.00	0.00	0.00	0.00	0.00	0.0000
161	1.0447	-4.19	240.70	89.00	0.00	0.00	0.00	0.00	0.0000
162	0.9717	7.12	40.00	4.00	0.00	0.00	0.00	0.00	0.0000
163	1.0386	-6.85	136.80	16.60	0.00	0.00	0.00	0.00	0.0000
165	1.0500	4.22	0.00	0.00	200.00	0.00	0.00	50.00	0.0000
164	1.0522	-4.33	0.00	0.00	200.00	0.00	80.00	-50.00	0.0000
165	1.0650	2.17	59.80	24.30	1200.00	0.00	400.00	-100.00	0.0000
166	1.0650	1.40	59.80	24.30	1200.00	0.00	400.00	-100.00	0.0000
167	1.0533	0.72	182.60	13.60	0.00	0.00	0.00	0.00	0.0000
107	1.0555	-0.72	182.00	43.00	0.00	0.00	0.00	0.00	0.0000
168	0.9975	-25.84	7.00	2.00	0.00	0.00	0.00	0.00	0.0000
169	1.0551	-20.62	0.00	0.00	475.00	0.00	300.00	-300.00	-1.5000
170	1.0435	12.25	489.00	53.00	1973.00	0.00	1000.00	-1000.00	0.0000
171	0.0274	11.19	800.00	72.00	0.00	0.00	0.00	0.00	0.0000
171	0.9374	-11.18	800.00	72.00	0.00	0.00	0.00	0.00	0.0000
172	0.9897	-26.09	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
173	1.0489	-19.21	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
174	1.0357	-20.79	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
175	0.0605	25.72	10.00	2.00	0.00	0.00	0.00	0.00	0.0000
175	0.9093	-23.32	10.00	5.00	0.00	0.00	0.00	0.00	0.0000
176	0.9907	-23.72	43.00	14.00	0.00	0.00	0.00	0.00	0.0000
177	1.0150	-20.58	64.00	21.00	424.00	0.00	260.00	-260.00	0.0000
178	0.9528	-26.05	35.00	12.00	0.00	0.00	0.00	0.00	0.0000
170	0.0550	25.00	27.00	12.00	0.00	0.00	0.00	0.00	0.0000
1/9	0.9550	-23.93	27.00	12.00	0.00	0.00	0.00	0.00	0.0000
180	0.9692	-27.49	41.00	14.00	0.00	0.00	0.00	0.00	0.0000
181	0.9908	-25.33	38.00	13.00	0.00	0.00	0.00	0.00	0.0000
182	1 0033	-22 35	42.00	14.00	0.00	0.00	0.00	0.00	0.0000
102	0.0710	-22.33	72.00	24.00	0.00	0.00	0.00	0.00	0.0000
183	0.9718	-25.70	/2.00	24.00	0.00	0.00	0.00	0.00	0.0000
184	0.9838	-26.07	0.00	-5.00	0.00	0.00	0.00	0.00	0.0000
185	0.9992	-27.41	12.00	2.00	0.00	0.00	0.00	0.00	0.0000
186	1.0137	27.44	21.00	14.20	0.00	0.00	0.00	0.00	0.0000
180	1.0137	-27.44	-21.00	-14.20	0.00	0.00	0.00	0.00	0.0000
187	0.9929	-26.28	7.00	2.00	0.00	0.00	0.00	0.00	0.0000
188	0.9999	-25.66	38.00	13.00	0.00	0.00	0.00	0.00	0.0000
189	0.9788	-24 22	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
100	1.0017	-24.22	0.00	7.00	0.00	0.00	0.00	0.00	0.0000
190	1.0017	-23.31	96.00	7.00	0.00	0.00	0.00	0.00	0.0000
191	1.0132	-22.51	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
192	1.0100	-11.67	0.00	0.00	272.00	0.00	150.00	-150.00	0.0000
103	0.0010	17 53	22.00	16.00	0.00	0.00	0.00	0.00	0.0000
193	0.9919	-17.55	22.00	10.00	0.00	0.00	0.00	0.00	0.0000
194	0.9866	-20.23	47.00	26.00	0.00	0.00	0.00	0.00	0.0000
195	0.9751	-22.53	176.00	105.00	0.00	0.00	0.00	0.00	0.0000
196	1.0215	-22.20	100.00	75.00	0.00	0.00	0.00	0.00	0.0000
107	1.0215	22.20	121.00	06.00	0.00	0.00	0.00	0.00	0.0000
197	1.0073	-22.03	151.00	96.00	0.00	0.00	0.00	0.00	0.0000
198	1.0554	-21.15	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
199	1.0080	-21.73	285.00	100.00	100.00	0.00	60.00	-60.00	0.0000
200	1 0000	-22 49	171.00	70.00	450.00	0.00	320.00	-320.00	0.0000
200	1.0000	-22.47	228.00	188.00	450.00	0.00	200.00	-320.00	0.0000
201	1.0300	-23.17	328.00	188.00	230.00	0.00	300.00	-300.00	0.0000
202	0.9965	-22.70	428.00	232.00	0.00	0.00	0.00	0.00	0.0000
203	1.0002	-21.55	173.00	99.00	0.00	0.00	0.00	0.00	0.0000
204	0 9453	-11 34	410.00	40.00	0.00	0.00	0.00	0.00	0.0000
205	1.0190	21.61	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
203	1.0180	-21.01	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
206	1.0000	-27.22	538.00	369.00	303.00	0.00	300.00	-300.00	0.0000
207	1.0423	-20.94	223.00	148.00	0.00	0.00	0.00	0.00	0.0000
208	1 0496	-19 94	96.00	46.00	0.00	0.00	0.00	0.00	0.0000
200	1.0400	12.00	0.00	0.00	345.00	0.00	250.00	250.00	0.0000
209	1.0400	-13.62	0.00	0.00	345.00	0.00	250.00	-230.00	0.0000
210	1.0535	-21.22	159.00	107.00	0.00	0.00	0.00	0.00	-3.0000
211	1.0414	-23.19	448.00	143.00	0.00	0.00	0.00	0.00	0.0000
212	1.0000	-25.90	404.00	212.00	300.00	0.00	500.00	-500.00	0.0000
213	1 0387	-20.89	572.00	244.00	0.00	0.00	0.00	0.00	0.0000
213	1.0007	21.02	260.00	157.00	0.00	0.00	0.00	0.00	0.0000
214	1.0095	-21.05	209.00	157.00	0.00	0.00	0.00	0.00	0.0000
215	1.0165	-15.40	0.00	0.00	600.00	0.00	300.00	-300.00	0.0000
216	1.0558	-21.10	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
217	1 0100	-20.94	255.00	149.00	250.00	0.00	200.00	-200.00	-1 5000
217	1.0000	15.04	0.00	0.00	550.00	0.00	400.00	400.00	0.0000
218	1.0000	-13.80	0.00	0.00	330.00	0.00	400.00	-400.00	0.0000
219	1.0237	-20.14	0.00	0.00	0.00	0.00	0.00	0.00	-1.4000
220	1.0500	-16.50	0.00	0.00	575.43	0.00	600.00	-600.00	0.0000
221	0,9930	-17.53	0.00	0.00	170.00	0.00	100.00	40.00	0,0000
222	1.0100	10.27	8.00	3.00	84.00	0.00	80.00	40.00	0.0000
222	1.0100	-17.27	0.00	5.00	04.00	0.00	00.00	+0.00	0.0000
223	0.9921	-20.21	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
224	0.9711	-20.90	61.00	30.00	0.00	0.00	0.00	0.00	0.0000
225	0.9651	-21.74	77.00	33.00	0.00	0.00	0.00	0.00	0.0000
226	0.0600	21.67	61.00	30.00	0.00	0.00	0.00	0.00	0.0000
220	0.9000	-21.07	01.00	14.00	0.00	0.00	0.00	0.00	0.0000
227	0.9760	-25.23	29.00	14.00	0.00	0.00	0.00	0.00	0.4560
228	0.9752	-25.65	29.00	14.00	0.00	0.00	0.00	0.00	0.0000
229	1.0196	-23.80	-23.00	-17.00	0.00	0.00	0.00	0.00	0.0000
230	1 0251	_20.06	_22 10	_20 /0	0.00	0.00	0.00	0.00	0.0000
230	1.0231	-20.00	-33.10	-27.40	0.00	0.00	0.00	0.00	0.0000
231	1.0152	1.48	115.80	-24.00	0.00	0.00	0.00	0.00	0.0000
232	1.0146	-2.23	2.40	-12.60	0.00	0.00	0.00	0.00	0.0000
233	1.0005	-17.61	2.40	-3,90	0.00	0.00	0.00	0.00	0.0000
				0	0.00	0.00	0.00	0.00	0.0000
224	0.9810	-13 60	_14 00	2650				()/**	
234	0.9810	-13.69	-14.90	26.50	0.00	0.00	0.00	0.00	0.0000
234 235	0.9810 0.9750	-13.69 -23.42	-14.90 24.70	-1.20	0.00	0.00	0.00	0.00	0.0000
234 235 236	0.9810 0.9750 0.9429	-13.69 -23.42 -34.31	-14.90 24.70 145.30	-1.20 -34.90	0.00	0.00	0.00 0.00	0.00 0.00 0.00	0.0000

238	0.9604	-29.10	14.00	2.50	0.00	0.00	0.00	0.00	0.0000
239	1.0009	-23.36	-11.10	-1.40	0.00	0.00	0.00	0.00	0.0000
240	0 9777	-28.00	50.50	17.40	0.00	0.00	0.00	0.00	0.0000
241	0.0583	28.00	29.60	0.60	0.00	0.00	0.00	0.00	0.0000
241	1.0200	-20.79	29.00	0.00	0.00	0.00	0.00	0.00	0.0000
242	1.0309	-17.00	-113.70	/6./0	0.00	0.00	0.00	0.00	0.0000
243	1.0128	3.90	100.31	29.17	0.00	0.00	0.00	0.00	0.0000
244	1.0244	-7.52	-100.00	34.17	0.00	0.00	0.00	0.00	0.0000
245	1.0122	-15.18	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
246	0.9653	-14.94	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
247	1.0507	10.79	0.00	0.00	467.00	0.00	210.00	-210.00	0.0000
248	1.0507	12.48	0.00	0.00	623.00	0.00	280.00	-280.00	0.0000
249	1.0323	13.76	0.00	0.00	1210.00	0.00	420.00	-420.00	0.0000
250	1.0145	4 99	0.00	0.00	234.00	0.00	100.00	-100.00	0.0000
250	1.0145	11.57	0.00	0.00	272.00	0.00	224.00	-100.00	0.0000
251	1.0507	10.47	0.00	0.00	372.00	0.00	224.00	-224.00	0.0000
252	1.0507	-10.4/	0.00	0.00	330.00	0.00	350.00	0.00	0.0000
253	1.0507	6.15	0.00	0.00	185.00	0.00	120.00	0.00	0.0000
254	1.0290	12.60	0.00	0.00	410.00	0.00	224.00	-224.00	0.0000
255	1.0500	2.11	0.00	0.00	500.00	0.00	200.00	-200.00	0.0000
256	1.0145	-13.92	0.00	0.00	37.00	0.00	42.00	0.00	0.0000
257	1.0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
258	0.9967	-7.50	0.00	0.00	45.00	0.00	25.00	0.00	0.0000
259	1 0212	-3 44	0.00	0.00	165.00	0.00	90.00	-90.00	0.0000
260	1.0145	1 07	0.00	0.00	400.00	0.00	150.00	150.00	0.0000
200	1.0145	5 00	0.00	0.00	400.00	0.00	150.00	-150.00	0.0000
201	1.0017	3.80	0.00	0.00	400.00	0.00	130.00	0.00	0.0000
262	0.9893	-25.35	0.00	0.00	116.00	0.00	87.00	0.00	0.0000
263	1.0507	19.02	0.00	0.00	1292.00	0.00	600.00	-100.00	0.0000
264	1.0507	2.75	0.00	0.00	700.00	0.00	325.00	-125.00	0.0000
265	1.0145	35.05	0.00	0.00	553.00	0.00	300.00	-200.00	0.0000
266	1.0117	-11.25	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
267	0.9945	-18.86	0.00	0.00	-4.20	0.00	2.00	-2.00	0.0000
268	0.9833	-19.68	2.71	0.94	0.00	0.00	0.00	0.00	0.0240
269	0.9768	-19.82	0.86	0.28	0.00	0.00	0.00	0.00	0.0000
270	1.0117	-11.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
270	1.0020	17.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
271	0.0012	-17.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
272	0.9913	-18.09	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
273	1.0023	-17.27	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
274	0.9887	-19.09	4.75	1.56	0.00	0.00	0.00	0.00	0.0000
275	0.9648	-21.67	1.53	0.53	0.00	0.00	0.00	0.00	0.0000
276	0.9747	-19.41	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
277	0.9706	-21.43	1.35	0.47	0.00	0.00	0.00	0.00	0.0000
278	0.9649	-20.48	0.45	0.16	0.00	0.00	0.00	0.00	0.0000
279	0.9657	-20.39	0.45	0.16	0.00	0.00	0.00	0.00	0.0000
280	0.9318	-25.03	1.84	0.64	0.00	0.00	0.00	0.00	0.0000
281	0 9441	-23.84	1 39	0.48	0.00	0.00	0.00	0.00	0.0000
282	0.9286	_25.33	1.89	0.65	0.00	0.00	0.00	0.00	0.0000
202	0.0072	21.10	1.09	0.054	0.00	0.00	0.00	0.00	0.0172
203	0.9973	-21.10	1.33	0.54	0.00	0.00	0.00	0.00	0.0172
284	0.9500	-23.19	1.00	0.58	0.00	0.00	0.00	0.00	0.0000
285	0.9598	-22.67	3.05	1.00	0.00	0.00	0.00	0.00	0.0000
286	0.9570	-22.58	1.86	0.64	0.00	0.00	0.00	0.00	0.0000
287	0.9391	-24.41	2.58	0.89	0.00	0.00	0.00	0.00	0.0000
288	0.9636	-21.33	1.01	0.35	0.00	0.00	0.00	0.00	0.0000
289	0.9501	-22.50	0.81	0.28	0.00	0.00	0.00	0.00	0.0000
290	0.9646	-21.42	1.60	0.52	0.00	0.00	0.00	0.00	0.0000
291	0.9790	-19.78	0.00	0.00	0.00	0.00	0.00	0.00	0.0000
292	1.0000	-19.40	0.00	0.00	-35.81	0.00	17.35	-17.35	0.0000
293	0.9786	-17.25	30.00	23.00	0.00	0.00	0.00	0.00	0.0000
293	1 0000	-17.68	0.00	0.00	-26.48	0.00	12.83	-12.80	0.0000
274	1.0000	6 02	0.00	0.00	50.00	0.00	28.00	28.00	0.0000
293	1.0000	-0.05	0.00	0.00	0.00	0.00	38.00	-38.00	0.0000
296	1.0000	-7.54	0.00	0.00	8.00	0.00	0.00	-0.00	0.0000
297	0.9752	-20.48	1.02	0.35	0.00	0.00	0.00	0.00	0.0000
298	0.9803	-19.92	1.02	0.35	0.00	0.00	0.00	0.00	0.0000
299	0.9799	-19.30	3.80	1.25	0.00	0.00	0.00	0.00	0.0000
200	1.0402	-18 24	1 19	0.41	0.00	0.00	0.00	0.00	0.0000

Paramètres des lignes

N^{\bullet}	Du	Vers	R	X	В
1	37	9001	0.000060	0.000460	0.00000
2	9001	9005	0.000800	0.003480	0.00000
3	9001	9006	0.024390	0.436820	0.00000
4	9001	9012	0.036240	0.648980	0.00000
5	9005	9051	0.015780	0.374860	0.00000
6	9005	9052	0.015780	0.374860	0.00000
7	9005	9053	0.016020	0.380460	0.00000
8	9005	9054	0.000000	0.152000	0.00000
9	9005	9055	0.000000	0.800000	0.00000
10	9006	9007	0.055580	0.246660	0.00000
11	9006	9003	0.111180	0.493320	0.00000
12	9006	9003	0.111180	0.493320	0.00000
13	9012	9002	0.076220	0.432860	0.00000
14	9012	9002	0.076220	0.432860	0.00000

15	9002	9021	0.053700	0.070260	0.00000
16	9021	9023	1.106800	0.952780	0.00000
17	9021	9022	0.443640	2.815200	0.00000
18	9002	9024	0.507480	3.220200	0.00000
19	9023	9025	0.666880	3.944000	0.00000
20	9023	9026	0.611300	3.615200	0.00000
21	9007	9071	0.441200	2.966800	0.00000
22	9007	9072	0.307920	2.057000	0.00000
23	9007	9003	0.055800	0.246660	0.00000
24	9003	9031	0.736330	4.672400	0.00000
25	9003	9032	0.769780	4.884600	0.00000
26	9003	9033	0.757320	4.805600	0.00000
27	9003	9044	0.073780	0.063520	0.00000
28	9044	9004	0.038320	0.028940	0.00000
29	9004	9041	0.366140	2.456000	0.00000

30	9004	9042	1.059300	5.453600	0.00000
31	9004	9043	0.156700	1.699400	0.00000
32	9003	9034	0.130060	1.391200	0.00000
33	9003	9035	0.544840	3.457200	0.00000
34	9003	9036	0.154260	1 672900	0.00000
35	9003	9037	0.38/900	2 571200	0.00000
26	0003	0028	0.384200	2.071200	0.00000
27	9003	9038	0.441200	2.900800	0.00000
37	9012	9121	0.235520	0.990360	0.00000
- 38	9053	9533	0.000000	0.750000	0.00000
39	1	5	0.001000	0.006000	0.00000
40	2	6	0.001000	0.009000	0.00000
41	2	8	0.006000	0.027000	0.05400
42	3	7	0.000000	0.003000	0.00000
43	3	19	0.008000	0.069000	0.13900
44	3	150	0.001000	0.007000	0.00000
45	4	150	0.002000	0.019000	1 12700
46		10	0.002000	0.019000	0.01800
40	3	9	0.000000	0.029000	0.01800
47	/	12	0.001000	0.009000	0.07000
48	1	131	0.001000	0.007000	0.01400
49	8	11	0.013000	0.059500	0.03300
50	8	14	0.013000	0.042000	0.08100
51	9	11	0.006000	0.027000	0.01300
52	11	13	0.008000	0.034000	0.01800
53	12	21	0.002000	0.015000	0.11800
54	13	20	0.006000	0.034000	0.01600
55	1/	15	0.01/000	0.042000	0.09700
55	14	27	0.014000	0.042000	0.09700
50	13	3/	0.003000	0.246000	0.12100
5/	15	89	0.099000	0.248000	0.03500
58	15	90	0.096000	0.363000	0.04800
59	16	42	0.002000	0.022000	1.28000
60	19	21	0.002000	0.018000	0.03600
61	19	87	0.013000	0.080000	0.15100
62	20	22	0.016000	0.033000	0.01500
63	20	27	0.069000	0.186000	0.09800
64	21	24	0.004000	0.034000	0.28000
65	21	23	0.052000	0.111000	0.05000
66	22	25	0.032000	0.020000	0.01800
67	23	210	0.019000	0.039000	0.01800
6/	24	319	0.007000	0.068000	0.13400
68	25	26	0.036000	0.0/1000	0.03400
69	26	27	0.045000	0.120000	0.06500
70	26	320	0.043000	0.130000	0.01400
71	33	34	0.000000	0.063000	0.00000
72	33	38	0.002500	0.012000	0.01300
73	33	40	0.006000	0.029000	0.02000
74	33	41	0.007000	0.043000	0.02600
75	34	42	0.001000	0.008000	0.04200
76	35	72	0.012000	0.060000	0.00800
70	25	76	0.006000	0.000000	0.00000
70	33	70	0.000000	0.014000	0.00200
/8	35	11	0.010000	0.029000	0.00300
79	36	88	0.004000	0.027000	0.04300
80	37	38	0.008000	0.047000	0.00800
81	37	40	0.022000	0.064000	0.00700
82	37	41	0.010000	0.036000	0.02000
83	37	49	0.017000	0.081000	0.04800
84	37	89	0.102000	0.254000	0.03300
85	37	90	0.047000	0.127000	0.01600
86	38	41	0.008000	0.037000	0.02000
87	38	43	0.032000	0.087000	0.04000
88	30	12	0.000600	0.006400	0.40400
80	40	42	0.000000	0.154000	0.40400
09	40	40	0.020000	0.134000	0.02200
90	41	42	0.000000	0.029000	0.00000
91	41	49	0.065000	0.191000	0.02000
92	41	51	0.031000	0.089000	0.03600
93	42	46	0.002000	0.014000	0.80600
94	43	44	0.026000	0.072000	0.03500
95	43	48	0.095000	0.262000	0.03200
96	43	53	0.013000	0.039000	0.01600
97	44	47	0.027000	0.084000	0.03900
98	44	54	0.028000	0.084000	0.03700
99	45	60	0.007000	0.041000	0.31200
100	45	74	0.000,000	0.054000	0.41100
100	16	01	0.005000	0.034000	0.41100
101	40	<u>61</u>	0.003000	0.042000	0.09000
102	4/	/3	0.052000	0.145000	0.07300
103	47	113	0.043000	0.118000	0.01300

104	48	107	0.025000	0.062000	0.00700
104	49	51	0.023000	0.094000	0.00700
106	51	52	0.037000	0.109000	0.04900
107	52	55	0.027000	0.080000	0.03600
108	53	54	0.025000	0.073000	0.03500
109	54	55	0.035000	0.103000	0.04700
110	55	57	0.065000	0.169000	0.08200
111	57	58	0.046000	0.080000	0.03600
112	57	63	0.159000	0.537000	0.07100
113	58	59	0.009000	0.026000	0.00500
114	59	61	0.002000	0.013000	0.01500
115	60	64	0.009000	0.065000	0.48300
117	62	144	0.010000	0.103000	0.20300
118	63	526	0.026500	0.172000	0.02600
119	69	211	0.051000	0.232000	0.02800
120	69	79	0.051000	0.157000	0.02300
121	70	71	0.032000	0.100000	0.06200
122	70	528	0.020000	0.123400	0.02800
123	71	72	0.036000	0.131000	0.06800
124	71	73	0.034000	0.099000	0.04700
125	72	77	0.018000	0.087000	0.01100
126	72	531	0.025600	0.193000	0.00000
127	73	76	0.021000	0.057000	0.03000
128	73	79	0.018000	0.052000	0.01800
129	74	88	0.004000	0.027000	0.05000
130	74	562 77	0.028600	0.201300	0.37900
131	70	79	0.010000	0.043000	0.00400
132	77	80	0.001000	0.000000	0.00700
134	77	552	0.089100	0.267600	0.02900
135	77	609	0.078200	0.212700	0.02200
136	78	79	0.006000	0.022000	0.01100
137	78	84	0.000000	0.036000	0.00000
138	79	211	0.099000	0.375000	0.05100
139	80	211	0.022000	0.107000	0.05800
140	81	194	0.003500	0.033000	0.53000
141	81	195	0.003500	0.033000	0.53000
142	85	86	0.008000	0.064000	0.12800
143	86	87	0.012000	0.093000	0.18300
144	86	323	0.006000	0.048000	0.09200
145	00	91	0.047000	0.119000	0.01400
140	90	92	0.032000	0.253000	0.02400
148	91	97	0.022000	0.077000	0.03900
149	92	103	0.019000	0.144000	0.01700
150	92	105	0.017000	0.092000	0.01200
151	94	97	0.278000	0.427000	0.04300
152	97	100	0.022000	0.053000	0.00700
153	97	102	0.038000	0.092000	0.01200
154	97	103	0.048000	0.122000	0.01500
155	98	100	0.024000	0.064000	0.00700
156	98	102	0.034000	0.121000	0.01500
15/	99	107	0.053000	0.155000	0.01/00
150	99	108	0.002000	0.004000	0.00200
160	99	110	0.050000	0.174000	0.02200
161	100	102	0.016000	0.038000	0.00400
162	102	104	0.043000	0.064000	0.02700
163	103	105	0.019000	0.062000	0.00800
164	104	108	0.076000	0.130000	0.04400
165	104	322	0.044000	0.124000	0.01500
166	105	107	0.012000	0.088000	0.01100
167	105	110	0.157000	0.400000	0.04700
168	108	324	0.074000	0.208000	0.02600
169	109	110	0.070000	0.184000	0.02100
170	109	113	0.100000	0.274000	0.03100
1/1	109	114	0.109000	0.393000	0.05000
172	110	112	0.142000	0.404000	0.03000
174	112	122	0.003600	0.019900	0.00400
175	116	120	0.002000	0.104900	0.00100
176	117	118	0.000100	0.001800	0.01700
177	118	119	0.000000	0.027100	0.00000

178	118	1201	0.000000	0.616300	0.00000
179	1201	120	0.000000	-0.369700	0.00000
180	118	121	0.002200	0.291500	0.00000
181	119	120	0.000000	0.033900	0.00000
182	119	121	0.000000	0.058200	0.00000
183	122	123	0.080800	0.234400	0.02900
184	122	125	0.096500	0.366900	0.05400
185	123	124	0.036000	0.107600	0.11700
186	123	125	0.047600	0.141400	0.14900
187	125	126	0.000600	0.019700	0.00000
188	126	127	0.005900	0.040500	0.25000
189	126	129	0.011500	0.110600	0.18500
190	126	132	0.019800	0.168800	0.32100
191	126	157	0.005000	0.050000	0.33000
192	126	158	0.007700	0.053800	0.33500
193	126	169	0.016500	0.115700	0.17100
194	127	128	0.005900	0.057700	0.09500
195	127	134	0.004900	0.033600	0.20800
196	127	168	0.005900	0.057700	0.09500
197	128	130	0.007800	0.077300	0.12600
198	128	133	0.002600	0.019300	0.03000
199	129	130	0.007600	0.075200	0.12200
200	129	133	0.002100	0.018600	0.03000
201	130	132	0.001600	0.016400	0.02600
202	130	151	0.001700	0.016500	0.02600
203	130	167	0.007900	0.079300	0.12700
204	130	168	0.007800	0.078400	0.12500
205	133	137	0.001700	0.011700	0.28900
206	133	168	0.002600	0.019300	0.03000
207	133	169	0.002100	0.018600	0.03000
208	133	171	0.000200	0.010100	0.00000
209	134	135	0.004300	0.029300	0.18000
210	134	184	0.003900	0.038100	0.25800
211	135	136	0.009100	0.062300	0.38500
212	136	137	0.012500	0.089000	0.54000
213	136	152	0.005600	0.039000	0.95300
214	137	140	0.001500	0.011400	0.28400
215	137	181	0.000500	0.003400	0.02100
216	137	186	0.000700	0.015100	0.12600
217	137	188	0.000500	0.003400	0.02100
218	139	172	0.056200	0.224800	0.08100
219	140	141	0.012000	0.083600	0.12300
220	140	142	0.015200	0.113200	0.68400
221	140	145	0.046800	0.336900	0.51900
222	140	146	0.043000	0.303100	0.46300
223	140	147	0.048900	0.349200	0.53800
224	140	182	0.001300	0.008900	0.11900
225	141	146	0.029100	0.226700	0.34200
226	142	143	0.006000	0.057000	0.76700
227	143	145	0.007500	0.077300	0.11900
228	143	149	0.012700	0.090900	0.13500
229	145	146	0.008500	0.058800	0.08700
230	145	149	0.021800	0.151100	0.22300
231	146	147	0.007300	0.050400	0.07400
232	148	178	0.052300	0.152600	0.07400
233	148	179	0.137100	0.391900	0.07600
234	152	153	0.013700	0.095700	0.14100
235	153	161	0.005500	0.028800	0.19000
236	154	156	0.174600	0.316100	0.04000
237	154	183	0.080400	0.305400	0.04500
238	155	161	0.011000	0.056800	0.38800
239	157	159	0.000800	0.009800	0.06900
240	158	159	0.002900	0.028500	0.19000
241	158	160	0.006600	0.044800	0.27700
242	162	164	0.002400	0.032600	0.23600
243	162	165	0.001800	0.024500	1.66200
244	163	164	0.004400	0.051400	3.59700
245	165	166	0.000200	0.012300	0.00000
246	167	169	0.001800	0.017800	0.02900
247	172	173	0.066900	0.484300	0.06300
248	172	174	0.055800	0.221000	0.03100
249	173	174	0.080700	0.333100	0.04900
250	173	175	0.073900	0.307100	0.04300
251	173	176	0.179900	0.501700	0.06900

252	175	176	0.090400	0.362600	0.04800
253	175	179	0.077000	0.309200	0.05400
254	176	177	0.025100	0.082900	0.04700
255	177	178	0.022200	0.084700	0.05000
256	178	179	0.049800	0.185500	0.02900
257	178	180	0.006100	0.029000	0.08400
258	181	138	0.000400	0.020200	0.00000
259	181	187	0.000400	0.008300	0.11500
260	184	185	0.002500	0.024500	0.16400
261	186	188	0.000700	0.008600	0.11500
2.62	187	188	0.000700	0.008600	0.11500
263	188	138	0.000400	0.020200	0.00000
264	189	208	0.033000	0.095000	0.00000
265	189	200	0.046000	0.069000	0.00000
265	190	20)	0.000400	0.002200	6 20000
267	190	240	0.000400	0.002200	0.20000
268	101	102	0.000000	0.027300	0.00000
208	191	225	0.003000	0.048000	0.00000
209	192	225	0.002000	0.009000	0.00000
270	195	203	0.043000	0.005000	0.00000
2/1	193	208	0.048000	0.127000	0.00000
272	194	219	0.003100	0.028600	0.50000
273	194	664	0.002400	0.035500	0.36000
274	195	219	0.003100	0.028600	0.50000
275	196	197	0.014000	0.040000	0.00400
276	196	210	0.030000	0.081000	0.01000
277	197	198	0.010000	0.060000	0.00900
278	197	211	0.015000	0.040000	0.00600
279	198	202	0.332000	0.688000	0.00000
280	198	203	0.009000	0.046000	0.02500
281	198	210	0.020000	0.073000	0.00800
282	198	211	0.034000	0.109000	0.03200
283	199	200	0.076000	0.135000	0.00900
284	199	210	0.040000	0.102000	0.00500
285	200	210	0.081000	0.128000	0.01400
286	201	204	0.124000	0.183000	0.00000
287	203	211	0.010000	0.059000	0.00800
288	204	205	0.046000	0.068000	0.00000
289	205	206	0.302000	0.446000	0.00000
290	206	207	0.073000	0.093000	0.00000
291	206	208	0.240000	0.421000	0.00000
292	212	215	0.013900	0.077800	0.08600
202	212	213	0.002500	0.0778000	0.00000
201	213	214	0.002300	0.038000	0.00000
294	214	213	0.001700	0.010300	0.02000
295	214	242	0.001500	0.010800	0.00200
290	215	210	0.004300	0.024900	0.02000
297	210	217	0.004000	0.049700	0.01800
298	217	218	0.000000	0.045600	0.00000
299	217	219	0.000500	0.017700	0.02000
300	217	220	0.002/00	0.039500	0.83200
301	219	237	0.000300	0.001800	5.20000
302	220	218	0.003700	0.048400	0.43000
303	220	221	0.001000	0.029500	0.50300
304	220	238	0.001600	0.004600	0.40200
305	221	223	0.000300	0.001300	1.00000
306	222	237	0.001400	0.051400	0.33000
307	224	225	0.010000	0.064000	0.48000
308	224	226	0.001900	0.008100	0.86000
309	225	191	0.001000	0.061000	0.000000
310	226	231	0.000500	0.021200	0.00000
311	227	231	0.000900	0.047200	0.18600
312	228	229	0.001900	0.008700	1.28000
313	228	231	0.002600	0.091700	0.00000
314	228	234	0.001300	0.028800	0.81000
315	229	190	0.000000	0.062600	0.00000
316	231	232	0.000200	0.006900	1.36400
317	231	237	0.000100	0.000600	3.57000
318	232	233	0.001700	0.048500	0.00000
319	234	235	0.000200	0.025900	0.14400
320	234	237	0.000600	0.027200	0.00000
320	235	237	0.000200	0.000600	0.80000
321	233	230	0.000500	0.015400	0.00000
322	2 (TT 1	4.11	0.0000000	0.010400	0.00000
373	240	281	0.000300	0.004300	0.00900
323	240	281	0.000300	0.004300	0.00900
323 324	240 242 242	281 245	0.000300 0.008200	0.004300 0.085100	0.00900

326 243 244 0.012700 0.035500 0.00000 327 243 245 0.032600 0.180400 0.00000 328 244 246 0.015700 0.055100 0.00000 329 245 246 0.015700 0.073200 0.00000 330 245 247 0.026800 0.128500 0.00000 331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.00000 0.052000 0.00000 338 7 5 0.00000 0.039000 0.00000 340 10 11 0.000000 0.038000 0.00000 342 15 17 0.019400 0.031100 0.00000	-					
327 243 245 0.032600 0.180400 0.00000 328 244 246 0.019500 0.055100 0.00000 329 245 246 0.015700 0.073200 0.00000 330 245 247 0.026800 0.211900 0.00000 331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 335 3 1 0.00000 0.052000 0.00000 336 3 2 0.00000 0.039000 0.00000 338 7 5 0.00000 0.039000 0.00000 340 10 11 0.00000 0.039000 0.00000 341 12 10 0.000000 0.031100 0.00000 343 16 15 0.00000 0.047000 0.00000	326	243	244	0.012700	0.035500	0.00000
328 244 246 0.019500 0.055100 0.00000 329 245 246 0.015700 0.073200 0.00000 330 245 247 0.036000 0.211900 0.00000 331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.000000 0.052000 0.00000 336 3 2 0.00000 0.039000 0.00000 338 7 5 0.000000 0.039000 0.00000 340 10 11 0.000000 0.039000 0.00000 341 12 10 0.000000 0.038000 0.00000 344 21 20 0.000000 0.047000 0.000000 <	327	243	245	0.032600	0.180400	0.00000
329 245 246 0.015700 0.073200 0.00000 330 245 247 0.036000 0.211900 0.00000 331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 332 247 248 0.042800 0.121500 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.00000 0.052000 0.00000 336 7 5 0.00000 0.039000 0.00000 338 7 5 0.00000 0.039000 0.00000 340 10 11 0.000000 0.053000 0.00000 341 12 10 0.000000 0.053000 0.00000 342 15 17 0.019400 0.031100 0.00000 342 15 0.000000 0.044000 0.00000 <td< td=""><td>328</td><td>244</td><td>246</td><td>0.019500</td><td>0.055100</td><td>0.00000</td></td<>	328	244	246	0.019500	0.055100	0.00000
330 245 247 0.036000 0.211900 0.00000 331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.000000 0.052000 0.00000 336 3 2 0.000000 0.052000 0.00000 337 3 4 0.000000 0.039000 0.00000 338 7 5 0.000000 0.039000 0.00000 340 10 11 0.000000 0.053000 0.00000 341 12 10 0.003000 0.038000 0.00000 344 21 20 0.000000 0.04000 0.00000 345 24 23 0.000000 0.021000 0.00000	329	245	246	0.015700	0.073200	0.00000
331 246 247 0.026800 0.128500 0.00000 332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.000000 0.052000 0.00000 336 3 2 0.000000 0.052000 0.00000 337 3 4 0.000000 0.039000 0.00000 339 7 5 0.000000 0.039000 0.00000 340 10 11 0.000000 0.039000 0.00000 341 12 10 0.000000 0.038000 0.00000 343 16 15 0.01000 0.038000 0.00000 344 21 20 0.000000 0.047000 0.00000 345 24 23 0.000000 0.021000 0.00000	330	245	247	0.036000	0.211900	0.00000
332 247 248 0.042800 0.121500 0.00000 333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.00000 0.052000 0.00000 336 3 2 0.00000 0.052000 0.00000 337 3 4 0.00000 0.039000 0.00000 339 7 6 0.00000 0.039000 0.00000 340 10 11 0.000000 0.053000 0.00000 341 12 10 0.000000 0.038000 0.00000 343 16 15 0.001000 0.038000 0.00000 344 21 20 0.000000 0.044000 0.00000 345 24 23 0.000000 0.021000 0.00000 345 46 0.000000 0.021000 0.00000 347	331	246	247	0.026800	0.128500	0.00000
333 248 249 0.035100 0.100400 0.00000 334 249 250 0.061600 0.185700 0.00000 335 3 1 0.00000 0.052000 0.00000 336 3 2 0.00000 0.052000 0.00000 337 3 4 0.00000 0.039000 0.00000 338 7 5 0.00000 0.039000 0.00000 340 10 11 0.00000 0.053000 0.00000 341 12 10 0.000000 0.053000 0.00000 343 16 15 0.01000 0.038000 0.00000 344 21 20 0.00000 0.044000 0.00000 345 24 23 0.00000 0.044000 0.00000 345 46 0.00000 0.021400 0.00000 344 45 46 0.00000 0.024000 0.00000 349	332	247	248	0.042800	0.121500	0.00000
334 249 250 0.061600 0.185700 0.00000 335 3 1 0.00000 0.052000 0.00000 336 3 2 0.00000 0.052000 0.00000 337 3 4 0.00000 0.039000 0.00000 338 7 5 0.00000 0.039000 0.00000 339 7 6 0.00000 0.039000 0.00000 340 10 11 0.000000 0.053000 0.00000 341 12 10 0.000000 0.053000 0.00000 341 12 10 0.000000 0.038000 0.00000 344 21 20 0.000000 0.047000 0.00000 345 24 23 0.000000 0.047000 0.00000 345 24 23 0.000000 0.02000 0.00000 344 45 46 0.000000 0.020000 0.000000	333	248	249	0.035100	0.100400	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	334	249	250	0.061600	0.185700	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	335	3	1	0.000000	0.052000	0.00000
337 3 4 0.00000 0.005000 0.00000 338 7 5 0.00000 0.039000 0.00000 339 7 6 0.00000 0.039000 0.00000 340 10 11 0.000000 0.039000 0.00000 341 12 10 0.000000 0.053000 0.00000 342 15 17 0.019400 0.031100 0.00000 342 15 17 0.019400 0.038000 0.00000 344 21 20 0.000000 0.044000 0.00000 345 24 23 0.000000 0.047000 0.00000 346 35 0.000000 0.021000 0.00000 344 45 44 0.000000 0.02000 0.00000 348 45 46 0.000000 0.02000 0.00000 350 63 64 0.000000 0.024400 0.00000 351	336	3	2	0.000000	0.052000	0.00000
338 7 5 0.000000 0.039000 0.00000 339 7 6 0.00000 0.039000 0.00000 340 10 11 0.000000 0.089000 0.00000 341 12 10 0.000000 0.053000 0.00000 342 15 17 0.019400 0.031100 0.00000 342 15 17 0.019400 0.038000 0.00000 343 16 15 0.000000 0.014000 0.00000 345 24 23 0.000000 0.047000 0.00000 346 36 35 0.000000 0.021000 0.00000 344 24 23 0.000000 0.020000 0.00000 344 45 46 0.000000 0.020000 0.00000 344 45 46 0.000000 0.024000 0.00000 350 63 64 0.000000 0.024400 0.00000	337	3	4	0.000000	0.005000	0.00000
339 7 6 0.00000 0.039000 0.00000 340 10 11 0.00000 0.089000 0.00000 341 12 10 0.00000 0.053000 0.00000 342 15 17 0.019400 0.031100 0.00000 343 16 15 0.001000 0.038000 0.00000 344 21 20 0.000000 0.014000 0.00000 345 24 23 0.000000 0.047000 0.00000 346 36 35 0.000000 0.047000 0.00000 344 24 23 0.000000 0.021000 0.00000 346 36 35 0.000000 0.021000 0.00000 344 45 46 0.000000 0.021000 0.00000 350 63 64 0.000000 0.02400 0.00000 351 73 74 0.000000 0.048000 0.00000	338	7	5	0.000000	0.039000	0.00000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	339	7	6	0.000000	0.039000	0.00000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	340	10	11	0.000000	0.089000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341	12	10	0.000000	0.053000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	342	15	17	0.019400	0.031100	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	343	16	15	0.001000	0.038000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	344	21	20	0.000000	0.014000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	345	24	23	0.000000	0.064000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	346	36	35	0.000000	0.047000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	347	45	44	0.000000	0.020000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	348	45	46	0.000000	0.021000	0.00000
350 63 64 0.000000 0.038000 0.00000 351 73 74 0.000000 0.024400 0.00000 352 81 88 0.000000 0.020000 0.00000 353 85 99 0.000000 0.048000 0.00000 354 86 102 0.000000 0.048000 0.00000 355 87 94 0.000000 0.046000 0.00000 356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 359 122 157 0.000500 0.018000 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.04200 0.00000 362 132 170 0.001000 0.049800 -0.08700 365 143 144 0.002400 0.049800 -0.08700 <td>349</td> <td>62</td> <td>61</td> <td>0.000000</td> <td>0.059000</td> <td>0.00000</td>	349	62	61	0.000000	0.059000	0.00000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	350	63	64	0.000000	0.038000	0.00000
352 81 88 0.000000 0.020000 0.00000 353 85 99 0.000000 0.048000 0.00000 354 86 102 0.000000 0.048000 0.00000 355 87 94 0.000000 0.046000 0.00000 355 87 94 0.000000 0.149000 0.00000 356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 358 121 115 0.000000 0.028000 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 361 130 150 0.000000 0.040200 0.00000 362 141 174 0.002400 0.049800 -0.08700 365 143 144 0.001300 0.037100 0.00000<	351	73	74	0.000000	0.024400	0.00000
353 85 99 0.000000 0.048000 0.00000 354 86 102 0.000000 0.048000 0.00000 355 87 94 0.000000 0.046000 0.00000 355 87 94 0.000000 0.046000 0.00000 356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 358 121 115 0.000000 0.028000 0.00000 359 122 157 0.000500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 363 141 174 0.002400 0.040200 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.001300 0.371100 0.0000	352	81	88	0.000000	0.020000	0.00000
354 86 102 0.000000 0.048000 0.00000 355 87 94 0.000000 0.046000 0.00000 356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 358 121 115 0.00000 0.28000 0.00000 359 122 157 0.00500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 361 130 150 0.001000 0.040200 0.00000 363 141 174 0.002400 0.06300 0.00000 364 142 175 0.002400 0.08300 0.00000 364 143 144 0.001300 0.37100 0.00000 366 143 148 0.001300 0.037100 0.00000 </td <td>353</td> <td>85</td> <td>99</td> <td>0.000000</td> <td>0.048000</td> <td>0.00000</td>	353	85	99	0.000000	0.048000	0.00000
355 87 94 0.000000 0.046000 0.00000 356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 358 121 115 0.00000 0.28000 0.00000 359 122 157 0.000500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.033300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.00500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00	354	86	102	0.000000	0.048000	0.00000
356 114 207 0.000000 0.149000 0.00000 357 116 124 0.005200 0.017400 0.00000 358 121 115 0.00000 0.028000 0.00000 359 122 157 0.000500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 361 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.00000 0.033300 0.00000 367 145 180 0.00500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.	355	87	94	0.000000	0.046000	0.00000
357 116 124 0.005200 0.017400 0.00000 358 121 115 0.00000 0.028000 0.00000 359 122 157 0.000500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.00000 0.033300 0.00000 367 145 180 0.00500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	356	114	207	0.000000	0.149000	0.00000
358 121 115 0.000000 0.028000 0.00000 359 122 157 0.000500 0.019500 0.00000 360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.033300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	357	116	124	0.005200	0.017400	0.00000
359 122 157 0.000500 0.019500 0.00000 360 130 131 0.00000 0.018000 0.00000 361 130 150 0.00000 0.014000 0.00000 361 130 150 0.00000 0.014000 0.00000 362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.083300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	358	121	115	0.000000	0.028000	0.00000
360 130 131 0.000000 0.018000 0.00000 361 130 150 0.000000 0.014000 0.00000 362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.033300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	359	122	157	0.000500	0.019500	0.00000
361 130 150 0.000000 0.014000 0.00000 362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.083300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	360	130	131	0.000000	0.018000	0.00000
362 132 170 0.001000 0.040200 0.00000 363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.00000 0.083300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	361	130	150	0.000000	0.014000	0.00000
363 141 174 0.002400 0.060300 0.00000 364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.000000 0.083300 0.00000 366 143 144 0.001300 0.037100 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	362	132	170	0.001000	0.040200	0.00000
364 142 175 0.002400 0.049800 -0.08700 365 143 144 0.00000 0.083300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	363	141	174	0.002400	0.060300	0.00000
365 143 144 0.000000 0.083300 0.00000 366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	364	142	175	0.002400	0.049800	-0.08700
366 143 148 0.001300 0.037100 0.00000 367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	365	143	144	0.000000	0.083300	0.00000
367 145 180 0.000500 0.018200 0.00000 368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	366	143	148	0.001300	0.037100	0.00000
368 151 170 0.001000 0.039200 0.00000 369 153 183 0.002700 0.063900 0.00000	367	145	180	0.000500	0.018200	0.00000
369 153 183 0.002700 0.063900 0.00000	368	151	170	0.001000	0.039200	0.00000
	369	153	183	0.002700	0.063900	0.00000

370 155 156 0.000800 0.025600 0.0000 371 159 117 0.00000 0.016000 0.0000 372 160 124 0.001200 0.039600 0.0000 373 163 137 0.001300 0.038400 -0.0576 374 164 155 0.000900 0.023100 -0.0336 375 182 139 0.000300 0.013100 0.00000	0 0 0 00
371 159 117 0.00000 0.016000 0.0000 372 160 124 0.001200 0.039600 0.0000 373 163 137 0.001300 0.038400 -0.0570 374 164 155 0.000900 0.023100 -0.0330 375 182 139 0.000300 0.013100 0.00000	0 0)0
372 160 124 0.001200 0.039600 0.0000 373 163 137 0.001300 0.038400 -0.0570 374 164 155 0.000900 0.023100 -0.0330 375 182 139 0.000300 0.013100 0.00000	0
373 163 137 0.001300 0.038400 -0.0570 374 164 155 0.000900 0.023100 -0.0330 375 182 139 0.000300 0.013100 0.00000)0
374 164 155 0.000900 0.023100 -0.0330 375 182 139 0.000300 0.013100 0.00000	
375 182 139 0.000300 0.013100 0.0000)0
	0
376 189 210 0.000000 0.252000 0.0000	0
377 193 196 0.00000 0.237000 0.0000	0
378 195 212 0.000800 0.036600 0.0000	0
379 200 248 0.000000 0.220000 0.0000	0
380 201 69 0.00000 0.098000 0.0000	0
381 202 211 0.000000 0.128000 0.0000	0
382 204 2040 0.020000 0.204000 -0.0120)0
383 209 198 0.026000 0.211000 0.0000	0
384 211 212 0.003000 0.012200 0.0000	0
385 218 219 0.001000 0.035400 -0.0100)0
386 223 224 0.001200 0.019500 -0.3640)0
387 229 230 0.001000 0.033200 0.0000	0
388 234 236 0.000500 0.016000 0.0000	0
389 238 239 0.000500 0.016000 0.0000	0
390 196 2040 0.000100 0.020000 0.0000	0
391 119 1190 0.001000 0.023000 0.0000	0
392 120 1200 0.000000 0.023000 0.0000	0
393 7002 2 0.001000 0.014600 0.0000	0
394 7003 3 0.000000 0.010540 0.0000	0
395 7061 61 0.00000 0.023800 0.0000	0
396 7062 62 0.000000 0.032140 0.0000	0
397 7166 166 0.00000 0.015400 0.0000	0
398 7024 24 0.000000 0.028900 0.0000	0
399 7001 1 0.000000 0.019530 0.0000	0
400 7130 130 0.000000 0.019300 0.0000	0
401 7011 11 0.000000 0.019230 0.0000	0
402 7023 23 0.000000 0.023000 0.0000	0
403 7049 49 0.00000 0.012400 0.0000	0
404 7139 139 0.000000 0.016700 0.0000	0
405 7012 12 0.000000 0.031200 0.0000	0
406 7017 17 0.000000 0.016540 0.0000	0
407 7039 39 0.00000 0.031590 0.0000	0
	0
408 7057 57 0.00000 0.053470 0.0000	
408 7057 57 0.000000 0.053470 0.0000 409 7044 44 0.00000 0.181810 0.0000	0
408 7057 57 0.000000 0.053470 0.0000 409 7044 44 0.00000 0.181810 0.0000 410 7055 55 0.000000 0.196070 0.0000	0 0

ANNEXE E : RESULTAT D'ECOULEMENT DE PUISSANCE

RÉSEAU IEEE 14 NŒUDS

	Sar	ns UPFC	UPFC Ligne 1		
Ligne n°	P (MW)	Q(Mvar)	P (MW)	Q(Mvar)	
1	156,88	-20,40	161,33	43,26	
2	75,51	3,85	66,51	4,63	
3	73,24	3,56	74,71	3,42	
4	56,13	-1,55	59,23	-2,25	
5	41,52	1,17	45,69	0,03	
6	-23,29	4,47	-21,91	3,86	
7	-61,16	15,82	-57,10	14,07	
8	28,07	-9,68	28,24	-9,69	
9	16,08	-0,43	16,18	-0,44	
10	44,09	12,47	43,82	12,52	
11	7,35	3,56	7,19	3,61	
12	7,79	2,50	7,77	2,51	
13	17,75	7,22	17,66	7,24	
14	0,00	-17,16	0,00	-17,14	
15	28,07	5,78	28,24	5,73	
16	5,23	4,22	5,39	4,17	
17	9,43	3,61	9,53	3,58	
18	-3,79	-1,62	-3,62	-1,67	
19	1,61	0,75	1,59	0,76	
20	5,64	1,75	5,54	1,78	
Nœud N°	V(p.u.)	Angle (rad)	V(p.u.)	Angle (rad)	
1	1,0600	0,0000	1,0600	0,0000	
2	1,0510	-0,2635	1,0511	-0,2431	
3	1,0569	-0,2581	1,0570	-0,2380	
4	1,0552	-0,2631	1,0552	-0,2433	
5	1,0504	-0,2645	1,0504	-0,2446	
6	1,0355	-0,2798	1,0356	-0,2596	
7	1,0450	-0,0870	1,0450	-0,0604	
8	1,0100	-0,2221	1,0100	-0,1983	
9	1,0177	-0,1800	1,0177	-0,1589	
10	1,0195	-0,1531	1,0197	-0,1340	
11	1,0700	-0,2482	1,0700	-0,2284	
12	1,0615	-0,2332	1,0616	-0,2124	
13	1,0900	-0,2332	1,0900	-0,2124	
14	1 0559	-0.2607	1 0560	-0.2402	

RÉSEAU IEEE 30 Nœuds

	Sa	Sans UPFC		UPFC en Ligne N°2		
Ligne N°	P(MW)	Q(Mvar)	P(MW)	Q(Mvar)		
1	173,31	-24,70	103,44	-7,00		
2	87.65	4.29	46.63	8.74		
3	43.65	4.75	12.10	3.22		
4	82.14	-3.85	148.61	23.64		
5	82.36	2.78	71.35	3.79		
6	60.38	1 38	36.46	3.18		
7	72.13	-15.91	104.15	2.16		
8	-14.78	11 /0	-25.07	12.25		
9	38.13	_2.78	-23,07	-2.36		
10	29.56	-2,78	20 11	9.69		
10	27,50	206	25,44	6.82		
11	15.84	-8,00	20,04	-0,82		
12	13,84	0,18	13,23	0,51		
15	0,00	-15,58	0,00	-13,41		
14	27,72	5,90	26,64	5,14		
15	44,19	14,41	46,19	20,00		
16	0,00	-10,31	0,00	-5,28		
17	7,86	2,40	8,07	2,35		
18	17,89	6,79	18,74	6,74		
19	7,24	3,34	8,19	3,37		
20	1,58	0,65	1,79	0,59		
21	3,69	1,43	4,62	1,44		
22	6,02	1,59	6,52	1,56		
23	2,78	0,61	3,27	0,57		
24	-6,73	-2,80	-6,23	-2,85		
25	9,03	3,71	8,52	3,74		
26	5,33	4,43	4,40	4,44		
27	15,79	10,01	15,64	9,97		
28	7,62	4,60	7,52	4,58		
29	-1,83	-1,43	-1,97	-1,46		
30	5,04	2,91	5,57	2,81		
31	5,74	3,06	5,51	3.01		
32	1.80	1.24	2.33	1.14		
33	-1.21	2.01	-0.91	1.90		
34	3.54	2.37	3.54	2.37		
35	-4.76	-0.37	-4.46	-0.48		
36	18.07	5.03	17.76	5.08		
37	6.19	1.67	6.19	1.67		
38	7.09	1,67	7 09	1,67		
39	3 70	0.61	3 70	0.61		
40	-0.55	-0.54	-0.68	-3.25		
41	18.67	0.11	18 50	2.81		
Nœud Nº	V(n u)	Angle(rad)	V(n u)	Angle(rad)		
1	1.06	0	1.06	0		
2	1,00	-0.09387	1,00	-0.05442		
3	1,075	-0 1314	1,0559	-0 02229		
<u> </u>	1,0212	_0 16106	1,0337	-0.07118		
5	1,0125	_0.24604	1,0270	-0.18614		
6	1,01	_0 10705	1,01	-0,10014		
7	1,0100	0.22432	1,0170	-0,11204		
/ Q	1,0020	_0.2050	1,0000	-0,13133		
0	1,01	0.24606	1,01	-0,12200		
10	1,0311	0.07201	1,0333	-0,10232		
10	1,0434	-0,2/301	1,0300	-0,10095		
11	1,062	-0,24000	1,082	-0,10232		
12	1,05/3	-0,26063	1,0641	-0,17192		
15	1,0/1	-0,26063	1,0/1	-0,1/192		
14	1,0425	-0,27619	1,0492	-0,18783		
15	1,0379	-0,277/9	1,0443	-0,1899		
16	1,0446	-0,2708	1,0506	-0,18362		
17	1,0402	-0,27664	1,0457	-0,19103		
18	1,0284	-0,28851	1,0344	-0,20154		
19	1.0259	-0.29154	1.0317	-0.20516		

Annexe E : résultats d'écoulement de puissance

20	1,0300	-0,28811	1,0356	-0,2021
21	1,0330	-0,28154	1,0383	-0,19651
22	1,0335	-0,28129	1,0389	-0,19624
23	1,0274	-0,2846	1,0336	-0,19772
24	1,0219	-0,28768	1,0276	-0,20223
25	1,0176	-0,2802	1,0232	-0,19597
26	1,0000	-0,28752	1,0056	-0,20321
27	1,0235	-0,27105	1,0290	-0,18762
28	1,0071	-0,20381	1,0125	-0,12222
29	1,0037	-0,2925	1,0093	-0,20884
30	0,9922	-0,3079	0,9979	-0,22407

RÉSEAU IEEE 57 NŒUDS

	Sans	UPFC	UPFC e	en ligne 15	Ligne 50	-21,0486	-13,699	-21,9231	-14,8705
Ligne n°	P(MW)	Q(Mvar)	P(MW)	Q(Mvar)	Ligne 51	3,8584	2,9297	4,1849	3,3516
Ligne 1	102,0883	74,997	36,1564	93,7398	Ligne 52	3,4647	4,0883	3,8549	4,7502
Ligne 2	97,7729	-4,6396	32,2777	14,5004	Ligne 53	-10,734	-3,5066	-13,4609	-5,6037
Ligne 3	60,2128	-8,1793	56,1464	-7,8938	Ligne 54	9,187	3,5302	8,8578	3,0213
Ligne 4	13,7984	-4,4319	12,5613	-3,7294	Ligne 55	8,8752	3,2721	8,5613	2,7244
Ligne 5	14,1569	-5,0935	12,2754	-4,3804	Ligne 56	-11,5941	-2,9518	-11,1583	-2,3662
Ligne 6	-17,7786	-1,7105	-19,7406	-2,3386	Ligne 57	-24,3455	5,2301	-30,4972	1,4809
Ligne 7	-42,5015	-6,5643	-43,6075	-6,2609	Ligne 58	37,3329	-0,72912	43,788	3,9671
Ligne 8	178,0287	19,8259	176,9214	19,9423	Ligne 59	47,8945	27,3968	50,8402	30,0174
Ligne 9	17,1711	-9,2251	20,2295	-11,2996	Ligne 60	47,8945	25,4711	50,8402	27,9282
Ligne 10	12,903	2,0685	8,2496	-7,7419	Ligne 61	17,59	12,4345	20,4844	14,7584
Ligne 11	2,5489	-15,8538	7,4908	-16,8202	Ligne 62	0,0818	-7,3769	3,1791	-5,6838
Ligne 12	2,3159	-1,9601	-1,8902	-11,1504	Ligne 63	9,6649	4,4316	14,0223	6,7506
Ligne 13	-10,3547	22,3375	-30,0129	6,7516	Ligne 64	-11,4194	-6,2031	-7,1512	-4,0267
Ligne 14	-48,892	4,8896	-72,719	-13,8692	Ligne 65	29,6429	12,5134	25,2377	9,9272
Ligne 15	148,9854	33,7868	76,4599	40,376	Ligne 66	32,4265	33,8035	31,3397	32,9519
Ligne 16	79,2472	-0,86978	53,1719	0,33121	Ligne 67	17,9168	2,5506	18,1182	2,6964
Ligne 17	93,3428	3,9357	67,2638	5,0655	Ligne 68	12,5541	-0,24954	12,7464	-0,11541
Ligne 18	33,7675	-18,1905	-25,2749	-75,3266	Ligne 69	-7,5709	-4,4717	-7,3819	-4,3206
Ligne 19	13,9616	2,4399	13,5701	2,0242	Ligne 70	-11,825	-6,062	-11,6271	-5,9
Ligne 20	17,8728	1,1945	17,3716	0,66107	Ligne 71	13,5941	4,8545	13,1583	4,168
Ligne 21	0,66812	-6,2362	-0,54521	-5,4822	Ligne 72	-36,5205	3,2819	-42,7469	-0,60715
Ligne 22	-77,9353	-12,4106	-77,9108	-10,9266	Ligne 73	3,4557	4,0742	3,8437	4,7328
Ligne 23	-17,6045	-20,0896	-10,1979	-19,8257	Ligne 74	-5,4294	0,66271	-5,0058	1,1032
Ligne 24	-9,9254	-4,391	-13,7968	-12,9294	Ligne 75	-1,5781	1,4628	-1,2854	1,9742
Ligne 25	-0,48608	60,3512	-36,9856	42,6519	Ligne 76	3,8526	2,9206	4,1781	3,3409
Ligne 26	-33,3972	8,8191	-8,9663	0,14347	Ligne 77	-2,8474	0,60568	-2,5219	0,97413
Ligne 27	-48,4619	9,1667	-24,0326	0,55231	Ligne 78	-4,6582	-10,5324	-2,3681	-9,4929
Ligne 28	-68,8359	-9,5999	-91,4801	-27,8917	Ligne 79	-17,2245	-19,3939	-17,0028	-20,0022
Ligne 29	4,6343	1,3852	3,7416	0,63491	Ligne 80	18,9331	10,3818	18,7232	10,1909
Ligne 30	1,2266	0,62514	0,37564	-0,06314	Nœud n°	V(p.u.)	angle (rad)	V(p.u.)	angle (rad)
Ligne 31	1,0791	0,39457	1,9248	1,1028	Nœud 1	1,04	0	1,04	0
Ligne 32	-1,0791	-0,39457	-1,9248	-1,1028	Nœud 2	1,01	-0,02072749	1,01	-0,00168
Ligne 33	9,654	3,1105	11,5327	4,4954	Nœud 3	0,985	-0,10445908	0,985	-0,02367
Ligne 34	3,344	0,99512	5,2185	2,3737	Nœud 4	0,98078	-0,12799687	0,9811	-0,04563
Ligne 35	7,0674	1,714	6,9788	1,4697	Nœud 5	0,9765	-0,1490872	0,97662	-0,06456
Ligne 36	6,7916	1,6472	6,7065	1,4124	Nœud 6	0,98	-0,15131486	0,98	-0,06574
Ligne 37	-10,5366	-1,5529	-8,5215	0,29031	Nœud 7	0,9842	-0,1326022	0,98529	-0,0451
Ligne 38	-10,5366	-1,6114	-8,5215	0,25419	Nœud 8	1,005	-0,07811448	1,005	0,00955
Ligne 39	-20,0405	-2,4253	-17,9476	-0,43979	Nœud 9	0,98	-0,16719977	0,98	-0,079
Ligne 40	-24,9019	-5,1288	-22,751	-3,0538	Nœud 10	0,98624	-0,19973366	0,98886	-0,11755
Ligne 41	60,0908	13,0263	58,0888	10,8381	Nœud 11	0,97396	-0,17781646	0,98366	-0,08805
Ligne 42	7,5591	4,629	7,3853	4,4891	Nœud 12	1,015	-0,18266427	1,015	-0,10976
Ligne 43	3,8492	2,6646	3,6853	2,5394	Nœud 13	0,97889	-0,17101661	0,99576	-0,08047
Ligne 44	-2,0279	-0,35293	-2,1821	-0,46326	Nœud 14	0,97018	-0,16311079	0,99666	-0,06638
Ligne 45	3,8079	1,9072	3,8075	1,9069	Nœud 15	0,98803	-0,12542904	1,0283	-0,02207
Ligne 46	7,4603	3,7858	7,6169	3,8955	Nœud 16	1,0134	-0,15453859	1,0156	-0,10247
Ligne 47	-7,4603	-3,7858	-7,6169	-3,8955	Nœud 17	1,0175	-0,09412848	1,02	-0,06705
Ligne 48	-13,4993	-6,5477	-13,6556	-6,6414	Nœud 18	1,0007	-0,20461636	1,0031	-0,11993
Ligne 49	-17,0672	-10,614	-17,611	-11,3584	Nœud 19	0,97016	-0,23072894	0,98183	-0,14299

Annexe E : résultats d'écoulement de puissance

Nœud 20	0,96379	-0,23452834	0,98103	-0,14487
Nœud 21	1,0085	-0,22553922	1,0321	-0,12947
Nœud 22	1,0097	-0,22458501	1,0348	-0,12812
Nœud 23	1,0083	-0,22572413	1,033	-0,12934
Nœud 24	0,99923	-0,2318733	1,0176	-0,13759
Nœud 25	0,98252	-0,31702138	1,0039	-0,21843
Nœud 26	0,95882	-0,22645157	0,97555	-0,13336
Nœud 27	0,98154	-0,20084836	0,98956	-0,1105
Nœud 28	0,99668	-0,18284569	1,0013	-0,09349
Nœud 29	1,0102	-0,17046362	1,0127	-0,08158
Nœud 30	0,96266	-0,32655477	0,98492	-0,22739
Nœud 31	0,93593	-0,33813962	0,95996	-0,23801
Nœud 32	0,94987	-0,32293679	0,97524	-0,22292
Nœud 33	0,94758	-0,32362933	0,97301	-0,22357
Nœud 34	0,9592	-0,24682144	0,98413	-0,14911
Nœud 35	0,96621	-0,24258593	0,99113	-0,14501
Nœud 36	0,97583	-0,23785151	1,0006	-0,14046
Nœud 37	0,98489	-0,23455626	1,0099	-0,13734
Nœud 38	1,0128	-0,22214802	1,0389	-0,12542

Nœud 39	0,98282	-0,235343	1,0076	-0,13812
Nœud 40	0,97281	-0,23825971	0,99725	-0,14084
Nœud 41	0,99622	-0,24556021	1,0101	-0,15186
Nœud 42	0,96653	-0,27096107	0,98336	-0,17652
Nœud 43	1,0096	-0,1980712	1,0208	-0,10726
Nœud 44	1,0168	-0,20683006	1,0466	-0,10859
Nœud 45	1,036	-0,16171174	1,0737	-0,06154
Nœud 46	1,0598	-0,19391419	1,088	-0,0974
Nœud 47	1,0333	-0,21825791	1,06	-0,12177
Nœud 48	1,0274	-0,21998666	1,0532	-0,12364
Nœud 49	1,0363	-0,22566308	1,0574	-0,13138
Nœud 50	1,0233	-0,2339771	1,0387	-0,1428
Nœud 51	1,0523	-0,2186382	1,0568	-0,13355
Nœud 52	0,98037	-0,20056924	0,98237	-0,11174
Nœud 53	0,97095	-0,2137398	0,97268	-0,12495
Nœud 54	0,99632	-0,20426921	0,99728	-0,11566
Nœud 55	1,0308	-0,18841919	1,031	-0,09999
Nœud 56	0,96837	-0,28024674	0,98763	-0,18553
Nœud 57	0,96483	-0,28929343	0,98571	-0,194

RÉSEAU IEEE 118 NŒUDS

	Sans UPFC		UPFC en ligne 97		
Ligne N°	P(MW)	Q(Mvar)	P(MW)	Q(Mvar)	
1	-12,3528	-13,0412	-12,3577	-13,0396	
2	-38,6472	-17,0629	-38,6423	-17,0642	
3	-103,2298	-26,792	-103,2039	-26,792	
4	-68,1105	-14,4889	-68,0992	-14,492	
5	88,4704	4,1065	88,4485	4,1093	
6	35,5399	-4,7715	35,5185	-4,7667	
7	-440,635	-89,7336	-440,635	-89,7336	
8	338,4747	124,7268	338,3859	124,7208	
9	-445,2547	-24,4289	-445,2547	-24,4289	
10	64,2298	-0,2177	64,2039	-0,21181	
11	77,2247	2,966	77,1954	2,9716	
12	34,2947	-35,1367	34,2794	-35,1298	
13	-32,4504	-20,0064	-32,4553	-20,0049	
14	-9,7868	-12,396	-9,7931	-12,3941	
15	16,4798	-6,5052	16,4584	-6,5001	
16	35,0852	11,4083	35,0469	11,4182	
17	18,3144	2,623	18,2692	2,6355	
18	0,76814	-3,8436	0,73045	-3,8318	
19	4,2381	3,1405	4,1933	3,1542	
20	7,5078	4,3032	7,505	4,2982	
21	-103,8568	-24,2685	-103,6037	-24,3909	
22	-17,5106	-3,6847	-17,5134	-3,6895	
23	80,2702	24,763	80,1256	24,8222	
24	19,3896	16,8312	19,2476	16,8622	
25	-10,6243	5,1666	-10,5231	5,1277	
26	11,5253	15,7192	11,4603	15,7388	
27	-28,6667	4,713	-28,5648	4,6776	
28	-42,8374	-2,0994	-42,7343	-2,1289	
29	-53,2558	-6,7579	-53,1506	-6,7778	
30	8,2837	10,4188	8,682	10,3285	
31	-162,563	-26,1587	-162,7131	-26,0994	
32	90,2891	21,5846	90,4135	21,5885	
33	143,5246	30,0565	143,4918	30,0556	
34	32,8758	-0,59206	32,8487	-0,58697	
35	15,6551	-6,5679	15,6284	-6,5612	
36	231,1868	92,9695	230,9448	93,1117	
37	74,1603	28,1452	74,2491	27,9965	
38	223,7109	-11,4599	223,5865	-11,5569	
39	14,7659	11,5218	14,8477	11,5082	
40	-8,4154	-8,6439	-8,4419	-8,6363	
41	92,982	5,0542	92,843	5,0843	
42	-29,8572	12,3966	-29,803	12,378	
43	12,5271	1,7643	12,5251	1,7648	
44	7,3065	-4,4185	7,036	-4,3444	
45	-3,5913	-10,3972	-3,8988	-10,3023	

46	0,83877	4,0362	0,74827	4,0793
47	-33,8388	-13,0362	-33,7483	-13,0793
48	-15,7185	-10,4922	-15,9872	-10,4124
49	30,2462	4,6955	30,3372	4,6667
50	-94,307	-44,197	-93,4768	-44,5694
51	243,3713	113,6047	240,2557	114,0282
52	54,909	2,9795	53,6588	3,2503
53	44,0211	-3,6751	42,8085	-3,3416
54	62,3514	19,026	62,5628	18,7018
55	26,9168	-8,7019	25,7102	-8,2869
56	15,4475	1,1926	14,2809	1,5561
57	-11,8362	-6,4469	-13,0109	-6,063
58	-21,5897	-7,7865	-22,7513	-7,4058
59	-16,593	-1,3302	-17,823	-0,90904
60	1,4137	1,6334	0,18424	2,0578
61	-32,7699	5,484	-34,0278	5,7821
62	-36,3279	-3,5669	-36,6591	-3,6596
63	-31,1111	-1,2182	-30,8566	-1,4672
64	-14,7609	-5,8308	-15,357	-5,6133
65	-9,5352	-10,837	-12,4434	-9,606
66	-64,8702	5,2448	-66,0563	5,7973
67	-64,8702	5,2448	-66,0563	5,7973
68	-49,7002	-2,083	-50,6475	-1,7819
69	-34,8976	3,2067	-35,5035	3,3926
70	53,66	13,4271	49,4667	14,4016
71	66,6274	20,4428	61,5607	21,4572
72	28,5588	6,2457	27,0025	6,7017
73	10,3714	1,9943	8,8326	2,5024
74	-12,6828	-5,551	-14,2103	-4,9944
75	37,7658	13,07	33,254	13,7766
76	37,7442	11,198	33,3496	12,0803
77	7,0734	1,4568	5,7893	1,7576
78	18,528	4,3464	14,4966	5,5004
79	-21,4213	-5,8239	-18,1727	-6,8844
80	-22,9882	-9,1036	-19,0655	-10,8442
81	35,8754	9,141	31,7847	10,4047
82	-6,6664	-3,6928	-3,4706	-5,1417
83	18,7863	3,158/	15,555	4,5054
84	-30,3824	-7,5066	-35,07	-6,0893
85	-27,963	-4,1/36	-31,8218	-2,5566
86	-29,3132	-5,906/	-35,3457	-2,1857
8/	-34,3130	-8,2017	-39,0430	-0,8085
80 80	-43,310/	5,0222	-43,3728	5,0442
89	-31,/18/	5,0322	-32,0805	3,3272
90	-112,00/1	0,3191 7 1142	1 20,3032	0.0120
91	-9,0/22	-1,1142	-1,09//	-0,0/24
74	23,4921	-13,0377	40,4100	-10,2144

93	151,7715	67,4828	168,4204	97,0825
94	-151.7715	-67.4828	-168.4204	-97.0825
95	30.5374	13.9863	54,7489	77.4904
96	-181,2804	-57,6258	-177,9533	-58,3608
97	-182,7913	-66.4921	-156.8238	-112,7493
98	-132,2237	4.3257	-128.367	3.1084
99	-132 2237	4 3257	-128 367	3 1084
100	-37 1625	-17 2646	-25 7286	-20 4993
100	24 3032	14 4141	12 0104	17 4600
101	-24,3032 8 5406	72 2407	22 0226	72 2220
102	52 1607	10 2725	41 4802	20.0722
103	14 182	22 4221	0.0700	20,9722
104	14,162	-22,4331	9,0709	-22,0389
105	-55,9401	11,0318	-52,7714	10,1724
106	-46,5401	10,0475	-43,2480	9,0737
107	-125,8025	112,8197	-129,9254	113,0148
108	108,376	16,0747	108,2647	16,0862
109	-6,2153	-2,9/41	-6,0096	-2,9805
110	16,6529	-12,3767	16,4584	-12,3326
111	1,4672	3,3071	1,6592	3,2593
112	10,6022	-0,93971	10,4084	-0,89503
113	6,0124	-10,7384	6,0124	-10,7362
114	16,2076	12,8926	16,3398	12,8549
115	-0,13324	9,9398	0,03014	9,8894
116	110,009	20,4854	110,1017	20,467
117	-51,9886	-6,1905	-51,8577	-6,233
118	-61,15	-21,04	-60,9852	-21,1054
119	62,2094	6,7832	62,7978	6,6393
120	-34,6083	-9,5541	-34,393	-9,6348
121	45,3947	6,6113	45,6047	6,5575
122	-25.6838	-18.3717	-25,4745	-18.4278
123	-96.5709	-37.415	-96,1351	-37.5871
124	-44.3653	-20.5457	-44.1551	-20.6135
125	-64,7372	-29,5836	-64.5274	-29,6376
126	-44 1455	-4 6142	-45 1321	-4 5462
120	-44 202	75 5392	-45 1902	75 59
127	-3.0255	17 5545	-2 9157	17 5164
120	47 2224	24 3035	47 203	24 384
12)	-24 786	14 6866	-24 7782	14 6822
130	42 7700	11,0061	42 750	11,0018
131	36 3461	8 0010	36 338	8 0883
132	-30,3401	7 2527	17 1725	7 2527
133	2 047	-7,5557	2 047	-7,5557
134	-5,947	-13,091	-5,947	-13,091
135	-50,3924	7,5997	-50,3822	7,5905
130	-71,2304	0,07097	-71,2239	0,07414
137	-98,9324	-2,4695	-98,9219	-2,4/15
138	58,2187	-4,7243	58,2196	-4,7245
139	110,8284	-5,4421	110,8301	-5,4423
140	1,4124	4,4239	1,4148	4,4232
141	201,5416	-2,104	201,556	-2,1053
142	63,5947	-5,0668	63,5993	-5,0674
143	-8,596	-6,6258	-8,5936	-6,6265
144	57,6235	-11,6583	57,6272	-11,6584
145	52,1701	-15,2144	52,1738	-15,2146
146	44,7199	-19,5015	44,7235	-19,502
147	40,861	9,0142	40,8541	9,0172
148	18,9665	21,0665	18,9277	21,0742
149	-9,9443	-6,5687	-9,8533	-6,5954
150	19,7879	-9,8217	19,78	-9,8182
151	26,4235	25,7533	26,3848	25,7607
152	28,9493	8,3181	28,932	8,3213
153	19,5642	8,1684	19,547	8,1716
154	31,4971	-16,5323	31,5037	-16,5331
155	4,2809	-50,5376	4,3027	-50,5456
156	-1,3763	-21,6887	-1,3831	-21,6855
157	-11,0959	-20,1611	-11,0576	-20,1704
158	-5,2565	2,4288	-5,2737	2,4329
159	-22,6484	-4,5941	-22,6654	-4,59
160	-16,7426	22,8998	-16,7489	22,9018
161	44,6511	-8,3899	44,6577	-8,3906
162	20 0707	10 1278	-38,9861	10,1294
102	-30,9797	10,1270	/	
163	121,7533	-22,1485	121,7533	-22,1485
162 163 164	-58,9797 121,7533 56,1847	-22,1485 10,647	121,7533 56,1847	-22,1485 10,647
163 164 165	-58,9797 121,7533 56,1847 32.4521	-22,1485 10,647 13.8671	121,7533 56,1847 32.4521	-22,1485 10,647 13.8671

167	60,3612	9,476	60,3612	9,476
168	48,5843	2,6323	48,5843	2,6323
169	8,8632	3,8799	8,8632	3,8799
170	26,7547	-2,3749	26,7547	-2,3749
171	23,9651	-11,1285	23,9651	-11,1285
172	23,9841	-3,7253	23,9841	-3,7253
173	21,7746	-10.9223	21,7746	-10.9223
174	60.5988	8.3489	60.5988	8.3489
175	13 7087	-13 3929	13 7087	-13 3929
176	-35 7029	0.95613	-35 7029	0.95613
170	69/1586	-30 6142	69.4586	-30 6142
178	2 0563	5 9006	2 1341	5 9265
170	4 1161	-17 7986	4.0375	-17 7763
180	9 3715	1 7777	9 3725	1 7775
181	20 7237	5.0604	20 7227	5,0606
182	1 3577	0.22075	1 3588	0.2205
182	1,3377	66 259	1,5588	66 2001
103	20 1526	-00,338	20 1526	-00,2091
104	20,1320	3,1973	20,1320	3,1973
185	40,2148	23,5877	40,3816	23,5423
186	-6,85	-9,6919	-7,0148	-9,64
Nœud nº	V(p.u.)	Angle(rad)	V(p.u.)	Angle (rad)
1	0,955	0,19151	0,955	0,1931
2	0,97139	0,20093	0,97139	0,20253
3	0,96769	0,20693	0,96769	0,20852
4	0,998	0,27182	0,998	0,2734
5	1,002	0,27959	1,002	0,28116
6	0,99	0,23199	0,99	0,23357
7	0,98933	0,22423	0,98933	0,22582
8	1,015	0,36723	1,015	0,36878
9	1,0429	0,49384	1,0429	0,49539
10	1,05	0,62615	1,05	0,6277
11	0,98509	0,227	0,98509	0,22859
12	0,99	0,21797	0,99	0,21957
13	0,9683	0,20298	0,9683	0,20461
14	0,98359	0,20545	0,98359	0,20709
15	0.97	0.20026	0.97	0.202
16	0.9839	0.21271	0.9839	0.21431
17	0.99509	0.24426	0.9951	0.24587
18	0.973	0.20561	0.973	0.2073
19	0.962	0 19748	0.962	0 19924
20	0.95693	0.21277	0.95695	0 2144
20	0,95772	0.24047	0.95775	0.24199
21	0,95772	0,24047	0,95775	0.24177
22	0,90902	0,28504	0,90905	0,28045
23	0,002	0,37000	0,002	0,37200
24	0,992	0,30831	0,992	0,30932
23	1,05	0,49183	1,05	0,49318
20	1,015	0,32291	1,013	0,32429
21	0,908	0,27233	0,908	0,21313
28	0,90157	0,24223	0,90157	0,24300
29	0,90322	0,22489	0,90322	0,22035
30	0,98533	0,3322	0,9854	0,3337
31	0,967	0,22693	0,967	0,22839
32	0,963	0,20280	0,963	0,20420
55	0,97093	0,18944	0,97094	0,19156
54	0,984	0,20091	0,984	0,20356
35	0,98045	0,19295	0,98045	0,19555
36	0,98	0,19296	0,98	0,19557
37	0,99066	0,20886	0,99067	0,21141
38	0,96129	0,29858	0,96153	0,29996
39	0,96996	0,14969	0,97001	0,15372
40	0,97	0,13082	0,97	0,13571
41	0,96683	0,12307	0,96682	0,12862
42	0,985	0,15102	0,985	0,15838
43	0,97712	0,20002	0,97691	0,205
44	0,98444	0,24336	0,98409	0,25176
45	0,98638	0,27528	0,98609	0,28495
46	1,005	0,32421	1,005	0,3343
47	1,0171	0,36301	1,0173	0,37269
48	1,0206	0,34939	1,0206	0,36071
49	1,025	0,3669	1,025	0,37854
50	1,0011	0,33131	1,0014	0,3463
51	0,96688	0,28561	0,96736	0,30482
52	0,95682	0,26897	0,95734	0,28928
53	0,94598	0.25196	0.94624	0.27529
		.,//	.,	

Annexe	E :	résul	tats	d'e	écoul	leme	nt c	le 1	puiss	sanc	e

54	0,955	0,26788	0,955	0,29343
55	0,952	0,26282	0,952	0,28942
56	0,954	0,26607	0,954	0,29208
57	0,97058	0,28709	0,97085	0,30836
58	0,95904	0,27214	0,95934	0,29423
59	0,985	0,33944	0,985	0,37722
60	0,99316	0,40544	0,99316	0,44362
61	0,995	0,421	0,995	0,46035
62	0,998	0,41024	0,998	0,44368
63	0,96874	0,39841	0,9789	0,44199
64	0,98374	0,42924	1,0001	0,47487
65	1,005	0,48379	1,005	0,4816
66	1,05	0,48099	1,05	0,48912
67	1,0197	0,43492	1,0201	0,4545
68	1,0033	0,48167	1,0033	0,4803
69	1,035	0,5236	1,035	0,5236
70	0,984	0,39476	0,984	0,3949
71	0,98684	0,38758	0,98685	0,3878
72	0,98	0,36842	0,98	0,36901
73	0,991	0,38389	0,991	0,38411
74	0,958	0,37819	0,958	0,37813
75	0,96733	0,40021	0,96733	0,40009
76	0,943	0,38046	0,943	0,38014
77	1,006	0,46689	1,006	0,46627
78	1,0034	0,46158	1,0034	0,46094
79	1,0092	0,4668	1,0092	0,4661
80	1,04	0,50597	1,04	0,50513
81	0,99681	0,49122	0,99682	0,49005
82	0,98855	0,47598	0,98854	0,47526
83	0,98438	0,49679	0,98438	0,49606
84	0,9797	0,54106	0,9797	0,54032
85	0,985	0,5682	0,985	0,56746
86	0,98669	0,5443	0,98669	0,54355
87	1,015	0,54883	1,015	0,54808

88	0.98745	0.62292	0.98745	0.62216
89	1.005	0,69374	1 005	0,62210
90	0.085	0.58187	0.985	0.5811
90	0,985	0,58107	0,985	0,58121
91	0,98	0,38208	0,98	0,58151
92	0,99	0,59133	0,99	0,59056
93	0,98545	0,53842	0,98545	0,53764
94	0,98983	0,5006	0,98983	0,49982
95	0,98033	0,48362	0,98033	0,48285
96	0,99228	0,48071	0,99228	0,47994
97	1,0112	0,48722	1,0112	0,48642
98	1,0235	0,4788	1,0235	0,47798
99	1,01	0,47241	1,01	0,4716
100	1,017	0,48972	1,017	0,48893
101	0,99142	0,51744	0,99142	0,51665
102	0,98913	0,56488	0,98913	0,5641
103	1,01	0,42443	1,01	0,42363
104	0,971	0,37957	0,971	0,37878
105	0,965	0,3603	0,965	0,3595
106	0,96115	0,35576	0,96115	0,35496
107	0,952	0,30688	0,952	0,30608
108	0,96621	0,33935	0,96621	0,33856
109	0,96703	0,33145	0,96703	0,33066
110	0,973	0,31667	0,973	0,31588
111	0,98	0,34539	0,98	0,34459
112	0,975	0,26258	0,975	0,26179
113	0,993	0,24422	0,993	0,2458
114	0,96009	0,25703	0,96009	0,25842
115	0,96002	0,25688	0,96002	0,25828
116	1,005	0,47408	1,005	0,47271
117	0,97382	0,19108	0,97382	0,19268
118	0,94944	0,38296	0,94944	0,38274

RÉSEAU IEEE 300 NŒUDS

Tableau 0.1 résultats d'écoulement de puissance							
	Sans	UPFC en ligne 232					
Ligne n°	P(MW)	Q(Mvar)	P(MW)	Q(Mvar)			
1	79,6328	8,5202	79,6315	9,5914			
2	36,2027	-6,6497	36,2005	-5,666			
3	26,4346	10,3678	26,4352	10,3457			
4	16,9917	4,7732	16,992	4,8828			
5	36,036	-6,8714	36,0352	-6,6709			
6	30,2356	28,5955	30,2351	28,5839			
7	27,9205	-7,4086	27,9198	-7,2099			
8	-50	-17,5653	-50	-17,064			
9	-8	-3,446	-8	-3,3507			
10	9,4693	2,656	9,4697	2,651			
11	8,3928	2,2474	8,3931	2,2426			
12	8,3928	2,2474	8,3931	2,2426			
13	6,5233	0,73122	6,5234	0,78448			
14	6,5233	0,73122	6,5234	0,78448			
15	7,3533	2,5694	7,3533	2,5694			
16	0,95228	0,34993	0,95228	0,34993			
17	1,6181	0,61634	1,6181	0,61634			
18	1,4279	0,5461	1,4279	0,5461			
19	0,47037	0,17039	0,47037	0,17039			
20	0,47026	0,16951	0,47026	0,16951			
21	1,0734	0,38937	1,0735	0,38929			
22	1,0721	0,37704	1,0722	0,37699			
23	7,2704	1,6523	7,2707	1,6479			
24	1,9618	0,86196	1,9619	0,86146			
25	1,4726	0,60829	1,4727	0,60801			
26	2,0142	0,89121	2,0144	0,89066			
27	4,4069	1,5835	4,407	1,5831			
28	4,3902	1,569	4,3903	1,5687			
29	1,0613	0,38278	1,0614	0,38271			
30	0,85543	0,32799	0,85549	0,32789			
31	1,6048	0,57171	1,6048	0,57159			
32	1,6348	-1,1135	1,635	-1,1173			
33	1,7616	0,70898	1,7617	0,7087			
34	3,0471	1,185	3,047	1,1846			
35	1,9693	0,75847	1,9695	0,75822			
36	2,744	1,1626	2,7442	1,162			

37	3,8393	1,4151	3,8392	1,415
38	1,2983	0,42284	1,2983	0,42284
39	402,0422	96,8566	402,0686	96,8186
40	158,4925	31,0946	158,346	31,0257
41	365,1177	9,696	365,3966	9,7296
42	259,8587	123,5623	259,8391	123,9959
43	138,8731	5,5147	138,9104	5,5612
44	92,9609	131,7727	92,5989	131,9413
45	713,0602	-92,6811	713,2458	-94,0606
46	119,2947	31,4242	119,3643	31,45
47	180,1167	-65,7555	180,2116	-65,5434
48	46,1217	95,8529	45,8178	95,941
49	1,4933	14,4284	1,3489	14,4516
50	293,1536	-36,6977	293,5656	-37,0192
51	22,412	-14,0011	22,4807	-13,9801
52	153,3272	-9,2922	153,2826	-9,2802
53	420,253	98,411	420,3167	98,4901
54	93,462	-25,4133	93,4185	-25,3964
55	122,1823	-123,9256	122,5612	-124,3533
56	19,9358	-5,2719	21,2493	-5,8208
57	17,0223	-7,1395	17,3335	-7,2545
58	13,1955	-3,7076	13,6405	-3,8846
59	402,0827	-149,6532	400,5587	-151,5797
60	-45,489	40,5519	-45,5083	40,6219
61	182,7978	-34,9185	182,8536	-34,9472
62	-15,1249	21,0377	-15,1265	21,0376
63	24,3122	0,51847	24,3116	0,51834
64	-227,3739	-65,4937	-227,3717	-65,4703
65	-96,2373	-0,69814	-96,2389	-0,69825
66	126,4703	12,0244	126,471	12,0246
67	116,7756	-28,204	116,7756	-28,2042
68	78,6852	-3,7575	78,6858	-3,7574
69	46,079	0,30504	46,0796	0,30516
70	2,4765	-13,7872	2,4765	-13,7872
71	-120,6729	-22,9856	-124,6271	-22,1521
72	85,4535	18,1058	87,0254	17,9375
73	47,4933	-0,42791	48,7031	-0,49086
74	-67,2739	-0,69232	-66,1013	-1,2945
75	-120,6729	-32,0446	-124,6271	-31,7499

76	48,4466	0,54629	48,5039	0,51424
77	112,6117	38,9644	113,1557	39,8487
78	-48,6938	-10,3193	-49,2284	-10,1089
79	-112,3645	-35,8464	-112,4313	-36,9455
80	50,0154	-8,5338	46,541	-8,4832
81	38,744	-15,4242	36,5691	-15,0258
82	-43,4461	-14,3106	-47,0431	-14,3496
83	-186,1533	15,7254	-173,6357	12,2825
84	-2,2197	-5,5139	-3,048	-4,9287
85	-1.8795	-5,8933	-3.0399	-5,1742
86	-104.5669	-1.169	-103.7726	-1.8593
87	84 6559	-7 1037	81 9793	-6 4011
88	500	79 5146	500	77 4479
89	39 7429	6 2833	38 8091	6 7036
90	104 3376	50 1345	206 1048	47 8201
90	-194,5570	-50,1545	-200,1048	14 7659
02	40 7200	17 6147	-01,9409	16 0722
92	-40,7209	27 2592	-30,2177	20.5212
93	11 1790	-27,3382	9 4421	-29,3513
94	11,1789	-16,8218	8,4421	-15,8928
95	-4,2345	-0,52859	-3,7642	-0,49018
96	36,4998	-0,68317	36,2334	-0,54816
97	118,1566	2,8543	116,7848	3,4046
98	-21,6563	9,9008	-19,6438	9,2719
99	-223,5237	24,5421	-222,1525	24,8108
100	242,0328	0,82136	235,6713	1,369
101	314,2152	-53,8075	298,991	-53,6641
102	26,7631	-12,2379	25,0418	-11,42
103	29,6814	-4,4092	30,1234	-4,3805
104	-5,917	-10,249	-6,3596	-9,6675
105	102,1936	-6,5839	94,4197	-5,8942
106	62,9199	3,7708	60,2022	4,5893
107	0,51208	-23,3617	-2,089	-22,1893
108	-32,6733	-2,608	-32,9367	-2,4605
109	-64,7662	12,2575	-62,9936	11,8633
110	-42,9081	2,8902	-43.6386	3.6059
111	-10.0992	58,4933	-10.6985	58.8401
112	32,9976	3.5015	32.8216	3.5446
112	-25 7152	58 376	-26 3376	58 6836
114	-244 0901	-48 2216	-244 7187	-47 9318
115	-226 9875	36 9072	-225 5695	37 5133
115	107 1863	44 9608	107 3564	45 1179
110	101 2052	12 1502	197,5504	12 201
117	-101,3033	6 112	-100,0338	6 112
110	10,5252	12 6022	20 1421	12 5224
119	-19,3333	-12,0923	-20,1431	-12,3224
120	-9,9407	-9,4237	-9,233	-9,6585
121	-84,3678	1,4381	-84,3677	1,4402
122	28,3678	-21,4381	28,3677	-21,4402
123	-26,1996	11,8766	-26,4784	12,0122
124	-60,6917	22,9269	-60,4115	22,4879
125	-49,4488	-5,0171	-49,6778	-4,9386
126	14,0561	2,9232	14,0561	2,923
127	27,6744	12,9704	26,6335	14,2834
128	-25,3597	-0,35291	-26,9369	0,71201
129	-76,5316	-59,5821	-81,3668	-58,8782
130	51,2634	-14,1496	51,2617	-14,2366
131	-68,8234	-19,726	-69,3281	-19,8647
132	-261,7281	-56,7686	-261,5415	-56,9491
133	-0,21582	-6,6358	-1,6923	-6,3709
134	-10,9832	-3,9049	-10,9832	-3,9059
135	30,3463	0,55516	30,346	0,55384
136	75,5312	15,4812	75,7188	14,8877
137	-338	-76,0126	-338	-75,5933
138	-8,3482	-5,297	-9,041	-5,0882
139	-28,2192	-9,9621	-29,6957	-9,6963
140	13,6264	-76,3726	3,3723	-74,9793
141	106,1475	-43,3625	96,6925	-41,6457
142	-92,0194	2,3658	-91,6287	2,3089
143	-115,5902	11,3243	-115,4573	11,2981
144	-14,8558	17.9101	-14,8558	17.909
145	-29.7102	-6.2292	-30.2384	-5.7812
146	-54.8546	-3.4558	-55.5805	-2.9479
147	8 4848	19 4506	8 323	19 4866
148	99,0019	18 7814	98 6239	18 8139
140	78 1971	9 6576	77 9256	9 6007
149	140 22/1	15 5777	130 757	15 2657
150	Q 6210	_13,0796	\$ 6606	_13,0007
151	12 201	-13,0700	42 0212	5 7126
152	40.0136	2 8850	30 7747	2 0626
155	-18 1/56	_2,0037	_17 0821	_2,2020
1.04		-4.4413	-11.2001	-2.0404

155	6.0262	7 144	6 0022	7 2124
133	-0,9202	-7,144	-0,8825	-7,2134
156	8,2262	-3,6345	8,1823	-3,6624
157	-51,7094	6,8011	-51,2124	6,3193
158	-10 1181	-10 8036	-9 9212	-10 1299
150	27.7(11	0.22551	27.2475	0.20201
139	27,7011	-0,22331	21,2473	-0,29801
160	42,5857	-2,3111	42,0148	-2,3374
161	35,9272	-1,152	35,7158	-1,1037
162	43 2711	-21 629	43 0503	-21 4977
162	26.820	2 2 4 0 2	26,7202	21,1977
105	20,829	2,3493	26,7302	2,2432
164	31,2786	-15,0371	31,0683	-14,8896
165	2,412	-5,3605	2.412	-5.3607
166	64 2106	7 292	64 1202	7 0927
100	04,2190	1,282	04,1502	7,0827
167	50,0519	-4,2647	49,5877	-4,2142
168	25,1796	-2,3618	25,1796	-2,3618
169	-10 1909	4 0145	-9 8079	3 886
10)	-10,1707	4,0143	-9,0079	5,000
170	-3,0601	1,4012	-3,4881	1,405
171	9,9562	-4,1978	9,5006	-4,0406
172	14.6558	-6.8494	14.106	-6.6653
173	5 2065	3 1 2 0 8	5.82	2 8596
173	-3,2903	-3,1208	-3,62	-2,8390
174	52,5364	-69,6237	52,5362	-69,6257
175	-62,6753	68,2255	-62,6749	68,2253
176	-487 6803	287 3999	-487 6809	287 4055
177	577 0202	242 0040	577.0200	242 0000
1//	-311,9303	-342,9949	-377,9309	-342,9899
178	29,2832	-9,59	29,2832	-9,5895
179	29,2832	-16,3578	29,2832	-16,3572
180	46 4997	-15 1462	46 4007	-15 1462
100	710 57 57	249 6925	710 5552	249 6927
181	/10,555/	548,6835	/10,5553	548,682/
182	541,0976	185,8474	541,0974	185,8448
183	17.8283	-18.3757	17.8285	-18.3751
10/	15 4720	_15 8052	15 472	15 9047
104	13,4729	-13,6932	13,473	-13,094/
185	-67,5207	-1,8929	-67,5205	-1,8925
186	6,8308	-16,5624	6,8308	-16,562
187	-492 9835	103 2569	-492 9834	103 2266
107		1 705 6	-472,7034	1 7020
188	-99,069	-1,/056	-99,104	-1,/029
189	-131,2136	9,7552	-131,2218	9,7495
190	-158.3769	21,3477	-158.3212	21.3134
101	20,1720	12 220	20.172	12 2440
191	-29,1729	13,339	-29,173	13,3449
192	-46,4616	-11,1181	-46,4615	-11,1131
193	-88,0808	17,5746	-88,0932	17,5722
194	-171 6707	17 5875	-171 6647	17 5754
105	127 7992	52,7002	127.0251	52,7((2)
195	-137,7882	-52,7903	-137,8351	-52,7662
196	-170,9986	17,4059	-170,9931	17,3941
197	-234,7386	17,1112	-234,5845	17,044
198	61 3002	-7 2878	61 1522	-7 2307
198	01,5002	=7,2878	01,1522	-7,2307
199	-232,7347	16,1101	-232,5782	16,0436
200	99,4909	-7,3692	99,3259	-7,31
201	280 5892	67 9054	280 5375	67 9527
201	162 1015	72,1075	162 1922	72 2401
202	162,1915	12,1975	162,1832	72,2491
203	275,7673	56,5854	275,6424	56,5824
204	236,2328	12,9512	236,0746	12,9584
205	-665 4402	-282 0845	-666 0306	_281 0121
205	-000,4402	-202,0043	-000,0300	-201,7121
206	-59,1695	4,5745	-59,0233	4,5146
207	120,2469	62,2681	120,3794	62,2228
208	764.8483	204.0473	764.8483	204.1065
200	-76 7459	12 3005	-76 7032	12 3271
209	-10,1430	12,3073	-10,1932	12,32/1
210	-02,0604	-50,814	-02,0605	-50,8108
211	-246,2077	-12,3215	-246,2554	-12,3062
212	63,4602	-36,2763	63,4205	-36,2748
212	-370 182	10 501	-370 1921	10 5005
213	-570,162	10,301	-370,1721	10,5005
214	331,2031	-15,/8/1	350,5518	-15,/026
215	-91,9669	-1 <u>33,3</u> 498	-91,9669	-133,3443
216	-471,099	-94,4727	-471,0992	-94,4692
217	-431 7803	-125 7196	-431 7802	-125 7122
217	10.0710	-123,/170	10.012	-123,/122
218	18,8/19	-14,1092	18,842	-14,1048
219	-79,1562	-2,892	-79,2493	-2,8751
220		10.0071	7 6271	-10,7823
221	-7,3383	-10,8356	-7,0271	
441	-7,3383	-10,8356	-16.0674	-14 6802
222	-7,3383 -15,9657	-10,8356 -14,7003	-16,0674	-14,6802
222	-7,3383 -15,9657 -47,9363	-10,8356 -14,7003 -18,4428	-16,0674 -48,0119	-14,6802 -18,4219
222 223	-7,3383 -15,9657 -47,9363 -62,55	-10,8356 -14,7003 -18,4428 -16,7889	-16,0674 -48,0119 -62,6061	-14,6802 -18,4219 -16,7692
222 223 224	-7,3383 -15,9657 -47,9363 -62,55 154,9487	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171	-16,0674 -48,0119 -62,6061 154,9187	-14,6802 -18,4219 -16,7692 -47,2188
222 223 224 225	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851	-16,0674 -48,0119 -62,6061 154,9187 -35,7676	-14,6802 -18,4219 -16,7692 -47,2188
222 223 224 225	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 201,500	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851	-16,0674 -48,0119 -62,6061 154,9187 -35,7676	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709
222 223 224 225 226	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547
222 223 224 225 226 227	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975
222 223 224 225 226 227 228	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511
222 223 224 225 226 227 228 228	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1229	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1221	-16,0674 -16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -47,9200	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511 -54,1708
222 223 224 225 226 227 228 229	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1238	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1231 -47,2171	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -147,9209	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511 -54,1708
222 223 224 225 226 227 228 229 230	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1238 -71,5781	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1231 -41,4714	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -147,9209 -71,6436	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511 -54,1708 -41,4563
222 223 224 225 226 227 228 229 230 231	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1238 -71,5781 -151,069	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1231 -41,4714 23,2512	-16,0674 -16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -147,9209 -71,6436 -151,0107	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 -37,3511 -54,1708 -41,4563 23,2385
222 223 224 225 226 227 228 229 229 230 231 232	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1238 -71,5781 -151,069 95,9342	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1231 -41,4714 23,2512 49,3554	-16,0674 -16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -147,9209 -71,6436 -151,0107 95,907	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511 -54,1708 -41,4563 23,2385 49 3455
222 223 224 225 226 227 228 229 230 231 232 232	-7,3383 -15,9657 -47,9363 -62,55 154,9487 -35,6984 -221,5901 103,4428 -29,9188 -148,1238 -71,5781 -151,069 95,9342	-10,8356 -14,7003 -18,4428 -16,7889 -47,2171 -13,7851 -53,0013 34,9007 -37,3403 -54,1231 -41,4714 23,2512 49,3554 \$\ellow\$4011	-16,0674 -48,0119 -62,6061 154,9187 -35,7676 -221,8956 103,6468 -29,8518 -147,9209 -71,6436 -151,0107 95,997	-14,6802 -18,4219 -16,7692 -47,2188 -13,7709 -52,9547 34,8975 -37,3511 -54,1708 -41,4563 23,2385 49,3455 -6004

234	-22,3758	6,6472	-22,3863	6,649
235	107 4103	-2 5144	107 4007	-2 5138
236	-25 9191	15 6532	-25 9199	15 6537
230	44.0800	11,0552	44.0901	11 5 69
237	-44,0809	11,3083	-44,0801	11,308
238	-71,2516	-37,9227	-71,2422	-37,9245
239	-363,1667	11,1861	-363,1672	11,1888
240	-90,1062	43,2882	-90,1063	43,2898
241	43 4753	-22,2065	43 4754	-22,2029
242	461 9774	12 0464	461 9774	12 0458
242	401,8774	15,9404	401,8774	13,9438
243	-546,8774	-37,9464	-546,8774	-37,9458
244	-221,6982	-46,4615	-221,688	-46,4629
245	-552,3846	51,9828	-552,3846	51,9836
246	30 2207	87 6372	30 3300	87 5833
240	-30,2207	-07,0372	-30,3399	-07,5055
247	24,5759	3,2818	24,5522	3,2856
248	-32,454	-9,9952	-32,4596	-9,992
249	-55,9766	-7,1812	-55,948	-7,1971
250	-27.3765	9,3537	-27,4092	9,3652
251	55 0837	12 7578	56,0026	12 7608
251	-55,9857	2,7578	-50,0020	12,7098
252	-58,2554	-2,9411	-58,2567	-2,9437
253	11,1078	-4,1083	11,0904	-4,105
254	99,2115	27,0281	99,1863	27,0339
255	152,781	46 9783	152,7568	46 9867
255	19 7 226	20.0791	19 7100	20.0726
230	10,7230	-20,9/01	10,/199	-20,9730
257	-208,6877	-82,1058	-208,649	-82,1214
258	481,3168	-4,926	481,3169	-4,9244
259	-646,802	-126,9152	-646,802	-126,9113
260	-199 0563	-41 9365	-199 0563	-41 9332
260	667 6251	100 99 45	667 675	100 0012
201	401.0000	100,6845	401.0000	100,6813
262	491,8329	107,4707	491,8329	107,4675
263	539,7715	6,8924	539,7715	6,8937
264	8,5618	1,9892	9.0116	1.8016
265	-4 9003	-0.18636	-5 1091	-0.05947
205	529,0226	-0,10050	520,1209	-0,03747
266	528,9326	-359,2783	529,1298	-394,9875
267	-33,0943	120,32	-33,0943	120,32
268	832	346,572	238,5199	30,9525
269	9,6194	-83,518	507,2581	21,041
270	3 9284	6 4 4 9 3	4 1616	6 3601
270	1,2717	2,0092	1,1010	2,005
271	1,3/1/	-2,9982	1,401	-2,995
272	126,8779	-62,8633	116,635	-61,1762
273	-113,3332	43,1987	-113,334	43,115
	160044			
274	16,0844	-99,4956	5,2004	-98,2108
274	-75 5388	-99,4956	5,2004	-98,2108
274	-75,5388	-99,4956 -24,2216	5,2004 -76,0018	-98,2108 -24,2012
274 275 276	-75,5388 -23,3217	-99,4956 -24,2216 -2,8	5,2004 -76,0018 -23,5176	-98,2108 -24,2012 -2,7017
274 275 276 277	-75,5388 -23,3217 -95,234	-99,4956 -24,2216 -2,8 -22,2342	5,2004 -76,0018 -23,5176 -95,2792	-98,2108 -24,2012 -2,7017 -22,0412
274 275 276 277 278	16,0844 -75,5388 -23,3217 -95,234 -24,2408	-99,4956 -24,2216 -2,8 -22,2342 -18,2775	5,2004 -76,0018 -23,5176 -95,2792 -24,6689	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793
274 275 276 277 277 278 279	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567
274 275 276 277 278 279 280	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11 6837	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11 45
274 275 276 277 278 279 280 281	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,0528	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,0010
274 275 276 277 278 279 280 281	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019
274 275 276 277 278 279 280 281 282	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133	-99,4956 -24,2216 -2,8 -2,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606
274 275 276 277 278 279 280 281 282 283	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207
274 275 276 277 278 279 280 281 282 283 284	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793
274 275 276 277 278 279 280 281 282 283 284 284 285	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585
274 275 276 277 278 279 280 281 282 283 284 285 284 285 284	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 11,554	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 -6,6800	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 11,6239	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6 7,409
274 275 276 277 278 279 280 281 282 283 284 285 286 285	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 2,0227	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 -28,26,47	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 2,2621
274 275 276 277 278 279 280 281 282 283 284 285 286 286 287	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -2,0955 -2,0825 -2,0955 -2,0825 -2,0955 -2,0825 -2,0955 -2,0825 -2,0825 -2,0955 -2,0825 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,0855 -2,08555 -2,08555 -2,08555 -2,08555 -2,08555 -2,08555 -2,08	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 28,2049	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 (5,50)
274 275 276 277 278 279 280 281 282 283 283 284 285 286 287 288	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232
274 275 276 277 278 279 280 281 282 283 284 285 286 285 286 287 288 288 289	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -1,5,917 -4,689	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 _4,8869
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 287 288 289 290	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096
274 275 276 277 278 279 280 281 282 283 284 283 284 285 286 287 288 288 289 289 290 290	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385
274 275 276 277 278 279 280 281 282 283 283 284 285 286 287 288 288 289 290 291	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2310	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 30,6416
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 288 289 290 291 292 292	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 (42,24)21	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 42,2522
274 275 276 277 278 279 280 281 282 283 284 285 286 286 286 287 288 289 290 291 292 293	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503
274 275 276 277 278 279 280 281 282 283 284 285 283 284 285 286 287 288 289 290 290 291 292 293 294	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,587 -43,2319 272 250,2188	-99,4956 -24,2216 -2,8 -22,2342 -118,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,256 -3,3841 -45,261 -272 249,8029	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 288 289 290 291 292 293 294 295	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 286 287 288 289 290 291 292 293 294 295 Need n°	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p,u)	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad)	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p,u)	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad)
274 275 276 277 278 279 280 281 282 283 283 284 285 286 287 288 289 289 290 291 292 293 294 295 Nœud n°	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10326	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 288 289 290 291 292 293 294 295 Nœud nº	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -4,8587 -4,8587 -2,0793 V (p.u) 1,02841 1,02841	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,12767	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u) 1,02844 1,02547	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,1522;
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 289 290 291 292 293 294 295 Nœud nº 1 22	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,887 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 10,03534	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 2,0155	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 2,555 -10,1207 0,15221 -1,5221 -1,5221 -1,557 -1,5521 -1,552
274 275 276 277 278 279 280 281 282 283 284 285 286 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 3	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(pu) 1,02841 1,03534 0,99708	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u) 1,02844 1,03535 0,99714	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 294 295 Nœud n° 1 2 2 3 4	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,887 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,030534 0,99708 1,03072	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,11588 0,08219	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 288 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 3 4 5	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 289 290 291 292 293 294 295 Nœud nº 1 22 3 3 4 4 5 5	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,887 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897 0,13915
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 3 4 4 5 5	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(pu) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119 0,09240	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,09244	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,02941 0,09897 0,13915 0,013524
274 275 276 277 278 279 280 281 282 283 284 285 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 22 3 3 4 5 6 6	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119 0,99340	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,11588 0,08219 0,08176 0,12198 0,01801	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,256 -3,3841 -45,256 -3,3841 -45,256 -3,3841 -45,256 -3,3841 -45,255 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 -2,252 -0,99344 -2,252 -0,99344 -0,252 -0,99744 -0,012 -0,99344 -0,252 -0,954 -0,9	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09897 0,13915 0,12524 0,12524
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 288 289 290 291 292 293 294 295 Nœud nº 1 2 2 3 4 4 5 6 7 7 8 8	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119 0,99340 1,01530	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,0801 0,04185	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,03122 0,99344 1,01530	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897 0,13915 0,12524 0,05894
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 22 3 3 4 4 5 5 6 7 7 8 8 9	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03354 0,99708 1,03072 1,01910 1,01530 1,00338	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,04185 0,04982	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00340	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897 0,13915 0,12524 0,05894 0,06702
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 4 4 5 5 6 7 7 8 8 9 9	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119 0,99340 1,00338 1,02050	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,004185 0,04982 0,02353	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(pu.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00340 1,02050	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09897 0,13915 0,12524 0,05894 0,06702 0,04073
274 275 276 277 278 279 280 281 282 283 284 285 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 4 5 6 7 8 9 9 10 11	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,587 -43,2319 272 250,2188 -2,0793 V(p.u) 1,02841 1,03534 0,99708 1,00372 1,01910 1,03119 0,99340 1,01530 1,00338 1,02050	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,0485 0,04303 0,04303	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00340 1,00250	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09897 0,13915 0,12524 0,06702 0,04073 0,06021
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 3 4 4 5 6 7 7 8 8 9 9 10	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01530 1,00338 1,02050 1,00566 0,99737	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,04803 0,04303 0,0402	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00566 1,00566	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13915 0,12524 0,09897 0,13915 0,12524 0,05894 0,06702 0,04073 0,06021 0,10254
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 3 4 5 6 7 8 9 10 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -2,8587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,03072 1,01910 1,03119 0,99340 1,00356 0,99737 1,00566 0,99737 0,00756	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,01035 0,01485 0,04303 0,09102 0,009022	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00340 1,02050 1,00566 0,99740	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 -6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09947 0,13915 0,12524 0,05894 0,06702 0,04073 0,06021 0,10824 0,06725
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 4 4 5 6 6 7 7 8 8 9 9 10 11 11 22 13	16,0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,887 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,03534 0,99708 1,03072 1,01910 1,03119 0,99740 1,01530 1,00338 1,02050 1,00566 0,99777 0,99768	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,11588 0,08219 0,08176 0,11588 0,08219 0,08176 0,12198 0,04303 0,04303 0,09102 -0,00962	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -33,1837 -33,1837 -33,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03855 1,01913 1,03122 0,99344 1,01530 1,00340 1,002566 0,99740 0,99768	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897 0,13915 0,12524 0,05894 0,06702 0,04073 0,06021 0,10824 0,00757
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 288 289 290 291 292 293 294 295 Nœud n° 1 2 2 3 4 4 5 6 6 7 7 8 8 9 9 0 10 11 11 22 13 14	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,587 -43,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,00372 1,01910 1,03119 0,99340 1,01530 1,00356 0,99737 0,99768 0,99912	-99,4956 -24,2216 -2,8 -22,2342 -118,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,00812 0,004185 0,04303 0,04303 0,09102 -0,00962 -0,08403	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -272 249,8029 -1,663 V(p.u) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00366 0,99740 0,99768 0,99923	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09941 0,09897 0,13915 0,12524 0,06702 0,04073 0,06021 0,10824 0,00757 -0,06714
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 Nœud n° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.0844 -75,5388 -23,3217 -95,234 -24,2408 11,4044 70,7838 93,8247 44,3133 -1,6712 -33,3289 -23,4488 -11,524 28,3314 -1,7762 2,0011 -7,2214 -28,887 -4,2319 272 250,2188 -2,0793 V(p.u.) 1,02841 1,03534 0,99708 1,00372 1,01530 1,00338 1,02050 1,00566 0,99777 0,99768 0,99912 1,03430	-99,4956 -24,2216 -2,8 -22,2342 -18,2775 -1,4316 11,6837 26,9528 -1,9603 -1,0494 -10,9506 -3,1755 6,6809 -2,0825 -15,917 -4,689 -9,9827 3,1739 38,946 43,4344 9,8833 -10,7281 Angle (rad) 0,10386 0,13505 0,11588 0,08219 0,08176 0,12198 0,04303 0,04303 0,04303 0,09102 -0,00862 -0,08403 -0,04986	5,2004 -76,0018 -23,5176 -95,2792 -24,6689 11,3821 70,6552 93,8605 44,1697 -1,8163 -33,1837 -23,2035 -11,6239 28,2049 -1,5555 2,4534 -6,2558 -3,3841 -45,3061 272 249,8029 -1,663 V(p.u.) 1,02844 1,03535 0,99714 1,03085 1,01913 1,03122 0,99344 1,01530 1,00566 0,99740 0,99768 0,99923 1,03455	-98,2108 -24,2012 -2,7017 -22,0412 -18,4793 -1,4567 11,45 26,9019 -2,1606 -1,0207 -10,9793 -3,2585 6,7499 -2,3051 -16,0232 -4,8869 -10,4096 3,385 39,6416 43,2503 9,1265 -10,1494 Angle (rad) 0,12107 0,15221 0,13311 0,09897 0,13915 0,12524 0,05894 0,06702 0,04073 0,06021 0,10824 0,00757 -0,06714 -0,03317

17	1 06497	0.22976	1.06407	0.21104
17	1,00487	-0,22870	1,00497	-0,21194
18	0,98196	0,01888	0,98199	0,03609
19	1,00100	-0,04292	1,00100	-0,02571
20	0,97518	0,02831	0,97519	0,04553
21	0.99627	-0.03442	0.99627	-0.01721
22	1 05010	0.06876	1 05010	0.08597
22	1,00566	0,10500	1,00566	0 1222
23	1,00300	0,10309	1,00300	0,1223
24	1,02335	0,02514	1,02336	0,04236
25	0,99858	-0,03025	0,99858	-0,01304
26	0,97504	-0,08543	0,97504	-0,06822
27	1 02432	-0 20986	1 02544	-0 19475
27	1,02132	0,12952	1,02511	0,12121
28	1,04120	-0,13855	1,04196	-0,12121
29	0,97563	-0,44903	0,97579	-0,42357
30	1,00109	-0,39439	1,00176	-0,36895
31	1.01998	-0.19601	1.02088	-0.18268
32	1,02007	0.21023	1.02118	0.20428
32	1,02007	-0,21923	1,02118	-0,20428
33	1,05330	-0,10139	1,05395	-0,08383
34	1,02145	-0,22299	1,02252	-0,20819
35	1,02902	-0,18237	1,03029	-0,16784
36	1 04469	-0.12992	1 04546	-0 11233
27	1,00052	0.20202	1,01270	0.275.42
37	1,00055	-0,29303	1,00170	-0,27542
38	1,00854	-0,30489	1,00972	-0,28506
39	1,02146	-0,25724	1,02258	-0,23686
40	1.03424	-0.20515	1.03546	-0.18521
41	0.97771	-0.40439	0.07870	-0.38301
41	1.00101	-0,40438	1,00011	-0,36501
42	1,00181	-0,28094	1,00241	-0,26454
43	1,04746	-0,05147	1,04749	-0,0484
44	1,02523	-0,14227	1,02631	-0,13208
45	0 99787	-0.20706	0.99888	-0 19354
43	0,00704	-0,20700	0,00700	-0,13334
46	0,99584	-0,3073	0,99700	-0,28953
47	1,00496	-0,28369	1,00607	-0,26574
48	1,01504	-0,21321	1,01578	-0,19732
49	1 03347	-0 13961	1 03359	-0 12215
50	0.00181	0,10461	0.00105	0.08654
50	0,99181	-0,10401	0,99193	-0,08034
51	0,97885	-0,09228	0,97897	-0,07402
52	1,02458	-0,16682	1,02543	-0,14713
53	0,99064	-0.06054	0.99074	-0.04219
54	1,01601	0.01016	1,01610	0.00046
54	1,01001	-0,01910	1,01019	-0,00040
55	0,95830	-0,30/61	0,95830	-0,28909
56	0,94795	-0,2264	0,94798	-0,20782
57	0,96299	-0,44793	0,96329	-0,42108
58	0.95125	-0.61369	0.95150	-0 58864
50	0.07022	0.52154	0.07056	0,40654
39	0,97932	-0,32134	0,97930	-0,49034
60	0,96956	-0,47964	0,96973	-0,45422
61	0,97746	-0,44977	0,97800	-0,42527
62	0,99636	-0,38403	0,99731	-0,35994
63	0.96320	-0.46331	0.96320	-0 43788
64	0.08274	0.43537	0.08380	0,10700
04	0,98374	-0,43337	0,98389	-0,40974
65	0,98996	-0,41983	0,99012	-0,39421
66	0,98195	-0,43593	0,98223	-0,41039
67	0,98718	-0,43591	0,98736	-0,40917
68	1 03392	-0 32967	1.03501	-0 30344
60	1,03502	0,32307	1,03500	0,30344
69	1,02500	-0,29962	1,02500	-0,27403
70	0,98720	-0,30854	0,98727	-0,29096
71	0,99092	-0,2476	0,99098	-0,23029
72	0,99208	-0,13554	0,99213	-0,11837
73	1 01 508	-0 36585	1 01604	-0 34048
74	1.02166	0 10/22	1.02102	0 17944
74	1,03100	-0,19433	1,03192	-0,1/044
15	1,02/15	-0,196	1,02/68	-0,18094
76	1,05200	-0,16412	1,05200	-0,14747
77	1,05200	-0,1082	1,05200	-0,09187
78	0,99303	-0,16441	0,99310	-0,14733
70	1 01925	_0.22104	1 01920	0.2141
17	1,01023	-0,23104	1,01027	-0,2141
80	1,00000	-0,25493	1,00000	-0,23779
81	0,98936	-0,35378	0,98939	-0,33601
82	1,00601	-0,25215	1,00605	-0,23505
83	1.00075	-0.26586	1.00080	-0.24868
Q.1	1 02975	_0 21057	1 02000	_0 10297
04	1,028/3	-0,21037	1,02004	-0,1936/
85	0,99579	-0,30241	0,99585	-0,28502
86	1,02225	-0,22588	1,02242	-0,20915
87	1,00941	-0,27976	1,00976	-0,26295
88	0.99000	-0.35359	0.99000	-0.33581
00	0.07492	0.45405	0.07516	0 42529
09	0,9/462	-0,43493	0,9/310	-0,43328
90	0,97295	-0,43148	0,97324	-0,41266
91	0,97251	-0,50084	0,97266	-0,47935
92	0,96995	-0,44304	0,97073	-0,42214
93	0.97466	-0 499	0.97479	-0.47724
04	0.06020	0.2201	0.06029	0.21020
94	0,96028	-0,23681	0,96028	-0,21938
05	1 02486	-0.22143	1.02486	-0,204

96	0,93483	-0,08236	0,93483	-0,06493
97	0.92985	-0.07193	0.92985	-0.0545
98	1.04350	0.09019	1.04350	0 10762
00	0.05844	0,15205	0.05844	0,10702
99	0,93844	-0,13303	0,93844	-0,13362
100	0,98711	-0,22052	0,98711	-0,20309
101	0,97280	-0,25068	0,97280	-0,23325
102	1,00059	-0,30776	1,00059	-0,29033
103	1,02330	-0,23535	1,02330	-0,21792
104	1.01030	-0.3216	1.01030	-0.30417
105	0.99779	-0 22449	0.99780	-0.20706
105	1,00012	0,2244)	1,00014	-0,20700
106	1,00013	-0,18304	1,00014	-0,1662
107	1,00240	-0,08335	1,00242	-0,06592
108	1,00282	-0,07674	1,00284	-0,05931
109	1,01913	0,09703	1,01916	0,11434
110	0,98613	0,1057	0,98618	0,12295
111	1 00455	0.05315	1 00457	0.07047
112	1,00200	0.00528	1,00200	0,07017
112	1,00200	-0,09328	1,00200	-0,07782
113	1,02208	-0,14037	1,02208	-0,12291
114	1,01934	-0,11789	1,01934	-0,10041
115	1,04759	0,02692	1,04759	0,04442
116	1,04709	-0,02535	1,04709	-0,00782
117	1 05500	-0 11086	1.05500	-0.09333
119	1,05500	0.06225	1,05500	0.04464
110	1,011/1	-0,00223	1,011/1	-0,04404
119	1,04299	-0,03994	1,04299	-0,04233
120	1,05100	0,00088	1,05100	0,01856
121	1,01551	-0,04831	1,01550	-0,03039
122	1,04350	0,0704	1,04350	0,08849
123	1.01608	-0.01215	1.01625	0.0065
123	1 00811	-0.00273	1 00811	0.01521
124	1.05200	-0,00275	1.05200	0,01321
125	1,05280	0,07543	1,05280	0,09326
126	1,05280	0,14599	1,05280	0,16378
127	1,05772	0,00486	1,05772	0,02292
128	1,07350	0,09128	1,07350	0,10931
129	0.98691	0.11061	0.98697	0.12786
130	1 00483	0.07212	1 00485	0.08943
121	1,05350	0.16122	1,00105	0,00945
131	1,05350	0,10132	1,05550	0,17883
132	1,04350	0,1826	1,04350	0,20012
133	0,96642	-0,03136	0,96642	-0,01385
134	1,01775	0,11786	1,01775	0,13538
135	0,96300	0,08984	0,96300	0,10736
136	0.98447	-0.20813	0.98447	-0.1907
137	0.99871	-0 19898	0 99871	-0 18155
138	0.98664	0.17136	0.98665	0 15303
130	0,98004	-0,17130	0,98005	-0,15595
139	0,99980	-0,21904	0,99980	-0,20161
140	1,03609	0,15439	1,03609	0,1719
141	0,99185	0,32291	0,99185	0,34044
142	1,04106	0,05075	1,04106	0,06828
143	0,98396	0,16864	0,98396	0,18617
144	1.00023	0.45918	1.00023	0.47671
145	0.00726	0.52745	0.00726	0.54498
145	0.07140	0,52745	0.07151	0,04470
140	0,97149	-0,12051	1,00211	-0,1031
147	1,00243	-0,08376	1,00244	-0,06632
148	0,98786	-0,11653	0,98787	-0,09909
149	0,92900	0,00156	0,92900	0,01887
150	0,98290	-0,17338	0,98290	-0,15592
151	1,02447	-0,1086	1,02447	-0,09093
152	0.98366	-0.22259	0.98364	-0.20479
153	1.06221	-0.04695	1.06221	-0.02926
153	0.07209	_0 12577	0.07207	_0 10796
134	1.05220	-0,12377	1.05220	-0,10/80
155	1,05220	0,08142	1,05220	0,09934
156	1,00770	0,01081	1,00770	0,02875
157	0,93980	-0,11455	0,93979	-0,09659
158	0,96991	-0,16344	0,96990	-0,14547
159	0,97933	-0,05396	0,97933	-0,03601
160	1,05183	-0,02312	1,05183	-0,00558
161	1 04463	-0.07308	1 04463	-0.05547
160	0.07165	0 12/22	0 07165	0.1/195
102	1.02950	0,12455	1.02950	0,14103
163	1,03859	-0,11946	1,03859	-0,102
164	1,05220	-0,07558	1,05220	-0,05812
165	1,06500	0,03793	1,06500	0,05546
166	1,06500	0,0244	1,06500	0,04193
167	1,05328	-0,01261	1,05328	0,00493
168	0 99755	-0 45114	0 99773	-0 42353
160	1.05510	_0 35002	1.05510	_0 32725
107	1.04250	-0,33772	1.04250	-0,52725
170	1,04350	0,213/3	1,04350	-0,0/3/1
171	0,93745	-0,19519	1,03744	-0,13171
172	0,98966	-0,45546	0,98992	-0,42822
173	1,04881	-0,33537	1,04975	-0,30596
F	1.02560	0.2(200	1.02644	0 22262

			-	
175	0,96946	-0,44197	0,96951	-0,41392
176	0 99067	-0.41401	0 99078	-0 38577
170	1,01500	0,11101	1,01500	0,30311
1//	1,01500	-0,35932	1,01500	-0,33104
178	0,95283	-0,45466	0,95290	-0,42623
179	0.95508	-0.45271	0.95522	-0.42405
177	0,95500	-0,45271	0,95522	-0,42403
180	0,96917	-0,47981	0,96941	-0,45284
181	0,99081	-0,44216	0,99105	-0,41379
182	1.00332	-0.39015	1.00344	-0.36183
182	1,00352	-0,39013	1,00544	-0,30183
183	0,97177	-0,44862	0,97202	-0,42138
184	0,98377	-0,45502	0,98398	-0,42798
185	0.00016	0.47851	0.00805	0.45413
105	0,99910	-0,47851	0,99895	-0,45415
186	1,01373	-0,47907	1,01321	-0,45589
187	0,99285	-0,45869	0,99306	-0,43157
199	0.00004	0.44784	1.00012	0.42002
100	0,99994	-0,44764	1,00013	-0,42003
189	0,97880	-0,4228	0,97883	-0,39455
190	1.00163	-0.40696	1.00189	-0.37858
101	1.01318	0 30288	1 01357	0.36400
191	1,01318	-0,39288	1,01557	-0,30+09
192	1,01000	-0,20375	1,01000	-0,17335
193	0,99181	-0,30606	0,99188	-0,27566
104	0.08650	0 35310	0.08681	0 32271
194	0,98039	-0,33319	0,98081	-0,32271
195	0,97510	-0,39326	0,97545	-0,36212
196	1,02146	-0,38748	1,02190	-0.3551
107	1.00749	-0 30/07	1.00789	-0 36232
17/	1,00/40	-0,57477	1,00700	-0,30233
198	1,05530	-0,36915	1,05598	-0,337
199	1,00800	-0,37923	1,00800	-0,34562
200	1 00000	-0 30256	1 00000	-0 35679
200	1,00000	0,57250	1,00000	0,35079
201	1,05000	-0,40436	1,05000	-0,37187
202	0,99655	-0,39623	0,99741	-0,36056
203	1.00024	-0 37622	1 01375	-0 3/018
203	1,00024	-0,57022	1,01373	-0,34010
204	0,94527	-0,19805	1,02676	-0,17419
205	1,01798	-0,37718	1,02780	-0,34162
206	1 00000	-0.47514	1 00000	-0.44251
200	1,00000	-0,47514	1,00000	-0,44251
207	1,04233	-0,36551	1,04253	-0,33273
208	1,04953	-0,34813	1,04968	-0,31536
209	1.04000	-0.24129	1.04000	-0.20853
207	1,04000	-0,2412)	1,04000	-0,20055
210	1,05345	-0,37044	1,05419	-0,33789
211	1,04138	-0,40489	1,04205	-0,3723
212	1,00000	-0.45205	1,00000	-0.41941
212	1,00000	-0,45205	1,00000	-0,+1)+1
213	1,03867	-0,36471	1,03888	-0,3318
214	1,00951	-0,36707	1,00951	-0,33359
215	1.01650	-0.2688	1.01650	-0 2359
215	1,01050	-0,2000	1,01050	-0,2357
216	1,05574	-0,36829	1,05643	-0,33584
217	1,01000	-0,36553	1,01000	-0,33204
218	1.00000	-0.27689	1.00000	-0 2434
210	1,00000	-0,27009	1,00000	-0,2434
219	1,02378	-0,35149	1,02378	-0,31882
220	1,05000	-0,28805	1,05000	-0,25563
221	0.99300	-0 30599	0.99300	-0 27563
221	1,01000	0,30577	1,01000	0,27505
222	1,01000	-0,33644	1,01000	-0,30621
223	0,99214	-0,35283	0,99214	-0,3226
2.24	0.97108	-0.36477	0.97107	-0.33451
225	0.06510	0.27051	0.06510	0.24020
223	0,90310	-0,57951	0,90510	-0,54929
226	0,96886	-0,37823	0,96884	-0,3481
227	0.97603	-0.44038	0.97593	-0.4108
227	0.07526	0.44770	0.07515	0.41001
220	0,97320	-0,44//9	0,7/313	-0,41621
229	1,01960	-0,41536	1,01950	-0,38577
230	1,02513	-0,35022	1,02513	-0,31755
231	1 01521	0.02576	1 01522	0.04297
2231	1.01450	0,02010	1.01450	0.00177
232	1,01459	-0,03898	1,01459	-0,02177
233	1,00049	-0,30745	1,00054	-0,29006
234	0.98099	-0.23888	0.98105	-0.22157
225	0.07405	0.40971	0.07405	0 20002
233	0,7/493	-0,408/1	0,7/493	-0,59095
236	0,94287	-0,59888	0,94287	-0,58036
237	0,97232	-0,65591	0,97256	-0,63084
238	0.96041	-0 50798	0.96059	-0 48254
230	1,00007	0,50790	1.00102	0,70234
239	1,00087	-0,40778	1,00102	-0,38216
240	0,97759	-0,48879	0,97865	-0,4645
241	0 95828	-0 50255	0 95843	-0 4769
240	1.02004	0.20/75	1 02192	0.06740
242	1,03084	-0,290/5	1,05182	-0,20/42
243	1,01288	0,06816	1,01288	0,08558
244	1.02445	-0.1313	1.02445	-0.11387
2.1	1.01220	0 26407	1 01210	0.24745
243	1,01220	-0,2048/	1,01219	-0,24/45
246	0,96530	-0,26084	0,96536	-0,23286
247	1,05070	0,18836	1,05070	0,20557
249	1.05070	0.2170	1.05070	0.23506
240	1,03070	0,2179	1,05070	0,23300
249	1,03230	0,24011	1,03230	0,25732
250	1,01450	0,08715	1,01450	0,10433
251	1.05070	0.202	1.05070	0 21922
251	1.05070	0.10070	1.05070	0.16507
252	1,05070	-0,18279	1,05070	-0,1659/
253	1,05070	0,10733	1,05070	0,12454

Annexe E : résultats d'écoulement de puissance	

254	1,02900	0,21984	1,02900	0,23705
255	1,05000	0,03693	1,05000	0,05441
256	1,01450	-0,24292	1,01450	-0,22316
257	1,05070	0	1,05070	0
258	0,99670	-0,13096	0,99670	-0,11513
259	1,02120	-0,06011	1,02120	-0,04266
260	1,01450	0,03433	1,01450	0,05267
261	1,00170	0,10114	1,00170	0,11981
262	0,98930	-0,44248	0,98930	-0,4175
263	1,05070	0,33206	1,05070	0,34936
264	1,05070	0,04794	1,05070	0,06555
265	1,01450	0,61173	1,01450	0,62925
266	1,01160	-0,19636	1,01248	-0,18303
267	0,99450	-0,3292	0,99450	-0,31567
268	0,98312	-0,34369	0,98420	-0,33009
269	0,97662	-0,34609	0,97770	-0,33248
270	1,01154	-0,19764	1,01239	-0,1843
271	1,00273	-0,30422	1,00376	-0,29069
272	0,99118	-0,32623	0,99224	-0,31267
273	1,00224	-0,30143	1,00247	-0,28795
274	0,98873	-0,33305	0,98873	-0,31952
275	0,96488	-0,37795	0,96488	-0,36442
276	0,97470	-0,33845	0,97470	-0,32492
277	0,97050	-0,37399	0,97050	-0,36046

278	0,96475	-0,35697	0,96475	-0,34344
279	0,96560	-0,35541	0,96560	-0,34188
280	0,93152	-0,43698	0,93267	-0,42318
281	0,94385	-0,41622	0,94498	-0,40246
282	0,92858	-0,44249	0,92973	-0,42867
283	0,99702	-0,36837	0,99813	-0,35472
284	0,95020	-0,40479	0,95132	-0,39105
285	0,95948	-0,39582	0,96057	-0,3821
286	0,95682	-0,39444	0,95792	-0,38073
287	0,93893	-0,42642	0,94007	-0,41264
288	0,96333	-0,3723	0,96443	-0,35864
289	0,95005	-0,39264	0,95117	-0,37893
290	0,96448	-0,37409	0,96557	-0,36042
291	0,97880	-0,34539	0,97988	-0,33178
292	1,00000	-0,33858	1,00000	-0,32509
293	0,97843	-0,30109	0,97945	-0,28756
294	1,00000	-0,30868	1,00000	-0,29521
295	1,00000	-0,11916	1,00000	-0,10589
296	1,00000	-0,13157	1,00000	-0,11829
297	0,97522	-0,35741	0,97630	-0,34377
298	0,98025	-0,34774	0,98132	-0,33413
299	0,97985	-0,33676	0,98008	-0,32326
300	1.04052	-0.31764	1.04052	-0.30418

RESUME

L'UPFC comme élément FACTS présente l'avantage d'être l'unique dispositif capable de contrôler simultanément la répartition des puissances actives et réactives dans les lignes de transport d'énergie en plus de sa capacité de réguler la tension dans les différents nœuds interconnectés. L'UPFC joue un rôle primordial dans l'amélioration de la qualité de l'énergie et la stabilité des réseaux électriques puisqu'il permet aux lignes de transport de véhiculer l'énergie jusqu'à leurs limites thermiques. Ainsi l'opérateur des réseaux électriques disposera d'une grande flexibilité quant à la satisfaction des demandes en énergie. L'objectif de cette thèse est de développer un modèle d'UPFC qui peut être facilement incorporé dans un programme de résolution de répartition des puissances.

MOTS CLES

UPFC ; Répartition des puissances ; FACT.

ABSTRACT

The UPFC as a FACTS device has the advantage of being the only device capable of simultaneously controlling the distribution of active and reactive power in the power transmission lines in addition to its ability to regulate the voltage in the various interconnected nodes. The UPFC plays a major role in improving power quality and stability of power systems as it allows transmission lines to convey energy to their thermal limits. Thus, the operator of power system will have great flexibility in meeting energy demands. The objective of this thesis is to develop a model of UPFC that can be easily incorporated into a load flow resolution program.

KEYWORDS

UPFC; Load Flow; FACTS.

ملخص

المتحكم في الطاقة الموحد (UPFC) كعنصر من الأجهزة المرنة لنقل الطاقة الكهربائية المتناوبة (FACTS) لديه ميزة كونه الجهاز الوحيد القادر على التحكم في وقت واحد لتوزيع الإستطاعة الفاعلة والردية في خطوط نقل الطاقة الكهربائية، بالإضافة إلى قدرته على تنظيم التوتر في مختلف العقد المترابطة . UPFC يلعب دورا حيويا في تحسين نوعية الطاقة واستقرار أنظمة الطاقة لأنها تتيح خطوط النقل لنقل الطاقة إلى حدودها الحرارية. فبهذا سيكون لمهندس شبكات الكهرباء قدرا كبيرا من المرونة في تلبية الطلب على الطاقة. والهدف من هذه الرسالة هو تطوير نموذج UPFC الذي يمكن إدراجه بسهولة في برنامج تقسيم الإستطاعات في الشبكات الكهربائية.

الكلمات المفتاحية

المتحكم في الطاقة الموحد (UPFC)، توزيع الطاقة، الأجهزة المرنة لنقل الطاقة الكهربائية المتناوبة (FACTS)